Spring 3-2018

THE STRUCTURAL VIOLENCE OF MAYA SACRIFICE: A CASE STUDY OF RITUALIZED HUMAN SACRIFICE AT MIDNIGHT TERROR CAVE, BELIZE

C. L. Kieffer Nail
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/anth_etds
Part of the Biological and Physical Anthropology Commons, and the Other Religion Commons

Recommended Citation

Nail, C. L. Kieffer. "THE STRUCTURAL VIOLENCE OF MAYA SACRIFICE: A CASE STUDY OF RITUALIZED HUMAN SACRIFICE AT MIDNIGHT TERROR CAVE, BELIZE." (2018). https://digitalrepository.unm.edu/anth_etds/ 145

C. L. Kieffer Nail (a.k.a Crystal Leanne Kieffer)

Candidate

Anthropology
Department

This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee:

Dr. Lawrence G. Straus, Co-Chairperson

Dr. Loa Traxler, Co-Chairperson

Dr. Wirt H. Wills

Dr. Marisol Cortes-Rincon

THE STRUCTURAL VIOLENCE OF MAYA SACRIFICE:
 A CASE STUDY OF RITUALIZED HUMAN SACRIFICE AT MIDNIGHT TERROR CAVE, BELIZE

by
\section*{C. L. KIEFFER}

B.S., Anthropology, University of California, Riverside, 2004
M.A., Anthropology, California State University, Los Angeles, 2007
M.A., Museum Studies, University of New Mexico, Albuquerque, 2017

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
Anthropology

The University of New Mexico
Albuquerque, New Mexico

May, 2018

DEDICATION

This dissertation is dedicated to Dorothy Anne Parker, Jean Claude Morand, Nicholas Arburn, and Kyle Barthel.

May you continue to live on in our memories.

ACKNOWLEDGMENTS

There are many people who have been instrumental to not only this dissertation but also to the establishment of my educational foundation as an anthropologist and pursuit towards my doctorate.

I would have never become an anthropologist if it were not for the passion of Dr. Gene Anderson and Dr. Allan Fix my undergraduate advisors from the University of California Riverside. The two of them, and the rest of the faculty and staff in the Anthropology Department at University of California, Riverside gave me a strong respect for a four field approach that I hope to instill in students one day.

My dissertation would not have been possible without the Belize Valley Archaeological Reconnaissance Project's Western Belize Regional Cave Project staff members (Dr. Reiko Ishihara, Cameron Griffith, Vanessa Owens, and Mike Mirro) who introduced me to the jungles of Belize and Maya Archaeology way back in 2003. Our paths have continued to cross over the years and I have always appreciated your encouraging words over the years. More importantly, my initial Belize experience and my dissertation research would not have been possible if not for the permits under Dr. Jaime Awe. Your inspiring classification of me as a "tough cookie" has always helped me keep my chin up through some of the challenging times.

I am especially thankful for the commodity and support I received from fellow students in the anthropology department at UNM while I was working on my doctorate. Thanks Kevin Brown, Dr. Lee Drake, Nick Jarmon, Keiko Kitagawa, Dr. Katina Krasnic, Stephanie Mack, Anna Rautman Medendorp, Dr. Kelly Monteleone, Paulina Przystupa,

Jenna Strawbridge, Amy Thompson, and Mark Williams for being not only amazing research colleagues but also being caring friends and surrogate family during the holidays.

I would like to express my gratitude to California State University's Doctoral Incentive program for multiple grants that supported my research and presentation of preliminary results at conferences. I would also like to thank the numerous California State University, Los Angeles students who helped out at some point over the three seasons of fieldwork at Midnight Terror Cave (MTC).

For various reasons, working on the MTC Project almost broke me as an archaeologist and I seriously considered changing the topic of my dissertation to the evolving religiosity of the Mennonites in the Springfield, Belize community that captured my hearts. However there were a number of people on the project who kept me from abandoning research at MTC. The words of wisdom from our dedicated project cavers Don Arburn, Allan Cob, and Linda Palit inspired me before we started the MTC project and helped me remember what was and was not important. Humility is hard to teach, but you got the point across Allan - Thank You! I will always respect your advice and y'all will always be caver family to me. I thank you for making me a better caver which has in turn made me a better cave archaeologist. Special thanks also to the assistant project director of the project, Dr. Ann Scott. Thanks for helping me turn a paper I wrote in an archaeological theory class I took at the University of New Mexico in the Fall of 2008 into something a little more substantial. You contributed a breath of knowledge regarding Maya ethnography and ritual practices and restructure the order of the paper to make it what it is today - "The Mesoamerican Cave Paradigm."

Thanks to the Southwest Region of the National Speleological Society for funding aspects of my research. I greatly appreciate the numerous cavers in the Southwest Region, for the countless opportunities to expand my scope of cave science, work on my technical caving, as well as improve my survey and cartography skills. While I may have come into caving because of my research interests, you have turned me into a New Mexico caver. I am especially grateful for the mentorship and friendship offered to me by fellow cavers Gerry Atkinson, Mike Bilbo, Bob and Debbie Buecher, Donald Davis, Jennifer Foote, Garrett Jorgenson, Pete Lindsey, Ron Lipinski, John Lyles, Dr. Diana Northup, Steve and Kathy Peerman, Knutt Perterson, Bob Rodgers, Mary Thiesse, Janice Tucker, Dr. Pat Seiser, and Karla Zajac.

Some of this dissertation work would not have been possible if I had not been exposed to the world of isotopes. I owe a profuse amount of thanks to Dr. Sherry Nelson for her time helping me get a grasp for the wealth of relevant isotope literature out there, for encouraging me to critically evaluate isotope data, and for allowing me to use her lab to prepare my samples. None of the isotope research could have been conducted without Dr. Zach Sharp's determination to support interdepartmental research and for sharing his excitement about isotopes. I will never need the encouragement to reach for the moon, because thanks to Dr. Sharp I have already seen it close up and held a sample of it in my hand. Special thanks are also due to Dr. Viorel Atudorei who was instrumental in aiding with sample preparation, analysis, and for showing me how to run a mass spectrometer.

Following my field work at MTC, I was fortunate enough to spend a few years reaffirming my love of archaeology on a few different field projects. I would like to thank Dr. Terry Powis for listening to my recommendation to bring Jon Spenard onto his
project at Pacbitun. Jon in turn invited myself and Mike Mirro to assist with the caves. Working with the both of you was a delight, even if we turned reconnaissance into dehydrated death hikes or accidental wanderings into the Mountain Pine Ridge.

Somewhere between the precarious squeezes, vertical pits, tons of ceramics, bedside morning coffee, dinner dates, and positive reinforcement caramels we solidified our friendships at a time when we all needed someone. Thanks guys for being there and encouraging me to finish. I will always be your Sac Alux Janala Baka.

In addition to the Pacbitun Project, I had the pleasure to work on projects under Dr. Stanley Walling and Dr. Marisol Cortes-Rincon based out of the Programme for Belize Archaeology Project. Thank you both along with Dr. Fred Valdez for rekindling my enjoyment of rustic archaeological field camps. Working on your projects instilled me with self confidence and reminded me how great friendships forged in the jungle can be. These friendships have given me the support I needed to deal with academic attacks and other researchers being encouraged to duplicate my research efforts by a former adviser. So thank you PfBAP family: Alex Canterbury, Travis Cornish, Dr. Robyn Dodge, Iasha Doumanoff, Robby Foster, Scott Guzman, Alyssa Haggard, Sharon Hankins, Ally Holmes, Dr. David Hyde, Denise Killeen, Jennie Leonard, Angela Locker, Eric Marinkovich, Leslie Perkins, Kyle Ports, Annie Riegert, Chrissy Taylor, Dr. Rissa Trachman, Dr. Deborah Trein, Torin Power, and most importantly - Nurse Sarah. Thanks especially to my fellow Jungle Duendes Sisters: Sarah Boudreaux, Anastasia Kotsoglou, Krystle Kelly, and Nicole DeFrancisco for reminding me that size means nothing when you are smart, tough, and equipped with determination to persevere.

Many chapters of this dissertation would not have been possible without a number of anonymous reviewers who contributed constructive criticism which made the ultimate product of my dissertation stronger and more articulated. Special thank are also due for my not so anonymous reviewers Dr. Gabriel Wrobel and Dr. Carolyn Freiwald. Thank you both so much for your encouragement of my research early on and all the advice you have given me.

Ultimately this dissertation would not be possible without my dedicated committee members. Thank you Dr. Lawrence Straus for your years of encouragement and support-- and the opportunity to run the Clark Field Archives for a few years. My rendition of how I came to excavate at El Miron, Spain and your last moments of excavation will be stories I will retelling for decades to come. Most importantly, thank you for the countless hours spent editing and correcting drafts of chapters and manuscripts and for holding me to your very high standards. I am honored for the opportunity to have studied under you.

Dr. Chip Wills, thank you for sticking it out on my committee through the changes. Your classes have always been the most eye-opening and the most fun with which to assist. I truly wish more of your calm nature would have rubbed off on me. However, you did manage to calm me down during one of my more panicked academic moments. Thanks for reminding me that it does not matter if people duplicate your research efforts, so long as you beat them to publication.

Thank you Dr. Marisol Cortes-Rincon for all your possibly unknowing supportive words during one of the more critical turning points in my doctorate career. You have been and will continue to be one of my favorite female role models in the field. Thank
you for bringing me into the fold that is your rag-tag group of hard working misfits. There is no other group I would rather spend months on end with than people who follow you into the jungle.

Dr. Loa Traxler, you have been an unparalleled role model for me in Maya archaeology and museum studies. In an academic world that constantly seems cut throat, you defy the odds and I admire that about you. Thank you for your supportive nature and encouragement that I can have the best of both worlds - the jungles of field work and museum collections.

Finally, special thanks to a former committee member - Dr. Jack Baker. Very few people have complemented my analytical thought processes, let alone how I then apply these processes to statistics. Thank you for introducing me to R and for encouraging me to make waves in the field of demography. In addition to supplying statistical advice and mentorship, Dr. Jack Baker wrote the R code necessary to run the Siler and Monte Carlo Models that I used to run the statistical analysis, wrote the methods section of Chapter 7, consulted with me on the chapter and my initial results and interpretations, and made suggestions as to which material should be cited. Anytime you want to collaborate, I would be honored to finish your statistical thoughts when you are low on caffeine.

The years of field work and research would not have been possible without the emotional support from my closest friends and family. Mom, you have always been there when I have needed you most and always knew when to let me fly free and make my own mistakes. I could never express enough gratitude for this structured yet independent upbringing and for rescuing me when I was stuck in Guatemala in 2012. Grandpa, thanks for harping on me to finish, I am sorry you were unable to see me finish. Aaron, thanks
for doing your part in making sure I was raised strong and independent. Neerav Kapadia thanks for the much needed downtime from the chaos of academia and for keeping me in touch with who I am through this process. Sarah Whorley and Tara Mastro, you are everything I could have wanted in sisters and I found strength in us all working towards our doctorates at the same time.

Like most archaeologists working in Belize, I am appreciative of my adopted Belize family who looked after me like I was kin both in and out of the field. Thank you Ma, Pa, Aunt Elaine, Shana, Lynnette, and Joni for introducing me to the Mennonite communities of Springfield, Spanish Lookout, and Barton Ramie. You unknowingly helped me become a more well rounded anthropologist in addition to teaching me some very practical life skills through the years.

Finally, I thank the amazing Chris Nail. You have stood by me for some of the more stressful writing moments of this dissertation. When others were trying to prove me wrong, your succinct summary of the situation as a "nah-uh" "yah-huh" argument helped keep me in touch with what was important - finishing. Your boundless understanding and encouragement of my desire to continue field work in remote areas and crawling into caves has been unwavering. I could not imagine a better partner for my future adventures both above and below ground.

THE STRUCTURAL VIOLENCE OF MAYA SACRIFICE: A CASE STUDY OF RITUALIZED HUMAN SACRIFICE AT MIDNIGHT TERROR CAVE, BELIZE

by
\section*{C. L. KIEFFER NAIL}
B.S., Anthropology, University of California, Riverside, 2004
M.A., Anthropology, California State University, Los Angeles, 2007
M.A., Museum Studies, University of New Mexico, Albuquerque, 2017
Ph.D., Anthropology, University of New Mexico, 2018

Abstract

The site of Midnight Terror Cave is located in the karstic Roaring Creek Valley near the village of Springfield in the Cayo District of Belize. The site was discovered in 2006 and fieldwork was conducted by the Western Belize Regional Cave Survey Project and California State University, Los Angeles, between 2008 and 2010. This dissertation focuses on the osteological analysis of the bones of 118 individuals recovered and recorded at the site. The osteological, contextual, and demographic evidence is framed within ritual and costly signaling theory of structural violence and viewed with the ethnohistoric and ethnographic literature of the ancient and modern Maya in mind. Analyses of the data indicate that the site's remains constitute the largest assemblage of probably sacrificed individuals in the Southern Maya Lowlands, and that these sacrifices may have coincided with the Terminal Classic droughts. Demographic analysis indicates that the mortuary assemblage is significantly different from what would be expected for a "normal" cemetery assemblage of a horticultural society. The large quantities of older children and young adults apparently sacrificed in this cave suggest that these may have been petitions to the Maya rain deity. Isotopic data and paleopathology evidence suggest

that geographical outsiders and possible social outcasts were at least sometimes chosen for sacrifice.

TABLE OF CONTENTS

LIST OF FIGURES xviii
LIST OF TABLES xxi
CHAPTER 1: INTRODUCTION 1
Methods 4
Ceramics and Cultural Material 5
Large-Scale Modifications 6
Osteological Analysis 6
CHAPTER 2: THE MESOAMERICAN PARADIGM: ITS HISTORICAL
DEVELOPMENT 10
Introduction 10
What is a Paradigm? 11
History of Mesoamerican Cave Archaeology 12
Is There a Mesoamerican Cave Paradigm? 16
Caves as Ritual Features 17
Caves in Indigenous Ideology 23
Caves Played a Significant Role in Pre-Columbian Society 26
Cave Archaeology Can Address Wider Theoretical Issues 30
Discussion and Conclusions 33
CHAPTER 3: THEORETICAL AND METHODOLOGICAL DEVELOPMENTS IN THE STUDY OF MAYA CAVES AND SACRIFICE 35
The Early Period (Pre-1840) 36
Ethnohistory 36
Ethnohistoric Accounts of Sacrifice and Burial 39
The Exploration Period (1840-1920) 411
Archaeology 41
Ethnography 43
Sacrifice and Human Remains 44
The Classification Period (1920-1969) 45
Archaeology 45
Ethnohistory and Ethnography 47
Sacrifice and Human Remains 52
Developmental Period (1970-1985) 55
Archaeology 55
Sacrifice and Human Remains 57
Ethnography 60
The Expansion Period (1986-1997) 60
Archaeology 60
Ethnography 62
Epigraphy and Iconography 63
Sacrifice and Human Remains 64
The Emergence Period (1997-Present) 66
Archaeology 66
Epigraphy and Iconography 68
Ethnography 70
Sacrifice and Human Remains 70
Summary 78
CHAPTER 4: THEORETICAL DISCUSSION OF SACRIFICE 81
History of Sacrifice Theory 82
Costly Signaling and Sacrifice 85
Structural Violence 88
CHAPTER 5: THE USE OF OXYGEN ISOTOPE ANALYSIS TO HELP
DETERMINE PLACES OF ORIGIN IN THE MAYA LOWLANDS: A CASE
STUDY FOR ESTABLISHING LOCAL OR FOREIGNER STATUS OF
POSSIBLY SACRIFICED INDIVIDUALS FROM MIDNIGHT TERROR CAVE,
BELIZE 95
Introduction 95
Background 97
Midnight Terror Cave 97
Stable Isotope Analyses 99
Methods 101
Database Methods 101
Isotope Methods 104
Existing Datasets Used for Comparison 107
Results 110
MTC Samples 113
Discussion 117
Future Research and Conclusions 125
CHAPTER 6: SACRIFICE OF THE SOCIAL OUTCASTS: TWO CASES OF KLIPPEL-FEIL SYNDROME AT MIDNIGHT TERROR CAVE, BELIZE. 128
Introduction 128
Background 129
Maya Sacrifice 129
Klippel-Feil Syndrome 131
Midnight Terror Cave (MTC), Belize 136
Material and Methods 138
Operation VIII Lot 13 139
Operation VI Lot 2B 140
Results 140
Operation VIII Lot 13 140
Operation VI Lot 2B 143
Discussion 145
Conclusion 146
CHAPTER 7: THE DEMOGRAPHY OF SACRIFICE: COMPARISONS OF
OBSERVED AGE-AT-DEATH ASSEMBLAGES FROM THE ANCIENT MAYA SITES OF MIDNIGHT TERROR CAVE (BELIZE) AND CHICHÉN ITZÁ
(MEXICO) TO A REFERENCE HORTICULTURALIST MORTALITY
SCHEDULE 1499
Abstract 149
Introduction 150
Ethnographic and Archaeological Background 155
Mortuary Rituals in Maya Karst Features 155
The Site of MTC 157
The Site of Chichén Itzá 158
Methods 159
Methods for Age Estimation 159
Age Adjustments and Sample Characteristics 161
A Horticulturalist Model Life Table Using the Siler Competing Hazards Method 163
A Monte-Carlo Model of Preservation Bias \& Statistical Comparisons 164
Results 167
Discussion 173
Conclusions 176
CHAPTER 8: DISCUSSION AND CONCLUSIONS 180
Evidence of Sacrifice 180
Spatial Distribution of Sacrifice Indications 1866
Individuals Chosen for Sacrifice 1944
Structural Violence at Midnight Terror Cave 200
Relating Structural Sacrifice to Existing Models of Sociopolitical Collapse 2022
Conclusions 2099
APPENDIX A: DEPOSIT DESCRIPTIONS FOR MIDNIGHT TERROR CAVE,
BELIZE 211
APPENDIX B: BONE SUMMARY 28989
APPENDIX C: R CODE FOR SILER MODELS 1158158
APPENDIX D: R CODE FOR MONTE CARLO RESAMPLING 1170

REFERENCES

LIST OF FIGURES

Figure 4.1. Feedback loop representing how structural violence in a society relates to
\qquad
Figure 5.1 Map of the Upper Belize River Valley with oxygen isotope values for modern river water and dental enamel from archaeological remains103

Figure 5.2 Map of southern Mexico, Belize, Guatemala, and part of El Salvador and Honduras showing some of the regional sites yielding comparative isotope values

Figure 5.3 Map of the Upper Belize River Valley with ranges of oxygen isotope values from enamel from nearby sites included in the comparative datasets and from MTC 109

Figure 5.4 Predictive oxygen isotope values for enamel at select sites in the Belize River
Valley 111

Figure $5.5 \delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values from enamel samples taken from MTC and mean values
\qquad
Figure 6.1 Demographic age and sex distribution for the skeletal assemblage from Midnight Terror Cave, Belize that highly suggests sacrifice

Figure 6.2 Fused second and third vertebrae from an individual recovered from Operation
VIII Lot 13 142

Figure 6.3 Fused second and third vertebrae from an individual recovered from Operation
VI Lot 2 144

Figure 7.1 Age distribution based upon the osteological analysis of MTC material removed from the cave and analyzed in situ prior to rectangular proration. .161

Figure 7.2 Graphical depiction of a Siler Model for the MTC assemblage based on adjusted (Black) and unadjusted (Grey) datasets

Figure 7.3 Graphical depiction of adjusted (black) and unadjusted (gray) Siler curves for Chichén Itzá 178

Figure 8.1. Graphical age and sex distribution of the individuals recovered from Midnight Terror Cave and those studied in situ 181

Figure 8.2. Large terraced steps in Operation V Lot 7 of Midnight Terror Cave 188

Figure 8.3. The incline on the southeastern extent of the large chamber in Operation V prior to descending into to smaller rooms which were designated Lot 1189

Figure 8.4. Scatter plots for quantity of bone to floor area and volumetric area as well as human MNI to floor area and volumetric area of rooms or chambers where they were recovered from .191

Figure 8.5. Structural violence feedback loop for the ancient Maya 202
Figure 8.6. Flow chart that outlines the impact and consequences of structural violence among the Ancient Maya.205
Figure A.1. Plan View of Midnight Terror Cave. 212
Figure A.2. Profile view and select passage profiles throughout Midnight Terror Cave
Figure A.3. Map of Operations I-III. 215
Figure A.4. Map of Operation IV 218
Figure A.5. Map of Operation V 224

Figure A.6. Image of V-01 E-508, a juvenile parietal with two puncture wounds
Figure A.7. Map of Operation VI... 240
Figure A. 8 VI-02B-125, sacral fragment with spina bifida .. 245
Figure A. 9 VI-02B-36, maxillary fragment with evidence of supernumerary teeth....... 245
Figure A.10. Map of Operation VII ... 255
Figure A.11. VII-01-57, a misaligned healed clavicle fracture from an adult................ 256
Figure A.12. Map of Operation VIII .. 260

LIST OF TABLES

Table 5.1 Averages and ranges of isotope data from bone apatite, bone collagen, and enamel samples.105
Table $5.2 \delta^{13} \mathrm{C}$ and $\delta^{15} \mathrm{~N}$ values from bone collagen from the site of MTC 114
Table $5.3 \delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ isotope values obtained from enamel samples from individuals at MTC, Belize 115
Table 5.4. Expected ranges of $\delta 180$ for MTC based upon robust statistical estimators calculated from the tooth enamel samples from MTC. 117
Table 6.1 Types of abnormalities and rate of incidence associated with Klippel-Feil syndrome 135
Table 7.1 Age-adjusted Datasets Utilized in Demographic Analysis 162
Table 7.2 The ranges of observability bias utilized in the Monte Carlo simulations to determine if differential preservation may exist within a assemblage 166
Table 7.3 Comparisons of Sacrifice Assemblages to Reference Mortality Schedule, Small-Scale Horticulturalists at the 5th Percentile 170
Table 7.4 Comparisons of Sacrifice Assemblages to Reference Mortality Schedule, Small-Scale Horticulturalists at the 50th Percentile 171
Table 7.5 Comparisons of Sacrifice Assemblages to Reference Mortality Schedule, Small-Scale Horticulturalists at the 5th Percentile 172
Table 8.1. Age and sex distribution of the individuals recovered from Midnight Terror Cave and those studied in situ 181
Table 8.2 Size of space, bone quantity, human MNI, and quantity of individuals affectedby trauma by deposit187
Table A.1. Estimated sizes of rooms and chambers within Midnight Terror Cave withnumber of bones and minimum number of individuals removed from them288

CHAPTER 1 INTRODUCTION

"Thus, the study of violence in archaeological contexts must necessarily go beyond the proximate causes of individual cases of traumatic injury. To do so requires the use of a theoretical framework responsive to the historical and contextual factors that create and maintain violence." (Martin 1997:71)

Violence is part of human nature, especially when triggered by certain life threatening stressors. From the distant past to today, violence has a sense of structure which is created by cultural adaptations through the way society is structured to how religion is practiced. It is this structure that allows for violence to be culturally sanctioned and pervasive for an extended period of time. In order to change these conditions in which violence is socially acceptable, we must first understand how these conditions arise, how they are maintained, and how they are ultimately overturned. By understanding the full cycle of how humans use violence in a culturally adaptive manner, we may be able to learn how to avoid certain types of warfare and genocide today.

This dissertation uses the site of Midnight Terror Cave, Belize to focus on how politically supported ritual violence conducted by the ancient Maya may relate to periods of environmental change. How this structuralized violence pervasively persisted within their culture for an extended period of time will be discussed. Additionally, how these political and environmental conditions may have contributed to the political instability of the local region. By correlating these events with the Terminal Classic, a period of climatic instability in the region, we will broaden our understand of the factors that drive humans to commit such acts of violence against others.

The fields of Maya cave archaeology and bioarchaeology have been revolutionized greatly in the past three decades. During this time, our understanding of Maya ritual has deepened and evolved, especially as it relates to the utilization of caves and other karst features. Similarly, the field of bioarchaeology has emerged and slowly refined its methodological and interpretive frameworks that are now considered standard practice. This dissertation contextualizes and analyzes data and suggests interpretations of a large number of human remains from the site of Midnight Terror Cave (MTC), Belize. The goal of the historical and theoretical chapters in this dissertation provide a background to the topic of Maya cave sacrifice. This information also provides the methodological and theoretical frameworks that have only recently become widely accepted by other specialists in the field of Maya cave archaeology (Kieffer and Scott 2012).

The integral aspects of the theoretical framework utilized in Maya cave archaeology today is outlined in the "The Mesoamerican Cave Paradigm," which is included in this dissertation as Chapter 2. It was first published in Heart of Earth: Studies in Maya Ritual Cave Use (Brady 2012), a publication of the Association for Mexican Cave Studies, and is included with permission of the publisher. This chapter provides the historical background necessary to understand the paradigmatic approach utilized by Maya archaeologists specializing in caves. In the simplest terms, "The Mesoamerican Cave Paradigm" outlines why these spaces are viewed as sacred and ritual-related, based upon ethnographic analogy and the material culture left behind by the ancient Maya in these caves. Chapter 3 builds upon the shifts in paradigmatic views held by some Mayanists by showing how the topic of sacrifice has evolved in relation to Maya caves.

Additionally, the chapter outlines some of the changes in bioarchaeological approaches used in the Maya region and how they contributed to changes in interpretations of human remains recovered from the archaeological record.

The theoretical approaches that allow us to understand the act of sacrifice in Maya caves are discussed and elaborated upon in Chapter 4. This chapter sets up the major theoretical tenets of why specific classes of people were chosen for sacrifice according to Girard (1979). While the site of MTC cannot account for every element of society that was likely to be chosen for sacrifice, there is some evidence that supports the idea that physically disabled and non-local individuals were targets for sacrifice. Each of these topics is highlighted by case studies in Chapters 5 and 6 . While these chapters primarily focus on the evidence for the sacrifice of physically disabled people as well as of geographical outsiders; MTC has circumstantial evidence to support the idea that orphans may have also been chosen for sacrifice.

Chapters 5 focuses on the isotope analysis conducted on skeletal remains from the site of MTC. After creating a database of known isotope values and site-dependent variables known to influence oxygen isotope values, step-wise regression determined distance from the sea to be the leading factor influencing oxygen isotope values in the Central Maya Lowlands. Chapter 5 provides the data that suggests many of the individuals interred at MTC were probably not originally from the immediate area of the cave and thus were possibly geographical outsiders to the community.

This notion that the ancient Maya at MTC sacrificed "the other" (an individual from outside the group or community) is further examined in Chapter 6.This chapter focuses on two probable cases of Klippel-Feil disease noted at the site of MTC. While the
skeletal abnormalities of this genetic abnormality are not always by themselves debilitating, the associated abnormalities can be excruciatingly painful, physically limiting, and present a physical appearance that is abnormal. In addition to the probable physical limitations these two individuals had, it is these associated abnormalities that I argue may have contributed to these individuals being chosen for sacrifice.

The final data-based chapter (Chapter 7) focuses on the demographic age distribution of individuals recovered from the site of MTC. Chapter 7 critically evaluates the similarities and statistically significant differences of rectangular prorated demographic data from MTC and 49 other sites through the creation of Siler Models and multiple different statistical tests (z-score, paired t-tests, and Monte Carlo simulation). Comparative sites in this analysis include Chichén Itzá (a known Maya site where sacrifice has been shown to have occurred), multiple sites where mortuary assemblages were accumulated due to warfare and violence, and "normal" mortuary assemblages found in Maya cemeteries.

Methods

Archaeological survey of MTC was conducted during three, month-long field seasons in 2008-2010 by California State University, Los Angeles (CSULA) directed by Dr. James Brady. The field seasons focused on precision mapping and surface collection of artifacts and skeletal material. A few detailed area maps were produced, none of which were available for inclusion in this dissertation. No complete resurveyed map was ever completed as part of the CSULA field work. Thus the only available map of the site is the incomplete map produced by Nancy Pistole for the Institute of Archaeology shortly after the cave was discovered (See Appendix A).

During the CSULA field work, descriptive notes were taken on every deposit including nearby cave morphology, skeletal material that could not be removed due to calcium carbonate concentrations, positioning of skeletal material, condition of skeletal material, and whether individuals were in primary or secondary placements (See Appendix A for details). Upon removal from context, bones were wrapped in aluminum foil and placed in plastic boxes for transport to the laboratory. In the field laboratory south of Belmopan, the bones were washed, dried and labeled by archival ink with Operation (cave chamber), Lot (room or bone concentration), and Sublot numbers. This unique bone catalog number allowed for photos, qualitative and quantitative descriptions of the bone to be referenced in future research. Osteological analysis of MTC skeletal material collected during the last three field seasons was completed during the winter of 2012 at CSULA following shipment of the collection stateside in early 2011.

Ceramics and Cultural Material

When this dissertation was completed, no final report had been filed with the Belize Institute of Archaeology regarding the analysis of the site's ceramics or other cultural material. Preliminary description of ceramic deposits and cultural behaviors associated with ceramics at the site have been discussed by Giron (2009). The most complete analysis performed to date on the ceramic assemblage was performed by Ann Scott and James Brady. The synthesis of this analysis was presented at a conference but never published (Scott 2011). The only published article on ceramics from the site of MTC is a theoretical discussion of the high-density ceramic clusters in Operation IV (Giron-Ábrego and Brady 2014). Preliminary summary of items of personal adornment
(Cordova 2011), tools (Saldana 2011), and spatial distribution of artifacts (Saldana 2012) recovered from the site were presented at conferences, however, these data have not yet been published. Most of the artifacts recovered from the site were not exported for further analysis or testing and are currently housed at the Archaeological Institute in Belmopan, Belize.

Large-Scale Modifications

What makes the site of MTC very unusual in the Southern Maya Lowlands is the extent to which the interior of the cave has been modified. These modifications include a complex trail system, artificial terraces, the leveling and construction of what could be called a plaza, as well as deliberate breaking and modification of cave formations. The number of conference papers that have discussed this topic are many (Brady 2009a; Chavez 2009; Cobb and Brady 2009; Saldana and Kieffer 2009; Cobb and Brady 2011; Brady 2011; Brady and Kieffer 2011). However, the only publication that has discussed the large-scale modifications to the cave is a previously co-authored article by Brady and Kieffer (2012). Brady and Kieffer (2012:249-251) state that the degree to which the site was used and altered over a long period of time provide evidence towards the idea that it was a public space with a ritual circuit, and thus viewed as a sacred space for the ancient Maya.

Osteological Analysis

This dissertation presents the most complete analysis to date of the skeletal inventory with calculation of minimum number of individuals for material recovered
from the site and analyzed in situ. A number of conference papers and a few peerreviewed publications have been produced on various aspects of the skeletal assemblage that are not incorporated into this dissertation. These works go into greater topical coverage of dental modification observed at the site (Kieffer 2010, Verdugo 2015), strontium isotope analysis (Lorenz 2016), DNA analysis of individuals (Verdugo et al. 2016, Verdugo et al. 2016), and more focused osteological analysis and a different calculation of minimum number of individuals (due to inaccurate methodology) on juveniles and sub-adult remains recovered from the site (Prout 2015, 2016ab).

Due to the commingled nature of the human remains recovered from MTC, each bone was analyzed, photographed, catalogued, and pertinent measurements or morphological descriptions recorded using standard bioarchaeological and forensic anthropological techniques by the author (See Appendix B for details). The techniques provided data with which to create biological profiles related to sex, age, and status. The data collected allow for calculation of minimum number of individuals, numbers of males and females, ages, incidence of pathological conditions, and other indications of social and health status such as caries (Cucina and Tiesler 2003:1), dental modifications (Romero 1958; Smith 1972; Becker 1973; Tiesler 1999; Williams and White 2006), and cranial modifications (Tiesler 1999). Osteological analysis yielded the demographic data necessary for understanding who was chosen for sacrifice and allowed for reduced possibility of duplicate sampling of individuals for dating and isotope analyses.

The minimum number of individuals (MNI) was calculated based upon standard bioarchaeological methods, which rely on knowing the quantity and size of the same sided elements. Whenever possible, age and sex differences that could be noted based on
size and morphology of individual bones were used to aid in determining the number of people within a deposit. Because many age estimation techniques are based on European skeleton assemblages, care was taken to note any possible overlap of age ranges within a deposit from numerous skeletal elements. Minimum number of individuals was calculated numerous times in an effort to reconcile the possibility of skeletal material being moved from one deposit to another or even completely removed from the cave due to looting, prehistoric reuse, or natural processes. First MNI was calculated at the sublot level, then at the lot level, next at the operation level, and finally at the level of the entire cave site. These calculations were done due to the known movement of skeletal material by fluvial and cultural means throughout the cave. Making these calculations and comparing elements present, completeness of individuals, and MNI with adjacent or nearby deposits made it possible to determine if movement of skeletal elements occurred. When these calculations were compared to field notes that recorded unrecoverable material, it became possible to understand which areas of the cave had skeletal material removed from via secondary use or looting.

Overall, the site of MTC has yielded an exceptional skeletal assemblage. To date, it contains the greatest number of individuals ever recovered from a cave either in Belize or the whole Southern Maya Lowlands. While not all of these individuals have visible signs of violence on their remains, evidence from those that do when combined with the contextual evidence at the site indicate that many/most of these individuals probably suffered violent deaths.

The artifacts and skeletal collection recovered from MTC will be useful for piecing together many aspects of ancient Maya life for generations to come. More
specifically, this site has a plethora of data that will aid in understanding more about rituals performed in Maya caves. This type of research in Maya ritual would have been impossible decades ago, due in part to the slow moving paradigmatic shift in the way researchers working in caves now approach cave utilization.

CHAPTER 2 THE MESOAMERICAN PARADIGM: ITS HISTORICAL DEVELOPMENT

Originally published by C. L. Kieffer and Ann M. Scott
2012 The Mesoamerican Cave Paradigm: Its Historical Development. In Heart of Earth: Studies in Maya Ritual Cave Use, edited by James E. Brady, pp. 17-28. Bulletin 23, Association for Mexican Cave Studies, Austin. Reprinted with permission from the editor of Association for Mexican Cave Studies.

Introduction

Although there is a long history of cave investigation in Mesoamerica dating back to the 1840s, a dramatic revival of cave studies began in the 1980s leading to the emergence of a self-conscious sub-discipline of Mesoamerican cave archaeology in 1997 (Scott 2007). The approach developed by the new field has been influential especially in the advancement of a Southwestern cave archaeology that has borrowed heavily from Mesoamerican models. In the session, "Sipapus, Sinkholes, and Shrines: New Approaches to the Study of Ritual Cave Use in Southwestern Archaeology," at the $72^{\text {nd }}$ Annual Meeting of the Society for American Archaeology, the organizer, Scott Nicolay (2007), referred to the approach as the Mesoamerican Cave Paradigm. Nicolay coined the term from his experience working on Jaime Awe's (1994; 2005) Western Belize Regional Cave Project to refer to the ideas he encountered there and incorporated into his
own work in the Southwest. Mesoamericanists, for the most part, have not used this designation although Brady (2007) acknowledges it in his paper, "The Mesoamerican Paradigm in the Southwest," given in Nicolay's session. The use of the label by Southwesternists raises an interesting question, however, as to whether a cave paradigm, recognized or not, actually exists in Mesoamerica. This paper will examine whether a paradigm exists and, if it does, will attempt to define and critically evaluate it.

What is a Paradigm?

The uncertainty over whether a Mesoamerican Cave Paradigm exists is, to a great extent, due to the misuse of the term paradigm. Archaeologists have often used the terms paradigm, theory, and theoretical framework interchangeably. Some archaeologists classify processual, postprocessual, and other such "schools of thought" as paradigms. They are not. These are logical theoretical frameworks, which are "constructed by using an established, coherent explanation of certain phenomena and relationships" and act as structures that guide research (Eisenhart 1991: 205).

Kuhn (1962: 23) defines a paradigm as "an accepted model or pattern." This definition, however, is too lacking in specificity to be useful. Kuhn (1996: 175) later revised his definition to include "an entire constellation of beliefs, values and techniques, and so on, shared by the members of a given community." These beliefs become so instilled in a group that the way they view the world is different than those who do not share the same paradigm. Burrell and Morgan (1979: 24) make this same point in stating that "be[ing] located in a particular paradigm is to view the world in a particular way." Martin (1971: 5-6) holds that a new paradigmatic ideology significantly alters the discipline, desired
goals, concept of culture, and methods utilized. "The new paradigm does not resolve any problems. Its value rests in the fact that it revolutionizes our methods of thinking and permits us to view our inquires in a different way and with greater scope" (Martin 1971: 6). It is based on these definitions and expectations that existence of a Mesoamerican Cave Paradigm will be judged.

History of Mesoamerican Cave Archaeology

As noted earlier, there is a long history of cave investigation in Mesoamerica. The study of these features, however, was not pursued with equal intensity in all parts of the culture area. Because the entire Maya lowlands is karstic in nature, the majority of the early reports are from this region and the Maya area has remained at the forefront of the theoretical developments in cave studies. To determine if a Mesoamerican Cave Paradigm exists, it is helpful to examine the historical development of cave scholarship. This allows periods of methodological change and theoretical innovation to be highlighted. A review of that literature clearly shows that the developments during the last two decades of the twentieth century marked a significant break from work that had gone before it.

The period from 1840 - 1914 has been designated the Early Period (Brady 1989; Brady and Prufer 2005a) and was initiated by the writings of John Lloyd Stephens (1841, 1843) and illustrations by Fredrick Catherwood of their explorations in the 1840s that popularized Maya archaeology. In their travels, visits to a number of caves are described, highlighted by Catherwood's painting of the ladder in Bolonchen Cave. This period is noteworthy for the publication of four studies: Henry Mercer's The Hill-Caves
of Yucatan (1896), Edward Thompson's Cave of Loltun (1897), George Gordon's Caverns of Copan (1898), and Eduard Seler's report on Quen Santo (1901) that rank among the best work carried out in the Maya area at this time. The period also stands out for its missed opportunities. Edward Thompson's dredging of the Cenote of Sacrifice was widely known within the field but the cenote was not recognized as a cave feature. More importantly, his manuscript on the High Priest's Grave was filed away unpublished for decades (Thompson 1938). If Seler had known that a major pyramid at Chichen Itza had been built over a cave it might have influenced his interpretation of the cavearchitecture relationships that he noted at Quen Santo. Theoretically there was little challenge to the European view of caves as habitation sites. Henry Mercer (1895: 397) states the position explicitly,

Just as the Drift Hunter, the oldest proved inhabitant of Europe, was found to have left traces of his presence in caves, just as the prehistoric European epochs of human culture, bronze under iron, then polished and then chipped stone, were found to be represented in caves by the super-position of films of this rubbish resting one above the other, so here in America we may hope to find similar evidence, if it exists. If the Indian had a predecessor, we may expect to reveal proof of his presence in some cavern not difficult to discover.

Although a number of significant cave studies provided a foundation of data on cave use in the Maya area, no attempt was made to synthesize this material and there was no active discussion about the function of caves. It is clear, therefore, that nothing approaching a paradigm existed at this point.

The Middle Period (1914-1950), witnesses a near complete cessation in cave investigations (Brady and Prufer 2005b:1). In the Maya area most of this period falls into
what Norman Hammond (1982:20) calls the "Period of Institutional Domination," [1924 - 1970] when large projects sponsored by institutions such as the Carnegie Institution of Washington, the Peabody Museum of Harvard University and the University Museum at the University of Pennsylvania drove advances in the field. The British Museum's Pusilha Project was the only major institutional investigation at this time that included substantial cave work (Joyce et al. 1928, Joyce 1929, Gruning 1930). The absence of cave investigations in the research agendas of institutional projects meant that caves disappear from the discussion of Mesoamerican archaeology so that there is nothing that could be called a paradigm at the end of this period.

During the Post-War Period (1950-1980), field studies of caves began to reemerge. The Carnegie Institution's last project at Mayapan produced a significant number of cave studies (Smith 1953, 1954; Strómsvik 1956). E. Wyllys Andrews IV documented the Gruta de Chac (Andrews 1965a) and the important cave of Balankanche (Andrews 1961, 1970, 1971), significant because the religious function of the site was well accepted by the field. David Pendergast (1962, 1964, 1966, 1969, 1970, 1971, 1974) contributed a model of first rate reporting in a series of monographs based on salvage operations. Doris Heyden's $(1973,1975,1981)$ interpretation of the cave beneath the Pyramid of the Sun at Teotihuacan greatly influenced the views of the subsequent historical periods especially in terms of understanding and seeing constructed sacred landscapes.

The most important contribution of the period was the first synthesis and interpretation of the cave data in Sir J. Eric Thompson's The Role of Caves in Maya Culture (1959). A revised and expanded version appeared as the introduction to the
reprint edition of Mercer's The Hill-Caves of Yucatan in 1975. Thompson's syntheses are significant in that he explicitly discounts habitation saying, "Most caves in Central America are too damp to be suitable for long residence" (Thompson 1959:129) and all of his principal uses of caves were for ritual. Unfortunately, the first article was published in an obscure German journal and so was not widely circulated and the second was published the year he died and so, once again, had little immediate impact on the field (Brady 2005a:f-6). Archaeology's view at the end of this period is neatly summed up in Norman Hammond's (1981:177) statement, "Whether residence in caves was permanent, periodic or sporadic, regular or only for ritual and refuge, we do not yet know..." Clearly, nothing approaching a cave paradigm had appeared at the end of the Post-War Period. The Post-War Period ended with the deaths of a number of the prominent figures who had worked in caves (Scott 2004). A.H. Anderson died prior to publishing all of his cave findings in 1967 (McNatt 1996), E. Wyllys Andrews IV died of a heart attack in 1971 at age 54 (Wauchope 1972), and Sir J. Eric Thompson died in 1975 at age 76 (Hammond 1977). Dennis Puleston, who had only days before presented his first statement on Maya cave utilization (MacLeod and Puleston 1979), was struck by lightning on the top of the Castillo pyramid at Chichen Itza in 1978 and died at age 38 (Harrison and Messenger 1980). These deaths at the end of the Post War Period contributed to the introduction of a fundamentally different approach when a new generation of archaeologists entered the field with virtually no prominent, authorities active from the previous period.

Over the last two decades, the division of the historical periods has evolved as the passage of time has provided a changing perspective on the development of cave studies. In the first historical overview of Mesoamerican cave studies written in the 1980s, Brady
(1989) referred to the period from 1950-1980 as the Recent Period. In 1997, he proposed dividing the Recent Period into a Post-War Period (1950-1980) and a Recent Period (1980-present) during which he saw a subfield of Maya cave archaeology emerging (Brady 1997a). Ten years later Ann Scott (2007) further refined the history by renaming the period from 1980-1997 the Foundation Period, with the amended Recent Period (1997-present) beginning with the 1997 Society for American Archaeology meeting in Nashville.

The Foundation Period (1980-1997) marked the appearance of the first specialized archaeology focused on caves. Scott (2007) states that this was "when the underlying assumptions of the field were defined, a methodology was established, and a theoretical position took shape." The new approach grew out of James Brady’s 45 publications between 1985 and 1997, which established basic methodological and interpretative approaches that cave archaeology followed into the Recent Period (Scott 2004). Scott's characterization of the Foundation Period makes this span the obvious place to look for a cave paradigm. Scott (2007) has also argued that the session, "New Perspectives in Mesoamerican Cave Archaeology," at the Society for American Archaeology meeting in Nashville marked the end of the Foundation Period, the beginning of the Recent Period (1997-present), and the emergence of a "self conscious" sub-discipline of Mesoamerican cave archaeology.

Is There a Mesoamerican Cave Paradigm?

In examining the history of Mesoamerican cave archaeology, we have concluded that a paradigm does in fact exist. Since the term was first formally used by

Southwesternists, Mesoamerican cave archaeologists are largely unaware of the designation, so no attempt has been made by practitioners to define the paradigm or to discuss what elements make up its key constitutes. Our task, therefore, is to define the Mesoamerican Cave Paradigm.

In attempting this definition, we have followed Clifford Geertz's ideas about paradigm definitions when he says,

Let us, therefore, reduce our paradigm to a definition, for, although it is notorious that definitions establish nothing, in themselves they do, if they are carefully enough constructed, provide a useful orientation, or reorientation, of thought, such that an extended unpacking of them can be an effective way of developing and controlling a novel line of inquiry (Geertz 1973: 90).

Following Geertz, our review of the literature suggests that the Mesoamerican Cave Paradigm is constituted around four basic propositions:

1. Caves were used primarily for ritual.
2. Caves must be understood from an indigenous perspective.
3. Caves played a significant role in Pre-Columbian society.
4. Cave Archaeology can address wider theoretical issues.

Caves as Ritual Features

The first element in the paradigm is that Mesoamerican caves are features used primarily, if not exclusively, for ritual. This point is built on Thompson's $(1959,1975)$ syntheses that outlined a number of functions of Maya caves and argued that all the major uses are religious. Habitation, even for temporary refuge in times of unrest, is dismissed
by Thompson (1959: 129) who notes, "but one may doubt that this kind of occupation was sufficiently prolonged to have had much effect on their contents; most caves in Central America are too damp to be suitable for long residence." His point is well taken. Thermohydrographs placed in Naj Tunich recorded a very stable environment with a relative humidity slightly over 90\% at all times (James Brady, personal communication, August 2005) and two TipTemp Dataloggers placed in Midnight Terror Cave near the surface site of Tipan Chen Uitz, Belize recorded an average temperature of $22.5^{\circ} \mathrm{C}$ $\left(72.5^{\circ} \mathrm{F}\right)$ and an average relative humidity of 99.62% and 99.99% during 2008-2009 (Humberto Nation, personal communication, 2011). Similarly, Yok Balum Cave near the site of Uxbenka, Belize recorded an average temperature of $22.92^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$ and an average relative humidity of 100% with an ONSET HOBO U23 Pro v2 Temperature/Relative Humidity Data Logger (Keith Prufer, personal communication, 2011). This point has been too often overlooked by archaeologists who, prior to the Foundation Period, rarely spent more than a day or two in a cave. With the extended periods now spent investigating individual caves, most cave archaeologists have anecdotal stories of finding gloves or other equipment left in a cave that were covered with mold. While controlled experiments on preservation have not been conducted in caves, information is available for the subterranean environment of chultuns that have almost identical temperature and relative humidity as Midnight Terror Cave and Yok Balum Cave (Puleston 1971:329). Dennis Puleston's attempt to store a variety of crops in chultuns showed that little of the food was edible at the end of his 11-week experiment. He concludes that chultunes "could not be used for the storage of maize, beans or squash. Even the root crops did not do very well" (Puleston 1971:330). It is
important to recognize that one of the primary determinants of fungal growth in grain is moisture content, which is determined by relative humidity (Christensen and Kaufman 1969:25). We mention this because much of the Naj Tunich tunnel system is covered with a thick layer of dust that gives it the appearance of a "dry cave" so archaeologists need to exercise caution when characterizing a cave as dry.

Andrews (1965b:291), while accepting the possibility of cave habitation, states, "Inland, particularly on the flat northern plain, caves and cenotes, especially water caves, is a likely place to search for ancient man, but excavation and exploration of scores of caverns since the turn of the century have produced not a single indication of really early habitation." If the Maya were not using caves for habitation early on, then it is unlikely that they were used for habitation during the Classic Period when we find the heaviest utilization.

Although Hammond's statement quoted above indicates that the larger field of Maya archaeology had not accepted Thompson's position, those actually working in caves during the Foundation Period had accepted and were utilizing Thompson's (1975) second synthesis as the point of departure in their research (Brady 2005a:f-7). This is illustrated in an extended critique of Thompson in which the critique does not reject Thompson so much as demonstrates how his major points are being rethought and reprioritized in the emerging paradigm (Brady 1989:32-37). The religious function of caves was further strengthened by the first direct critique of the idea of cave habitation in the Maya area (Brady 1989:2-6). The application of the ritual model of cave use through the 1980s and 1990s largely defined who was working within the paradigm and separated them from those outside of it.

The difference in position between those working within the cave paradigm and those working outside of it is illustrated in Paul Healy's review of two volumes of collected articles on Mesoamerican cave archaeology (Brady and Prufer 2005a; Prufer and Brady 2005a). Healy not only notes that all of the authors are working within the same model but also explicitly sets himself outside of the paradigm in stating: None of the authors in either volume discuss any alternative (nonritual) uses of caves in antiquity, despite the fact that these sites regularly contain evidence for habitation (e.g., grinding stones, food residues, utilitarian ceramics, signs of fires), and may have provided temporary, or emergency, shelter in times of inter-center warfare (Healy and Prikker 1989). The authors of these volumes have a strong adherence to the belief that the caves of Mesoamerica in late Pre-Columbian times were all ritualized, sacred (not mundane) sites. Others would be less sanguine (Healy 2007:271).

For those working within the paradigm, Healy's comments simply reflect all the problems encountered in the pre-paradigmatic approach in which archaeologists applied interpretive models developed at surface sites and in domestic contexts with little appreciation for the radically different nature of the cave context. Why, for instance, are signs of fire an indication of a habitational function? At the most obvious level, charcoal in caves is deposited by the use of torches regardless of the type of activity being carried out. More to the point, however, fire is an integral part of Maya ritual (Scott 2009). This is reflected in the fact that the K'iche' Maya refer to rituals as "burnings" (Cook 1986:139) and to the altar where rituals are performed as a "burning place" (quemador) (Bunzel 1952:431). Food offerings also play a prominent role in Maya ritual (Scott 2009) so the discovery of food residues is exactly what one would expect in ritual
contexts (Morehart and Butler 2010). Recent work has also shown that faunal material is ritually deposited in caves as well (Brown 2004, 2005; Brown and Emery 2008; Halperin et al. 2003).

Manos and metates are commonly encountered in caves (Brady 1989:303-306) but those working within the paradigm see no reason to assume that these are associated exclusively with domestic activities. Andrea Stone (1995) proposes that they were used in the production of the ritual dough and breads known ethnohistorically (Durán 1971) and ethnographically (Gomez N. 1974; Love and Peraza Castillo 1984) to have been utilized in ritual. Nor is this the only possible ritual use. Polly Peterson (2006:85-86) extracted fossil pollen from manos and metates recovered from caves in the Sibun Valley which indicated that chili peppers and other items were being ground. Furthermore, Peterson found that metates were re-used as burning surfaces and materials for wall construction inside the dark zone of caves.

Finally, assertions of habitation based on the presence of "domestic" or "utilitarian" ceramics has been heavily criticized with good reason (Brady et al. 1992; Brady and Peterson 2008). These terms generally refer to nothing beyond the fact that the ceramic is unslipped or monochrome slipped so their actual function is not in fact known. It has been shown that the unslipped and monochrome slipped ceramic at Naj Tunich frequently show signs of fire blackening on the vessel interior related to the burning of copal incense, most likely during rituals (Brady 1989:212-213).

The forgoing discussion focuses on specific issues because they were raised by Healy as evidence for habitation. On a higher level, however, the discussion illustrates Kuhn's point that competing paradigms are incommensurable or irreconcilable because
they lack mutually accepted standards of verification. The older approach accepts the existence of utilitarian artifacts whose function is inherent in the object and the presence of such artifacts is then used to determine the function of a site or activity area. The cave paradigm rejects the notion of artifacts having inherent function. Hayden and Cannon (1984:96) note that in living societies "artifacts rarely function in the utilitarian, social, or ideological domain to the exclusion of the others" so function is contingent on context. Therefore, critiques that point to a particular type of artifact or deposit as being proof of habitation simply fall short of the complex argument required by the cave paradigm to demonstrate such a function. There is an epistemological difference at the most fundamental level that impacts not simply the meaning of a particular unit (artifacts) but also how that meaning can be employed in constructing acceptable explanations.

Since the issue of cave habitation has been raised, perhaps it needs to be considered. We would point out that no one asserting cave habitation has considered the larger theoretical implications of such a practice. Who were the people living in caves? Proponents of the habitation model have not discussed the social status of those living in caves. Were they landless peasants? Considering the large quantities of valuables (jade, pyrite, polychrome vessels, finely worked lanceolate blades and hachas of fine-grained stone) recovered from the caves at Dos Pilas (Brady 2005b), this seems unlikely. Could they have been elites? This appears equally unlikely given the large number of palaces at Dos Pilas.

Furthermore, all the archaeological cave surveys that have been conducted have located many more caves than could be studied. If, as the model proposes, every cave containing charcoal or grinding stones is considered habitational, then a sizeable class of
cave dwellers would have existed. What were the social relationships between cave dwellers and surface dwellers? How did a habitational function articulate with a ritual function? One of the reasons that cave habitation remains a viable proposition among critics, in our opinion, is precisely because archaeologists have not seriously considered the implications of habitation.

Caves in Indigenous Ideology

A second distinctive element of the Mesoamerican Cave Paradigm is its extensive and unapologetic use of ethnographic and ethnohistoric analogy to create emic models of the meaning and, to a lesser extent, the function of caves (Brady and Prufer 2005c). At the lowest level, ethnographic analogy has been used to redefine the very scope of the field in adopting an emic definition of "cave." It appears that early in the Foundation Period, the concept of "cave" was left largely undefined. Bonor Villarejo (1989b:19) simply calls them subterranean spaces while Brady and Veni (1992:149) point out the geological definition of caves as "Humanly accessible natural cavities in the earth." An explicitly emic definition of caves is proposed in Brady's (1989:1) dissertation but this element only appears to be adopted at the end of the Foundation Period when it appears in a more widely distributed work. For the field:

Cave is being used here in the sense of the Maya word č'en which means a hole or a cavity that penetrates the earth. As such it includes caves, grottoes, cenotes, sinkholes, many springs, places where rivers emerge from or disappear into the earth, crevices, and any number of other holes (Laughlin 1975:132). At times rockshelters will be treated as a c^{\prime} 'en and be used ritually while other times not. While this definition is not nicely
bounded, it reflects both the nature of human categories and the ambiguity often encountered in the field (Brady 1997b:603).

The use of an emic definition of caves appears to have been generally accepted in cave archaeology and has been explicitly acknowledged (Rissolo 2003:20-21; Ishihara 2007:27-28) and elaborated on (Scott and Maxwell 2008; Chavez and Landeros 2009) in subsequent work. The issue appears to have been settled by David Stuart's decipherment of the "ch 'een," (cave) glyph in ancient Maya inscriptions (Vogt and Stuart 2005, see also Helmke 2009: 536-600).

