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Abstract

The traditional methods for analyzing information in digital documents have evolved

with the ever-increasing volume of data. Some challenges in analyzing scientific

publications include the lack of a unified vocabulary and a defined context, different

standards and formats in presenting information, various types of data, and diverse

areas of knowledge. These challenges hinder detecting, understanding, comparing,

sharing, and querying information rapidly.

I design a dynamic conceptual data model with common elements in publications

from any domain, such as context, metadata, and tables. To enhance the models,

I use related definitions contained in ontologies and the Internet. Therefore, this

dissertation generates semantically-enriched data models from digital publications

based on the Semantic Web principles, which allow people and computers to work

cooperatively. Finally, this work uses a vocabulary and ontologies to generate a

structured characterization and organize the data models. This organization allows

integration, sharing, management, and comparing and contrasting information from

publications.
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Specifically, this work develops automated methods for Information Extraction,

Semantic Analytics, Information Modeling, and Information Retrieval. I research

how to deal with the diversity of tabular and document layouts, and detect, ex-

tract, and organize information from tables embedded in digital publications using

an adaptive method.

To understand relevant information in documents, I interpret and enrich tables,

disambiguating concepts and finding unique definitions from a general ontology and

the Internet with an unsupervised learning method, while keeping the provenance

information for each publication. Furthermore, I apply Natural Language Processing

methods to discover and extract semantic relationships from text with non-standard

vocabulary and various writing styles.

Applying these methods to a variety of digital publications, I formally characterize

semantic data models in a machine-readable format. These models allow us to create

a network of publications to integrate, manage, and analyze information not only in

a specific domain, but also among disciplines.
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Chapter 1

Introduction

The massive production of a variety of digital documents and the lack of a defined

context, as well as a lack of standards to present information in some areas hinder the

prompt analysis of this information. Current methods to analyze this information

focus on specific formats and domains. This investigation develops data models

enriched semantically with relevant information for rapid understanding and analysis,

as well as for easy interoperability among publications in different domains.

Data Science and Big Data provide methods to discover knowledge immersed in

an extensive quantity of information, and to make decisions despite issues related

to the volume, variety, veracity, value, and velocity of production of information.

In addition, the Database area organizes data to access and manage information

systematically. This dissertation intersects these areas with Machine Learning to

solve issues related to knowledge discovery on digital publications, representation of

information, and semantic analytics.
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Chapter 1. Introduction

1.1 Overview

The velocity of the production of scientific publications keeps growing at different

rates [1]. By 2014, Google Scholar had about 160-165 million digital documents

including journals, conferences, theses, and other reports [2]. Of these documents,

about 100 million are publicly available for scholars and researchers, and pertain to

different areas, such as engineering, medicine, and social science [3]. Currently, the

academic search engine BASE [4] contains more than 124 million documents from

6,196 different sources.

Regardless of the method used, either quantitative or qualitative [5], researchers

perform common tasks that include identifying information related to their interest;

annotating definitions; discovering, validating, comparing, and evaluating informa-

tion; and ultimately, gaining knowledge. Moreover, the volume, variety, and velocity

of production of information hinder the use, detection, and querying of information

in publications and, therefore, can impact with any interaction among disciplines.

To solve the previously mentioned issues and facilitate research tasks, I design

a conceptual schema to build semantically enhanced models from scientific publica-

tions. In particular, I develop a framework to create a characterization of digital

documents systematically, that is, a semantic data model. The representation of

concrete information extracted from publications should contain semantic cues to

facilitate detection, integration, management, sharing, comparison, and querying in-

formation from articles. In addition, this representation should be domain agnostic.

J. Peckham and F. Maryanski review different semantic data models and establish

the common components in these models [6]:

a) relationships between data objects that support the manner in which

the user perceives the real-world enterprise, and b) semantics for the

2



Chapter 1. Introduction

relationships that specify the acceptable states, transitions, and responses

of the database system.

J. Peckham and F. Maryanski refer to enterprise as the piece of real world represented

in a database. The semantic data model concept from the Database field can be

applied to digital documents, which may contain a collection of semantic relationships

between concepts. However, the concepts and relationships in the documents are not

defined a priori and need to be identified dynamically.

In this framework, the main component of a semantic data model is a digital

publication. Although scientific articles contain formal vocabulary, no unified vo-

cabulary exists to describe a study even in the same domain. For instance, the

concepts glycemic control and diabetes treatment can be used interchangeably in

the same document. In addition, the scientific publications present information in

different formats, for example, Hypertext Markup Language (HTML) and Portable

Document Format (PDF), as well as, a variety of publishing standards and guidelines

exists.

The Health Sciences define their standards for publishing research articles. For

instance, the digital library PubMed Central [7] (PMC) assigns identifiers to accepted

publications. Journals and conferences of other domains, such as the American

Economic Review [8] (AER) and the Institute of Electrical and Electronics Engineers

[9] (IEEE), define submission guidelines for publishing research and require specific

layouts for camera-ready publications. The Semantic Web Science Association [10]

defines rules to improve sharing and promoting semantic scholar articles. Besides its

publishing guidelines, the Association for the Advancement of Artificial Intelligence

[11] requests metadata for publications.

The importance of metadata has arisen in several areas because it allows us to

identify information rapidly, such as the title and author of a publication. Metadata

3



Chapter 1. Introduction

is especially useful for the research areas that produce large volumes of data, such

as Genomics. The large size of genomic data makes it difficult to store all this

information. Metadata management systems exist to preserve the most relevant

data and to maintain data features of interest [12]. Although this type of system is

useful, expertise on a specific domain is necessary to tailor a metadata management

system and to fulfill researcher’s needs. Formats including tags, for example, HTML,

facilitate the inclusion of metadata. Although, PDF is not based on tags, it allows

us to include basic metadata.

PDF includes internal specification and location of elements in a document; the

main benefit of using this format is that it does not require additional software or

hardware to read this type of document [13]. However, D. Shotton [14] mentions

the difficulty of using information in PDF articles, describing the PDF format as

contradictory to the qualities of the Web (i.e., static, difficult to link, non-machine

readable and non-interactive). Despite these non-interactive qualities, PDF docu-

ments are widely used to disseminate science.

As stated by T. Bernes-Lee and his colleagues [15], “the power of the Web stems

from the linking it makes possible.” Methods to make PDF documents easier to nav-

igate exist. For instance, the framework SALT [16] semantically annotates a LaTex

document, and creates metadata and embedded hyperlinks in this format. Not every

scientific writer, however, uses LaTex syntax to create articles. In addition, F. Ron-

zano and H. Saggion [17] convert PDF articles into a Web representation for easier

navigation. On the other hand, D. Shotton semantically enhances online publica-

tions in HTML format with elements such as the Digital Object Identifier (DOI),

hyperlinks, and semantic mark-up text with linked data to additional information

[14] to make digital publications analysis easier and more shareable. These works

advance the management of annotated references in scientific documents and pro-

vide easier navigation regardless of a document’s format. Moreover, researchers still

4



Chapter 1. Introduction

spend most of their time selecting, analyzing, and comparing relevant information

within publications for their research interests.

To facilitate reading and analyzing digital publications, some works associate

concepts with definitions from reliable and established databases, such associations

are named semantic annotations. For instance, BioLit [18] helps associate concepts,

that is, add hyperlinks, within the publications with definitions established in Life

Sciences databases. In addition, L. Penev et al. use a markup language to include

mandatory taxonomic definitions [19]. These measures enable researchers to select

concepts within publications and to review definitions in the Official Registry of

Zoological Nomenclature [20] and the Encyclopedia of Life [21]. Most of the existing

tools to semantically annotate scientific publications focus on the Health and Life

Sciences.

Summarization can be used to analyze information rapidly and to compare in-

formation among publications. H. Saggion and F. Ronzano [22] mention the impor-

tance of summarization to access scientific information. Using semantic annotations

for concepts and context in a scientific document, this investigation develops a short

summary, that is, a synthesis of a publication. A. Nenkova and K. McKeown [23]

present a survey with several techniques to summarize text written in different areas,

such as Web pages, emails, and scientific documents, highlighting the importance of

including context and scoring sentences for summarization.

To compare and relate publications, some research has focused on reference anal-

ysis. The relationships among different publications cited by each other ensures

the existence of some kind of relationship. For example, SimRank [24] uses mainly

Bibliometrics, that is, reference counting, and title of publications to infer relation-

ships among them. Citations are relevant, but they do not necessarily ensure finding

semantic relationships; therefore, this framework complements these works using

semantic information to compare and contrast scientific documents.

5



Chapter 1. Introduction

Furthermore, semantic interoperability refers to having integrated information

systems, which are context responsive. A. Sheth points out the importance of se-

mantic interoperability to achieve information systems that are easy to use, contain

context to query processing, and hide syntax and structural heterogeneity [25]. The

analysis of a dynamic production of publications require to include semantic cues

from different sources while generating these documents. S. Peroni [26] introduces

the semantic publishing and referencing ontologies to facilitate publishing and refer-

encing scientific articles. Because this kind of publishing is not widely used yet, a

need exists to integrate and channel semantic information in documents.

To include semantic interoperability in the models, I integrate information from

diverse sources, that is, metadata, context, – tables –, and free-text using semantic

relationships. Because of its simplicity in presenting important associations of infor-

mation, a large proportion of this investigation studies table information. Altough

T. Green points out the importance of establishing standards for tables [27], it is

not feasible to have a unique standard among scientific areas. Therefore, this study

analyzes tables and their diversity of presentation, formats, and content.

In this investigation, I use a semantic data model in two ways. First, I use it

as a representation for understanding the content of tables embedded in a publi-

cation, which includes semantic annotations for concepts in tables and contextual

relationships among concepts within a publication. Second, because a semantic data

model represents the blueprint of a publication with concrete information derived

from tables and metadata to identify a publication, I use a semantic data model as

a synthesis of each publication.

The Semantic Web principles provide rules for presenting meaningful information

in which people and computers can cooperate to have a global Web using machine-

readable data [28]. Although the principles apply to the Web, they are important

for digital publications regardless of their environment and format. Moreover, to

6



Chapter 1. Introduction

achieve interoperability, that is, relate information of publications among scientific

disciplines, the Semantic Web principles can help generate a machine-readable rep-

resentation for digital documents. In particular, I use a vocabulary, integrated on-

tologies, and a machine-readable format. Lastly, I represent this information in an

organized approach.

Therefore, the semantic data model allows us to keep minimal information and

still assist in managing and analyzing large datasets of publications. This model with

a flexible organization can be used in a database or other data management systems

to create a network of models. A collection of models enables query processing, infor-

mation sharing, integrating information, comparing and contrasting documents, and

interoperability to collaborate with other scientists in a specific field or among disci-

plines. Because this investigation can integrate concrete and available information,

it can potentially assist in reproducing research in diverse scientific areas.

This investigation is motivated by the importance of sharing and comparing in-

formation, as well as collaborating across scientific disciplines. The assumptions to

create semantic data models from scientific documents include that they contain ta-

bles with concrete information, and text using specific and formal natural language.

Though scientific publications are the main source used in composing semantic data

models, these methods can be adapted and applied to other kinds of documents.

1.2 Thesis and Summary of Contributions

The velocity of production of a large quantity of scientific publications, which lack 1)

a unified vocabulary, 2) a standard format in tables, and 3) semantic interoperability,

especially those in PDF format, impedes the rapid analysis and retrieval of specific

information from publications. On the other hand, it is not feasible to require a

single vocabulary and tabular format across all scientific areas.
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Chapter 1. Introduction

The challenges previously mentioned have prompted the thesis statement for this

investigation. It is feasible to create semantic data models without knowing a priori

their components: entities and relationtionships and to discover these components on

scientific publications in any domain using automated methods. This investigation

aims to facilitate the retrieval, integration, comparison, sharing, and interoperability

among publications.

To accomplish this investigation, I develop a conceptual design to create a se-

mantically enriched data model per publication. In particular, a framework helps

demonstrate how to generate data models systematically using metadata, text, con-

text, and – tables – embedded in publications, related ontologies, and a vocabulary.

These models contain specific information and facilitate analysis, management, and

contrasting information from publications.

1.2.1 Contributions

The information contained in this dissertation contributes to the field of Computer

Science by introducing novel methods for addressing common challenges in the fields

of Information Extraction, Semantic and Data Analytics, and Information Modeling

on digital publications. In addition, this work is related to other research areas,

including, but not limited to, Databases, Data Management, Semantic Web, Seman-

tic Similarity, Model Generation, Software Engineering, and Knowledge Discovery.

From the first three parts of this investigation, my main contributions follow:

1. To extract table information from digital publications, I develop a process in

[29] with

– an adaptive method for detecting and extracting table information from

various layouts in PDF documents,
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– an annotated representation of the information extracted from tables, and

– a Web-based prototype system for using the methods for the organization

of tables.

2. For Information Extraction and Semantic Analytics of digital publications, I

develop a process in [30] with

– a method for the interpretation of tables, including processes for searching

for unambiguous entities and extracting semantic relationships;

– a method for integrating information from different sources (i.e., meta-

data, tables, text, ontologies, Internet); and

– a machine-readable characterization of each digital publication as a syn-

thesis.

3. For Information Modeling and Data Analytics of a set of digital publications,

I develop

– a conceptual design for dynamic generation of semantic data models, and

– an approach for generating a semantic network of publications.

1.2.2 Development of Methods for Semantic Data Models

To accomplish the goal of generating semantic data models from publications, I per-

form tables and text analyses. Figure 1.1 depicts the development of this framework

and guides the description of its main components. In the first part, Discovery of

Table Cells, I develop heuristics and supervised pattern learning for automatic table

detection and extraction from different layouts of tables and documents. I evaluate

these methods and compare their results to a baseline. I perform a set of experiments

on different layouts of documents to measure the number of tables detected and the
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number of data cells correctly extracted from tables. Finally, I develop a prototype

system to submit digital documents and produce a document containing the tables

extracted and organized for each publication.

Figure 1.1: The Semantic Data Modeling Framework

The second part of this framework includes Discovery of Metadata and Con-

text, Categorical Entities, and Relationships (see Figure 1.1). To understand

the content of tables or to interpret tables, I present methods to find context and

entities (i.e., concepts) in tables. The entities are related to contextual relationships

within a publication and to definitions taken from an ontology. I create a synthesis

of a publication composed of a publication’s metadata, semantic relationships, and

tables’ entities with annotations, using statistical and unsupervised learning meth-

10
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ods. I evaluate the methods for table interpretation, including entity recognition,

annotation, and disambiguation. Moreover, I evaluate the extraction of semantic

relationships, as well as the quality of the annotations and semantic relationships.

Finally, this framework includes the generation of Semantic Data Models and

Semantic Network of Data Models (see Figure 1.1). In this part, I formally

define the components to create a semantic data model for each publication. Each

model is used as a synthesis of a publication, facilitating to collect and manage digital

documents. A collection of models enable us to integrate information from different

sources and domains. I present an approach to build a network using semantic data

models derived from a set of publications with different topics. This network allows

us to compare and contrast semantic relationships among publications.

The remainder of this dissertation is divided into five components. Chapter 2

presents a literature review of related work for the different stages of the develop-

ment of this framework. Chapter 3 shows the process of identifying and extracting

table information from digital publications. To understand the content of tables,

Chapter 4 presents methods to detect metadata and context, perform table inter-

pretation, and extract entities and semantic relationships to produce a synthesis for

each publication. Chapter 5 shows a generic schema of the components of a seman-

tic data model, an approach to create a network of models, and a comparison of

semantic relationships among publications. Chapter 6 contains conclusions and rec-

ommendations derived from this dissertation, as well as suggestions for future work.

In addition, Appendix A contains the conceptual design of a semantic data model,

Appendix B contains definitions of semantic relationships from the Semanticscience

Integrated Ontology, and Appendix C contains the context to represent a semantic

data model. Lastly, I include the bibliography used for this work.
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Literature Review

This chapter reviews methods used to obtain the main elements to compose the data

models. The first part of this review presents related work to analyze tables in digital

documents. Second, I present important work to extract semantic relationships.

Third, I briefly describe methods used to integrate information and design semantic

data models, as well as tools used to annotate scientific publications and summarize

information.

2.1 Table Analysis

To begin, I present general definitions of table identification, document converters,

and related work to perform table analysis. Because tables within digital publications

present simple, yet important associations using structured cells, several doctoral

works have studied tables and their functions [31], [32]. X. Wang presents a thorough

work on the analysis of tables [32], where she distinguishes the importance of the

physical and logical elements inside tables. Her doctoral work describes the main

table functions: to understand the information, to search for information, and to
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interpret or compare information. M. Hurst [31] describes in more detail the model

representation of tables, including graphical, physical, functional, structural, and

semantic components.

J. Hu and her colleagues [33] define the table identification problem in two parts:

table detection and table recognition. Table detection refers to the identification of

the existence of tables embedded in documents, while table recognition refers to

identifying the actual structure of a table [33]. Table identification is also known as

table processing [34]. Table processing analyzes the physical and logical structures

of a table. The literature offers two detailed reviews for table processing [34], [35].

Commonly, documents containing tables exist in formats HTML, XML, text,

and PDF. S. Balakrishnan et al. [36] detect high quality Web tables with simple

heuristic rules and a Machine Learning classifier. Two multi-kernel Support Vector

Machines (SVM) classifiers with three Gaussian kernels identify vertical and hori-

zontal tables. The features for the classifiers are the number of rows and columns,

the mean/variance of the string length in a cell, the ratio of data cells, the ratio of

cells with <th> tags, and the number of distinct tokens in a table.

The lack of tags to identify tables in PDF documents poses more challenges

extracting tables from this type of documents. Therefore, extracting information

from PDF documents is a difficult task. To facilitate table identification, recent

works use PDF converters [37], [38], [39].

T. Hassan [40] uses the PDF converter jpedal, TableSeer [38] uses PDFBox, Y. Liu

et al. [39] use PDFlib TET, and TAO [29] uses PDFMiner [41]. Although these tools

are powerful, they may suffer from text sequence errors [42]. Text sequence errors

occur when the converter tool shows the text in a different order than the original

PDF document. Several converters, however, provide coordinates for processing the

right order.
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Some approaches to identify tables embedded in PDF documents include heuris-

tics [43] and statistical methods [39]. TableSeer [38] uses the PDFBox converter and

a page box-cutting method to detect tables. The method is based on heuristic rules

to detect metadata in the document and table elements. The TableSeer algorithm re-

lies on table structure, font size, and keyword matching to identify table candidates,

examples of these words are table and form. TableSeer also relies on white spaces

to detect structure and tables, assuming the tables have the same font size and ig-

noring boxes with different font sizes. TableSeer also extracts metadata information

from the document and offers an algorithm to index and search table information.

Although TableSeer is functional and complete, at times its output makes it difficult

to reconstruct the table content in its original position. It yields XML to represent

tables found in a document.

J. Fang et al. [44] use PDF parsing, page layout analysis to detect multiple-

columns in a document, and an analysis of lines and whitespaces to detect separation

between tables. This approach has been used to detect tables in two million e-books

by Founder Corporation, and showed better recall than TableSeer when tested on 70

documents selected from the TableSeer dataset. This commercial work, however, is

unavailable for comparison.

PDF-TREX [43] presents a heuristic approach to table recognition and extraction

from PDF documents. The PDF-TREX algorithm distinguishes between text and

table areas in the document. The heuristics work in a bottom-up way to align and

group “content elements, exploiting spatial relationships among them.” However,

this heuristics extract tables only in single-column documents.