On a higher level, the Mesoamerican Cave Paradigm has created a model of the meaning of caves in indigenous cosmology and how this meaning was related to cave's function in the society. It is interesting that Thompson $(1959,1975)$ does not discuss the meaning of caves to either the ancient or modern Maya and does not address the social significance of caves in ancient society. Heyden $(1973,1975,1981)$ attempts to do this in her analysis of the cave beneath the Pyramid of the Sun at Teotihuacan but her discussion is focused specifically on one particular cave so she does not produce a generally applicable regional or cultural model. Responding to the lack of a conceptual framework for interpreting Maya caves, Barbara MacLeod and Dennis Puleston (1979) proposed that caves were associated with the underworld, a view constructed from the Popol Vuh as well as from Lacandon ethnography. In the Popol Vuh, the underworld is portrayed as a place full of dangers and presided over by the malevolent underworld deities. The attribution received wide acceptance and was applied with little question for the next 20 years (Bassie-Sweet 1991; Brady and Stone 1986).

The first critique of the underworld model came at the 1997 SAA meetings in Nashville that marked the beginning of Recent Period (Brady 1997a). Reservations about the idea came from ethnographies where many of the properties, such as rain, attributed by MacLeod and Puleston to the underworld were associated with Earth in indigenous thought. The modeling of actual cave use after a mythical event in a place that was not explicitly identified as a cave was also heavily criticized. Scott (2009) notes that during invocations, Kaqchikel ajq'ijob frequently use the paired couplet, "ruk'u'x Kaj, ruk'u'x Ulew" ("heart of sky, heart of earth") while references to underworld are notable by their absence. The underworld model was replaced among cave archaeologists by the association of caves with the concept of a sacred, animate Earth, an idea more solidly grounded in ethnographic evidence in terms of the modern Maya beliefs (Brady and Prufer 2005c; Scott 2009; Vogt and Stuart 2005).

The association of caves with the sacred Earth has led to the development of additional connections that provide a multifaceted model of areas where caves might be expected to have been important. At the highest level, caves are associated with the actual creation of the universe since celestial bodies such as the sun and the moon emerged and rise from and set into caves (Brady and Prufer 2005c:371; Duby and Bloom 1969:292; Garza 2009:49; Villa Rojas 1945:156). Likewise, human creation is also associated with caves. Many Maya today still believe that their community's founding couple (Jich Mi and Jich Mam in Jakalteko myth) originated in the cave or still live in one. This thereby establishes the cave as a symbol of group identity (Brady and Delgado 2009; Casaverde 1974; LaFarge 1947; Vogt and Stuart 2005:164). These myths and continued ancestor veneration at caves often forms the basis for a group's claim to rights
and access to land (Garza 2009:53). The idea of caves being a source of fertility is emphasized with the belief that clouds and rain are believed to originate from caves (Vogt 1969:387; Vogt and Stuart 2005:177). Both ethnographic and ethnohistoric accounts document the importance of rain rituals and agricultural rituals performed in caves. Recent ethnographic research has even shown that caves are seen as living and breathing entities (Garza 2003). While others have noted that caves are associated with the place of creation (Heyden 1987a), the Mesoamerican Cave Paradigm has recognized this as a singularly important fact. Although the significance of the act of creation has been recognized in other fields dealing with religion (Eliade 1959:80-81), it has largely been unappreciated in Maya archaeology.

Caves Played a Significant Role in Pre-Columbian Society

J. Eric Thompson was well known for integrating ethnographic and ethnohistoric data into his discussion of the ancient Maya and Doris Heyden relied heavily on both as well. Therefore, it was not the lack of an indigenous view per se that was the critical element missing in the formulation of the social significance of caves. Instead, it appears that it was Thompson's inability to grasp the social significance of caves and Heyden's failure to generalize her findings beyond the one cave at Teotihuacan that prevented them from fully accepting the importance of caves in the indigenous view, a perspective eventually developed by Brady (1997b). Brady explicitly notes that the issue of social importance is at the heart of the new paradigm:

At its very simplest, it [the Mesoamerican Cave Paradigm] maintains that caves and earth openings were so fundamental to the religious concerns of indigenous
populations that their presence in the landscape structured human activity, including settlement, around them... While the implications of this statement could keep us here for hours, it is precisely this insight that has driven Maya cave archaeology for the last two decades (Brady 2007).

The pre-paradigmatic view of caves as unimportant has its historical roots in several sources. First, because of the view of caves as habitation sites, they could have been theoretically important only if they had yielded evidence of Pleistocene occupation. When Mercer and others failed to find deposits predating the Preclassic, interest waned. Cave habitation in this view could be little more than a minor component of the larger settlement system, probably housing the lowest strata of Mesoamerican society. At a time when excavation focused almost exclusively on elite centers, there was little interest in studying such commoners.

Second, while surface archaeology focused on the largest centers with their monumental pyramids and elite palaces, the caves that were explored tended to be modest both in size and artifact assemblages. This skewed the appreciation of the relative importance of the surface and subterranean contexts. Interestingly, three important caves, Loltun, the High Priest's Grave at Chichen Itza and Quen Santo Cave 3, were investigated during the Early Period and they play a prominent role in J. Eric Thompson's syntheses. It is interesting to speculate how Thompson's work might have been impacted if more great caves had been known. Along the same line, if Edward Thompson's (1938) report on the High Priest's Grave had been published promptly, it might have changed Seler's interpretation of Quen Santo (Seler 1901; Brady 2009b).

Once the conviction that caves were not significant was established, it became self reinforcing. The Carnegie Institution of Washington visited a great cave in Alta Verapaz, Guatemala, Seamay Cave, which has a long stairway and retaining walls (Gurnee 1965; Gurney et al. 1968), but failed to publish any mention of it. As a result no great caves are reported until after World War II to challenge the view of caves as being unimportant. The discovery of Balankanche in 1959 did impact the field because the material was spectacular and the ceremonial function of the cave was never seriously questioned. Even more important was the discovery of the cave beneath the Pyramid of the Sun at Teotihuacan in part because Heyden's $(1973,1975,1981)$ interpretation did argue for the high social significance of the cave.

The role of these great discoveries is best exemplified by Naj Tunich (Stuart 1981), which was reported at the beginning of the Foundation Period. To this day, the site contains the greatest amount of architectural modification, the first masonry tombs ever documented in a Maya cave and the largest corpus of hieroglyphic inscriptions known from a cave (Brady and Stone 1986; Stone 1995). The first publication on Naj Tunich stressed the extraordinary nature of the site. Based on the labor and resources needed for construction and the belief that the inscriptions were painted by a scribal elite, Brady and Stone (1986) propose direct elite involvement with, and utilization of, the site. This was a novel idea at the time. Some archaeologists, while accepting the ritual use of caves, saw that utilization being restricted to peasants, much as it is today. That view marginalized caves as features outside of elite concerns and the "great tradition" in Maya history. It was the investigation of Naj Tunich that led directly to the formulation of
caves being important and this element of the paradigm appears to have been the first to be adopted.

The other archaeological data that contributed to the realization that caves were features of central social importance in Mesoamerica was the appropriation of resources for construction of pyramids and temples over caves. This is interesting because it is precisely the material that both Thompson and Heyden had earlier discussed. J. Eric Thompson was aware of this because he had come upon Edward Thompson's manuscript on the "High Priest's Grave" at Chichen Itza and had edited it for publication (Thompson 1938). In his first synthesis of the cave data, J. Eric Thompson (1959: 128) says, "Mention should be made of caverns beneath buildings, notably the High Priest's Grave at Chichen Itza, but discussion of them would vastly extend our subject." Thompson appears to suggest that there were quite a number of examples but never interprets these and by the time of his second synthesis has concluded that they are not important (Brady 2005a:f11-12). In her first two articles on the cave beneath the Pyramid of the Sun at Teotihuacan, Heyden $(1973,1975)$ was unaware of Thompson's discovery at Chichen Itza. When she does learn of it, she clearly misses the point in stating, "This of course, presupposes a cave per structure, which is doubtful" (Heyden 1981: 14).

Brady combined the High Priest's Grave at Chichen Itza and the cave beneath the Pyramid of the Sun at Teotihuacan with additional examples from both Central Mexico and the Maya to propose that caves were regularly used to validate settlement space in Mesoamerica (Brady 1989:64-71). This idea was then tested in the field on the Petexbatun Regional Archaeological Project and documentation of a close relationship between caves and architecture was first presented at the International Congress of

Americanists, a document widely circulated among cave archaeologists during the Foundation Period (Brady 1991). Elaborated discussions of these correlations were then published at the beginning of the Recent Period (Brady 1997b; Brady and Ashmore 1999; Brady et al. 1997).

Cave Archaeology Can Address Wider Theoretical Issues

For her paper on the development of cave archaeology from the end of the Post War Period, Scott (2004) interviewed a number of senior scholars, one of whom noted, "[Caves] seemed to call for very large investments of effort, planning, etc. for relatively small scientific returns. It seems to me to be a rather limited field and one which produces information and interpretation which are difficult to integrate with the mainstream data produced by site and regional projects." This quote touches on a central problem of pre-paradigmatic cave studies that is related to Hammond's (1981:177) observation, quoted earlier, that archaeology at the end of the Post War Period did not know how caves had been used. At the heart of the issue were the lack of any theoretical approach and the dearth of even basic research questions (Brady 1989:6-9).

Brady attributes this to the absence of individuals specializing in caves, which seriously impacted cave scholarship. He notes that:
although a large corpus of published cave material exists, there is little dialog with these data. As a consequence, later works do not build on the foundation laid by earlier studies and so reports rarely rise above the level of elementary data presentation. ... Lacking such fundamental building blocks, it is not surprising that archaeologists have struggled with larger questions of interpretation (Brady 1996:ii).

Cave archaeologists working during the Foundation Period responded to this need with the production of works that were clearly synthetic in nature and provided the building blocks for interpretation (Bonor Villarejo 1989b; Brady 1989; Stone 1995). The problem of relating cave data to surface archaeology was resolved to a great extent by the advent of cave surveys conducted in conjunction with large surface projects. Hammond (1982:177) had stated that "caves must clearly be considered part of the same settlement system as open residential and ceremonial sites that their users also frequented" but no attempt had been made to that point to systematically document them. The first systematic archaeological cave survey was Juan Luis Bonor Villarejo's underfunded study conducted in conjunction with the Oxkintok Project (Bonor Villarejo1987a, 1987b, 1988, 1989a). Bonor Villarejo (1989a:303) documented 40 caves in the area, which clearly pointed to a richer, more varied, and more complex pattern of utilization than had been heretofore considered.

The cave survey in its current form can be traced back to the Petexbatun Regional Cave Project in the early 1990s (Brady 1997b; Brady et al. 1997). The project was also influential because it used an explicit landscape approach. The Petexbatun Project's methodological approach was employed in later cave investigations. These included cave surveys associated with the Yalahau Project (Rissolo 2003), the Maya Mountains Archaeological Project (Prufer 2002), the Xibun Archaeological Research Project (Peterson 2006), and the Cancuen Project (Spenard 2006; Woodfill 2010). Even projects focused on single cave features (Moyes 2006; Ishihara 2007) utilized the landscape approach leading Smith and Schreiber (2006:19) to observe that:

For the Classic Maya, studies of sacred landscapes are dominated by research on caves. Caves were important cosmological features in all Mesoamerican societies, and the karst landforms of much of the Maya area are riddled with caves containing offerings, burials, and other material remains of ritual activity (Bassie-Sweet 1996; Brady 1997; Brady and Prufer 1999; Dixon et al. 1998; Stone 1995). In contrast to the empirically grounded cave research, other work on Classic Maya sacred landscapes is highly speculative in nature (e.g., Koontz et al. 2001; Stone 1992, 2002).

Another factor in cave archaeology's drive to address larger issues has been the changing appreciation of the importance of religion in complex society. Prufer and Brady (2005b) have noted how religion was largely marginalized by early processual archaeology in which important religious functions in the political or economic spheres where simply treated as aspects of the political or economic systems (e.g. Price 1974). The landscape approach focused attention on the political appropriation of sacred landscape and, more specifically, of sacred landmarks (Brady 1997b, Brady et al. 1997; Ishihara 2007, Mirro 2007; Peterson 2006; Prufer 2002; Rissolo 2003). Moyes (2006) in her detailed study of Chechem Ha relates alternating periods of use and abandonment to political issues and sees the Terminal Classic use being related to drought (Moyes et al. 2009). A number of authors have also used cave data to address wider local and regional economic issues (Brady 2005b; Morehart and Butler 2010; Spenard 2006; Woodfill 2010).

Buttressing the idea that caves were fundamentally important, recent archaeological and epigraphic data suggest that caves were desecrated after military defeats (Brady and Colas 2005; Helmke and Brady 2009). Helmke (2009: 76-193)
scoured the epigraphic corpus for references to caves and their usage to outline the emic importance of caves in the Classic period (A.D. 376-849). In so doing he found that the surprising majority of caves are involved in martial actions, whereas texts citing caves as places witnessed (as part of pilgrimages), or as the loci royal inhumations, calendrical rituals and accession rites are noticeably rare (Helmke 2009; Helmke and Brady 2009). At present we have to offer the caveat that the texts do not provide as comprehensive and unbiased a record as that afforded by the material culture recovered by archaeologist. Furthermore the texts may not record all of the different uses to which caves were put, but what the texts do demonstrate is that caves did play a significant role in antiquity and that these hosted a series of significant activities that might not have been reconstructible by archaeological methods alone.

Discussion and Conclusions

Applying Kuhn's (1962: 23; 1996:175) definitions, it appears that the Mesoamerican Cave Paradigm does fulfill the criteria for being considered a paradigm in the sense an "accepted model" or "constellation of beliefs, values and techniques shared by the members of a given community." Having accepted its existence, we have sought to define the paradigm around four propositions (1. caves were used primarily for ritual; 2. they must be understood from an indigenous perspective; 3 . they played a significant role in Pre-Columbian society, and 4. caves allow archaeologists to address wider theoretical issues) to provide, in Geertz's (1973: 90) terms, "an effective way of developing and controlling a novel line of inquiry" about caves.

Our discussion of the four propositions shows that all four were established during the Foundation Period, with the first and the third growing out of Brady's investigations of Naj Tunich in 1981 and 1982 at the beginning of the era. Aspects of the second proposition were also in place during the Foundation Period, although the replacement of the underworld cave model with that of the animate earth model appears only at the beginning of the Recent Period. Finally, the fourth proposition is established during the Foundation Period with the completion of the Oxkintok and Dos Pilas cave surveys and the beginning of ones on the Yalahau and Maya Mountains Projects.

As noted at the beginning of the paper, the Mesoamerican Cave Paradigm was recognized by a Southwesternist, rather than by Mesoamericanists who actually developed and used it. In fact, there has not been, until this paper, a discussion in print of the paradigm or what constitutes it. Scott (2007) in analyzing the importance of the cave session at the 1997 SAA meetings in Nashville for the emergence of a self conscious field notes that it engendered an almost unbroken string of annual SAA sessions. These sessions, and the social gatherings that followed them, served the important function of enculturating members into the evolving paradigm. It is hoped that this explicit formulation of the propositions constituting the paradigm will lead to further discussion and refinement of the concepts.

CHAPTER 3 THEORETICAL AND METHODOLOGICAL DEVELOPMENTS IN THE STUDY OF MAYA CAVES AND SACRIFICE

While there have been numerous chronologies of Maya cave archaeology presented in dissertations on the topic (i.e. Brady 1989, Prufer 2002, Moyes 2006, Scott 2009, Spenard 2014), this chapter presents the first chronology that attempts to focus on the evolution of mortuary interpretations. Much like the evolution of the Mesoamerican Cave Paradigm (Kieffer and Scott 2012) and the growing acceptance of cave utilization primarily for ritual, the interpretation of mortuary use within caves and other karst structures has evolved over time. The purpose of this historical review is to demonstrate the paradigmatic and methodological shifts that have occurred in bioarchaeology and implementation thereof in Maya cave archeology and sacrifice studies. As this review will indicate, it is only within the last decade that the topic of sacrifice has been more thoroughly studied within the realm of Maya caves.

Most chronologies of Maya cave archaeology rely heavily upon the temporal scheme first proposed by Brady (1989), which separated research periods on the basis of lulls in the Maya cave literature. Brady's chronology divides the exploration and archaeological history of Mesoamerican cave research into the Early Period (1840-1914), Middle Period (1914-1950), and Recent Period (1950-Present). Brady (1997a) later revised this chronology to subdivide the original Recent Period into two periods: The Post-War Period (1950-1980) and the Recent Period (1980-Present).

Since the development of Brady's original chronology, methodological and theoretical developments have led some researchers to make slight modifications to his chronology. The most significant is Scott's (2012) addition of a Foundation Period
(1980-1997) and changing the commencement of the Recent Period to 1997. The impetus for this revision centered on the 1997 Society for American Archaeology (SAA) annual meeting in Nashville. Prior to this time, Brady dominated Maya cave archaeology with his ideas, but his ideas were not well disseminated or adopted among Maya archaeologists. This event also marked the first of what would become an annual SAA Maya cave session and commemorated the first time in the subdiscipline that the field became "self-conscious" and agreed upon the theoretical and (to a certain extent) some initial methodological approaches (Brady and Prufer 2005b; Brady 1997).

The following chronology more closely follows Scott's revised history of Maya cave studies, with some alterations. Unlike previous ones, this chronology will define periods based upon advancements in the methods, interpretations, and/or the theoretical framing of the discipline. More importantly, this chronology will specifically focus on bioarchaeological developments in research in Maya caves. This includes the topic of sacrifice and how methods, theories, and classifications have changed with regard to the interpretation of skeletal material in Maya caves.

The Early Period (Pre-1840)

Ethnohistory

The Early Period was one of the more influential periods in understanding ancient Maya sacrifice and to a certain extent ritual cave utilization. Although this period is not known for any archaeological work or cave exploration, it was during this time that ethnohistoric accounts, primarily in the Yucatán Peninsula, described acts of human sacrifice. While some of these accounts were not available until the late twentieth
century, it is important to note that accounts of ritual and human sacrifice occurred during this early period and were transcribed by Spanish missionaries and priests. It is important to note that these accounts were written by individuals who wanted to convert the Maya, and may have exaggerated the frequency and nature of ritual events such as sacrifice. Nonetheless, the archaeology of subsequent periods would confirm aspects of Maya ritual life, including sacrifice and cave utilization.

Ethnohistorical accounts of Maya ritual practices indicate that human sacrifice was a common element in religion. The Relación de la Ciudad de Valladolid (1900:23) mentions that sacrifices occurred in cenotes (sinkholes). This practice was seen in various areas of the Yucatán and across many centuries. In the $16^{\text {th }}$ century, Bishop Diego de Landa (Tozzer 1941:43-44, 116-117, 180-183) described victims as primarily being war captives and young children who were sacrificed via heart extraction, thrown into the Cenote of Sacrifice at Chichén Itzá, cast down from a great height, or shot with multiple arrows. Other manners of sacrifice depicted by Landa included decapitation, skin flaying, drowning, hanging, and disembowelment, to mention only a few. It was these original accounts that were then repeated in various forms and even extrapolated upon by authors such as Diego López de Cogolludo (2010 [1688]), Orlando W. Roberts (1827:xxi), and Henri Beuchat (1818:488-489) among others. The works of López de Cogolludo (2010 [1688]) and Beuchat (1818) cited Landa while Roberts (1827) did not.

Don Juan Galindo (1833:62) is noted for recording possible evidence of sacrifice in the Highlands of Guatemala, however his account is not definitive because he used the terms sacrifice and execution interchangeably. Sánchez de Aguilar's (1937 [1613]:140) account mentions the of murals at Uxmal and Chichén Itzá which he describes as
depicting the sacrifices and dances that he actually saw. Pedro Sánchez de Aguilar (1937 [1613]) also noted the post-sacrificial disposal of human remains in caves and cenotes in the $17^{\text {th }}$ century. This ethnohistoric analogy by Aguilar justifies the use of prehistoric Maya iconography as probably depicting actual ritual events, rather than sensationalizing mythical events. Similarly, in the mid $17^{\text {th }}$ century Don Diego Quijada (Scholes and Adams 1938:78-81, 88-89, 95, 104, 116-119) recounted multiple examples of child sacrifice with the ultimate disposal of the bodies occurring in cenotes. Human sacrifice in cenotes also occurred at Chichén Itzá:

From these facts alone one deduction is possible, namely that sacrifices in the cenote did occur, and that such sacrifices were of young girls who were hurled by the priest into the chasm, possibly after defilement by the high priests in the small building at the pool's edge, thus symbolizing the simultaneous surrender of virginity and life to the Rain Deity. (Arnold and Frost 1909:92).

A similar account of sacrifice occurring in a cave was recorded near Mixco Viejo by Fuentes y Guzman (1932:36), with the sacrifice young children to the rain deities at the cave site of Mother of the Water.

Seventeenth century accounts from Mexico recognized the importance of caves as places of worship. Despite the Spaniards efforts, the practice of sacrificing to "idols" continued in caves during the historical period:

Y parece razon muy convincente, el que no erigieron este adoratorio alla en su antigua gentilidad quando reynaban sus emperadores y reyes idòlatras, porque entònces no tenian para que buscar retiros ocultos, ni cuevas excusadas para el impio exercicio de sus abominables idolatrias, pues podian libremente adorar en las plazas, donde por la mayor parte tenian para ello adoratorios, y en otros lugares publicos y patentes, como consta de las historias y tradiciones. Luego á esta cuevas irian á adorar y á sacrificar á sus idolos quando los españoles, y en particular los
ministros del evangelio les tendrian entredicho el ir á sus antiguos cues y los castigarian si en ellos los veian, porque presumirian que iban á idolatrar en ellos: pues estando estas grutas emboscadas entre tanta arboleda, y en una quebrada impertransible, les pareció que allí estaban seguros de que los viesen y hallasen los españoles, y asi escogieron este parage para continuar, sin ser vistos ni descubiertos, su detestable exercicio. (Sardó 1810:90-91)

Here, Fr. Joaquín Sardó wrongly deduced that these places were utilized in secret so that they could continue ritual practices that were persecuted. The use of caves for ritual was not exclusively done in secret, nor did the use of caves occur as a result of persecution of the Maya by the Spaniards. Ritual petitions in caves were in fact practices that predated the arrival of the Spaniards, as the archaeological data would later demonstrate.

Ethnohistoric Accounts of Sacrifice and Burial

The introduction of Catholicism into the Yucatán Peninsula did change some of the practices of human sacrifice performed by the Maya. Within twenty years after the Spanish conquest, the use of crucifixion was sometimes incorporated into human sacrifice (Scholes and Roy 1968:346). Diego Quijada also recorded human sacrifice occurring at night in churches, in milpas, and at the feet of crosses at the entrance of towns. More importantly, many of these cases indicate that caves and cenotes were locations of sacrifice (Scholes and Roy 1968).

In addition to where sacrifice was performed, the early Spaniards even recorded reasons why sacrifice was practiced. Diego Quijada recounted that typically children were sacrificed via heart extraction and offered in order to end drought (Scholes and Roy
1968), or to remedy damage after a hurricane (De Anda et al. 2004: 378). Based upon oral testimony, Diego Quijada documented sacrifice performed by leaders in Hocaba, Huhi, and Xocchel. A young boy was thrown into the Sacred Cenote so that he could speak to the gods (Scholes and Adams 1968:156). The ethnohistoric documentation that records indigenous motivation allows archaeologists to understand the emic perspective on sacrifice in the Maya religious system during the colonial era. Similar desires to communicate with the gods were used to explain why the sacrifices of supposed virgins were made at Chichén Itzá were noted by López Medel (Tozzer 1957:193).

Towards the end of the Early Period, we also see the translation of early ethnohistoric accounts that document the use of caves for ancestor veneration. One example was recorded by Bishop Núñez de la Vega in 1698, who states that bones set in caves were venerated (as though they were Catholic saints) with the offering of copal and flowers (Köhler 1997). Similarly, in the Oaxaca region cave were reserved for elite burial or places of ancestor veneration in addition to being a place for rain shrines (Burgoa 1934 [1670]). This practice of ancestor veneration continued into historic times according to Sanmiguel (1994:165), who documents veneration occurring in a cave in the late $18^{\text {th }}$ century. While Brady (personal communication 2014) argues that the practice of ancestor veneration in caves is restricted to the Western Highlands, work being conducted in caves other than Midnight Terror Cave throughout the site of Tipan Chen Uitz, Belize indicate ancestor veneration also occurred in the Southern Lowlands (Wrobel et al. 2011, 2012).

The application of ethnohistoric analogy to the archaeological record becomes useful due to the ancient Maya performing human sacrifice and burial in caves. This analogy suggests there is a good possibility that human skeletal remains discovered in
caves and cenotes could represent sacrificial victims. However, the application of an ethnohistoric analogy would not be employed until the Expansion Period (1986-1997).

The Exploration Period (1840-1920)

Archaeology

The Exploration Period of cave archaeology did not have clearly formulated research questions, rather excavations were focused on discovery. This kind of exploration is exemplified by the writings of John Lloyd Stephens $(1841,1843)$ and illustrations by Fredrick Catherwood during their work in the 1840s that popularized Maya archaeology. In their travels, visits to a number of caves are described and highlighted by Catherwood's painting of the ladder in the Gruta de Chacs and their documentation at Bolomchen Cave. Henry Mercer $(1895,1896)$ continued this tradition of exploration during this period with his survey of 29 caves throughout the Yucatán, but he did not grasp the full significance of Maya caves, due to his bias towards habitationfocused cave utilization (Brady 1989:11).

The work of Edward Thompson in 1896 at the site of Chichén Itzá reported the presence of burials in a cavern under monumental architecture (Thompson 1938, 1965 [1932]:259-267). This became the first of many more caves directly associated with monumental architecture, including those at the sites of Tulum (Lothrop 1924), Cozumel (Mason 1927; Sanders 1955), Pusilha (Joyce 1929; Joyce et al. 1928), Polol (Lundell 1934), Dos Pilas (Brady et al. 1997), Maax Na (King et al. 2012), and Midnight Terror Cave. This association highlights the importance of caves in ancient Maya culture. Thompson's other contribution to the field of cave archaeology at this time was the
dredging at the Cenote of Sacrifice between 1904 and 1907, which finds would ultimately confirm the accounts of human sacrifice that Landa had noted centuries earlier.

Major publications that came out in this period included: Mercer's The Hill-Caves of Yucatan (1896), Edward Thompson's Cave of Loltun (1897), George Gordon's Caverns of Copan (1898), and Eduard Seler's report on Quen Santo (1901). In addition to this, numerous short descriptions of caves as well as descriptions of artifacts recovered from caves were produced at this time (Lefroy 1884; Gann 1894-1895, 1896-1897;

Baville 1897; Maler 1901, 1903; Starr 1908; Seler 1904; Casares 1907; Blackiston 1910;
Cole 1910). Even with this quantity of published literature, the field was theoretically divided. Many of the high-profile archaeologists had very little insights into how the caves were used. In fact, most seem to have held a European view of caves as habitation sites. Henry Mercer (1896:9) exemplifies this view with his interpretations of material discovered in caves:

They had built fires and cooked in the flames the flesh of animals, having eaten which, they threw the bones about the cave floor; and there these bones, often split to get the marrow, sometimes carved, or ornamented, or rubbed into points, have remained to this day, together with charcoal and ashed, and tools of stone and metal, to prove the underground feast.

Mercer (1895: 397) goes on to state this position explicitly,
Just as the Drift Hunter, the oldest proved inhabitant of Europe, was found to have traces of his presence in caves, just as the prehistoric European epochs of human culture, bronze under iron, then polished and then chipped stone, were found to be represented in caves by the super-position of films of this rubbish resting one above the other, so here in America we may hope to find similar evidence, if it exists. If the Indian had a predecessor, we may expect to reveal proof of his presence in some cavern not difficult to discover.

Such classification of material discovered in caves as "rubbish" clearly indicates the lack of understanding that these items may have been ritually deposited or offered as materials of sacrifice.

Ethnography

Interestingly, it is also during this period that some amateur and professional ethnographic work provided passing mentions of the sacredness of caves according to local inhabitants. B. M. Norman (2009 [1842]:13) made one of the earliest arguments against the idea of caves as loci of habitation in his statement,
[T]here is another class, who have faith in man wherever he exists, and who rely upon permanence of the laws of Nature; who do not imagine that a man is necessarily a cannibal or a troglodyte because born in a different degree of latitude, nor that water will refuse to run downhill at a foreigner's request."

Norman (2009 [1842]:99) even documented that cenotes were "held in superstitious reverence by the Indians" and that they were "the places where most of their religious legends had their origin." Francisco Belmar (1901:5) made brief mention of a sacred cave on an island near the shore of San Dionicio in Oaxaca that no outsiders had managed to see. This sacredness of caves prompted local Maya guides on Gann's project to refuse to enter into Loltun cave due to the pixan or spirits of ancient inhabitants (Gann 1926:93). Archaeologists at this time were either unaware of this ethnographic literature that clearly indicated caves have a ritual/spiritual nature, or they were not making the connection that this ritual/spiritual nature occurred in the past as well.

Sacrifice and Human Remains

It is also at this time we begin to see a downplaying in the role of human sacrifice in the ethnographic accounts. Part of this may be due to the spread of Christianity in the New World and a reduction in the practice of traditional Maya rituals. Gann (1918:54) most notably commented on this when he stated:

Human sacrifice among the Maya was probably a somewhat rare event, taking place on extraordinary special occasions, as in times of public calamity - for example, during the prevalence of famine, war, or pestilence - when it was felt that a special propitiatory offering to the god was called for. This practice was a confined one, or at most to a very small number of victims, never reaching the proportions which it did among the Aztec, by whom it was probably introduced into Yucatan.

In terms of the documentation of skeletal remains during this period, what little evidence that is available is descriptive, with only minimal analysis. Some descriptive reports lack specific and necessary details such as the positioning or contextual data surrounding the skeletal remains. In the southern Yucatán area, Gann relied heavily on ethnohistoric data to justify his interpretation of sacrifice, without noting any other means of death or evidence to support the interpretation:

Nothing found in the mounds provides definitely the practice of human sacrifice in this area... Near the headwaters of the Rio Hondo a mound was opened, which contained, in a stone-walled chamber, a number of human skulls unaccompanied by other bones. It is possible that these may have been the remains of sacrificial victims, as it is customary to remove the head of the victim after death, which became the perquisite of the priests. (Gann 1918:54)

Examples of the more detail-oriented descriptions were produced by Seler (1901) at the cave sites of Quen Santo, Guatemala. Similarly, Gordon (1898) interpreted cremated
skeletal remains and meter-deep deposit of skeletal remains in a cave in Honduras within a ritual framework. This analysis and interpretation of the skeletal material to be burial in nature set a standard that allowed for the classification of further remains discovered in caves to be classified as burials without any need for further questioning or analysis.

The Classification Period (1920-1969)

The Classification Period is defined by the trend in bioarchaeology at this time to classify burials. However, the early half of this period is known for a marked slow-down in cave investigations (Brady and Prufer 2005b:1). The period in American archaeology classified as the Institutional Period covers most of what Norman Hammond (1982) calls the "Period of Institutional Domination." Although Hammond's Period of Institutional Domination runs from 1924 to1970, most of the projects relating to cave archaeology in Central America were carried out towards the earlier part of that period and thus this chronology does not mirror his dates exactly. It was during this period that large projects sponsored by institutions such as the Carnegie Institution of Washington, the Peabody Museum of Harvard University, the British Museum, and the University Museum at the University of Pennsylvania drove advances in the field.

Archaeology

The British Museum's project at Pusilha was the only major institutional investigation at this time that included substantial cave work (Joyce et al. 1928; Joyce 1929; Gruning 1930). However, the Field Museum's previous sponsorship of E. H. Thompson's excavation of the High Priest's Grave at Chichén Itzá conducted in 1896
was finally published at this time (Thompson 1938; Brady 1988:12), along with J. Eric Thompson's Index of Maya Sites in British Honduras (1939). The New York Times even funded an expedition by Gregory Mason (1940), which included many cave sites in Belize. In addition to these larger-scale projects, numerous other reports at this time included some brief descriptions of caves (see Brady 1989:18-19). Ultimately Gann $(1924,1926,1927)$ produced the greatest quantity of literature on caves in this period. However, his research has been critiqued on the basis that he did not produce site maps, did not systematically collect, or grasp the ritual importance of caves (Brady 1989:17). Despite the architectural association with a cave discovered at this time, archaeologists failed to recognize caves as important features. This resulted in caves being omitted from the research agendas of institutional projects. The Carnegie Institution's last project at Mayapan was one of the few that produced a significant number of cave studies (Smith 1953, 1954; Strómsvik 1956). These descriptive reports, while occasionally lacking indepth interpretations, were rich in data. It is this data that became the basis for many of the ideas originally formulated during this period.

Towards the latter half of this period, many changes occur. One of the first was the establishment of the Belizean (then British Honduras) Department of Archaeology (DOA) in 1955, and the naming of A.H. Anderson as Archaeological Commissioner (Graham et al. 1980:153; McNatt 1996:82). Shortly thereafter, during the 1960s and 1970s, a great number of salvage investigations were conducted in caves (Brady 1989). Leading the way in these salvage efforts was David Pendergast (1962, 1964, 1966, 1969, 1970, 1971, 1974), who produced a series of first-rate field reports. The other significant cave work at this time was conducted by E. Wyllys Andrews IV when he documented the
cave of Balankanche (1961, 1965, 1970, 1971), which was significant because the religious function of the site was well accepted by the field.

Ethnohistory and Ethnography

Many contributions to the ethnographic and ethnohistorical documentation of sacrifice were made during the Classification Period. It was during this period that Scholes and Adams (1938) documented their accounts and Alfred Tozzer's (1941) translated the ethnohistorical accounts of ritual practices of the Maya from the $16^{\text {th }}$ century from Bishop de Landa. Similar translations of original ethnohistoric documents were done by and at this time. This period also marked the reprint of Francisco de Burgoa's (1934[1670]) $17^{\text {th }}$ century accounts of cave shrines at Mixteca Alta in Oaxaca, Mexico, as well as those of Pedro Sánchez de Aguilar (1937 [1613]) in the Yucatán. These contributed to the understanding of the importance of religion and ritual to the Maya, including how and why human sacrifice occurred. In many of these accounts or translation of accounts, caves and cenotes appeared to be a common location where human sacrifice occurred. The revelation of these facts shed more light on the probability that caves were not typical burial sites.

Continuing the tradition of ethnographic work later in the Institutional Period was the ethnographer Robert Redfield. His work noted the sacredness of cenotes and their connection with rain deities.

Of all natural features, that attended the most important considerations is the cenote... In the prayers uttered by the shaman-priest in the agricultural ceremonies all the cenotes in the region in which the native moves and makes his milpas are mentioned by name; thus the priest calls, one by one, upon the chaacs associated with the cenotes. For the chaacs have within
their power the granting or the withholding of the rain upon which the maize and, therefore, the life of the people depends. Of all the gods of nature, the chaacs come first in importance. (Redfield 1941:117)

Redfield's (1941:118-119, 239; Redfield and Villa Rojas 1934:139,164-165) documentation of the importance of cenotes as places where winds originate (including disease causing ones), sacred water is obtained, and around which people situate themselves on the landscape was of great importance. Redfield's (1941:231) work even recorded the ancient beliefs that were beginning to fade away:

No one in Ditas among those who discussed the matter with the writer could give the meaning of the figurative expressions used in the prayers of the shaman-priest. The "doorway in the clouds" (holhuntazmuyal), through which chaacs are supposed to emerge, could not be identified.

It is only in retrospective of modern knowledge and continued ethnography in the highlands that this expression "doorway in clouds" regains meaning, because clouds appear to emerge out of caves (Vogt 1969) due to barometric pressure change. Thus caves are the doorways, the places where chaacs emerge.

With the boom in ethnographic literature came more sensationalized depictions of the ancient and modern Maya from untrained ethnographers and amateurs. Sensationalist accounts of cannibalism began to appear at this time, though with inadequate evidence to support the interpretation.

Perhaps the most curious and significant find of all was the right half of a human lower jaw-bone. This was discovered amongst a quantity of fish bones, and the fragments of a clay saucer, near the center of one of the kitchen middens, and was contained in a little nest, surrounded by conch
shells, which had been thrown in on top of the human fragment and fish-bones. I'm afraid we must accept this fragment of human jaw as strong presumptive evidence of cannibalism, for several burial mounds were excavated, in which the bones were undisturbed, the skeletons lying upon their backs, with their few poor possessions scattered around them, and food offerings in pottery receptacles provided for their journey to the next world, indicating the usual method of burial amongst these people. (Gann 1926:60)

Some of this sensationalism even impacted the archaeological interpretations of the time, as the work of Gann $(1927: 197,199)$
demonstrates:

No other bones were present, except that in one case the atlas, axis, and first cervical vertebra had been removed in severing the head, and in the second case the first two vertebra only. The skulls were those of young adults, probably males, in which the sutures had not yet ossified and dentition was not complete... I fear we cannot get away from the fact that these skulls indicate a very strong probability of the existence of human sacrifice amongst the Maya from the very earliest times. It has always been supposed that this infamous practice, with that of ceremonial cannibalism, was introduced by the Toltecs at the time of conquest of Chichen-Itza, towards the end of the twelfth century A.D., and that both were unknown to the Maya of either the Old or New Empires, who, up to that period, sacrificed fruit, flowers, and incense alone, to their gods. But these heads, all of healthy young male adults, who had just arrived at the age of puberty, must, I think, be accepted as strong presumptive proof of the existence of human sacrifice at Uaxactun in the first century A.D., and not only of human sacrifice, but of ceremonial cannibalism, for how otherwise would the bodies of the victims have been disposed.

The idea of cave habitation slowly began to wane during this period. Joyce
(1929:443) himself commented on the possible ritual function of caves due to the burials found within them. Although some untrained ethnographers did not aid in this transition, as is apparent in the work of Gann (1926:100-101):

I am convinced that it is in the remoter fastness of the cave, as yet entirely unexplored, that many discoveries may be made, not improbably of a pre-Maya race, or possibly even of palaeolithic man, such as have been made in France, Spain, and Palestine, for it traces exist anywhere else on the American Continent, surely such a vast natural cavern as this would be the place to look for them, admirably adapted as it is either as a mausoleum or dwelling place.

T. A. Willard (1926:32-33), another amateur who sensationalized his accounts, similarly

 suggested that the caves had been used for habitation in the Yucatán:Wherever there are caves there is the likelihood of uncovering vestiges of aboriginal life, for primitive men everywhere used caverns, either as temporary shelters or permanent abodes. Beneath the cave floor may be the evidence of many generations of men the relics buried in layers one upon another as the discard and broken implements of one generation were trampled underfoot and submerged under the charred embers and rubbish of the succeeding one.

Thompson (1927:5-6) began the ideological shift from cave habitation to a predominantly ritual utilization model, when he stated in The Civilization of the Mayas, that the entrances of caves were probably used for habitation and that the layers of refuse encountered in caves were from the original inhabitants. Yet he stressed that caves were not places of habitation:

The American Indian, it appears, was never greatly addicted to caves or rock shelters, the habitation of which in the Old World, owing to their scarcity, was often continuous, but preferred open land on which to camp... Although caves occupied from very early times have been encountered in this country, no such occupation have been reported from

Central America, where in any case humidity would have destroyed most of the refuse. (Thompson 1927:7)

In this same volume, Thompson (1927:40-41) even indicates that "nothing will induce them to go into cave." This dual classification of cave utilization was later omitted from the fifth edition of his work (Thompson 1954). The omission in the next edition and lack of continued research on the topic of habitation left cave use open to debate for decades to come. The existence of such a debate slowed any progress towards understanding the ritual utilization of caves.

Towards the latter half of the Classification Period, there began to be ethnographic work in caves that focused on core ideas of fertility and rain. Much of this work highlighted some of the now well-accepted ideas related to rain petitions in caves. Evon Vogt (1961, 1964, 1969, 1977, 1981) and Carlos Navarrete (1966, 1971, 1974) were making similar contributions to ethnographic research in the Maya Highlands and in Mexico respectively, by documenting Maya beliefs regarding caves. In the Highlands, Vogt (1969:457, 1976:17) documented the long-standing and continuous practice of ritual crop offerings being conducted to insure future rains and crop fertility. Thompson (1959, 1970, 1975) discussed the importance of Maya cave sites for ritual activity especially ceremonies relating to rain petitions based upon his ethnographic work. During this period throughout Guatemala, caves in the highlands were even described as common locations where ancestors are worshipped. Examples of this are documented among the Qéqchi' (Gurnee et al. 1968), the K'iche' and Kaqchikel (Miles 1965), and throughout the Maya highlands (Carlson 1981; La Farge 1947:127-128; Nash 1970:19, 45; Villa Rojas 1969:223; Vogt 1969:298-301).

Sacrifice and Human Remains

At this time, researchers began to make generalized statements about skeletal material in caves, rockshelters, and other underground cavities. In Thompson's (1897:20) discussion of chultunes in Labná, Mexico, he indicated he was completely baffled by the use of chultunes as tombs because he assumed they were solely used for reservoirs. It would not be until many decades later that many of these man-made cave-like features in the Southern Lowlands would be reinterpreted in a ritual light. In terms of osteological analysis during this time period, collections continued to receive minimal analysis, if they were analyzed at all. Willard (1926:114-115) made general notes on age and sex of the young female skeletons that Thompson pulled out of the Sacred Cenote at Chichén Itzá by dredging, but did not quantify how many. Also at this time, the High Priest's Grave at Chichén Itzá was documented by Gann (1924) and Thompson (1938) in a similar manner. In the case of skeletal material from Rio Frio Cave A, ash from possible funerary urns was thrown out without any analysis (Mason 1928). These examples indicate the flaws of many of the osteological syntheses published at this time that relied heavily upon the descriptive work of previous archaeological research.

This period also marks the first time classification systems were proposed for skeletal material in the Maya area. Oliver Ricketson (1925:394) was the first to discuss cave interment as a type within a larger classification system. This classification system was ultimately incomplete due to paucity of finds and unevenness in reporting. However, he concluded that caves were not usual burial places. Although Ricketson did not elaborate on what he meant by "not usual" places, some of the cave burials documented
during this time did suggest a sense of eliteness to those interred in caves. Ricketson over-utilizes the definition of "burial" to describe any mortuary context, since he relies on the burial types set forth by Saville (1899:350), which includes the burial of decapitated heads. Similarly Ricketson mentions that some bodies in mound 36 at Copan appeared to have been hurled in, while others were buried, but he does not even insinuate sacrifice as a possibility (Ricketson 1925:392). Butler (1934) also reviewed the skeletal cave literature and concluded that the behavior responsible for the deposition of human remains in caves was possibly related to some pre-Columbian cave cult.

Towards the latter half of this time period, the osteological evidence from caves and surface sites reflects significant methodological and ideological shifts. Greater care was taken during this period to note contextual information critical for interpreting deposits of human remains. This movement towards more detailed analysis allowed Frans Blom (1954) to document examples of cremation, secondary burial and ossuaries in numerous Chiapas caves. Some continued to suggest that such cave burials were an elite privilege (Dahlgren de Jordan 1966, Moser 1975). Coe (1959) even interpreted a child painted in red pigment to have been a sacrificial victim at Piedras Negras.

It was this detailed reporting which allowed for mortuary classifications to became more specific. For instance, Smith (1950) stated that burials can be simple, in caves, chultuns, cists, graves, or chambers. While this list is limited, it addressed the discussion of classifications. Similarly, J. Eric Thompson (1959:127; 1975:xxxiii) allowed for the continued development of mortuary classifications when he stated that one of the major functions of caves was as repositories of human skeletal material. However, he did not give any explanation for how the individuals came to be deposited,
other than the possibility that the bones had accumulated from participants who died while conducting rituals in the cave and that the cave received interments as centers of ancestor cults. Alberto Ruz (1968) noted secondary burials in cave sites in Guatemala and Yucatán. This classification of secondary burials opened our understanding of Maya mortuary ritual up to more possibilities other than just standard burial. Alberto Ruz (1968) continued research along this line and was one of the first to synthesize mortuary patterns and contextual data for Maya mortuary practices. Prior to this classification of mortuary patterns, researchers such as Borhegyi (1965:22-23) noted that "a curious new custom is represented by headless burials as well as caches of severed heads" during the Classic period, yet did not come to the conclusion of what would easily be described as warfare and/or sacrifice. However Ruz's system was flawed, as he (1968:165) simplified the description of skeletal material discovered in caves, and his classification of burial type was restricted based temporally (by Postclassic) and in terms of spatial distribution due to sample size.

Although the ethnographic data by this time indicated that sacrifice was a ritual that occurred in cave contexts, there were no skeletal collections that clearly indicated sacrifice. Even on the surface, "nothing found in the mounds proves definitely the practice of human sacrifice in this area, but that it existed is almost certain" (Gann 1918:57). Even at the end of this period, Shook (1954) documented at least 40 individuals he classified as sacrifice victims, but did not develop an argument justifying the interpretation. Without justifications, such classifications of sacrifice seem arbitrary. This may explain why the children discovered at the High Priest's Grave, which would be considered sacrifices by today's standards, were not classified as sacrificial victims.

Sacrifice as a means for eventual interment in caves was not seriously considered at this time.

Developmental Period (1970-1985)

Archaeology

The most important contributions of the period were some of the seminal works by J. Eric Thompson. His work, Maya History and Religion (1970), impacted the ways in which Maya religion and cave use was viewed. The other publication was the widespread dissemination of the first synthesis and interpretation of the cave data in J. Eric Thompson's "The Role of Caves in Maya Culture" (1959), which unfortunately was published in an obscure German journal. A revised and expanded version appeared as the introduction to the reprint edition of Mercer's The Hill-Caves of Yucatan in 1975, but Thompson died that year, thus the article never received the attention it deserved (Brady and Prufer 2005b:2). In these syntheses of Maya utilization of caves, Thompson used archaeology, ethnography, and ethnohistory to document eight uses of caves including: source of drinking water; source of virgin water; ritual rites; burial, ossuaries, cremation; art galleries; places to discard ritual items; refuse; and other uses (Thompson 1959). This practice of summarizing existing ethnographic and archaeological data was a common theme through this period. More importantly, these literature reviews were used by many archaeologists at this time to back up their arguments that caves were sacred places where rituals occurred. Later, Barbara MacLeod and Dennis Puleston's article, "Pathways into Darkness" (1979), proposed the first direct analogy between the physical caves
archaeologists were exploring and the ideological representation of Xibalbá, the Maya underworld.

In addition to recognizing ritual as a key component of cave utilization, data began to emerge during this time period that would eventually allow for the shift away from the dogmatic belief that caves were used for habitation. The ethnographic work of Andrews (1965ab) showed that the water rich cenotes and caves of the northern plains in the Yucatán have no signs of habitation. Thompson (1959:129) similarly pointed out that the conditions were less than ideal for habitation when he wrote, "But one may doubt that this kind of occupation was sufficiently prolonged to have had much effect on their contents; most caves in Central America are too damp to be suitable for long residence." The experimental archaeology of Puleston (1971) to try to use chultuns as underground food storage containers also provided fuel for the argument against habitation. In this study, Puleston noted that the humidity and temperature hastened the decomposition of organic material.

The Developmental Period is marked by deaths of a number of the most important figures working in caves. This caused a momentary halt to work in the subfield due to a void, which lead to a delayed acceptance of caves as ritual sites (Kieffer and Scott 2012, Scott 2012). The lingering idea that caves had been used primarily for habitation is neatly synthesized for this period by Norman Hammond's (1981:177) statement, "Whether residence in caves was permanent, periodic or sporadic, regular or only for ritual and refuge, we do not yet know..."

The importance of caves in the sacred landscape started to be noticed beyond the Maya area, and into the wider Mesoamerican region at this time. The most notable
research on this topic outside the Maya area was done by Doris Heyden (1973, 1975, 1981) at the caves under Pyramid of the Sun at Teotihuacan. In addition, Heyden explored the theoretical possibility that caves were places where rites of passage occurred (Heyden 1976) and that they may have had an association with fertility (Heyden 1987a, 1987b, 1991). Heyden's interpretation of the cave beneath the pyramid of the Sun at Teotihuacan influenced views of the subsequent periods especially in terms of understanding and seeing constructed sacred landscapes.

Pohls' theoretical contribution to the field linked the cuch ceremony, which involved animal sacrifice, to Maya caves (Pohl 1981, Pohl and Pohl 1983). They ultimately concluded that caves are "the most sacred precincts of the Maya" (Pohl and Pohl 1983:28). Mary Pohl briefly continued her research with faunal remains in caves and cenotes (Pohl 1983), before eventually leaving the realm of cave archaeology to pursue research on Maya subsistence.

Sacrifice and Human Remains

Recognition of sacrifice as a possible means of death was rapidly evolving as an idea at this time. However, those discussing sacrifice were working at surface sites. Marcus' (1974) work at Dos Pilas and Tamarindito, Guatemala, documented images in Maya architecture of bound captives being killed. These images, along with those documented by Baudez and Mathews (1979), have been used to support interpretations of sacrifice based upon body positioning that implies bound hands and feet. Based upon the imagery of sacrifice, the idea that sacrifice was a public ritual also began to formulate (Baudez and Mathews 1979).

David Pendergast (1971:16-18) interpreted remains of a three to five year old child in Eduardo Quiroz Cave as a victim of sacrifice. This interpretation was based upon the child's two perimortem, unhealed holes in the skull. Although Pendergast (1971:18) was the first to propose that an individual found in a cave was the victim of sacrifice, he stipulated the need for obvious indications of a violent death to make such an interpretation. This dictum mandating the presence of trauma is probably what caused Pendergast et al. $(1968: 638,643)$ to conclude that skull fragments associated with a tooth cache at Yakalche, Belize were merely there "by chance" until ultimately interpreting the entire deposit as a secondary offering after the people had been initially sacrificed elsewhere.

The formulation of Pendergast's "necessary trauma rule" was problematic and probably impacted subsequent researchers' interpretations. While the presence of certain types of trauma paints a clear picture of a sacrificial deposit, the absence of evidence is not evidence of absence. There are various forms of sacrifice, including decapitation, disemboweling and drowning, that are depicted in the ancient codices (Vail and Hernandez 2007). Sacrifices performed in these manners are not likely to impact bone, and thus would not be classified as sacrifice under Pendergast's stipulation. This is in line with assumptions generally employed in bioarchaeology that, lacking evidence to the contrary, an individual is assumed to have died of natural causes. This assumption requires a normal burial context, because bioarchaeologists recognize that factors such as mass graves and even body positioning may indicate that death was not due to natural causes.

The inclusion of more data and knowledge of other patterns in Maya mortuary practices, including sacrifice, began to widen during this period. For the first time, we saw archaeologists trying to create a list of attributes that could be used to determine sacrificial contexts. William R. Fowler Jr. (1984) created a list of attributes that he associated with sacrifice, based on analysis of skeletal remains at Chalchuapa, El Salvador. This list included ritual preparation of bodies, absence of grave goods, relatively "homogeneous pattern for body and limbs positions," and data on age and sex (Fowler 1984: 612-614). Here Fowler clearly indicates which factors contributed to his interpretation of the remains, and he establishes a framework or reference for future researchers. However, he never elaborates on what he means by age and sex data. It was based upon these afore mentioned characteristics that William R. Fowler Jr. (1984) was able to document sacrifice at the site of Chalchuapa, El Salvador. In addition to a majority of the extended burials having touching right and left carpals and right and left tarsals, which indicates bound hands and feet, 19 of the 22 extended burials discovered at this site were in the prone position.

Sacrifice briefly dominated the literature during this time in terms of osteological data. However, cases of different mortuary patterns were still being recorded, which indicates methods were in place to distinguish differences in mortuary classifications. This includes secondary burials in the form of funerary bundles at the Gruta de Xcan in the Yucatán documented by Márquez de González et al. (1982). Many elite burials were recorded, including the one Haviland (1971) documented an elite tomb at Altar de Sacrificios, Guatemala. Hammond et al. (1975) also recorded an elite burial at the site of

Lubaantún, Belize, with numerous accompanying individuals whom the authors argued might not all have been sacrificial victims.

Ethnography

Ethnographic research at this time also recorded the first emic perspective of how the Maya defined caves. These definitions had a significant impact on sacred landscape studies because they determined that the modern Maya believe that almost any hole in the ground is considered sacred (Laughlin 1975: 132; Vogt 1969:375). This emic perspective would later allow archaeologists to interpret constructed holes as representative of caves, hence the classification of ritualized cached contexts (Kunen et al. 2002; McAnany et al. 1999:131).

During this period of research, the use of graphic descriptions for ethnographically documented ritual acts of sacrifice (limited to animals and material items) were recorded, but with less frequency. Thompson (1970: 181) documented the customary practice of smearing "hearts and blood of the victims on the face of the idol which received the sacrifice." He even hypothesized that this was done as a means to feed the deity. Similarly, Uke (1970) records in great detail the first ever documented brujo ritual sacrifice of material objects performed in a cave in order to cut an individual's life short. Barrera (1970) also recorded the sacrifice of "virgin birds," as well as the role of small children in sacrifice rituals. In this case, the children imitated the sounds of frogs and toads, during cave rituals. These instances demonstrate the continued importance of children and water in cave related rituals.

The Expansion Period (1986-1997)

The Expansion Period is distinct in being the phase during which Maya cave archaeology teetered on the brink of disappearance. This wavering of the discipline was due primarily to a lack of senior scholars in the field during this time (Scott 2012:12). What kept the field from vanishing at this time was Brady's research at Naj Tunich, Guatemala, and his decision to become the first Mayanist to specialize in cave research. With no senior scholar in the subfield to support him, his idea of caves as important sacred places was not well received, in part because the idea of cave habitation was still so deeply entrenched, despite advances in the previous period. Toward the end of the period, caves came to be more (albeit grudgingly) accepted as ritual sites, due primarily to Brady's 45 publications between 1985 and 1997. These publications established basic methodological and interpretative approaches that cave archaeology followed during the next period (Kieffer and Scott 2012; Scott 2004).