To overcome the limitations of these works, such as relying on keywords to detect

tables, identifying tables only in one-column documents, and a lack of a represen-

tation to recover an original table’s format, I develop novel methods using a combi-

nation of heuristics and statistical methods in TAO [29]. This approach 1) relies on
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the PDF converter PDFMiner [41], 2) uses a supervised method to learn the align-

ment between columns and rows to identify tables, 3) supports the identification of

tables in single and multiple-columns, and 4) uses a comprehensive representation of

a table’s content.

Besides identifying a table, it is crucial to understand and interpret a table’s con-

tent. Table interpretation is the process of understanding the information contained

in a table. M. Gobel and his colleagues [45] describe table interpretation in more

detail:

Rediscovering the meaning of the tabular structure. This includes: (a)

functional analysis: determining the function of cells and their abstract

logical relationships; (b) semantic interpretation: understanding the se-

mantics of the table in terms of the entities represented in the table, their

attributes, and the mutual relationships between such entities.

To interpret tables in digital documents, some work studies certain formats [46],

[47], [48], [49], for instance, HTML and PDF. For the former, M. Cafarella and his

colleagues develop Webtables [46] to classify and interpret tables from a large number

of Web documents. Their work detects metadata for tables, that is, headers in a large

scale analysis of tables. If tables lack a header, this method finda a synthetic header

by using a database to match the contents to a known label. From this analysis,

Cafarella et al. create a database with attribute co-occurrence statistics, including

the attributes and their frequencies.

Webtables have evolved throgh the years. Another paper related to Webtables

is when P. Venetis and his colleagues [50] annotate table content to improve table

search. They assign a category to metadata related to a column, using a maximum

likelihood model and the information contained in the column. They create two

databases from the Web, the first database is built from text patterns, for instance,
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using the words “such as”. This database has the form isA(instance, class). The

second database uses TextRunner [51], a method to extract relationships of the form

(argument1, predicate, argument2). The isA database has a score to avoid giving

more weight to those more frequent labels. The databases cover many domains, but

can be noisy. Therefore, a class label (entity) is assigned to a column of a set of cells,

and a relationship label is assigned to represent a binary relationship (property)

between a column class and the set of cells in a column.

The main differences between Webtables and this framework are that the latter

identifies and annotates tables from PDF documents, and preserves information of

each table’s source document. Webtables understand tables in a more general way,

while this framework finds precise information for each table. For example, identify-

ing another publication related to a concept to understand a table and its publica-

tion. Because a table presents important information related to its source document,

this framework also considers the document’s context and text to interpret a table,

and consequently to understand its source document. In addition, this framework

preserves information about the table’s source document and its provenance.

Using table interpretation to extract and understand tables in PDF is less com-

mon than for HTML. Xonto [48] extracts syntactic and semantic information from

PDF documents. Xonto uses the Description Logic Programs+ ontology represen-

tation language with descriptors for objects and classes to represent the extracted

information from tables semantically. Even though Xonto uses lemmas and part of

speech tags to identify entities, it lacks an entity disambiguation process.

Texus [49] is a method to identify, extract, and understand tables. Texus claims to

be format independent because a text or HTML document can be readily converted

to PDF. R. Rastan, H. Paik, and J. Shepherd convert PDF documents to a model;

find tables, cells, rows, and columns; and perform functional and structural analyses.

Their analyses help to understand tables. Functional analysis finds each cell’s role
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(i.e., headers or data), where cells can belong to box head, stub, stub head, and

table body, and the cells’ function include data, access, or attribute. The headers

can function either as attributes or access cells. Structural analysis finds logical

relationships between cells.

To understand tables and overcome previous research’s weaknesses, such as lack

of a semantic analysis and the ability to link provenance information to table in-

terpretation, I propose an integral approach as found in [30]. This approach uses

tabular structures and unstructured text in a publication to automatically find con-

text, unique entities, and metadata to identify a particular publication.

The most direct method to disambiguate concepts is to use a simple source of

knowledge, i.e., a dictionary [52] such as WordNet [53]. This approach suffices when

the dictionary contains all the entities of interest and when each entity is free of

ambiguity. Given the variety of concepts and topics appearing in publications, these

conditions are rarely observed. P. Ferragina and U. Scaiella [54] use sources of

knowledge containing structured and unstructured information, such as Wikipedia,

which feature more information than a dictionary.

The Semantic Web [55] represents entities and relationships known as triples.

DBpedia alone contains 4.7 billion triples [56], including the areas of people, books,

and scientific publications. However, most triples from scientific publications are

missing in the Semantic Web. To understand tables, V. Mulwad and colleagues

find annotations for entities [47] using knowledge sources that follow the Semantic

Web principles. Therefore, the Semantic Web databases can complement scientific

publications and help to disambiguate concepts.

This framework uses mainly DBpedia [56] to find a description of each entity.

DBpedia contains semantic information that follows the Semantic Web principles and

it is 1) a curated ontology originated from Wikipedia and 2) a structured ontology
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with specific entities’ properties. In addition, this framework develops a method using

the unsupervised method Latent Semantic Indexing [57] and the publication’s context

to discover explanations of entities on the Internet. This framework, therefore, allows

us to disambiguate concepts and use them to support the extraction of semantic

relationships.

2.2 Semantic Relationships

For the second part of this review, I focus on related work to discover semantic

relationships. V. Storey [58] presents the importance of semantic relationships for

data management, a comprehensive analysis of semantic relationships, as well as an

analyzer of relationships. This investigation is motivated by A. Sheth and his col-

leagues’ work [59], where they describe with great detail the importance of semantic

relationships and ontologies to achieve semantic interoperability.

Several approaches are used to discover semantic relationships, from finding fixed

patterns [60] to using unsupervised methods [61], [51]. D. Hristovski et al. find re-

lationships using fixed patterns [60]. M. Ruiz-Casado, E. Alfonseca, and P. Castells

[62] find them using entity sense disambiguation, pattern extraction, pattern gener-

alization, and identification of new relationships. A. Moro and R. Navigli [63] use a

distributed soft kernel k-medoids method.

Three important works to extract semantic relationships include the Never End-

ing Learning Language (NELL) [64], PATTY [65], and Open Information Extraction

(OIE) methods [61], [66], [51]. NELL [64] creates a knowledge base of categories and

relationships. This approach contains a set of subsystems to extract patterns and

novel relationships from the Web, to classify noun phrases, and to infer new rela-

tionships from their knowledge base. The approach PATTY [65], based on frequent

itemset mining, detects relationships from the Web using syntactic, ontological, and
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lexical features.

The Open Information Extraction methods successfully find new relationships

with no previous knowledge of them [61], [51]. However, A. Fader, S. Soderland,

and O. Etzioni state that “it can find incoherent and uninformative extractions.”

To improve OIE, Fader et al. develop Reverb [66], which finds relationships and

arguments using part of speech tags, noun phrase sentences, and syntactic and lex-

ical constrains. Reverb uses a corpus built offline with 500 million Web sentences,

enabling Reverb to match arguments in a sentence heuristically. In addition, Reverb

uses a logistic regression classifier with a training set of 1, 000 sentences from the Web

and Wikipedia to assign a confidence for each relationship. An evaluation showed

that Reverb performs better than another OIE method called Textrunner [51].

The second generation of OIE [67] includes Reverb and R2A2. The latter per-

forms better than Reverb does, and both are highly scalable. Besides a linguistic

and statistical analysis to extract relationships, R2A2 includes an argument learner.

This consists of classifiers using features–such as specific patterns, punctuation, and

part of speech tags–to identify arguments.

Initially, this framework [30] uses Reverb to detect semantic relationships within a

publication. The high ranked relationships from Reverb may miss important entities,

however. Therefore, I take advantage of the affluence of information in tabular

structures to find the main components of relationships, and develop a method to

retrieve relationships with relevant entities from a publication. To find semantic

relationships from text, I use a combination of approaches: a) the statistical method

Latent Semantic Indexing, b) Natural Language Processing, and c) pattern matching.

Similarly to OIE methods, this framework uses unsupervised learning and heuristics;

however, it only focuses on relationships containing entities of interest.

In general, related work to extract semantic relationships examines mainly Web
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and text formats, lacks methods to systematically match a source document with

its relationships, and lacks a representation to organize relationships per document.

To facilitate researchers’ work, this framework finds important relationships from

publications and organizes them in an integrated document, preserving the original

publication’s information and provenance for further consultation.

2.3 Semantic Data Integration

The last part of this section includes related work to integrate information, to repre-

sent semantic information, to provide semantic annotations, and to summarize and

compare information from digital publications.

Data integration refers to map heterogeneous sources of information to use and

query information as a single unit. The variety of schemas, formats, and domains

representing data makes it difficult to integrate information. A. Doan, A. Halevy,

and Z. Ives [68] mention two general architectures for data integration: warehous-

ing and virtual integration. Warehousing refers to loading individual sources into a

physical database–or a warehouse. In contrast, virtual integration refers to using the

individual sources in their original form and accessing them as necessary for query-

ing information. Both architectures use a mediated schema that contains relevant

properties of the sources to integrate their data. This framework integrates informa-

tion using an architecture similar to warehousing, without necessarily using database

representation. In addition, this approach’s mediated schema contains a conceptual

design of entities and relationships, which are not established in advance.

Semantic mapping refers to matching information from one schema to another

or between ontologies. This mapping recovers the same information into a unique

representation. C. Hian and his colleagues [69] present a framework to mediate the

possible conflicts between different sources, composed of the application domain;
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the relationships between attributes in the sources, and the semantic types in the

domain; and the relationships one-to-one from context to an individual source.

This framework differs from semantic mapping because I do not know a priori

the information to integrate. Instead, I gather common elements within publications,

and generate a characterization using general ontologies and a vocabulary to prepare

each publication for further integration and mapping. In particular, I develop a con-

ceptual design to organize relevant concepts and relationships that can be integrated

with other documents having the same context. In addition, this framework is based

in linked data [70], a general method to create typed links between data from het-

erogeneous systems to interoperate at the data level, using the Universal Resource

Identifier to represent data.

Semantic data models include two main components: 1) relationships between en-

tities and 2) well-defined semantics for the relationships [6]. R. Hull and R. King [71]

describe in detail how semantic data models allow to a) separate concepts in physical

and logical forms, b) minimize overload of relationships, and c) represent abstract

concepts and relationships. These models have been used to include semantics in a

database schema, which may be difficult to represent.

F. Steimann [72] presents a method to model concepts in an object-oriented

approach, and the importance of roles in polymorfism. For instance, a person can

be an employer or employee. Then, depending on the role, the model can perform a

specific task. The models represent data objects and relationships known a priori.

For example, the World Traveler Database modeling shown in [71] represents defined

entities and relationships among them. In contrast, I develop a conceptual design

using discovered entities from tabular layouts embedded in a digital document, as well

as relationships from 1) tables, 2) text within a document, 3) the general ontology

DBpedia, and 4) the Internet.
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The importance of annotating scientific documents has increased in different ar-

eas, especially in the Health Sciences. Tools to annotate scientific publications, such

as Reflect [73], Biolit [18], and BioC [74], are mainly useful in the biological and

medical domains. BioC [74] generates a format in XML to provide relationships

and annotations from scientific publications. Similarly to BioC, my approach uses a

design to define a document with annotations and relations. BioC offers data classes

for developers to generate annotations, while this framework finds the annotations

without programming involved by a researcher. BioLit [18] reviews a publication’s

full text and finds a specific ontology and database terms, the terms are generated

as metadata in an XML format. BioLit also provides context information for the

metadata.

Because the goal is to create interdisciplinary semantic data models, the model

generation is based on a general ontology–DBpedia–to represent the knowledge. In

addition, I use the knowledge on the Internet to enrich the publications and learn

from different domains. For the definitions of relationships, I use the Semanticscience

Integrated Ontology [75] to maintain structure and represent the knowledge derived

from the scientific publications. To represent the publication’s metadata, I use the

general vocabulary schema.org [76].

J. Piskorski and R. Yangarber [77] present a review for Information Extraction

approaches. They state that “the task of Information Extraction is to identify a pre-

defined set of concepts in a specific domain”; while true, it takes time identifying non

semantically defined concepts and domain in documents. This framework presents a

novel approach to preparing documents for Information Extraction, and dynamically

generates and organizes a semantic data model with context and concepts.

Summarized information provides a short representation of the content of publi-

cations and can be used to analyze these documents faster. Automatic approaches

have advanced the summarization research area. M. Allahyari and colleagues [78]
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present a recent survey of text summarization methods and point out the importance

of ontologies in summarization. A. Nenkova and colleages [79] present a thorough

description of methods used for this endeavor in different genres, such as medical,

emails, journals, and news. S. Teufel and M. Moens [80] stress the difference between

summarizing scientific versus news documents, the former being less repetitive and

more concise in their arguments. I also notice that space restriction in an article can

make the narrative even more succinct.

Some approaches to summarize publications use rethoric analysis and identify the

section of each relevant sentence. For instance, to summarize publications, S. Teufel

and M. Moens analyze rethorical status that is based on analyzing how organization,

contribution, and citations appear in scientific writing, as well as relevance in sen-

tences. A recent work by E. Baralis et al. [81] uses frequent itemsets to summarize

documents with sentences from the documents. PaperViz [82] allows researchers to

manage references and metadata, and to search documents in a collection of publi-

cations. DeepDive is a system using machine reading to integrate information and

facilitate building knowledge bases [83]. This framework generates a short sum-

mary, synthesizing a publication based on ontologies and integrating information

using semantic relationships with relevant concepts, which can also be used to build

knowledge bases.

Novel methods for semantic publishing have emerged. For instance, S. Peroni [26]

introduces the semantic publishing and referencing ontologies to create metadata and

include semantic annotations for publishing and referencing scientific articles. PDFX

[84] converts a scientific document from PDF to the Extensible Mark-up Language

(XML) with annotations to identify different elements in a publication, including

author, title, body, references, and tables. In addition, F. Ronzano and H. Saggion

[17] provide a Web representation of each PDF article, which contains reference

annotations, as well as relationships of the form subject, verb, and object, using
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abstract and sentences in a publication.

To relate scientific publications to each other, several works focus on studying

references to discover relationships. SimRank [24] uses references and titles of pub-

lications to infer relationships. A. Nenkova and colleages [79] mention the impor-

tance of using citations to discover relationships with related, previous, and future

work. This framework complements the previously mentioned work because it uses

a synthesis of semantically enhanced information, such as context and semantic re-

lationships to compare and contrast scientific documents, even if documents have no

citations in common. The conceptual schema of this framework generates semantic

data models systematically from digital documents, and allows us to create networks

of publications to compare and contrast specific information. S. Uddin et al. [85]

mention the importance of networks to co-relate authors of scientific publications.

Instead, this approach detects important nodes, i.e., entities, and their relationships

derived from different publications to relate them to each other.
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Table Detection and Information

Extraction

Digital documents communicate scientific research and enable the exchange of in-

formation in a variety of layouts and formats. In addition, the number of digital

documents has been increasing rapidly. To take advantage of the knowledge em-

bedded in an ever growing information source better, effective tools for automatic

extraction of relevant information are needed. This information is embedded in data

resources within a document, such as tables.

Tables exist as crucial elements for presenting information in scientific publica-

tions. Publications use tables to represent and report specific findings of the re-

search. Current methods used to extract data from tables in PDF documents lack

both precision in detecting information found in tables in diverse layouts and a de-

tailed representation of the extracted table information to rebuild a table as the one

presented in its original source.

I investigate methods for detecting, extracting and organizing information from

tables within PDF documents. To demonstrate the methods, I develop a prototype
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system, TAble Organization (TAO), to support information extracted from tables

with diverse tabular and document layouts. In addition, the methods demonstrate

how an adaptive learning method can overcome limitations of related work.

3.1 Discovery of Table Information

The vast amount of information on the Internet includes scientific documents. These

documents communicate findings of research studies and exchange information in

different areas. However, the large production of such documents makes it difficult

to analyze them at the same speed they are produced. Scientific documents growth

has increased about 8-9 percent per year in the past six decades [86]. In addition,

the myriad topics and ways to present the information of digital documents hinder

the analysis and management of their contents.

Tables are found in most sections of a document, such as introduction, methods,

results, and discussion. A study of table classification by S. Kim et al. showed

that approximately 75 percent of the information from tables, in different domains

and journals, appear in the results section [87]. Therefore, tables offer concrete

information that can help to extract and acquire knowledge.

Despite the benefits of tables, the process of detecting and extracting informa-

tion from tables is not straightforward due to diverse factors, including the variety

of content, design, and layout in tables. In addition, tables embedded within publi-

cations are mixed with other elements, such as free text and figures. There is a lack

of standard formats for presenting tables in scientific publications [27]. Moreover,

depending on information, authors design tables using different numbers of columns

and rows for each table.

To solve these issues, I develop methods to detect and extract table information
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in digital documents automatically. The methods also organize information of tables

within the documents. The output produces a format that facilitates information

exchange and is easy to process automatically.

Most of the scientific publications adhere to strict formatting standards and un-

dergo a review before publishing them. Therefore, these publications contain high

quality elements, such as tables, the main subject of this chapter. Even though the

primary target for this investigation refers to scientific publications, any document

containing tables benefits from the methods developed in this work.

The main contributions are: 1) an adaptive method to detect and extract table’s

information, 2) an annotated representation of the information extracted from ta-

bles for further structural, functional, and semantic analyses, and 3) a Web-based

prototype of the system at http://integra.cs.unm.edu.

The remainder of this chapter includes Section 3.2 Table Detection and Extrac-

tion to show the methods for document conversion, detection of table candidates,

and extraction of table information. Section 3.3 Evaluation shows the experiments,

datasets, baseline, results, and discussion.

3.2 Table Identification

A table is a set of structured data cells that represent associations. In this section, I

present the first process of this framework: Discovery of Table Cells, as described

in Figure 3.1, where it receives a document and discovers information contained in

table cells.

J. Hu and his colleagues divide the problem of table identification into two parts:

Table detection is the process of identifying the existence of tables from a document,

and table recognition of identifying and extracting the cells contained in a table [33].
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Figure 3.1: The Table Identification Process

I present an approach capable of detecting and organizing tables within PDF and

XML documents. This table identification process consists of three main modules:

1) document conversion, 2) table detection, and 3) table extraction.

I consequently refer to the table identification process as the TAble Organization

(TAO) process (see Figure 3.2, based on [29]). The document conversion module

relies on PDFMiner [41] to convert a PDF document into XML. PDFMiner’s output

includes separate XML tags for every character and every space. The table detection

module parses this large XML version using a combination of layout heuristics to

detect table candidates within the document. The table extraction module uses

table candidates and a supervised learning method to find a table’s content. Finally,
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TAO generates its output using a JavaScript Object Notation (JSON) document,

which contains table information extracted from the document in PDF. As follows,

I describe in more detail the three main modules of TAO.

Figure 3.2: The TAble Organization (TAO) Process

3.2.1 Document Conversion

I perform document conversion using PDFMiner [41], a versatile extraction tool

that converts PDF documents to text, HTML, XML, and tagged PDF formats.

PDFMiner outputs the exact coordinates of the text, and other attributes as font

style and size for each character into an XML file. After evaluatintg other state of the

art PDF converters [88, 89], I select using PDFMiner because it is widely adopted
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and maintained. In addition, it provides a detailed layout of elements (i.e., figures,

lines, and text), as well as a hierarchy of grouped elements based on their spatial

relationships in the document.

PDFMiner converts a PDF file into an XML representation and generates a body

and a layout for each page of the PDF document (see Figure 3.3). The layout

contains a summary of the information structure, and the body contains the actual

information of the document.

The body contains three main elements formed by text boxes, text lines and

text. Text boxes include an identifier (id) and the top-left (x1, y1) and bottom-

right coordinates (x2, y2) of the bounding box (bbox), see line 3123 in Figure 3.3.