Archaeology

The beginning of this period is demarcated by Brady's research with Andrea Stone (1986) at Naj Tunich, that established elite utilization of caves. Brady's (1989) dissertation followed up on this idea, establishing distinct areas within the cave: light, twilight, and dark zones and detailed the importance of these areas. Brady (1989:2-6) also made the first argument against cave habitation, which he supported with material evidence from Naj Tunich, Guatemala. The strongest evidence supporting his argument was that many broken ceramics had burning on the interior, rather than the exterior which would be expected if the vessels were used for cooking. This pattern of burning on the
interior has been proposed to be from the burning of incense and other organic offerings. The ceramics from Naj Tunich were demonstrated to have been used in this manner to burn copal. This was discovered when oven-drying of the sherds produced the smell of copal (James E. Brady, personal communication, 2006). The only other cave related research that was being conducted at the beginning of the Expansion Period was by Juan Luis Bonor Villarejo. Bonor Villarejo's (1989b) major contribution at this time was an attempt to compile an inventory of all known Maya caves.

Other than the multitude of cave archaeology publications, this period also marks the beginning of regular dissemination of field research by cave researchers. The first conference session devoted to Mesoamerican ritual cave use occurred at the 1994 Annual Meeting of the American Anthropological Association. Two years later, Jaime Awe established the Western Belize Regional Cave Project, which has drawn many students into the field and produced several dissertations, publications, and numerous Society for American Archaeology presentations well into the Reemergence Period.

Ethnography

Starting during this time period was the beginning of a boom in the Maya field of ethnography that continued into the Reemergence Period. Vogt's work in the Highlands of Guatemala had begun prior to this period, but it was his analysis of the sacred landscape that was most influential at this time period (Vogt 1981). His work not only changed the way archaeologists thought, but also probably encouraged many ethnographers to follow in his footsteps. At this time ethnographers such as Graham (1997), Kearney (1996), Knab (1995), Köhler (1995), Manca (1995), Monaghan (1995),

Sandstrom (1991, 2005), and Wilson (1995) were publishing their accounts and syntheses of existing literature. These works highlighted the sacredness of caves and their role in ritual and/or ideology for indigenous Maya peoples. With the large number of ethnographers referencing the ritual significance of caves, it became impossible to conclude that ritual did not occur in caves. In addition to documenting the sacredness of caves, rain-petition ceremonies, that included pilgrimages to caves and mountains for water and fertility, also included child sacrifice on occasions (Kubler 1985).

Epigraphy and Iconography

This period witnessed the formulation of epigraphic and iconographic evidence from Maya architecture that graphically depicted sacrifice. Schele and Miller (1986, Schele 1984) observed that most monumental architecture depicts bound captives and that glyphs of war were commonly followed by sacrifice. Similarly Marcus and Flannery (1996:104) recorded a monument at San Jose Mogote in Oaxaca that depicted sacrifice, potentially from heart extraction. Commentary from Diane Chase (1991:89) stressed that blood sacrifice was one of the most important aspects of Maya religion according to their own art. While researchers such as Freidel (1986:104) could see sacrifice embodied in other commonly repeated motifes such as the Quadripartite Badge symbolize "the principle of rebirth through death... an image of the driving motivation behind war, capture and sacrifice."

Sacrifice and Human Remains

During this phase, sacrifice was more frequently proposed as an interpretation for companion burials. One such example is the young boys who were placed beside the ruler of Copan, son of Smoke Imix (Bower 1990:56). However, not all researchers supported this idea. Hammond et al. (1991), for instance, made arguments for domestic utilization of tombs at Cuello over long periods of time-based on weak statistical evidence that suggested that an accumulation of 28 burials over 250 years (one death every 8.9 years) was typical for a single family lineage.

It was also during this period that the infamous skull pit at Colha was discovered (Massey 1989). This selective placement of skulls from adult and children displays evidence of trauma (cut marks indicative of decapitation and defleshing) and burning prior to burial. Numerous interpretations were originally proposed for the deposit (Massey 1989:44-45), including sacrifice (Mock 1998:115). However, warfare eventually became an accepted interpretation, due to destruction noted at the site and the multiple commingled deposits of human remains (Barrett and Scherer 2005:114). This supporting site data contributed to the interpretation that the individuals may have been part of an overthrown ruling elite (Hester 1985; Duncan 2014:266). The inclusion of contextual data into the initial interpretation of human sacrifice at the site may have contributed to the reformulation of what sacrificial deposits should look like.

Welsh (1988:144) narrowly defined evidence for sacrifice by shifting the focusing "primarily, though not exclusively," on skeletal mutilation. This requirement for cut marks as evidence would cause disagreement among bioarchaeologists working in the field in later periods and even be used to argue against sacrifice when cut marks were
present (Minajares 2003:47). Without this mandate for trauma to be present for sacrifice to have occurred, the classification of sacrifice with minimal dispute among bioarchaeologists who could rely of other data, such as body positioning. Colby (1989) used this prone body position to interpret sacrifice of eight prone individuals at the site of Sin Cabezas, Guatemala. Bound victims of sacrifice were also observed at Rio Azul (Adams 1986, 1990).

In terms of human skeletal material discovered in caves, Brady (1989:343-344) referenced many examples and provided the first theoretical discussion of sacrifice as an interpretation. In his work at Naj Tunich, he was able to demonstrate another case of sacrifice from a cave based on a child's skeleton with unhealed holes in the skull (Brady 1989:351). His interpretation of sacrifice was supported by the fact that the individual was discovered in a watery context. Dorie Reents-Budet and Barbara MacLeod (1986:8788) similarly suggested that infants placed in rimstone dams at Petroglyph Cave, Belize, were sacrificial victims based upon the watery context in which they were discovered.

The use of caves for other mortuary purposes was also raised at this time. During this period, Brady also documented, but did not explicitly state, the fact that one cave could have multiple mortuary functions. This is demonstrated by the discovery of the first cave tomb structure in the Maya area at the site of Naj Tunich, Guatemala (Brady 1989:348).

Even with all this abundant evidence of sacrifice, archaeologists and epigraphers were still arguing over the topic. Numerous individuals had actively critiqued other archaeologists for exaggerating the frequency and graphic nature of blood sacrifices and violence conducted by the ancient Maya (Schele and Miller 1986; Schele and Freidel

1990; Demarest 1993; Webster 1977). Even when material evidence did not support any particular argument, sacrifice was argued against. An interpretation made by Diane Chase (1991:93) at this time demonstrates this when she noted that "burials also sometimes contain knives or points... but these suggest blood from war rather than from individual sacrifice."

The Emergence Period (1997-Present)

This period covers the same years as the Recent Period as defined by Scott (2004, 2007, 2012). The naming, reclassification, and discussion of defining moments of this time period have been discussed numerous times over the years by Brady (1989, 1987), Brady and Prufer (2005), and Scott (2012). For the purpose of this chronology, the name was changed in order to prevent the eventual necessity of renaming the period, because eventually it will no longer be "recent." For instance if new methods or theoretical approaches are implemented, then a new chronological period designation would have to be made. There is also the possibility that no change will occur for quite some time and a period that spans fifty or more years will ironically be called the Recent Period. The new title was chosen based upon the growth within the field and the growing acceptance that caves are not primarily places of habitation and that mortuary practices that take place in caves are highly variable.

Archaeology

The importance of cosmology (Brady 1997b), and the idea of caves being living, fertile entities for the Maya, rather than inanimate places (Brady 1988) was also established at this time. These significant contributions allowed for a move away from
the idea that caves are not places of habitation, but rather sacred places (Brady and Prufer 2005b). Another significant event during the Emergency Period was Brady's cave survey conducted as part of the larger Petexbatun Regional Archaeological Project (Brady et al. 1997). This marked one of the first field projects that had a separate specialized cave crew working in conjunction with surface archaeologists.

Due to the plethora of data uncovered during this period, the habitation model of cave utilization was no longer being used by archaeologists who regularly work in caves in Central America. Slowly, scholars who work above ground cited the importance of caves in ritual. Takeshi Inomata (2006a:810) noted that "theatrical performances in Classic Maya society most likely took place in various spatial contexts, including small residential complexes and sacred locations outside of centers such as caves." However, some individuals have continued to make an argument that caves are used as habitation. Healy's (2007:271) critique of Brady and Prufer (2005, Prufer and Brady 2005a) exemplifies this when he pointed out that caves "regularly contain evidence for habitation (e.g., grinding stones, food residues, utilitarian ceramics, signs of fires)." This argument has lost favor due to existing ethnographic literature and continued research.

While food and organic material are unarguably commonly found in caves (Moreheart and Butler 2010), they are also common components of rituals (Scott 2009). Therefore, it is the context of the food that rules out long-term storage, which would indicate habitation. For instance, small amounts found in metates and small ceramics with burning on the interior are not suggestive of storage or cooking, rather it is typically suggestive of ritual. The discovery of grindstones in these contexts is not an indication of habitation, since they can be used in the ritual as a receptacle for burning items (Peterson
2006), as well as a place to prepare the items prior to offering (Stone 1995, Duran 1971, Gomez 1974). The argument that fire was a sign of habitation has also been dealt with by summarizing ethnographic literature which indicates that fire was and continues to be an important part of ritual (Bunzel 1952, Cook 1986, Scott 2009).

In addition to Healy's argument of habitation, the argument has typically been made that caves are dumps. Brady (1997b) addresses this point when he noted that in the cave sites of Dos Pilas refuse piles were in fact constructed from a termination ritual and the caves had a large quantity of polychrome ceramics. Such valuables are typically fragmentary, suggesting that the items were sacrificed or "killed" as offerings. During this time period, other cave archaeologists used environmental conditions to rule out long-term habitation in Central American caves. The high humidity, wet, cramped conditions, and limited fresh air frequently encountered in caves utilized by the Maya are not conducive to habitation (Brady 2004).

Epigraphy and Iconography

It is during this time period that we see a slight increase in the study of epigraphic and iconographic depictions of sacrifice. Brown and Garber (2003:93) noted that the ancient Maya "epigraphic and iconographic evidence suggests that captive sacrifice is a ritualized institution associated with warfare and is deeply rooted within Maya mythology." Brown (2005:131) also highlighted the overwhelming evidence via iconography, epigraphy and ethnographic sources that indicated the appeasement of supernatural guardian animals with sacrifice. Webster (2001:449) comments that texts dating to as early as the Formative period demonstrate the practice of sacrifice.

In the Maya codices, there are multiple references to imprisonment, death, and sacrifice. Vail and Hernández (2007:157) note that only the Madrid Codex (66a) illustrates sacrifice in association with a cave or cenote. Further exploration of the Madrid Codex (22a) proved to have another example of cave sacrifice. In it, a young individual painted blue has been stabbed in the eye. This individual is against a black circular background, reminiscent of a cave (Kieffer 2011). This depiction of a cave setting is supported by the eye motif surrounding the individual, which is typically associated with bats (Brady and Coltman 2011). This motif is reminiscent of the glyphs that Karl Taube (1989) has classified as tamales, which are an item synonymous with life. Such layering of meaning in imagery is supported by the ethnographic and ethnohistoric data that suggests human sacrifice was done in order to promote life and fertility. While, the ethnohistory and iconography generally focus on the act of sacrifice and not necessarily on the location in which the bodies are disposed of, which is that of archaeological interest. This fact was exemplified by a study conducted on images of sacrifice in the Maya Vase Database. Of 93 vessels that depicted human sacrifice, 44 vases did not indicate where the ritual had taken place; however the second-most commonly depicted location ($\mathrm{n}=27$) were caves (Kieffer 2013).

Some individuals chose to interpret this influx of iconographic data supporting sacrifice to insinuate that the Maya themselves were sensationalizing or exaggerating sacrifice. "The utter paucity of mass deposits of human remains in the Maya Lowlands is somewhat surprising, considering the prominence given to warfare and sacrifice in the epigraphic record" (Barrett and Scherer 2005:111). This statement was incorrect even at the time they published it. The facts that they also used the term "murdered" rather than
"sacrificed" and argued for political motives for the Colha skull pit, suggest an inherent bias against sacrifice. This bias still exists to among some bioarchaeologists.

Ethnography

Ethnographic research has continued into this time period; however this period includes a specific increase in research relating to ritual, material sacrifice, and caves. Leading this group of ethnographers was Linda Brown who worked primarily in the highlands of Guatemala. Brown's (2002) work was critical in pointing out the distinction between hearths used for cooking and those used for warmth typical for habitation. Her work also stressed the importance of looking at contextual data, because material sacrifices often consisted of objects that could be used in other everyday ways and thus might accidently get classified as discard or trash in a ritual context (Brown 2004). The topics covered in ethnographic research at this time also include the sacredness of mountains as the source of water and fertility (Winter et al. 2007), mountaintop shrines (Brown 2002, 2004), and the importance of caves in mountains (Christenson 2008).

Sacrifice and Human Remains

During this time, archaeologists began to realize that they had to look beyond the osteological data and rely also on contextual data, cultural material (or the lack thereof) in association with the remains, and analogies based on the ethnohistorical accounts. The focus on including contextual data at this time in bioarchaeological methods allowed for more in-depth studying of sacrificial deposits on surface sites. Such contextual data
include the location and position of the body, other artifacts or individuals present, and information from the rest of the site.

Thanks to the earlier interpretations by Colby (1989) and Adams $(1986,1990)$ more instances of sacrifice began to be interpreted at this time due to more detailed documentation of body position. Body position can give insight into a culture's mortuary practices and potentially the level of respect bestowed upon individuals from the community that deposited them in the cave. A supine position, face up on the back with legs extended flat, is cross-culturally and temporally considered to be a respectful and purposeful position for burying an individual (Komar and Buikstra 2008). Individuals in a supine, face down, position are disposed in a disrespectful manner. Such disrespect may indicate a potential sacrificial victim (Owen 2005: 331).

With the abundant examples of sacrifice, attempts were once again made to try to create more formulaic standards of analysis in order to make interpretations easier and less debatable. But in doing so, the variation within sacrifice rituals and the deposits they leave behind has become apparent. Berryman (2007) expanded on the characteristics of sacrificial deposits based upon the same data from Chalchuapa. Although she was hesitant to create a "formula," she did indicate the importance of public placement, lack of investment in burial/preparation, selection for a particular group in a population, lack of offerings, and dismemberment or decapitation with cut marks in defining sacrificial deposits. Documented sacrifices discovered at this time at Teotihuacan include public display of victims at Pyramid of the Moon (White et al. 2007), and both local and foreign sacrificial victims at the Feathered Serpent Pyramid (White et al. 2002) and Pyramid of the Moon (White et al. 2007). However, ornate decorative items discovered with some of
the individuals beg the question of the importance that a lack of offerings has in the declaration of sacrificial deposits.

Berryman (2007) highlights numerous cases of sacrifice throughout the Maya area in an attempt to construct a more detailed list of attributes to aid in interpreting sacrificial deposits. These references include the two pits with 14 probable young males at El Coyote, Honduras (Berryman 2007:393). Berryman's criteria for sacrifice were based off of her findings, and thus were circular logic. They were constructed based off of one site and used to proposed sacrifice for the same site. So, not surprisingly, the criteria do not function as well in other contexts. For instance, some sacrificial victims received body preparation in the form of pigment, which contradicts the notion that the victims received a lack of body preparation. Most importantly is the idea that cut marks have to exist, which has been demonstrated to be insubstantial, based on experimental archaeology of heart extractions (Tiesler and Cucina 2006). The idea that a single specific group was chosen for sacrifice is now speculative, due to isotope research at the Feather Serpent Pyramid suggesting the presence of both individuals from the area and people from different geographical areas (White et al. 2002). Similarly, the public location can be called into question due to the presence of sacrificial victims (burials 95-1, 37-7, 37-9, 34-10, and 95-1) near the Motmot (burial 37-8), Margarita (burial 93-2), and Hunal tombs at Copan (Price et al. 2010:17-19).

Tiesler $(2005,2007)$ has made the greatest contribution to the field of Maya sacrifice with her historical overview of the patterns of sacrifice among the Maya. In her criteria of sacrifice, she identifies characteristics that might be beneficial indicators that can be used to distinguish sacrifice from simple, natural burial. These characteristics
include: biological profile, form of death, post-depositional body treatment, primary deposition, post-depositional manipulation, and secondary deposit patterns (Tiesler 2007:22). Additionally, Tiesler (2005:259-260) recommends the applied taphonomic analysis of contexts and collective assemblages to aid in developing interpretations of deposits. Some of these criteria include presence of specific anatomical elements, definition of mortuary space, comparison with local and regional patterns, and chronological determination. Tiesler et al.'s (2010) comparative analysis of potential sacrificial victims and main burial deposits via bone representation index indicates that differential preservation and cultural processes do not act on these deposits similarly. This inconsistency has led Tiesler and Cucina (2006) to indicate deposition of the entire individual does not need to occur for sacrifice to have occurred. More importantly, Tiesler and Cucina (2006:505) used a unique experimental archaeological technique to demonstrate that sacrifice via heart removal could be done without leaving any cut marks on skeletal elements: "By itself, the proposed transdiaphragmatic approach does not require the involvement of any bony structures... consequentially, absence of evidence does not mean evidence of absence, as no traces on the bony surfaces should be expected in every instance of trunk opening."

These revised criteria and previously documented contexts allowed bioarchaeologists working in caves during this time to easily interpret cases of sacrifice based on contextual findings. Individuals at Actun Tunichil Muknal have been documented to have had their hands and feet in positions that would suggest they were bound, therefore this is something that can be looked for and confirmed in the archaeological record (Gibbs 2000:110, 113). Similarly, Mirro (2012) has made the
argument that the "spread wide eagle" body positioning of the skeleton commonly referred to as the "Crystal Maiden" in Actun Tunichil Muknal indicates a splayed-out post-sacrificial posture due to the lack of deliberately modest body positioning. This "spread wide eagle" body position has also been documented at Midnight Terror Cave in the case of an individual whose torso would have been partly submerged in a rim stone dam pool at the time of deposition (Kieffer 2011). Such positioning has been used to suggest that drowning may be an explanation for why individuals were deposited in watery features in caves (Kieffer 2011).

Similarly surface deposits were classified as evidence of sacrifice at this time using criteria put forth by bioarchaeologists. One such instance of this is the sacrificial classification made for the partial individuals, primarily children, in a vaulted tomb at Caledonia, Belize (Healy et al. 1998). The skulls of numerous individuals discovered in a Copan tomb were even interpreted as having been decapitated (Storey 2007:328). It is only with the work conducted by previous researchers that this idea of companion burials became widely accepted. This acceptance can clearly be seen when Rebecca Storey (2007:327) comments that:

Placing other individuals within a royal tomb was apparently common among the Late Classic Maya, but others this young are not mentioned. Ritual and appropriate human sacrifice in PreColumbian Mesoamerica called for the sacrifice of individuals of all ages and both sexes, so finding children/boys in this situation is not surprising.

However, even during this time period, many researchers still classified these type of contexts in different lights. For instance, McAnany et al. (1999:141) argued against sacrificial interpretations with an over-reliance of post-processual ideology:

While not negating the practice of ritual human sacrifice, a close reading of stratigraphic evidence coupled with observations on bone preservation and anatomical elements suggests an equally important role for ancestors in "completing" or "ensouling" a structure that may have been dedicated to the deceased, rather than the opposite case.

Similarly, Weiss-Krejci $(2003,2004)$ calls into question the idea of tomb re-use over time and lineage burials in tombs. However, her conclusions are based primarily on cross-cultural comparisons and lack of complete bodies.

It is during this time that the use of demographic data for assemblages is also used to interpret a sacrificial assemblage of individuals. Chamberlain (2006:64) and Weiss (1973) indicate that a J-shaped curve would be expected for a "normal" large mortuary assemblage. In this curve, there are high levels of mortality for newborns, which dramatically decreases after one year of age prior to slowly increasing with age at time of death. Data that reflect this J-shaped curve have been documented in mortuary assemblages interpreted as burials at Caves Branch Rock Shelter, Belize (Glassman and Bonor 2005), and Teotihuacan, Mexico (Storey 1992), for example. This curve differs from the demography of warfare, which shows a high number of deaths for young adult males (Chamberlain 2006). Assemblages in the Maya area that have been interpreted as resultant from sacrifice defy both of these patterns. Based upon work by De Anda Alanís (2007) on the demography of Cenote Saratoga at Chichén Itzá, which has ethnohistoric accounts of human sacrifice (Tozzer 1941:43-44, 116-117, 180-183), the demography of sacrifice should display a peak in the frequency of mortality for young adults and older children who are not otherwise at high risk of mortality.

Even with all this evidence, much like the topic of cave habitation, the topic of sacrifice is still debated. Cross-cultural contextual evidence regarding prone body position as an indication of violence and sacrifice (Pearson 1999) has been disregarded. For instance, prone body position in the Belize River Valley has been argued to be standard "burial" practice (Weiss-Krejci 2006), based on quantity alone, with no consideration of contextual data. This conclusion is contrary to other mortuary interpretations, given that face down body position has been used to infer sacrifice at other sites in the Maya area (Brady 1989:90, Berryman 2007, Lucero and Gibbs 2007, Fowler 1984). Prone is also noted as a body position associated with sacrifice in iconographic data (Miller and Samayoa 1998:65). Similarly, osteologists who only focus on the skeletal remains have made burial classifications based upon an absence of skeletal trauma, even when watery contexts at sites such as Dos Pilas clearly indicate sacrifice (Minjares 2003:v).

Scott and Brady (2005) discuss some of the problems regarding previous interpretations of human remains from cave contexts in the Southern Lowlands at this time. Their coverage of mortuary practices typical for the Southern Lowlands is extremely useful in reviewing many earlier reports that lack detailed descriptive analysis. They were the first to point out the shift in interpretations of human remains in caves, from predominately burial to predominately sacrifice. The only documented exceptions to this include elite burial at the sites of Naj Tunich (Brady 1989) and Quen Santo (Kieffer 2009), Chichén Itzá (Thompson 1938, Headrick 1991), and Balam Na (Garza et al. 2001). These unique cases of cave burial are considered distinct and separate from
other karst burials, due to the distinction cave archaeologists have made between caves and rockshelters.

The underlying difference is that elite burials in caves are located in the dark zone of the cave, while rockshelter burials lack a dark zone. These burials in rockshelters seem to be primarily utilized by the lower class. This conclusion is based on grave goods and a number of other considerations (e.g. diet, cranial modifications, dental modifications, health) (Saul et al. 2005:302). Rockshelter burials have been found at Mayahak Cab Pek, Mohibal Kanchi, and Saki Tzul (Saul et al. 2005), with the most extensive rockshelter cemetery noted at Caves Branch Rockshelter in the Belize River Valley (Bonor Villarejo 1995; Bonor Villarejo and Martínez Klemm 1995, Glassman and Bonor Villarejo 2005). It has been suggested that commoners may have been attempting to bury their loved ones at the portal of "the creation cave" (Glassman and Bonor Villarejo 2005:294). Such ideology mirrors the construction and utilization of temple tomb chambers which are symbolically caves within large constructed mountains. This is supported by the presence of speleothems brought in from elsewhere discovered in the tomb of Lim Ni Pulit and the slab of stone that covered Pacal's tomb at Palenque (Glassman and Bonor Villarejo 2005:294).

Scott and Brady (2005:278) also highlight the expanded understanding archaeologists have developed for cave utilization which focuses on rituals, including sacrifice. In Scott and Brady's (2005:277-278) discussion of cave sacrifice, they suggest the importance of watery deposits as indicators of sacrifice. It was first noted at the site of Naj Tunich that areas of "special elaboration" were associated with wet areas (Brady 1989:415). These elaborations include higher artifact densities associated with water,
architecture associated with pools, and the deliberate construction of a pool used for ritual petitions. In terms of human sacrifice as petitions for rain, Scott and Brady (2005:278) interpreted the human remains found at Cueva de Sangre as sacrificial, based on their association with water. This interpretation was supported by earlier ethnographic accounts that documented sacrifices being made to watery features (Fuentes y Guzman 1932, Sahagún 1969). Similar human remains or partial remains discovered in watery contexts include La Iluminada, Hun Nal Ye, Actun Tunichil Muknal, and Petroglyph Cave (Woodfill 2007: 546-547; Moyes and Gibbs 2000; Gibbs 1997, 1998, 2000; ReentsBudet and MacLeod 1986:87-88). These examples indicate that chances are good that human skeletal material found in wet environments are related to sacrifice.

Summary

This historical overview of data, methods, and theory relating to caves and sacrifice is a critical component to understanding interpretation of sacrifice in the Maya area through time. The fields of cave archaeology and sacrifice have been revolutionized only within the past few decades. It is only with a more holistic approach to research over time that we are now able to address questions related to rituals in caves, especially those pertaining to human sacrifice. More importantly, it is only now that the topic of sacrifice can be discussed with a more focused idea of the aspects that should be evaluated in order to make a sound interpretation.

The documented bias against sacrifice held by anthropologists is not a locally restricted phenomenon to the Maya area. Miranda Aldhouse Green notes a similar behavior by researchers in Europe when she states, "we regard human sacrifice today with revulsion, but there is no reason to suppose it was considered repugnant by ancient

Europeans" (Green 1999:58). Anthropologists often seem to feel an overwhelming need to represent the ancient people we study in the best possible light, and in doing so we sometimes refuse to accept all of their past behaviors and beliefs, because we do not fully understand them. However if anthropologists can contextualize these acts of sacrifice, the acts no longer seem to be purely barbaric. On the contrary, contextualizing the act within each culture's belief system, allows us to understand it on a more vulnerable level that transcends all cultures and thus makes the practitioners more human. After all,

Sacrifice has played a central role in many past and present religious systems. Human sacrifice themselves - symbolically - by rejecting the world to become monks or nuns. In some systems, such as the ancient Anatolian cult of Atys, the Egyptian Osiris, and of course, Christianity, divine beings themselves become sacrificial victims in order to grant salvation, be delivered from sin, or generate fertility or prosperity for their devotees. In all cases, sacrifice is bound up with an association between death and regeneration. (Green 1999:65).

The sheer universality of sacrifice as a practice done for similar purposes is what makes it a humanistic act that should not be ignored, but studied for what it is - a ritual act.

The last two decades of Maya bioarchaeological research have produced a significant amount of ritual violence-related research, while previous researchers were unwilling even to discuss the topic of sacrifice (Buikstra 2007:294-295). It is only within the current period of Maya research that arguments against sacrifice have been called into question as a form of researcher bias. Arthur Demarest (2007:593-595) was the first to actively challenge archaeologists on their denial of historical reality and the universality of sacrifice. This denial is only possible with researchers' over-dependence on specific scientific evidence, which in some cases might not exist, and the overzealous desire to present the ancient Maya with respect and sensitivity. It is only with a more holistic
approach that involves various methods (i.e., ethnography, ethnohistory, demography, experimental archaeology, forensics), that we can finally begin to understand how sacrifice is manifested in the archaeological record. Sadly, it is only within the last decade that a more holistic approach to studying sacrifice and other mortuary contexts has been accepted by the field.

CHAPTER 4 THEORETICAL DISCUSSION OF SACRIFICE

Like many topics within archaeology and anthropology, there are numerous theoretical approaches that can be used to study the topic of human sacrifice. This chapter does not aim to be an all-inclusive approach to the general topic of human sacrifice. Such a goal would be impossible to achieve due to the vastly differing and sometimes opposing beliefs and theoretical stances on why sacrifice even occurs. Rather, the goal of this chapter is to frame the discussion of human sacrifice as relevant to the particular case study of Midnight Terror Cave, Belize.

At the most fundamental level, theories pertaining to sacrifice allow anthropologists to answer some questions or propose hypotheses that can be tested from the material evidence. One of the most critical of these questions is why sacrifice is performed. Secondary is the more humanistic question concerning why a particular person is chosen for sacrifice. When trying to answer questions about sacrifice in the archaeological record, the material aspect of sacrifice actually proves to be one of the more difficult aspects. For instance, not all evidence of human sacrifice, especially that which is left in soft tissue, survives the diagenic and taphonomic processes that occur during the formation of the archaeological record. The materiality of sacrifice is not limited to the actual physical remains of the person or material object that was sacrificed. Other aspects of the cultural context that should be included in developing a sound interpretation of sacrifice within a culture include evidence from the ethnographic, ethnohistoric, iconographic, and mythological data, as discussed previously in the history section of this dissertation.

In an attempt to explore as many of the critical questions surrounding sacrifice as possible, multiple theoretical approaches will be considered. Three resounding questions that most researchers have when dealing with the topic of sacrifice are: Why is sacrifice performed? Who is chosen for sacrifice? and Why does sacrifice persist within a culture? No one theoretical approach to the topic of sacrifice is capable of addressing all three of these questions. However, exploring responses to these questions becomes possible when sacrifice theory, costly signaling theory, and the theory of structural violence are used in tandem. It is through this multifaceted approach that the answers suggested by one theoretical perspective can be tested and evaluated within another theoretical framework., thereby strengthening our overall understanding of sacrifice.

History of Sacrifice Theory

In the simplest words, sacrifice is the offering or giving up of something of value. Typically it is done in the belief that it will lead to a more predictable outcome that may benefit an individual at a later time or over the long term. The first theory of sacrifice focused on the idea that the sacrifice was a gift given so that another gift would be given in return (Tylor 1871). Hubert and Mauss (1964 [1898]) were the first to examine sacrifice as a means which allows for communication between the sacred, ritual world of gods and the profane, mundane world of humans. Valeri (1985) later combined these theories to propose that the gift of sacrifice is a means of communication with deities. More importantly, Valeri (1985) explains how the imbalance of reciprocity and the imbalance between the gift and the expected outcomes are not as drastic as they initially seem because what man is asking for in return requires little effort from the deity.

Therefore, if the perceived value of the sacrifice by the sacrificer is large, the imbalance of the gift does not exist and the little effort the deity gives in return allows for the deity to maintain his superiority.

The most common themes of communication between humans and deities associated with sacrifice deal with petitions for reproduction and fertility; while the act itself maintains social order and is necessary to renew or maintain the life of gods (Bloch and Parry 1982; Merrifield 1987). Based upon ethnohistoric, ethnographic and archaeological evidence, the ancient Maya conform to this cross-cultural generalization for the existence and function of sacrifice (Brady 2005; Brady and Scott 1997; Gibbs 1997, 1998, 2000; Owen 2002, 2005; Vogt and Stuart 2005; Thompson 1959, 1970, 1975; Tozzer 1941; Vogt 1969). However, ethnographic and ethnohistoric accounts present significant variation in individual practice as well as change which can occur over time that prevents us from truly understanding the intent of the petitioner at the moment a sacrifice is made.

In addition to grappling with the difficulty of discerning the underlying intent of sacrifice, the topic can be difficult for anthropologists to tackle because it is inherently a multi-discipline research topic. It is a topic in which theoretical explanations and material evidence are intertwined. In some cases, specific material evidence of sacrifice from limited cultural perspectives has contributed to the establishing of theoretical models (Tylor 1871; Valeri 1985), and over time these theoretical models have then been used to explain other lines of material evidence. While this may create somewhat of a circular understanding of sacrifice, it is the way in which most ritual theory has developed over time.

Regarding who is sacrificed, some ritual theory indicates a preference for the victim to be foreign, but not too foreign (Girard 1979). Girard elaborates on this by explaining that those being sacrificed have to be known by the sacrificing group as people who do not belong or do not yet belong to the group. In the Maya area, this could possibly translate to people who "looked Maya", spoke a Mayan language (but possibly a different dialect), but might not have been born or resided in the polity that was performing the sacrifice. It could even mean that the individuals were from the polity performing the sacrifice, but were not socially accepted as full members of the group due to illness or age. Foreigners and those on the fringe of society have been suggested to include: "prisoners of war, slaves, small children, unmarried adolescents, and the handicapped" (Girard 1979:12). This theory fits the Maya case, since captives and children who may not have been initiated into the community or orphaned are commonly noted as sacrificial victims (Fuentes y Guzman 1932:36; Tozzer 1941:44n; Scholes and Adams 1968:156; Scholes and Roy 1968; Baudez and Mathews 1979; Marcus 1974; Schele and Miller 1986; Schele 1984; Brady et al. 1997:361; Healy et al. 1998; Lucero 1999; De Anda et al. 2004: 378; Berryman 2007:378).

By analyzing who was chosen for sacrifice and when, deeper theoretical issues pertaining to why human sacrifice occurred can potentially be addressed. The field of ritual theory is conflicted regarding the relative importance of some of the underlying psychological functions of sacrifice. While some theorists like Gluckman (1963), Turner (1966), Girard (1979) and Burket (1983) argue that sacrifice allows for channeling and repression of human behavior, thus keeping order in society; others such as Heesterman (1985), Valeri (1985) and Smith (1998) believe the act is pure and a necessary ritual for
society that acts to define the individual or group (Bell 1992:173-175). If human sacrifice is primarily performed during a specific period that is already witnessing much conflict (such as the time of climatic and political instability that was the Terminal Classic in the Maya Lowlands), then one would suspect the behavior to relate to anger and frustration over uncontrollable environmental factors. However, if an act was conducted repeatedly through time, unrelated to external forces, this would support the idea that sacrifice was used to define an individual or group or even control the group.

The ritual act of sacrifice and human sacrifice in general have been well documented throughout time and cross-culturally. Because so many cultures have been studied and contribute to our understanding of sacrifice, it is important to understand that not all aspects of ritual and sacrifice are applicable to every culture. This inability to simplify sacrifice theory has led some theorists to look beyond general models or laws to focus on why sacrifice occurs. Cross-culturally, periods of crisis are correlated with increased ritual activity (Beattie 1980), including pleas for divine intervention (Malinowski 1954; van Gennep 1960). However, some ritual theorists state that this sacred obligation becomes neglected during times of great peril (Girard 1979).

In recent years our theoretical frameworks for understanding sacrifice have included more evolutionary and functional views on sacrifice that respond to specific case studies. These frameworks include the idea of sacrifice as a form of costly signaling, as well as an act of structural violence within the society. While still grounded in traditional sacrifice theory (i.e. Gluckman 1963; Turner 1966; Girard 1979; Burket 1983; Bell 1992), I aim to pursue understanding the role that evolutionary and structural approaches have in explaining the purpose of sacrifice and why it occurred.

Costly Signaling and Sacrifice

Costly signaling, commonly referred to as conspicuous consumption (Vleban 1899), is the act of displaying, wasting, or redistributing material wealth in an attempt to manipulate, impress others, or gain their support. Trigger (1990) pointed out that conspicuous consumption violated Zipf's (1949) principle of least effort, thereby giving archaeologists a means to study power and status via the material record left behind by costly signaling. The theoretical framework was then applied to a wide range of archaeological issues, including monumental architecture in the Maya area as a signaling mechanism for competitive strength (Neiman 1997).

There is some hesitation by archaeologists to utilize costly signaling theory due to the limitations of applying the theory to the archaeological record. This was demonstrated in the Codding and Jones (2007) versus Hildebrandt and McGuire (2002, 2003, McGuire and Hildebrandt 2005, McGuire et al. 2007) debate. This debate pointed out the fact that different lines of investigation, such as ethnographic analogy, used narrowly and selectively, can weaken the argument of costly signaling by analyzing specific data in isolation from the broader context. It is for this reason that McGuire et al. (2007:359) state, "It is not the bones themselves but their context that potentially provides insight into signaling behavior." For this reason, osteological analysis alone cannot be used to fully understand the act of human sacrifice - the context must also be considered. In the case of Midnight Terror Cave, this context is the liminal, sacred space of a cave (see Chapter 2).

The only proposed modification to costly signaling theory from the field of archaeology has come from Madsen et al.'s (1999) introduction of the bet-hedging and variance reduction model. This model is based on Dunnell's (1989) observation that cultural elaborations are often found in environmentally marginal areas, rather than ecologically diverse and rich ones. The bet-hedging model suggests that costly displays are a type of social investment which could be utilized at a later time. Therefore, the models do not necessarily contradict each other, as they both "attempt to comprehend the evolutionary basis for wasteful energy expenditure" (Aranyosi 1999:360).

This bet-hedging model within the theoretical framework of costly signaling can be transcribed to human sacrifice in the Maya area. It is hypothesized that sacrifice in caves is performed for the purpose of rain petitions (Ishihara 2007; Moyes et al. 2009), which would indicate the act is performed in an environmentally marginalized area or during periods of climatic fluctuations. This act could be viewed as a social investment if the leader and/or the group performing the sacrifice use the act of sacrifice as a way to establish their place in the cosmos and strengthen their ties to the gods. This investment into their status within the community could then be used later to gain other resources. Such arrangement might only continue to work if the group perceived the petition to be granted by the gods. This means that the bet-hedging model would eventually collapse if rain did not come following repeated sacrifices.

The use of costly signaling theory has been further developed in the field of behavioral ecology. Much of this literature revolves around biological explanations of costly mating signals (Zahavi and Zahavi 1997) and explanations of perceived altruistic behavior (Gurven et al. 2000, Lotem et al. 2002, Price 2003). An offshoot of this
behavioral ecology approach has applied the theoretical framework to explain ritual practices of sacrifice. The basis of this comes from the idea that rituals and taboos are forms of signaling that can create intragroup cooperation when they force participants to sacrifice material wealth (Sosis and Bressler 2003) to the extent that they then produce signals that are hard to fake (Zahavi and Zahavi 1997, Irons 2001).

The main contributors to this body of literature have very recently been applying this behavioral ecology-based theoretical framework to evaluate the interconnectedness of violent rituals and how they promote group cohesion (Sosis et al. 2012, Atran and Ginges 2012). Relying upon numerous case studies (Atran, 2002, Johnson 2008; Sosis and Alcorta 2008), Sosis et al. (2007:245) notes that "cooperation and intra-group trust achieved through costly ritual behavior enhances the ability of religious groups to organize for acts of terror and war." While all violence cannot be explained in an evolutionary paradigm (Abbink 2000), this seems like an appropriate explanation for one of the underlying reasons why human sacrifice persisted among the ancient Maya. This is especially likely given that the ancient Maya relied upon acts of terror and warfare to obtain at least some of their human sacrifices (Schele 1984; Freidel 1986:104; Schele and Miller 1986; Brown and Garber 2003; Vail and Hernández 2007).

Although Sosis and Bressler (2003) primarily focus on how an individual sacrificing his/her life can be a form of costly signaling; it is possible for the sacrifice of another individual to be a costly act as well. There are many ways an individual may contribute value to their society including: potential labor, potential of contributing to the society's advancement through thought, potential genetic contribution, etc. While we cannot predict the cultural and social value that the ancient Maya placed on specific
individuals, it is possible to hypothesize the variables that contributed to the cost of acquiring an individual for sacrifice and potential contributions an individual could have made to the society. For instance the cost of sacrificing a captive individual would include the time, energy, and lives lost in conducting raids or waging war in order to acquire the individual. In addition, any potential labor or other forms of social contribution that the captive could have performed would also be lost.

When an individual is sacrificed from within the group, the cost of acquiring the individual may not be as time and labor intensive as warfare - especially if the individual is very young and helpless. However, his/her potential labor, potential genetic contribution, cultural capital and social capital within the group would have to be calculated. It is important to note that in the case of an individual sacrificed from within the group, one with high cultural and social capital may not necessarily be a logical choice for sacrifice. His/her connectedness within the group could potentially cause upset and strife if he/she were to be killed. Sacrificing an individual with low cultural and social capital may be more ideal. This idea of sacrificing an individual with low cultural and social capital may explain why ritual theorist Girard (1979:12) proposes that "small children, unmarried adolescents, and the handicapped" are among some of the groups of people typically chosen for sacrifice.

Structural Violence

The idea of structural violence was devised by Johan Galtung (1969). Structural violence is simply the injuries or deaths caused by society's political and economic institutions (Galtung 1993, Farmer et al. 2006). Researchers have elaborated on the idea of injuries to include more than physical harm, but to also include the diminishing of
lifestyle by means of threatening violence or impairment of access to fundamental human needs (Moor et al. 1994, Gault 1993). The many facets of causation for violence are why theoretical frameworks that incorporate historical and contextual factors are ideal for explaining the creation and maintenance of violence within a society (Martin 1997).

Although structural violence is technically a high-level theory, it can also be represented by a flow chart model that suggests why a particular form of violence continues to occur (Figure 4.1). This model of structural violence, as it applies to bioarchaeology, relies heavily upon social inequality in a society and how those in control are able to appropriate, influence, and control resources (Klaus 2012).

In this model, the differential access to resources causes detrimental effects on various levels of human health. Impacts to health via physiological disturbances can be minimally visible to an observer. Minimal impacts such as heightened and prolonged periods of mental stress due to insecurity and fear are at one end of the spectrum. The more apparent levels of physiological disturbance could include impacts on growth and development or even physical health of an individual if certain resources are severely limited. In the case of human sacrifice, the ultimate physiological disturbance is the cessation of life, caused by the culturally buffering system of a society's ideology which allows for the ritual act of human sacrifice to be performed.

Figure 4.1. Feedback loop representing how structural violence in a society relates to bioarchaeology (Klaus 2012).

The ideology among the ancient Maya that allowed for the reinforcement of the structural violence feedback loop in the practice of human sacrifice comes in the form of the politically sanctioned performances of ritual violence (Inomata 2006a; Vail and Hernandez 2007, Duncan 2011). These performances (or cultural buffering systems) including acts of raiding, warfare, and sacrifice were governed and controlled by the
ruling class. This created an environment in which resources could be acquired, but yet still controlled by the ruling elite.

The "vicious" part of this feedback loop model is that, while one polity may be able to obtain resources, it could impose differential access to resources to another polity, which might then be passed on to another polity. All the while, stress within the system due to limited environmental resources (as experienced during the Maya Late to Terminal Classic period due to climatic instability) could increase. An increased stress in the feedback loop system, due to decreasing resource availability, could eventually trigger a behavioral alteration. This may be an explanation for how the practice of ritualized human sacrifice originated. The act could have been used as a means to create differential access to resources such as labor or as a means to further increase social inequality.

Additionally, this behavioral variable in the feedback loop also allows for discontinuation of human sacrifice. One of the simplest means of reducing the stress within the system would be an influx of environmental resources. Such an influx could occur once an environment stabilized after a period of climactic instability. Another means of stress reduction within the feedback model would be through the destabilization of the social inequality and the restriction of resources that the elite impose upon other classes of society through ritualized and politicized performances.

These ritualized and politicized performances tie back into the theories of costly signaling. Under the structural violence model utilized by the Classic Maya kingship (Figure 4.1), costly signaling during the performances by an elite member of society would contribute to an increase in status through imposing costs, redistributing resources, and dispensing of benefits (Boone 2000). However, the value of the sacrifice and the
strain on the social system would vary dependent upon the social and cultural capital of those chosen for sacrifice and whether they were from within the polity or outsiders.

If sacrificed individuals come from within the group, this would indicate that the group maintained intragroup cooperation. This practice would inevitably survive for a time, since religious costly acts are more likely to survive than secular ones (Heinrich 2009). This system would be able to persist so long as free-riders do not take advantage of the system (Iannaccone 1992:275-276, Heinrich 2006). A free-rider in this sense would be an individual or family that does not contribute to the pool of possible sacrificial offerings. Therefore, for this system to remain balanced, all families (including the elite ruling family) would have to participate and provide one of their own eventually. For a system like this to last for an extended period of time, the society would need to possess an ideology that compelled individuals to participate or would have to be more egalitarian. Without one or both of these elements, people may be inclined to leave due to insecurities or eventual mistrust of the elite.

If the sacrificed individuals were outsiders, then the leader or ruler would be putting forth effort and resources in obtaining prisoners. So long as the ruler was successful in costly raids to obtain captives, the elite would signal their status as the sacrifice provider, possibly increase social inequality, and maintain group sodality. However, the act of raids and sacrifice would eventually lead to political instability on a wider geographical scale. Over the course of time, a successful polity would eventually overtake or diminish adjacent polities, thus creating a further traveling distance between resources. Eventually this distance could result in a situation where the cost of raiding did not benefit the expected outcome.

With drought putting pressure on resources for example, a large population would become a costly investment to maintain. The great length of a drought or period of climatic instability would inevitably result in a failure of the equilibrium in the costly signaling system. Since "religious beliefs can be directly falsified by experience, they tend not to stick around for the same reasons" (Heinrich 2009:254). This falsification likely would occur when ritual petitions failed to procure rain. With human sacrifice placing a high potential cost on a household, it seems reasonable to assume that people would lose faith in the system and walk away from the polity, thus causing disruption of trade and social networks and eventually contributing to decentralization of the polity.

The costly signaling and structural violence models for human sacrifice could be used to explain the persistence of either insiders or outsiders being chosen for sacrifice. However, sacrifice theory states that outsiders are preferred. While it is possible that the people utilizing Midnight Terror Cave may have eventually turned to sacrifice of those from within the community, it seems that this would dramatically increase the pressure within the feedback loop and bring the practice to a halt rather quickly. The next two chapters of this dissertation focus on the ancient Maya near the site of Midnight Terror Cave, Belize whose actions represented in the archaeological record demonstrate the expected behavior of sacrificing outsiders. In this particular case, the sacrifice of outsiders includes both probable social outcasts and individuals who would have been viewed as geographical outsiders.

CHAPTER 5: THE USE OF OXYGEN ISOTOPE ANALYSIS TO HELP DETERMINE PLACES OF ORIGIN IN THE MAYA LOWLANDS: A CASE STUDY FOR ESTABLISHING LOCAL OR FOREIGNER STATUS OF POSSIBLY SACRIFICED INDIVIDUALS FROM MIDNIGHT TERROR CAVE, BELIZE.

Introduction

In order to explore the larger social implications of the sacrifice of individuals found within Midnight Terror Cave, it is important to determine where these individuals originally came from. Determining place of origin for individuals in the archaeological record, however, is fraught with difficulties. Most of the stable isotope data used to address the issue of locality for individuals come with caveats that must be taken into account when making interpretations of the data. For instance, the oxygen isotope ratio can be impacted by numerous climatic and geographic variables, including local water signal, altitude (Gat 1971; Gonfiantini et al. 2001; Poage and Chamberlain 2001; Clark and Fritz 1997), latitude, humidity, and temperature (Price et al. 2014; Spence et al. 2004; White et al. 2000, 2004, 2007), elevation and distance inland (Dansgaard 1964; White et al. 2007), and seasonal variation in rainfall (Simpkins 1995), especially in the tropics (Rozanski et al. 1993; Lachniet and Patterson 2002, 2006). Additionally, anemia (Wright and Chew 1998) and cultural practices, including duration of breastfeeding (Jay 2009; Wright and Schwarcz 1998) and cooking, can affect the oxygen isotope signal (Daux et al. 2008). The wide array of factors that can impact oxygen isotopes as well as the minimal variability in certain parts of the Maya area (Scherer et al. 2015) discourages many bioarchaeologists from using this method as the primary indicator for
determination of place of origin. Thus, for the past decade, strontium and heavier isotopes, which are widely accepted as having a greater utility in determining an individual's place of origin, have been considered to be the better choices for determining place of origin.

The inherent problem with both strontium and oxygen isotope analyses is, however, determining what the local signal should be and whether it has been stable over time. Often this is based on the collection of modern local samples and comparison to presumed local individuals. Oxygen isotope analysis has one benefit over strontium: the relatively inexpensive cost of running samples. Processing cost ultimately becomes the limiting factor for many researchers who cannot conduct analyses on large quantities of samples, especially when numerous samples must be run to establish a local baseline. However, recent research by Laffoon et al. (2013) in the Caribbean region suggests that lighter elements such as carbon and oxygen still hold much promise in contributing to our understanding of migration and determining place of origin in some regions.

Rather than establishing the local oxygen isotope value for Midnight Terror Cave by running modern samples, this chapter aims to estimating what a local oxygen isotope signature should be by using step-wise regression on available published data from the area surrounding Midnight Terror Cave and its periphery. This method may reduce the need for running extensive background sampling to determine a local oxygen signal.

Background

Midnight Terror Cave

The site of Midnight Terror Cave (MTC) is located in the karstic Roaring Creek Valley near the village of Springfield in the Cayo District of Belize. The site was discovered in 2006 and received immediate attention from the Institute of Archaeology in Belize because of the many human skeletal remains found in various clusters deposited on the cave floor. The cave is composed of multiple levels of karstic chambers that cover an area more than 200 m by 50 m . Many of the easily accessible areas in the cave have undergone substantial artificial modification during the pre-Columbian era to create leveled plazas, trails, and terraced steps on the sloping floors of the cave (Brady and Kieffer 2012). Such modifications suggest that performance of public or semi-public rituals would have taken place within the cave. Ceramic analysis indicates the cave was utilized as early as the Middle and Late Preclassic period (1000 BC - AD 100), with increased utilization during the Early Classic (AD 250-600), before the peak of activity during the Late and Terminal Classic period (800-1000 AD) (Scott 2011). Two radiocarbon assays on human skeletal material at the site yielded dates 690 ± 20 years (UGAMS\#16770, MTC VI 23-140) and 670 ± 20 years (UGAMS \#16771, MTC VIII 13168) uncal BP, also corresponding to the Classic (Kieffer 2017:51).

Osteological analyses by the author of skeletal remains recovered from MTC (see Appendices A and B) indicate that at least 118 individuals were deposited, thus making this the largest prehistoric skeletal assemblage from a cave in the southern Maya lowlands. MTC yielded multiple lines of evidence that indicate it is a place where human sacrifice may have occurred. For instance, the demographic distribution from the site
does not display a typical J curve (Chamberlain 2006; Weiss 1973), which would have a large proportion of very young infants, but with dramatically fewer individuals two to three years of age. In this demographic distribution, numbers of people gradually increase with age, with a final spike in the numbers of older adults. A "J curve" is typical of normal mortuary patterns seen in cemeteries cross-culturally through time (Chamberlain 2006; Weiss 1973). In contrast, the MTC assemblage has an irregular age distribution, with an abnormally large proportion of young adults and children between five and nine years of age (Kieffer 2014, 2015). A similar demographic profile has been documented in the Sacred Cenote at Chichén Itzá (De Anda Alanís 2007), a site with ethnohistoric evidence that indicates in situ sacrifice (Tozzer 1941).

Additional evidence at MTC suggests that a number of the individuals were sacrificed, including 28 instances of perimortem trauma (including blunt force, sharp force, and/or scalping) on at least 16 individuals (Kieffer 2011, 2015a). The locations of cut marks on the ends of long bones, on a sternum, and on multiple crania are consistent with defleshing, skin flaying, and heart extraction (Tiesler 2007:24-26). Bones of individuals discovered at the site were typically found commingled on the ground surface within the cave without associated grave goods. Additionally, many of the individuals were either found in or adjacent to the cave's water features such as rimstone pools. Such water features have been argued through the use of ethnographic analogy by cave archaeologists to be places where human sacrifice occurred for the rain gods, perhaps by drowning (Kieffer 2011; Scott and Brady 2005:278). Such manner of human sacrifice is depicted by the ancient Maya in the Madrid Codex (Vail and Hernández 2007:150-151, M.32b).

In 2009, the core of the surface site Tipan Chen Uitz (TCU) was discovered by the Caves Branch Archaeological Survey reconnaissance team about 1000 m from MTC. Archaeological investigations at TCU indicate that the site dates from the Late to Terminal Classic period, based on architecture, ceramics, and a calendrical stela date of AD 711 (Wrobel et al. 2012:242). The site of TCU is surrounded by more than 20 caves, many of which contain abundant ceramics and skeletal remains. However, MTC has the largest skeletal collection of any of these caves and differed in its utilization from the rest of the caves and rock shelters in the area, which were used for normal (i.e., nonsacrificial) cemetery purposes (Glassman and Bonor 2005; Wrobel et. al 2014).

Stable Isotope Analyses

Isotopic analysis conducted on tooth enamel carbonate, bone collagen and bone apatite can provide geographical and dietary signals that in turn can permit osteobiographical reconstruction of individuals' lives through various isotope elements. Oxygen isotopes, while not the preferred isotopic method for demonstrating migration and place of origin, have been successfully utilized in numerous cases. Examples of demonstrated migration include determining the place of origin for sacrificed soldiers and buried elites at Teotihuacan (Spence et al. 2004; White et al. 2002, 2007), differences between individuals from the Valley of Oaxaca and the Valley of Mexico (White et al. 1998), as well as for distinguishing differences between individuals from different regions within Peru (Knudson 2009). Oxygen isotope analysis also is commonly used to determine migration and place of origin for other species in the fields of biology and ecology (Chamberlain et al. 1996).

Oxygen isotope values can be used as an indicator of geographical origins via factors that affect the signal such as drinking water, altitude, latitude, and distance from the sea (Sharp 2007). Price et al. (2014) and Freiwald (2011) have confirmed the correlation between distance inland and elevation within the Maya area. The explanation for why this correlation exists is due to isotopically heavier rain falling closer to coastal areas and rainfall decreasing in isotopic weight as it moves inland. White et al. (2000, 2004,2007) have also indicated high $\delta^{18} \mathrm{O}$ values are typical for low elevations that are hot, humid, and experience minimal rainfall; while low oxygen values are typical for high elevations, that are cooler and drier. Cultural factors such as cooking and breastfeeding practices can affect the accuracy of oxygen isotopes in migration and place of origin research (Jay 2009; Daux et al. 2008; Wright and Schwarcz 1998). However, if these cultural practices do not fluctuate significantly through time and are widely practiced in a similar manner, they should not greatly interfere with the ability to use oxygen isotopes for migration studies.

In addition to the oxygen isotope data, carbon isotope values obtained from enamel can also aid in reconstructing place of origin to a certain degree. Regional dietary differences have been noted throughout the Maya area and are useful for determining expected values of isotope data for given areas and time periods (Gerry 1993; Reed 1999; Sommerville et al. 2013). Gerry's work concludes that the mean values and standard deviations of carbon isotope values overlap between various social statuses, however this overlap is probably due to regional and temporal variation (Gerry 1993). Eventually, as data sets become more robust, these possible causes of variation may be teased out. Until
then, $\delta^{13} \mathrm{C}$ and $\delta^{15} \mathrm{~N}$ signals can be used to determine if an individual's diet fits within expected ranges for the area.