Text boxes are composed of text lines. Each text line includes its corresponding

bounding box (bbox) coordinates, as seen on line 3124, as well as the text elements

found within the limits of a text line. Text lines are composed of text tags. Each text

tag contains a single character. Characters grouped in text lines form one or more

words. PDFMiner also provides coordinates for each character, see line 3125 for the

character ‘1’. Additional attributes associated to characters represent text font and

text size.

The layout includes two elements: text groups and text boxes. A text box from

the layout can also be found in the body, the only difference is that, in the layout, text

boxes are organized into text groups. For example, see lines 4 and 3133 in Figure 3.3,

the text box with id=0 is the same in both places. However, the one on line 3133

belongs to a text group represented on line 3132.

It is worth to note that the example in Figure 3.3 corresponds to a single page

document containing one table. Nevertheless, the output produced by PDFMiner

contains 3203 lines. For an IEEE research paper with 10 pages, the number of

lines produced by PDFMiner ranges from [40,000-70,000] lines, depending on the
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Figure 3.3: PDFMiner’s Conversion from a PDF Document

type of content. PDFMiner’s output is comprehensive and long, and as such, it is

practically impossible to parse and organize manually and it is not trivial to do so

in an automatic way. In the following section, I use TAO to parse this XML output

and to generate cleanly extracted and annotated table structures.
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3.2.2 Table Detection

The table detection module refers to identifying tables within the XML output pro-

vided by PDFMiner. As shown in Figure 3.3, PDFMiner’s output consists of XML

elements described by their bounding coordinates that form boxes, and content in-

cluding other XML elements or individual characters. This format does not dis-

criminate between text in normal paragraphs and text in tables or figures, which is

represented by group boxes and text boxes. Thus, TAO performs a structural analysis

to identify sets of text boxes that are probable table candidates. The table detection

process includes four steps: 1) comprehensive identification of text boxes within text

groups, 2) distance calculation among text boxes, 3) identification of structural rela-

tionships, and 4) generation of table candidates. A description of each one of these

steps follows.

As mentioned previously, text boxes are contained within text groups (see Section

3.2.1). For each text group I identify the set T containing all text boxes. The table

detection process follows: first, I create a list containing all the text box identifiers

(id) on each page. For each pair (a,b) of text boxes ∈ T , I compute their Manhattan

distance using their top-left (x1, y1) and bottom-right (x2, y2) coordinates to fill in a

distance matrix of coordinates (Mdiff ). The analysis of text boxes creates a matrix

of differences. Each element in the matrix contains the distance of the top-left

coordinates between a and b for the first dimension (Mdiff [a, b, 1] = (a.x1−b.x1, a.y1−

b.y1)) and the distance of the bottom-right coordinates between a and b for the second

dimension (Mdiff [a, b, 2] = (a.x2 − b.x2, a.y2 − b.y2).

For instance, figure 3.4 shows six text boxes (a, b, c, d, e, f). The matrix Mdiff

stores the Manhattan distance for each pair of text boxes. The example depicts dis-

tance calculation for text boxes (a,b) and (d,e). For simplicity, the figure shows only

the second dimension representing distances between the bottom-right coordinates
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(x2, y2), thus the indexing [a,b,2] and [d,e,2] on top of the arrows. A similar concept

is used to save distances for the top-left coordinates, where the indexing would be

[a,b,1] and [d,e,1].

Figure 3.4: Identification of Text Boxes and Distance Calculation

I use the distance matrix to calculate alignment and proximity between text box

pairs. This information allows us to determine global structural relationships, that is,

rows and columns, among multiple text boxes. To identify columns, two text boxes

have an alignment if their distance is at most t = ±23 points to either side (i.e.,

about 8 mm). This distance represents two characters plus a minimal separation in

between columns with text in Helvetica or Arial font of 10pts, which are two of the

most used fonts in research papers, technical reports, and magazines. For rows, the

distances are smaller since tables in documents with a portrait format grow more

frequently vertically than horizontally, resulting in compact rows with small inter-

row distances. Thus, the vertical distance threshold is t/10 for the distance above a

text box, and t/2 for distances below a text box.

Once all the distances are calculated in Mdiff and set up the thresholds, I evaluate
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text box pairs. Pairs whose proximity is less than or equal to the thresholds are

aligned, forming either a row or a column. Then I join all the text boxes in the

same row or column. The aligned text boxes are considered to be table candidates.

Figure 3.4 shows six text boxes (a,b,c,d,e,f), each one displaying their thresholds

as vertical or horizontal black lines. Boxes whose distance is within the threshold

limits are grouped either vertically or horizontally; forming in this way a preliminary

structural organization of the table containing two columns and three rows.

3.2.3 Table Extraction

The table extraction module of TAO refers to recognizing the actual tables and

locating each cell that belong to a particular table. I locate cells using the intersection

between a row and a column, and store separately the tables found on each page of

the document. The text contained in each cell of the table, if present, is extracted and

saved in a semantic data structure, including additional information that describes

the text in a cell, such as text font and size. The table extraction module is divided

in two components: table recognition and table composition.

Table Recognition

In this component, I use the XML output produced by PDFMiner and the table

candidates obtained from the Table Detection module. PDFMiner produces an out-

put divided in two main sections: the body and the layout (see Figure 3.3). For

each page on a document, the body section contains the information organized into

a hierarchy of text boxes; Text boxes contain text lines, and text lines contain text,

which in turn represent each single character and its coordinates in the original PDF

document.

In order to extract words located in cells of the table I follow a two-phase process;
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first I identify cells and reconstruct the text within each cell. To detect cells in the

table, I use text lines. The logic behind this refinement is that text boxes provide

us with a coarse representation of possible table layouts, while text lines provide a

more accurate way to detect specific table elements, such as words in the table cells.

Thus, I also calculate a distance matrix Md2 storing the differences between pairs of

text lines.

Because text lines contain the feature font size, I use it to get the threshold of

the maximum alignment on a column. To get this threshold, I select training data

from 300 different tables, using the feature font size. The maximum left alignment

of text in a cell, on the same column, is used as the target value. Similarly, I train

data to find the maximum alignment between rows of tables.

To take advantage of the characteristics of tables’ composition, I select among

Machine Learning approaches, a pattern recognition method. First, I compare the

locally weighted regression (LWR) and k-nearest neighbor (K-NN) regression meth-

ods using the prepared training data to find the thresholds for maximum alignment

among columns and rows. The K-NN regression method produces better results

than LWR for these settings. The K-NN regression performs satisfactorily with four

neighbors, an Eucledian distance, and a uniform weight approach. Then, I use K-

NN regression to find the threshold t for maximum alignment to detect columns. In

general the separation between two rows is not larger than the font size. Therefore,

for rows it is more feasible to use the font size as a threshold due to the minimal

variation of alignment for rows on tables.

Using the thresholds t and fontsize, the method identifies the ids of text lines

aligned in the same column or row. In particular, this approach determines that, for

a given pair of text lines (p, q) in Md2, if p.x1−q.x2 < t and p.x2−q.x2 < t then (p, q)

are in the same column, and their ids compose the list of columns LC. Similarly, if

p.y1 − q.y1 < fontsize and p.y2 − q.y2 < fontsize then (p, q) are in the same row,
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and their ids compose the list of rows LR.

To reconstruct text within cells, or find words, the list of columns LC and the list

of rows LR, obtained from the previous step, help identify cells. A cell (r, c) in the

table is defined as the intersection of the text line identifiers found in a particular row

r and a particular column c, which is represented as cell[r, c]← LR(r)∩LC(c). This

process produces a file containing all the cells, and its associated text line identifiers

in a table grouped by column and row. The text lines contain text that represent

particular characters in the document. Thus, using the grouped text lines and their

associated text tags, this method can extract all the words in a particular cell.

Text extraction proceeds as follows: for each text line in a particular cell, this

process identifies its children text tags and extract a) the particular character, b) text

box id, c) text line id, d) bbox coordinates, e) text font, and f) text size (see line 3125

in Figure 3.3). PDFMiner may generate text line identifiers unsorted. For example,

finding text line ids 15 and 17 in a particular cell does not mean that coordinates of

15 precede coordinates of 17 in the original Cartesian plane. Therefore, the order of

identifiers does not respect the position of text in a table. I solve this issue organizing

table elements with their coordinates instead of their ids. Figure 3.5 shows this text

reconstruction procedure for a cell with two text lines, the first one has id=17 and

contains four text tags with three numerical values and one space, while the second,

with id=15 contains three text tags, two of them are characters and one is a space.

This process is able to produce a sorted and aligned text fragment for the table cell,

which is composed with the text line elements on a row and a column (LR ∩ LC).

I keep cells grouped by row and preserve the number of column, coordinates and

other attributes for each cell. If appropriate, these elements allow us to rebuild a

table as found in its source document. Finally, the content of cells identified in each

table within a document are organized in a file.
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Figure 3.5: Text Reconstruction for Table Cells

Table Composition and Functional Analysis

The output of this component is a file describing tables found on each page of a

document. Up to this point, multiple tables that appear on the same page are

identified as a unique table. To further refine table separation, I perform Table

Composition.

Table Composition deals with separating the tables in a document, it also clas-

sifies tables cells as header or data. A header refers to a label that groups table

information (i.e., metadata of rows or columns), and data refers to the actual content

or body of a table.

The composition process retrieves all cells in a particular page. It sorts coordi-

nates of text cells grouped by row and calculates row separation. At times, there

exist more than one table on a page and they need to be separated (see Figure 3.6).

To calculate row separation between two tables, I previously selected training data
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from 300 different documents with two consecutive tables, using the font size as the

main feature, and the row separation between tables as a target.

Figure 3.6: Separation of Two Consecutive Tables

I use this training data with the K-NN regression method to find the separa-

tion threshold ttable between tables. Again, the pattern recognition K-NN regression

method finds the separation between tables. In particular, the K-NN regression uses

the following settings: four neighbors, Eucledian distance, and uniform weight. If

the distance between two rows is greater than ttable, this methos classifies and assigns

an identifier for a new table.

Once each table is a separate entity, cells undergo a functional analysis to classify

them into data or header, the font style of the text in the cell serves for this purpose.

In particular, bold font styles are an evident way to classify text as headers. Another

alternative is to use font size, where larger font sizes are assigned to metadata and

smaller ones to data. This heuristic is likely to fail for customized documents, but
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is general enough to capture relevant cell differences in research publications. Thus,

following this heuristic, a cell is classified as a header (i.e., cell that groups some

cells under it). For instance, given two table cells [text : Age, font : ArialBold]

and [text : 15 years, font : Arial], the text Age represents a header and 15 years

represents data. Using pattern matching, I also classify the cell content by data

type. For simplicity, I classify numeric or string of characters. In this way, I recover

information from a table and its metadata for each cell (i.e., content, column number,

coordinates, font, size, data type, header or data label). TAO yields an annotated

document in JSON format.

I extend TAO [29] to identify tables from non-PDF documents. To extract tables

content from well-formed XML documents, I use the tags <table-wrap> and <table>

that indicate the existence of tables. I use Xpath [90] to detect tags and find a table

within a document. Then, the table cells are organized by rows in JSON. In addition,

I determine if a cell is a header or data using the tags <thead> and <tbody>. For

simplicity, I detect string and numeric data types using regular expressions.

Finally, the main elements of table extraction are included in a file: number

of page where a table was found, and tables content. The tables content includes

extracted text of table cells grouped by row. For further analysis, I also store prove-

nance information associated with the cells, that is, identifiers of text boxes and text

lines from where the text was identified, as well as particular text attributes includ-

ing: coordinates of the text, text size, text font, and data type. To complement

TAO, the original column of each cell is included.

Figure 3.7 shows a summarized view of applying TAO’s methods to an example

of a digital publication [91]; detecting a table embedded in a document, extracting

information from table cells, and organizing cell’s content and functions into a file.

This organization also describes that the particular table is the first one in page one.

Each element in the representation provided by TAO contains identifiers of their
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Figure 3.7: TAO’s Methods Applied to a Digital Publication

Figure 3.8: Results from TAble Organization

text box, text line, column, as well as information such as coordinates, font size, font

style, cell function, and data type. All this information can be used to reconstruct a

table if needed. Figure 3.8 shows the actual output of the first two rows of the table
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extracted from this example.

3.3 Evaluation of Table Identification

To evaluate the usefulness and generality of the TAO compared to other PDF table

extractors, such as PDF-TREX and TableSeer (see Chapter 2, Section 2.1 Table

Analysis), I perform a systematic assessment of its capability to detect and recognize

tables. Detecting tables means identifying all the tabular elements in the PDF

documents, without considering if their content was reconstructed accurately. Thus,

I compute Precision as the fraction of the correct number of tables identified divided

by the total number of tables found. Recall as the fraction of the correct tables found,

divided by the total number of tables in the documents. Also, the F1-measure, which

is an average that combines precision and recall. Recognizing tables means correctly

identifying and associating cells and their content to a particular table. For the

recognition task, precision is the fraction of the correct table cells found divided

by the total number of table cells found in a table and recall is the fraction of the

correct number of table cells found divided by the total number of actual table cells

in a table.

3.3.1 Baseline and Datasets of Table Identification

To compare and contrast the performance and generality of TAO, I use two other

automatic table extractors as the baseline: PDF-TREX and TableSeer (see Section

2.1).

PDF-TREX [43] is an heuristic-driven approach for table recognition and extrac-

tion from PDF documents. PDF-TREX code is not publicly available, thus, I report

its results published in [43]. TableSeer [38] detects tables from documents, extracts
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tables metadata, and indexes and ranks tables. TableSeer’s code is publicly avail-

able and can be downloaded from http://tableseer.soft112.com. Thus, all the

experiments produce TableSeer outputs.

The first dataset TREX is publicly available and extensively documented in [43].

E. Oro and M. Ruffolo created it and can be downloaded from http://staff.icar.

cnr.it/ruffolo/pdftrex/dataset.zip. This dataset intends to be a standard

benchmark for automatic table extraction. TREX consists of one hundred PDF

single-column documents written in English and Italian languages, with 148 tables.

These documents do not reflect the format of standard research papers, but rather

technical reports containing tables with a variety of formats and styles. I use this

dataset to compare the performance and generality against PDF-TREX and Table-

Seer. Generality refers to the capability of the system to accurately extract tables

from a collection of heterogeneous documents that do not adhere to the rigid style

norms found in research papers.

The second dataset is obtained from the Cornell University Library site http:

//arxiv.org/. It is composed of twenty scientific publications selected randomly.

This dataset CORNELL includes one- and two-column documents in English with

79 tables. In addition, I use the COMBINED dataset, which results from merging

the TREX and CORNELL datasets to generate a more diverse one.

3.3.2 Results and Discussion of Table Identification

I compare TAO’s precision and recall for table detection and table recognition with

a baseline containing the two best automatic table extractors currently available in

the literature: PDF-TREX and TableSeer. The experiments use the three datasets

described in the previous section.

In the first set of experiments I compare TAO, PDF-trex, and TableSeer using the
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Table 3.1: Experiments Using General Reports
Table Detection

Method Precision Recall F1 measure
TAO 0.913 0.925 0.919

PDF-TREX 0.862 0.984 0.917
TableSeer 1.0 0.121 0.216

Table Recognition
Method Precision Recall F1 measure

TAO 0.899 0.835 0.864
PDF-TREX 0.753 0.965 0.846
TableSeer 0.005 0.005 0.005

TREX dataset. I compute precision, recall, and F1 measure for Table Detection and

for Table Recognition. Table 3.1 summarizes the results for the two tasks and three

approaches. From the first set of experiments, TAO yields an average F1-measure of

91.9 percent for Table Detection and of 86.4 percent for Table Recognition using the

TREX dataset. Compared to PDF-TREX, TAO performs similarly; however, TAO

performs better than TableSeer. TableSeer performs poorly for the experiments using

TREX dataset due to the fact that documents in this dataset do not adhere to the

rigorous formatting standards common for scientific publications in the literature.

TAO has no issues detecting and extracting tables in another language because

tables are composed of rows and columns and the language is irrelevant. Therefore,

TAO’s structural approach detects tables in Italian and English languages. The lan-

guage of the table will pose a challenge for systems based on syntactic analysis of

table cells. The main TAO’s limitation includes its reliance on PDFMiner, which

cannot extract information from a PDF file when the document is password pro-

tected or there exists a malformation in the creation of the document. Even though

PDFMiner only converts 88 PDF documents to XML out of 100, TAO is still able

to detect 137 tables out of the 148 and also identifies a total of 12,504 correct table

cells out of 14,466.
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The second experiment uses the CORNELL dataset. As mentioned above, this

dataset is composed by scientific publications with one and two columns and a total

of 79 tables. Table 3.2 reports a summary for table detection and table recognition

applying the two methods TAO and TableSeer. For this experiment and the next

one, I could not obtain results using PDF-TREX because this tool is not publicly

available.

Table 3.2: Experiments Using Scientific Documents
Table Detection

Method Precision Recall F1 measure
TAO 0.893 0.848 0.813

PDF-TREX NA NA NA
TableSeer 0.925 0.784 0.849

Table Recognition
Method Precision Recall F1 measure

TAO 0.869 0.956 0.919
PDF-TREX NA NA NA
TableSeer 0.866 0.925 0.895

In the case of the CORNELL dataset, TableSeer performs slightly better than

TAO for Table Recognition. One of the limitations in TAO using the CORNELL

dataset is that the system produces more false positives than TableSeer. In partic-

ular, these false positives are associated to Figures and Equations embedded in the

document. To solve this issue, the method needs to detect when the rows do not

contain table cells, but other elements.

Finally, for the sake of completeness and to quantitatively assess the generality of

the method compared to TableSeer, I report aggregated experiments using the COM-

BINED dataset. Table 3.3 reports an average for table detection and recognition for

TAO and TableSeer.

Using the COMBINED dataset, TAO yields an average F1-measure of 89.5 per-

cent for Table Detection and of 88.9 percent for Recognition, while TableSeer pro-
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Table 3.3: Experiments Using General and Scientific Documents
Table Detection

Method Precision Recall F1 measure
TAO 0.903 0.886 0.895

PDF-TREX NA NA NA
TableSeer 0.962 0.453 0.616

Table Recognition
Method Precision Recall F1 measure

TAO 0.884 0.894 0.889
PDF-TREX NA NA NA
TableSeer 0.436 0.465 0.450

duces an average F1-measure of 61.6 percent and 45 percent respectively. Compared

to TableSeer, TAO is more robust and general because TableSeer depends on par-

ticular keywords to perform accurate Table Detection. In this experiment TAO

recognizes and extracts a total of 17,242 correct table cells, while TableSeer recog-

nizes 6,389 table cells. Similarly, TAO is more general and robust than PDF-TREX

because TAO can handle double-column documents and PDF-TREX only works for

one-column as documented in [43].

TAO was evaluated on a variety of PDF documents with more than 225 tables,

and more than 400 pages. Its performance was compared to a baseline from related

work. TAO allowed us to perform an automatic detection and organization of tables

in PDF documents, including scientific publications and other less rigorous types of

documents. This process overcame related work limitations and performed satisfac-

torily on PDF documents with large and small number of pages, with single and

double columns, and with various tabular formats.
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Table Interpretation to Synthesize

Documents

The large production of scientific publications hinders the rapid analysis of their

content. Therefore, I propose to perform automatic analyses of tables and text

within digital publications to find specific facts.

Table interpretation refers to understanding information contained in tables. The

main challenges to understand a table include finding an appropriate context of its

information, finding semantic relationship between a table’s content and the text of

its publication, and representing a table’s interpretation.

4.1 Understanding Tables and Documents

Practices to include semantic annotations and unified vocabulary are difficult to

implement, and a single standard to publish scientific work is not feasible. Therefore,

I develop a framework with a comprehensive method to analyze relevant information
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from publications, regardless the lack of standards in some scientific disciplines.