Methods

Database Methods

To aid in determining geographical origin of individuals from MTC, a database with isotope values from 640 individuals recovered from archaeological contexts throughout the Central America region was created by the author. The published values included in the database cover large areas of the Belize River Valley and Copan Valley in Honduras. These datasets include results from the work of Freiwald (2011), Gerry (1993), Price et al. (2010), White et al. (2002, 2001, 1993), Wright and Schwarcz (1989), and Wright (1994) (See Table 5.1 for descriptive statistics). While additional isotope data are available for the area, these published large isotope datasets allowed me to create a preliminary baseline, which in turn can be used for statistical applications. Of the 640 individuals in these datasets, 119 have $\delta^{18} \mathrm{O}$ data available from enamel samples, and 68 have $\delta^{18} \mathrm{O}$ data available from bone apatite samples. Sampled individuals represent a wide temporal period, ranging from the Preclassic to the Terminal Classic periods. This wide temporal range was used to try to mitigate fluctuations over time due climatic changes. No attempt was made to convert $\delta^{18} \mathrm{O}$ values obtained from the bioapatite of bone to make them comparable to results from carbonate from enamel. This choice was
influenced by the documented problems with conversion due to inherent problems of regression analysis with available data (Chenery et al. 2012; Pollard et al. 2011).

Variables that are known to affect oxygen isotope values were determined for archaeological sites included in the database. These variables include elevation, altitude, distance from the sea, and known values of local stream or river water collected by Lachniet and Patterson (2009) (Figure 5.1). Stepwise regression of these variables that affect oxygen signals was performed against the available isotope data from bone apatite and dental enamel. Parameters for entry into the stepwise was a probability of F less than or greater than 0.05 and removal if greater than or equal to 0.1 .

Figure 5.1 Map of the Upper Belize River Valley with oxygen isotope values for modern river water from Lachniet and Patterson (2009) noted in parentheses. Larger font indicates ranges of oxygen isotope values from enamel in database and from MTC. Map modified from Helmke (1999) and based on previous maps by Conlon (1998) and Campbell (1991).

Isotope Methods

Collagen from cortical bone samples of 20 individuals (16.9\%) from MTC with obvious signs of trauma, pathology, or dental modification were part of the initial pilot study of isotope analysis conducted on material from the site. All samples are labeled based upon the collection's catalog number which encodes the Operation (i.e., chamber within the cave, denoted by a Roman numeral), Lot (denoted with an Arabic number), Sublot (if established during the research and denoted with a letter), and finally a unique specimen number for each bone or tooth.

Samples of bone heavily covered with calcium carbonate material deposited in the cave environment were avoided in sampling, although many of the samples came from once-watery features from within the cave. Isotope analysis initially focused on obtaining $\delta^{15} \mathrm{~N}$ and $\delta^{13} \mathrm{C}$ from bone collagen in hopes of finding differences in diet that could be used to infer differences in status. Bone samples were processed similar to the Wright (1994:190) method which uses a 0.5 M EDTA solution to demineralized samples. Following demineralization, samples were rinsed to neutral with purified water, soaked overnight with 0.125 M NaOH to remove humic acids, and rinsed to neutral again before freeze drying. The samples were run at the Center for Stable Isotopes at the University of New Mexico in 2010.

Site		$\begin{aligned} & \delta^{13} \mathrm{C}_{\text {(PDB) }} \\ & \text { (collagen) } \end{aligned}$	(bone apatite)	$\begin{aligned} & \delta^{15} \mathrm{~N}_{\text {(aIR) }} \\ & \text { (collagen) } \end{aligned}$	(bone apatite)	$\begin{aligned} & \delta^{13} \mathrm{C}_{\text {(PDB) }} \\ & \text { (enamel) } \end{aligned}$	$\begin{gathered} \delta^{1 *} \mathrm{O} \text { (\%smow) } \\ \text { (enamel) } \end{gathered}$	$\begin{gathered} \delta^{* 7} \mathrm{Sr} / \delta^{* 6} \mathrm{Sr} \\ \text { (enamel) } \end{gathered}$	Reference(s)
Aguateca, Guatemala	Average				14.94 ($\mathrm{n}=9$)				Wright (1994:235)
	Range				13.4-19.2				
Altar de Sacrificios, Guatemala	Average	-8.66 ($\mathrm{n}=11$)	-5.713 ($n=15$)	6.845 ($n=11$)	15.63 (n=23)				Gerry (1993:204-206),
	Range	-11.6--8.9	-7.9--2.9	8.6-11	11.4-19.3				Wright (1994:234)
Altun Ha, Belize	Average	-11.92 ($\mathrm{n}=56$)	-8.07 ($n=69$)	10.71(n=53)					White et al. (2001:377-378)
	Range	-16.3--7.6	-11.5--4.9	9.2-13.0					
Baking Pot, Belize	Average	-9.45 ($\mathrm{n}=10$)	-5.88 ($\mathrm{n}=10$)	9.3 ($\mathrm{n}=10$)		$-3.07(n=1)$	-4.27 ($n=1)$	0.7073 ($n=1$)	Freiw ald (2011:432-433),
	Range	-10.0--9.2	-7.1--4.6	7.9-10.6					Gerry (1993:199-200)
Barton Ramie, Belize	Average	-10.04 (n=33)	-5.97 ($n=22$)	9.12 ($n=44$)					Freiw ald (2011:415-443),
	Range	-13.9--8.1	-7.6--5.4	7.7-11.0					Gerry (1993:207-210)
Caracol, Belize	Average					-4.03 ($n=7$)	-3.41($n=7$)	$0.7077(\mathrm{n}=7$)	Freiw ald (2011:429)
	Range					$-5.56-3.26$	$-4.35--2.82$	0.7072-0.7081	
ChaaCreek, Belize	Average					-6.23 ($n=12$)	-3.42 ($\mathrm{n}=12$)	$0.7094(n=12)$	Freiwald (2011:434-435)
	Range					-5.39	-4.61--2.9	0.7084-0.7112	
Copan, Honduras	Average	-11.34 ($\mathrm{n}=39$)	-7.08 ($\mathrm{n}=14$)	9.32 ($n=39$)			-4.06 ($\mathrm{n}=42$)	$0.707(n-29)$	Price et al. (2010:24, 28-29),
	Range	-25.04--8.09	-8.1--5.7	16.5-7.5			-3.5--0.99	0.70605-0.70844	Gerry (1993:200-201)
Copan Valley, Honduras	Average	-8.26 ($n=23$)		9.20 ($n=23$)					Gerry (1993:201-204)
	Range	-11.84--7.04		11.1-7.1					
DosPilas, Guatemala	Average	-9.3 ($\mathrm{n}=5$)		8.52 ($\mathrm{n}=5$)	16.04 ($n=20$)				Wright (1994:236)
	Range	-9.9--8.7		8.7-8.2	18.2-14.9				
Esperanza, Belize	Average					-6.04 ($n=4$)	-3.36 ($\mathrm{n}=4$)	$0.7094(\mathrm{n}=4)$	Freiw ald (2011:435)
	Range					-8.49--5.54	-3.5--3.21	0.7093-0.70951	
Floral Park, Belize	Average					-8.49($n=2$)	-3.28 ($n=2$)	$0.7103(\mathrm{n}=2)$	Freiw ald (2011:436)
	Range					-8.49	-3.28	0.710286	
Holmul, Guatemala	Average	-8.36 ($n=3$)		9.55 ($n=3$)			-3.52 ($\mathrm{n}=19$)		Gerry (1993:197-199)
	Range	-8.76--8.1		9.91-9.26			-5.96--0.99		
Itzan, Guatemala	Average	-9.3 ($n=6$)		9.35 ($\mathrm{n}=6$)					Wright (1994:234-235)
	Range	-1.40		10.4-8.3					
Kaminaljuy, Guatemala	Average					-9.88 ($n=24$)			Wright and Schwaroz (1999:1164)
	Range					-12.32--8.49			
Lamanai, Belize	Average	$-11.02(\mathrm{n}=50)$	$-6.87(\mathrm{n}=19)$	9.33 ($n=49$)					White and Sohwaroz (1989)
	Range	-17.2--8	-7.7--6.1	11.4-8.12					
Pacbitun, Belize	Average	-10.39 ($n=20$)		$9.16(\mathrm{n}=20)$					White et al. (1993:351)
	Range	-13.67--7.28		10.64-7.59					
Peligroso, Belize	Average					-4.23 ($n=2$)	-3.59 ($n=2$)	0.7149 ($n=2$)	Freiw ald (2011:430)
	Range					$-4.69-3.76$	$-4.06-3.11$	$0.7146-0.71507$	
Ramonal, Belize	Average					-5.05 ($n=5$)	-3.59 ($n=5$)	0.7142 ($n=5$)	Freiwald (2011:429-430)
	Range					-6.10--4.31	-4.44--2.87	0.71128-0.71637	
San Lorenzo, Mexico	Average					-6.08 ($\mathrm{n}=6$)	-2.89 ($\mathrm{n}=6$)	0.7088 ($\mathrm{n}=6$)	Freiwald (2011:440)
	Range					$-7.06-5.11$	-3.74--2.2	0.70812-0.70938	
Seibal, Guatemala	Average	-10.50 ($n=26$)	$-7.10(n=1)$	9.69 ($n=23$)	15.14 ($\mathrm{n}=7$)		-4.74 (n=2)		Gerry (1993:211-213),
	Range	-15.3--8.5		13.2-7.0	16.1-14.0		-4.92--4.53		Wright (1994:235)
Teotihuacan, Mexico	Average	-9.92 ($\mathrm{n}=57$)	$-5.24(\mathrm{n}=48)$	8.07 ($n=55$)					White et al. (2002:223-224)
	Range	-12.4--7.8	-7.8--3.3	10.9-5.2					
Uaxactun, Guatemala	Average				16.2 ($\mathrm{n}=9$)				Gerry (1993:206)
	Range				19.7-14.4				
Xunantunich, Belize	Average					$-5.01(n=38)$	-2.46 ($n=38)$	$0.7087(n=38)$	Freiw ald (2011:441-443)
	Range					-6.99--2.4	-9.98--0.32	0.707969-0.710463	

Table 5.1 Averages and ranges of isotope data from bone apatite, bone collagen, and enamel samples for comparison.

Tooth enamel extracted from 26 individuals (22.0%) from MTC were sampled. Teeth with excessive amounts of calcium carbonate buildup, due to active cave processes, were avoided for sampling whenever possible. Also whenever possible, left first mandibular molars were sampled in order to reduce the possibility of double sampling the same individual in each concentration of skeletal material in the site. Most issues of isotopic signal skewing due to breastfeeding while these teeth were being formed are mitigated by the fact that a majority of the teeth from the comparative data were also from first molars. When left first mandibular molars were not available or poorly preserved, metric and morphological differences between the molars were used to determine the likelihood that the teeth belonged to different individuals. Only fully developed teeth were sampled. Buccal samples across the whole surface of the crown were taken in an attempt to average seasonal signals inherent in dental development.

Many of the teeth sampled were lost postmortem, mostly due to the poor preservation of alveolar bone at the site. Based upon other skeletal material recovered from the commingled deposits that the teeth were discovered within, a majority of the teeth are from young adults (based upon minimal wear), with at least one older adult (sample V7-91) represented in the sample. More precise ages for the individuals could not be determined due to the commingled and fragmentary nature of the deposits. The formation of the first permanent mandibular molar typically occurs between nine months and three years of age (Ubelaker 1989; Hillson 1996). Thus, the sampling of this tooth will give an oxygen signal indicative of the geographical region where an individual lived during the early years of his or her life.

Enamel samples were pulverized with a diamond bit Dremel Stylus Lithium-Ion Cordless Drill for analysis of carbon and oxygen isotopes. Samples were treated with 3\% hydrogen peroxide solution for 15 minutes, rinsed, treated with 0.1 M acetic acid for 15 minutes, and finally rinsed to neutral with deionized water. No bleach treatments were used during sample preparation, due in part because most of the comparative data in the Maya area was prepared in this manner (Gerry 1993; White et al. 1993, 2001, 2002; Wright 1994; Wright and Schwarcz 1999; Freiwald 2011).

The enamel samples were measured using the method described by Spotl and Vennemann (2003). The samples were loaded into 12 mL borosilicate exetainers, and then flushed with helium before reaction with phosphoric acid at $50^{\circ} \mathrm{C}$ for 24 hours. The evolved carbon dioxide was measured by continuous flow Isotope Ratio Mass Spectrometry using a Gasbench device coupled to a Thermo Scientific Delta V Isotope Ratio Mass Spectrometer. The results are reported using the delta notation, versus the Vienna Pee Dee Belemnite (PDB) standard for carbon and Vienna Standard Mean Ocean Water (VSMOW) for oxygen. Reproducibility was better than 0.1% for both $\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ based on repeats of a laboratory standard of Carrara Marble. The standards were calibrated versus NBS 19 , which is 1.95% for $\delta^{13} \mathrm{C}$ is and 2.2% for $\delta^{18} \mathrm{O}$.

Existing Datasets Used for Comparison

Copious isotope analysis studies on prehistoric human skeletal material have been conducted throughout Belize, especially the Eastern Lowlands. These available isotope datasets were gathered to create a comparative sample. These datasets, while not exhaustive for the Maya region, include numerous sites near MTC, as well as other more
distant sites in Guatemala, Honduras, and extend into neighboring culture areas in Mexico (Freiwald 2011; Gerry 1993; Price et al. 2010; White et al. 2002, 2001, 1993; Wright and Schwarcz 1989; Wright 1994; Wrobel et al. 2014). The sites chosen for comparison had similar periods of utilization as the site of MTC, thus minimizing the effect of change over time in the comparative data. However, not all of the individuals from these sites have definitively been determined to be either local or non-local, a fact which may cause isotope ranges for some sites to be wider than the actual local range.

Descriptive statistics were performed for all isotope values obtained from bone and teeth from these sites and local pertinent values were mapped for easy comparison (Table 5.1, Figures 5.1-5.3). This was done not only to assist future researchers, but also to aid in determining a potential geographic region or site from which individuals in MTC may have originated. The only issue in using this method for comparison is that it does not preclude comparison to individuals who are non-local to the site from which they were recovered. For this reason, known values of local stream or river water collected by Lachniet and Patterson (2009) were included as a useful comparative dataset (Figure 5.3).

Additional statistical analyses were performed on the data from MTC to determine likelihood that the individuals were from the same geographical area. These methods of varying robusticity included determination of two standard deviations from the mean (2SD), median absolute deviation from the median (MAD), MAD scaled assuming normality $\left(\mathrm{MAD}_{\text {norm }}\right)$, MAD adjusted to inverse of 75 th centile $\left(\mathrm{MAD}_{\mathrm{Q} 3}\right)$, and 1.5 times the interquartile range (IQR) (see Lightfoot and O'Connell 2016:S1 Appendix for calculation methods).

Figure 5.2 Map of southern Mexico, Belize, Guatemala, and part of El Salvador and Honduras showing some of the regional sites yielding comparative isotope values.

Figure 5.3 Map of the Upper Belize River Valley with ranges of oxygen isotope values from enamel from nearby sites included in the comparative datasets and from MTC. Oxygen isotope values for modern river water from Lachniet and Patterson (2009) are noted in parentheses. Map modified from Helmke (1999) and based on earlier maps by Conlon (1998) and Campbell (1991).

Results

Database Statistical Results

Stepwise regression indicates that none of the available variables drastically affected $\delta^{18} \mathrm{O}$ values from apatite. The variable most correlated with $\delta^{18} \mathrm{O}$ values from apatite was distance from the sea at $\mathrm{p}=0.267$. Altitude ($\mathrm{p}=0.409$), longitude ($\mathrm{p}=0.351$), and latitude ($\mathrm{p}=0.70$) were less significant, and no $\delta^{18} \mathrm{O}$ values for local river sources were available for sites with apatite data. The stepwise regression indicates that distance from the sea is the only variable significantly impacting oxygen isotope values in the region for the enamel dataset. Regression of the enamel data against the distance from the sea data produced statistically significant difference at the $\mathrm{p}=0.000$ level. Latitude produced similar significant results, but the standard error for that variable was much higher at 1.61. Altitude ($\mathrm{p}=0.472$), longitude $(\mathrm{p}=0.078$) were not significantly correlated, while many sites either did not have nearby river values available for regression or they shared the $-3.3 \delta^{18} \mathrm{O}$ value from the Belize River. Anticipated values for sites in the region can be estimated based on results of the stepwise regression which allowed for the creation of the predictive formulae at one standard deviation from the mean:
$\delta^{18} \mathrm{O}$ from enamel $=-2.1086+$ distance from sea $(-0.01009)+/-0.284014$
In the case of MTC, the distance of 55 km estimates that the expected range of $\delta^{18} \mathrm{O}$ values from the site would be between -2.95 and -2.38 (values rounded to the second decimal place). Distance from the sea for other sites within the Upper Belize River Valley was utilized to calculate predictive value ranges (Figure 5.4).

Figure 5.4 Predictive oxygen isotope values for enamel at select sites in the Belize River Valley.

It is important to note what the ability to statistically correlate distance from the sea with oxygen isotope values means for this specific region. This statistically significant correlation between oxygen and distance from the sea would probably not exist if certain cultural traditions greatly varied throughout the region and throughout the time of the ancient Maya. This suggests that breastfeeding and cooking practices which are known to impact oxygen values probably were relatively constant through these time periods within the region. This does not rule out the possibility of variation or slight changes over time. However it does suggest that the changes did not greatly impact how our ability to study variables that can influence oxygen values.

This predictive formula derived from the afore mentioned isotope dataset may not work for every area in Central America, due to the confidence interval and different cultural practices such as breastfeeding and cooking, which are known to impact oxygen variables as well as other isotopes. This may explain why the estimate range encompasses most, but not all, of the recently published results for individuals assumed to be locals discovered in Je'reftheel Cave near Midnight Terror Cave (Wrobel et al. 2014). It is also important to note that there is a large amount of overlap of predictive values for sites that are close to each other. It may be possible for this site value overlap to be reduced if geographic outsiders (who may exist in the dataset) can be removed in the future. While these current estimates do match perfectly with existing data, the formula may aid in finding possible geographic outsiders within datasets. Due to the current amount of overlap between sites, the formula could not and should not be used to distinguish a specific polity from which an individual might have come. The formula is incapable of such precision.

MTC Samples

All 20 bone samples contained minimal amounts of collagen, very low $\delta^{15} \mathrm{~N}$ values, and abnormally low $\delta^{13} \mathrm{C}$ values (Table 6.2). More importantly, the $\mathrm{C}: \mathrm{N}$ ratios of all the samples fall outside of the acceptable range of 2.9-3.6 proposed by DeNiro (1985:808), and thus indicate diagenesis. Three of the samples appear to be valid values for $\delta^{15} \mathrm{~N}$ and $\delta^{13} \mathrm{C}$ values, although their $\mathrm{C}: \mathrm{N}$ ratios are still slightly above DeNiro's recommended range. It is the assumption of the author that the carbonic acid that is produced during the precipitation of limestone (Palmer 2007:113) may have contributed to the degradation of collagen. Due to this evidence of diagenesis, interpretations of place of origin for this site should be based upon data from dental enamel, which is less susceptible to diagenetic contamination.

Location in Cave	Bone Sampled	$\boldsymbol{\delta}^{\mathbf{1 5}} \mathbf{N}_{\text {(AIR) }}$	$\boldsymbol{\delta}^{\mathbf{1 3}} \mathbf{C}_{(\mathbf{P D B})}$	$\mathbf{C / N}$
VIII-16A	Cranial Fragment	2.82	-32.08	5.21^{*}
V-2D	Shaft Fragment	1.69	-33.7	5.12^{*}
VI-2B	Parietal Fragment	8.61	-14.71	3.77
VI-2B	Occipital Fragment	2.55	-32.22	4.99^{*}
V-1E	Occipital Fragment	1.99	-34.31	4.73^{*}
V-1E	Tibia Fragment	2.12	-34.32	4.99^{*}
V-1E	Shaft Fragment	2.43	-34.3	4.69^{*}
VI-3C	Femur Fragment	-0.55	-29.45	4.87^{*}
V-1E	Shaft Fragment	7.29	-18.79	3.84
VIII-1A	Femur Fragment	2.38	-32.43	5.25^{*}
V-1E	Cranial Fragment	0	0	0
V-1C	Cranial Fragment	7.99	-14.76	3.66
VII-4	Shaft Fragment	3.29	-27.17	5.38^{*}
V-1E	Shaft Fragment	0.96	-20.11	7.27^{*}
V-1C	Cranial Fragment	-0.05	-28.77	4.36^{*}
SD-4E	Cranial Fragment	0.33	-32.97	4.69^{*}
VI-2D	Shaft Fragment	0.19	-30.33	5.03^{*}
VI-3G	Cranial Fragment	1.36	-35.74	5.17^{*}
V-1C	Cranial Fragment	0.44	-28.87	4.65^{*}
V-1E	Shaft Fragment	3.61	-27.68	5.94^{*}

Table $5.2 \delta{ }^{13} \mathrm{C}$ and $\delta^{15} \mathrm{~N}$ values from bone collagen from the site of MTC. All asterisked samples indicate C:N ratios outside the recommended range proposed by DeNiro (1985), and thus indicate alteration due to diagenesis.

The 26 individuals' enamel sampled from MTC had wide ranges of values for both carbon and oxygen isotopes (Table 5.2 and Figure 5.3). The average carbon isotope value for the MTC data is $-6.19 \delta^{13} \mathrm{C}$, which is more negative than many other site averages in Belize. One explanation for what may cause this difference is that the individuals sampled at MTC consumed less maize than individuals elsewhere in Belize. A much greater range of variability was observed among the $\delta^{13} \mathrm{C}$ values than the $\delta^{18} \mathrm{O}$, demonstrating a standard deviation of 1.38 and 0.66 respectively. This range and standard
deviation for $\delta^{13} \mathrm{C}$ was higher at the site of MTC than any of the other sites included in the comparative set.

Sample	Tooth	$\boldsymbol{\delta}^{\mathbf{1 3}} \mathbf{C}_{\text {(PDB) }} \boldsymbol{\delta}^{\mathbf{1 8}} \mathbf{O}_{\text {(VSMOW) }}$	
V4-32	RLM1	-6.99	-5.35
V4-34	RLM1	-5.87	-5.49
V5-19	RLM1	-5.78	-3.54
V5-21	LLM1	-6.02	-4.34
V7-91	RLM1	-4.32	-3.63
VI3E-48	RLM1	-5.64	-4.24
VII12-24	LLM1	-4.30	-3.26
VIII1C-415	RLM1	-10.00	-4.42
VIII2A-1	LLM1	-5.64	-4.40
VIII 7D-184	LLM1	-8.06	-4.43
VIII7D-188	LLM1	-6.56	-4.51
VIII 8C-188	LLM1	-5.21	-3.93
VIII 8C-189	LLM1	-5.91	-5.01
VIII 11B-362	LLM1	-6.89	-4.69
VIII 11B-363	LLM1	-4.60	-4.33
VIII 11D-211	RLM1	-7.58	-4.03
VIII 11D-212	LLM1	-5.88	-4.70
VIII 11D-213	LLM1	-6.26	-4.77
VIII 14AD-1	RLM1	-7.18	-4.14
VIII 14AD-2	RLM1	-9.06	-4.37
VIII 14B-198	LLM1	-6.23	-4.72
VIII 14B-201	LLM1	-5.62	-5.71
VIII 14B-205	RLM1	-5.55	-6.07
VIII 15A-20	LLM1	-6.41	-4.58
VIII 16C-1	RLM1	-4.64	-3.69
VIII 4-148	LLM1	-4.71	-4.17

Table $5.3 \delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ isotope values obtained from enamel samples from individuals at MTC, Belize.

$\delta^{13} C_{\text {PDB }}$

Figure $5.5 \delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values from enamel samples taken from MTC and mean values for other local sites. MTC values are indicated with solid diamonds.

The range of oxygen isotope values from enamel for the site of MTC is -6.07 to $3.54 \delta^{18} \mathrm{O}$, while the average value is $-4.48 \delta^{18} \mathrm{O}(\mathrm{n}=26)$. This average is lower than documented average site values in the Belize River Valley (Table 5.1, Figure 5.3 and 5.5). Based upon all the standard statistical methods used to analyze intra-sample variation in isotope values, multiple places of origin are indicated (Table 5.5). At least one sample fell outside the calculated expected range based upon every measure of robustness, thus indicating at least two places of origin are probably represented. The more robust statistical tests had up to four or five samples falling outside the expected calculated range for the site based upon existing data. Based on the available data, this does not necessarily mean that five or six places of origin are possible. Rather, it simply indicates that four or five of the individuals are not from the same place of origin as the rest of the individuals in the data set. Due to the quantity of overlap for isotope values
between different sites, these statistical methods on their own are not capable of determining the exact number of sites from which the individuals recovered at MTC had originally come.

Statistical Method	Value	Expected $\delta^{18} \mathrm{O}$ Range	MTC Samples Outside Range
2 SD	1.32	$-5.8--3.16 \%$	1
MAD	0.9	$-5.31--3.51 \%$	4
$\mathrm{MAD}_{\mathrm{Q} 3}$	1.176	$-5.586--3.234 \%$	2
$\mathrm{MAD}_{\text {norm }}$	1.335	$-5.745--3.075 \%$	1
1.5 IQR	0.851	$-5.331--3.629 \%$	5

Table 5.4. Expected ranges of $\delta 180$ for MTC based upon robust statistical estimators calculated from the tooth enamel samples from MTC.

Discussion

Due to the diagenesis noted with the collagen samples from MTC, they cannot be compared to data from other sites. This is also why analysis of bone apatite was never pursued on material from this site. Research by Chenery et al. (2012) and Pollard et al. (2011) indicate that isotope values obtained by apatite and enamel are not always comparable even with conversion due to inherent problems with regression analysis. For this reason, valid isotope data acquired from teeth from the site of MTC will not be compared to the existing comparative data for bone apatite and collagen.

While the sites of Ramonal and Baking Pot have individuals with oxygen isotope values that fall within the range of values documented at MTC, it is important to note that these individuals could be outliers for the local range of the Mountain Pine Ridge and Belize River Valleys respectively. The first indication that individuals from MTC may be non local is based upon data from site of Je'reftheel, which is less than 4 km away.

Oxygen isotope values from MTC are more negative than Je'reftheel (Wrobel et al. 2014: 96-97, Fig. 4.7, Table 4.2). This trend of lower oxygen isotope values is also seen in sites further away such as Chaa Creek. Statistical comparison via a t-test of data from 12 enamel samples from Chaa Creek to the first 12 enamel samples from MTC (Figure 5.3) indicates a statistical difference in their mean at a $\mathrm{p}=0.001$ level. This is notable as the first 12 enamel samples from MTC do not include the one individual (VIII 14B-205) sampled that is two standard deviations away from the mean of the site.

From a regional perspective, the oxygen isotope values from MTC are more negative than a majority of the nearby sites in the Eastern Lowlands (Table 5.1 and 5.3, Figure 5.1 and 5.3). The only way that oxygen isotope values as low as many of those documented at MTC could be achieved is if many of the individuals had drunk from an aguada or other rain-capturing system, which is prone to depletion in oxygen isotope values once the rainy season starts (Scherer et al. 2015:673). This thus suggests at least some of the individuals sampled at MTC may not have grown up in the local area.

Ranges in isotope variation can be useful when determining the presence of outsiders. All local people would display a narrow range of values, while mixing of nonlocals would widen the range of variability. Price et al. (2014:40) have used a standard $\pm 2 \%$ for $\delta^{18} \mathrm{O}$ as the standard variation expected within a site. This arbitrary 2% value has been previously critiqued by Wright et al. (2013:130), due to intra-tooth variability. Notwithstanding this possible source of deviation, sites such as Mayapán document the sacrifice of geographical outsiders (based upon strontium isotope data) and have standard variation exceeding 2% for $\delta^{18} \mathrm{O}$ (Wright 2007).

Based upon $\delta^{18} \mathrm{O}$ values from many sites included in the comparison data, many of the sites have ranges well below this arbitrarily set variation of 2% (Table 6.1). Many of the sites are more in line with 1.5% or less. Exceptions to this narrow range of variation include Copan, Holmul, and Xunantunich. It is important to note that at the site of Copan, geographical outsiders (including K'inich Yax K'uk' Mo', the first king of Copan) were documented amongst the individuals sampled (Price et al. 2010, 2014). While there is no definitive evidence from Holmul, a possible source of outsiders would be invaders that may have settled following Teotihuacan's "entrada," which affected ruling powers in the area (Estrada-Belli et al. 2009:229). Iconographic and graffiti evidence from the sites of Holmul and the nearby La Sufricaya contribute to the idea of foreigners residing in the area (Estrada-Belli 2001, Estrada-Belli et al. 2009:229). This post -"entrada" settlement by Teotihuacan's invaders at Tikal is already suggested by isotope data (Wright 2012:344). Future research may discover additional evidence supporting the presence of outsiders at the site of Xunantunich. The presence of outsiders at Xunantunich has also been documented based upon burial patterns and strontium isotope values (Freiwald et al. 2014). Due to the confirmed outsiders at Xunantunich and possible outsiders at Holmul, data from these sites cannot be used to determine a possible place of origin for outsiders at MTC.

MTC displays a 2.8% range, thus suggesting that these individuals may have come from multiple places of origin. The possibility of multiple places of origin is also supported by the rather large range of $\delta^{13} \mathrm{C}$ values from MTC. This range of carbon isotope values from enamel is greater than that at other sites in the Maya area. This idea that the individuals from MTC may have originated from more than one location is
supported by the work of Price et al. (2014), which indicates that no one specific region in the Maya area has produced a range into which all of the individuals at MTC would fall. The probability of multiple places of geographical origin is further supported by the $\mathrm{MAD}, \mathrm{MAD}_{\text {norm }}, \mathrm{MAD}_{\mathrm{Q} 3}$, and 1.5 times IQR calculations which aid in understanding the degree of variability within the MTC samples. By comparing isotope results to published data from other sites, individuals from MTC have isotope values similar to those of individuals from as far away as non-Yucatán regions of Mexico (potentially the Basin of Mexico, Cholula, Southern Highlands, or Northwest Mexico), Honduras, as well as other areas within Belize.

Other isotope studies with smaller datasets suggest more possible locations from which the MTC individuals may have originated. Based upon averaged oxygen isotope values published by Price et al. (2010:23), it is possible that the individuals at MTC could also have originated from Campeche (-2.9\%), Tikal (-3.8\%), Palmarejo (-3.7%), Palenque (-3.9%), Maltrata (-3.9%), Kalminaljuyu (-4.2%), Tzintzuntzan (-5.4%), Champantongo (-5.6%), or even Teotihuacan (-5.3%). The individuals with the highest oxygen isotope signals (samples V7-91, VII12-24, and VIII16C-1) also fall within the upper range of elite individuals from the site of Uxbenká, Belize (Trask et al. 2012:68).

The carbon isotope data from MTC was useful in suggesting the individuals may not originally be from Baking Pot. As Figure 3 demonstrates, the known oxygen isotope value from the site fell within the documented values from MTC, however the carbon isotope value is noticeably different. However Baking Pot should not be completely ruled out as a place of possible origin until more data are collected from that site.

Combining the carbon and oxygen data did not prove very useful in determining exactly from where these individuals may have originated. For individuals with $\delta^{18} \mathrm{O}$ values between the -4 and -6%, it was possible to rule out some possible sites for which data exist; however for others it did not shorten the list of possible sites the individuals may have been from based upon the oxygen data alone.

The isotope values at MTC are much lower than those of the local area, thus indicating probable foreign origins. Since the values do not fit neatly into just one site's known range, there is the possibility that the individuals came from multiple places outside the local area. The plots of oxygen and carbon values do not show distinct clusters (Figure 6.3), which means that some of the areas from which these individuals originated may have been near each other or may have had similar values.

As commonly expressed in sacrifice theory (Bell 1997; Girard 1979), non-local origin may have contributed to choosing individuals for sacrifice. The ritual act of human sacrifice has been well documented both throughout time and cross-culturally. Theorists have discussed at length the reasons why some sacrifice other human beings. Crossculturally, periods of crisis are correlated with increased ritual activity (Beattie 1980), including pleas for divine intervention (Malinowski 1954; van Gennep 1960). However, some ritual theorists state that this sacred obligation becomes neglected during times of great peril (Girard 1979).

In Mesoamerica, when the act of human sacrifice occurs in a cave, it is often interpreted as an offering to the rain deities (Scott and Brady 2005:275-278). These hypothesized sacrifices to the rain gods were not limited to children, but also included adults (Marcus 1978). Many Maya sites even have evidence of the use of captives for
human sacrifice (Lucero 1999). Ethnohistoric accounts at Chichén Itzá by Bishop Diego de Landa (Tozzer 1941:44n) indicate that war captives were one group of sacrificed individuals at the site. Epigraphic evidence of captive sacrifice has been observed on monumental architecture that depicts bound captives where glyphs of war were commonly followed by sacrifice (Schele and Miller 1986; Schele 1984). Iconographic evidence of captive sacrifice has also been interpreted from architectural elements at sites in Mexico such as Bonampak, Tonia (Berryman 2007), and Palenque as well as Dos Pilas and Tamarindito in Guatemala (Baudez and Mathews 1979; Marcus 1974). These examples support the commonly held idea that captive sacrifice was a ritualized institution among the ancient Maya that was tied to warfare (Brown and Garber 2003:92).

Interpretation of when the MTC individuals came to the area is limited due to the fact that the isotope data only come from teeth, which form over a specific, restricted time span in life. Typically comparing dental values to bone values, which average isotope values over many years, one can determine if the individuals had lived locally for a while before death. However, due to diagenesis in the bone samples, it is impossible to determine if these individuals lived at another site for a period after their teeth formed. There is also no way to accurately determine whether these individuals were acquired via warfare raiding or if they had been residing for some time in the area around MTC before they were sacrificed.

If these individuals were not captives acquired in warfare for the purpose of sacrifice, there could have been other causes for the migration of non-local individuals into the Belize River Valley. Migration theory contemplates several types of "push-pull" models (i.e., overpopulation, political conflict, economic pressures, and environmental
pressures) that have been documented in modern and prehistoric times with evidence in various regions of the world (Tsuda 2011). Although the rituals in MTC indicate utilization as early as the Middle Preclassic period, the peak in utilization occurred during the Late and Terminal Classic period as indicated by the ceramics at MTC and the establishment of the adjacent site of TCU. Given the period of peak utilization for the cave, a number of the "push-pull" migration factors could explain the migration of these individuals to the area at that time.

A plausible explanation of environmentally caused, push-pull model of migration in the Maya region derives from the climatic instability of the region during this period. Extensive environmental research in the region has documented changes in precipitation, with not all areas equally affected (Gill 2000; Hodell et al. 1995, 2001; Haug et al. 2003; Kennett et al. 2012; Medina-Elizalde et al. 2010). It is possible that individuals from other areas moved into the Belize River Valley and near MTC when rainfall declined in their home areas. The impact of these climatic fluctuations has not yet been documented via isotope data from humans in the Maya area. There is the possibility that climate affected the values from MTC. However local samples from other sites in the area from this time period were included in the database to mitigate this potential problem.

In addition to precipitation changes, numerous volcanic eruptions in many areas of Central America could have caused disintegration of ceremonial centers in addition to increasing migration from much further south. Volcanic events that could have spurred migration into the region during the peak utilization of TCU and MTC include Loma Caldera around AD 610 to 671 (Sheets 2004:615), Volcano Baru around AD 700 (Sheets

2012:51), the Ilopango eruption around AD 656 (Sheets 2004:113), and the eruption of Boqueron around the 9th century AD (Sheets 2007:68).

The possibility that the MTC individuals originated from various areas had implications for social relations within Belize and the broader Maya region. The documented Maya practice of raiding and warfare associated with acquiring captives for sacrifice (Berryman 2007:378; Schele 1984; Schele and Miller 1986) may explain the transport of these individuals to TCU and ultimately to the adjacent MTC. The local surface site of TCU is a major civic-ceremonial center (Andres et al. 2010:90). The architecture located on top of the cave would suggest an elite appropriation and utilization of MTC (see Brady et al. 1997; King et al. 2012). While there is currently no proof of TCU's involvement in warfare with distant or even neighboring polities, Monument 1 at the site suggests that the site had autonomy as a political entity due to the use of the "ajaw" glyph (Andres and Helmke 2013). Additionally, this monument dates to a period of endemic warfare for the area (Andres et al. 2014:51). Therefore, the ritual killing of captives remains a possible explanation for how these non-local individuals came to be deposited in the adjacent MTC.

Other political conflicts during the Late to Terminal Classic period could have contributed to the movement of non-local individuals to the site. Internal conflict at other, more distant, sites had the potential to cause internal conflict and political disintegration, which could have contributed to the emigration of individuals or groups of individuals (Tsuda 2011). In-migration could also occur as a consequence of individuals or groups seeking to take advantage of a power vacuum that occurs when internal conflicts caused disintegration of a political structure (Beekman and Christensen 2003). Evidence for such
warfare activity and political fluctuations throughout the western Peten and parts of Belize is well documented (Barrett and Scherer 2005; Chase and Chase 1989; Demarest et al. 1997; Inomata 2008; Massey 1989; Palka 2001; Webster 2000). More work at the site of TCU is needed before interpretations of how political development and disintegration could have been affected by or possibly caused the in-migration of the individuals deposited in MTC.

Future Research and Conclusions

Future research should also focus on determining whether any of the sites used in the comparative datasets contain more geographic outsiders than previously assumed. By removing some of these outliers, greater refinement of oxygen isotope analysis for migration and place of origin may be possible.

The analysis of oxygen isotope data acquired from the teeth of 26 individuals deposited at MTC indicates that none of the individuals sampled were originally from the MTC area, unless diagenesis is also impacting the tight crystalline structure of dental enamel. Additional investigation as to the extent that diagenesis has or has not impacted the teeth at the site should be further explored. Stepwise regression of presently available data and oxygen isotope data alone is unable to narrow down where these individuals may have originated, but it demonstrates that they were not local. The only certainty is that they came from outside the Belize River Valley and may have come from as far away as Mexico or Honduras. Currently, strontium isotope analysis has only been conducted on children from the site, producing a range of results $0.7079-0.7093 \delta^{87 / 86} \mathrm{Sr}$ and a mean of $0.7084 \delta^{87 / 86} \mathrm{Sr}$ (Lorenz et al. 2016). On their own, these values are not
sufficient to narrow down place of origin, as such values are known to exist locally in Belize and elsewhere in the Maya area, as Table 5.1 demonstrates. Hopefully, additional strontium isotope analysis on teeth will aid in refining from where these individuals may have originated. Additionally, future isotope analysis in other areas of Mexico and Central America may help refine techniques such as the one reported here.

It currently is not possible to determine whether the MTC individuals had migrated to the Roaring Creek Valley shortly after their molars had formed (roughly between nine months and three years of age) or if they were brought to the site shortly before they died. If bone samples at the site had not been subject to diagenesis to the extent documented in the karstic environment, comparison between bone and tooth samples from the same individuals could have been carried out to aid in determining if their $\delta^{18} \mathrm{O}$ apatite values are comparable to their enamel signals, which were established decades before the individuals' death. In terms of how these results might articulate with the documented practice of human sacrifice in the Maya culture area, they demonstrate that geographic outsiders might have been targeted for human sacrifices at the site.

Both the isotope data and the sociopolitical interpretations for the immediate region and the broader Maya lowlands are vast. Multidecadal droughts have been documented in the Maya lowlands between AD 820 and 870, with broader trends or regional drying occurring since AD 640 (Kennett et al. 2012; Medina-Elizalde and Rohling 2012; Medina-Elizalde et al. 2010). This corresponds to the time period of peak utilization for the site of MTC, further supporting the idea that both cultural material and human lives may have been offered as rain petitions. The fact that analyzed individuals recovered from MTC were not originally from this site or the nearby areas suggests the
possibility that they were chosen due to their outsider status and may have been obtained during war or in raids.

CHAPTER 6 SACRIFICE OF THE SOCIAL OUTCASTS: TWO CASES OF KLIPPEL-FEIL SYNDROME AT MIDNIGHT TERROR CAVE, BELIZE.

(Originally Published in International Journal of Osteoarchaeology)

Introduction

Ritual theorists propose that individuals chosen for sacrifice are typically outsiders or foreigners either geographically or socially, but not too foreign (Girard 1979). Girard elaborates that those being sacrificed have to be known by the sacrificing group as people who do not belong or do not yet belong to the group. In the Maya area, this would probably translate to people who looked Maya, spoke a Mayan language (possibly a different dialect), but might not have been born or resided in the polity that performed the sacrifice. This idea of outsider or another could also be applied to individuals from within the polity that was performing the sacrifice, but were not socially accepted as full members of the group due to illness or age. Social outcasts on the fringe of society have been suggested to include: "prisoners of war, slaves, small children, unmarried adolescents, and the handicapped" (Girard 1979:12). This theory fits the Maya situation, since captives and children who may not have been initiated into the community or orphaned are commonly noted as sacrificial victims in the ethnohistorical accounts (Tozzer 1941).

Until now, the one class of "social outcasts" that has not been documented as sacrificial victims are individuals with disfigurements or physical handicaps. The absence of social outcasts documented as sacrifices is rather surprising, given some physically handicapping conditions would render them useless in putting up a fight if someone
attempted to capture and sacrifice them. These two individuals from a mostly sacrificial Maya assemblage in Midnight Terror Cave (MTC), Belize are unique in being the first cases demonstrating sacrifice of physically handicapped individuals in the Maya area.

Background

Maya Sacrifice

There is no doubt that the ancient Maya practiced ritual human sacrifice. The act of sacrifice is a critical component to their creation story in the Popol Vuh. Images of sacrifices, both human and animal, are commonly depicted in murals, codices, and ceramics. These depictions of human sacrifice are, no doubt, biased since they were created as political and ritual propaganda by the elite. For this reason, the archaeological record is required to bridge disparities between depictions of sacrifice, theories of sacrifice, and the actual practice of sacrifice.

Captives are among the most commonly documented sacrificial victims of the ancient Maya, and this idea is supported with iconography throughout the Maya area. In a cave at the site of Dos Pilas, Guatemala a vessel was discovered that depicted a "lower body of a fallen or reclining individual" (Brady et al. 1997:361). Based primarily upon body positioning, probably bound victims of sacrifice have also been interpreted from skeletal material recovered from Barton Creek Cave (Owen 2002, 2005) and Actun Tunich Muknal (Gibbs 2000).

Little work has been done on the topic of sorcerers and witchcraft among the ancient Maya. However, their association with caves has been discussed in ethnographic accounts (Nash 1967), as well as archaeological discovery of inalienable objects such as
crystals found at the sites of Naj Tunich, Cueva de los Quetzales in Guatemala, Cueva del Río Murciélago (Brady and Prufer 1999). So far the only bioarchaeological evidence of witch sacrifice comes from Actun Tunichil Muknal, Belize. There, Lucero and Gibbs (2007) make the argument for witch sacrifice based upon ethnographic analogy and multiple deposits, some of which are tucked away or hidden in alcoves as if to entrap the witch's essence.

The documentation of orphan sacrifice from the archaeological record is difficult, because we cannot determine with any certainty that the child was an orphan. However, ethnohistoric accounts among the Maya document that the sacrifice of orphans did occur (Tozzer 1941). Therefore, it is possible that at least some of the children found in sacrificial deposits may have been orphans. The sacrifice of children in caves and cenotes throughout the Maya area is one of the more documented sacrificial preferences. Archaeological evidence from sites such as Actun Tunichil Muknal (Gibbs 2000), Barton Creek Cave (Owens 2002, 2005), Naj Tunich (Brady 1989), Petroglyph Cave (ReentsBudet and MacLeod 1986), and MTC (Kieffer 2011) all have children deposited in wet watery contexts. These watery contexts have been argued by many archaeologists to be preferred sacrificial locations of sacrificial deposits based upon ethnohistoric accounts (Scott and Brady 2005).

The sacrifice of disabled individuals is something that has not been mentioned in the ethnohistoric, ethnographic, or iconographic literature within the Maya region. Part of the reason for this may be due to the fact that not all physical or mental disabilities are blatantly obvious at first. With the inclusion of these two cases of probable Klippel-Feil
from MTC, individuals chosen for sacrifice in Maya caves complete the theoretical predictions of who should be chosen for sacrifice.

Klippel-Feil Syndrome

Klippel-Feil syndrome is a congenital condition caused by a genetic mutation that is characterized by the fusion of two or more vertebrae. The earliest recorded descriptions of abnormal cervical vertebrae were by Haller (1745) and Morgagni (1746), however it was not officially named until much later (Klippel and Feil, 1912). Originally, the abnormality was classified into three different types (Type I, Type II, and Type III), dependent upon the location and severity of the defect (Feil, 1919). Current medical literature has proposed clarification of these types with varying degrees of disagreement. Typically Type I Klippel-Feil is classified as a single segment fusion of C2 and C3. Type II Klippel-Feil syndrome and is distinguished from Type I by the fusion of more than two vertebrae in the cervical region. While Type III Klippel-Feil typically involves multiple vertebra segment fusions and is not necessarily limited to the cervical vertebrae. The rarity and difficulty in documenting cases of Klippel-Feil has caused the rate of incidence among modern populations to fluctuate between 0.0025% (Gonzalez-Reimers et al. 2001; Larson et al. 2001; Thomsen et al. 1997) and 0.5% (Clark et al. 1998), with the highest estimate of occurrence at 1% of births (Jones and Mayer 2000). Males and females are equally affected according to Gray et al (1964), while Gorlin et al. (1976) found 65\% of those affected to be women, and Helmi and Pruzansky (1980) found 57\% of those affected were female.

This condition results in a short neck, limited range of motion when the cervical vertebrae are affected, narrowing of the spinal cord and brain stem, and a variety of
associated abnormalities which impact the individual's comfort and longevity. There have been numerous cases of this rare spinal defect noted in the archaeological record. Klippel-Feil diagnoses have been made for a skeleton at a Neolithic sites in Vietnam (Oxenham et al. 2009), Japan (Fukashima 1988), Greece (Papathanasiou 2005). Numerous medieval and post medieval sites have documented this condition including a site in Portugal (Fernandes and Costa 2007), and two cases from St. Mary Spital, England (Walker 2012:14-15). Other cases of the syndrome in the old world include: a Magyar period individual from Austria (Pany and Teschler-Nicola 2007), a Middle Bronze Age individual from Syria (Ricaut, 2008), multiple individuals from El Hierro in the Canary Islands (Gonzalez-Reimers et al. 2001), and it is believed that Tutankhamun suffered from this syndrome (Boyer et al. 2003; Rosti 2013). In the Americas, multiple cases of Klippel-Feil syndrome have been recorded from the Southwest Pueblo period (Barnes 1994:69-72; Merbs and Euler 1985; Miles 1975; Wade 1981; Danforth et al. 1994). Documented Central and South American cases include a prehistoric case from the site of Poricarcancha, Peru (MacCurdy 1923; Jarcho 1965; Ortner and Putchar 1981:357), a prehispanic skeleton from Cholula, Mexico (Urunuela and Alvarez 1994), and one from the pre-Columbian site of Tancah, Quintana Roo, Mexico (Saul 1982).

There has been disagreement over the exact role genetic inheritance has played on the expression of the syndrome. Arguments have included the importance of recessive genes, dominant genes, and genetic mutation in the expression of Klippel-Feil (Da Silva 1982; McGanghran et al. 2003; Tracy et al. 2004; Charcón-Camacho et al. 2012). Ultimately, the heterogeneous genes of individuals with Klippel-Feil (in a few documented cases), small pedigrees, and wide degree of abnormalities limit the overall
understanding of genetic inheritance (Clark et al. 1996). The knowledge of how genetics played into the congenital inheritance of the syndrome caused Clark et al. (1998) to create a new classification system which includes a fourth type, while Larson et al. (2001) still employed the initial three types originally proposed by Feil (1919).

Commonly associated abnormalities range from physically visible abnormalities to more hidden defects. The physically apparent associated abnormalities can include: facial asymmetry, torticollis (webbing of the neck caused by prominent trapezium muscles); abnormal morphology in the hand, including the thumb; cleft palate; shortened neck and reduced mobility; quadriplegia; and Spengle's Deformity. The less visible abnormalities include: spina bifida; intravenous pyelography and renal abnormalities such as absence of kidneys, pyelonephritis of the kidney, renial ectopia; dermoid cysts, which can cause intracranial hypertension or compression of the cerebellum or brain stem; narrowing of the spinal canal secondary to hypermobility and osteoarthritic bone spurs; heart malformations, fused ribs and reduced vertebral disc space; respiratory problems and pulmonary hypertension; speech and hearing defects; and mental retardation (See Table 7.1 for rates and references for associated abnormalities). Hensinger et al. (1974) believe that these sometimes "hidden" abnormalities associated with the syndrome create a greater threat to the general wellbeing of the individual's life, more so than the deformity itself.

Many of these abnormalities associated with Klippel-Feil have high rates of incidence (Table 6.1), and the modern medical literature commonly documents individuals having multiple associated abnormalities. Some of these abnormalities include physical restrictions that range from invisible, but painful and/or tiring to more
obvious limitations making movement and interactions with others limited. While not all of these associated abnormalities leave physical traces on skeletal remains, many of these abnormalities may have labeled the individuals as social outcasts due to their differences.

Associated Abnormalities	Rate of Incidence	Study Size	Publication
Spengel's Deformity	42-79\%	30	Samartzis et al., 2007
	30\%	298	Winter et al., 1984
	20-42\%	50	Hensinger et al., 1974
	20-30\%	Not Provided**	Tracey et al., 2004
	23\%	418**	Gray et al., 1967
Speech and Hearing Defects	16.87-71.4\%	346**	Hemi and Pruzansky, 1980
	30\%	298	Winter et al., 1984
	30\%	50	Hensinger et al., 1974
	30\%	Not Provided**	Tracey et al., 2004
		Three Case Studies	McLay and Maran, 1969;
Scoliosis	70\%	57	Thomsen et al., 1997
	> 50%	Not Provided**	Tracey et al., 2004
	50\%	50	Hensinger et al., 1974
	25-60\%	298	Winter et al., 1984
	35\%	337*	Wynn-Davies, 1975
Other Skeletal Deformities	52\%	418**	Gray et al., 1967
Shortened Neck and Reduced Mobility	52\%	50	Hensinger et al., 1974
	< 50%	Not Provided**	Tracey et al., 1967
		Case Study	Larson et al., 2001
	No Rate Given	Not Provided	Barnes, 1994
Spina Bifida	45.30\%	418**	Gray et al., 1967
	49.30\%	337*	Wynne-Davies, 1975
	45.30\%	418**	Gray et al.,1964
		No Rate Given	Aufderheide and Rodriguez-Martin, 1998
Deformed, Absent, or Fused Ribs	33\%	Not Provided**	Tracey et al., 2004
	30\%	418**	Gray et al., 1967
	15\%	Not Provided**	Tracey et al. 2004
Intravenous Pyelography and Renal			
Abnormalities	30\%	50	Hensinger et al., 1974
	30\%	298	Winter et al., 1984
		Two Case Studies	Ramsey and Blizmak, 1971;
Heart Malformations	4-29\%	Not Provided**	Tracey et al., 2004
	14\%	298	Winter et al., 1984
	8.75\%	346**	Hemi and Pruzansky, 1980
	14\%	50	Hensinger et al., 1974
	No Rate Given	Not Provided	Barnes, 1994
Facial Asymmetry, Torticollis	20-26\%	50	Hensinger et al., 1974
Muscular Atrophy, Flacid Paralysis,			
Cleft Palate	15-16.88\%	346**	Helmi and Pruzansky, 1980
Dermoid Cysts		Seven Case Studies	Gonzalez-Darder et al., 2002
Mental Retardation		Two Case Studies	Peters, 1962
		Three Case Studies	McLay and Maran, 1969
	8.75\%	346**	Hemi and Pruzansky, 1980
Spinal Canal Narrowing		Case Study	Gunderson et al., 1967
		Case Study	Michie and Clark, 1968
Abnormal Hand Morphology		Case Study	Larson et al., 2001
Quadriplegia		Case Study	Michie and Clark, 1968
		Case Study	Elster, 1984
Reduced Disk Space	No Rate Given	Not Provided	Barnes, 1994
Respiratory Problems and Pulmonary Hypertension		Case Study	Suga et al., 1999

*Study includes other causes of congenital vertebra abnormalities. The number of Klippel-Feil cases within the study was not given.
** Included previously published cases.
Table 6.1 Types of abnormalities and rate of incidence associated with Klippel-Feil
syndrome.

Midnight Terror Cave (MTC), Belize
The site of MTC is a multi-level cave covering an area more than 200 meters long by 50 meters wide in the karstic Roaring Creek Valley near the village of Springfield in the Cayo District of Belize. The site was discovered in 2006 and received immediate attention from the Institute of Archaeology due to its large numbers of human remains. Fieldwork was conducted by the Western Belize Regional Cave Survey Project and California State University, Los Angeles, between 2008 and 2010, with detailed mapping, descriptive analysis of space utilization and surface collection of artifacts and skeletal material. Operation, Lot, and Sublot designations were used for the purpose of maintaining spatial provenience of artifacts and skeletal material. The cave was divided into a total of eight Operations, which correspond to the cave's chambers. Lot designations were numerically assigned as needed within each Operation. Typically rooms and space bound by boulders or large formations were given discrete Lot numbers within an Operation.

Reconnaissance by the Caves Branch Archaeological Survey discovered the surface site of Tipan Chen Uitz approximately 1000 meters from MTC in 2009. Archaeological investigations at the site of Tipan Chen Uitz indicate that it dates to the Late to Terminal Classic, based on ceramics, architectural features, and a stela date of AD 711 (Andres et al. 2014). The site of Tipan Chen Uitz is associated with more than 20 caves and numerous rockshelters, many of which contain abundant ceramics and skeletal remains that have been interpreted as cemetery burials (Glassman and Bonor 2005; Wrobel et. al In Press).

The skeletal collection at MTC has produced the largest skeletal collection of any cave in the area, with at least 118 individuals recovered from 37 isolated, commingled surface deposits. These deposits lacked traditional grave goods other than a few items of personal adornment. Many of these skeletal deposits are spatially associated with areas of large scale modification such as trails, plazas, and leveled surfaces, which suggest the remains may have been involved in public ritual acts (Brady and Kieffer 2011, 2012; Tiesler 2007). Perimortem cut marks, sharp force trauma, and blunt force trauma have been recorded on at least 28 bones from 12 commingled deposits throughout the cave, representing a minimum of at least 16 individuals. These cut marks have been noted on the ends of long bones, with only one cut mark on a sternum and two on cranial bones. According to Tiesler (2007), these locations of cut marks are consistent with likely markers of heart extraction, flaying, and defleshing which typically occurs with ritual human sacrifice.

There is not enough trauma to prove that all individuals at the site died of sacrifice. Similarly, not every context exhibits multiple traits of sacrificial. One deposit in the twilight of the cave even suggests the possibility of mixed mortuary use due to the secondary placement of two individuals (Kieffer 2011). However, the demographic data indicates the assemblage is mostly sacrificial. The local cave and rockshelter sites interpreted as cemeteries have J-shaped mortality curves which are the typical distribution for "normal" mortuary patterns (Wrobel et al. 2014; Chamberlain 2006; Weiss 1973). Rather than displaying a J-shaped mortuary distribution, MTC has an irregular distribution of ages with a noticeable peak of children ages five to nine years old and predominately young adults (Figure 6.1). This pattern is an expected pattern in post-
sacrificial deposits (Tiesler 2007), that has been documented ethnographically (Tozzer 1941) and archaeologically at the Sacred Cenote at Chichén Itzá (De Anda Alanís 2007).

Figure 6.1 Demographic age and sex distribution for the skeletal assemblage from Midnight Terror Cave, Belize that highly suggests sacrifice.

Material and Methods

Prior to removal from the cave, all bones were photographed in situ and detailed descriptions of the context were made. Due to the commingled nature of the deposits,
every bone was analyzed and photographed, and pertinent metric and morphological descriptions that could aid in age and sex estimation based on standard bioarchaeological and forensic anthropology methods were recorded. The technique for age or sex determination varied from deposit to deposit depending on preservation and elements present. This information was then put into a spreadsheet to aid in determining minimum number of individuals (MNI) for every discrete deposit within the cave, determine if there was any movement of skeletal material between deposits, and determine how that then changed MNI counts for discrete deposits. Minimum number of individuals was determined by standard techniques of sorting elements by side, size, and pairing. All radiocarbon dates were provided by University of Georgia's Center for Applied Isotope Studies.

Operation VIII Lot 13
One individual with skeletal indications of possible Klippel-Feil was recovered from the surface of Operation VIII Lot 13, an alcove that measures 1.24 meters wide, 2.37 meters high, and extended in 1.87 meters. The walls of this lot are covered by previously active cave formations. Much of the bone had been crushed into powder and thus could not be removed. No grave goods were associated with these individuals. Due to the preservation conditions in this area only 562 of the 795 skeletal elements recovered from this deposit were identifiable. Much of the material included unidentifiable shaft fragments and cranial elements. The recovery of smaller skeletal elements suggests the minimum of eight individuals in this deposit may have been primary deposits. With the exception of the inner ear ossicles and some of the carpals and tarsals, every bone of the skeleton was represented in the deposit with varying levels of preservation..

Operation VI Lot 2B

The other individual with possible Klippel-Feil was recovered from the surface of Operation VI Lot 2B, an alcove located along the cave's main trail along the southern portion of the western cave wall. This alcove measures one meter wide east to west and 2.3 meters north to south with a height of approximately three meters. Flowstone curtains within this area have evidence of breakage, and much of the western wall near a natural ledge along the alcove wall was fire blackened, indicating ritual activity. Almost 520 bone fragments were recovered from the sublots of Operation VI Lot 2. Similar to the previously mentioned deposit, almost every bone from the skeleton was represented with the exception of the inner ear ossicles and some of the carpals and tarsals. However, the better preservation in this area did allow for a higher percentage of skeletal recovery within this deposit.

Results

Operation VIII Lot 13

At least five adults were present based upon number and sides of elements; however, sex for only one adult male could be estimated based upon distal morphology of the humerus. Lack of severe indications of degenerative disease suggests that all of these individuals were probably young adults. At least two subadults are present in this deposit that lacked grave goods. Dental development for one subadult indicates an individual six to seven years of age $+/-24$ months. This is supported by the stage of development for neural arch fragments in the deposit. The presence of a perinate is also
indicated in this deposit based upon os coxa fragments, a clavicle, and neural arch development.

One of the adults in this lot exhibited signs of Klippel-Feil. Initially this individual's second and third cervical vertebrae were found as two separate fragments that had been broken post-mortem (VIII-13-363 and VIII-13-367). Initial investigation of the body fragment suggested that calcium carbonate from the cave had caused the two bones to adhere to each other in anatomical position due to a lack of spondylophytes and arthritic lipping along the bodies' margins. However, the irregular morphology of the fragment with the laminae and spinous processes made it apparent that the vertebrae were conjoined (Figure 6.2). The fusion of the two bones was complete including full articulation of the laminae and the bodies. Differential diagnosis ruled out the probability of trauma and stress as causes for this fusion due to no indication of vertebral body crushing. Lack of hypertrophic bone formation on any of the vertebrae in the deposit indicates that diffuse idiopathic skeletal hyperostosis (DISH) was unlikely. The only indications for arthritis in the entire deposit included slight lipping on a first proximal pedal phalanx, two lumbar vertebrae, and three unidentified vertebral body fragments. No vertebral wedging consistent with scoliosis was notable, albeit some of the vertebrae were fragmentary and incomplete. No morphological changes were noticed on the fragments of ribs that were recovered from the deposit. Only one sacral vertebra fragment was recovered from this deposit, but it was not complete enough to determine the presence or absence of any indication of spina bifida.

Figure 6.2 Fused second and third vertebrae from an individual recovered from Operation VIII Lot 13.

Radiocarbon dating performed on an adult femur fragment in this comingled deposit produced a date of 670 ± 20 years AD, during the Maya Late Classic (A.D. 600800). Due to the commingled remains in this deposit, it cannot be definitively determined if this date is a direct date for the person with probable Klippel-Feil, rather it does suggest a possible time period for the deposit.

Operation VI Lot 2B

An adult and juvenile were distributed throughout five sublots in Lot 2, with the bulk of the skeletal material recovered from sublot B. The juvenile in the deposit was approximately five to six years of age based upon the stage of fusion for the thoracic vertebrae and the size of the long bones present in the deposit. This juvenile had perimortem cut marks present on one of his or her humeral fragments consistent with other post-mortem sacrificial body treatment documented at Chichén Itzá (De Anda, 2007), further indicating a sacrificial context.

The adult appears to be a primary deposition based on the quantity and type of material recovered. Metric analysis of a femur diameter and scapular glenoid height produced inconclusive identification of sex. However the chin and mastoid process morphology indicates a probable male. The complete, circumferential fused second and third cervical vertebrae (VI-2B-118) (Figure 6.3) and the unfused laminae of the sacrum indicative of spina bifida occulta, suggest this individual probably suffered from Type 1 Klippel-Feil syndrome based on the single fused segment in the cervical region (Samartzis et al., 2006). Additional abnormalities included supernumerary incisors and slight porosity consistent with porotic hyperostosis throughout the frontal, parietal, and occipital bones. A radiocarbon date of 690 ± 20 years AD obtained from this individual's ulna indicates the individual died during the Maya Late Classic.

Figure 6.3 Fused second and third vertebrae from an individual recovered from Operation VI Lot 2.

Differential diagnosis of this individual ruled out any indication of associated trauma to the vertebrae. A probable thoracic vertebral fragment with a possible Schmorl's node, suggestive of osteoarthritis, was recovered from the deposit. However, the documentation of this Schmorl's node is not conclusive due to the poor preservation of the thoracic vertebra. Slight lipping of the inferior articular facets of the second cervical vertebra was noted. Such lipping is typically consistent with osteoarthritis, a condition
known to be associated with Klippel-Feil (Gunderson et al. 1967). However, lack of erosion and eburnation of the facets, as well as an absence of morphological changes to more commonly affected bones ruled out the possibility of rheumatoid arthritis. No hypertrophic bone formation was noted along the vertebral bodies which would be suggestive of DISH. There was no visible disk space between the bodies, mineralization of connective tissues, or noticeable bone porosity which would be consistent with ankylosing spondylitis. No osteophyte formation was noted along the body of the vertebrae, suggesting the possible arthritis was mild and localized. The only other indication of arthritis was noted on the margin of the glenoid fossa on the right scapula. Similar to the previous individuals, no vertebral wedging consistent with scoliosis was notable on any of the fragmentary or complete vertebrae. Also, no morphological changes were recorded from the rib fragments recovered from the deposit.

Discussion

Preservation conditions at the site of MTC were less than ideal, and incomplete recovery of these fragmentary remains occurred. However, in both instances, there is a clear fusion of the second and third cervical vertebrae. For the adult found in Operation VIII Lot 13, enough skeletal material was recovered from both deposits in question to perform a differential diagnosis that ruled out other conditions such as trauma, DISH, and ankylosing spondylitis. This suggests that the defect may have been in utero and/or genetic in origin. Incomplete recovery of the individual's vertebrae recovered from Operation VI Lot 2B prevents a more conclusive differential diagnosis. Even if the lipping documented on the available vertebrae from this context is due to arthritis, the
individual may have acquired the arthritis from everyday movements that were done to compensate for the lack of mobility between the first and second vertebrae.

If these two individuals did in fact suffer from Klippel-Feil syndrome, it is possible that they were genetically related given the inheritance of the syndrome. More importantly, they likely suffered from one or more of the other associated abnormalities discussed above due to the high rates of incidence these abnormalities have in modern populations. Such physical handicaps may have limited their ability to be productive members of their community. Based upon Girard's theories about sacrifice, these individuals may have been construed as social outsiders due to their difference. The probability these two individuals were related, may have increased the likelihood that one would be labeled a social outsider shortly after the other on the basis of familial ties. If they could easily be labeled as social outsiders when times were hard, this social status and some of the commonly associated abnormalities would have allowed these individuals to become easy targets of violence. However, it is important to note that most of the individuals recovered from the site appear healthy; indicating that numerous factors may have been taken into account when sacrifices were chosen.

Conclusion

Many theories of ritual and sacrifice are based off of cross-cultural research and data collection. This is done so that theories will encompass a wide spectrum of human behavior. While not all societies fit perfectly into these theoretical assumptions, it appears that this is a case where the Maya do fall within expected patterns. In the case of the two individuals with probable Klippel-Feil from MTC, the social implications of their
physical disability in life may have dictated their ultimate treatment when it came time for them to die. Given the overall assemblage at MTC highly suggests large scale sacrifice; these two individuals could be the first indication of physically handicapped individuals chosen for sacrifice within a Maya cave. Such biased treatment of social outsiders is expected given expectations set forth in ritual theory and what is known about Maya sacrifice practices. While individuals chosen for sacrifice in caves may encompasses a wide variety of individuals, they do not vary much from what would otherwise be considered the "norm" of preferred victims for human sacrifice crossculturally based upon Girard's model.

This article aimed to connect the physical condition of two ancient Maya individuals who suffered from Klippel-Feil syndrome with how they may have been treated differently, excluded from society, and ultimately documenting a condition that may have led to them being chosen for ritual sacrifice. Only one archaeological case of Klippel-Feil documents the type of care the individual probably received directly due to their syndrome. In this instance a young adult male discovered in Vietnam was probably quadriplegic due to his advanced Type III Klippel-Feil (Oxenham et al. 2009). Further evidence from his skeleton suggested that the individual was left incapacitated for the last decade of his life, completely relying on the welfare of others to feed and bathe him.

Documenting these social implications of treatment, good or bad, with pathological abnormalities or diseases should ultimately be included whenever possible with reconstructions of paleopathological conditions of prehistoric populations. Fay (2006: 192) points out that "palaeopathologists en masse have not addressed how disease as a conceptual structure was understood in the past, seemingly preferring a narrative
grounded in present, biomedical paradigms." These types of considerations are just beginning to be discussed in the paleopathological literature, with the most notable interpretations of societal treatments based upon illness made by Marsteller et al. (2011) and Oxenham et al. (2009). The social perspectives of a condition can change through time (Cross 2007). However, before we can begin to understand if change occurred, we first must fully document the contexts individuals are found in and discuss the social implications that they suggest. When these types of social implications are included, we can connect the more physical anthropological and biological aspects of human life with the more cultural and social aspects of humanity. This detailed documentation may eventually give us an understanding for how specific cultures may have viewed particular abnormities or diseases. Eventually, this will allow for cross-cultural comparisons for how different cultures cared for different medical conditions.

CHAPTER 7 THE DEMOGRAPHY OF SACRIFICE: COMPARISONS OF OBSERVED AGE-AT-DEATH ASSEMBLAGES FROM THE ANCIENT MAYA SITES OF MIDNIGHT TERROR CAVE (BELIZE) AND CHICHÉN ITZÁ (MEXICO) TO A REFERENCE HORTICULTURALIST MORTALITY SCHEDULE.

(Chapter originally co-authored with Dr. Jack Baker, originally intended for peerreviewed publication and updated here with co-author's permission.)

Abstract

This chapter examines age-at-death profiles of ancient Maya mortuary assemblages from the sites of Midnight Terror Cave (MTC), Belize and Chichén Itzá (CI), Mexico; two sites where evidence strongly suggests that human sacrifice was the driving formational force. Statistical comparisons to a model life table for traditional horticulturalist populations further strengthen the conclusion that these skeletal deposit did not accumulated due to a normal mortality process. This comparison includes a novel approach to the consideration of preservation bias in which a Monte Carlo model of this bias is incorporated into comparisons of the observed age-at-death distribution to that which would be expected based on the model horticulturalist life-table. At low levels of modeled bias ($5^{\text {th }}$ percentile), neither MTC nor CI assemblages could be distinguished from the reference mortality model; however, at average to higher levels of modeled bias ($50^{\text {th }}$ and $95^{\text {th }}$ percentiles), both populations clearly differ from the reference model in one or more age intervals. After accounting for preservation bias, the findings suggest that neither the MTC nor CI assemblages were likely to have accumulated due to a normal mortality regime experienced within traditional horticulturalist populations.

Introduction

This chapter compares the age-at-death distribution of two Maya mortuary assemblages (Midnight Terror Cave, Belize and Chichén Itzá, Mexico) to the distribution that would be anticipated under a model life-table of horticulturalist mortality published by Gurven and Kaplan (2007). Previous examinations of the Midnight Terror Cave (MTC) site have concluded that there is strong archaeological evidence suggesting that the assemblage accumulated due to cultural practices associated with human sacrifice (Kieffer 2011, 2015). The assemblage associated with Chichén Itzá's (CI) Sacred Cenote is also widely considered to have accumulated in conjunction with human sacrifice practices (Tozzer 1941; Tiesler 2005; de Anda Alanís 2007). In spite of the strength of these lines of evidence, no analysis to date has ruled out the possibility that either site accumulated due to a typical mortality regime associated with horticulturalist populations. Lohse et al. $(2006,2010)$ have reviewed evidence supporting the idea that the Maya living in the periods during which these two assemblages accumulated made their living via horticulture. This suggests that the model life table of Gurven and Kaplan (2007) may be used to as a reference mortality schedule, which rules out the likelihood that these assemblages accumulated as the result of a natural mortality process. This comparison forms the basis of this chapter.

To accomplish this aim, this discussion focuses not on the mortality process itself; rather, it models the relationship of the age-at-death distribution observed in both assemblages to an expected one under the null model of Gurven and Kaplan (2007). There are several reasons why we focus upon the age-at death distribution instead of
seeking to describe mortality processes from these bioarchaeological assemblages. The limitations of mortuary assemblages from archaeological sites are well-known (Wood et al. 1992), and the focus on age-at-death has been recommended by previous researchers (Paine 1989; Milner et al.1989; Wood 2002). Significant biases may exist in mortuary assemblages. These may be due to unanticipated disasters such as epidemics, warfare, and human sacrifice (Chamberlain 2006) or they may accumulate via taphonomic processes related to culturally-specific mortuary practices (Scrimshaw 1984; Saunders et al., 1992), soil conditions (Gordon and Buikstra 1981; Haglund and Sorg 1997, 2002), or even as artifacts of excavation methods (Paine and Harpending 1998). For all of these reasons, bioarchaeologists have long been suspicious of the assumption that mortuary assemblages directly represent mortality processes (Angel 1969 Weiss 1973; BocquetAppel and Massett 1982). McCaa (2002:102) goes as far as to call this idea the "Whopper Assumption." While it is clear that mortuary assemblages do not directly reflect mortality, they provide direct data in the form of an age-at-death distribution that is related to the underlying mortality process that interacts with all of the factors listed above (Milner et al. 1989; Paine 1989; Wood et al. 1992; Wood 2002).

In light of these challenges, bioarchaeologists and paleodemographers have often resorted to using model life tables-reference mortality schedules thought to reflect the population for which only incomplete data are available (Coale and Demeny, 1966; Shyrock et. al., 1980)-to correct for deficiencies in bioarchaeological data (BocquetAppel and Massett 1982; Preston et al. 1994; Paine and Harpending 1996; Milner et al. 1989; Paine 1989). This is a common tool in the analysis of contemporary population dynamics with incomplete data (Coale and Demeny 1966; Shyrock et al. 1980; Howell,
1976); however, it must be acknowledged that this approach makes important assumptions about demographic non-stationarity, differences in frailty across subsets of the population, and the role of selective mortality (Wood et al. 1992; Howell 1976; Brass 1960; Preston et al. 1994). Unfortunately, these assumptions are not always acknowledged within a given analysis (Keckler 1997; Hill and Hurtado 1996). Perhaps the strongest assumptions associated with such an approach revolve around the influence, (or lack thereof) of fertility on age-distributions. Fertility shifts induce differences in population age structure much more quickly than mortality (Coale 1957, 1972; Coale and Trussell 1974; Keyfitz and Caswell 2005; Preston et al. 2001) and can have a reverberating impact on mortuary assemblages sampled from populations experiencing such transient population dynamics (Milner et al. 1989; Paine 1989; McCaa 2002). If a specific skeletal assemblage is drawn over a short period of time during which assumptions of population stationarity are untenable due to rapid shifts induced via fertility, then it may be argued that observed age-at-death distributions may tell us much more about fertility than the mortality processes that we wish to measure and make inferences about (Johanson and Horowitz 1986; Sattenspiel and Harpending 1983; Wood et al. 1992; McCaa 2002). Methods of statistical "pattern-fitting" based on maximum likelihood have much to offer in improving the match of mortuary assemblages to reference mortality schedules (Milner et al. 1989; Paine 1989); however, these methods are subject to the same inherent limitations. Our fundamental inability to observe and describe known biasing processes associated with archaeological mortuary assemblage formation places intractable limits on the analysis of these datasets. Often, methods of choosing a best-fitting model life-table degenerates to a problem of choosing between a
number of acceptable candidates with no compelling scientific reason to prefer one over the other (Coale and Demeny 1966; Howell 1976; Hill and Hurtado 1996; Keckler 1997). In this chapter, these challenges will be addressed in two specific ways. First, instead of seeking to match observed age-at-death distributions to "one of many" potential reference mortality models that may or may not reflect the population of interest, we take the opposite approach and choose a scientifically appropriate model lifetable upon which to base our analysis (Brault and Caswell 1993; Howell 1976). As described briefly above, this analysis employs the reference horticulturalist mortality schedule provided by Gurven and Kaplan (2007) as an appropriate model life-table for the horticulturalist Maya from which our assemblages were drawn (Lohse et al. 2006, 2010). The Gurven and Kaplan (2007) reference model was based on a comprehensive review of available mortality schedules for small scale horticulturalists and was fit as a reference mortality curve to these data based on the Siler model of mortality (Siler 1979; 1983). The Siler model enjoys high plausibility in capturing biological processes relevant to the human life-course (Siler 1979, 1983; Gurven and Kaplan 2007) and as such has been argued to be a model of choice for analyzing mortality in traditional, deceased populations studied by anthropologists (Gage and Dyke 1986; Wood et al. 2002). This choice of reference model greatly enhances the scientific utility of our analysis over search methods based on pattern-matching (Milner et al. 1989; Paine 1989), regressionbased choices based on similarity of imagined mortality and fertility schedules (Bogue and Palmore 1974; Coale and Demeny 1966; Coale and Trussell 1974; Howell 1976; Hill and Hurtado 1996; Keckler 1997), or simple "best-guess" estimates (McCaa 2002). Here, rather than focus on matching our data to a reference standard, we persistently adhere to
the question of whether the observed age-at-death distribution observed in the MTC and CI assemblages could have been produced by random sampling of persons experiencing our best estimate of "reference" mortality in horticulturalist populations.

To strengthen the comparisons, the issue of preservation/observation bias described above is directly addressed. This is accomplish through the employment of a Monte Carlo model, based on the consensus expert opinion of several practicing bioarchaeologists (personal communications Heather Edgar, Anna Medendorp, and Kate Rusk 2012), a paleodemographer (personal communication Jack Baker 2012), and my own experience in the Maya area about the likely level of age-specific bias might be found in these assemblages. These estimates are open to modification - which is one strength of this approach. The approach grows out of the work of Saunders et al. (1992, 2002), who treat observability bias as proportional to the observed age-at-death counts and measure ratios of observed cemetery populations to a corresponding registry system provided through parish records. This idea may be extended directly through the theory of Horvitz-Thompson estimators in the field of statistical sampling (Horvitz and Thompson 1952; Longford 2005). It provides a logical and mathematical basis for upweighting observations according to a Monte Carlo model that treats age-specific patterns of bias as Bernoulli random variables ranging from zero to one and characterized by parameters of mean and variance (Taylor and Karlin 2001). As such, we may utilize random resampling of a binomial probability process to generate distributions of bias estimates that may be used to get $5^{\text {th, }} 50^{\text {th }}$, and $95^{\text {th }}$ percentile levels of bias adjustments and make appropriate statistical comparisons between the null model of mortality and a range of plausible bias-corrected age-at-death counts (Graham and Talay 2013; LeMieux

2009; Longford 2005). The approach allows for direct assessment of how much bias must be present in our age-at-death estimates in order to invalidate a statistical test of differences in age-at-death distributions between the Gurven-Kaplan reference mortality model and that observed in our study assemblages.

While careful attention to methods in order to strengthen inferences has been made, the goal of this chapter is not to establish new methods in bioarchaeology or paleodemography. Rather, the goal is to examine the important question of whether the MTC and CI assemblages could have accumulated due to natural processes instead of cultural practices associated with human sacrifice among the ancient Maya. The results of this chapter, therefore, address both a specific and important question in the anthropological sciences while providing a simple, repeatable methodological alternative that could be adapted to similar studies in other settings.

Ethnographic and Archaeological Background

Mortuary Rituals in Maya Karst Features

Throughout the Maya culture area in Central America, there were a variety of preColumbian mortuary practices that occurred in caves and karst features. Due to the diverse post-mortem mortuary treatments that occur in these features, bioarchaeologists working in the area currently rely heavily upon contextualization of the skeletal material in order to interpret skeletal assemblages. In addition to utilizing ethnographic and ethnohistoric analogy to interpret cave contexts, indicators have been established that aid bioarchaeologists working in the region to determine funerary from non-funerary contexts. These indicators include: biographical profile of the individuals, form of death,
predepositional body treatment, primary vs. secondary deposition, and postdepositional manipulation (Tiesler 2007:22).

Both primary and secondary burials have been recorded in Maya caves. Examples of isolated or a limited number of secondary burials have been noted at cave sites in Guatemala and the Yucatán (Ruz Lhuillier 1965). However, the use of caves as ossuaries or places to store cremation assemblages was not a wide spread practice. This phenomenon is primarily restricted temporally to the Postclassic (AD 1000-1675) and spatially to the southern periphery of the Maya area in Honduras and western periphery in Chiapas, Mexico (Ricketson 1925:392; Blom 1954; Ruz Lhuillier 1968:165). Furthermore, this type of secondary cave burial was suggested by many to be a practice reserved for the elite (Dahlgren de Jordan 1966; Moser 1975). The mortuary practice of primary cave burial also appears to have been restricted to the elite, as indicated by the appropriation of caves for masonry tombs and elaborate elite burials that are documented throughout Guatemala and Mexico (Thompson 1938; Burgoa 1934; Dahlgren de Jordan 1966; Moser 1975, 1976; Brady 1989:348; Kieffer 2009). Primary and secondary Maya commoner burials appear to be restricted to house mounds (Rathje 1970) and rock shelters - which differ from caves due to their inherent lack of a dark zone (Bonor 1995; Bonor and Martínez Klemm 1995; Prufer 2002; Saul et al. 2005; Glassman and Bonor Villarejo 2005). These "dark zone" spaces are defined as any area of a cave in which one cannot see your hand in front of your face without assistance from a light source.

The dark zone of caves in the Southern Lowlands and Peten were commonly used for sacrifice (Scott and Brady 2005; Gibbs 2000; Moyes and Gibbs 2000; Owen 2005; Saldana and Kieffer 2009). There are a number of Maya cave sites that have been
interpreted as including sacrificed individuals due to surface skeletal deposits located on the cave floor, commingled, with evidence of trauma, and/or within watery features (Pendergast 1971; Reents-Budet MacLeod 1986; Brady 1989; Gibbs 2000; Scott and Brady 2005; Woodfill 2007). These watery contexts have been proposed as places of sacrifices to the Maya rain gods based upon ethnographic and ethnohistoric analogy (Scott and Brady 2005). Based on this criteria, skeletal material in the sites of Eduardo Quiroz Cave (Pendergast 1971), Naj Tunich (Brady 1989), Petroglyph Cave (ReentsBudet MacLeod 1986), Actun Tunichil Muknal (Gibbs 2000), Cueva de Sangre (Scott and Brady 2005), La Iluminada and Hun Nal Ye (Woodfill 2007) have been interpreted as sacrifices. However, many of these sites only have a few individuals, which makes any statistical comparison to them difficult if not impossible.

The Site of MTC

The site of MTC is located in the Roaring Creek Valley in western Belize. This karstic region is well known for a variety of inhumation practices in caves and rock shelters by the ancient Maya from the Preclassic to the Terminal Classic. The cave is associated with the mid-sized surface site of Tipan Chen Uitz, which has two causeways extending out to the smaller satellite sites of Cahal Uitz Na and Yaxbe, indicating that Tipan Chen Uitz is the largest site in the area (Andres et al. 2011). Due to the large-scale modification of MTC and associated surface architecture, it seems highly plausible that the elite at Tipan Chen Uitz appropriated utilization of MTC.

The osteological analysis I conducted on skeletal material from the site indicates numerous types of perimortem trauma, including puncture wounds, blunt force, sharp
force, and defensive wounds. The vast majority of the individuals were found commingled on the surface in the dark zones of the cave, lacking grave goods, and recovered from watery contexts. All of which is suggestive of a sacrificial assemblage. To date, three individuals from the site have been radiocarbon dated to $700-750 \mathrm{cal} . \mathrm{AD}^{1}$, 670 ± 20 years AD (UGAMS \#16771, MTC VIII 13-168), and 690 ± 20 years AD (UGAMS\#16770, MTC VI 23-140), which corresponds to the Maya Late Classic (A.D. 600-800) (Kieffer 2015). However, the ceramic assemblage for the cave site suggests the peak utilization of the cave occurred during the Late and Terminal Classic (800-1000 AD) (Scott 2011), which corresponds to a period of major climatic instability in the region (Gill 2000; Haug et al. 2003; Hodell et al. 1995, 2001; Kennett et al. 2012; Medina-Elizalde et al. 2010, 2012).

The Site of Chichén Itzá

The Cenote Saratoga (also known as the Cenote of Sacrifice and Sacred Well) is located in the Yucatán at the site of Chichén Itzá. This Maya site was occupied from the Late Classic (600-900 AD) into the Postclassic (900-1200 AD), with continued pilgrimage to the cenote during the time of the Spanish conquest (Landa 1937:90). One unique aspect of this site, which makes it an ideal example for the expected demography of sacrifice, is the ethnohistoric literature that documents sacrifice occurring there (Tozzer 1941). In addition to this, the architectural art throughout the site displays an emphasis on vivid imagery of sacrifice and death (Miller 2007:183).

[^0]Much of the material, including human skeletal remains, removed from the cenote was dredged up by Edward H. Thompson between 1904 and 1910 (Coggins 1992). Numerous studies of Chichén Itzá's Sacred Cenote mortuary assemblage have revealed high percentages of infants and men recovered at the site (Hooton 1940; Saul and Saul 1989; Tiesler 2005; de Anda Alanís 2007). Of the remains studied, numerous instances of various cut marks, charring, defleshing, and dismemberment were used to sacrifice individuals or alter their remains shortly after death (de Anda Alanís 2007:205). In a recent re-examination of the skeletal assemblage recovered from the site, at least 127 individuals were recovered; 88 (over 69%) were children or juveniles under 18 years of age (de Anda Alanís 2007:193). Unfortunately, this data set could not be used in this study because the age distribution developed in de Anda Alanis' reanalysis has yet to be published. Therefore the original analysis conducted by Hooton (1940) was used as the data set in this study.

Methods

Methods for Age Estimation

Due to the commingled nature of the human remains recovered from MTC, each bone was analyzed, photographed, catalogued, and pertinent measurements or morphological descriptions recorded using standard bioarchaeological and forensic anthropological techniques (i.e. Buikstra and Ubelaker 1994; Moore-Jansen et al. 1994) (see Appendices A and B). Preservation bias and looting at the site limited the ability to create age estimations for every skeleton based on metric and morphological traits on the pelvis (Todd 1920; Brooks 1955; Lovejoy et al. 1985; Brooks and Suchey 1990), skull
(Masset 1989), and dentition (Hillson 1996; Ubelaker 1999). Similarly, due to absence of some skeletal elements, no one method could be used consistently across the assemblage to create age estimates. So, whenever possible, stage of epiphyseal fusion and bone lengths or other pertinent metric analysis of individual bones were recorded along with corresponding age range estimates based upon Bass (1995), Baker et al. (2005), Schaefer et al. (2008), and White et al. (1999, 2011). Similarly, any degenerative bone changes such as arthritis, wear, and bone resorption were noted when present and factored into age determination. Because many age estimation techniques are based on modern European skeleton assemblages rather than pre-contact indigenous Americans, care was taken to note any possible overlap of age ranges for different age estimation techniques derived from different skeletal elements within a deposit so that an individual would not be counted more than once within a deposit.

The minimum number of individuals was calculated based upon standard bioarchaeological methods, which rely on knowing the quantity and size of the same sided elements as well as any pertinent age and sex information (White et al. 1999, 2011). Minimum number of individuals was calculated numerous times due to the possibility of skeletal material being moved from one deposit to another or even completely removed from the cave due to looting, prehistoric reuse, or natural processes. First MNI was calculated at the sublot level (typically an arbitrary spatial area), then at the lot level (typically a room or alcove within a larger chamber), next at the operation level (cave chamber), and finally at the level of the entire cave site. This method made it possible to see the movement of certain skeletal element between sublots and lots. At MTC at least 118 individuals were recorded, a majority were young adults and subadults between five
and twelve years of age (Figure 7.1) (Kieffer 2015). This demographic distribution is similar to other Maya sacrificial deposits, which consist of predominantly infants, adolescents, and young adult males (Tiesler 2007).

Current bioarchaeolgical standards did not exist when Hooton (1940) conducted his analysis. His report does not explicitly indicate which skeletal elements were used to determine age of individuals; however, the report focuses heavily on skulls and pelves in discussion of age and sex of the individuals from CI.

Figure 7.1. Age distribution based upon the osteological analysis of Midnight Terror Cave material removed from the cave and analyzed in situ prior to rectangular proration.

Age Adjustments and Sample Characteristics

Methods for assigning ages to skeletal remains are not without uncertainties (Sattenspiel and Harpending 1983; Saunders et al. 1991, 2002; Bass 1995) and often this
results in interval-based estimates of age for individual remains. Since demographic analyses of mortality are facilitated by assignment of individuals to more fine-grained groupings, such as five-year age intervals, data utilized in this analysis were subjected to the method of rectangular proration (Brass 1960; Shyrock et al. 1980). Rectangular proration is built upon the assumption of rectangularity, which assumes that within a fiveyear age group, every year has equal proportional distribution (Shyrock et al. 1980). In this analysis, rectangular proration was utilized to assign individuals to five year age categories from more coarse-grained ones, and the summarized counts of deaths by age utilized in the remainder of the analysis. The resulting "observed" death counts for both the MTC and CI assemblages are reported in Table 7.1.

Age	Midnight Terror Cave	Chichén Itzá
0 to 1	6	7
2 to 4	18	7
5 to 9	17	2
10 to 14	5	8
15 to 19	3	5
20 to 24	15	2
25 to 29	12	2
30 to 34	12	2
35 to 39	4	2
40 to 44	4	2
45 to 49	4	2
$50+$		2

Table 7.1. Age-adjusted datasets post rectangular proration utilized in this analysis.

A Horticulturalist Model Life Table Using the Siler Competing Hazards Method

The Siler model is a competing hazards approach to life-table estimation, with each individual potentially dying from forces associated with infant mortality, initial adult mortality, and shifts in the force of mortality as senescence occurs (Siler 1979, 1983). In formulaic terms, the Siler model formulates the force of mortality as:

$$
\mu(a)=\alpha_{1} e^{-\beta_{1} \alpha}+\alpha_{2}+\alpha_{2} e^{\beta_{3} \alpha}
$$

Here, β_{1} represents the rate of decline in early mortality with age, associated with the parameter α_{1}, which represents the force of mortality associated with neonatal life together this represents a term that reflects early-life mortality risk that is decelerating with age (Siler 1979, 1983). The second term parameter α_{2} reflects a constant force of mortality across the life span (Makeham 1860). The third term-- $\alpha_{2} e^{\beta_{3} \alpha}$-reflects the senescent component of mortality which is the constant force of mortality $\left(\alpha_{2}\right)$ with an acceleration component $e^{\beta_{3} \alpha}$ reflecting increased risks of mortality across the aging spectrum (Gompertz 1825). The model is reviewed in greater detail in Gurven and Kaplan (2007), Wood et al. (2002), and Gage and Dyke (1986), but one of its main perceived advantages is that it provides a biologically plausible basis for a model lifetable that speaks to species-specific mortality patterns experienced as part of the human life course (Siler 1979, 1983; Hill and Hurtado 1996). In the context of anthropology, this model also has been argued to be the most biologically-plausible mortality model for traditional populations (Gage 1988; Wood et al. 2002). In this analysis, we used the parameters suggested by Gurven and Kaplan (2007): $\alpha_{1}=0.2798, \beta_{1}=1.1037, \alpha_{2}=$ 0.0223 , and $\beta_{3}=0.1274$ as a model life-table, predicting the anticipated number of deaths in each age interval we would expect to see within the MTC and CI assemblages, if such a mortality schedule characterized the populations from which they were drawn.

A Monte-Carlo Model of Preservation Bias \& Statistical Comparisons

This approach builds on results from Saunders et al. (2002), who compared cemetery assemblages to parish records, which indicated discrepancies between the
observed cemetery assemblages and those expected in a register-type tracking system (see Figure 5.4, pp. 144). Using this as an initial basis, we constructed estimates of observability bias by age via expert opinion. These estimates were derived based upon the life experience of three other bioarchaeologists (personal communications Heather Edgar, Anna Medendorp, and Kate Rusk 2012), a paleodemographer (personal communication Jack Baker 2012) and myself. Each of us ranging between five to almost 30 years of experience in our respective fields. Two of these five experts have excavated Maya skeletal assemblages from these regions, while another one of the experts has worked with numerous Maya skeletal collections in museum and laboratory settings. All three of these researchers were familiar with the preservation conditions of the collections used in this study when they came to a consensus of preservation bias percentages. The greater bias for the young and old is justified by the known preservation bias that greatly affects the preservation of very young and older individuals in the archaeological record typically due to minimal or decreased bone density (Angel 1969; Walker et al. 1988; Larsen et al. 1995:142; Guy and Masset 1997; Bello et al. 2002, 2003; Bello et al. 2006; Jackes 2011).

The expert-based ranges for the analysis of preservation bias utilized in this model include a most-likely "average" preservation bias as well as the upper and lower bounds of the preservation bias (Table 7.2), which reflect the lower rates of preservation seen among the youngest and oldest age cohorts in most archaeological assemblages. This best-guess estimate approach is utilized in stochastic simulation studies where available estimates of a phenomenon are not available, as when a research topic is new and a paucity of literature exists (LeMieux 2009; Graham and Talay 2013). They are presented
for each five year age category, truncated at the 50 plus years due to a paucity of available individuals beyond this age. These values were used to operationalize a set of resampled Monte Carlo based estimates of the distribution of the probability of observing a death.

Age Cohort	5th Percentile	50th Percentile	95th Percentile
0 to 1	0.05	0.43	0.80
2 to 4	0.07	0.31	0.55
5 to 9	0.03	0.19	0.35
10 to 14	0.03	0.09	0.15
15 to 19	0.03	0.07	0.10
20 to 24	0.03	0.07	0.10
25 to 29	0.03	0.07	0.10
30 to 34	0.03	0.07	0.10
35 to 39	0.03	0.09	0.15
40 to 44	0.03	0.14	0.25
45 to 49	0.07	0.21	0.35
$50+$	0.07	0.26	0.45

Table 7.2. The ranges of preservation bias utilized in the Monte Carlo simulations to determine if differential preservation may exist within an assemblage.

The basis for the Monte Carlo model was a random resampling of rates under a binomial probability model (Chiang 1964, 1984), operationalized as a normal random
variable (LeMieux 2009; Graham and Talay 2013). Each Monte Carlo experiment resampled the assumed distribution 1,000 times, and we accounted for autocorrelation in random number generation ("burn-in" bias) by excluding the first 500 resampled estimates and thinning to each $100^{\text {th }}$ iteration (LeMieux 2009; Linstrom et al. 2011). These distributions were utilized in the analysis at the $5^{\text {th }}, 50^{\text {th }}$, and $95^{\text {th }}$ percentiles to account for uncertainty in the expert-based judgments (Le Mieux 2009; Graham and Talay 2013). Graphically, this produced survival plots that were visually inspected (Figures 7.2 and 7.3) to qualitatively assess the impact of the Monte Carlo based adjustments. In both cases, the adjusted datasets appear to be significantly different from the observed age-distribution once the Siler model is fit to both using maximum likelihood methods with code custom-written in the R software package (r-project.org). These qualitative observations suggest that if preservation bias is present in these assemblages, which is a significant likelihood even with the watery conditions that the remains were recovered from, that directly modeling it should impact our assessment of hypotheses.

To test the null hypothesis of no differences in the age-at-death structure between null models and adjusted age-at-death counts for the MTC and CI assemblages, we employed simple categorical and parametric data analysis including chi-squared tests of association for overall differences and paired z-tests of the binomial proportions for specific age intervals (Agresti 2004; Christensen 1997; Samuels et al. 2012).

Results

Tables 7.3-7.5 present the results of statistical comparisons of the adjusted agespecific death counts to those expected under the null model of horticulturalist mortality. Table 7.3 captures analyses made using the $5^{\text {th }}$ percentile of the modeled distribution of observability bias. While Table 7.4 displays analyses from the $50^{\text {th }}$ percentile (the average and "most-likely" value) and Table 7.5 reviews results associated with comparisons at the $95^{\text {th }}$ percentile. Across all age intervals, statistically significant differences are observed at the $50^{\text {th }}$ and $95^{\text {th }}$ percentiles only for the CI assemblage ($50^{\text {th }}$ percentile: chi-squared $=25.18, \mathrm{p}=0.02 ; 95^{\text {th }}$ percentile: chi-squared $=149.27, \mathrm{p}=0.001$). Overall, only a weak statistically significant difference was observed for the MTC site at the $95^{\text {th }}$ percentile (chi squared $=15.88, \mathrm{p}=0.1$).

Within specific age-intervals, however, both sites deviate significantly from the horticulturalist model life table, but those deviations depend upon the level of observability bias incorporated into the estimate. At the $5^{\text {th }}$ percentile of the modeled distribution for MTC (Table 7.3), significant differences were noted for the newborns to one year of age $(\mathrm{p}=0.007), 11$ to $15(\mathrm{p}=0.005)$ and 36 to 40 year olds $(\mathrm{p}=0.008)$. At the $50^{\text {th }}$ percentile, statistically significant differences were noted for the 11 to $15(\mathrm{p}=0.002)$ and 36 to $40(\mathrm{p}=0.005)$ age intervals (Table 7.4). Similarly the $95^{\text {th }}$ percentile noted statistically significant differences in the same age intervals ($\mathrm{p}=0.0001$ and $\mathrm{p}=0.0037$ respectively) as well as the 16 to 20 age interval ($\mathrm{p}=0.002$) (Table 7.5).

For the site if CI, no statistically significant differences were noted at $5^{\text {th }}$ percentile of the modeled distribution (Table 7.3). At the $50^{\text {th }}$ percentile of the modeled distribution a significant difference was noted for the six to 10 age interval for CI
$(\mathrm{p}<0.001)\left(\right.$ Table 7.4). Finally the $95^{\text {th }}$ percentile for CI had significant differences for the newborn to one ($\mathrm{p}<0.001$), six to $10(\mathrm{p}<0.001)$, and 51 and above ($\mathrm{p}=0.01$) age intervals.

Table 7.3. Comparisons of sacrifice assemblages to reference horticultural mortality schedule, at the $5^{\text {th }}$ percentile.

Table 7.4. Comparisons of sacrifice assemblages to reference horticulturalists mortality schedule, at the $50^{\text {th }}$ percentile.

Table 7.5. Comparisons of sacrifice assemblages to reference horticulturalists mortality schedule, at the $95^{\text {th }}$ percentile.

If we relax the criteria for statistical significance to $\mathrm{p}=0.05$ or even $\mathrm{p}=0.1$ for the z-score test results at the level of age-groups, the number of age intervals that are statistically significant increases. This increase is more noticeable among the MTC age cohorts, which would then have significant differences for more than half the age intervals in the 5th, 50th, and 95th percentiles. Given the small sample sizes involved that relaxation may be justified.

Discussion

The fact that the both overall and age-specific differences are observed after correcting for preservation bias via Monte Carlo simulations suggests that the MTC and CI mortuary assemblages were unlikely to have accumulated due to natural mortality processes. The statistically significant differences observed appear most similar to the age profile of deaths observed among mass graves attributed to selective targeting of specific age groups in warfare. Two clear, though disturbing, examples are drawn from Palestine and Srebrenica (Bosnia), where civilian mortality was greatest for individuals between the ages of 15 and 25, with the highest numbers being 20 year olds (Radlauer 2002; Brunborg et al. 2003). While the relationship between these warfare-based examples may only vaguely relate to patterns associated with ritual sacrifice, it is clear that the elevated number of children observed in the assemblages is not typical of those observed for any pre-industrial horticultural societies (Chamberlain 2006:64, see Figure 2) such as those contributing to the Gurven-Kaplan reference model. It is also important to note that existing evidence does not suggest that it should be expected for periods of famine (Chamberlain 2006:72, see Figure 3). The age-specific differences for MTC and CI also
aid in ruling out the possibility that the bimodal age distribution of the assemblages is due to some sort of "accident hump" (spike in mortality at a specific age or interval) within the once living population that attributed to these assemblages. Gage and Mode (1993) note that when "accident humps" are noticeable they should only have miniscule mortality increases. As the simple z-score test results indicate (Tables 7.3-7.5), there are statistically significant differences among specific cohorts for both MTC and CI compared to what a normal horticultural society should display.

For both the MTC and CI assemblages, at varying percentiles of the modeled bias distribution, we have noted statistically significant differences across all age cohorts. These age cohorts tend to be over represented by those ethnohistorically chosen for sacrifice (older children and young adults) (Fuentes y Guzmán 1932; Tozzer 1941; Roys 1943; Scholes and Roy 1968), and underrepresented by those not typically targeted for sacrifice (older adults). These statistical differences within specific age intervals indicate similarity with known ethnographic patternings of sacrifice and further bolster the finding that the MTC and CI assemblages are not likely to have accumulated due to natural mortality processes. In fact, these observations are in harmony specifically with the idea that they accumulated due to sacrifice as suggested by the ethnohistoric record.

Due to the impact of demographic nonstationarity on mortuary assemblages, one could attempt to make an argument that the statistically significant differences for the younger age cohorts in this study may be due to increases in fertility which would result in a greater proportion of individuals in younger age intervals. However, it is important to contextualize the MTC and CI assemblages within the time periods that they accumulated. The height of MTC's utilization occurred during the Terminal Classic,
while the height of CI's utilization was during Late and Post Classic. This is important as these periods are notable for the decline of the traditional Classic Maya socio-political system in their respective regions (Aimers 2007:339, 342-343). This period of sociopolitical "collapse" throughout the Maya region is noted through archaeological evidence of site abandonment, the cessation of large scale architecture, as well as dramatic population declines in the regions that never recovered (Stantley et al. 1986; Culbert and Rice 1990; Haug et al. 2003; Turner and Sabloff 2012). Therefore an increase in fertility would be unlikely as a cause for these spikes in age-at-death.

We also doubt that fertility can explain these differences, because the impact of fertility on age-at-death distributions will be most pronounced when short-term fertility increases are observed, as in the US Baby-Boom of the 1940s-1970s (Preston et al. 2001; Coale 1972; Coale and Trussell 1974). The mortuary assemblages utilized in this study potentially accumulated over the course of hundreds of years, which would largely dampen the impact of such short-term bumps. Over longer periods of time, stable population theory and models both suggest that population age-structures will become younger in general as general fertility rates converge upon a stable equilibrium and mortality re-asserts its long-term impact on population structure (Schoen 2010; Kim and Schoen 1993). Assumptions about demographic stationarity in model life tables are important, but their impact is lessened when skeletal assemblages accumulate over longer periods of time than they are when an assemblage is deposited over a shorter interval (Milner et al. 1989; Paine 1989).

It is interesting that the cohort specific differences documented for MTC do not correspond perfectly with the statistically significant results from CI's demographic data.

This indicates that preferred ages of sacrificial individuals may not be consistent throughout the Maya area. Given the temporal differences between the sites, these differences may also be due to change in ritual practices over time. The weak difference noted between the MTC and CI assemblages could also be due to a variety of cultural choices relating to sacrifice at the site. For instance, if sacrificial preference changed over time or a more randomized selection process for selecting sacrificial individuals existed, then these choices may be contributing to why the models are not different but a number of differences are noted at specific age intervals.

Conclusions

Prior to the development of the types of statistical analysis employed in this research, bioarchaeologists could look at an overall patterns of a mortality curve and determine if mortality for a site was normal or not. Data that reflected a J-shaped or "bath-tub shaped" curve demonstrated a relatively normal distribution with high infant mortality that decreases before rising again for older individuals (Weiss 1973). This pattern is seen in Mesoamerican mortuary assemblages interpreted as burials at Caves Branch Rockshelter, Belize (Glassman and Bonor Villarejo 2005) and Teotihuacan, Mexico (Storey 1992). However, this is not the type of pattern demonstrated by MTC or CI. The analysis and modeling introduced by this article provide a visual and statistical means to determine if an assemblage can be considered to be drawn from a mortality process measured in existing mortality models for horticulturalist populations. The specific age intervals where statistical differences were noted are also consistent with the idea that sacrifice could have contributed to the formation of the assemblage.

Figure 7.2. Graphical depiction of a Siler Model for the Midnight Terror Cave assemblage based on adjusted (Black) and unadjusted (Grey) datasets.

Figure 7.3. Graphical depiction of adjusted (black) and unadjusted (gray) Siler curves for Chichén Itzá.

It is important to note that the two different assemblages did not demonstrate the same age-specific statistical differences when compared to reference horticulturalist model. This reflects the robust nature of the model comparisons made here. While the MTC and CI assemblages both appear to differ from the reference model, the method
preserves their ability to differ from one another as well. The finding that the dynamics of assemblage formation at each site differ from one another, as well as from the reference model, speaks to the complex nature of population dynamics and their interaction with cultural and taphonomic factors in producing mortuary assemblages. Fortunately, the tools employed here permit a legitimate assessment of the differences between a reference mortality process and an observed data set in a manner that allows study and analysis in meaningful ways. As such, these results reflect not only a step forward in our understanding of the MTC and CI assemblages and ancient Maya cultural practices, they also present a robust method for enhancing future similar studies.

CHAPTER 8 DISCUSSION AND CONCLUSIONS

Evidence of Sacrifice

Human skeletal material was recovered from six of the eight Operations (spatially delimited concentrations of archeological materials in cave chambers excavated as separate units) in Midnight Terror Cave (Operation III, IV, V, VI, VII, and VIII). Within the six Operations that contained human skeletal material, there were 37 deposits (groupings of bones) and a few scatters of commingled surface clusters of skeletal material. Most of the individuals recovered came from the dark zones of Operations V and VIII. A vast majority of the remains were interpreted as primary deposits, due to the quantity of small skeletal elements present and the discovery of semi-articulated bones in many of the deposits. There are, however, a few cases of secondary movement and/or placement.

Incomplete recovery of individuals (due to preservation problems, removal by looting, and brecciation or CaCO3-cementation of bone) led to the decision to use a contextual approach for calculating MNI. Arbitrarily defined adjoining sublots and lots were analyzed together if there were indications of movement of skeletal material between the areas (see Appendix A for details). The descriptive and quantitative data provided in Appendix A outline a very unevenly preserved mortuary assemblage.

Sex could not be determined for a vast majority $(\mathrm{n}=82)$ of the 118 individuals via standard bioarchaeological methods, due either to their subadult status or their fragmentary nature (Table 8.1 and Figure 8.1). Almost half ($\mathrm{n}=46$) of the mortuary assemblage consists of subadults, with a majority ($n=19$) of those subadults estimated to
be 5-8 years of age. As some of the previous chapters have indicated, this is not a typical mortuary assemblage for a cemetery. Rather, this age distribution is more in line with human sacrifice as it has been documented at Chichén Itzá (De Anda Alanís 2007;

Hooton 1940).

Sex	0-1.5 years	$\mathbf{1 . 6 - 4}$ years	$\mathbf{5 - 8}$ years	$\mathbf{9 - 1 5}$ years	$\mathbf{1 6 - 2 0}$ years	$\mathbf{2 0 - 2 5}$ years	Young Adult	Undetermined Age (Adult)	Old Adult	Undetermined Child
Undetermined	9	10	19	8		2	19	12	2	
Female					1	1	13	3	1	
Male						2	8	5	2	

Table 8.1. Age and sex distribution of the individuals recovered from Midnight Terror Cave and those studied in situ.

Figure 8.1. Graphical age and sex distribution of the individuals recovered from Midnight Terror Cave and those studied in situ.

There has been some criticism of this MNI calculation of 118 at MTC, with other estimates establishing a slightly lower MNI of 114 juveniles (Prout 2016a,b; Verdugo et al. 2016a,b). This alternative calculation is based on an incorrect method of calculating

MNI. First of all, Prout failed to consider overlapping age ranges of various methods for determining age. Relying upon the work of Prout (2015, 2016a,b), Verdugo et al.'s (2016a) work indicates the presence of two children in Operation VI Lot 2B. These children were estimated to be two to four years of age and four to six years of age (Verdugo et al. 2016a). Based upon these age estimates alone, there is the potential for only one child of approximately four years of age. For this same deposit, I calculated one child five to six years of age. The fact that our age estimates are slightly different may be due to a difference in methods for determining age. Thus with standard means of calculating MNI, there would still only be one child in this deposit.

Calculating the presence of two individuals simply because the age estimates based on different skeletal elements do not perfectly overlap is not an accepted practice in bioarchaeology. First, this method is considered a poor choice because most commonly used age estimation techniques are based off of relatively modern populations of European descent, which do not accurately estimate prehistoric and other ethnic population groups (Schmeling et al. 1999). While steps are being taken to remedy this problem (Pavón et al. 2010; Danforth et al. 2009), there will still be age range estimates for juveniles based on single skeletal elements that will not always correspond perfectly to an estimate based on another skeletal element's development. Second, as the only osteologist who personally collected remains from many of the deposits within the cave, I was able to determine which deposits had incomplete recovery and made note of it when possible. Without this first-hand information, one would be relying on the assumption that the rest of these individuals had not been recovered either because of loss due to
looting and/or because they had been left in situ. Such reliance on absence of evidence is not an indication that the material still exists in the cave.

The MNI count determined by Verdugo and collogues (2016b) also raises concern. Their analysis indicated the two children in Lot VI-02B are 6-10 year old and 10-16 years old respectively. Without more detailed documentation, it seems possible that these two estimates could represent an individual roughly 10 years of age. None of the specimens they listed provide the original catalog numbers assigned to them. This prevents their work from being directly compared with the data in this dissertation. The specimen numbers I assigned to every skeletal element encoded provenience information such as Operation, Lot, and Sublot are part of the number convention. If a new specimen numbering system was used for their research without encoding provenience information, this may also then explain why the MNI calculated by Verdugo and colleagues is different than the one I have calculated.

Even with these variations in MNI, Chapter 7 demonstrates that the demographic distribution for the site of MTC does not fit a normal mortuary pattern for a horticultural society. When Siler models for the sites of Chichén Itzá and MTC are compared to Monte Carlo resampled models that correct for preservation bias, significant differences are observable across the $5^{\text {th }}, 50^{\text {th }}$, and $95^{\text {th }}$ percentiles. Although the model comparisons for MTC only have a weak level of significant difference ($\mathrm{p}=0.1$), there are multiple age intervals that are statistically different between the models. The age intervals correspond with age groups preferentially selected for sacrificed (older children and young adults) and age groups that were not as targeted (older adults).

Z-Score tests of proportions at cohort levels conducted with data from 49 other mortuary assemblages further highlight the uniqueness of Midnight Terror Cave's demographic distribution (Kieffer and Baker 2017). When statistically compared to cemeteries and warfare-based assemblages, significant differences are noted at a $\mathrm{p}=0.01$ level for almost all the comparisons in the six to ten year age cohort. When data from Caves Branch Rockshelter is compared in the same way to these mortuary assemblages, the abnormality of this level of significance for the six to ten year age cohort becomes apparent, because it is only statistically different than four of the assemblages at a $\mathrm{p}=0.05$ or $\mathrm{p}=0.10$ level. While Caves Branch Rock Shelter also displays statistical differences between many of the assemblages for other cohort groups, these differences are isolated mostly to the very young and the very old. These statistical differences can be explained in part by poor preservation conditions experienced in the tropics. While the statistics from the demographic data cannot prove that sacrifice occurred at the site, they do indicate that Midnight Terror Cave and Chichén Itzá are very similar in demographic distribution. Overall, these statistical tests suggest that the type of demographic distribution seen at Midnight Terror Cave may have been impacted by similar means at Chichén Itzá, which, as noted long ago, was affected by human sacrifice (Tozzer 1941).