Table interpretation is the process of finding the meaning of a table’s content. To

perform manually this interpretation, a researcher needs to know the context of the

information before understanding the meaning embedded in a table (i.e., the meaning

that the table’s author wants to transmit). Table interpretation is a demanding task

when a researcher has no previous knowledge of a table’s content and context. In

addition to the large number of tables and documents to analyze, the main challenge

to perform automated table interpretation is to identify the context of a table and

its document.

To understand tables contained in a publication, researchers need to find the

concepts, that is, entities contained in a table’s cells. This task can be challeng-

ing because each concept can have a specific context. I use semantic annotations,

which are pointers to [ontology or dictionary] definitions, Web pages, or documents

containing more detailed information to understand concepts. In addition, semantic

relationships exist between these concepts and the text of a table’s publication. The

semantic annotations and relationships are explicit elements to understand a table

and its publication.

This framework takes advantage of the structured information in tables and the

unstructured text in scientific publications. The digital publications undergo text

analysis to identify its metadata (i.e., provenance information and context), and a

table recognition process to identify tables’ content. To understand a table’s con-

tent, this approach uses Natural Language Processing; and to disambiguate entities,

it uses a publication’s context, a general ontology, and a method using the Latent

Semantic Indexing with context. The recognized entities from tables guide the search

of semantic relationships in text. To perform this search, the approach uses an un-

supervised method, which determines the relationships importance with a classifier.

Also, structural relationships are recovered from tables. Finally, the findings are used
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as a short summary, that is, a synthesis of a publication.

Therefore, my main contributions include a comprehensive framework to auto-

matically analyze documents by means of identifying important entities, extracting

structural relationships from tables, and extracting semantic relationships between

entities. In addition, a method to integrate information within a publication. To

conclude, the results show that the semantic relationships extracted from tables and

text provide highly ranked relationships to identify valuable information and analyze

a publication promptly.

Similarly to using the extracted information to analyze a publication promptly,

this work can potentially be used to search queries, retrieve information, and to

reproduce scientific research if appropriate. This work assists not only to under-

stand tables from digital documents, but also to manage table’s information and

to integrate elements of digital documents, such as tables and text, into semantic

relationships.

For the remainder of this chapter, Section 4.2 contains an overview of the Seman-

tic Web and Sources of Knowledge. Section 4.3 contains the approach to interpret

tables and extract semantic relationships to understand digital publications. Finally,

Section 4.4 contains a set of experiments, results and discussion of the evaluation

and findings.

4.2 The Semantic Web and Sources of Knowledge

The Semantic Web intends to present meaningful information where people and

computers can work in cooperation, having a global Web with machine-readable

data [28]. The Semantic Web principles [92] that help using the Web more efficiently

and consulting interlinked information follow:
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1. Machine-readable

2. Interoperable

3. Reusable

4. Flexible

5. Ubiquitous

Although the Semantic Web principles are intrinsic to the Web, other digital

documents can benefit from these principles. For example, documents in PDF for-

mat are commonly found on the Internet. Although this type of documents can

work independently of the Web, PDF documents present restrictions to navigate to

other documents seamlessly [14]. Therefore, this type of documents cannot directly

integrate to the Semantic Web functions. I propose a method to integrate digital

publications in this format to the Semantic Web. To do so, I use a machine-readable

format to synthetize relevant information from publications and sources of knowledge

following the Semantic Web principles.

There exist structured and unstructured knowledge sources that provide mean-

ing to data [93]. The most common structural knowledge sources are thesaurus,

taxonomies, and ontologies. Other structural knowledge sources include dictionar-

ies, concepts, associations, and glossaries. For instance, the Oxford dictionary [94]

and WordNet. The latter is an English lexical database containing sets of synonyms

to represent concepts [95].

An ontology is a set of precisely defined terms about a specific domain. In gen-

eral, an ontology is accepted by its domain’s community [96]. Moreover, ontologies

are widely used to provide a strong structure to represent meaning, relationships,

and inference rules. Ontologies provide a semantic description of the objects and
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their relationships and are built to share knowledge [97]. Therefore, they are appro-

priate to build interoperability. Ontologies have proved to give form and structure

to knowledge.

Different groups in various fields work to control ontologies. By 2007, the Open

Biomedical Ontologies (OBO) consortium contained sixty ontologies [98]. A special

type of ontology represents relationships, such as the OBO Relation Ontology [99]

and nominal relations [100]. The relational ontology defines relationships, such as

occurs in and is part of. R. Girju and her colleagues [100] use seven defined rela-

tions: cause-effect, instrument-agency, product-producer, origin-entity, theme-tool,

part-whole, content-container to evaluate their methods for classification of semantic

relationships between nominal entities.

More recently, the Semanticscience Integrated Ontology (SIO) [75] defines re-

lationships for the Bioinformatics field. SIO contains relationships from different

ontologies, such as the OBO Relational Ontology. Therefore, SIO contains a more

complete set of definitions to represent semantic relationships. In addition, SIO’s re-

lationships represent a hierarchical structure. SIO uses the Ontology Web Language

(OWL) and is available at http://semanticscience.org/ontology/sio.owl.

Even though SIO was developed for Bioinformatics, several of its relationships

are generic and useful to represent relationships from other areas. For this work, I

select the most general definitions of relationships from SIO to represent relationships

derived from tables and text within publications of different areas. To better control

these definitions, I categorize them into four sections 1) classification, 2) association,

3) aggregation, and 4) generalization (see Appendix B).

Another recent effort in knowledge sources is the general vocabulary schema.org

[76]. This vocabulary derives from the Resource Description Framework (RDF) data

modeling. The schema.org represents a data model with different hierarchical types,
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containing subclasses and properties. Using this general vocabulary allows represent-

ing information of publications from different domains. This vocabulary is preferred

for this framework to represent information to identify a publication because of its

common language and classification. In particular, I use it to represent the context

of publications as keywords, and the basic information describing a publication, that

is, metadata including creator and headline.

On the other hand, Wikipedia in English contains more than five million of doc-

uments to date [101]. Wikipedia presents organized information and its commu-

nity keeps maintaining its content. DBpedia is a general ontology generated from

Wikipedia, which contains curated information and follows the Semantic Web princi-

ples, such as machine-readable and reusable. DBpedia contains a set of entities with

a type and properties with their respective values. For instance, the entity "Mexico"

has a type populated place, and contains the property capital with the value Mexico

City. This framework uses Wikipedia, DBpedia, the Oxford dictionary, the Internet,

and the academic search Engine BASE as external knowledge sources to enrich and

disambiguate entities for table interpretation.

In addition to the previously mentioned sources of knowledge, I use internal

knowledge sources within a publication: tables, context, and text from digital doc-

uments. These sources of knowledge enable us to interpret tables and understand

documents using functional and semantic analyses.

4.3 Table Interpretation

I present a comprehensive framework to understand tables. Figure 4.1 highlights

the processes described in this section for this framework, including Discovery of

Metadata and Context, Categorical Entities, and Relationships. These

elements serve to synthesize a digital document.
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Figure 4.1: The Table Interpretation Process

M. Gobel et al. define table interpretation as rediscovering the meaning of the

tabular structure, using functional analysis and semantic interpretation [45]. My

work is based on this definition and extends it to find important content from a

publication that can be used as a synthesis.

Recent graphical features allow users to design colorful and sophisticated tables.

Even though tables’ format and style have evolved through the years, still the basic

functional elements of a table are headers and data. X. Wang’s doctoral work defines

areas and elements of tables in more detail [32]. To simplify this study, I focus on

identifying headers and data. A header in a table is a class representing a column or

row of cells, and the cells under a header represent data.
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For PDF documents, I perform a functional analysis of table’s content using

TAO [29] as explained in the previous Chapter 3, Section 3.2. After recognizing the

functionality of each table cell, I recognize its data type. Besides extracting table

information from PDF documents, I use table tags to identify data and metadata

of tables embedded in other non-PDF documents, such as XML. Independently of

a table’s source document format, I use regular expression methods to identify data

type of each cell and tags for cell functionality.

After the functional analysis, I perform a semantic analysis to understand a

table’s content, to relate table’s concepts to a source of knowledge (i.e., ontology), to

relate these concepts to the text of a table’s publication, and to extract and represent

semantic relationships.

In particular, Figure 4.1 shows the three main steps to perform semantic analy-

sis. The tasks contained in this analysis include the discovery of a) a table’s source

document context and metadata to identify a publication, such as keywords, author,

and title; b) entities contained in table cells; c) entities’ disambiguation and annota-

tion; d) relationships between entities within a table; and e) relationships between a

table’s entities to text in a digital document.

In summary, to provide a full understanding of a table’s content, this method

preserves metadata of publications, uses semantic annotations for entities in each

table, discovers semantic relationships between entities, and represents these findings

as a synthesis of each publication.

4.3.1 Discovery of Metadata and Context

Metadata represents the main information to identify a publication, such as name

and author. Context represents the topic embedded in the text of a publication.

In this section, I present the importance of metadata and context, as well as the
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approach to recognize these elements in a digital publication.

Metadata

Metadata information is important for resource discovery, electronic resources orga-

nization, interoperability, digital identification, archive and preservation [102]. While

metadata describes relevant information to find the provenance of a publication, the

lack of metadata in digital publications obstructs the dissemination of scientific work.

In addition, having a publication’s provenance allows identifying possible fake infor-

mation on digital documents. L. Moreau discusses the importance of provenance in

the Web, as well as problems associated with it [103].

Metadata standards are developed by organizations such as the International Or-

ganization for Standardization, American National Standards Institute, and World

Wide Web Consortium. There exist several standards for metadata. For instance,

the Dublin Core Metadata Element is a standard describing Web-based documents

[104], such as title, creator, and subject. Another metadata standard is the Learn-

ing Object Metadata standard (IEEE 1484.12.1-2002) to allow us reusing learning

resources, such as computer-based training and distance learning [102]. Besides the

differences between metadata standards, every organization can use different format

to represent a metadata standard, for instance using formats such as the Standard

Generalized Mark-up Language or XML, and even using a database to represent

metadata attributes [12].

For this work, I use the schema.org vocabulary [76]. In particular, I use specific

properties of the scholarly article object, such as creator, headline, and keywords.

The schema.org controlled vocabulary helps represent scientific documents and facili-

tate data collaboration and sharing. This vocabulary allows representing information

from different fields with minimum dependency on ontologies.
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The method to recognize metadata in digital publications searches directly for

tags describing the metadata elements in documents, including PDF format. These

tags include <author>, <article-title> and <keywords>. If not found, this frame-

work accepts a digital document in plain text or PDF format. If the digital document

is in PDF, it is converted to text using PDFMiner [41]. When a document lacks tags,

pattern matching searches the first page of the publication to extract this informa-

tion. Whenever the keywords are not defined in the metadata of a document, another

process searches for them to represent the context of a publication.

Context

Digital publications contain unstructured data (i.e., prose), to describe the topic

reported. The free text provides important concepts relevant to the publication,

which can help to find the context. As part of its metadata, some publications

already define keywords to describe the subject of a document.

To find the keywords in a publication, the text of a publication undergoes a pre-

processing step, where I eliminate stop words, and small and large length words.

Then, the text is converted to n-grams to get their weights. For simplicity, I use

1-grams that represent words.

I apply the Term Frequency Inverse Document Frequency (TFIDF) method (see

Equation 4.1) to find the weights of the most relevant concepts in a publication. I

use the TFIDF method because it is widely used to detect important concepts that

represent the content of documents and even the context. It can also be used to

perform queries [105].

TFIDF = TF × IDF (4.1)
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This method works on the premises that term frequency (i.e., TF) is important

for relevant words, but it is not the only factor to determine the words relevance.

Then, it uses the inverse document frequency (i.e., IDF), which is the logarithm of

the total number of documents in the collection of documents to analyze, divided by

the number of documents where the word to analyze appears (see Equation 4.2).

IDF = log

(
N

nt

)
(4.2)

Most times, the TFIDF method uses a fixed collection of documents to generate

the weights of the keywords. Instead, this method uses the Internet as the collection

of documents. In particular, Wikipedia contains more than five million of documents

to date [101]. Therefore, N is five million of documents and nt is the number of

documents in the collection containing this term.

From this discovery process, I select the first five keywords with the highest

weights. these keywords are preserved as a list of concepts, which become part of the

metadata of a publication. The integration of these concepts enables us representing

and using better the subject of publications.

4.3.2 Entity Recognition, Annotation, and Disambiguation

For entity recognition, I first find the entities on each table. Later, the entities guide

the search of semantic relationships. To recognize entities, I need the output from

the functional analysis performed previously (see Section 3.2.3 Table Composition

and Functional Analysis). This analysis detected the functionality of each table cell,

such as a header cell to indicate a column and cells containing data.

The functional analysis of tables embedded in PDF documents from TAO [29]

produces a JSON document with the table cells grouped by row. Moreover, this
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functional analysis produces a similar JSON representation with table cells organized

by rows from XML documents. The functional analysis’ output facilitates searching

for entities in table cells. Because text cells may contain ambiguous entities, this

framework recognizes and disambiguates such entities.

Entity Recognition and Annotation

To find entities in table cells, each cell with data type string undergoes a Natural

Language Processing that includes a) noun phrase analysis, b) tokenization, and c)

part of speech (POS) tagging.

First, each text cell is tokenized and tagged using the Python Natural Language

ToolKit [106] and a defined model. Second, the tagging assists to create a tree of

nouns. This tree is parsed to find singular or plural nouns that represent continuous

entities. Third, if no entities are found with this process, the TextBlob tool [107] is

applied for noun phrase analysis to recover entities.

I develop a model to ensure that tagging is unambiguous, that is when a word

can be used in different parts of speech or is not tagged correctly. For instance, the

word “present” can be used as a noun or verb. The model learns from sentences

how to detect nouns depending on the use they have in sentences. For instance, the

sentences I receive a present and I present a project help identifying the first usage

as a noun and the second as a verb.

After finding an entity on each string cell, this entity is searched on DBpedia. To

perform this search, I use DBpedia’s naming convention. For each entity, an entity’s

name is converted using the first capital letter and joining words with a dash. For

instance, the entity “diabetes management” converts to “Diabetes management.”

In addition, DBpedia redirects searches that refer to the same concept. For in-

stance, searching for “Glycemic control” or “Diabetes treatment”, I find the re-

57



Chapter 4. Table Interpretation to Synthesize Documents

source for “Diabetes management” because both concepts appear in the property

"wikiPageRedirects" of this entity.

DBpedia offers a resource for each entity that is a Web page containing a descrip-

tion, a type, and properties of a particular entity. For instance, the entity Diabetes

corresponds to the Web page http://dbpedia.org/page/Diabetes_mellitus, con-

taining the entity “Diabetes mellitus” with type disease and several properties, such

as the property abstract describing this entity. Therefore, this description relates to

the annotation “Is A” for a specific entity. This hyperlink represents an additional

annotation for further consultation of properties. Each hyperlink in DBpedia rep-

resents a Universal Resource Identifier (URI), which enriches an entity because it

contains additional information related to it.

Although DBpedia is a useful structured ontology, it may not contain every en-

tity’s description. Furthermore, a concept may have more than one meaning, that

is, an ambiguous concept. For instance, the concept Race can refer to a race of

cars or a person’s race. For these cases, DBpedia either shows 1) a generic descrip-

tion containing the words (may ∨ can) ∧ (mean ∨ refer ∨ stand) in the abstract

property of an ambiguous entity or 2) a list of possible concepts under the property

wikiPageDisambiguates. At this point, DBpedia shows at least forty different con-

cepts that can be used for the entity Race. Whenever the process finds this property,

the Oxford dictionary and the Internet serve as sources of knowledge to annotate

and disambiguate those entities.

The next step is to find categorical entities, that is, unique entities. To do so,

the unique entities detected in the ontology DBpedia [56] serve for this purpose. For

each unique entity, a semantic annotation and its description are stored using the

relationship IsA and URI. If an entity is ambiguous or it does not exist in DBpedia,

this process searches for a Uniform Resource Locator (URL) to define or explain this

entity.
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Entity Disambiguation

A general disambiguation method to solve this problem is to use a dictionary to look

up for the different meanings of the unresolved word, and consider the corpus of the

data to get the correct meaning for an entity. Instead, to find a description for an

ambiguous entity automatically, I search the Internet for a particular Web resource

that contains an explanation of this entity considering the source document’s context.

The Web resource is identified as a URL, which may point to a Web page or to another

document in any format, for example, PDF.

Whenever an entity does not exist in Dbpedia or it is ambiguous, I use the API

Bing and a tailored Latent Semantic Indexing (LSI) analysis [57] to find the closest

explanation to the entity at hand and its context. I select LSI because it performs

well categorizing documents using only several hundred dimensions [108]. This entity

disambiguation method is shown in [30].

In addition to the previous method, I research two different methods for entity

disambiguation. In the first method, I tailor a query vector containing the sentences

where the entity at hand was mentioned. To increase the weight in a publication’s

context, I increase the query vector with the context, title and abstract of a pub-

lication. The Web Search API from Microsoft Cognitive Services [109] (previously

called Bing API) and the LSI analysis help finding an entity disambiguation and

annotation. The main steps of this method follow:

1. Search for the ambiguous entity x

2. Create vector D with a set of the n documents retrieved, where n = 100

3. For each di ∈ D where 1 ≤ i ≤ 300, normalize vector with most relevant words

4. Create vector s, which contains the context, title and abstract of a publication
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5. Create vector u, which contains the sentences where the entity x appears

6. Create query vector q = s ∪ u

7. Normalize vector q

8. Apply latent semantic indexing

9. Select the most similar element of vector D to vector q

In this way, I obtain the Web page with an explanation of the entity at hand.

The URL is stored as a non-formal annotation to represent the entity of interest,

and it can point to a Web page or a digital document, for example, PDF. Note that

differently from a URI, a URL may change over time.

The second method extends the first method because it includes more sources of

knowledge than DBpedia, i.e., the Oxford dictionary and scientific publications re-

trieved from the search engine BASE. Then, after searching DBpedia, it searches the

Oxford dictionary and finally it uses the BASE API instead of the Web Search API

to determine a URL to explain an ambiguous entity. This method takes advantage

of an established ontology, dictionary, and repository of scientific documents with

reliable definitions of entities.

After entities and annotations are located in a table, I create a list of unique

entities to avoid searching for the entities already detected. Once all the tables

in a document are processed, this list contains all the categorical entities from a

publication.

4.3.3 Discovery of Relationships

Generic relationships are powerful abstractions to represent semantics because they

are high level templates for relating real world entities [110]. Entities are also known
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as classes (e.g., country, language, and person).

A semantic relationship is composed of a structural binary relationship that is

domain independent. The definition of a semantic relationship is primarily based on

concepts from [110]. A structural relationship represents static constrains and rules,

(i.e., classification, generalization, grouping, aggregation). The semantic relationship

is domain independent and because of its generality, it can be applied to different

areas.

This framework uses binary relationships. A binary relationship (R) contains

important semantics between a generic relationship and two arguments. Figure 4.2

shows the three components of a relationship and its cardinality. The values of

cardinality indicate the minimum and maximum number of arguments to have in a

relationship, as explained in [111]. The first cardinality (m,n) goes from Argument

A to B, where m can take the values of [0,1] and n can take [1,N]. Similarly, the

values of the cardinality (p,q) go from Argument B to A.

Figure 4.2: A Semantic Binary Relationship (R)

I divide the generic relationships from SIO into four categories: classification,

association, generalization and aggregation. A brief description of these categories

and their relationships follow. For a complete list of the SIO relationships used in

this framework, refer to Appendix A.