Direct evidence of trauma on the bones is not apparent on all of the individuals recovered from the MTC assemblage. The 28 cases of perimortem trauma (including blunt force, sharp force, puncture wounds, and scalping) are confined to 16 individuals only 23.6% of the overall assemblage (Kieffer 2011, 2015a). For some of the individuals with cut marks, multiple cut marks were observed on a single bone. Only one case of scalping was noted in the entire assemblage (Operation V Lot 1), while two cases of
puncture wounds to the crania were noted (a child in Operation V and an adult in Operation VIII). Only one of the sharp force injuries was discovered on a sternum (Operation V Lot 1). The rest of the sharp force injuries were discovered on the ends of long bones, and multiple crania. According to Tiesler (2007), these injuries are consistent with the ancient Maya practices of defleshing, skin flaying, and heart extraction.

Although the traumatic evidence was documented on an estimated 23.6% of the individuals recovered from the cave, contextual evidence further suggests that a vast majority of the individuals were sacrificed. Grave goods, other than the occasional items of personal adornment, were not found in most deposits. Although no conclusive data on cultural material counts and locations where they were discovered within the cave have been published, multiple individuals working on the project noticed an inverse relationship between quantity of skeletal material and cultural material in many of the deposits within the cave (personal communication Allan Cobb, James Brady, Ann Scott, 2008; C. L. Kieffer unpublished field notes). In the most abundant deposits of skeletal material, there were few if any ceramics and vice versa.

The two individuals who do not display enough evidence to indicate that they had been sacrificed were discovered in Operation IV in Special Deposit 3. Although these two individuals lack grave goods and were comingled in a watery depression, they were otherwise unique in the assemblage (Kieffer 2011; see Appendix A, pages 224-225). A lack of smaller skeletal elements and the small space of the depositional area suggested these two individuals decomposed elsewhere and were placed in the cave as a secondary deposit. These two individuals both lacked any indication of trauma and they were discovered in the twilight area of the cave (Kieffer 2011). It seems more likely that these
two individuals were deposited in some type of ancestor veneration ritual or were secondary "sacrifices" (ritual deposition of ancestor remains in an otherwise sacrificial context) after they had died and decomposed elsewhere (Kieffer 2011).

Spatial Distribution of Sacrifice Indications

In terms of the spatial distribution of human remains within the cave, there is no clear-cut pattern, other than association with wet/watery areas (See Table 8.2). The largest deposit of individuals occurred in association with an area of modification that has already been interpreted as an area of public space (Brady and Kieffer 2011, 2012 Figure 4). Operation V Lot 1 , which produced a MNI of 17, is located in the two rooms adjacent to the large chamber with the massive fire blackened column formation in Operation V Lot 4 and the large terrace-like steps in Operation V Lot 7 (Figure 8.2).

Location	Width (cm)	Length (cm)	Floor			Instances		
			Height (cm)	Space (m2)	Volume (m3)	MNI	of Trauma	Bone Count
Op. III Lot 8	333	238	150	7.9254	11.8881	1	0	2
Op. IV Lot 5						secondary	0	1
Op. IV Lot 10	1125	523		58.8375		1	0	44
Op. IV Lot 11C	167	330		5.511		secondary	0	1
Op. IV Special								
Deposit 1						secondary	0	1
Op. IV Special								
Deposit 3	142	96	93	1.3632	1.267776	2	0	100
Op. V Lot 1 C, E, G	1470	592	150	87.024	130.536	17	9	820
Op. V Lot 2	493	657	230	32.3901	74.49723	5	2	66
Op. V Lot 3	370	380	370	14.06	52.022	1	0	30
Op. V. Lot 4	950	780	235	74.1	174.135	2	0	98
Op. V Lot 5	253	450		11.385	0	3	0	114
Op. V Lot 6	1890	820	600	154.98	929.88	3	1	200
Op. V Lot 7	1250	900		112.5	0	3	0	150
Op. VI Lot 1 A, B, C	800	580	565	46.4	262.16	2	3	230
Op. VI Lot 2 A, B, C	610	670	300	40.87	122.61	2	1	520
Op. VI Lot 3 D, E						4	3	114
Op. VI Lot 3 F	99	80		0.792		2	0	10
Op. VI Lot 3 G	4130	449	150	185.437	278.1555	4	1	41
Op. VI Lot 4	612	590	1534	36.108	553.8967	1	0	137
Op. VI Lot 6	180	170		3.06		secondary	0	1
Op. VI Lot 8	550	235		12.925		2	0	105
Op. VI Lot 9						1	0	10
Op. VI Lot 11						1	0	6
Op. VI Lot 12						1	0	42
Op. VII Lot 1						4	0	560
Op. VII Lot 2	850	700	240	59.5	142.8	secondary	0	29
Op. VII Lot 11C	370	50	33	1.85	0.6105	secondary	0	5
Op. VII Lot 12	700	260		18.2		2	0	87
Op. VIII Lot 1								
ABCD	581	610	400	35.441	141.754	11	2	800
Op. VIII Lot 2	370	100		3.7		5	0	630
Op. VIII Lot 3	150	104	263	1.56	4.1028	1	0	148
Op. VIII Lot 5						2	0	154
Op. VIII Lot 7								
A,B,C,D	910	342.5	1100	31.1675	342.8425	4	0	1060
Op. VIII Lot 8 A, C	1993	510	600	101.643	609.858	4	0	318
Op. VIII Lot 10								
A,B,D,E	653	771	168	50.3463	84.58178	4	0	178
Op. VIII Lot 11 A ,								
B, C, D, E	677	886	340	59.9822	203.9395	8	1	939
Op. VIII Lot 13	279	500	237	13.95	33.0615	3	1	795
Op. VIII Lot 14	906	1070	1600	19.344	309.504	5	0	784
Op. VIII Lot 15 A						secondary	0	26
Op. VIII Lot 16						6	3	1004
Special Deposit 4						undetermined	1	81

Table 8.2 Size of space, bone quantity, human MNI, and quantity of individuals affected by trauma by deposit.

Figure 8.2. Large terraced steps in Operation V Lot 7 of Midnight Terror Cave. Photo taken by C. L. Kieffer.

These terraced steps in Operation V Lot 7 create more space for observers to stand on a slope with otherwise difficult footing. Thus suggesting that this space may have been used for public ritual activities, or at least semi-public ceremonies with multiple observers. Although remains of not many individuals were found in direct association with these large terraced steps in Operation V, ethnographic analogy suggests that individuals may have been sacrificed on or near the steps, and their still-fleshed bodies were dragged and/or rolled into the muddy depression areas within the adjacent rooms. This possible movement of the bodies after the ritual can be justified based upon other documented ethnographic examples of ritual sweeping of a space or clearing of a space, which are performed before or after a ritual to animate the space (Scott 2009). Evidence for some post mortem movement of skeletal elements in Operation V was noted
based upon the deliberate stacking of long bones into piles in the commingled deposits. Additional moving of the bodies would have been necessary in order to clear the large modified area, as the compact floor in most of the larger chamber in Operation V does not have any indication of fluvial movement strong enough to have moved the corpses into the smaller rooms. Additionally, the floor of the cave has a natural incline before descending out of view in the smaller rooms of Operation V where most of the individuals were recovered (Figure 8.3). This slope, along with a meter of vertical space above the muddy depressions in the adjacent rooms, would have greatly minimized the public performance aspect of sacrifice if the individuals were sacrificed in the same location from which their remains were ultimately recovered.

Figure 8.3. The incline on the southeastern extent of the large chamber in Operation V prior to descending into to smaller rooms which were designated Lot 1 . Photo taken by C. L. Kieffer.

The next largest deposit of skeletal material was located in Operation VIII Lot 1.
This deposit produced an MNI of 11 with two instances of trauma, and is located in a
hard-to-access upper level of the cave. While there is a level area in the room where spectators could have stood, the size of the room would limit the number of spectators to perhaps half a dozen. This is many fewer than what the larger chamber in Operation V could hold, suggesting the space may have been used for more private rituals of human sacrifice.

This lack of clear-cut correlation between numbers of individuals with the overall size of the room in which they are found is consistent throughout the cave. Scatter plots demonstrate this lack of a relationship between quantity of bones distributed in an area and MNI when compared to size of space from which they were recovered (Figure 8.4). Statistical tests between floor size and volume to number of bones and MNI failed to find any statistically significant correlations.

Figure 8.4. Scatter plots for quantity of bone to floor area and volumetric area as well as human MNI to floor area and volumetric area of rooms or chambers where they were recovered from. See Appendix Table A. 1 for raw data.

It is important to note, however, that data in these scatter plots do display the space in which the skeletal material was discovered. Although the individuals in

Operation V Lot 1 were associated with one of the larger modifications of the cave that indicate the space was used for public ritual, they were actually discovered and recovered from a relatively small space that is believed to be where they were disposed of presumably after the ritual. It seems plausible that the act of ritual sweeping may be preventing an accurate determination of how large spaces were utilized for the purpose of ritual activity. Therefore, it is plausible that sacrifices were for the most part made in large public spaces, and then just moved into smaller areas after the ritual, after decomposition and/or prior to a subsequent ritual performance.

One correlate that does exist for large public spaces is the ratio of trauma to number of individuals associated with these spaces. Operation V Lot 1 had nine cases of trauma (eight instances of bones with cut marks and one case of puncture wounds) in a deposit of at least 17 individuals. The only other deposits with this high of a ratio or higher for trauma to MNI are Operation VI Lot 1 (three instances of trauma in a deposit of at least two individuals), Operation VI Lot 3 (three instances of trauma in a deposit of at least four individuals), and Operation VIII Lot 16 (three instances of trauma in a deposit of at least six individuals). It is important to note that while Operation VI Lot 3 is not associated with public space, the skeletal material discovered there is believed to have washed or fallen in from Operation V, which contains one of the largest public spaces in the cave. Operation VIII Lot 16 on the other hand is directly associated with the large constructed plaza in Operation VII. Activities that occurred in the southwestern end of Operation VIII Lot 16 can easily be seen in the plaza below in Operation VII.

Operation VI Lot 1 appears to be the only anomaly in this correlation of high rates of trauma with public space, as it is not associated with a plausible public space. All other
areas in the cave, which are not directly associated with large areas of public space had lower rates of trauma and no more than two or three instances of bones being affected by trauma. This includes the second largest deposit of 11 individuals in Operation VIII Lot 1, which only had two instances of trauma.

This greater quantity of trauma in association with possible public spaces might be due to the public ritual performance of sacrifice. With the presence of spectators to observe the ritual, there may have been a desire for the ritual to appear more dramatic with increased brutality and blood. This desire for dramatics might cause the sacrificer to inflict more harm to the individual being sacrificed, although this is a highly speculative suggestion.

Although these kinds of rituals may be performed in a cave with restricted access, Inomata (2006a:810,814) states it is still possible for the space to be used for large-scale public ritual. Inomata (2006a,b) indicates that large-scale performance rituals may have real and direct political consequences. By making these sacrifices of both human and material remains public performances, the local elite may have been able to achieve a certain extent of control during an ever-changing political and environmental climate. This control may have been both direct and indirect. Indirectly, those watching these public rituals may not have been passive in the experience. Even if they were not actively doing something in the ritual, their mere presence might aid in defining relationships within the community and shapes their identity (Turner 1969). Such relationship-defining is made possible through the sense of communitas that is created during the liminal state of the publically performed ritual (Schechner 2006:87; Turner 1969).

In the same way that sacrifice could have been used to gain control and power, the theatrical public performance of sacrifice rituals might have eventually weakened the social structure of the residential site on the surface near MTC. This can be explained with the evolution of signaling theory as it pertains to ritual performances. Rappaport (1999) states that participating in a ritual signals beliefs and group affiliation to others. By turning these rituals into public performances, they became more than just a means to enforce ideology and reenact mythological events - the ritual became capable of changing perceptions and interpretations experienced by the actors (Bell 1979:74, 161). In a forum where perceptions of rituals and performers become malleable, the elite would have created a forum in which political power became negotiable. Elite people could have easily used these public performances to signal their power and access to resources. This type of signaling can then be used as a means to create intragroup cooperation and maintain solidarity, if participants are forced to sacrifice material wealth to signal their high level of commitment to the social group (Sosis and Bressler 2003; Sosis 2004; Henrich 2009). The applicability of this theoretical transition may seem like it would not escalate to the extent of participation in human sacrifice, however modern extremist religious behavior, which does escalate to the point of self-sacrifice, has already been explained within this same theoretical framework (Sosis and Alcorta 2008).

Individuals Chosen for Sacrifice

The mortuary age distribution of the site not only suggests sacrifice, but also suggests that there was some degree of choice when determining who would be sacrificed. The preferred choice to sacrifice children and young adults is apparent from
the unnatural peaks in the demographic age curve for these groups as compared to other mortuary assemblages from around the world. What is harder to tease out is how other individuals were chosen for sacrifice.

As discussed in Chapters 5 and 6, there is strong (albeit not definitive) evidence that the ancient Maya did preferentially choose individuals for sacrifice who may have been considered "outsiders" by the local residents living around Midnight Terror Cave. Isotopic evidence indicates that this included geographical outsiders. As the isotope data demonstrates, none of the 26 individuals recovered from the cave whose remains were chosen for isotope analysis were from the surrounding Roaring Creek Valley based upon comparison with known oxygen isotope values from numerous local sites. As discussed in Chapter 5, the predictive model based upon stepwise regression of these isotope values and known isotope-impacting variables (i.e., distance from the sea, altitude, local water sources) at these sites indicate the values for those considered local to the area of Midnight Terror Cave would be between -2.95 and $-2.38 \delta^{18} \mathrm{O}$. As Chapter 5 presents, the values from Midnight Terror Cave have a mean of $-4.48 \delta^{18} \mathrm{O}$ and a range of -6.07 to $3.54 \delta^{18} \mathrm{O}$, thus indicating that none of the individuals sampled were living in the area when their sampled tooth was formed. Currently available comparable data do not allow for detailed determination of where these individuals may have originated. As mentioned in Chapter 5, similar values as those documented at Midnight Terror Cave have also been documented at, Xunantunich, Peligroso, Ramonal, Campeche, Tikal, Palmarejo, Palenque, Maltrata, Kalminaljuyu, Tzintzuntzan, Champantongo, and Teotihuacan.

Recent strontium ($\left.{ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}\right)$ isotope ratio analysis on 31 children's teeth from the site has led to an interpretation that a majority of them (73\%) were local, while the rest
were probably from the slightly more distant Mopan and Macal River Valleys (Lorenz et al. 2016). Lorenz based this interpretation on a strontium value range of 0.7079-0.7093, with a mean of 0.7084 . It is important to note that these same values can also occur elsewhere in the Lowland Maya region (Hodell et al. 2004), and thus the possibility of these children as geographical outsiders cannot be ruled out by strontium analysis at this time.

For the most part, individuals with evidence of pathological conditions do not appear to be over represented within the assemblage. However, as posited by the Osteological Paradox (Wood et al. 1992), it is still possible for individuals to have been sick without leaving pathological evidence on their bones. Only five instances of porotic hyperostosis were noted, none of which were extreme cases with extensive bone remodeling. At least six individuals suffered from varying degrees of osteoarthritis, as indicated by degenerative changes and spondylophyte growth on vertebrae. The only other pathological condition noted in the assemblage was a case of probable gout. Minimal quantities of caries and calculus and only three abscesses were noted within the entire assemblage. Such excellent dental health is not unexpected given the young age of many individuals in the assemblage. Only one case of healed traumatic injury resulting in slight disfigurement was noted in the form of a clavicle fracture. However, it is highly unlikely that these pathological findings would result in extreme burden on the individual in question or their family members.

The only pathological findings from the cave that suggest individuals may have been sacrificed due to their social outsider status as probably disabled individuals are the two cases of Klippel-Feil syndrome (Kieffer 2017). These findings have caused some
discussion over what it means to be an social outsider (Prout 2016c; Scott 2016; Kieffer 2016; 2017). Scott (2016) provided a number of ethnographic examples and artistic depictions in the Maya and Aztec cultures of dwarfs and hunchbacks in an attempt to demonstrate that "deformed" individuals are not social outcasts. I fully acknowledge that not all individuals with physical abnormalities are social outcasts in all societies. However, there is a major distinction between physical abnormality and physical disability. The ancient Mesoamerican artistic depictions are not capable of demonstrating disability. However, the osteological evidence from MTC and the medically documented, associated abnormalities (i.e. speech and hearing defects, spina bifida, renal abnormalities, heart malformations, muscular atrophy and weakness, cleft palate, mental retardation, respiratory problems, hypertension, scoliosis, narrowing of the spinal canal, and quadriplegia) that occur in individuals with Klippel-Feil indicate impaired mobility in these two individuals and thus a physical disability.

For some abnormalities, disability is in part a social construct and not everyone who is impaired is necessarily perceived as or consider themselves to be disabled (Oliver 1990). Dwarfism has only recently been accepted as a disability, and many "little people" today still do not consider it a disability (Kruse 2003). Similarly, many individuals without physical or cognitive abnormalities have definite attitudes about individuals with abnormalities or disabilities. Included in these views is a social hierarchy of how particular individuals with certain types of disabilities are respected and treated differently than individuals with a completely different disability (Munyi 2012; Deal 2003; Westbrook et al. 1993; Schmelkin 1984; Tringo 1970; Shears and Jensema 1969). Schmelkin's (1984) research in particular indicates that people do not view dwarfs and
hunchbacks in the same way as paraplegics, the very ill, or individuals with cognitive deficiencies. As I have previously pointed out, these are some of the abnormalities associated with Klippel-Feil syndrome (Kieffer 2017:46-48). While not all cultures treat specific physical abnormalities and disabilities in the same ways, Schmelkin's (1984) research indicates that sweeping generalizations of social status within any society cannot be made between individuals with different abnormalities or disabilities. That is why I clearly outlined the associated abnormalities and limitations of individuals with KlippelFeil syndrome in Chapter 6.

The literature that Scott presented indicates that among the Aztec and Maya, some dwarfs and hunchbacks held special places in society - in many cases as servants to the elite. However, no evidence is provided to indicate the Maya or Aztec viewed them as disabled or that these particular individuals were actually disabled. Classifying dwarfs and hunchbacks as disabled is a modern Euro-American view that goes against standards in the bioarchaeology of care (Tilley 2012:39). These ideas include understanding that disability for one person may not be disability for another, as views of disability vary from culture to culture, and in order to postulate the presence of a disability there needs to be evidence of physical impairment (Tilley 2012). Physical abnormalities depicted in iconography such as dwarfism and hunchbacks cannot be equally compared to other abnormalities because they have mythical correlates within specific cultures. For instance, individuals with dwarfism have direct analogy with mythical creatures referred to as Aluxes among the Maya (Spenard 2014; Redfield and Villa Rojas1934). Having mythical correlates would make deciphering images of the two difficult and may explain why individuals with these abnormalities were held in high regard.

The fault that Scott finds with my study of these two possible Klippel-Feil individuals is due to our differing opinions of disability. Scott (2016) states that hunchbacks and dwarfs are disabled. I, on the other hand, disagree. By highlighting all of the physical abnormalities associated with Klippel-Feil at Midnight Terror Cave, it becomes possible to understand the increased likelihood that the individuals were probably physically disabled and/or or seen by society as disabled.

On a similar note, Verdugo et al. (2016b:498) disagree with my assessment of porotic hyperostosis and use this as an argument against my classification of type I Klippel-Feil syndrome. In no place do I state in my article that porotic hyperostosis is an abnormality associated with any type of Klippel-Feil syndrome. I merely included it in my overall assessment for the differential diagnosis. The fact that Alison Galloway and I disagreed in the assessment of the presence or absence of porotic hyperostosis is par for the course of interobserver error, which has already been documented as being rather high in cases like this (Jacobi and Danforth 2002).

Verdugo et al. (2016b:498) stated that I "speculated that the two individuals with Klippel-Feil syndrome were closely related." First, my actual speculation was that the individuals were possibly "genetically related" (Kieffer 2017:52). The authors credit themselves for removing speculation and establishing fact (Verdugo et al. 2016b:498). However, they have neither proven nor disproven the possibility that the two individuals were related, nor disproven that these two individuals are genetically related. Merely they demonstrated they do not come from the same matrilineal haploid group. A level of speculation about their possible relationship still exists, as does the possibility that these individuals were social outsiders.

Structural Violence at Midnight Terror Cave

Gerald Martin (2000:162) states that in order to understand violence, it must be classified as political or non-political, organized or disorganized, criminal or social. Given what we know about Maya society and the interwoven aspects of its politics and religion, as well as the elite appropriation of caves, it seems that the violence that occurred in Midnight Terror Cave may have been political. The fact that the sacrifices in Midnight Terror Cave were conducted in a ritualized manner suggests that it was organized violence. The fact that some of this violence was performed in apparently prepared public venues of the cave suggests that it was an accepted social act condoned by society. This type of politically organized and socially sanctioned violence is an essential classification necessary towards establishing the presence of structural violence.

Those working within the structural violence framework emphasize that violence is not senseless, rather it is a symbolic and meaningful action (Blok 2000:31). It is these symbolic meanings and actions that allow for a particular type of violence to occur within a society and therefore allow for the repetitious and reaffirming nature of structural violence. These symbols and meanings that a culture imbues into their ritualized violent actions also allow for the violence to become understandable (Pérez 2012:18). Therefore this act of organized public and political human sacrifice within the Maya culture can be understood when we analyze the symbols surrounding the act with the help of known ancient Maya ideology and religious beliefs. Based upon ethnographic and ethnohistoric accounts mentioned early in Chapter 3, we know that sacrifices in caves are associated with rain petitions and made in order to bring the rains. Therefore, the elite who had
politically appropriated the cave's use, made these sacrifices or commanded them, possibly in order to bring the rains.

As this belief in cave sacrifice was probably universal throughout the Maya culture area, there may have been similar cultural buffering systems used in different regions thereof. I propose that these cultural buffering systems included warfare and raiding. This adaptation provides a means by which to acquire sacrifices, thus preventing the sacrifice of your own kin, and increasing the likelihood that your genetic material will survive to subsequent generations. All of this is then dependent on polity and individual persistence and resilience in the face of warfare, raiding, and resource depletion. With these variables in place, we can then see how Klaus' (2013) flow chart of structural violence can be modified to describe the more specific case of how structural violence allowed for human sacrifice to persist in the Maya area (Figure 8.5).

While this feedback loop succinctly explains the factors influencing the actions that eventually contribute to the passive and active forms of violence, it lacks individual and group actions that break free from the status quo of the society. Even when a society has accepted and institutionalized violence, eventually change does occur. As history has shown us, these changes can come in the way of individuals making a grandiose stand against the status quo or it can occur in the form of group action.

Figure 8.5. Structural violence feedback loop for the ancient Maya. Modeled after Klaus (2012).

Relating Structural Sacrifice to Existing Models of Sociopolitical Collapse

One cannot bring up the topic of Maya "Collapse" without defining what is meant by the term. In no way is it the complete disappearance of the Maya culture or language family; after all there are still many Maya descendants throughout Central America to this day. The term "Maya Collapse" is meant to refer to the sociopolitical collapse of the Classic Maya city-state/kingship system. This collapse occurred throughout the Maya
area at varying degrees, with sites being affected at different times due to a variety of variables (Aimers 2007). These variables include internal forces within a polity, as well as external forces outside a polity's control (Sabloff 1973). Additionally, it is also likely that forces contributing to the collapse of one polity may have directly or indirectly triggered the collapse of others (Culbert 1977), thus creating a chain reaction or domino effect. This collapse of sociopolitical complexity was not sudden; rather it was a slowmoving, multigenerational change (Tainter 1988; Adams 1973).

Amongst the ideas, theories, and models used to discuss this sociopolitical collapse of the ancient Maya are some that take into account individualistic and group reactions in response to actions made by existing political structures. The scapegoat king theory is one such theory that has been gaining momentum in its applicability to the ancient Maya over the past few decades (Iannone et al. 2016). In the simplest terms this idea is grounded in the idea that the legitimacy and power of kings is tied to prosperity of the kingdom (Quigley 2005). This prosperity can be maintained by feeding the gods, presenting themselves in an exceptional and/or god like manner, and redistributing resources (Feeley-Harnik 1985). When these conditions are not met or not perceived to be met by members of a polity, the king becomes the scapegoat and is eventually removed from power.

This concept of "the scapegoat king" and the conditions that play into the model are similar to the theory of structural violence. In fact, the utilization of structural violence by an ancient Maya king would actually aid in his ability to present himself as an exceptional or god-like being, due to his ability to inflict violence onto others as a means to obtain resources. Additionally, the relationship that the ancient Maya kings had
with the Maya deities (who controlled resources) can also easily be combined with the well-documented environmental changes that have been argued as contributing factors to the collapse (Kennett et al. 2012; Medina-Elizalde et al. 2010; Gill et al. 2007; Webster et al. 2007; Shaw 2003; Hodell et al. 2001, 1995; Gill 2000). Iannone et al. (2016) have critiqued the overreliance of blaming droughts and environmental factors on the collapse of the Classic Maya sociopolitical structure on current issues impacting our research interpretations. However, the environment of the past should still be included in our discussions of the ancient Maya collapse as it affected resource availability which in turn inevitably did impact human behavior.

The structural violence/scapegoat king hybrid model in Figure 8.6 proposes a more complete model that includes multiple factors (i.e., environment, warfare, and politics) by combining the scapegoat king model with the structural violence that is indicated by the practice of human sacrifice. Such a model is a more holistic approach to discussing how sacrifice may have also contributed to the collapse. More importantly, it weighs the influence of numerous variables rather than focusing on only one factor. Figure 9.6 indicates some of the possible actions and reactions that can occur with structural violence among the ancient Maya and how a polity becomes susceptible to dissolution after the king becomes the scapegoat for all that is going wrong for an individual polity. Unlike previous models of structural violence, this one gives more power to the Maya commoners, who are capable of negotiating the sociopolitical environment through avoidance and resistance (Joyce et al. 2001).

In this hybrid model (Figure 9.6), the environmental constraints are controlled by the deities. The elite are capable of interacting with these deities in order to influence the
resources that are then made available to the people. This influence is conducted by means of material and human sacrifice. This is seen as more than simply a gift exchange in some parts of the Maya area, rather it is seen as a substitution of life (Monaghan 2000). This need for sacrifice among the Maya is believed to have been related to the crosscultural relationships between people and their gods. A relationship that reinforces an idea of original debt or a contract which requires people to supply the gods with what they need in order to care for the needs of the people (Inannone 2016; McAnany 2010; Monaghan 2000; Joyce 2000).

Figure 8.6 Flow chart that outlines the impact and consequences of structural violence among the Ancient Maya.

When these environmental constraints posed a limitation on necessary resources, the cultural buffering systems, which include warfare and raiding for sacrificial captives and resources, would be enacted. All of these activities are well documented throughout the Maya area. The extent of sacrifice, and specifically captive sacrifices. was covered previously in Chapter 3 of this dissertation. While the extent to which warfare occurred and was documented on monumental architecture fueled the models of Maya Collapse that focused primarily upon warfare as the cause (Webster 2002, 2000, 1977; Demarest et al. 1997; Freidel 1992, 1986). In the proposed model (Figure 8.3), buffering systems could supply much needed resources to the exiting population, which contribute to their ability to resist disease, growth disturbances, and possibly even death. Other factors that play into physiological disturbances are the strength of the polity and their ability to resist outsiders, as well as the outside forces from other polities. These are critical aspects to include in the already existing structural violence model, because structural violence in the Maya area was not a closed system, reliant mainly upon resources and hierarchy. Rather it was a system in which structural violence was dependent upon the commoners and used within the polity on other polities as well as by other polities.

Once these impacts of physiological disturbance occurred to a population, a variety of things could have occurred. First of all these physiological disturbances could cause a biological impact, which leads to certain genetic material being selected against or left in the population's gene pool. This then feeds back into the model and impacts future generations' ability or inability to resist physiological disturbances. The societal impacts of death, disease, and stress from warfare and sacrifice means that fewer
individuals would be available to support the society's needs in terms of labor and reproduction. This societal impact then requires action on the part of those in the polity.

Depending on the life style conditions within the polity, one of three reactions to the situation seems plausible. The first one is to accept that life within the polity, possibly compared to the status of those around them, is not that bad and that thus people consent to continue living with the status quo. In this scenario, they continue to pay into the sociopolitical system and established hierarchy of the existing polity. This outcome would only seem the obvious choice if the individuals within the polity felt as though the king were continuing to provide for them. If this copasetic outlook is not maintained, then the two possible outcomes of the scapegoat king model come into play. Those living within the polity will blame the king for the condition of things. This will either lead to local abandonment or the people will forcefully rise up against the existing hierarchy and overthrow it. There are a number of cases of forceful and violent revolts and acts of monument termination associated with site abandonment within the Maya area (see Harrison-Buck 2012 for an overview of the topic). However abandonment of a site is rather hard to demonstrate in the archaeological record, and the only cases documented thus far to my knowledge focus on abandonment after a military defeat (Dahlin 2000).

The more blatant examples of contexts that have been interpreted as elites being overthrown in the Maya area include mass burials at Tikal (Laporte and Fialko 1990) and Yaxuná (Schuler and Freidel 1998), the skull pit at Colha, Belize (Buttles and Valdez 2016; Barrett and Scherer 2005; Massey 1989), and the multiple individuals found in a water feature at Cancuen, Guatemala (Demarest et al. 2016). In the Colha case there was enough material evidence from the rest of the site and surrounding area to suggest that
the polity's supplying of economic demands and status as producer of lithic weapons contributed to their downfall and abrupt site abandonment (Barrett and Scherer 2005).

Researchers working within the Maya area have managed to document what they interpret to be gradual or abrupt abandonment of sites, typically following a defeat or violent event typically from outsiders (Palka 2001, 1997, 1995; Demarest and Houston 1989, 1990; Demarest et al. 1992, 1991; Inomata, 1995; Valdes et al. 1993). In the case of Chunchucmil, Mexico, abandonment occurred following some kind of defeat, possibly brought on due to their proximity to resources (Dahlin 2000). These scenarios comfortably fit into possible scenarios covered in the hybrid model because outside polity forces were too strong, thus causing death, destruction, and sociopolitical disruption, all of which would have contributed to the decision for survivors to migrate away from the site.

The internal class conflict that eventually gives way to revolt in a model that relies upon social hierarchy and inequality to bolster warfare and raiding responses from the masses is inevitable. Hamblin and Pitcher (1980) outline many arguments that support the idea of internal revolts due to class conflict, including murals that depict elite response to a peasant uprising, cessation of deposition of elite goods in refuse dumps after site rebellion, as well as destruction and movement of monuments. The destruction of monuments and site desecration are well documented throughout the Maya area, with examples from the sites of Aguateca (Inomata and Stiver 1998; Inomata 1997), Blackman Eddy (Brown and Garber 2003), Copán (Fash 1989), Cueva de El Duende and Cueva de Sangre (Brady and Colas 2005), Cueva Tabano (Ishihara-Brito et al. 2011), El Perú Waka' (Navarro-Farr 2016), Hershey Site (Harrison-Buck et al. 2008), Piedras Negras
(Golden et al. 2016), Tikal (Freidel et al. 2003; Satterthwite 1958), and Sabalam (Helmke and Brady 2014). In addition to the difficulty in determining the difference between reverential and desecration termination rituals that seem to have occurred at these types of locations (Pagliaro et al. 2003); it is difficult to determine if the destruction and desecration were conducted as part of revolt or after defeat by another polity in warfare.

In addition to these examples of violent overthrowing of the ruling families, there are nutrition and health data that changed through time within the Peten region. As Wright and White (1996) note, there is a general decrease in the trend of corn consumption in the Peten area that corresponds to the period of warfare and political collapse in the region. One of their assumptions is that this is due in part to differential access of resources between elite and commoners. This is supported by site-specific data throughout the Maya area (White et al. 2001; Wright 1997; White et al. 1993; Reed 1994; Gerry 1993, 1997; White 1986; White and Schwarcz 1989). In the hybrid model, this differential access to resources would contribute to the stress felt by commoners within the polity and would contribute to their desire to go to war to obtain additional resources including individuals for sacrifice.

Conclusions

Why then did the ancient Maya stop performing human sacrifice near the site of Midnight Terror Cave? This ultimately brings us back to the theoretical debate of sacrifice between Beattie (1980), who indicated periods of crisis are correlated with increased ritual activity, and Girard (1979), who felt that the sacred obligation of sacrifice becomes neglected during times of great peril. These conflicting views on sacrifice
highlight how difficult the creation a general theory or law regarding sacrifice is. The range of human responses to their environments is too broad to narrowly force a theory or law onto all human behavior.

In this specific case of the ancient Maya, maybe the period of crisis passed, or maybe the tradition of human sacrifice was dropped because times became too difficult. Hopefully, future work on skeletal material from the site on the topics of more refined dating techniques, area specific paleoclimate reconstruction, individuals' places of origin, molecular health, and genetic diversity will help shed light onto the details of sociopolitical and environmental conditions that contributed to the structural violence that occurred at Midnight Terror Cave.

While I believe in the ability for the human spirit to endure difficult conditions and for individuals to continue on with their way of life, I also believe in humankind's ability to see when something is not working. While religious institutions have the ability to affect an individual's line of thinking, eventually, if the rituals and religious ideology do not provide the expected or necessary outcome people seek, they will either rise up against the institution or walk away. As of now, there is not enough evidence at either the site of Midnight Terror Cave or the surface site of Tipan Chen Uitz to determine which of these actions was more likely in this particular instance.

APPENDIX A DEPOSIT DESCRIPTIONS FOR MIDNIGHT TERROR CAVE,

 BELIZE
Midnight Terror Cave

Midnight Terror Cave is located in the karstic Roaring Creek Valley near the village of Springfield in the Cayo District of Belize. The site was discovered in 2006 and received immediate attention and was mapped by the Institute of Archaeology in Belize due to the existence of large deposits of human remains (Figure A. 1 and A.2). The cave is comprised of multiple levels of passages due to its fluvial limestone nature, with passages covering an area more than 200 meters by 50 meters, and contains numerous areas of extensive modification. Many areas in the cave that are easy to access have undergone substantial modification indicated by large leveled plazas, a trail system, and terraced steps on the sloping floors of the cave (Brady et al. 2009). Many of these large areas of modification are in direct association with deposits of human remains, suggesting the remains may have been involved in public ritual acts (Brady and Kieffer 2011, 2012). Inomata (2006a, 2006b) has argued that these features suggest the creation of performance space and viewing platforms which suggest these rituals were public. Although this space is located in a cave, Inomata (2006a:810, 814) indicates that even caves were places of public ritual, and suggests that locations with some level of access restriction still create a sense of inclusion for large scale public rituals.

Figure A.1. Plan View of Midnight Terror Cave. Map reproduced with permission from Nancy Pistole.

Figure A.2. Profile view and select passage profiles throughout Midnight Terror Cave. Map reproduced with permission from Nancy Pistole.

During the 2009 field season structures, terraces, and a plaza were discovered atop the hill directly above the cave. Reconnaissance exploration by the Caves Branch Archaeological Survey conducted in the same year discovered the site core of Tipan Chen Uitz approximately 1000 meters from Midnight Terror Cave. Archaeological investigations at the site of Tipan Chen Uitz indicate the site dates to the Late to Terminal Classic, based on ceramics and a stela date of AD 711 (Wrobel et al. 2011, 2012). The site of Tipan Chen Uitz is surrounded by more than 20 caves, many of which contain
abundant amounts of ceramic and some skeletal remains. However it is, Midnight Terror Cave that has the largest skeletal collection of any of the caves, is the only one with large- scale modification in terms of constructed trails, terraces, and large plaza areas, and has the most associated surface architecture (i.e., the structures on top of the hill the cave is located) of any of the site's caves.

This pattern of structures associated with caves is well documented (see Brady and Ashmore 1999). The existence of structures in association with caves and large scale modification within caves has been used to argue for elite appropriation of caves at the sites of Dos Pilas, Guatemala (Brady 1997b, and Brady et al. 1997) and Naj Tunich, Guatemala (Brady and Stone 1986). The site of Tipan Chen Uitz has two causeways extending out to the smaller satellite sites of Cahal Uitz Na and Yaxbe indicate that Tipan Chen Uitz is the largest site in the area (Andres et al. 2011). Due to the large-scale modification of Midnight Terror Cave and associated surface architecture, it seems highly plausible that the elite at Tipan Chen Uitz appropriated utilization of Midnight Terror Cave.

Archaeological survey of the Midnight Terror Cave was conducted in, monthlong, spring field seasons in 2008 through 2010 by CSULA. These three field seasons focused on detailed mapping, descriptive analysis of space utilization and surfacecollection of artifacts and skeletal material. Operation, Lot, and Sublot designations were used for the purpose of maintaining geographical provenience of artifacts and skeletal material. The cave was divided into a total of eight Operations, with each Operation corresponding to a major cave chamber. Lot designations were numerically assigned as needed within each Operation. Typically distinct rooms within chambers and spaces
bounded by boulders or large cave formations were given discrete Lot numbers within an Operation. Sublot designations were not always made, and were typically reserved for smaller features such as alcoves, niches, ledges, rimstone pools, or dense deposits of cultural or skeletal material. This provenience system works well in cave contexts as it can easily be fitted within the natural boundaries created by caves and cave formations.

Figure A.3. Operations I-III indicated by darkened area. Map reproduced with permission from Nancy Pistole. Modified by C. L. Kieffer.

Operations I and II

Operations I and II were located near the entrance area of the cave, prior to and along the area right before the drop down into Operation III. No skeletal material was recovered from either one of these Operations. Minimal ceramic material was recovered from these areas.

Operation III

Field notes with the general description of Operation III were lost and thus a description of the overall area cannot be written.

Operation III Lot 05

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. Seven human skeletal fragments were recovered from Operation III Lot 05 . This included two long bone fragments (radius and fibula), two metacarpal fragments, two metatarsal fragments, and a proximal manual phalanx. The minimum number of individuals present was one adult of unknown sex and age. However, Maya mortuary practices, the fragmentary nature of the bones, and the few bones represented do not allow for positive identification of just one individual. This deposit was secondary placement, and it cannot be determined if the rest of the individual was discovered elsewhere in the cave or was moved from a surface deposit.

Operation III Lot 08

This lot is located directly east of Operation III Lot 03 and west of Operation III Lot 09 . Operation III Lot 08 was an oval shaped chamber that measured 3.33 meters East to West and 2.38 meters north to south. The floor of this chamber slopes down towards the eastern boundary of this lot, near survey marker A35. The wet nature of this area is noticeable via the flowstone covered walls and the prominent stalagmite approximately 1.5 meters tall in the southern area of this lot. The abundant quantity of stalactite breakage and numerous speleothems scattered amongst the ceramics on the floor along the western extent of this lot further suggests that access to the area was maintained and the collection of speleothems for other ritual means may have occurred.

Two bone fragments were recovered from Operation III Lot 08. This included an unidentifiable long bone fragment and a rib fragment found amongst the ceramic sherds.

The fragmentary nature of the bones does not give any indication as to how old the adult was or the individual's sex.

Summary for Operation III

Operation III Lot 05 and Operation III Lot 08 were incomplete assemblages of bones indicative of secondary placement. Scenarios that seem likely for this deposit include possible association with a ceramic offering prior to breakage, movement from another deposit within the cave, or secondary offering of an ancestor who may have died by other means and decomposed elsewhere outside the cave. At the lot level, the minimum number of individuals represented in Operation III is two adults of unknown age and sex. However at the Operation level, only one individual is represented.

Operation IV

Operation IV was the initial large chamber that the cave opens down into and thus most of the chamber is considered light to twilight zone depending on the time of day and year. The floor of this chamber is scattered with ceramics, ceiling breakdown and large stalagmites. Between these obstructions is the beginning of a trail system that connects many of the Operations throughout the cave.

Figure A.4. Operation IV indicated by darkened area. Map reproduced with permission from Nancy Pistole. Modified by C. L. Kieffer.

Operation IV Lot 05

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. The skeletal material recovered from this lot is limited to a deciduous right second incisor. It is not possible to determine a precise age of this child, other than to say that he or she was over 2 years ($+/-8$ month) of age based on crown and root development (Ubelaker 1989). The presence of just a tooth also does not indicate the sacrifice of an individual; rather it could be an offering or natural loss of only that tooth.

Operation IV Lot 10

Operation IV Lot 10 was located east of Lot 11 and west of Lot 5 and 6. The nature of this location places the lot in the dark zone of the cave. The northern boundary of the lot measured 5.32 meters in length, the eastern measured 6.92 meters, the southern measured 4.97 meters, and the western measured 11.25 meters. The southern border of the lot is comprised of a large speleothem covered boulder located against the cave wall.

The eastern boundary of this Lot was defined by a line of deteriorating rocks and boulders that created a wall almost a meter in height and half a meter wide. Some of this material from this decomposing wall covered the sloping floor of Lot 10. The northern border of the lot contains a human constructed niche that measured 5.32 meters wide. This niche has been symbolically classified as a modified cave within the cave and was probably an area of ritual activity. In addition to the human remains recovered in this lot, ceramics and a metate were also recovered.

Forty-four skeletal fragments were recovered from Operation IV Lot 10. Much of the human skeletal material discovered in this lot was covered in calcium carbonate, indicating they were left in an area that was either wet or seasonally wet. A vast majority of the skeletal material recovered from this area was unidentifiable. Identifiable material include five rib fragments, a distal femur fragment, two vertebrae fragments (one cervical fragment and one probable lumbar fragment), and numerous humerus fragments. All of the remains were adult, and the only indication that the individual might have been a female would be based upon the gracile nature of the humerus fragments since the not enough of the distal end remained to perform metric and morphological analysis. The probable lumbar vertebra fragment suggests a possible laborious life style based upon the lipping and spondylophyte formations on the body fragment which would be indicative of arthritis.

Operation IV Lot 11 Sublot C

The northern border of Lot 11 was defined by multiple speleothem formations along the north and northeastern boundary. The lot sloped downward from the northern
border to the southern border in a series of natural flowstone steps. Lot 11 consisted of an open room with three discrete spaces at its southern border. These discrete areas were given sublot designations A, B, and C. Ceramics were found in all of these sublots, however skeletal material was only discovered in Sublot C. Sublot C was an alcove that measures 1.67 meters wide and 3.3 meters in length located southwest of Lot 11 Sublot A. The alcove sloped southward into a deep inaccessible pit located on the western edge of the alcove. While much of the alcove floor consisted of stones, this western extent was comprised mostly of a clayish soil. A third of the alcove floor consisted of another deep pit. Overall the soil in this sublot was damp to wet in many places due to active formations above. Such wetness was not noted for the other sublots in this lot.

Human skeletal material recovered from this area was limited to one small unidentifiable cranial fragment from an adult of unknown age and sex. The scarcity of skeletal material in this area seems odd; given other secondary deposits within the cave consist of more skeletal material. This may represent a secondary deposit associated with a ritual event, or it may just be caused by movement within the cave.

Special Deposit 1

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included The only human skeletal material recovered in association with this jute cache was an adult proximal pedal phalanx. It seems likely that such secondary placement was probably ritual reuse that either came from within the cave or elsewhere on the surface. For this reason, sacrifice as the means of death cannot be accurately determined for this individual.

Special Deposit 3

Special Deposit 3 was located between massive boulders in the northwestern area of Operation IV. The area leading up to the niche was twilight; however the deposit itself was located in the dark zone that has been created by the boulders. Access to this area was restricted to an opening between rocks that measured 29 centimeters wide and 1.21 meters high. The niche was ovate in shape with the opening of the niche located on the southeast edge of the niche. The niche measured 1.42 meters southeast to northwest, 96 centimeter northeast to southwest, and the height of the space ranged between 93 and 53 centimeters. The walls on the interior of this niche were formed by curtain formations, indicating a once previously wet context. The northern area of this niche was a now dry depression which was either wet in prehistory or flooded seasonally. This dry pool measured 55 centimeters east to west and 29 centimeter north to south.

Over 100 bone fragments were recovered from this area; much of it was recovered from the now dry pool and thus has calcium carbonate deposits on their surfaces. Two long bone fragments could not be recovered from this deposit because they were cemented in place with calcium carbonate on the northern wall of the pool. Two individuals were present based upon the two pairs of calcanei, two pairs of radii, quantity of thoracic and lumbar vertebrae, two left ulnae, two pairs of scapulae, and two right second metacarpals. However, both adult individuals were significantly incomplete suggesting they were both secondary deposits. Further indication that they were secondary deposits is the minimal quantity of ribs and phalanges recovered from the deposit along with the size of the niche which barely provides enough room for one
fleshed individual let alone two. Indications of medical conditions were suggested by the lipping, macroporosity, and crushing of a lumbar vertebrae body; all of which is consistent with arthritis. The second lower premolar on one of the individuals showed indication of an abscess. There was also faint indication of porotic hyperostosis based upon pin prick porosity on a frontal bone fragment.

The layers of calcium carbonate on much of the bone made morphological and metric sex and age estimation difficult. The two os coxae (which were from the same individual) appeared to be female based upon the right greater sciatic notch. The deteriorated pubic fragment associated with these os coxae has some horizontal undulations consistent with Phase 2 or 3 of the Todd Pubic Symphysis System, indicating a young female probably 20-24 years of age. The distal morphology of a right humerus fragment confirmed the presence of a female in the deposit based upon an oval shaped olecranon fossa, symmetrical trochlea, spool shaped trochlea and the angle of the medial epicondyle (Rogers 1994). Based upon the comparison of available matching bones in this deposit, a difference in size and gracility of the bones due to sexual dimorphism was apparent. The presence of an older male in the deposit was confirmed by the mandible with tooth resorption and male morphological traits. The arthritic lumbar vertebrae found in this deposit probably belong to him.

Summary for Operation IV

Operation IV Lots 05,10 and 11C are similar to the odd and incomplete assemblages of bones indicative of secondary placement recovered from Operation III. Scenarios that seem likely for this deposit include possible association with a ceramic
offering prior to breakage, movement from another deposit within the cave, or secondary offering of an ancestor who may have died by other means and decomposed elsewhere outside the cave. At the lot level, the minimum number of individuals represented in Operation IV is one child and five adults (one female in her early 20s, an older male, and three adults of undetermined sex). However at the Operation level, one child and three adult individuals are represented. This reduction to three adults is based upon complete and fragmentary humeri recovered from Lot 10 and the Special Deposit 3. These three individuals consist of an older male, a female in her early twenties and an adult of unknown age and sex. It is highly possible that the one tooth discovered that indicates the presence of a child may not actually represent the sacrifice of a child.

Operation V

Operation V is the most southern chamber of the cave. This chamber is also located at a lower elevation than much of the cave and all of it is located in Dark Zone. It is one of the more extensively modified chambers in the cave and is noted as one of the areas in the cave that experiences changes in seasonal flooding and water inundation. After the trail system that winds through Operation IV and VI, one can enter this Operation through a small opening on the most northeastern boundary of the Operation. The chamber is roughly 75 meters in length from northeast to southwest, and ranges between five to 25 meters in width from northwest to southeast. The floor of the chamber generally slopes downward toward the southwest with the exception of the narrowing passageway before Operation V Lot 1. A trail runs through the entire Operation, beginning in the northeast in Lot 6, continuing down a slope and past terraces in Lot 7,
and through Lot 3 before continuing along the northern wall of both rooms which comprise Lot 1 .

Figure A.5. Operation V indicated by darkened area. Map reproduced with permission from Nancy Pistole. Modified by C. L. Kieffer.

Operation V Lot 1 Sublot C

This sublot is located in the first room of Operation V at the base of a slope which is comprised of Sublots A and B to the north. This room measures approximately ten meters north to south by 5.25 meters east to west. Sublot C is the more eastern portion of the muddy ditch located along the southeastern wall in the room located in the southeast portion of Operation V. The seasonally inundated muddy depression ranges between one to two meters wide north to south and extends the entire length of this room. The vertical restriction over the muddy deposit is at its highest only a meter and a half tall. This muddy ditch continues under low hanging formations into the room to the east, where it is considered Sublot E. Because these areas are interconnected and seasonally flood, the MNI for these areas will be calculated together.

Operation V Lot 1 Sublot E

Sublot E is located in the second room of Operation V , to the west of the first room. This second room is connected to the first room via a compacted trail along the northern extent of the room. Between this room and the second room is a cluster of numerous columns that covers an area 2.5 meters east to west between the two rooms. The niche between these columns was the focus of numerous burning events. The second room measures roughly six meters north to south and 4 meters east to west. Sublot E was the seasonally inundated muddy depression that measured one to 2 meters in width along the southern wall. Due to this sublot's association with sublots C and G , the MNI for these areas was calculated together.

This second room was morphologically similar to the first in that the floor and ceiling drastically sloped downward as one traveled south in the room. The vertical restriction over the muddy depression in the room was also low, no greater than a meter and a half. The only other skeletal remains that were discovered in this room outside of the muddy depression were the remains of a child associated with blue pigment located along the western wall of the room along the slope. These remains however were not recovered prior to looting. Much of the skeletal material in the muddy deposit showed signs of secondary placement, including the stacking of long bones. However, a foot was noted in anatomical position plantar surface up. Such a position would indicate the individual was deposited or left in a prone position. Because this foot was found along the periphery of the muddy deposit, it seems possible that the secondary placement of
bones may have been conducted to clear and establish a ritual space in the muddy depression.

Operation V Lot 1 Sublot G

Sublot G is not located on the original map of Midnight Terror. It is a small room located to the east of Sublot A. This area consists of a 60 centimeter diameter shaft that extends for 2.25 meters before opening into a small ovate shaped room no taller than 1.40 meters tall which measures 3.20 meters northwest to southeast and 1.92 meters northeast to southwest. This room terminates at a restriction 90 centimeters long and 30 centimeters wide. The northeast aspect of the room contained a looters pit which has disturbed the bone within the room. The room was humid and barometric pressure changes between the rest of Lot 1 and the unmapped passage beyond the final restriction created alternating sucking and blowing breezes in the passageway depending upon the time of day. These conditions in addition to insect activity, culminated in the greatest taphonomic damage to bone in all of Lot 1.

Over 50 bone fragments were removed from Sublot G. The presence of at least two adult individuals was determined based upon two pairs of fragmentary ulnae and humeri. The distal ends of a right and left humeri in this deposit is suggestive of the presence of a female based upon spool shaped trochlear outline, symmetrical trochlea, oval olecranon fossa, and medial epicondyle angle (Rogers 1994). This is supported by a right proximal humerus fragment with a head diameter of 38.40 millimeters. The presence of another left humerus fragment with a significantly larger deltoid tuberosity and an os coxa fragment with a narrow greater sciatic notch indicates a male is also
present in the deposit. Of the two mandibles present, one is complete enough to note an incomplete eruption of the third right molar with a more masculine broad chin. This suggests that the male in the deposit is probably under 21 years of age. However the minimum number of individuals for this sublot is three due to the presence of a left juvenile parietal. Due to the incomplete nature of these individuals and minimal recovery of hand and foot bones, secondary deposit is likely. Due to close proximity to Sublot C it seems likely that some of this skeletal material may have derived from that area. For this reason, the MNI for these areas was calculated together.

Summary for Operation V Lot 1

Over 820 bone elements were collected in all of the sublots of lot 1 . Cut marks were found on at least twelve bones found in this deposit, more than any of the other deposits. Most of these cut marks were on long bones such as the femur, tibia, fibula, and humerus. Some of the more interesting cut marks included one on a sternum and another on a cranial fragment that was indicative of scalping. There was also a case of two puncture wounds on the parietal of a juvenile (Figure A.6).

Figure A.6. Image of V-01 E-508, a juvenile parietal with two puncture wounds. Photo taken by C. L. Kieffer.

At least 17 individuals are scattered throughout these sublots, with a majority of them deposited in sublot C. Of these 17 individuals, 11 of them are adults based upon the number of mandible fragments. However, only eight of these individuals are represented with other skeletal elements. This suggests that at least three individuals were secondary deposits. Of these eight adults, only six of them could be sexed based on morphology present on the distal humeri. Three of these individuals were females, four were male, and one could not be determined due to a lack of available humeri. Differential preservation and lack of full recovery throughout the sublots caused only three of these 11 adults to be sufficiently recovered. There was only enough evidence on one mandible, select vertebrae and femora to suggest the presence of one older adult due to dental pathology and arthritic conditions. A lytic sacrum that was short and broad in shape
suggests this older individual may have been one of the females in the deposit.
Morphology on the lunate surface of two adult ischium confirm the presence of young individuals. Minimal dental wear and other indicators of degenerative disease, 10 of these individuals are presumed to be young adults.

The presence of at least six subadults was noted in lot 1 based on the number of clavicles and iliums. Based upon stage of development, one subadult was determined to be perinate to one year old. The development of multiple long bones in the deposit allowed for the determination that three of the children were five to six years of age while another was one and a half to three years old. The more advanced stage of epiphyseal fusion on multiple bones allowed for the determination of an older subadult estimated to be between ten and fourteen years of age.

Operation V Lot 2

Operation V Lot 2 is a sloping open space flanked by a rock on the north, a stalactite and stalagmite on the southwest and by a stalagmite on the southeast. The area measures approximately 4.93 meters north to south, and 6.57 meters east to west and the ceiling height ranges between 2.30 to 1.30 meters. A substantial amount of bones were evenly scattered throughout the lot, with many cemented to the cave floor. Much of this cemented bone is located in a 1.8 meter wide drainage trench that runs five meters in length north to south. The depth of the trench varies from 49.2 centimeters at its deepest to 26 centimeters at its most shallow. Some of the bone had been crushed, but much of it was analyzed in place because any attempt to remove the bone would have destroyed the bone and damaged the cave.

Only 66 skeletal elements could be removed from this deposit. Much of the remains could not be removed without damaging the bones and the cave. For this reason the MNI for this deposit is based off of material collected and field notes which documented other bones that could not be recovered. With material that was removed, the presence of a child estimated three to six years of age is indicated by the size and incomplete proximal epiphyseal fusion of ulnae fragments, a femur fragment with an unfused head, tibiae, a rib, and a fibula. In situ analysis of the remains documented four pairs of femora were documented in place because they are cemented into the cave floor with calcium carbonate. Based upon femoral head diameters, two individuals were male and the other two were female. Age for these adults could not be determined due to layers of calcium carbonate which obscured any age indicators.

Operation V Lot 3

Lot 3 is located in the southeastern portion of the large chamber of Operation V. The western boundary is the cave wall that separates this Lot from Lot 1 to the west and the eastern boundary is the main pathway that extends through Operation V, and the northern boundary is defined by the pathway that leads to Lot 5 . The Lot measures 3.7 meters north to south, 3.8 meters east to west, with a vertical ceiling height of 3.7 meters in the center of the Lot. Within this Lot is a set of terraces (previously described as Terrace 3) that measures 3.4 meters north to south, 3.6 meters east to west (Saldana and Kieffer 2009). These three steps, which average 1.5 meters in width north to south are approximately 20 centimeters in height, descending eastward.

The proposed use of these platforms has been stated by Dr. Jaime Awe and other individuals on the project (Brady and Kieffer 2011, 2012; Saldana and Kieffer 2009) as viewing platforms for a semi-public ritual. From this set of terraces, it is possible to see the alter and speleothem column (previously described as Speleothem 3) of Lot 4 and the alcove in Lot 5 (Saldana and Kieffer 2009). This Lot does not appear to be inundated with water seasonally or in large quantities during prehistory. While the vantage point of these stairs appears to focus on areas of ritual activity, it appears that care was taken in their construction and location to insure minimal erosion over time.

Approximately 30 fragments of crushed and badly deteriorated bone were recovered from this area. Much of these remains were coated in calcium carbonate indicating they were left in a watery deposit for a prolonged period of time. Multiple fragments (including a left tibia, left femur, and a proximal humerus fragment) indicate the presence of a juvenile approximately 6-10 years of age. The fragmentary nature of the rest of the assemblage precludes determining if another individual is present.

Operation V Lot 4

Lot 4 is located east and adjacent to Lot 2. The overall size of the Lot measures approximately 9.5 meters east to west and ranges between 6 meters to 7.8 meters north to south. The ceiling high of the Lot varies, measuring 2.35 meters at the northern border and 0.97 meters at the southern border. The variability in ceiling height is caused by the ground and ceiling of Lot 4 slopes toward each other as it approaches the southern and eastern borders. Lot 4 and Lot 2 are separated by a drainage trench that extends from the ceiling breakdown at the northwest border of the Lot and extends south 0.8 meters. This
trench, which is incorporated into Lot 4, terminates in a wet area that parallels the southern wall of the cave for half a meter. Much of the bone in this Lot was discovered cemented in and adjacent to the drainage trenches.

The largest natural feature amongst the breakdown in the northern extent of this Lot includes a speleothem column (Speleothem 3), which is an area of ritual activity based upon the scatter of human remains around its base. Some of this material is intermixed with loose sediment, which may be the result of looting activity. Less than a meter away from this speleothem is a large flat piece of breakdown. The size of this boulder measures 1.45 meters north to south and 1.4 meters east to west, and stands half a meter tall. This stone was an area of ritual activity, possibly an alter, based upon its large size, flat surface top, abundance evidence of burning, ceramic sherds, and skeletal material discovered around it. Some of the sediment around this proposed alter is turned up, indicating that incomplete recovery of skeletal material in this area may be due to looting. This lot is actively wet from dripping stalactites hanging from the ceiling. This has caused the ground to be wet with loose soil and stalagmites. Under the loose wet soil is a more compacted damp to muddy clay, which be a modified floor. Complete recovery of the moist bone could not occur due to trampling and water damage. Also within this Lot was a low density of surface ceramic sherds and jute shells.

Over 98 bone fragments and bone were recovered from this deposit. Calcium carbonate is on a number of the fragments, but not all of them. At least two individuals are present based upon the number, size, and side of the tibia fragments in the deposit. The younger individual in the deposit is probably around 4-6 years of age based upon long bone length, incomplete fusion of thoracic vertebra epiphyses, unfused ischium, and
the thin cranial vault fragments. The other individual is a young adult under 20 years of age based upon the incomplete fusion between the first and second sacral vertebrae. This individual is probably a male based upon sacrum morphology and well developed muscle attachments present on other long bones in the deposit.

Operation V Lot 5

Lot 5 is a large alcove located west of Lot 2 . The lot measures three meters north to south, 2.53 east to west, and the height ranges between three meters to 4.5. The entrance of the alcove is defined by a placed stalactite that may have been used to define the extent of space, and aspect required to animate space prior to ritual. This restriction and defined space is also demonstrated by the other placed stones that create a narrower entrance to the alcove than the actual size of the alcove. The eastern boundary is defined by a floor to ceiling column (previously described as Speleothem 4). The southern boundary of the alcove is defined by a natural ledge with minimal cultural material located 24 centimeters above the floor. The ledge measures 82.5 centimeters long and 43 centimeters wide. There is evidence of blackening and charcoal deposits along all boundaries of the alcove. There was a large amount of cultural material along the floor, which included human bone, ceramics (including a large almost complete bowl), and 47 human teeth. The majority of the teeth were found in the eastern corner of the Lot.

West of the alcove there was a terraced area consisting of two steps. This area was recorded at Terrace 3 (Saldana and Kieffer 2009). The top step measured three meters long, 63 cm wide, and 18 centimeters tall. The bottom step measured 3.04 meters long, 1.09 meters wide, and 32 centimeters tall. The viewing advantage from these steps was
limited to partial view of activity within the alcove in Lot 5. Although the steps face the general direction of Lot 1 , activity occurring in Lot 1 would still not be visible due to large mound formation prior to Lot 1 and the angles of the slopping ceiling and floor in Lot 1.

One hundred and fourteen bone fragments and teeth were recovered from this deposit. Almost a third $(\mathrm{n}=37)$ of this deposit consisted of teeth. The presence of a child between four to eight years old is indicated by an undeveloped right and left talus. However the dentition in the deposit indicates that at least two other adults are present. The remarkably low quantity of skeletal material present for three individuals suggests that the rest of these individuals may have been crushed, deteriorated by water, or be located in another deposit.

Operation V Lot 6

This Lot is located in the northwest portion of Operation V. The Lot measures roughly 18.9 meters north to south, and 8.2 meters east to west, with a ceiling height of approximately 6 meters. The northern boundary of the Lot is defined by the cave wall and the entrance into Operation V. The western boundary is defined by the path that transects Operation V and is adjacent to Lot 7. This western border is northwest of Lot 4 but not adjacent to it. The floor of Lot 6 is wet and slopes downward from east to west. The southern boundary is defined by a large piece of ceiling break down that measures 50 centimeters by 30 centimeters. While the eastern border of Lot 6 is defined by the natural cave wall. There are two drainage trenches that that extend through this lot from north to south. These drainages continue down the sloping area to the cave wall. Some ceramics
and human skeletal material was recovered from these drainages and more was exposed in subsequent seasons.

Lot 6 contains another set of terraces (previously described as Terrace 2) (Saldana and Kieffer 2009). This set of terraces consists of four steps that extend downwards from north to south on an otherwise steep slope. The first step at the north measures 80 centimeters in width east to west and 70 centimeters deep north to south and 20 centimeters in height. The second step measures 1.7 meters wide east to west, 1.1 meters deep north to south, and 25 cm in height. The third step measures 1.4 meters wide north to south, 95 centimeters deep north to south; and 26 cm in height. The fourth and last step measures 1.2 meters wide east to west, 1 meter deep north to south, and 30 centimeters in height. Some ceramics (mostly red slipped) were discovered on these steps along with a possible jade pendant with a face carved into it. Similar to the terraced steps in Lot 3, these steps were placed in a slightly drier location. Their function as primarily viewing platforms and alters rather than stairs down the slope is indicated by the lack of stairs down the rest of the steep slope through Operation V. The positioning of these steps allows for optimal viewing of most of Operation V's largest chamber, including activity around Speleothems 1, 2, 3, and 4. However, activity in Lot 1 would still not be visible from these terraces.

Over 200 bone fragments were recovered from this deposit. A fourth of these fragments were too fragmentary to identify. The large quantity of smaller bones such as metacarpals and phalanges from this deposit suggests that this was a primary deposit location. However, the absence of much of the other skeletal material suggests that much of the remains were moved to another location. Based upon the skeletal material removed
from this deposit, at least three individuals are present. A femur fragment with an unfused lesser trochanter indicates one of the individuals is roughly 7-12 years of age. The size of a right humerus fragment indicates an even younger individual around one to two years old is also present in the deposit. The rest of the remains, including many of the metacarpals and phalanges belong to an adult of unknown age or sex. Trauma noted in this deposit includes a possible defensive wound on the posterior surface of the adult's manual phalanx, which could have been obtained while the individual was shielding themselves.

Operation V Lot 7

Lot 7 is the largest lot within the chamber, measuring 12.5 meters north to south, and 9 meters east to west. The floor of this Lot slopes downward as one moves southeast through the Lot. The eastern boundary of Lot 7 is defined by central pathway that transects Operation V, while the western boundary is defined by the natural cave wall. The northern boundary is defined by north chamber entrance, while the southern boundary extends to the sloping floor near a stalagmite 1.5 meters tall located near Speleothem 1.

Located near Speleothem 1at the northern area of Lot 7 is a set of terraces which have previously been designated Terrace 1 . These terraces consist of four well defined steps and a lower eroded and looted fifth step, which could not be defined well enough to measure. The overall surface area of this terraced area measures 4.3 meters north to south and 3.2 meters east to west. The most northern step is first and highest step in the terraced section. The first step measures 1.4 meters wide east to west, 85 centimeters deep north to
south, and 53 centimeters in height. A small 25 by 25 centimeter section of step one has been carved out, and the quantity of carbon indicates it was an area of heavy ritual utilization. Descending down, the second step measures 3.2 meters wide east to west, 1.4 meters deep north to south, and 80 centimeters in height. After the second step, the natural slopping cave floor continues a little ways before the third step. The third step measures 2.9 meters wide east to west, 1.2 meters deep north to south, and 50 centimeters in height. Descending down further, the slightly eroded fourth step measures 3 meters wide north to south, 1.1 meters deep east to west, and 40 centimeters in height. Two looters pits, each a little over one meter in diameter, were noted on the southwest corner of the terrace. Minimal skeletal material (a rib fragment and a premolar) were recovered from looter's backfill.

These terraces, much like those in Lot 6, exist to level out a rather steep slope in the cave. Similar to the other terraces in Lot 6, their function as merely stairs seems unlikely since they do not extend all the way down the slopping cave floor. The positioning of these terraces appears to allow for easy viewing of any activity occurring around Speleothems 1 and 2, with no line of sight available into Lot 1 . The heavy deposits of charcoal on every step (especially steps two and three), sometimes in circular patterns approximately seven to nine centimeters in diameter, suggests a dual function of these steps. In addition to viewing platforms, they may have also been utilized as alters for burning.

Speleothem 1 is the most impressive column in Operation V. The column measures 5.5 meters in height and approximately 5 meters in circumference. The base of this speleothem is surrounded by a scatter of human skeletal material. Between the 2008
and 2009 field seasons additional bone material was discovered in this area which had previously been collected. Speculations among the crew were that the material may have come from the looter's pits by the terraces or was eroding out of the cave floor. No excavations were performed to confirm or refute these assumptions. Numerous cranial fragments, teeth and single long bone were recovered from this scatter of bone. Much of the rest of the skeletal material was severely damaged due to water erosion and trampling.

Speleothem 2 is located 2.2 meters west of the natural cave wall and near Speleothem 1. This speleothem is also located near the western entrance into Operation V , which is located along a ledge that overlooks Lot 7. Speleothem 2 is less impressive, measuring only 2.9 meters in height. Some charcoal was discovered between the speleothem and the cave wall, indicating this actively wet speleothem was a location of ritual activity. Human skeletal material was discovered between Speleothem 1 and 2, however the lack of skeletal material around Speleothem 2 indicates that this material is more associated with Speleothem 1.

Approximately 150 fragments were removed from this deposit. Calcium carbonate was present on some of the bones, but not all. The presence of two probable male juveniles (no older than nine years old) was determined based upon the size, morphology, and unfused distal epiphyses of two sets of humeri fragments. Much of the smaller bones in the deposit which include teeth, phalanges, metacarpals, metatarsals, shaft fragments, cranial fragments, vertebrae, and ribs belong to an older adult based upon the evidence for arthritis on one of the thoracic vertebrae.

Summary for Operation V

While looting and trampling may have taken their toll on the lots and sublots of Operation V, incomplete recovery of individuals from the deposits may also be due to transportation of skeletal remains after decomposition. Evidence to support this argument includes the relatively minimal skeletal material recovered in Lots 6 and 7. These deposits also contained a higher than expected minimum number of individuals for the quantity of bones recovered. The abundant amount of smaller bones in these deposits also suggest that a focus was on removing larger bones from the area. In addition to this, the deliberate stacking of bones in Lot 1 further suggests a secondary placement with decomposition possibly occurring elsewhere.

Operation VI

Operation VI is located north and east of Operation V, southeast of Operation IV, and south of Operation VIII. The main pathway in the cave travels through this Operation before dropping down into Operation V. Here the trail is approximately 50 centimeters wide and passes between two small stalagmites less than a meter tall. These speleothems appear to have been the focus of modest ritual activity based upon a scatter of charcoal, ceramic sherds, and a broken speleothem. After the trail passes between these formations, it widens to approximately a meter in width where it turns in a southwest direction prior to the entrance into the Chamber that contains Operation V.

Figure A.7. Operation VI indicated by darkened area. Map reproduced with permission from Nancy Pistole. Modified by C. L. Kieffer.

Operation VI Lot 1 Sublot A, B, and C
Operation VI Lot 1A consists of an east to west alcove with a niche located on its northern wall. The alcove measures 2.5 meters east to west and 1.8 meters north to south. The entrance to this alcove is located on the northern end and has a vertical restriction of 1.4 meters, which forces an individual to crouch down to enter. This ceiling height becomes even less further into the alcove until it eventually meets the floor on the southern end of the alcove. Water actively drips down into this sublot from a higher level that was void of cultural material, and the modified stalactites on the western boundary of the alcove are actively dripping.

In the northern corner of the alcove was a 74 centimeters tall and 32 centimeter wide stalactite and a ledge. This ledge is 25 centimeters off the floor and it measures 75 centimeters east to west and 50 centimeters north to south. The 25 centimeter diameter deposit of charcoal on the ledge indicates it was an area of intense burning. This deposit had been heavily disturbed by looters. The rest of the flat floor in this alcove is also
covered with deposits of charcoal, sherds, and human remains. The extent of burnings in this area is also apparent from the extensive fire-blackening of the ceiling. The southern boundary of the alcove also has a concentration of ceramic sherds, human remains, and charcoal, which may have been swept into this area in antiquity. A similar deposit of ceramics was noted in a deep crevice along the eastern section of the southern wall.

Operation VI Lot 1B consists of a small crawlspace located east and adjacent of Sublot A. This crawlspace measures 3.2 meters east to west and 2.5 m north to south. The crawlspace can be entered through an opening in the southern wall of Operation VI Lot 5 or via the actively wet eastern entrance from Sublot A which measures 70 centimeters wide and 64 centimeters high. The access to this area has been maintained through time by breaking formations in both of these access points. The crawlspace contains a scatter of human remains with appear to be a secondary deposit. Additional human remains and ceramic sherds were recovered from a passage below the crawlspace. Material in this passage appears to have possibly fallen in via one of the openings on the sloping floor of the crawlspace that runs parallel to it. The opening in the center of the crawlspace is 70 centimeters in diameter while the one located along the southern wall measures 50 centimeters east to west and 20 centimeters north to south. The majority of the bones in Sublot B were recovered beneath the entrance from MTC-VI-05, and it seems probable that much of this material washed or fell in from that lot.

Operation VI Lot 1C is a circular shaped leveled area along the western wall of the cave. Water actively drips down into this sublot from a higher level that was void of cultural material. This area takes advantage of naturally occurring flowstone curtain which undulates along the cave wall to create a sense of bound space. This bound space
measures one meter northeast to southwest and 83 centimeters northwest to southeast. The southern cave pathway, which was included in this sublot, makes the overall measurements of Sublot C 2.3 meters northeast to southwest and 1.5 meters northwest to southeast with a vertical restriction of 5.65 meters. Sublot C is accessible via the main cave pathway on the east or from a smaller pathway to the north.

Four broken speleothems half a meter in length were placed along the southern boundary to further create a sense of enclosed space. While, a larger 65 centimeters long speleothem was placed against a stalagmite in the center of the space. Around this central stalagmite numerous sherds, human remains, and charcoal were discovered. The southern portion of the undulating flowstone curtain was actively dripping when it was recorded. This flowstone formation includes a ledge 1.15 meters off the ground that measures 40 centimeters wide northwest to southeast and 68 centimeters long northeast to southwest. Much of the flowstone curtains in this area were fire-blackened, further indicating the area was used for burning related rituals.

Over 230 bone fragments were recovered from the sublots of Operation VI Lot 1. These remains account for two individuals. The adult was scattered throughout sublots A and B , but was probably originally a primary deposit due to the quantity of smaller bones present. The subadult in these sublots was rather underrepresented. This may be due to movement to or from another deposit or suggest they may have been secondary deposits. It is also possible that incomplete recovery of the area or taphonomic processes may be account for some of their skeletal elements being absent.

The subadult in this lot is approximately nine years of age based upon the incomplete fusion of the femoral head and greater trochater along with the incomplete
fusion of the distal epiphysis of the ulna. This individual has a perimortem cut mark on the lateral surface of their right tibia as well as cut marks on a frontal fragment near their orbital region. Due to the bones present in the deposit age could not accurately be determined. Due to the absence of any obvious degenerative and pathological conditions, it is assumed that the adult was young. Based upon morphological and metric analysis of the femora and humeri in the deposit one the adult was probably a female. Numerous cut marks were also found on the adult female's left femur, right below the greater trochanter.

Operation VI Lot 2 Sublot A, B, and C

Lot 2 is comprised of multiple features along the main cave pathway to Operation V . The area of the entire lot measures four meters north to south and approximately 4.5 meters at its widest east to west. Sublot A is located along the north to south area of the cave path. This rectangular shaped area measures 2.5 meters north to south and 1.9 meters east to west. The eastern wall of this area has a looted charcoal deposit that measures 40 centimeters by 30 centimeters located near a speleothem that borders the northwest border of Lot 1 . Also along the eastern wall was a small niche which measured 25 centimeters east to west and 40 centimeters north to south. This niche contained a small deposit of child and adult human remains. The other deposit of bone recovered from this sublot was adjacent to this deposit located on the center of the cave path. Just west of this pathway was a large speleothem column with a naturally formed water feature at its base. Ceramic sherds and human remains were also recovered from the mud
in this area. North of this water feature was a pile of stone and speleothem fragments as well as a pile of ceramic sherds located slightly more northwest.

Sublot B is an alcove locates along the southern portion of the western cave wall, and curves behind the speleothem column in Sublot A. This alcove measures one meter wide east to west and 2.3 meters north to south with a vertical restriction of approximately three meters. Flowstone curtains within this area have evidence of breakage, and much of the western wall near a natural ledge along the alcove wall was fire blackened. The ledge is located 1.2 meters off the floor and measured one meter north to south and one meter east to west.

Two pits north of the alcove were included in this sublot. The first pit measured 1.2 meters east to west, one meter north to south, and 50 centimeters deep. The more northern pit, located 50 centimeters away from the first, measured one meter north to south, 75 centimeters east to west and 50 centimeters deep. These pits were full of loose rocks, speleothems, ceramic sherds, and human remains.

Sublot C is located in the most eastern portion of Lot 2. The sublot measures 2.6 meters east to west and 2.5 meters southeast to northwest and runs the entire length of the cave path. This sublot includes part of the cave path that dramatically slopes down from a northeast to southwest direction at a 30-45 degree angle. The eastern boundary of sublot is defined by a fallen cave formation that created an overhang. This overhang creates a 1.5 meter deep niche along the eastern wall that has a vertical restriction of 1.5 meters. At the base of this overhang, a scatter of charcoal, some small ceramic sherds, and a spirelopped jute were recovered.

Almost 520 bone fragments were recovered from the sublots of Operation VI Lot 2. Two individuals are distributed throughout these deposits, with a focus of skeletal material recovered from sublot B. The adult in the deposit appears to be a primary deposit due to the quantity and type of material recovered. Metric analysis of a femur diameter and scapular glenoid height produced inconclusive identification of sex. However the chin and mastoid process morphology indicates a probable male. Based upon the fused second and third cervical vertebrae and indication of spina bifida (Figure A.8), this individual probably suffered from Klippel-Feil Syndrome (Kieffer 2013). Additional abnormalities included slight porosity throughout the cranial bones and supernumerary incisors (Figure A.9). The second individual in this deposit was a juvenile around five to six years of age based upon the stage of fusion for the thoracic vertebrae and the size of the long bones present in the deposit. This juvenile had perimortem cut marks present on one of his or her humerus fragments.

Figure A. 8 (Right) VI-02B-125, sacral fragment with spina bifida. Photo taken by C. L. Kieffer.
Figure A. 9 (Left) VI-02B-36, maxillary fragment with evidence of supernumerary teeth. Photo taken by C. L. Kieffer.

Operation VI Lot 3 Sublot D

The entrance to Lot 3 is located to the west of the entrance down to Operation V. The small triangular entrance to this lot measures approximately 50 centimeters high and 40 centimeters along the floor. Past this narrow entrance there was a meter in diameter tunnel passage (Sublot A) that extended in a north to south direct direction for 3.24 meters before turning in a more northwest to southeast direction and descends at a 45 degree angle for 1.84 meters. Along the northern walls of both of this passage was an alcove (Sublots B) approximately one square meter in size. This first passageway terminates at another restriction that measured 57 centimeters high and 42 centimeters wide. There was a second narrow tunnel passage (Sublot C) that extended another two meters at the same 45 degree angle. Along the northern walls of this passage was another alcove which was demarcated at Sublot D. This alcove measures 75 centimeters wide, 42 centimeters high, and extends west into the cave wall for almost one meter. Both of these alcoves had evidence of burning and ceramic sherds were recovered from these areas, however human skeletal material was only recovered from the muddy area of Sublot D.

Only 28 skeletal fragments were recovered from Sublot D. Most of these elements consisted of ribs and vertebrae. Perimortem cut marks were noted on a left femur and left radius fragment discovered in this sublot. These bones may represent a primary deposit or a secondary movement of material from another location. Due to the minimal material recovered, these skeletal elements will be included with the analysis of Sublot E, which is the closest area with skeletal material.

Operation VI Lot 3 Sublot E

After crawling through this continuous passageway, the room opens up to but the floor continues to slope at a steep angle for another 2.73 meters. The initial portion of this room is Sublot E. This room measures 3.18 meters north to south and 4.57 meters east to west. The southern extend of this room contains a hardened pool of calcium carbonate that measures three meters north to south and 2.49 meters east to west. Numerous bones (some of which could not be identified due to the thick layer of calcium carbonate) and ceramics (including a shoe pot vessel) were cemented into this now dry pool. Rim stone dams along the bank of this pool indicate previous seasonal changes in the water line may have occurred, and the room was actively dripping when recorded. Through exploration of Operation V during collection of this area, it was determined that this once wet area may have supplied water to the stream that washed into Operation V. Therefore it may be possible that skeletal material from this area may have washed into Operation 5.

Most of the bones from this sublot were collected on the bank of this pool, much of them appeared to be stained red. It is however important to note that much of the bone had been disturbed since the previous season when this deposit was initially discovered. Some of the bone in this deposit could not be removed, but smaller bones such as ribs and vertebrae suggest that a primary deposit may have occurred. In fact the ribs and vertebrae of one individual were still semi-articulated as though he had been washed down the initial slope in the room and cemented to the cave floor. At least four broken skulls coated in calcium carbonate were documented. However the calcium carbonate prevented accurate metric and morphological characteristics from being recorded. The only non ceramic cultural material recovered from this room included a shell pendent along the southeast deposit of the calcite pool.

One hundred fourteen bone fragments were recovered from Sublots D and E. The presence of three adults was indicated by the number of femora recovered from this deposit. The morphology on two left distal humeri indicates that two of these three individuals were males. Porosity was noted on at least one of the individual's cranial fragments that were recovered. Cut marks were noted on an adult left radius fragment, humerus shaft fragments, and a left femur fragment. It could not be determined if these cuts were sustained by the same individual or different individuals in the deposit. A subadult estimated to be around 15 years of age was also discovered in this deposit based upon the stage of femoral head and trochlear crest fusion. This brings the MNI for Sublot D and E to four individuals.

Operation VI Lot 3 Sublot F

Sublot F is located along the northwest wall of Lot 3's main room, 93 centimeters from the entrance into to the room. This area is demarcated as an actively wet muddy depression that measured 99 centimeters east to west and 80 centimeters north to south. This muddy depression contains the remains of at least two infants. The only cultural material found with these children were fragments of a shell ring. The children were placed next to each other, one with its head toward the wall and the other away from the wall.

Most of the bones of the two infants could not be removed without damaging them. Two femurs (one from each child) was removed for possible future testing. Based upon the measurements of the infants long bones in situ and dental eruption, they were approximately six months old (+/- three months) at the time of death. Their discovery in a
primary deposit within a wet watery context is highly suggestive of sacrifice. The 10 fragments recovered from this deposit did not change the minimum number of individuals present.

Operation VI Lot 3 Sublot G

The room designated as Lot 3 is divided by columns and stalagmite formations. These formations create the western boundary of the calcite pool described in Lot 3E. To the west of these formations is Sublot G. This area measured 4.13 meters northeast to southwest, 4.49 meters northwest to southeast with a 1.5 meter vertical restriction over the calcite pool in this area. Along the southwestern wall in this room was a niche that measured 80 centimeters with, 42 centimeters tall, and extends in a meter. Throughout this area there are numerous crushed fragments and adult long bones.

Inside the alcove, bones were visible but could not be removed due to the calcium carbonate. A total of six femurs (three left and three right) indicated the presence of at least 3 adults. In the southern portion of the calcite pool outside the alcove, an os coxae, vertebrae, skull fragments, and long bones (including the femora) were present. Morphology of the os coxae suggested the individual was a male. The number of small bones present in this sublot suggests that these individuals were primary deposits that may have been move via water and people prior to eventually becoming imbedded in the calcite. The total number of individuals in this deposit was four adults, one of which was probably male. Forty-one additional bone fragments were recovered from this sublot. Much of this material consisted of tarsals, phalanges, and ribs. None of this material changed the assessment of MNI, but did suggest a primary deposit.

Operation VI Lot 4

This lot is an open space that includes a ledge and part of the main cave pathway that lead to the lower sections of the cave. The lot is oval in shape, measuring 6.12 meters north to south, 5.9 meters east to west, 4.9 meters northeast to southwest, 6.93 meters northwest to southeast, and has a high ceiling 15.34 meters above the cave floor. The southern boundary is demarcated by the sudden drop that leads to Operation VI Lot 2B. The northern boundary is defined by a flowstone formation that stands 4.35 meters tall. At the base of this is an alcove that measures 85 centimeters wide, 1.99 meters deep and 85 centimeters high. Along this northern wall there is a concentration of ceramic sherds. A looters' pit was noted in the center of this lot, measuring 87 centimeters deep. A scatter of ceramic sherds was found throughout the floor of the lot. While the extent of human remains were recovered in the southern portion of the lot which measured 2.4 meters north to south and 2.04 meters east to west. Due to the ledge at the southern boundary of the lot, it is possible that some of this human skeletal material may have fallen into Operation VI Lot 1B.

One hundred thirty-seven bone fragments were recovered from Lot 4. Eighty-five of these fragments were small and unidentifiable and another 20 of them were rib fragments. Material from this deposit was compared with material recovered from Operation VI Lot 1 B. Numerous factors determined that the adult in this deposit is distinct from the one in Lot1 B. First, all of the cervical vertebrae were accounted for the individual in Lot 1 B , and another cervical vertebra was discovered in Lot 4. Second, fragments of two distinct left femora were recovered (one from each deposit). Therefore
the fragments present in Lot 4 represent a distinct adult of unknown sex. No reliable morphological characteristic are present in the deposit that could aid in determining age.

Operation VI Lot 6

This lot is located west of and 1.15 meters above Lot 4 in this Operation. Lot 6 measures 1.8 meters north to south and 1.7 meters east to west. The floor of the lot slopes down towards the southern boundary which is defined by a sudden drop. The western boundary is defined by a flowstone wall. The floor of this area is semi wet and muddy. A modified canine with the Ik motif was recovered from the center of the Lot. Ceramic sherds and two jute shells were also recovered from this Lot. A lack of any other skeletal material or notes of crushed bone, suggests that this tooth may have come from another deposit, and thus should not be used to determine the presence of another individual.

Operation VI Lot 8

This lot is roughly rectangular in shape and consists of three tiers. The southern boundary of this lot is adjacent to Lot 7 and a ceramic laden path that leads to Lot 9 and the eastern boundary of the lot. The northern boundary is defined by four stalagmites roughly 3 meters in height. The western boundary of this lot is defined by shorter stalagmite formations that range between one to one and a half meters in height. These formations eventually run along the base of a much larger formation which defined the northwestern boundary of the lot. A majority of these speleothem boundaries were heavily fire-blackened, especially the western boundary. Many of these formations also contained modifications, including holes broken through curtains and notches.

The tiers in this lot are cultural modifications of the cave formed by broken speleothem formations, and by cutting, leveling and packing of the clay floor. The first, most southern tier, measures 1.85 meters east to west and ranged between 1.37 and 67 centimeters wide north to south. The western wall of this first tier is formed by a 60 centimeter tall stalagmite that was covered with a heavy deposit of charcoal and ceramics. Tier 1's floor was made of hard packed clay and covered with a scatter of charcoal and a few sherds.

The second tier is located 25 centimeters above and to the north of the first tier. The second tier measures four meters east to west and two meters north to south. This tier includes a niche in the western wall and an alter along the northern wall. The niche measures 58 centimeters deep east to west, 50 centimeters wide north to south, and has a 30 centimeter height restriction. This niche was heavily fire-blackened and contained charcoal and ceramic sherds. The altar, constructed of packed clay and broken speleothem fragments in a semi-circular formation, was 25 centimeters tall and measured 1.5 meters east to west by 80 centimeters north to south. This alter was also contained a heavy deposit of charcoal, ceramics, and faunal bones. To the west of the altar was a small looted pit 28 centimeters by 40 centimeters, south of this 23 spire-lopped jute were found under a speleothem fragment. Other material discovered on this step included a burned torch, and ceramic sherds.

The third tier is 50 centimeters above the second tier and is accessed via a one meter wide step on the eastern portion of the north wall along Tier 2. This tier measured 5.5 meters in length in a general northwest to southeast direction and varied in width between one and one and a half meters wide. This tier leads to Operation VII Lot 9, while
a tunnel (measuring 85 centimeters in height and one meter wide) is located in the northwest corner of the tier and leads to Operation VII Lot 10. The southeastern third of the tier is comprised of hard packed clay similar to the other tiers, while the other two thirds is comprised of broken speleothem formations. Much of this tier is covered with ceramic sherds and human remains were found along the western wall of the tier.

One hundred and five bone fragments were recovered from Lot 8,60 of which were too small to identify. At least one subadult individual is represented based upon a long bone fragment with an unfused epiphyseal end. No other epiphyses or age indicators were identifiable, partly due to the fragmentary nature of the deposit. Based upon the completely fused metatarsals in this deposit, the individual was at least 16-18 years old. Based upon known epiphyseal fusion of long bones, this individual was probably no older than 24 years of age. The only indicator of sex was the diameter of a radius head which indicated a probable female. The deposit most likely represents a primary deposit based upon the number of rib fragments and phalanges present. It is possible that much of the bones were too fragmentary to collect or were collected and re-used in other rituals.

Operation VI Lot 9

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. Ten bone fragments, seven of which are os coxa fragments from an adult were recovered from Operation VI Lot 9. Morphology necessary to determine sex or more precise age on the os coxa fragments did not preserve. Based upon the few numbers of bones collected in this deposit, it seems likely that these bones are secondary placement.

Operation VI Lot 11

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. Six bone fragments were recovered from Operation VI Lot 11. These four bones probably belonged to an adult female due to the small head diameter of the left radius fragment present in the deposit. No age indicators were present among the bones recovered. Based upon the few numbers of bones collected in this deposit, it seems likely that these bones are secondary placement.

Operation VI Lot 12

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. Forty-two bone fragments were recovered from Operation VI Lot 12, 28 of which were unidentifiable fragments. The right ilium fragment found in this deposit had a large enough portion of the auricular surface to determine an age of 20-24 years old based upon the morphological traits. However, the os coxa was not complete enough to determine sex. Based upon the few numbers of bones collected in this deposit, it seems likely that these bones are secondary placement.

Summary for Operation VI

Analysis based upon the discrete lots indicates the minimum number of individuals present in Operation VI is 19 individuals: 12 adults of undetermined age (two females, four males, and 6 undetermined sex), two young adults (one of which is female), three subadults (one approximately nine years of age, one approximately nine years old,
and the other between five to six years), and two infants six months old (+/- three months). Due to a lack of field notes for some deposits, this might be an inflated MNI.

Operation VII

Operation VII is the large room located north of Operation VI and southwest of the majority of Operation VIII. A majority of this room appears to be a large modified plaza constructed of packed orange clay. This plaza is now scattered with large breakdown from the ceiling. It has been hypothesized that this break down may have occurred during an earthquake event.

Figure A.10. Operation VII indicated by darkened area. Map reproduced with permission from Nancy Pistole. Modified by C. L. Kieffer.

Operation VII Lot 1

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. Over 560 bone fragments were recovered from Operation VII Lot 1. Many of the bones in these deposit were covered in carbon and/or some calcium carbonate, suggesting a watery sacrificial deposit. Three adult primary deposits are
suggested by the number and sides of metacarpals and metatarsals fragments. These adults range in level of completeness, with only one represented based upon lower limb bones, and two individuals represented based upon manual phalanges, rib, and vertebra fragments. This suggests possible movement, reuse, breakage, and/or lack of recovery for some of the skeletal material. Morphology and metrics from a mandible and humerus recovered from the deposit indicate one of the adults of unknown age is male. Gracile elements and a short glenoid height from a scapula present in the deposit suggest that another adult may be a young female. A heal clavicle fracture (Figure A.11) and arthritic vertebrae indicate that one of the individuals in the deposit was probably and older individual, however sex for this individual could not be determined. Three elements discovered in the deposit (a rib, a sternum, and two unfused vertebrae fragments) indicate the presence of a subadult between four to six years of age. Due to the minimal recovery of this individual, it is assumed that the rest of his or her remains are located in another deposit and thus will not be included in the MNI for this deposit.

Figure A.11. VII-01-57, a misaligned healed clavicle fracture from an adult. Photo taken by C. L. Kieffer.

Operation VII Lot 2

Lot 2 is located in the eastern most portion of the flattened plaza area, north of Lot 12 . The northern and eastern boundaries of this lot are defined by the natural cave wall and mud covered formations, while the southern and western boundaries area defined by a fallen speleothem formations. The lot is triangular in shape with the east to west measurements ranging between 4.3 and 8.5 meters and the north to south measurements ranging between 2.5 to seven meters. The Lot is larger in the northwest, and tapers in size towards the south. The grandeur of this chamber is easily noticeable with the cathedral like ceiling located 24 meters above the leveled floor.

A scatter of ceramic sherds and charcoal was found throughout the lot, with the concentration focused along the walls and boundaries of the Lot. Human skeletal material was recovered at the base of a fallen speleothem in the western extent of this lot. An alcove was discovered along the eastern wall of this lot. The active dripping of water from the ceiling prevented complete removal of deteriorated ceramic material from water pools.

Twenty-nine bone fragments covered with calcite were recovered from around the speleothem, twenty five of which were unidentifiable. The remains present that were identifiable were from an adult of unknown age or sex. Based upon the few numbers of bones collected in this deposit and no notes of additional crushed bone in the deposit, it seems likely that these bones are secondary placement. More importantly these remains probably belong to an adult individual that has already been accounted for in another deposit.

Operation VII Lot 11 Sublot C

MTC-VII-11-niche

The niche from which a complete bowl (in fragments) was recovered measured 3.7 m in length and .5 m at its widest, though most of this was inaccessible as the roof sloped to the eastern wall. The niche had a roof clearance of 33 cm and a narrowest point of 25 cm . Due to these dimensions, one is only able to crawl into the space. Charcoal samples were also collected.

Five bone fragments were recovered from this deposit. Based upon the femoral head fragment recovered, the adult individual was probably a female of unknown age. Based upon the few numbers of bones collected in this deposit and no notes of additional crushed bone in the deposit, it seems likely that these bones are secondary placement. More importantly these remains probably belong to an adult individual that has already been accounted for in another deposit.

Operation VII Lot 12

This lot is located along the eastern wall of the plaza in Operation VII. Lot 11 is located to the south, Lot 2 and fallen cave formations are located to the west, and the natural cave wall is located to the east. The northern extent of this Lot is defined by a constructed retaining wall that measures 2.6 meters east to west and stands half a meter high. Lot 12 measures 7 meters north to south and 2.6 meters east to west (tapering to 1 meter east to west at the southern boundary). A path leads through this lot from north to south, from Lot 2 and leads into Lot 11 . Most of this area has been heavily looted with two well defined looters pits both measuring approximately 1 meter in diameter and 75
centimeters deep. Human skeletal remains, chert flakes, ceramic sherds, and a chert biface fragment were recovered from this lot.

Eighty-seven bone fragments were recovered from this deposit, 62 of which were unidentifiable fragments. Two individuals are represented in the deposit, one adult and one child. The size of the child's radius and humerus and an incomplete fusion of a thoracic vertebra fragments gives this child an age range of five to nine years of age. The adult was probably 20-30 years of age based upon the sternal end morphology of one of the ribs recovered from the deposit. The adult and child may be a secondary deposit based upon the abundance of long bone fragments, and no notes about additional crushed bone were made. No skeletal elements for this subadult or adult that would give any indication of sex were recovered.

Summary for Operation VII

Analysis based upon the discrete lots indicates the minimum number of individuals in operation VII is six individuals. Three of these individuals are young adult (one male, one female, and one undeterminable sex), one older adult, and two subadults. These subadults are estimated to be five to nine years old and the other four to six years old.

Operation VIII

Operation VIII is the upper level of the cave. In order to access the lots in this area, one would need to free climb formations and cave wall along the northern boundary of Operation VII. At least two accessible paths were discovered leading up to Operation

VII, both required exposed ascending at least six to eight meters above the plaza floor in Operation VII. This physical challenge would have made carrying anything to these lots treacherous. Once in Operation VIII, a variety of public, semi-private, and private spaces were created using the natural rooms and formations in this area.

Figure A.12. Operation VIII indicated by darkened area. Map reproduced with permission from Nancy Pistole. Modified by C. L. Kieffer.

Operation VIII Lot 1 Sublot A

Operation VIII Lots 1 through Lot 4 are located within one room that had on average a ceiling height of four meters. This room is accessible via a pathway that enters the southeast portion of the room. This pathway widens as it slopes steeply down into the room on a massive flowstone formation that extends into Sublots B and C. Sublot A is located southwest of these sublots and is contained to a rimstone pool dam that measures 1.14 meters northeast to southwest and 1.68 meters northwest to southeast. Multiple fire blackened formations compose the southwestern wall of this sublot. At the base of these formations was where the younger individuals and ceramic sherds in the deposit were recovered. One hundred sixty-four bone fragments were recovered from Operation VIII

Lot 1 Sublot A, most of which had a light coating of carbon and calcium carbonate. Due to the commingling with nearby sublots, the MNI was calculated at the lot level.

Operation VIII Lot 1 Sublot B
Sublot B is located northeast of Sublot A and southwest of Sublot C. This sublot is also a rimstone dam pool that measures 78 centimeters meters northeast to southwest and 1.37 meters northwest to southeast. Three hundred and fifty-one bone fragments were recovered from this sublot, most are covered in calcium carbonate. Due to the commingling with nearby sublots, the MNI was calculated at the lot level.

Operation VIII Lot 1 Sublot C
Sublot C is located northeast of Sublots A and B. It is the largest of the interconnecting rimstone dam pools, measuring 3.89 meters northeast to southwest and 2.06 meters northwest to southeast. Ceramic sherds were recovered along the northeastern boundary of this sublot. Four hundred thirty two skeletal elements were recovered from sublot C. Due to the commingling with nearby sublots, the MNI was calculated at the lot level.

Operation VIII Lot 1 Sublot D

Field notes for this sublot were lost, and thus a contextual description of this deposit cannot be included. Fifty-three skeletal elements were recovered from this sublot, much of which is covered in calcium carbonate. Due to the commingling with nearby sublots, the MNI was calculated at the lot level.

Summary for Operation VIII Lot 1

A total of 11 individuals are represented in the material scattered throughout the sublots in operation VIII lot 1. Based on numerous carpals and ulnae, there are five adults in the deposit. Four of the five adults were relatively complete, with enough smaller material available to interpret primary deposits for them. Of the five adults, three are possibly female, one is male, and one is indeterminate. The male adult was one of the least scattered individuals, with most of his remains contained to sublot A. He was determined male based upon distal humeri morphology, glenoid and humeri metrics. Dental wear and vertebral lipping discovered on fragments in sublot A suggest that this individual was older in age. Cut marks are also present on what is presumed to be this individual's distal femur.

The three females in the deposit were determined based upon similar sexing techniques as the male in this lot. The only difference is that a sciatic notch was also available to suggest the presence of a female. None of the three adult females show any signs of degenerative diseases. Therefore, it is presumed that they were all young adults. Dental eruption available for one of these females further indicates a young age (15-21 years) due to a third molar in the process of erupting. It is probable that she was on the higher end of that estimate because the dentition that belongs to a person on the younger end of that spectrum already accounts for the appropriate unfused skeletal elements in the deposit.

Tibiae development noted in the deposit as well as dental eruption aided in determining the minimum number of six subadults as well as their ages (with the
exception of the perinate). Tibiae development indicated that there were four subadults between the ages of five and nine years old, and one subadult between the ages of nine and 15. Dental eruption from 3 mandibles narrowed these ranges down a little. Mandibles suggested that one child was two to five years old, another was three to five years old, and the oldest was 15 years +/- 36 months. This leaves two of the children at three to five years of age based upon tibiae size and development. Much of the remains from these children was highly fragmentary. Although many smaller elements from these children were recovered, it cannot be determined with any degree of certainty which of these individuals were primary deposits, which may have undergone differential preservation, and which may have been secondary deposits.

Operation VIII Lot 2

Lot 2 consists of the floor and watery feature to the northeast and adjacent of Lot 1C. The more eastern portion of this lot consists of a flat, dry, compacted area that measures 4.62 meters northeast to southwest and 1.41 meters southeast to northwest. To the west of this platform is a triangular shaped watery deposit which measures a little over one meter east to west and 3.31 meters north to south. Northeast of this watery feature was a small triangular shaped alcove that extended northeast into the wall 1.63 meters. This area alcove contained many broken formations, some of which were fire blackened. All of the skeletal material in this lot was recovered from the watery feature.

Six hundred and thirty bone fragments were recovered from this lot, much of this material was blackened due to previous fire in the area. At least four adults were discovered in this deposit based upon the second metacarpal, fifth metatarsal, patella, and
talus. Such small elements suggests primary deposit for these adults. Much more of the tarsals and carpals were present for two of the individuals, suggesting that preservation differentially affected some of the individuals. None of the material had any indication of degenerative diseases, suggesting that all of the individuals were young adults. Only two of these four adults could be sexed. Based upon the distal morphology of their humeri, one was probably female and the other was male.

Two subadults were noted in this deposit. The presence of one child age perinate to 1.5 years old was indicated based upon pelvis and neural arch development, metatarsals and metacarpal size. The other child was estimated to be five to eight years old based size and fusion of the pelvis, stage of long bone epiphyseal fusion and metacarpal and metatarsal development.

Operation VIII Lot 3

Lot 3 is a natural semicircular shelf along the cave wall above the eastern boundary of Lot 2 . The general size of this lot measures 1.5 meters southwest to northeast and 1.04 meters east to west. Located along the southeastern portion of this lot, on the flowstone wall 1.77 meters above Lot 2, is a natural solution hole that has evidence of modification. This hole measures 63 centimeters in diameter northeast to southwest, 64 centimeters deep, and the vertical restriction is 2.62 meters. This feature is large enough to sit in, and all activity in the room would have been easily visible from this vantage point.

The shelf in Lot 3 slopes downward into Lot 2, so it is possible that skeletal material recovered from there may have originated in Lot 3. On this slope a male
individual was found in the prone position, with his legs spread wide apart. His torso was located within the confines of a rimstone dam pool, and the only cultural material recovered from this deposit were shell beads that appeared to have been tied around his wrist.

Operation VIII Lot 4

Lot 4 is an alcove located northwest of Lot 1 . The alcove is surrounded by numerous fire blackened formations and soda straws. A 47 centimeter wide natural pathway leads into the alcove from Lot 1 . The alcove measures 1.79 meters north to south and 1.39 meters east to west. The floor of the alcove descends down 30 centimeters into a deposit of fire blackened formations. These formations appear to have come from the fire blackened ceiling above.

Operation VIII Lot 5 Sublots C, D, and E

Field notes for these sublots were lost, and thus a contextual description of this deposit cannot be included. One hundred and fifty-four skeletal fragments were recovered from these three sublots. Based upon this minimal recovery and an assumed close association between the sublots, all three sublots were used to calculate an MNI. Two adult individuals were noted in this deposit. Both individuals were represented by numerous carpals, tarsals and long bones. This suggests that they were primary deposits with minimal natural or cultural movement post mortem. One individual is possibly a female based upon her radial head diameter. Sex for the other individual could not be determined. The only degenerative characteristic in this deposit was worn incisor, but
otherwise both individuals are presumed to be young adults. There was slight indication that at least one of the individuals had a slight case of porotic hyperostosis.

Operation VIII Lot 7 Sublot A
Lot 7 is a rectangular shaped lot, with a high ceiling, that extends in a general northeast to southwest direction. Access to this area can be achieved along the northern edge of the plaza in Operation VII. A single speleothem column measuring 10.5 meters tall is located in the center of the Lot.

Sublot A is located at the entrance of Lot 7. The entrance to this area measures 10.5 meters in width, however the overall area of Sublot A measures eight meters northeast to southwest and ranges between two to five meters wide in a northwest to southeast direction. The southeastern wall of this sublot is composed of curtains and flowstone formations that extend out onto the path. At the base of this wall numerous speleothem formations approximately one meter in length were found. The northwestern wall of this sublot is defined by two speleothem columns that join at the base. Human skeletal remains and speleothem fragments were found along the path of the sublot. Approximately a fifth of the skeletal material in this deposit could not be recovered because it was cemented in place along the southeastern wall. Evidence of burning was found in this area as well as along the northwest wall. Cultural material recovered in this Sublot also included incised ceramic sherds and a jute shell.

A little over 340 human bone fragments were recovered from Operation VIII Lot 7 Sublot A. Only limited quantities of calcite were noted on the bones from this deposit. Three individuals are present in this comingled deposit: one adult, one infant, and one
child. Both individuals were probably originally primary deposits based upon the quantity of ribs, phalanges, metatarsals, metacarpals, and neural arches recovered. Secondary movement after decomposition has caused these human skeletal remains to be scattered throughout the lot. The adult was determined female based upon the greater sciatic notch and the femoral head diameter because the cranium and pelvis were too fragmentary. She was determined to be a young adult (approximately 20-35 years of age) based upon the morphology of the acetabulum (Rougé-Maillart et al. 2007). Minimal wear with only one caries were noted from the adult teeth in this deposit, further suggesting a younger individual. A possible Ik design dental modification was also noted from a canine in this deposit. The infant in the deposit was determined to be 1 year 2 weeks to 1 year 2 months of age based upon the dental eruption. A few long bone fragments belonging to a child approximately two to four years of age were also discovered in this deposit.

Operation VIII Lot 7 Sublot B

Sublot B is located to the northeast of Sublot A. This sublot follows the northwest wall of the cave for 12 meters and averages 3.5 meters wide, with a vertical restriction of 9.4 meters. The northern boundary of this sublot is defined by the large column speleothem in the center of Lot 7. The southwest boundary of the sublot is defined by a natural pit that measured 1.5 meters northeast to southwest, 74 centimeters northwest to southeast, and 80 centimeters deep. The trail that leads to this formation goes around it before branching into three different directions. These three trails lead to northeast to Sublot D, southeast to Sublot C, and north to Lot 8. A light scatter of ceramics and a
heavy concentration of crushed human skeletal material were noted throughout the entire path as well as the pit on the southwest boundary of the sublot.

Approximately 40 human bone fragments were recovered from Operation VIII Lot 7 Sublot B. Due to the proximity and elements present from this deposit, it is likely that they belong to the individuals recorded in Sublot A.

Operation VIII Lot 7 Sublot C

This sublot is located southeast of Sublot B and Sublot D. Sublot C is rectangular in shape, measuring 11.2 meters northeast to southwest, 3.7 meters northwest to southeast, with a vertical restriction of 11 meters. A four meter tall stalagmite defines the northern boundary, while a curtain and flowstone formations define the southeastern and southwestern boundaries. Openings through these curtain formations on the southeast provide access to Operation VIII Lots 13, 14, and 15. At the base of these curtains were the remains of two fragmentary skulls.

The focal point of this sublot appears to be four stalagmites in the center of the sublot which range in height between two to three meters. Around these formations the floor is heavily coated with crushed bone, ceramic sherds, and carbon. The other human skeletal material recovered from this sublot was from a small cavity is the floor of the southern section of the sublot. This cavity measured 15 centimeters wide and 30 centimeters deep. Also recovered from this cavity were two earplugs with mosaic jade inlay, a shell pendant, and a chert flake.

Over four-hundred thirty skeletal fragments were recovered from Sublot C. Much of this material has varying amounts of calcium carbonate on the surface, and some is
blackened by fire. While individuals present in this deposit are also spread out through the rest of the lot, this sublot and Sublot D indicate the presence of a second adult individual. Based upon the number of quantity of smaller elements present in Sublots C and D , this individual was also probably a primary deposit with secondary movement contributing to the scattering of skeletal material throughout the lot. This second adult in the lot was determined to be a male, based upon the distal morphology of the humeri in Sublot C. Complete fusion of long bones, the presence of an unfused sphenocciptal suture in Sublot C and minimal wear on the teeth recovered from Sublots C and D indicate this male was probably in his early twenties at the time of death.

Operation VIII Lot 7 Sublot D

Sublot D is oval shaped, extending five meters northeast to southwest and 2.5 meters northwest to southeast. The natural boundaries of the sublot are defined by the central speleothem formation of the lot to the southwest, the cave wall to the northeast, Sublot C to the southeast, Sublot B to the northwest, and a steep slope that defined the northwestern wall. The path in this sublot leads to an alcove that measures 2.2 meters northwest to southeast, two meters northeast to southwest, and 80 centimeters in height. Most of the skeletal material recovered from this sublot came from the floor of this alcove. The floor of the sublot also had a light scatter of crushed human skeletal remains, ceramic sherds and charcoal.

Over two hundred fifty skeletal fragments were recovered from Sublot D. Most of these remains belong to the child two to four years of age recorded in Sublot A and the male adult recorded in Sublot C. The quantity of child vertebrae and rib fragments in this
deposit suggests that this may have been the initial location of the child. These vertebrae also confirm the age estimate of 2-4 years of age based upon the stage of fusion. The minimal wear on the adult molars also support the you age of the male recorded from sublot D.

Operation VIII Lot 8 Sublot A

Sublot A is located in the northwestern section of Lot 8. The sublot measures approximately 24 meters northeast to southwest and 6.5 meters northwest to southeast, with a vertical restriction that ranges in height between four to six meters. The western border is adjacent to Lot 5, the southern border is adjacent to Sublot B, and the northern wall is natural cave wall with an alcove that contained charcoal, sherds and some crushed human skeletal material. Much of this bone was not collected due to its state of preservation, and was photographed in situ. The previously wet nature of the alcove area is indicated by stalagmites overhead. Through the sublot is a walkway composed of stalagmites. Nooks and crannies throughout this walkway contained fragments of crushed bone and ceramic sherds.

One hundred and nine skeletal fragments were recovered from sublot A. Most of these remains belong to a subadult approximately five to nine years of age. The quantity of subadult metacarpals, metatarsals, phalanges, and epiphyses but absence of a majority of the long bones and cranium suggests a secondary movement of part of the subadult after decomposition. The other individual similarly has a large quantity of bones absent from this deposit. The presence of metacarpals, metatarsals, and numerous teeth suggest secondary movement of other skeletal material away from this location. This second
individual is an adult, probably male based on the morphology of the cranial fragments. A lack of degenerative conditions indicates that the individual may be a young adult. Operation VIII Lot 8 Sublot C

This sublot consists primarily of a path that ran northeast to southwest through Lot 8 . The southern boundary is adjacent to Lot 7B, the northwestern boundary is adjacent to Lot 8 Sublots A and B, and the northeastern boundary is natural cave wall. The overall length of the pathway is 15.86 meters in a general northeast to southwest direction. The path ranges in width between 3.7 meters at its widest, 25 centimeters at its narrowest, but maintains an approximately one meter wide width for most of the path. The floor is relatively flat, but slopes upward for 5.5 meters along the northeastern boundary of the sublot. Sherds and charcoal covered the entire floor of the sublot, while a majority of the human skeletal material recovered from this area was found in the northeastern half of the sublot.

Two hundred and nine skeletal fragments were recovered from sublot C. A majority of the elements present in this deposit probably belong to the two individuals recorded in sublot A. However, there are additional skeletal elements present in this deposit that represent a younger individual. Based on the neural arch development, this subadult was approximately two to four years of age. The presence of a secondary subadult is demonstrated by the quantity of phalanges, numerous long bones, and varying stages of neural arch development between the two deposits. The presence of another adult individual is also indicated based on numerous and hand foot elements present in this sublot that have already been accounted for the adult in sublot A. However, the
minimal adult material recovered from this deposit suggests that the rest of this adult is located elsewhere.

Operation VIII Lot 10 Sublot A

Lot 10 is located southwest of the pathway that ends in Operation VIII Lot 11 sublot D . This pathway continues into Lot 10, after dropping down one meter right next to a large formation. Along this rimstone dam pathway, numerous bones were found cemented in place, including ribs, vertebrae and a possible long bone fragment belonging to a juvenile. Along the southern border of the flowstone pathway, there was a slot shaped passageway that measured 30 centimeters wide and 62 centimeters wide. The slot was too narrow to pass, however it appeared that this passage lead 4.24 meters down into a larger room that measured roughly a meter and a half north to south and a meter and a half east to west. Based upon the slope of the walkway and the scatter of bones, it seemed highly likely that skeletal material may have washed into this inaccessible area. Along the northern wall of this lot, there is a steep sloping flowstone formation that leads to a small shelf area, which is sublot B.