1. Classification contains relationships that relate a class with a set of entities
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sharing same properties. An instance cannot change its class. The relationships

of this category include has attribute, is attribute of, is member of, and has

value.

2. Association contains relationships that represent a structural connection among

entities. The relationships of association include is related to, is referred to

by, is spatiotemporally related to, is located in, is connected to, refers to, is

comparable to, has evidence, references, is referenced by, is implementation,

has implementation, is causally related with, is causally related from, and has

basis.

3. Aggregation contains relationships that connect a whole to its components.

The relationships of aggregation include is source of, is part of, is proper part

of, has input, is input in, is output of, and is derived from.

4. Generalization contains relationships that relate super-classes to sub-classes.

The relationships of generalization include is participant in and has participant.

Even though these generic relationships provide semantics in tables, the relation-

ships are not exhaustive. Then, this approach discovers non-defined relationships

containing the entities of interest, which are discovered with the method explained

in Section 4.3.2 Entity Recognition, Annotation, and Disambiguation.

The components of a generic relationship include the name of a relationship and

its arguments, which can be entities, classes, and attributes. A class is an entity or

an object that represents a concept. A property is an attribute of a given entity,

which can also be an entity. An instance is a value of a property, which can also

be an entity. Besides the semantic annotations obtained from the entity recognition,

annotation, and disambiguation, entities from tables help in detecting relationships

in tables and text within a publication.
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Discovery of Semantic Relationships

To discover the relationships between entities derived from table cells, this approach

uses as input the functional analysis explained in Section 3.2.3 Table Composition

and Functional Analysis. In particular, I present how the relationships between en-

tities in tables and between entities in the text of a publication are detected.

Relationships in Tables

To find relationships in tables, I include all table cells. First, I select the entities

of tables with a header cell function. This approach relates each entity in a header

to its dependent data cells. As mentioned, the functional analysis produces a rep-

resentation containing for each table’s cell its data, cell function, and data type. In

addition, this representation contains indices that indicate the number of column for

each row, which facilitates to relate header cells to data cells.

Formally, a JSON format represents each relationship. As follows, I show an

example of a relationship extracted from a table. In particular, a relationship is a

6-tuple containing the number of a relationship in each publication, first and second

arguments of a relationship, name of a relationship, original text, and identifier of a

relationship in SIO [75]. The keys to represent a relationship are id, argument A,

label, argument B, text, and sio id.

{

"id":"1",

"argumentA":"Disease",

"argumentB":"Diabetes"

"label": "has attribute",

"text":"Disease has attribute Diabetes",

"sio_id": "SIO_000008"

}
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Relationships in Publications

Similarly to a table, I use the text of a table’s source publication to find additional

relationships. The text describes in more detail a table’s content because it should

contain at least its caption or description in the narrative of a document. Because

the writing on a publication varies, the writing style can make it clear or difficult to

understand. Therefore, I use different methods to detect relationships in text.

To detect the semantic relationships from a table’s entities to the text of a table’s

source publication, I research two different methods. In the first method, I perform

a) Open Information Extraction, b) segmentation, and c) pattern matching.

The Open Information Extraction methods identify relationships in plain text

without training data for a particular set of documents. Reverb [66] belongs to

the family of OIE, which uses an unsupervised learning and finds relationships not

defined previously. In addition, Reverb assigns a confidence to each relationship

extracted. Although Reverb is efficient, some relationships may contain incomplete

arguments. For instance, from the sentence “obesity and weight gain are associated

with an increased risk of diabetes”, Reverb finds with 0.80 confidence the relationship

(obesity and weight gain; are associated ; with). Because Reverb might miss crucial

information on a relationship, I use its output only as a preliminary guide in the

relationship extraction procedure.

I use Reverb to select relationships with a confidence greater than 0.70. From

these relationships, I search for the ones containing known entities from the entity

recognition process. The resulting relationships guide the search to find relationships

in the text of a publication. The complete text undergoes segmentation, which is

the process to separate the sentences, such as indicated in [112]. Then, segmentation

is part of the Natural Language Processing (NLP) using Textblob [107], a semantic

tool for this regard. Then, the relationships from Reverb are used to perform pattern

matching on the original document to find the relationships’ arguments. I use Reverb
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as explained in [30].

Because Reverb misses some relationships containing entities derived from tables,

I research a second method to detect relationships between categorical entities from

text.

This second method breaks the dependency on using Reverb. This process is

based on natural language processing and contains four steps: a) segmentation, b)

pattern matching, c) part of speech tagging, and d) relationship composition.

First, I perform segmentation in the text of a publication, using the Python

Natural Language ToolKit [106]. From this step, I recover a set of sentences per

publication. Second, I use the entities detected in the previous section to apply

pattern matching to the sentences recovered. Third, for each sentence containing a

known entity, I perform tokenization and part of speech tagging to detect relation-

ships and additional entities. Finally, I apply Cartesian product to sets of entities to

compose relationships.

For each sentence, I detect a tagged verb and use it to divide a sentence. Then,

I search for new entities in each side of a detected verb. For instance, the sen-

tence Obesity is related to lack of exercise decomposes into verb = “is related”, left

argument = “obesity”, and right argument = “to lack of exercise”. From these ar-

guments, I search for unique entities not previously found in tables or context. This

example contains the entities “obesity” and “exercise”. The former was previously

found in a table, then it is already disambiguated. While the latter undergoes the

disambiguation process as explained in Section 4.3.2 Entity Disambiguation.

A challenge with the part of speech process is that there may exist ambiguity,

that is when the same word can take different tags depending on its usage. For

instance, the word “select” in the sentences select the option and I prefer a select

group can be used as a verb or an adjective. Similarly, there are uncommon words
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that look like a verb, but they are a noun. For example, the noun “artesunate” that

is a medicine for malaria.

To avoid ambiguous tags, I create a model with fifty sentences containing known

words that can be used in different parts of speech. Then, this method uses the

Python Natural Language ToolKit as a default tagger and the defined model to

improve this issue. To identify verbs, in particular I use a combination of different

tags, such as VB, VBZ, MD VB, MD VBZ, and VB VBZ, to detect verbs in different tenses

and conjugations.

It is likely to find sentences that contain entities that have not been recognized

previously. Then, this method detects, disambiguates, and uses them in a Cartesian

product to form informative relationships. From the sentence Obesity is related to

lack of exercise and excesive eating. The recovered sets of entities include A =

[“obesity”], derived from the left argument to the verb “is related”, as well as the set

B = [“exercise”, “eating”] derived from the right argument. To take advantage of

the information in this sentence, I perform Cartesian product of sets of entities A×B

to form relationships. From this case, I get the relationships: Obesity is related to

exercise and Obesity is related to eating, while conserving the original text where a

relationship is found.

I also extend this method to solve the co-reference resolution issue in sentences

from publications. This issue occurs when a pronoun refers to a previously mentioned

entity. Scientific publications’ authors use active voice mostly. Then, the pronoun

“we” identifies the authors of a publication. From this observation, I detect this

type of sentences to create relationships from the entity publication to other entities.

For example, We investigate the relationship between diabetes and exercise contains

the pronoun “we” on the left of the verb “investigate”. I replace the pronoun “we”

with the name of this sentence’s publication to compose and recover informative

relationships. Therefore, this process identifies a publication as an entity.
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If a tag representing a verb is identified, I use this verb to represent a relation-

ship. From the sentence Obesity is related to lack of exercise, the method obtains

the relationship is related. Finally, I attempt to associate each relationship with a

definition from an ontology to represent it.

The Semanticscience Integration Ontology [113] serves to formally represent re-

lationships. Although SIO [75] defines relationships for objects, processes, and at-

tributes in Bioinformatics, several of its definitions are useful to represent relation-

ships in other areas of study. I select the most general definitions of relationships

from SIO to represent relationships of publications in any domain. Finally, this ap-

proach attempts to associate each relationship with one of the SIO definitions (See

Appendix A).

Finally, I use primarily pattern matching to associate a definition of a relationship

from SIO with the extracted relationships. If a match is found, then I keep its

identifier, label, and arguments. As follows, I show an example of the elements

composing a relationship.

{

"identifier":"2",

"argumentA":"Obesity",

"argumentB":"Exercise"

"label": "is related to",

"text":"Obesity is related to lack of exercise",

"sio_id": "SIO_000001"

}

If a relationship is not found in this ontology, this method can use either the

verb(s) or relationship found by Reverb. These relationships definitions are stored

by publication and can extend the SIO ontology.

The functional and semantic analyses assist to find metadata, context, entities,
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and relationships. In the following section, I describe a working example to show

how to organize these elements and compose a synthesis of a publication.

4.3.4 Working Example to Synthesize a Publication

To depict this framework, I use as a working example the publication Neuropep-

tidomic Components Generated by Proteomic Functions in Secretory Vesicles for

Cell-Cell Communication [114] by Vivian Hook et al. This publication contains

common elements of interest for analysis: text and tables. Furthermore, this two-

column document will help us to demonstrate partial results from this framework.

Working Example: Metadata and Context

Given this publication in PDF format, this framework executes TAO [29] to extract

the tables embedded in this document and to recover the functional analysis of each

table cell. Using the structured organization from TAO, this approach discovers the

metadata to keep the provenance and context of a publication.

For simplicity, I include metadata of a publication with the properties: creator,

headline, and keywords. Although the metadata is short, it allows to identify a

publication rapidly, to store its context, and more importantly to keep its provenance.

A context supports entity disambiguation and further analysis for documents. In

addition, the metadata is related to entities and semantic relationships extracted

with this approach.

The representation of this information includes "creator", "headline", and

"keywords." The following JSON organization shows the metadata information.

The annotation "schema" indicates that the concepts are defined from the https:

//schema.org vocabulary with type ScholarlyArticle.
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{

"schema":"https://schema.org/ScholarlyArticle",

"schema:headline":"Neuropeptidomic Components Generated by

Proteomic Functions in Secretory vesicles for Cell-Cell

Communication",

"schema:creator":[

"Vivian Hook",

"Steven Bark",

"Nitin Gupta",

"Mark Lortie",

"Weiva D. Lu",

"Nuno Bandeira",

"Lydiane Funkelstein",

"Jill Wegrzyn",

"Daniel T. O Connor",

"Pavel Pevzner"

],

"schema:keywords":[

"bioinformatics",

"cell-cell communication",

"mass spectrometry",

"neuropeptides",

"neuropeptidomics",

"proteomics",

"secretory vesicle"

]

}

Working Example: Entity Recognition, Annotation, and Disambiguation

The functional analysis generates a JSON file with the information of the table

grouped by row. The output for each cell includes at least content, data type, and
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function of a cell (header or data label).

Table 4.1: Excerpt from Table Neuropeptides in the Nervous and Endocrine Systems

Neuropeptides Physiological Functions
Insulin Glucose metabolism

Somatostatin Growth regulation

From the organization of tables extracted, all string cells undergo a process to

identify relevant concepts. I relate these concepts to an annotation from the ontol-

ogy DBpedia [115]. If a concept is not found or needs disambiguation, I use Latent

Semantic Indexing [57] and a context to find a URL from the Web. For more de-

tails, see Section 4.3.2 Entity Recognition, Annotation, and Disambiguation. Table

4.1 contains an extract of a table in the working example. Using these methods,

I identify the concepts Neuropeptides with annotation http://dbpedia.org/page/

Neuropeptides, Somatostatin with http://dbpedia.org/page/Somatostatin and

Growth regulation. This last concept is not found in DBpedia. Therefore, this entity

undergoes the disambiguation method, which finds a URL to explain Growth regula-

tion: https://academic.oup.com/endo/article-abstract/121/1/352/2541431.

Notice that this approach can find another document containing an explanation

about this concept.

In addition, this method recovers descriptions from DBpedia. I use such de-

scriptions to create an “IsA” relationship, for the entity "Neuropeptides", I recover

“IsA”: “small protein-like molecules (peptides) used by neurons to communicate with

each other...”

This framework finds automatically important concepts with annotations for each

publication. A publication might share annotation of concepts from different tables.

I create a global list of entities to reuse annotations within a publication as appro-

priate. Therefore, this method does not search the Internet for annotations already

determined. The recognized entities with annotations are the main components of a
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semantic relationship.

Working Example: Discovery of Relationships

Using the concepts from entity recognition, I identify headers, data, and relationships

between these table cells. This framework’s table organization facilitates finding

relationships between columns and rows. The relationships on the same row and

column form closely linked relationships. For instance, the first row contains concepts

in headers (e.g., Neuropeptides, Physiological Functions) and the other cells contain

values that can be an entity instance or attribute. From Table 4.1, I use entities

detected and get the following relationships:

- Neuropeptides has attribute Insulin,

- Neuropeptides has attribute Somatostatin,

- Physiological Functions has attribute Glucose metabolism, and

- Physiological Functions has attribute Growth regulation.

To represent each relationship, I use a 6-tuple containing id, argument A, label,

argument B, text, and sio id. An example showing the first relationship in table

4.1 from the working example follows.

{

"id":"1",

"argumentA":"Neuropeptides",

"argumentB":"Insulin"

"label": "has attribute",

"text":"Neuropeptides has attribute Insulin",

"sio_id": "SIO_000008"

}
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Similarly, the entities represent concepts in a publication that guide the semantic

relationships extraction from text. To find the relationships in text, an unsupervised

learning method and pattern matching assist for this process. The concepts identified

in tables are associated to the text of a publication. The resulting associations

compose semantic relationships.

For instance, these are two relationships derived from the working example: a)

“neuropeptides is related to short peptides ranging in length from ∼3 to 40 amino

acid residues”, and b) “neuropeptides represent one of two main classes of neuro-

transmitters”.

The Semanticscience Integrated Ontology [75] helps represent the relationships

detected. This representation is composed of a 6-tuple including an identifier of

the relationship, first argument, relationship label, second argument, original text,

and a definition identifier. This representation uses two different types of identifiers,

the first identifier refers to a relationship within a publication (e.g., id:1), and the

second identifier to the definition of a relationship in SIO (e.g., sio id:SIO 000020).

An example of the representation of a relationship discovered in the text of this

publication follows. Note that I use the label “denotes” as a relationship “is a”.

{

"id":"1",

"argumentA":"neuropeptides",

"argumentB":"peptides"

"label":"denotes",

"text":"neuropeptides are related to short peptides ranging

in length from 3-40 amino acid residues",

"sio_id": "SIO_000020"

}

Finally, I create a short summary containing metadata, concepts, annotations,
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and semantic relationships, which represent a synthesis per publication. See Chapter

5, Section 5.3 Organization of a Semantic Data Model.

4.4 Evaluation of Table Interpretation

To assess this framework quantitatively and qualitatively, I design three sets of ex-

periments to evaluate 1) the number and quality of entities recognized for each table,

2) annotations and disambiguation for entities, and 3) the semantic relationships ex-

tracted. I report settings and results as shown in [30], as well as present new results

for the extraction of semantic relationships.

4.4.1 Dataset and Experiments of Table Interpretation

For this assessment, I use a dataset containing fifty publications with different top-

ics. The dataset Pubmed contains publications downloaded from the Pubmed Web

site ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/. In summary, the dataset

Pubmed contains 449 text pages and 133 tables with different tabular formats em-

bedded either in one- or two-column documents. I manually prepared a gold standard

containing the correct entities for each table in the publications of the dataset.

This framework is evaluated to test and measure its ability to (1) recognize and

annotate entities, (2) disambiguate entities, and (3) identify semantic relationships

between entities with high confidence.

The first experiment evaluates the method’s accuracy to recognize and annotate

entities. First, I use the measures recall and precision to obtain the average F1-

measure for entity recognition. Recall is the ratio between the correct number of

entities detected and the total number of entities in a table. Precision is the ratio

between the correct number of entities detected and the total number of entities
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detected.

For the second experiment, the entity disambiguation method uses the same mea-

sures recall and precision. In particular, I quantify the effect of including information

regarding the context of the publication in the disambiguation process. In addition,

I evalute the quality of the disambiguation process. Although this process may be

automated using domains of established and recognized institutions, such as univer-

sities, digital libraries, and cliniques. A human judge classifies the URLs obtained

from this process as reliable and non-reliable. This manual evaluation is necessary

to ensure that the URL is related to a reliable but not commonly known institution.

The third experiment evaluates both quantitatively and qualitatively the seman-

tic relationships found by the method. Such relationships are extracted from tables

or text. The hypothesis is that relationships containing relevant concepts in a struc-

tured presentation should be more explicit and compact. First, I measure the total

number of relationships with high rank, in particular a confidence ≥ 0.70 using Re-

verb. Second, I measure the total number of relationships extracted with the method

using relevant entities. In addition, a human judge evaluates qualitatively these re-

lationships classifying them as complete and incomplete. A complete relationship

contains the two arguments of a relationship.

4.4.2 Results and Discussion of Table Interpretation

The dataset Pubmed is used to perform a complete assessment for each one of the

functions of this framework. As follows, I present the findings for each one of the

experiments.
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Experiment Entity Recognition and Annotation

The first experiment evaluates the method’s ability to recognize and annotate enti-

ties. To measure entity recognition, the gold standard contains 2, 314 entities, which

1, 834 of them are recognized. I obtain a recall of 79.2 percent and a precision of 94.3

percent, yielding a F1-measure of 86.1 percent for recognition (see Table 4.2).

From the entities annotated, I find 1, 262, that is 72.5 percent of entities in

DBpedia. From this number, 785 contain a unique description in DBpedia, that

is, 45.1 percent. Therefore, I obtain 785 annotations using DBpedia. For the rest,

27.4 percent of entities need disambiguation. The method uses the context of a

publication and the LSI process as described in [30] to annotate 955 entities. Then,

54.9 percent of entities are annotated with the LSI + context method. From the

total of 1, 834 entities recognized, 1, 740 are correctly annotated, yielding a recall of

94.8 percent, precision of 97 percent, and F1-measure of 95.9 percent (see Table 4.2).

Table 4.2: Experiment Entity Recognition and Annotation
Entity Recognition

Entities Recall Precision F1 measure
Recognized 0.79 0.94 0.86
Annotated 0.95 0.97 0.96

Experiment Entity Disambiguation

For the second experiment, the entity disambiguation methods are evaluated. In

particular, I quantify the effect of including the context of each publication in the

entity disambiguation process. From the previous experiment, I find 1, 740 annota-

tions of entities and 955 of them undergo the disambiguation process. The first part

of this experiment does not account for a context, still 838 entities are discovered and

disambiguated correctly without context. The precision is 89 percent and recall 87

percent, with an F1-measure of 88 percent. For the second part of this experiment,
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I use at least the three more relevant keywords as context, yielding 900 entities dis-

ambiguated and annotated. The precision is 95 percent and the recall 94 percent,

producing an F1-measure of 94.5 percent. Table 4.3 presents the comparison between

disambiguation with and without context.

Table 4.3: Experiment Entity Disambiguation
Entity Disambiguation

Method Recall Prec. F1 NR urls
No context 0.87 0.89 0.88 12.3%
Context 0.94 0.95 0.94 5.8%

In addition, a judge verifies and determines whether the URLs detected are re-

liable or non-reliable (see Table 4.3 column NR urls). While the reliable URLs are

originated from known organizations and domains mainly, the non-reliable URLs

require further analysis. This URL review ensures that a Web page or document

is related to the previously unresolved entity, and consequently to the publication.

However, it does not ensure an exact description of an entity. The resulting non-

reliable URLs with no context are 117, that is 12.3 percent of the total disambiguated

entities, and the number of non-reliable URLs found with context are 55, that is 5.8

percent. Therefore, the context helps reduce more than half of non-reliable links.

Even though the results with context are slightly better than with non-context,

the quality of the URLs using the context increases considerably. For instance, a

publication containing research findings about obesity, the entity Gain using the

method with no context finds the URL http://gainworldwide.org/, which is a

site for global aid network. While using a context, it finds the URL https://www.

sciencedaily.com/releases/2010/02/100222182137.htm, which is a site about

weight gain during pregnancy and increasing risk of gestational diabetes. It is obvious

that the first link belongs to an established organization, but it does not relate to

the entity Gain for this publication. On the other hand, the second URL explains

the risks of weight gain during pregnancy, which is related to the publication.
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Using context, I find more reliable links consistently. The links belong to organi-

zations, schools, government, clinics, dictionaries, and scientific and digital libraries,

among others. On the contrary, when a context is not included, I find several com-

mercial URLs promoting services or products, unavailable sites, sexual sites, and

ill-intentioned links. As mentioned earlier, unlike URIs the URLs can become un-

available or can change over time. To ensure reliability, the method could keep a set

of at least three URL annotations to monitor and avoid this situation.

Experiment Semantic Relationships

The third experiment evaluates both quantitatively and qualitatively the semantic

relationships. I report the number of relationships originated from tables and text,

as well as the average of relationships from the dataset of publications.

For this experiment, I find 11, 268 relationships from tables. Using Reverb, I

find 865 high ranking (confidence ≥ 0.70) relationships from text. On the other

hand, not using Reverb, I find 1, 397. The average number of relationships extracted

per publication when using table information is 225, while the average number of

relationships extracted using only text is 17 per publication. This average increases

to 27 when using categorical entities to search relationships.

Table 4.4: Experiment Semantic Relationships
Semantic Relationships

Method Rel. found Rel. complete
Tables 11,268 10,102
Text Reverb 865 703
Text New 1,397 1,336

A human judge analyzes the completeness of relationships manually. The rela-

tionships from tables contain 10, 102 or 89 percent of complete relationships. From

the total of relationships extracted from text using Reverb, 703 or 81 percent of
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relationships are complete. The rest, that is 19 percent is labeled as incomplete. For

the approach that does not use Reverb, a judge classifies 1, 336 or 90% of them as

complete, while the rest 10% is labeled as incomplete. The improved approach finds

more relationships than the previous one based on Reverb. The number of complete

relationships almost doubles the number found with the previous method. There-

fore, the number of relationships extracted from each article increases using relevant

entities.

In addition, the semantic relationships from text increases because the method

uses a publication’s context (i.e., keywords) as entities, as well as concepts found in

tables’ cells. The entities composing relationships ensure their relevance. On the

other hand, some of the incomplete or malformed relationships from text include

information from tables. An area of improvement for this approach is to extract and

eliminate tables’ information in a document to avoid processing twice this informa-

tion. In addition, this step could eliminate some false positives relationships from

text.

From the qualitative results, the relationships extracted from tables are more com-

plete than from text. This confirms the initial hypothesis about extracting relevant

concepts and structured information embedded in tables. Although this framework

bases its analysis in concepts from tables to extract relationships and generate a syn-

thesis, it can still be used when a publication lacks tables because it finds metadata

and can find semantic relationships from text. The semantic relationships can be

found using a publication’s context (i.e., keywords).

The keywords and concepts from tables increases the number of entities. There-

fore, the quantity and quality of semantic relationships from text increases when

relying on entities and natural language processing. Finally, regarding the rela-

tionships extracted from text, the method improves the accuracy of relationships

extracted by Reverb searching directly for important entities.
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In summary, I identified the metadata and context of publications that contain

tables. Second, I identified entities from the tables. In addition, I used semantic

annotations to ensure that the entities were unique. Third, I determined the re-

lationships among the entities and other elements in the tables and the text in a

publication, and represented the semantic relationships in a structured format. I

created a synthesis for each publication containing its metadata, entities, and re-

lationships. Finally, I evaluated the performance of this framework using a set of

publications and measured the quality and accuracy of the findings.
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Chapter 5

Automated Generation of

Semantic Data Models

Scientific digital documents contain valuable information that very often, machine-

readable approaches cannot consume directly. The large volume of digital publi-

cations produced daily makes it difficult to analyze them rapidly. Therefore, the

scientific community needs novel methods to discover the legacy of knowledge em-

bedded in a vast number of digital publications.

To facilitate this analysis, I present a conceptual design to create semantic data

models from scientific documents. I also develop methods to achieve the daunting

task of extracting and representing semantic information from digital publications

systematically. Specifically, I develop an automated framework to construct the

models, which are based on detection and extraction of table information within

documents [29], table interpretation and extraction of semantic relationships [30],

and organization of other relevant information, such as provenance and context. The

union of the models allows us not only to analyze, but also to integrate, manage,

share, and compare information.
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5.1 Publications with Semantic Interoperability

To find concrete information embedded in a vast number of scientific documents, it is

necessary to analyze documents with semantic interoperability. This interoperability

refers to integrated information systems containing context, and hiding syntax and

structural heterogeneity [25].

The integration of embedded information systems keeps growing rapidly with

mobile devices and applications [116], facilitating the everyday interaction among

people, data, and devices in the era of the Internet of Things. In contrast, because the

research community relies on a variety of publishing standards and traditional policies

to circulate its findings, there is limited interoperability among scientific disciplines.

To alleviate this problem, S. Peroni [26] introduces the semantic publishing and

referencing ontologies to facilitate using scientific articles. This kind of publishing,

however, is not widely adopted.

Other challenges to analyzing publications include the lack of a unified vocab-

ulary in publications within the same domain. Furthermore, the variety of topics

and formats constrain the reusability of scientific information. The International

Association of Scientific, Technical and Medical Publishers reports on the different

techniques used by researchers and scholars to read scientific publications [117]. A.

Renear and C. Palmer [118] study the evolution of the average time that a researcher

spends reading a journal article. It has decreased from 50 to just over 30 minutes,

suggesting that researchers scan articles instead of reading them. Researchers lack

methods to channel and reuse this information at the same speed as publishing does.

To facilitate understanding publications, a few tools allow to integrate semantic

annotations of relevant concepts, such as BioLit [18]. Others allow users to select

content of interest within a publication to search for additional information, such as

the visual tool Utopia [119] that allows interaction in PDF documents. For scalability,
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however, it is better to search for related information automatically and do not rely

on interaction.

In science, the Semantic Web is paramount for scientific advancement and in-

teroperability among disciplines [120], [121]. This initiative provides principles [92]

to facilitate reusing information, however, these rules mainly focus on markup lan-

guages, for instance, XML. Because the scientific community uses diverse formats, it

should extend these principles to other commonly used formats, for example, PDF.

The information technologies to store and manage information have evolved from

using plain text files to relational, to object-relational, to “not only SQL” and graph

databases. It is still difficult, however, to represent explicit semantics in any data

organization. To minimize this problem, I recall the concept of Semantic Data Model

proposed by different authors a few decades ago [122], [123]. J. Peckham and F.

Maryanski review different semantic data models and establish two common elements

in Semantic Data Models [6]:

a) relationships between data objects (i.e., entities) that support the man-

ner in which the user perceives the real-world enterprise, and

b) semantics for the relationships that specify the acceptable states, tran-

sitions, and responses of the database system.

To increase semantic interoperability and reusability, I present the conceptual de-

sign of a semantic data model to characterize publications and facilitate information

analysis. I use this concept to integrate relevant information from common elements

in publications. To compose a semantic data model, I extract a collection of semantic

relationships from digital publications with well-defined entities and relationships. I

dynamically discover entities not defined a priori as the main components of se-

mantic relationships, which are derived from structural associations represented in

tabular patterns and unstructured text. The semantic relationships hide the inte-
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gration of diverse sources of information. Finally, I preserve a publication’s context

and metadata to identify the source of each model.

Each semantic data model represents a synthesis of a publication. I stress the

importance of keeping the original semantics of each individual synthesis to facilitate

relating information among scientific publications and disciplines. Moreover, I use

sources of knwoledge, such as a dictionary, a vocabulary, and general ontologies

following the Semantic Web principles to compose independent data models. Yet,

the models can interact with one another using common context and concepts.

To relate information among publications, A. Nenkova and colleages [79] mention

the importance of using citations to discover relationships with related, previous, and

future work. SimRank [24] uses references and titles of publications to infer relation-

ships. Although these works successfuly find relationships among publications, the

relationships are not necessarily semantic. Therefore, I use the semantic relationships

from the data models for this matter.

Using a collection of data models, I compose a semantic network of publications,

where each model contains minimal and relevant information, such as well-defined

semantic relationships and provenance of a document. The network assists us in

managing and analyzing large datasets of publications. More importantly, the models

facilitate to discover knowledge in an organized mode and to track the source of the

findings. Furthermore, given that this investigation integrates concrete and available

information, it can potentially assist in reproducing research in diverse scientific

areas.

In this chapter, I present a conceptual design to create semantic data models, an

organization approach, as well as an approach to using a single model and a collection

of them. Figure 5.1 highlights the processes described in this section, which allow

us a) to create a semantic data model from each publication; b) to build a semantic
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network, which is a collection of semantic data models; and c) to retrieve information

from a network of publications.

Therefore, the main contributions include 1) a formal definition to dynamically

generate semantic data models, using integrated information from digital documents;

and 2) an approach to creating a semantic network of data models to manage and

reuse relevant information from scientific documents of any domain.

For the remainder of this chapter, Section 5.2 contains the components in a se-

mantic data model and its conceptual design is explained in Appendix A. Section 5.3

describes the special linked data format to organize a semantic data model. Section

5.4 contains an application to create a semantic network of digital publications. Fi-

nally, Section 5.5 contains an evaluation using a set of experiments to find semantic

relationships, to identify similar semantic relationships among publications, and to

measure time for model generation. To conclude, I report results and discuss the

findings.

5.2 Conceptual Design of Semantic Data Models

To detect and extract relevant information from scientific documents, I generate se-

mantic data models from publications systematically. I detect entities not defined

a priori in tabular structures and unstructured text, as well as relationships among

entities within a publication and with external sources of knwoledge, such as a dictio-

nary, ontologies, and the Internet. Figure 5.1 features the last two processes of this

framework to build Semantic Data Models and Semantic Network of Data

Models. In this section, I define the components of Semantic Data Models.

From the elements analyzed in a publication, I detect the finite components of

a semantic data model that include metadata, table cells, entities (i.e., concepts),
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Figure 5.1: The Semantic Data Integration Process

as well as semantic relationships extracted from tabular structures and unstructured

text. Formally, a semantic data model contains a 3-tuple SDM = {M,E, SR},

where M includes metadata and context, E entities, and SR semantic relationships.

Appendix A contains more details of this conceptual model.

5.3 Organization of a Semantic Data Model

To find the most convenient representation for a data model from digital documents,

I analyze several formats. One of the most common languages to describe ontologies

is the RDF, which is based on concepts and abstract syntax. RDF represents mean-
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ingful relationships between concepts using directed graph data models, URI-based

vocabulary, data types, literals, XML serialization syntax, expression of simple facts,

and deduction [124]. Every graph representing concepts comprises a triple: subject,

object, and predicate, representing a property of the subject. RDF uses URI, which

is a global identification for a resource that is common across the Web. URI is a

generalization of the URL [125] that can be used as a namespace in RDF. Then,

RDF is a widely used language that can be represented in format XML, however,

RDF does not include a feature to describe a context.

JSON excels in representing data in a portable, compatible, and easy-to-use for-

mat. An extended version of this format is JSON-Linked Data (JSON-LD) [126],

which facilitates the usage of linked data. JSON-LD is a novel format commonly

used to interchange information for REST (REpresentational State Transfer) ser-

vices [127]. The advantages of this format are that JSON-LD allows a user to specify

a context, define the type of information represented, and enable integration with

the Semantic Web using an explicit machine-readable format. Another benefit of

JSON-LD includes representation of relationships not limited to triples, using lists

to avoid repetition. This format is compatible with RDF and other variants such as

N-quads [128].

For the exposed advantages, this framework outputs a JSON-LD representation

where I define a context of a semantic data model, containing an environment of its

components. The first element of a semantic data model is its context. Note that

this context is different from the one used in a publication that is represented with

keywords.

The elements of a context include all the resources used to represent metadata,

entities, attributes, and relationships. For a publication’s metadata, I use the vocab-

ulary resource schema.org to represent author, title, and keywords. If an entity is

represented using JSON, I can convert JSON to JSON-LD seamlessly. For instance,
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the following entity is represented in JSON:

"Neuropeptides":

{

"URI":"http://dbpedia.org/page/Neuropeptides",

"IsA":"small protein-like molecules (peptides)"

}

I can easily convert it to JSON-LD, using part of a URI as the context of an entity.

The context "http://dbpedia.org/page/" indicates that it is a resource from the

ontology DBpedia. This property abstract belongs to the entity Neuropeptides :

{

"context": "http://dbpedia.org/page/"

"Neuropeptides":

{

"id":"Neuropeptides",

"abstract":"small protein-like molecule (peptides)..."

}

Therefore, a semantic data model’s context contains the location of resources

for the sources of knowledge, such as ontologies and vocabulary. These resources

facilitate annotation of entities, definition of relationships, and vocabulary standard-

ization. This approach also organizes metadata, entities, annotations, and relation-

ships into this special JSON file that characterizes and synthesizes each publication,

allowing simplification and interoperability.

In particular, JSON-LD serves to generate a descriptive document. The docu-

ment contains the publication’s metadata (i.e., headline, creator, keywords, email),

entities with annotations (i.e., URL, URI, IsA), and the actual information from
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extracted relationships (i.e., relationship identifier, arguments, definition of relation-

ship, definition identifier). The document in turn contains other links, such as the

ones used to annotate entities and to define relationships.

I build each semantic data model collecting the elements of SDM . The rep-

resentation contains explicitly M,E, and SR as explained in Appendix A. This

organization provides the description of entities and relationships to understand ta-

bles, and consequently publications. Therefore, the organization of a semantic data

model has a two-fold purpose:

- to represent and understand the content of tables embedded in a publication,

including semantic relationships among unique concepts within a document,

and

- to identify the blueprint or synthesis of a publication, including provenance

and concrete information.

I present an extract of the representation of the working example introduced

in Chapter 4, Section 4.3.4. Note that the context of a semantic data model is

represented with "keywords", while the context to represent resources uses the word

"context". Appendix C contains a context of resources used in the representation

of this data model.

{

"context": {

"headline":

{

"@id": "http://schema.org/ScholarlyArticle",

"@type": "@id"

}, ...

}
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"headline":"Neuropeptidomic Components

Generated by Proteomic Functions in Secretory vesicles for

Cell-Cell Communication",

"creator":[

"Vivian Hook",

...

],

"keywords":[

"bioinformatics",

...

],

"email": [

"vhook@ucsd.edu"

],

"entities": {

"Neuropeptides": {

"URI":"http://dbpedia.org/page/Neuropeptides",

"IsA":"small protein-like molecules (peptides)"

},

"somatostatin": {

"URI":"http://dbpedia.org/page/Somatostatin",

},

"Peptide": {

"URI":"http://dbpedia.org/page/Peptide",

}

"Amino acid residues": {

"URI":"http://dbpedia.org/page/Protein_structure",

}

}
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"relationships": {

"1": {

"id":"1",

"argumentA":"neuropeptides",

"argumentB":"somatostatin"

"label":"has attribute",

"relationship":"neuropeptides has attribute

somatostatin",

"sio_id": "SIO_000008"

},

"2": {

"argumentA":"neuropeptides",

"argumentB":"peptides",

"label":"denotes",

"relationship":"neuropeptides are short peptides

ranging in length from 3-40 amino acid residues",

"sio_id": "SIO_000020"

}

}

}

The context of a JSON-LD document helps locate resources on it. From the pre-

vious example, the context "http://schema.org/ScholarlyArticle/headline" is

represented by the key "headline" described in the vocabulary schema.org. For

simplicity, I only use the class ScholarArticle. The property email is represented us-

ing the class Thing because it does not appear in the ScholarArticle class. The email

property can also be found in the classes ContactPoint, Organization, and Person of

this vocabulary.

I represent relationships from the resource SIO. Appendix B shows the context
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Figure 5.2: Components of a Semantic Data Model

http://semanticscience.org/resource/ and key "sio_id", which indicates the

location of the formal definitions of relationships in SIO and its type as an id. For

instance, a relationship with id SIO 000001 can be related to this context: http://

semanticscience.org/resource/SIO_000001, which resolves the definition of this

relationship and gives access to a specific resource.

Figure 5.2 shows additional relationships of a semantic data model collected from

the working example. The entities in capital letters indicate that they are also part

of the keywords. The well-defined relationships in the models exist at each level

of its components. I find relationships among keywords, entities, and structured

associations. Additional concepts exist that may not be part of the categorical

entities in the model organization, for instance, the concepts prohormone and peptide
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found in text. Then, researchers can use these relationships to find specific results,

settings of experiments, and associations among concepts in scientific environments.

For simplicity, the direction of relationships are not shown.

This representation using a context organizes relevant information from a digital

publication. The organization facilitates the creation of semantic data models in a

structured organization to allow a) reusing information; b) having interoperability

(i.e., connections) among common elements, such as metadata, entities, and rela-

tionships; and c) integrating information within and among publications. In the

following section, I explain an approach to obtain a network of the data models.

5.4 Semantic Network of Data Models

After integrating semantic information from publications and representing it in a

flexible format, the next step is to use the systematic representation to achieve the

ultimate goal of this investigation: to relate the semantic data models with one

another using common entities and finding their relationships across publications.

Figure 5.3 depicts the main elements of semantic data models and the possibilities

of connections within and among publications. Even though the goal of this inves-

tigation is to recover semantic information, the models also contain metadata that

can be exploited, such as the creator of a publication.

5.4.1 Approaches to Use Semantic Data Models

To use the data models, I consider their portability and readiness that provide the

ability to store and query them with no additional processing. To store the models,

because of their ability to expand and scale [129], I consider using a NoSQL database,

however, because the models are flexible and descriptive, I can use other means to
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analyze their embedded information. I explore two platforms ready for Big Data

analysis, Apache Spark [130] and Networkx [131].

Figure 5.3: A Semantic Network of Data Models

First, Spark provides advantages over other data analysis systems due to its

functions for large-scale data processing, reliability, and parallelization [132]. A

researcher can use any method to reuse and interoperate among a set of semantic

data models generated with the approach.

I use Spark to analyze and query several publications. To do so, I concatenate a

set of semantic data models into a unique file. I avoid further processing and create

a document, where each line represents a data model in JSON format.
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The organization of the semantic data model allows Spark to read the models as

a data set. Spark allows us to select specific information as using a database. Spark

allows us to query the elements of a model. For instance, I can query author and

title of a publication.

Second, I use Networkx [131] to build a network of data models. Networkx is a

favorable tool that allows us to create a graph. To do so, I unravel the components of

the semantic relationships (e.g., entities and relationships) contained in the models.

Each unambiguous entity represents a node, and the relationship between two nodes

represent an association, that is, an edge. Furthermore, Networkx allows us to

define properties in the elements of a graph, i.e., nodes and edges. I take advantage

of this property to include the semantic annotations or explanations composing a

relationship in the model and other relevant information.

Figure 5.4 shows how a relationship from the working example is composed of

two nodes and an edge. The edge has the property “relationship” and can have more

properties. A node has a unique identifier. Similarly, an edge is composed of node1,

node2, and the relationship between those nodes. In addition, I use annotations,

such as the name of a publication and the text that shows how an entity participates

in a relationship. To compose a relationship from the sentence neuropeptides are

peptides ranging in length..., I obtain the nodes neuropeptides and peptides and the

relationship are as an edge. To preserve the origin of this relationship, I use two

properties in the edge between these nodes. The first annotation contains the whole

sentence where the relationship is found and the second one contains the name or its

publication. Using this process, I define nodes and edges from each data model.

To demonstrate the construction of a network from a semantic data model, the

working example serves for this purpose. Figure 5.5 shows an example of the entities

and relationships composing a network. In particular, a network is a directed graph

G = (V,E), where V represents the nodes and E the edges. Later, Networkx allows
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Figure 5.4: Elements to Build a Semantic Network of Data Models

us to relate the models with one another using a node identifier v ∈ V .

Figure 5.5: Nodes and Edges to Build a Network Using the Working Example
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5.4.2 Analysis of a Semantic Network

The important nodes in a semantic data model provide insights for an exploratory

analysis. Centrality measurements help finding important nodes. The centrality

measures include degree, closennes, and betweenness. S. Uddin et al. [85] mention

the importance of these measures to co-relate authors of scientific publications. In-

stead, this approach uses the measures to detect important nodes, i.e., entities, and

their relationships derived from different publications. K. Batool and M. Niazi [133]

compare centrality measures in different networks. The degree and closeness cen-

trality measures prove to be useful, and betweeness measure varies depending on the

topology of a network.

The centrality measures for undirected graphs defined in [133] follow. Degree of

a node v is the number of edges that leave or get to this node. Equation 5.1 shows

how to calculate degree centrality, where kv refers to the degree of a node v and n is

the number of nodes in a network.

CD =
kv

n− 1
(5.1)

Closeness centrality of nodes v and t uses the length of shortest paths to measure

the distance between two nodes. Equation 5.2 shows how to calculate closeness

centrality, where distance(v, t) refers to the number of nodes that v touches to get

to t.

CC =
∑ 1

distance(v, t)
(5.2)

Betweenness centrality calculates the number of times that a node v participates

in a shortest path between other two nodes. Equation 5.3 shows how to calculate
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betweeness centrality, where σst(v) refers to the number of paths that v participates

and σst is the number of shortest paths from s to t .

CB =
∑
s 6=v 6=t

σst(v)

σst

(5.3)

For instance, from the working example, the most important node is neuropeptide

according to the measures of centrality for degree, closeness, and betweeness. Other

relevant nodes include peptide, neurotransmitter, secretion, and mass spectometry.

5.4.3 Applications of a Semantic Network

The conceptual design allows us to create semantic data models that contain a syn-

thesis of a publication. I can analyze each model individually. Similarly, a set of

models can be analyzed globally. In addition, I can create a network of models with

common context or entities. Then, a semantic network of data models allows us to

better exploit information from digital publications.

The applications of a network of semantic data models include the ability to inte-

grate, manage, share, query, compare, and contrast information among publications.

The main elements to use in a semantic network are entities, context, and semantic

relationships. Because the semantic relationships are binary, structural, and domain

independent, they facilitate the integration of information.

A semantic network of data models allows researchers and scholars to integrate

publications with similar content and find the semantic relationships in publications

with this commonality. In addition, the common semantic relationships allow us to

identify concrete information in each publication, and to compare the information

among publications.
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A semantic network allows us to find semantic relationships with common en-

tities and context, as well as other relationships among publications. Finally, the

characterization of the data models allows us to use their information in different

data management systems, including machine-readable.

In the following section, I show results of generating data models using this

framework and querying entities to find specific semantic relationships in a network

of data models.

5.5 Evaluation of Semantic Data Models

I evaluate this framework with two sets of experiments. The first set computes

the average time to generate the semantic data models from discovering context,

metadata, table extraction, and semantic relationships to model organization. The

second set of experiments consists on creating networks of semantic relationships

from two collections of data models.

5.5.1 Dataset and Experiments of Data Models

To assess this framework, I use two datasets downloaded from the PubMed website

at ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/. The first dataset Pubmed1

contains twenty publications obtained from querying the keyword diabetes with 210

pages and 18 tables. The second dataset Pubmed2 contains four hundred and eighty

publications obtained randomly from different topics with 3,600 pages and 390 tables.

I evaluate this approach using two sets of experiments to test and measure this

framework in terms of its ability to (1) generate semantic data models and (2) identify

important entities and semantic relationships among publications, and (3) measure
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the time of generation.

In the first set of experiments, I create two semantic networks of data models

using Pubmed1 and Pubmed2. I obtain statistics for each network and use centrality

measures to report important concepts from the semantic relationships composing

the networks of publications. In addition, I report relationships from different models

sharing similar annotations. The second assessment evaluates the average time to

generate semantic data models using the dataset Pubmed2.

5.5.2 Results and Discussion of Data Models

During this evaluation, I generate and organize semantic data models, as well as

detect semantic relationships in networks of digital publications. Finally, I present

the average time to generate the models.

Experiment Network with Semantic Relationships Among Publications

The first set of experiments consists of creating a semantic network of data models.

First, I generate a network for the dataset Pubmed1 that includes publications with

the keyword “diabetes”. From the network generated with Pubmed1, this graph

contains 547 nodes and 1, 552 edges.

Table 5.1 shows the most relevant nodes and their centrality measure in this

network. For simplicity, I measure the centrality of the network using an undirected

graph. As expected, the entity “Diabetes mellitus” is the most important node in this

network, having high centrality measures for degree, closeness, and betweeness. The

other relevant nodes represent concepts related to this entity, such as glucose, insulin,

and dysglicemia. In addition, the entity patients is the second most important with

high closeness and betweeness with other nodes. This entity is common among
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publications containing research related to people having this disease.

Table 5.1: Entities with Centrality Measures from Network of Pubmed1

Entity Degree Closeness Betweeness
Diabetes mellitus 0.238 0.496 0.316
Patients 0.163 0.434 0.154
Glucose 0.082 0.389 0.088
Insulin 0.055 0.385 0.028
Dysglycemia 0.049 0.355 0.008

A network contains all the entities and their relationships found in the models.

Therefore, I retrieve semantic relationships from a network of data models. In partic-

ular, Networkx allows us querying semantic relationships containing the same entity

among all models representing publications.

Figure 5.6 shows some relationships including the entity “Diabetes mellitus” in

four data models from publications. For instance, this framework uses the sentence

“The low impact of genetics on metabolic diseases is further reinforced by the grow-

ing incidence of diabetes and obesity over the last decades” [134] to generate the

relationships genetics is reinforced diabetes and genetics is reinforced obesity. The

two metioned relationships appear in this figure on the second column. The rela-

tionships include information from the publications a) “Early Identification of Type

2 Diabetes” [135], b) “Gut microbiota and diabetes: from pathogenesis to thera-

peutic perspective” [134], c) Ionizing radiation and aging: rejuvenating an old idea

[136], and d) “Clinical characteristics of patients with type 2 diabetes mellitus at

the time of insulin initiation: INSTIGATE observational study in Spain” [137]. The

latter is a study from Spain, which shows the usefulness of this approach to analyze

international research in English.

For the second part of this experiment, I present results from the creation of a

network with dataset Pubmed2. The resulting graph contains 10, 167 nodes with

29, 762 edges.
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Figure 5.6: Data Models Using Pubmed1

Table 5.2 shows the ten most relevant entities and their centrality measures.

In particular, I report their degree, closeness, and betweeness. For simplicity, this

analysis uses an undirected graph.

From this network, the first four entities of the table, such as protein, cell, gene,

and treatment have similar behavior for degree, closeness, and betweenness central-

ity. Even though the entity cancer has less connections than the entities diabetes,

ghrelin, glaucoma, and neurons, the entity cancer is closer to other nodes because its

closeness measure is greater than the rest. On the other hand, the entity glaucoma

slightly participates in more paths than diabetes, ghrelin, neurons, and autophagy.

Comparing this network with the one from the previous experiment, the centrality
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Table 5.2: Entities with Centrality Measures from Network of Pubmed2

Entity Degree Closeness Betweeness
Protein 0.033 0.2833 0.0294
Cell 0.029 0.2830 0.0197
Gene 0.022 0.2784 0.0160
Treatment 0.020 0.2716 0.0103
Diabetes 0.015 0.2620 0.0065
Ghrelin 0.014 0.2537 0.0058
Glaucoma 0.014 0.2560 0.0070
Neurons 0.012 0.2575 0.0060
Cancer 0.011 0.2669 0.0040
Autophagy 0.010 0.2562 0.0033

measures are smaler given the size of this network.

Using some relevant entities, Figure 5.7 shows relationships discovered among

publications. The relationships are found in “Protein tyrosine phosphatases in

glioma biology” [138], “Glutamatergic regulation of ghrelin-induced activation of the

mesolimbic dopamine system” [139], “’Randomized trial of brinzolamide/brimonidine

versus brinzolamide plus brimonidine for open-angle glaucoma or ocular hyperten-

sion” [140], “Cellular distribution of vascular endothelial growth factor A (VEGFA)

and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB”

[141], “A ’radical’ mitochondrial view of autophagy-related pathology” [142], and

“Taurine protects against lung damage following limb ischemia reperfusion in the

rat by attenuating endoplasmic reticulum stress-induced apoptosis” [143].

From the first relationship, for the entity “PTEN” this framework finds the an-

notation https://doi.org/10.1093/jnci/91.21.1820 , which talks about PTEN Gene

and Integrin Signaling in Cancer. The remaining relationships annotate entities us-

ing DBpedia, such as Ischemia. The cartesian product of entities in this approach

allows us to get relationships, therefore, these examples are not exhaustive. For in-

stance, the text from relationship four originates additional relationships involving
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Figure 5.7: Relationships of Entities in Pubmed2

the entity preservative. This framework also finds concepts composed with more than

one word, for instance the entities Mesolimbic pathway and Gene knockout. Finally,

the Oxford dictionary helps annotating the entity reperfusion.

In addition, a network allows us to query other entities, such as somatostatin,

octopamine, and synapses. The last three relationships are extracted from the pub-

103



Chapter 5. Automated Generation of Semantic Data Models

lications “Alterations in Somatostatin Cells and Biochemical Parameters Following

Zinc Supplementation in Gastrointestinal Tissue of St reptozotocin-Induced Dia-

betic Rat” [144], “Blueberry-enriched diet ameliorates age-related declines in NMDA

receptor-dependent LTP” [145], and “Dopamine suppresses octopamine signaling in

C. elegans: possible involvement of dopamine in the regulation of lifespan” [146].

From this set of relationships, for the ninth relationship the framework anno-

tates the entity gastrointestinal functions with a document called “Somatostatin

and the gastrointestinal tract” with URL http://hdl.handle.net/11573/114460.

In addition, the last relationship contains the name of a publication as argument

A. This relationship uses the co-reference resolution for the pronoun “we”. Then,

this framework replaces the reference of the authors with the name of their publi-

cation. Therefore, this framework detects publications as entities that interact with

concepts.

Figure 5.8: Relationships of Entities in Three Models Using Pubmed2
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For demonstration purposes, I present a graphic representation of a set of enti-

ties and their relationships from three models. The publications include “The rate

of leukocyte telomere shortening predicts mortality from cardiovascular disease in

elderly men” [147], “Treatment of dystrophinopathic cardiomyopathy: review of the

literature and personal results” [148], and “Old and new therapeutic developments in

steroid treatment in Duchenne muscular dystrophy” [149]. In particular, Figure 5.8

shows examples of relationships sharing some entities, such as weight gain, cataracts,

deflazacort, fibrosis, duchene muscular distrophy, dyskeratosis congenita, and cancer.

Each edge contains annotations regarding the name of a relationship and name of a

publication. For space constrains, the edges do not include the original text where a

relationship is found.

This figure shows how the entities can help discover additional information. For

instance, the shortest path from one entity to another, as shown from deflazacort

to fibrosis, using as a bridge the entity duchene muscular distrophy. In addition,

it shows how two different models contain the same relationships between two en-

tities, such as deflazacort causes weight gain and deflazacort causes cataracts. The

relationships are extracted from the original text of each publication. It is impor-

tant to refer to the model containing the text where a relationship is extracted. For

instance, these relationships are found in the original text “Deflazacort appears to

cause less weight gain and less bone mass deterioration, but more often it is asso-

ciated with the development of asymptomatic cataracts” [148]. The sentence gives

more information about the relationship, indicating that “Deflazacort causes less

weight gain” and that “Deflazacort is related to the development of asymptomatic

cataracts.” The two publications [148] and [149] share common entities and relation-

ships. Therefore, the network helps researchers finding, comparing, and contrasting

entities and relationships, and the annotations provide more specific information for

further analysis.
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Even though each publication is represented with a semantic data model that

contains disambiguated entities, adding up the number of entities per model might

contain redundant entities. It is at the moment of creating a network when the

unique entities in a set of models are discovered. Table 5.3 shows a summary of the

characteristics of the models generated from the datasets analyzed. In particular,

it shows the number of entities found in the models separately, the unique entities

composing a network, and the total number of relationships.

Table 5.3: Entities and Relationships from Datasets
Dataset Entities in Models Entities in Network Relationships
Pubmed1 857 547 1,552
Pubmed2 26,691 10,167 29,762

The organization of the data model facilitates finding relationships among entities

and later among models. The relationships can extend to several data models, as

long as they contain common entities. The number of relationships from each model

varies because they depend on the number of entities composed by the keywords

representing a context and concepts from tables. Therefore, if a publication lacks

tables with relevant information, the model may lack concrete relationships. In

contrast, a rich publication with tables can produce more valuable data models.

Some publications contain direct relationships in natural language and others hide

relationships in the richness and redundance of the language. It is important using

clear and simple language in science. Using my approach, I demonstrate how relevant

entities from different publications can be related to each other. Therefore, it is

crucial to normalize name(s) of concepts within a discipline, that is, unify vocabulary.

In addition, these relationships use mainly entities from the ontology DBpedia.
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Experiment Generation of Semantic Data Models

For the second experiment, I measure the average time to generate semantic data

models using Pubmed2. In particular, I obtain the time of extracting metadata

and context; detecting tabular structures and extracting tables’ information; disam-

biguating and enriching table concepts, that is, entities; extracting semantic rela-

tionships; and finally organizing information to compose the models in the dataset.

From this experiment, I report the average time of the automated generation of a

semantic data model.

The average time to generate the components of semantic data models for the

dataset Pubmed2, including the approach to find relationships from text, as well

as entities not defined in a context or table. The results show that this approach

takes about 24 minutes in average to generate each model. The generation of data

models is feasible to reduce the time that a researcher spends analyzing an article, to

analyze a large number of publications, and more importantly, to gain rapid insight

to scientific documents and determine if they need further consultation.

In summary, I found structured semantic relationships that represent insights, as

well as specific content of a publication. In particular, I demonstrated the creation

of networks of semantic data models that represent syntheses of publications. I also

found relevant concepts with their semantic relationships among publications using

a network of models. Finally, I computed the average time to automatically generate

semantically enriched data models.
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Conclusion of Dissertation

To solve problems related to analyzing a large quantity of scientific publications,

which lack 1) a unified vocabulary, 2) a standard format in tables, and 3) semantic

interoperability, especially those in PDF format. This investigation explored au-

tomated methods to create semantic data models in any domain without knowing

a priori their components: entities and relationships from scientific publications.

In addition, this investigation evaluated the feasibility of automated methods to

accomplish my thesis statement and to facilitate the retrieval, integration, compar-

ison, sharing, and interoperability among publications. In particular, I developed

a conceptual data model to discover and represent the elements of semantic data

models from publications and built a framework to create the semantically enhanced

data models. The entities with their semantic relationships, extracted from text

and tabular information embedded in publications, composed the models, as well as

information from general ontologies and vocabularies.

To develop this investigation, this document presented five chapters. One chap-

ter reviewed related literature, and four chapters described the methods developed

in this study and main contributions. First, I investigated how to detect, extract,
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and represent information presented in tables within digital publications. Second,

I interpreted the data in the tables for each document to identify semantic rela-

tionships and entities in order to synthesize the information. Third, I used relevant

information contained in publications, such as metadata, entities, and relationships

to characterize the semantic data model, which allowed us to manage and analyze

information obtained from the digital publications.

The second chapter, “Literature Review”, presented definitions and related work

in the areas of table identification and table interpretation, as well as in the ar-

eas of entity disambiguation and extraction of semantic relationships. Finally, this

chapter reviewed data integration methods, semantic data models, tools to provide

semantic annotations, summarization methods, and comparison approaches among

publications.

The third chapter, “Table Detection and Information Extraction”, was based on

the article, TAO: System for Table Detection and Extraction from PDF Documents.

I developed methods to automatically detect and organize tables from PDF doc-

uments, and the prototype system TAble Organization (TAO) to demonstrate the

methods’ accuracy. TAO applied PDFMiner to convert the PDF documents into

XML format. Even though the PDFMiner’s output in XML is large, the informa-

tion of the original PDF document is preserved and enriched. I developed methods

combining layout heuristics and supervised learning methods to process the XML,

detecting the location of the tables within the document and extracting the corre-

sponding table cells.

TAO was implemented using three main processes Document Conversion, Table

Detection and Table Extraction, generating the output of the system in a JSON docu-

ment, which allows interoperability and information exchange. The JSON document

contains the representation of the tables cells within the document. The output is

also enriched with information not displayed in the PDF document, such as coordi-
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nates of the table cells. This extra information allows structural analysis of a table.

The output document can easily be stored and managed in a database to facilitate

analysis, sharing and collaboration.

TAO was evaluated on a variety of PDF documents with a variety of tables,

and I compared its performance to a baseline from related work. TAO overcame

related work limitations and performed satisfactorily on scientific and non-scientific

documents, on PDF documents with large and small number of pages, with single

and double columns, and with various tabular formats.

The fourth chapter, “Table Interpretation to Synthesize Documents”, based on

the article Table Interpretation and Extraction of Semantic Relationships to Syn-

thesize Digital Documents, presented a framework for this investigation. For their

simplicity to present structured content and to organize information, I used tables in

digital publications to recover summarized information and structural relationships

among conceptual entities in these documents. In addition, I used unstructured

text in publications to find the context of a document and semantic relationships of

entities.

I developed a framework with functional and semantic analyses to understand

a table’s content and its publication. this framework contains four steps: 1) meta-

data and context detection, 2) entity recognition from tables, and annotation and

disambiguation using external sources of knowledge 3) discovery of relationships,

and 4) organization of the metadata, entities, and semantic relationships per pub-

lication. The context and metadata helped to preserve the information to identify

the source publication containing tables. Using the semantic analysis, I performed

entity recognition from tables embedded in a publication. In addition, the entities

were enriched using annotations. Finally, the entities and functional analysis helped

finding relationships from tables and text.
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This approach used statistical methods, Natural Language Processing, and un-

supervised learning to extract important information, such as context, entities with

annotations, and semantic relationships. This information characterizes each pub-

lication as a synthesis of each document. Because each synthesis contains relevant

information, it facilitates to consult and analyze publications promptly, and to in-

teroperate between publications.

I demonstrated my approach with a working example and a quantitative assess-

ment. The method worked for PDF and XML formats, including various layouts. In

addition, the general ontologies and vocabulary representing the findings allowed us

to account for publications among different domains. I obtained a promising number

of entities and semantic relationships for each document. this framework organized

relevant information to generate a publication’s synthesis, which allows us consulting

a publication promptly.

The fifth chapter, “Automated Generation of Semantic Data Models”, formally

defined the components of the model characterization. These models contain relevant

information that can be used to understand tables and summarize a publication.

To develop the models, I primarily used the output from the previous analyses:

Table Identification and Interpretation, as well as Information Extraction of Context,

Metadata, and Semantic Relationships.

I developed a comprehensive framework to automatically generate semantic data

models from digital documents. The data models contained relevant entities from

tabular layouts and the context of a document; the entities were semantically enriched

with annotations and extracted relationships.

The organization of semantic data models using a vocabulary and general ontolo-

gies enabled us to synthesize and analyze documents from diverse areas of knowledge.

In particular, I used defined relationships to represent association, classification, ag-
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gregation, and generalization. The discovery of well-defined relationships in the

models allowed researchers to find structured results, experimental settings, and hi-

erarchical associations among concepts in scientific documents.

The representation of metadata, entities and semantic relationships were the com-

mon components of the models in a flexible format to facilitate interoperability. To

show this interoperability, I created a semantic network using a set of data mod-

els derived from publications of different topics and another with publications with

similar content. The networks of publications served to find semantic relationships

containing similar entities or context among publications. I used centrality measures

to detect the most relevant nodes in the networks.

The experiments yielded structured semantic relationships, which allowed us to

compare and contrast information from different digital publications. In addition, I

could verify the provenance of the information obtained with this approach. Given

the proliferation of websites and possible documents with fake information, the de-

tection of semantic relationships matched with metadata to identify the provenance

of a digital document made the data models more reliable. I also measured the time

to generate the data models. The approach was capable and feasible to analyze

documents faster than a person could do it manually.

In summary, to investigate the viability of the thesis statement, I developed au-

tomatic methods to analyze tables in digital publications, to detect and extract se-

mantic information, and to gain knowledge about the documents examined. Finally,

this document presented the results of this investigation, and the contributions to

the current literature in the areas of Information Extraction, Information Modeling,

and Semantic Analytics.
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6.1 Future Work

I plan to develop tools for efficient Data Analytics to better exploit semantic data

models. For instance, these tools can be used to determine the uncertainty of the

semantic relationships detected in the models. In addition, I aim to study Data

Reasoning while considering the causality of the relationships that are identified by

using the proposed models.

Although this framework identified data type for table cells, some of the cells may

contain values that require normalization. For instance, the entity distance can con-

tain values using different measurement units, such as feet versus meters. Therefore,

I intend to continue my research on Data Quality to support semantic normalization

to map the difference between the representations of entities’ attributes.

For this dissertation, the semantic analysis focused on documents written in En-

glish. The multicultural scientific community requires access to information pub-

lished in many languages. I envision that these methods could perform semantic

analysis in other languages with a few modifications.

In addition to tabular structures and free text, I plan to analyze datasets related

to digital publications. At times, datasets published as supplementary material are

under-utilized because they lack easy accessibility, and they have the same variations

(data, format, and layout) as the information presented in tables.

This investigation has also two lines of research regarding sources of knowledge,

one is to develop an ontology of relationships commonly used in scientific documents

from any domain, and the other is to create and use unified vocabularies for scientific

areas to better manage information.

Finally, I plan to use this project to create clusters of facts that are related in

diverse disciplines. In addition, this project can perform the following: 1) locate
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people who may be interested in working together in the same area of interest, 2)

locate research already done to avoid repeating the same path, and 3) help researchers

select unexplored areas to investigate.

6.2 Lessons Learned

Many publications already define metadata regardless of the document’s format;

however, some publications have no metadata at all. As scientists, establishing

metadata in publications facilitates the dissemination of that work. In the same

way, the guidelines for all scientific conferences and journals should require manda-

tory metadata. These conferences and journals have the authority to mandate the

inclusion of metadata, and their review processes can control that requirement.

Regarding metadata for tables, it is necessary a table definition in the schema.org

vocabulary, including definitions for table title, table cell, and specific definitions to

identify a table column header, and table data cells. Useful tags to describe data

and header cells would be useful. In addition, the PDF format could include tags for

table identification; these tags can be the same ones used on the Web to avoid having

multiple tag names for the same element. The schema.org vocabulary also lacks a

definition for semantic relationships. A definition of the class semantic relationship

could assist in representing the two different arguments and its relationship in a

linked document.

Information extraction and semantic problems could be avoided if the scientific

community establishes formal semantic publishing methods in any format and do-

main. Using defined rules while presenting results could decrease the time required

to detect, extract, and integrate information; and most importantly, discover knowl-

edge. In addition to the preferred narrative method to present research, I envision

each scientific domain to define rules to include metadata, methods and results for
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scientific publications. These rules can be expressed in simple tabular structures.

Commercial search engines have the power to control how information is explored.

Using the search engines frequently increases the cost, and these engines may promote

products or services during a search. Many times, researchers depend on the output

of the search engines for academic interest. From this issue, one of the areas where

scientists can join efforts is to improve access to academic search engines, which are

dedicated to research purposes exclusively.

The problems exposed in this work point to the representation and management of

digital publications from any domain. The Internet of Things is advancing rapidly,

and scientific publications have barely been prepared to the rapid interaction of

information among disciplines required at this time. The dissemination of scientific

work depends on digital libraries and mainly on ourselves, who can be responsible

to include metadata in all our publications.

The normalization of tables using semantic annotations can avoid adding noise

on the design of a simple tabular representation. Then, researchers can obtain more

direct information from these valuable sources of knowledge. Finally, the inclusion

of publishing rules to report results and other elements could facilitate the analysis

of scientific articles, as well as the creation of a scientific Semantic Web.
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Appendix A

Conceptual Design of a Semantic

Data Model

The components of a semantic data model include a) metadata and context, b) cells

and categorical entities with annotations, and c) semantic relationships.

A.1 Metadata and Context

The first elements in the semantic data model are metadata and context, which help

describe a publication. Metadata is crucial in the creation of a data model because it

not only allows us to identify each model, but also to relate the entities and semantic

relationships to their original documents.

To depict the components of the model, I use the entity-relationship (ER) model

as described by R. Elmasri and S. Navathe in their book Fundamentals of databases

systems [111]. The figures contain rectangles representing entities, diamonds rep-

resenting relationships, and MIN and MAX values for cardinality shown in paren-

theses. The cardinality values indicate the minimum and maximum number of par-

117



Appendix A. Conceptual Design of a Semantic Data Model

ticipants/arguments in a relationship, representing the structural constraint of the

participation of an entity in a relationship.

Figure A.1 shows a conceptual design with the components of metadata in the

semantic data models. Metadata represents a publication, which has a context as a

set of five keywords in the approach, but this number may vary because I respect the

keywords defined by authors. Each publication relates to a unique title, which can

be identified with a unique DOI. One or more authors can write each title. If a first

author has one or more collaborators, for each pair first author-collaborator, there is

an isCoauthor relationship. Finally, each author has one email address. Each author

can have one email address. To perform the extraction of these elements, refer to

Chapter 4, Section 4.3.1 Discovery of Metadata and Context.

Figure A.1: Metadata Components
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A.2 Categorical Entities

Figure A.2 shows the conceptual design of the table cells and categorical entities

E. The set of cells contained in the columns and rows of a given table help discover

entities and relationships. The relationship between cells is indicated by hasAttribute,

where a header cell has attribute contained in a data cell. The cardinality of header

to data cell indicates that a header can have zero to N data cells, while a data cell can

have one header. To detect cells, I use the process explained in Chapter 3, Section

3.2.3 Table Extraction.

A set of entities E representing classes is the second element to collect for the

creation of a semantic data model. The information in tabular structures allows us

to find relevant concepts, that is, entities within a publication. Therefore, to detect

entities, I use all cells with data type string. In addition, I include the keywords that

represent a context in this set of entities E.

Figure A.2: Cells and Entities

The cardinality of the semantic relationship cell canBe entity indicates that

an entity can exist in a cell’s content. The cardinality of the semantic relationship
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entity composedBy keyword indicates that E at least contains a keyword, and that

a keyword may be a component of one or more entities as well. To detect entities, I

use the process explained in Chapter 4, Section 4.3.2 Entity Recognition, Annotation,

and Disambiguation.

A.3 Semantic Relationships

The last element of a semantic data model is a set of semantic relationships SR, which

are mainly composed of structural and semantic relationships obtained from tables

and text. Additional relationships are recovered from external sources of knowledge,

such as a dictionary, a general ontology, and the Internet.

Figure A.3 shows the structural relationships from a table. They comprise table

cells exclusively and use the relationship hasAttribute. A table has at least four cells

(i.e., two rows and two columns) and a cell relates to a unique table.

Figure A.3: Structural Relationships from Table Cells

On the other hand, the relationships derived from tables and text contain entities

and semantic annotations. The annotations for unique entities contain information

from DBpedia, the Oxford dictionary, or the Internet. Figure A.4 shows how an

entity relates to its semantic annotations. For instance, a source knowledge

can be an ontology’s URI that contains the definition of an entity. The semantic
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relationships for these annotations include defines or IsA, and describes. If a URI

exists in DBpedia, then an entity has a unique definition and URI. If the semantic

annotation for a given entity is not found, I use the Oxford dictionary and the

Internet to find the semantic relationship a URL explains an entity. Note that a

URL can explain one or more entities, while an entity can have none or more URLs

in the model. This figure also shows how an entity associates to another entity

that could be recovered from a text phrase. An entity can be associated to zero or

n entities.

The semantic relationship associates can have different labels describing relation-

ships from text. Some of these labels are defined in SIO (see Appendix B), which

contains the formal definitions for relationships. If the relationships are not defined

in SIO, they are represented by verbs found in text. To detect semantic relationships,

I use the processes explained in Chapter 4, Section 4.3.3 Discovery of Relationships.

Figure A.4: Semantic Relationships from Tables and Text
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Definitions from the SIO:

Semanticscience Integrated

Ontology

These definitions belong to the SemanticIntegrated Ontology, and I divide them into

four sections: association, classification, aggregation, and generalization. The def-

initions contain original attributes from SIO [75]: identifier, comment, description,

and label. In addition, some definitions contain type and properties (e.g., inverse,

subproperty, equivalent, synonym).

ASSOCIATION

{

"@id": "http://semanticscience.org/resource/SIO_000001",

"@comment": "’is related to’ is the top level relation in SIO ",

"@description": "A is related to B iff there is some relation between A and B. ",

"@label": "is related to ",
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"@type rdf:resource": "http://www.w3.org/2002/07/owl#SymmetricProperty"

}

{

"@id": "http://semanticscience.org/resource/SIO_000212 ",

"@description": "A is referred to by B iff B is an informational entity that makes

reference to A.",

"@label": "is referred to by ",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000001"

}

{

"@id": "http://semanticscience.org/resource/SIO_000020",

"@description": "is a relation between an entity A and B that is a sign or indica-

tion of, or what specifically means",

"@label": "denotes",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000210",

}

{

"@id": "http://semanticscience.org/resource/SIO_000061",

"@description": "A is located in B iff the spatial region occupied by A is part of

the spatial region occupied by B.",

"@equivalentTo": "OBO_REL:located_in",

"@label": "is located in",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000322",

"@type rdf:resource": "http://www.w3.org/2002/07/owl#TransitiveProperty"

}
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{

"@id": "http://semanticscience.org/resource/SIO_000203",

"@description": "A is connected to B iff there exists a fiat, material or temporal

path between A and B.",

"@label": "is connected to",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000322",

"@type rdf:resource": "http://www.w3.org/2002/07/owl#TransitiveProperty"

}

{

"@id": "http://semanticscience.org/resource/SIO_000628",

"@description": "refers to is a relation between one entity and the entity that it

makes reference to.",

"@inverseOf": "http://semanticscience.org/resource/SIO_000212",

"@label": "refers to”,

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000001"

}

{

"@id": "http://semanticscience.org/resource/SIO_000736",

"@description": "is similar to is a relation between two entities that share one or

more features.",

"@label": "is comparable to”,

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000001",

"@type rdf:resource": "http://www.w3.org/2002/07/owl#SymmetricProperty"

}
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{

"@id": "http://semanticscience.org/resource/SIO_000772",

"@description": "has evidence is a relation between a proposition and something

that demonstrates the truth of the assertion.",

"@inverseOf": "http://semanticscience.org/resource/SIO_000773",

"@label": "has evidence",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000631"

}

{

"@id": "http://semanticscience.org/resource/SIO_000631",

"@description": "references is a relation between one entity and the entity that it

makes reference to by name, but is not described by it.",

"@hasSynonym": "mentions",

"@label": "references”,

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000628"

}

{

"@id": "http://semanticscience.org/resource/SIO_000252",

"@description": "is reference for is a relation between a document that provides

information about an entity.",

"@inverseOf": "http://semanticscience.org/resource/SIO_000631",

"@label": "is referenced by”,

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000212"

}
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{

"@id": "http://semanticscience.org/resource/SIO_000233",

"@description": "is implementation of is a relation between an information entity

and a specification that it conforms to.",

"@inverseOf": "http://semanticscience.org/resource/SIO_000234",

"@label": "is implementation",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000011"

}

{

"@id": "http://semanticscience.org/resource/SIO_000234",

"@description": "has implementation is a relation between a specification and an

implementation that conforms to it.",

"@label": "has implementation",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000008"

}

{

"@id": "http://semanticscience.org/resource/SIO_000243",

"@description": "A transitive, symmetric, temporal relation in which one entity

is causally related with another non-identical entity.",

"@label": "is causally related with",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000322",

"@type rdf:resource": "http://www.w3.org/2002/07/owl#TransitiveProperty"

}
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{

"@id": "http://semanticscience.org/resource/SIO_000352",

"@description": "a is causally related from b iff there is a causal chain of events

from b to a",

"@label": "is causally related from",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000243"

}

{

"@id": "http://semanticscience.org/resource/SIO_000641",

"@description": "has basis is a relation between a realizable entity and the quality

that forms the basis for it.",

"@label": "has basis",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000008",

"@hasSynonym": "based on"

}

CLASSIFICATION

{

"@id": "http://semanticscience.org/resource/SIO_000008",

"@description": "has attribute is a relation that associates a entity with an at-

tribute where an attribute is an intrinsic characteristic such as a quality, capability,

disposition, function, or is an externally derived attribute determined from some

descriptor (e.g. a quantity, position, label/identifier) either directly or indirectly

through generalization of entities of the same type.",

"@label": "has attribute",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000001"

}

127



Appendix B. Definitions from the SIO: Semanticscience Integrated Ontology

{

"@id": "http://semanticscience.org/resource/SIO_000011",

"@description": "is attribute of is a relation that associates an attribute with an

entity where an attribute is an intrinsic characteristic such as a quality, capability,

disposition, function, or is an externally derived attribute determined from some

descriptor (e.g. a quantity, position, label/identifier) either directly or indirectly

through generalization of entities of the same type.",

"@inverseOf": "http://semanticscience.org/resource/SIO_000008",

"@label": "is attribute of",

"@subPropertyOf": " http://semanticscience.org/resource/SIO_000001"

}

{

"@id": "http://semanticscience.org/resource/SIO_000095",

"@description": "is member of is a mereological relation between a item and a

collection.",

"@label": "is member of",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000011"

}

{

"@id": "http://semanticscience.org/resource/SIO_000300",

"@description": "A relation between a informational entity and its actual value

(numeric, date, text, etc).",

"@label": "has value",

"@subset": "sadi"

}
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AGGREGATION

{

"@id": "http://semanticscience.org/resource/SIO_000219",

"@description": "is source of is a relation between a source of information about

some entity",

"@label": "is source of",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000011"

}

{

"@id": "http://semanticscience.org/resource/SIO_000068",

"@description": "is part of is a transitive, reflexive and anti-symmetric mereolog-

ical relation between a whole and itself or a part and its whole.",

"@equivalentTo": "OBO_REL:part_of",

"@label": "is part of",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000061",

"@type rdf:resource": "http://www.w3.org/2002/07/owl#TransitiveProperty"

}

{

"@id": "http://semanticscience.org/resource/SIO_000093",

"@description": "is proper part of is an asymmetric, irreflexive (normally transi-

tive) relation between a part and its distinct whole.",

"@equivalentTo": "OBO_REL:part_of",

"@label": "is proper part of",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000068",

"@type rdf:resource":"http://www.w3.org/2002/07/owl#AsymmetricProperty"

}
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{

"@id": "http://semanticscience.org/resource/SIO_000230",

"@description": "has input is a relation between a process and an entity, where

the entity is present at the beginning of the process.",

"@label": "has input",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000132",

"@subset": "sadi"

}

{

"@id": "http://semanticscience.org/resource/SIO_000231",

"@description": "is input in is a relation between an entity and a process, where

the entity is present at the beginning of the process.",

"@inverseOf": "http://semanticscience.org/resource/SIO_000230",

"@label": "is input in",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000062",

"@subset": "sadi"

}

{

"@id": "http://semanticscience.org/resource/SIO_000232",

"@description": "is output of is a relation between an entity and a process, where

the entity is present at the end of the process.",

"@label": "is output of",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000062",

"@subset": "sadi"

}
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{

"@id": "http://semanticscience.org/resource/SIO_000244",

"@description": "A transitive temporal relation in which one entity was materially

formed from another non-identical entity.",

"@label": "is derived from",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000352",

"@type rdf:resource": "http://www.w3.org/2002/07/owl#TransitiveProperty"

}

GENERALIZATION {

"@id": "http://semanticscience.org/resource/SIO_000062",

"@description": "is participant in is a relation that describes the participation of

the subject in the (processual) object.",

"@inverseOf": "http://semanticscience.org/resource/SIO_000132",

"@label": "is participant in",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000322"

}

{

"@id": "http://semanticscience.org/resource/SIO_000132",

"@description": "has participant is a relation that describes the participation of

the object in the (processual) subject.",

"@label": "has participant",

"@subPropertyOf": "http://semanticscience.org/resource/SIO_000322"

}
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Context to Characterize a

Semantic Data Model

"context":

{

"headline":

{

"@id": "http://schema.org/ScholarlyArticle/headline",

"@type": "@id"

},

"creator":

{

"@id": "http://schema.org/ScholarlyArticle/creator",

"@type": "@id"

},

"keywords":

{

"@id": "http://schema.org/ScholarlyArticle/keywords",

"@type": "@id"
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},

"email": "http://schema.org/email",

"sameAs":

{

"@id": "http://schema.org/ScholarlyArticle/sameAs",

"@type": "@id"

},

"argumentA":

{

"@id": "http://semanticscience.org/resource/SIO_000000",

"@type": "@id"

},

"argumentB":

{

"@id": "http://semanticscience.org/resource/SIO_000000",

"@type": "@id"

},

"label": "http://semanticscience.org/resource/label",

"sio_id": {

"@id": "http://semanticscience.org/resource/",

"@type": "@id"

},

"URL": {

"@id": "http://schema.org/url",

"@type": "@id"

},

"URI": {

"@id": "http://dbpedia.org/page/",

"@type": "@id"

}
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"IsA": {

"@id": "http://dbpedia.org/page/",

"@type": "dbo:abstract"

}

}
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[45] M. Göbel, T. Hassan, E. Oro, and G. Orsi, “A methodology for evaluating
algorithms for table understanding in pdf documents,” in Proceedings of the
2012 ACM symposium on Document engineering, pp. 45–48, ACM, 2012.

[46] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and E. Wu, “Uncovering
the relational web.,” in 11th International Workshop on the Web and Databases
(WebDB), Citeseer, 2008.

138



References

[47] V. Mulwad, T. Finin, Z. Syed, and A. Joshi, “Using linked data to interpret
tables.,” in Proceedings of the First International Conference on Consuming
Linked Data (COLD), vol. 665, pp. 109–120, 2010.

[48] E. Oro and M. Ruffolo, “Xonto: An ontology-based system for semantic infor-
mation extraction from pdf documents,” in Tools with Artificial Intelligence,
2008. ICTAI’08. 20th IEEE International Conference on, vol. 1, pp. 118–125,
IEEE, 2008.

[49] R. Rastan, H.-Y. Paik, and J. Shepherd, “Texus: A task-based approach for
table extraction and understanding,” in Proceedings of the 2015 ACM Sympo-
sium on Document Engineering, pp. 25–34, ACM, 2015.

[50] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao, and
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