Only thirty-two skeletal elements were recovered from sublot A. Due to the minimal quantity of bones recovered in this sublot, condition of skeletal material in other areas of this lot, and proximity of the sublots, the calculation of minimum number of individuals will be based off of the assemblage from all of the sublots in this lot.

Operation VIII Lot 10 Sublot B

The shelf that was designated sublot B measures 2.88 meters east to west, 2.26 meters north to south, with a vertical restriction of 1.68 meters. The southern boundary of this shelf has a stalagmite formation in the southwest corner and a large column in the southeast corner. Between these two formations was an opening 1.14 meters wide. This opening leads to sublot C . In the western area of this shelf was an opening in the cave wall located 1.23 meters off the floor. The opening measured 38 centimeters wide in a general northwest to southeast direction and had a vertical restriction of 1.05 meters. This opening leads to sublot E . Most of the skeletal material discovered in sublot B was discovered crushed and in the southwest corner of the sublot. Only 34 skeletal elements could be removed from this sublot.

Operation VIII Lot 10 Sublot C

Once entering sublot C , the alcove opens up into an area that measures three meters north to south and 2.99 meters east to west. Much of the floors and walls within this alcove are fire blackened and was actively wet. No skeletal material was recovered from this sublot.

Operation VIII Lot 10 Sublot D

At the western border of sublot A another pit feature was discovered, this pit was designated sublot D . This pit measured 4.48 meters deep, 6.12 meters east to west, and approximately three meters north to south. It appears that this sublot connects up with the slot drop in sublot A. However, this area was not explored to confirm this. No skeletal material was recovered from this sublot.

Operation VIII Lot 10 Sublot E

This sublot is a small alcove located west of sublot B. This alcove measured 3.03 meters north to south, 1.21 meters east to west, with a vertical restriction of 1.29 meters. Much of the bone discovered in this alcove was not articulated and heavily focused in the southern portion of the alcove. Overhead, soda straw formations on the ceiling indicate the wet nature of the deposit. While fire blackening throughout the alcove indicated it was an area of ritual activity. An opening that measured 59 centimeters southeast to northwest and 1.33 meters high was located in the southern wall of this alcove. This opening opened up to the rest of Lot 10 . Fifty feet below this opening was a pit with the remains of at least one person in anatomical position. However, this area could not be easily accessed, so the remains were not collected.

Some of the skeletal material in this deposit could not be removed because it was cemented in place. Ninety-four skeletal elements could be removed. Based upon the 178 skeletal elements recovered and the material recovered and noted in situ throughout all of the sublots in lot 10, at least three individuals were indicated by the difference in ages represented by. In addition to the adult material that was found, numerous items represented a subadult two to four years of age and another that was five to nine years of age. Based upon duplicate adult metatarsals and metacarpals, two young adults were present in the deposit. The quantity of phalanges cemented to the calcium carbonate indicated that these individuals were a primary deposit. The more complete adult in the deposit was primarily recovered from the southern area of the alcove, with the exception of the hands and head. The northern half of the alcove was not as wet, so it consisted of
disturbed loose sediment. The loose sediment in this sublot may have been due to the looter's pits located in a niche in the northwest corner of the alcove. This looting activity may explain the absence of a majority of skeletal elements for the second adult.

Operation VIII Lot 11 Sublot A

Sublot A is the area one enters when going into Lot 11 . This lot is divided from Lot 12 via a slot entrance in the cave wall that measures 30.7 centimeters wide and 3.4 meters tall. There are two stalagmites approximately 75 centimeters tall located to the east and west of this area. Much of the human remains recovered from this area were located in a niche located south of the western stalagmite. Only 19 skeletal elements were recovered from this sublot. It was determined that skeletal material from all sublots in this lot should be analyzed as an assemblage due to the proximity of sublots in lot 11 and obvious movement of material between sublots.

Operation VIII Lot 11 Sublot B

This sublot's main area measures 1.44 meters southwest to northeast and 1.17 meters southeast to northwest. This sublot was designated to the semicircular area at the base of the column that is located somewhat in the center of Lot 11. This column is heavily blackened around the base and with less fire blackening extending up the column. On the eastern side of this column, there is a triangular shaped depression that was once a pool of water. This depression measures 25 centimeters east to west and 26 centimeters north to south. Much of the juvenile remains in this deposit were located within this depression, with more of the adult remains located to the north of the depression. Three
hundred and sixty-five skeletal fragments were recovered from this sublot. Obvious secondary placement of some of the skeletal material was noted, but it could not be determined if this was prehistoric or modern.

Operation VIII Lot 11 Sublot C

Sublot C is located north of sublot B. These two sublots are divided by numerous stalagmites and a slope of while crystalline flowstone. Sublot C is located northeast and east of the primary column in the room that is described in Sublot B. This lot measures 2.2 meters east to west and 3.12 meters north to south. A tree shaped column with smaller formations around it was noted in the northeast section of this sublot. Much of this area was heavily fire blackened. Sublot C had the highest density of skeletal material recovered from this lot. A total of 303 skeletal elements, most of which were covered in calcium carbonate or badly deteriorated, were removed from this area. The possible primary position of one adult within this deposit was indicated by an articulated foot found in situ.

Operation VIII Lot 11 Sublot D

Sublot D is located north of sublot C, and consists of a sloping walkway that goes uphill in a general east to west direction. This walkway measures 80 centimeters wide north to south, and 2.5 meters in length east to west. Much of this floor is heavily blackened and covered with crushed bone fragments. On the southern area of this walkway, located on 26 centimeters apart from each other, were a semi-articulated hand and a semi-articulated foot, indicating a primary deposit prior to disturbance of the rest of
the body. At the top of the sloping walkway was a room that measured 1.17 meters east to west and 2.32 meters north to south. Much of the skeletal material recovered from this sublot was discovered at the entrance area of this semi-private room as well as within it. A total of 228 skeletal elements were removed from this sublot, a majority of which was covered in calcite and carbon.

Operation VIII Lot 11 Sublot E

Sublot E is located east of the semi-private room in sublot D . The entrance into sublot E is circular in shape measuring 85 centimeters tall and 69 centimeters wide. Upon entering the large dome shaped solution formation alcove, the floor immediately drops 1.2 meters. The alcove measures 1.96 meters east to west and 2.25 meters north to south with a vertical restriction of 2.25 meters. A looter's pit was discovered at the base of the alcove's eastern wall. A natural niche was discovered in the northwest corner of the alcove that measured 74 centimeters wide (in a general southwest to northeast direction) and 87 centimeters tall. The more intact skeletal material was discovered in this niche, with much of the rest coming from the looter's pit area. Only 24 skeletal elements were recovered from sublot E .

A total of 939 skeletal elements were recovered from all of the sublots in lot 11. The presence of at least four primary position adults are suggested by the quantity of proximal pedal and manual phalanges recovered. Much of the long bones and cranial fragments of these individuals were not present. It is possible that many of the larger skeletal elements from these individuals were destroyed or taken due to looting activity in the area. However, it cannot be determined how much skeletal material was looted versus
what may have been too badly deteriorated for removal and identification. At least two of these adults are males based upon cranial and distal humeral morphology. Femoral head measurements in the deposit further indicate the presence of at least one male and the possibility of two adult females.

None of the skeletal material belonging to these four adults shows signs of major degenerative changes due to age, suggesting that they were probably young adults. The only supporting evidence to this is an os coxa fragment with an auricular surface that has morphology consistent with an individual 30-39 years of age. The only other noteworthy distinctions can be made about these individuals is the fact that one of them probably suffered from porotic hyperostosis due to the pin prick porosity and varying thickness on some cranial elements. One of the other adults within this deposit also had significant calculus on their incisors, two of which were modified in the shape of an Ik.

At least four subadults are present based upon left femora in the deposit. A majority of the smaller elements for these individuals were not recovered. Lack of complete recovery and scattering of the remains prevent any determination of primary or secondary deposit from being made for these subadults. Dental development based on two different maxillae fragments indicates that one of these individuals was seven years +/- 24 months old and another was six to seven years +/-24 months. The two other subadults are significantly younger. One is approximately three to four years old based on neural arch development, while the other is no more than a year old based on the size of an ischium found in the deposit.

Operation VIII Lot 13

Lot 13 almost has a figure eight shape because it is composed of two interconnecting circular sections. The combination of these two areas measures roughly 2.79 meters north to south and almost five meters east to west. The walls of this lot are covered by once actively wet formations. Along the northern edge of this lot, the formations create alcoves along the floor. The more western alcove measured 1.24 meters wide, 2.37 meters high, and extended in 1.87 meters. This alcove contained human skeletal material scattered throughout the floor. More skeletal material was found throughout the floor of this lot; much had already been crushed into powder and thus could not be removed. Jade, a mandible, and numerous teeth were recovered (including some that had been modified) were recovered from the eastern section of this crushed bone material.

Due to the preservation conditions in this area only 562 of the 795 skeletal elements recovered from this deposit were identifiable. Much of the unidentifiable material included unidentifiable shaft fragments and cranial elements. The crushed and powdery remains documented in this deposit indicate incomplete recovery of individuals, however the recovery of numerous smaller elements suggest these individuals may have been primary deposits. At least five adults are present based upon numerous elements, including: metacarpals, metatarsals, multiple tarsals, and patellae. Adult phalanges and carpals are better preserved for at least three of these adult individuals. Based upon distal morphology of the humerus, at least one adult is male. Lack of degenerative disease suggests that all of these individuals were young adults. At least two subadults are present in this deposit. Dental development for one indicates an individual 6-7 years of age $+/-24$ months. This is supported by the neural arch fragments in the deposit. The
presence of a perinate is also indicated in this deposit based upon os coxa fragments, a clavicle, and neural arch development.

Operation VIII Lot 14 Sublot A

The overall size of all of Lot 14 measures 3.72 meters north to south and 5.2 meters east to west, with a vertical restriction of 16 meters. Sublot A is restricted to a circular area near a pointy stalagmite which defines the northern boundary. The southern boundary of this sublot was the natural cave wall, while the east was defined by cemented fallen formations. The overall measurements of this sublot were 91 centimeters east to west and 1.09 meters north to south.

The removal of a large flat rock in the center of the sublot exposed a squished skull and teeth, along with a semi articulated foot. The infant bones collected from this sublot were mostly restricted to the area at the base of a stalagmite in the western extent of the sublot. Charcoal mixed in with the bones an torch marks about 15 centimeters above the floor indicate fire may have been associated with the ritual deposit of these remains. The wide degree of differential preservation of bones due to damp conditions in this area suggests that some of this material may have been moved around substantially or that numerous deposits took place over an extended period of time. The only other cultural material discovered in this sublot included a carved greed jade mosaic and an ear decoration. Two hundred and fifty-five skeletal elements were recovered from sublot A, a majority of the remains were from more than one subadult. However the few adult elements present as well as the proximity of other sublots in the lot suggested that this and other sublots in lot 14 should be analyzed together.

The boundaries of Sublot B are defined by large cave formation fragments to the north, sloping flowstone to the west, and flowstone wall to the south. The overall area of this sublot measured 1.7 meters north to south and 1.8 meters east to west. The floor of this sublot some ceramics and charcoal, with a discrete deposit of red pigment and a lithic fragment. Two hundred and thirteen skeletal elements were recovered from this sublot. Much of the skeletal material from this sublot was collected from the western extent, with teeth and foot bones preserving at a greater rate than other material. Also recovered in this area was an item of personal adornment, a shell tinkeler.

Operation VIII Lot 14 Sublot C

This sublot measured approximately 1.5 meters north to south and 3 meters east to west, with the western boundary defined by a flowstone slope. This sublot is located in the northern section of Operation VII Lot 14, located north of Sublot A's pointy stalagmite, and near the more accessible climb down area between Operation VIII and the plaza area in Operation VII. Distinctive cultural material recovered in this Sublot included long red ovate beads and a tiny mask.

Much of the skeletal material in this sublot was crushed to a powder. Although these conditions were less than ideal, 272 skeletal elements were recovered for the purpose of laboratory analysis. Some of the poor preservation in this area was due to burning of the skeletal remains. An abundant amount of charcoal was present, intermingled with the skeletal remains. The discovery of burned copal in association with
a fallen formation suggests that this area was used for ritual and that the skeletal remains may have been burned in a ritual manner. Due to the distance and discreteness of deposits, it seems unlikely that this powder material is from the same individuals in Sublot A

Operation VIII Lot 14 Sublot D

This sublot measures 2.14 meters northeast to southwest and 70 centimeters southeast to northwest, located Southeast of sublot C. The sublot extends down a corridor that consists of white flowstone to the east and south. The 35 skeletal elements recovered from this sublot was discovered in the southern corner. Much of this material, including a skull was heavily trampled and thus too fragmentary for collection. Most of the remains collected from this area consisted of teeth.

Operation VIII Lot 14 Sublot E

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. Only 9 skeletal elements were recovered from sublot E, a majority of which were dental elements.

Summary for Lot 14

At least five individuals are present among the 885 skeletal elements recovered from lot 14 . Three of these were adults with no indications of advanced age. The quantity of phalanges, carpals, and tarsals for the three individuals in the sublot suggest that these individuals were primary deposits. Almost all metric and morphological indicators for
sex were obliterated due to poor preservation in this area. One adult is possibly a male based upon the more roughed muscle attachments on one of the femora, while one is probably a female based upon the gracile nature of a femora and a small radial head diameter. Two subadults are also present in this deposit. One is estimated to be between two to four years old based upon multiple long bones, pelvis development, neural arches, and available metacarpals and metatarsals. The other subadult is more fragmentary with fewer small bones preserved. This subadult is estimated to be five to nine years old based upon femora, radii, fibulae, tibiae, and metatarsals development.

Operation VIII Lot 15 Sublot A

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included Twenty-six skeletal elements were recovered from this sublot. Other than two tibiae fragments, a majority of this deposit is composted of hand, foot, and dental elements. Due to a lack of field notes for this sublot, it is assumed that the rest of this individual has been accounted for in the calculation of MNI for a different deposit.

Operation VIII Lot 16

Access to this Lot is limited to a relatively exposed free climb up the northeaster cave wall in Operation VII. When standing in the southwestern portion of Lot 16, one can look down into the constructed plaza of Operation VII

Operation VIII Lot 16 Sublot A

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. Five hundred and sixty-one skeletal elements were recovered from sublot A. Due to the scarcity of field notes for Lot 16 , it was determined that it would be best to calculate the minimum number of individuals at the level of the lot rather than the individual sublots.

Operation VIII Lot 16 Sublot B

Sublot B is an alcove located along the western wall of the drapery that divides sublots A and B. Leading up to the alcove, there is a natural flowstone walkway with small rimstone dams that measures 3.15 meters east to west and one meter wide extends away from Sublot A. The alcove has a horizontal restriction of the alcove at the entrance measures 47.3 centimeters and widens to 1.1 meters wide. In the center of the alcove was an actively wet and dripping column. Much of the entrance area and interior of the alcove is heavily blackened due to burning.

A majority of the 213 human skeletal elements in this sublot were recovered around the formation, with some of the vertebrae and other skeletal elements were semiarticulated. This indicates the individuals may have been placed in the alcove while still fleshed or partly fleshed. Due to the scarcity of field notes for Lot 16 , it was determined that it would be best to calculate the minimum number of individuals at the level of the lot rather than the individual sublots.

Operation VIII Lot 16 Sublot C

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. A total of 107 skeletal elements were recovered from this sublot. Due to the scarcity of field notes for Lot 16 , it was determined that it would be best to calculate the minimum number of individuals at the level of the lot rather than the individual sublots.

Operation VIII Lot 16 Sublot D

Field notes for this lot were lost, and thus a contextual description of this deposit cannot be included. A total of 31 skeletal elements were recovered from sublot D. Due to the scarcity of field notes for Lot 16 , it was determined that it would be best to calculate the minimum number of individuals at the level of the lot rather than the individual sublots.

Operation VIII Lot 16 Sublot E

Within this sublot, a number of platforms have been constructed from breakdown and smaller rocks. The first platform is located in the center of sublot E and is located just west of the walkway that extends in a north to south direction through the sublot. This first platform measures 1.3 meters east to west and 1.1 meters north to south and is relatively square in shape. The elevated walkway to the east and large boulders on the north and west that rise above the surface of the platform create a bound wall like structure around three edges of the platform.

The second platform is located 1.5 meters north of the first platform and is one meter west of the walkway. The dimensions of the platform are 1.5 meters east to west
and one meter north to south. This platform is elevated half a meter higher than the previous platform, which would have allowed for optimal viewing of what was occurring on the lower platform and not vise versa. This platform also allows for optimal viewing of the once watery area west of both of the platforms. Much of the platforms and area surrounding the platforms in this sublot are heavily blackened due to fire. Much of the skeletal material found in this sublot was recovered near the once actively wet pool with rimstone dams located to the west of the platforms.

A total of 92 skeletal elements were recovered from sublot E .

Summary for Lot 16

Over 1,034 skeletal elements were recovered from Lot 16 . Due to the scarcity of field notes for Lot 16 , it was determined that it would be best to calculate the minimum number of individuals at the level of the lot rather than the individual sublots. A total of seven individuals are represented in these sublots. However one adult is only represented by two humeri fragments, so it seems likely one of these individuals may already be accounted for in another MNI count. Two of the remaining individuals are adults, while the other four are subadults. Both adults are males based upon distal humeri and cranial morphology. One of these two adults is probably older based upon the macroporosity, smorles nodes and syndesmophyte formations throughout his lumbar vertebrae. The other has no indication of advanced age. One of these two individuals also experienced probable porotic hyperostosis based upon pin prick porosity in numerous cranial fragments. Although parts of these individuals were very fragmentary, they were relatively fully recovered, indicating they were probably primary deposits.

Dental eruption provided ages for three of the four subadults. One mandible indicated a child three to six years of age, and another indicated an individual five years +/- 16 months. Pelvi fragments, humeri, radii, femora development confirmed the presence of two children of these ages in the deposit. The other individual with a dental development based age estimate was 15 years +/- 36 months due to the fact that their third molars had not yet erupted. Humeral and pelvis development noted on some fragments in this deposit and fully other more developed skeletal elements confirmed the presence of a teenager that was probably a primary deposit. Based upon cranial morphology, this teenager was possibly a male. The final subadult is estimated to be only two to three years of age based on femoral, humeri, radii, tibiae, ulna, neural arch, and calcaneus development and size.

Special Deposit 4

Field notes were lost for this deposit, so it is unknown what Operation the deposit was located. Eighty-one bones belonging to an adult were recovered. The only indication of trauma for this individual was a cut was noted on a right humerus fragment. The only indication of health problems were arthritis on vertebrae and metacarpals as well as slight porotic hyperostosis on a cranial fragment. Without field notes it is unclear how this deposit relates to other deposits within the cave and whether or not this individual has already been accounted for in another deposit. For this reason, the MNI for Special Deposit 4 is listed as undetermined for the total count of the cave in Table A.1.

Location	Width (cm)	Floor					Instances of Trauma
		Length (cm)	Height (cm)	Space (m2)	Volume (m3)	MNI	
Op. III Lot 8	333	238	150	7.9254	11.8881	1	0
Op. IV Lot 5						secondary	0
Op. IV Lot 10	1125	523		58.8375		1	0
Op. IV Lot 11C	167	330		5.511		secondary	0
Op. IV Special							
Deposit 1						secondary	0
Op. IV Special							
Deposit 3	142	96	93	1.3632	1.267776	2	0
Op. V Lot 1 C, E, G	1470	592	150	87.024	130.536	17	9
Op. V Lot 2	493	657	230	32.3901	74.49723	5	2
Op. V Lot 3	370	380	370	14.06	52.022	1	0
Op. V. Lot 4	950	780	235	74.1	174.135	2	0
Op. V Lot 5	253	450		11.385	0	3	0
Op. V Lot 6	1890	820	600	154.98	929.88	3	1
Op. V Lot 7	1250	900		112.5	0	3	0
Op. VI Lot 1 A, B, C	800	580	565	46.4	262.16	2	3
Op. VI Lot 2 A, B, C	610	670	300	40.87	122.61	2	1
Op. VI Lot 3 D, E						4	3
Op. VI Lot 3 F	99	80		0.792		2	0
Op. VI Lot 3 G	4130	449	150	185.437	278.1555	4	1
Op. VI Lot 4	612	590	1534	36.108	553.8967	1	0
Op. VI Lot 6	180	170		3.06		secondary	0
Op. VI Lot 8	550	235		12.925		2	0
Op. VI Lot 9						1	0
Op. VI Lot 11						1	0
Op. VI Lot 12						1	0
Op. VII Lot 1						4	0
Op. VII Lot 2	850	700	240	59.5	142.8	secondary	0
Op. VII Lot 11C	370	50	33	1.85	0.6105	secondary	0
Op. VII Lot 12	700	260		18.2		2	0
Op. VIII Lot 1							
ABCD	581	610	400	35.441	141.754	11	2
Op. VIII Lot 2	370	100		3.7		5	0
Op. VIII Lot 3	150	104	263	1.56	4.1028	1	0
Op. VIII Lot 5						2	0
Op. VIII Lot 7							
A,B,C,D	910	342.5	1100	31.1675	342.8425	4	0
Op. VIII Lot 8 A, C	1993	510	600	101.643	609.858	4	0
Op. VIII Lot 10							
A,B,D,E	653	771	168	50.3463	84.58178	4	0
Op. VIII Lot 11 A ,							
B, C, D, E	677	886	340	59.9822	203.9395	8	1
Op. VIII Lot 13	279	500	237	13.95	33.0615	3	1
Op. VIII Lot 14	906	1070	1600	19.344	309.504	5	0
Op. VIII Lot 15 A						secondary	0
Op. VIII Lot 16						6	3
Special Deposit 4						undetermined	1

Table A.1. Estimated sizes of rooms and chambers within Midnight Terror Cave with number of bones and minimum number of individuals removed from them.

APPENDIX B BONE SUMMARY

Operation	Lot	Sublot	ID\#	Bone Element	Side	Pertinent Notes	Pertinent Measurements
Special Deposit	1		1	First Proximal Phalanx (foot)	Left	Found with jute cash	2.9 cm
Special	2	a	(1)			Mainly the superior and lateral surfaces. Supraorbital margins are rounded. Slight skull modification with a very flat sloping frontal and a vertical flat occipital region. The right temporal is protruding from its natural flushness against the skull. Coronal, lambdoidal, squamosal, and sagittal sutures are not fused completely. The squamosal and lambdoidal sutures are the most open. Even on the interior surface they do not appear fused.	

very rugged. There is deteriorated bone that has collapsed from the inferior portion of the skull and has fallen into the cranium. Much of it has been calcified in place from the calcium carbonate from the nearby formation. This skull was found superior surface down.

Special Deposit		a	3	Femur fragments	Left	Proximal and distal fragments that mend. Trochanters, neck and head deteriorated.	42.5 cm (aprox.)
Special Deposit	2	B	4	Femur	Right	Proximal fragment in poor condition, greater trochater tubercle damaged.	41.5 mm (head diameter), 27 cm (available)

Special Deposit	2	B	5	Tibia	Left	Proximal fragment , in poor condition. Proximal phalanx was found imbedded in the distal portion. Numerous cracks down the shaft.	
Special Deposit	2	B	6	Radius	Right	Distal fragment	$\begin{gathered} 14.4 \mathrm{~cm} \\ \text { (available) } \end{gathered}$
Special Deposit	2	a	7	Tibia fragment	Left	Distal fragment	$\begin{gathered} 13.4 \mathrm{~cm} \\ \text { (available) } \end{gathered}$
Special Deposit	2	B	8	Humerus	Left	Distal end broken. Olecranon fossa more triangular shaped, spool shaped, asymmetrical, level.	41.87 mm (head diameter), 31.5 cm (aprox. Length)
Special Deposit	2	a	9a	Skull Fragments			
Special Deposit	2	a	9B	kull Fragment with Molar			
Special Deposit	2	a	9C	Molar			
Special Deposit	2	a	9D	Molar			
Special Deposit	2	a	9E	Molar			
Special Deposit	2	a	10	Fibula fragments	Left	There is a distal fragment distal fragment and a shaft	28.1 cm (together)

fragment

Special Deposit	2	B	11	Tibia	Left	Distal fragment with shaft (17.2 cm), proximal fragment (5.5 cm), and numerous fragments. Epiphysis line is visible.	Width of distal end is 5 cm
Special Deposit	2	B	12	Os Coxae	Right	Calcium carbonate, which covers the auricular surface and pubic symphysis. Narrow notch, rim stage 1, apical activity 0.86 .58 mm x $100 / 50.9 \mathrm{~mm}$	
Special Deposit	2	B	13	Femur fragments	Right	Proximal and shaft fragments	40.34 mm head diameter, aprox. 30 cm (available)
Special Deposit	2	B	14	Femur	Left	Complete	40.58 mm head diameter, 40.8 cm length
Special Deposit	2	B	15	Tibia	Possible Left	Epiphyses unfused. Between 2 and 5 years of age.	15 cm length
Special Deposit	2	B	16	Os Coxae	Right	Iliac crest, auricular surface and pubis are damaged. Porosity stage 2, acetabular	18 cm (approximated length)

$\left.\begin{array}{lccccccc} & & & & \begin{array}{c}\text { surface stage 2, rib } \\ \text { stage 1, apical } \\ \text { activity stage 1, }\end{array} \\ \text { intermediate notch. }\end{array}\right]$

Special Deposit	2	B	26	Ulna	Left	Fused, broke in route.	26.6 cm
Special Deposit	2	B	27	Femur	Right	Complete	43.2 mm head diameter. 41.8 cm length
Special Deposit	2	B	28	Os Coxae	Right	Pubis is missing. auricular surface is mostly covered with calcium carbonate, what remains has some billows (younger than 35, probably closer to mid to late 20s. Porosity stage 1 , Fossa stage 1, acetabular rim stage 1 , apical activity stage 1. Iliac crest not fused. Narrow notch.	$\begin{aligned} & 17.8 \text { overall } \\ & \text { length } \end{aligned}$
Special Deposit	2		1	rib fragments	Undetermined	2 fragments	
Special Deposit	3			Maxilla Fragment	Left	Heavy calcium carbonate on all surfaces. Canine tooth present along with the first and second molar. Carry visible on the buccal surface of the first molar.	

Cusps are well worn.
Third molar erupted but not present. abscess on the anterior root section on the buccal side of the third molar.

Special Deposit	3	2	Scapula Fragment	Left	Lateral fragment with part of the spine and part of the glenoid fossa.	
Special Deposit	3	3	Mandible		Calcium carbonate on all surfaces. Damage to the condyle and coronoid process. Major tooth reabsorption. Sockets still visible for some of the incisors. Wide chin. Probable male.	
Special Deposit	3	4	Calcaneus	Left	crushed in lateral surface probably occurred in the lab. Calcium carbonate on the medial and plantar surface	6.45 cm length
Special Deposit	3	5	Calcaneus	Right	Distal, medial and lateral surfaces badly deteriorated. Some holes on the medial	

surface (disease).

Special Deposit	3	6	Clavicle	Left	almost complete, damage to the medial and lateral ends. Somewhat gracile. Calcium carbonate on anterior and posterior surfaces.	
Special Deposit	3	7	Talus	Right	Calcium carbonate on the all surfaces. Some damage to the distal end.	5.01 cm length
Special Deposit	3	8	Sternum		Calcium carbonate on internal and external surfaces. Surface appears spongy (disease?). Based on the defined rib facets, probably younger individual.	8.67 cm
Special Deposit	3	9	Humerus Fragment	Left	Calcium carbonate on the on the anterior surface is thicker than the posterior surface. There appears to be two layers of calcium carbonate. The one closest to the bone	3.90 cm head diameter

has a grayish color, possibly indicating fire activity at the or near the time of deposit.

Special Deposit	3	10	Femur and First Metatarsal	Right (both)	Calcium carbonate on all surfaces. The flattened calcium carbonate on the posterior surface indicated that it was anterior side face up. Metatarsal is cemented to the lateral shaft portion.	
Special Deposit	3	11	Calcaneus	Left	Lateral surface damaged. Calcium carbonate on all surfaces.	6.65 cm length
Special Deposit	3	12	Radius	Left	Mostly complete, damage to the distal end. Calcium carbonate mostly on the anterior surface. Damage to the head prevents measurement of diameter.	

Calcium carbonate on all surfaces. It appears that there are two layers of calcium carbonate. The deeper layer has a grayish color possibly indicating fire activity.
Proximal fragment. Heavily calcium carbonate on all
surfaces. Two layers of calcium carbonate (one grey). Damage to the proximal surface. On the medial surface, something (possibly bone) was previously cemented but no
longer is. Distal fragment.
Calcium carbonate on all surfaces, two layers (one grey).
Some damage to the distal surface.

Special Deposit	3	15	Tibia Fragment	Right	Some damage to the distal surface.
Special					Calcium carbonate on all surfaces (two Deposit

the medial surface.

Special Deposit	3	17	Radius	Left	Complete. Two layers of calcium carbonate on all surfaces.	
Special Deposit	3	18	Humeri Fragments	Both	Distal fragments calcium carbonate cemented together. Two layers of calcium carbonate (one grey). The right one has more shaft. Oval shaped olecranon fossa, spool shaped trochlea, symmetrical, and angled medial condyle.	
Special Deposit	3	19	Frontal Fragment		Lacking supraorbital torus is lacking. Orbital margin is not very rounded or sharp. Pitting on external surface (disease). Calcium carbonate on interior surface slightly. Possible female.	
Special Deposit	3	20	Calcaneus	Right	Calcium carbonate on all surfaces.	7.03 cm length

Special Deposit	3	21	Humerus and Radius Fragments	Right	Calcium carbonate cemented the shafts together (two colors). Heads badly deteriorated. Break occurred in antiquity. Calcium carbonate on all surfaces.
Special Deposit	3	22	Mandible Fragment	Left	Ramus fragment. Calcium carbonate on internal and external surface.
Special Deposit	3	23	Mandible Fragment	Left	arc fragment. Canine tooth and first molar present. abscess second premolar. Cusps well worn. Second molar erupted. Calcium carbonate (both colors) on both surfaces.
Special Deposit	3	24	Talus	Right	Badly deteriorated. Calcium carbonate on all surfaces.
Special Deposit	3	25	Maxilla Fragment	Right	Calcium carbonate on all surfaces, some evidence of carbon. Three right molars present.

Special Deposit	3	26	Scapula Fragment	Right	carbonate on all sides, thin bone cemented to the bone.	
Special Deposit	3	27	Intermediate Phalanx (Foot)		Complete. Very light calcium carbonate on all surfaces. Holes on the surface (disease).	2.88 cm length
Special Deposit	3	28	Cervical Vertebra		C1. Light to no calcium carbonate. Broken left transverse process. articulates with 29.	
Special Deposit	3	29	Cervical Vertebra		C2. Light to little calcium carbonate. articulates with 28 and 30	
Special Deposit	3	30	Cervical Vertebra		C3. Light to little calcium carbonate. articulates with 29 and 31.	
Special Deposit	3	31	Cervical Vertebra		C4. Light to little calcium carbonate. articulates with 30 . Spinous process broken	
Special Deposit	3	32	Radius Fragment	Right	Distal fragment. Calcium carbonate on the lateral surface.	

Special Deposit	3	33	Cervical Vertebra		C2. Heavy calcium carbonate on all surfaces.
Special Deposit	3	34	Scapula Fragment	Left	Lateral fragment with most of the glenoid and the coracoid.
Special Deposit	3	35	Clavicle Fragment	Left	Lateral fragment, most of the calcium carbonate is on the posterior surface, little on the anterior surface.
Special Deposit	3	36	Ulna Fragment	Undetermined	Calcium carbonate on the entire surface. Broken in antiquity. Cannot side due to the amount of calcium carbonate.
Special Deposit	3	37	Manubrium		Complete. Only light calcium carbonate on the superior and anterior surface.
Special Deposit	3	38	Fibula Fragment	Left	Distal Fragment. Calcium carbonate on all surfaces. Broken in antiquity.
Special Deposit	3	39	Cuboid	Left	Slightly deteriorated on all surfaces. Slight calcium carbonate on most surfaces.

Special Deposit	3	40	Clavicle Fragment	Left	Medial fragment. Broken in antiquity. Two colors of calcium carbonate on all surfaces, a majority on the posterior surface.	
Special Deposit	3	41	Navicular	Left	Complete. Calcium carbonate on the facets.	
Special Deposit	3	42	Sacrum		Left ala badly deteriorated. Calcium carbonate on all surfaces. all the vertebrae are fused. Kind of broad and long.	
Special Deposit	3	43	Femur fragment	Right	Distal fragment of badly deteriorated condlyes.	
Special Deposit	3	44	Ulna Fragment	Right	Shaft fragment. Calcium carbonate (both colors) on all surfaces. Broken in antiquity.	
Special Deposit	3	45	Intermediate Phalanges (Foot) (2)		Complete. Very little calcium carbonate.	$\begin{gathered} 2.78 \mathrm{~cm} .2 .71 \mathrm{~cm} \\ \text { lengths. } \\ \hline \end{gathered}$
Special Deposit	3	46	Intermediate Phalanges (Hand) (3)		Complete. Deteriorated palmar surface of the	$2.09 \mathrm{~cm}, 2.35 \mathrm{~cm}$, 2.62 cm lengths.

					smallest one. No significant calcium carbonate buildup.	
Special Deposit	3	47	Cuboid	Right	Slightly deteriorated, light calcium carbonate on the largest facet.	
Special Deposit	3	48	Navicular	Right	Deteriorated. Calcium carbonate on the facets.	
Special Deposit	3	49	Parietal Fragment	Undetermined	Calcium carbonate on the internal and external surfaces. Pitting on both surfaces, but more extent on the interior surface (disease).	
Special Deposit	3	50	First Metacarpal	Left	Complete, light calcium carbonate.	4.23 cm length
Special Deposit	3	51	Scapula Fragment	Right	Fragment of the spine, broken in antiquity, two colors of calcium carbonate heavy in the supraspinous area and on the spine.	
Special Deposit	3	52	Fibula Fragment	Right	Distal Fragment. Some calcium carbonate around the shaft. Damage to the	

posterior surface.

Special Deposit	3	53	Intermediate Phalanges (Hand) (5)	Undetermined	The shortest one has a broken distal end. Calcium carbonate on all surfaces.	$3.81 \mathrm{~cm}, 4.08 \mathrm{~cm}$, 4.18 cm , and 4.33 cm lengths
Special Deposit	3	54	Scapula Fragment	Undetermined	Spine fragment, calcium carbonate on all surfaces.	
Special Deposit	3	55	Humerus Fragment	Left	Distal fragment of the trochlea. Symmetrical and spool like.	
Special Deposit	3	56	Fourth Metacarpal	Left	Complete. Calcium carbonate on all surfaces, a majority on the medial surface.	5.36 cm length
Special Deposit	3	57	Fifth Metacarpal	Left	Complete. Calcium carbonate on all surfaces.	4.96 cm length
Special Deposit	3	58	Second Metacarpal	Left	Complete. Calcium carbonate on all surfaces.	6.37 cm length
Special Deposit	3	59	Metacarpal Fragment	Undetermined	Distal fragment	
Special Deposit	3	60	Third Metatarsal	Right	Complete. Calcium carbonate on all surfaces	5.84 cm length
Special Deposit	3	61	Second Metacarpal	Right	Proximal fragment. Calcium carbonate on	

all surfaces.

Special Deposit	3	62	Third Metacarpal	Right	Complete. Calcium carbonate on all surfaces.	6.20 cm
Special Deposit	3	63	Second Metacarpal	Right	Complete, calcium carbonate on all surfaces.	
Special Deposit	3	64	Metatarsal Fragment	Undetermined	Proximal fragment. Second or third,	
Special Deposit	3	65	Unidentifiable Fragments (3)	Undetermined	Shaft Fragments.	
Special Deposit	3	66	Radius Fragment	Right	Distal Fragment, Calcium carbonate on all surfaces.	
Special Deposit	3	67	Rib Fragments (14)	Left	Vertebral and Shaft fragments. Calcium carbonate on all surfaces.	
Special Deposit	3	68	Rib Fragments (10)	Right	Two vertebral ends, the rest are shaft fragments. Calcium carbonate on all surfaces.	
Special Deposit	3	69	Rib Fragments (7)	Undetermined	Shaft fragments. Calcium carbonate on all surfaces.	
Special Deposit	3	70	Pubis Fragment	Left	Calcium carbonate on the interior surface. Pubic face has some	

					undulations but otherwise badly deteriorated.	
Special Deposit	3	71	Maxilla Fragment	Left	Part of the maxillary sinus and the orbital surface are visible.	
Special Deposit	3	72	Ulna Fragment	Left	Proximal fragment. Damage to the proximal and distal ends in antiquity. Thick calcium carbonate on all surfaces.	
Special Deposit	3	73	Thoracic Vertebra Fragments		Posterior fragments from two separate vertebra. One is a low vertebra and one is high. Calcium carbonate on the surfaces.	
Special Deposit	3	74	Unidentifiable Fragments (2)			
Special Deposit	3	75	Os Coxae	Left	Pubis absent. Calcium carbonate on all surfaces. acetabulum rim stage is a 3 . Greater sciatic notch appears narrow but it is distorted from the calcium carbonate.	4.13 cm acetabular diameter

This appears to be the mate for 76 .

			Damage to the pubis and to the ilium. Two colors of calcium carbonate. Greater sciatic notch is more rounded, acetabular rim is stage 3. This appears to be a mate for 75.
Special Deposit	3	Os Coxae	Right

Probably T2-T6.
Calcium carbonate is
on all surfaces, there

Special Deposit	3	80	Thoracic Vertebra	is damage to the body.
Special Deposit	3	81	Thoracic Vertebra	Probably T2-6. Calcium carbonate on most surfaces. Right superior articular facet is broken along with the spinous process.
Special Deposit	3	82	Thoracic Vertebra	Probably T2-6. Calcium carbonate on most surfaces. Broken right transverse process and left superior articular facet. Deteriorated body on the superior and inferior surfaces.
Special Deposit	3	83	Thoracic Vertebra	Probably T2-6. Calcium carbonate on most surfaces. Broken left transverse process. Deteriorated body.
Special Deposit	3	84	Thoracic Vertebra	Probably T2-6. Calcium carbonate on most surfaces. Broken left transverse

				process. Deteriorated body.	
Special Deposit	3	85	Lumbar Vertebra	L5. articulates with 86. Damage to both the transverse processes. Major lipping and arthritis on the body. Body also appears crushed.	
Special Deposit	3	86	Lumbar Vertebra	L4. articulates with 85 and 87. Damage to the body and transverse processes. Lipping and arthritis is evident on the body.	
Special Deposit	3	87	Lumbar Vertebra	L3. articulates with 86. Some damage to the left transverse process	
Special Deposit	3	88	Lumbar Vertebra	L1. articulates with 89. Damage to the transverse processes. Body slightly deteriorated.	$\begin{gathered} 2.37 \mathrm{~cm} \text { body } \\ \text { height } \\ \hline \end{gathered}$
Special Deposit	3	89	Lumbar Vertebra	L2. articulates with 88 and 90. Some calcium carbonate. Holes forming on the	

> body (disease).

Special Deposit	3	90	Lumbar Vertebra	L3. articulates with 89. Some calcium carbonate. Holes forming in body (disease), some lipping.	$\begin{gathered} 2.36 \mathrm{~cm} \text { body } \\ \text { height } \end{gathered}$
Special Deposit	3	91	Thoracic Vertebra	Probably T12. Calcium carbonate all over and deteriorated. articulates with 92	
Special Deposit	3	92	Thoracic Vertebra	Probably T11. Calcium carbonate all over and deteriorated. articulates with 93 and 91.	
Special Deposit	3	93	Thoracic Vertebra	Probably T10. Calcium carbonate all over and deteriorated. articulates with 92 and 94	
Special Deposit	3	94	Thoracic Vertebra	Probably T9. Calcium carbonate all over and deteriorated. articulates with 93 and 95	
Special Deposit	3	95	Thoracic Vertebra	Probably T8. Calcium carbonate all over and	

			deteriorated. articulates with 96 and 94
Special Deposit	3		
			Probably T7. Calcium carbonate all over and deteriorated.
Special			
Deposit	3		Thoracic Vertebra

Special Deposit	4	a	1	radius	right	proximal fragment	head diameter is 19.51 mm , available length 11.2 cm
Special Deposit	4	a	2	proximal pedal phalanx			12.63 mm length
Special Deposit	4	a	3	first metatarsal	left	distal fragment, distal head has post mortem damage and arthritis	
Special Deposit	4	a	4	3rd cuneiform	left		
Special Deposit	4	a	5	cuboid	left	some post-mortem damage	
Special Deposit	4	a	6	talus	left	some post mortem damage, rather small and gracile	$\begin{gathered} \text { length } 47.41 \mathrm{~mm}, \\ \text { width } 38.14 \\ \hline \end{gathered}$
Special Deposit	4	a	7	third metacarpal	left	proximal fragment, all but head present, defined muscle attachment on posterior side, northern hand	
Special Deposit	4	a	8	first metacarpal	left	northern hand	43.27 mm length
Special Deposit	4	a	9	second metacarpal	left	slight arthritis in the distal head northern hand	60.83 mm length
Special Deposit	4	a	10	fourth metacarpal	left	proximal fragment, head missing	

Special Deposit	4	a	11	fifth metacarpal	left	distal fragment, distal head has post mortem damage and arthritis	
Special Deposit	4	a	12	proximal manual phalanx			35.37 mm length
Special Deposit	4	a	13	proximal manual phalanx		possible arthritic damage on proximal and distal ends	40.39 mm
Special Deposit	4	a	14	intermediate manual phalanx			26.43 mm length
Special Deposit	4	a	15	intermediate manual phalanx			26.05 mm length
Special Deposit	4	a	16	intermediate manual phalanx			16.95 mm length
Special Deposit	4	a	17	hamate	left		
Special Deposit	4	a	18	capitate	left	slight red coloration	
Special Deposit	4	a	19	scaphoid	left		
Special Deposit	4	a	20	lunate	left		
Special Deposit	4	a	21	triquetral	left	irregular in size and shape, somewhat flattened	
Special Deposit	4	a	22	first distal manual phalanx		some damage to the proximal end	21.08 mm length
Special Deposit	4	a	23	distal manual phalanx			16.04 mm

Special Deposit	4	a	24	distal manual phalanx			15.91 mm
Special Deposit	4	a	25	distal manual phalanx			13.91 mm
Special Deposit	4	a	26	fifth metatarsal	left	calcite on pedal surface near head	61.24 mm
Special Deposit	4	a	27	third metatarsal	left	fragment, head absent, ring of calcite around base, above facets	
Special Deposit	4	a	28	second metatarsal	left	damage to proximal surface	66.06 mm
Special Deposit	4	a	29	fourth metatarsal	left	damage to proximal surface and distal	
Special Deposit	4	a	30	first proximal pedal \qquad			28.05 mm
Special Deposit	4	a	31	first intermediate pedal phalanx		some proximal post mortem damage	27.38 mm
Special Deposit	4	a	32	first distal pedal phalanx			21.99 mm
Special Deposit	4	a	33	humerus fragment	right	poor preservation compared to the left, but morphologically the same	
Special Deposit	4	a	34	talus	left	poor preservation	65.78 mm in length
Special Deposit	4	a	35	radius fragments	$?$	distal end	

$\left.\begin{array}{lccccccc}\begin{array}{c}\text { Special } \\ \text { Deposit }\end{array} & 4 & \text { a } & 36 & \begin{array}{c}\text { first proximal phalanx } \\ \text { pulled for testing }\end{array} & & \\ \hline & & & & & & \begin{array}{c}\text { adult, from lateral } \\ \text { incisor to half of third } \\ \text { molar. all teeth lost } \\ \text { post mortem, except } \\ \text { for possibly the } \\ \text { second and third } \\ \text { molar, probable }\end{array} \\ \text { abscess on labial and } \\ \text { posterior surface of } \\ \text { second molar }\end{array}\right]$

Special Deposit	4	E	8	humerus fragment	left	distal fragment, the trochlear notch is not that deep, fossa is ovate in the deeper section, but extends up in a triangular fashion, spool shaped, probable male	
Special Deposit	4	E	9	femur fragments	right	distal fragment, badly deteriorated with cracks and bowing, treated with b-72	
Special Deposit	4	E	10	radius fragments	left	four large fragments and a few smaller ones	15.17 mm mid shaft estimation
Special Deposit	4	E	11	frontal fragments	more right	no morphological characteristics	
Special Deposit	4	E	12	thoracic vertebra fragment		fragment with a superior articular facet and a lateral process with a facet on it	
Special Deposit	4	E	13	humerus fragments	right	shaft and part of the distal portion	22.45 mm mid shaft diameter
Special Deposit	4	E	14	femur fragments		shaft fragments, badly deteriorated with taphonomic cracking	mid shaft diameter 29.71 mm
Special Deposit	4	E	15	parietal fragment			

$\left.\begin{array}{lcccccc}\begin{array}{c}\text { Special } \\ \text { Deposit }\end{array} & 4 & \text { E } & 16 & \text { parietal fragment } & & \text { slight lytic activity } \\ \hline & & & & & \text { pin pick porosity, } \\ \text { Special } \\ \text { deposit with evidence } \\ \text { of healing } \sim 4 m m \text { in } \\ \text { diameter }\end{array}\right]$

Special Deposit	4	E	27	ulna fragment	left	distal fragment	
Special Deposit	4	E	28	rib fragment	right	$\begin{gathered} \text { neck and shaft } \\ \text { fragment, probably } \\ \text { rib 3-6 } \end{gathered}$	
Special Deposit	4	E	29	radius fragment	right	distal fragments, 8 cm long when cross mended, post mortem breaking	
Special Deposit	4	E	30	third metacarpal fragments	right	cross mend to form a complete bone, badly damages	
Special Deposit	4	E	31	thoracic vertebra fragment		lamina fragment with right lateral process and superior and inferior facets	
Special Deposit	4	E	32	proximal manual phalanx		slight damage to proximal surface	41.46 mm
Special Deposit	4	E	33	intermediate manual phalanx			29.36 mm
Special Deposit	4	E	34	intermediate manual phalanx			28.57 mm
Special Deposit	4	E	35	rib fragments	probable right	upper rib probably 36	
Special Deposit	4	E	36	greater multangular	right		

Special Deposit	4	E	37	femur fragments	right	adult, fragment of neck and trochlear region, badly deteriorated.	
Special Deposit	4	E	38	clavicle fragment	left	lateral fragment with conoid tubercle	
Special Deposit	4	E	39	metacarpal fragment	unknown	shaft fragment	
Special Deposit	4	E	40	metacarpal fragment	unknown	shaft fragment	
Special Deposit	4	E	41	rib fragment	right	neck fragment	
Special Deposit	4	E	42	radius fragment	unknown	shaft fragment	$\sim 1 \mathrm{~cm}$ in length
Special Deposit	4	E	43	metacarpal fragment	unknown	shaft fragment	
Special Deposit	4	E	44	cranial fragment	unknown	thin, sinus of some type visible	
Special Deposit	4	E	45	6 unidentifiable long bone fragments	unknown		
III	8		1	long bone fragment	undetermined	bones from sherd	
III	8		2	rib fragments	undetermined	bones from sherd	
III	5	a	1	radius fragments	undetermined		
III	5	a	2	fibula fragment	undetermined		
III	5	a	3	metacarpal fragment	undetermined		
III	5	a	4	proximal manual phalanx	undetermined		
III	5	a	5	metatarsal fragment	undetermined		

III	5	a	6	metatarsal fragment	undetermined	
III	5	a	7	second metacarpal fragment	undetermined	
IV	5		1	incisor	right	deciduous second incisor.
IV	10			humerus fragments	undetermined	3 fragments, two are shaft, one is the distal portion above the fossa, covered in carbon, size is small and gracile
IV	10		2	rib fragment	undetermined	shaft fragment, adult, covered in carbon and has some mold on it
IV	10		3	rib fragment	undetermined	shaft fragment, adult, covered in carbon and has some mold on it
IV	10		4	rib fragment	left	neck fragment with some of the shaft, covered in carbon and has some mold on it
IV	10		5	rib fragment	undetermined	shaft fragment, adult, covered in carbon and has some mold on it
IV	10		6	rib fragment	undetermined	shaft fragment, adult, covered in carbon and has some mold on it
IV	10		7	cervical vertebra fragment		left fragment with inferior and superior articular facet, adult,

some carbon on it

IV	10		8	femur fragment	undetermined	condyle fragment, slightly carbon covered
IV	10		9	vertebra fragment		body fragment, lipping and spondylophytes, carbon covered, probably lumbar vertebra
IV	10		10	2 long bone fragments	undetermined	probably belonging to a humerus
IV	10		11	34 unidentified fragments	undetermined	
IV	11		1	cranial fragment	undetermined	
V	1	C	1	temporal	right	fragment appears to follow sutures. Other skull bones recovered from the same grid square will be reconstructed and consolidated with B72.

3 pieces. Maxillae, Frontal, Nasals, Ethmoid, Sphenoid, Zygomatic, Palatines, Volmer, Lacrimals, and Inferior Nasal Conchae. Two frontal bone fragments articulate. Sphenoid and Zygomatics are only partials. Other skull bones recovered from the same grid square will be reconstructed and
consolidated with B-
72. Brow ridges: one
absent, right side
noticeable along
midline. Supraorbital margin is rounded.
Teeth Present: right and left first molars, two left premolars, left canine. Sockets between these show no sign of reabsorption. Third molars are partly present with evidence of partial reabsorption
on the second molars.
(Removed for testing:
Upper left canine, and
right upper 1st molar)

V	1	C	2B	molar			
V	1	C	2 C	canine			
V	1	C	3	temporal	left	fragment appears to follow sutures. Other skull bones recovered from the same grid square will be reconstructed and consolidated with B72	$\begin{aligned} & 25.03 \mathrm{~mm} \\ & \text { mastoid length } \\ & \text { Distal end } \\ & \text { broken. } \end{aligned}$

V	1	C	4	parietals; occipital	Both	The left side of the parietal is mostly complete with menengial grooves present. Part of the right parietal and occipital are present. The left side of the Other skull bones recovered from the same grid square will be reconstructed and consolidated with B72. Wormian, some sutures appear mostly fused see pictures.	
V	1	C	5	cranial fragments		10 count. Occipital fragment has occipital condyles present. Three of the other fragments are parietals. Other skull bones recovered from the same grid square will be reconstructed and consolidated with B-72.	
V	1	C	6	femur fragment	right	Proximal fragment in relatively good condition. Multiple post mortem fractures	39.3 cm when articulated, 39.3 mm head diameter

Probable Female.

V	1	C	10	Radius	right	Complete. Distal epiphysis is fused but line is very visible. R2 in the sketch. Posterior proximal and distal surfaces have some calcium carbonate.	2.05 cm head diameter, 22.9 cm overall length
V		C	11	Femur fragment	left	Proximal fragment. Calcium carbonate on the posterior, medial, and medial/anterior surface. Slight red staining on the posterior surface of the shaft.	3.78 cm head diameter

V	1	C	12	Tibia fragment	left	Shaft fragment. Damage to the midshaft area, calcium carbonate on the posterior surface. Slight reddish brown staining all over in circular blotches. Slight calcium carbonate and carbon on the anterior surface, heavier calcium carbonate on the posterior surface.
V	1	C	13	Tibia fragment	left	Distal fragment.
V	1	C	14	Humerus fragment	left	Distal and shaft fragment. H4 on sketch. Calcium carbonate on the anterior/lateral surface on the upper shaft and on the distal portion. Medial condyle is broken. Olecranon fossa is more triangular, trochlea is asymmetrical and less spool shaped. Probable male.

V	1	C	15	Femur fragment	left	Distal portion of the condlyes. Calcium carbonate on the posterior surface leading onto the medial and then part of the anterior surface. Possible shell fragment imbedded in the calcium carbonate.
V	1	C	16	Femur fragment	right	Distal fragment. Possible cut mark on the medial surface. Possible red staining on the condlyes. The popliteal surface has many holes possible disease. Medial surface of the condyle is badly deteriorated.
V	1	C	17	Tibia fragment	right	Shaft fragment. Most of the calcium carbonate is on the posterior surface but there is some on the lateral and anterior (distal) surface

V	1	C	18	Femur fragment	right	Distal shaft fragment. Probable cut marks on the lateral surface. Calcium carbonate on the lateral, medial and slight amounts on the posterior surface. Carbon on Posterior surface.	
V	1	C	19	Humerus	right	Complete. H5 on sketch. Calcium carbonate and carbon on the anterior surface. Olecranon fossa triangular shaped, trochlea is asymmetrical and less spool like, medial condyle is straight.	4.29 cm head diameter, 29.1 cm overall length
V	1	C	20	Clavicle	left	Complete. Calcium carbonate on all surfaces. Medial epiphysis is fused but line is slightly visible.	14 cm length
V	1	C	21	Calcaneus	left	Complete, Calcium carbonate mostly on the anterior surface.	7.48 cm length

V	1	C	22	Humerus	left	Complete. Calcium carbonate mainly on the posterior surface. Olecranon Fossa more oval, Trochlea is spool like and symmetrical. Medial Condyle is angled up. Probable Female.	3.89 cm head diameter, 27.2 cm overall length
V	1	C	23	Ulna	right	almost Complete, just missing the distal head and process. U2 on sketch. Little to no calcium carbonate. Muscle attachments are well developed.	
V	1	C	24	Tibia fragments	left	almost complete, missing some small fragments. Calcium carbonate on all surfaces. T1 on sketch?	
V	1	C	25	Femur fragment	right	Proximal fragment. Greater and lesser trochanter and the femoral head have not yet fused. Less than 6-9 years old.	

$\left.\begin{array}{lllll} & \begin{array}{c}\text { Proximal and shaft } \\ \text { fragment, rather on } \\ \text { the small side. } \\ \text { anterior and lateral } \\ \text { surfaces around the } \\ \text { proximal end are } \\ \text { deteriorated. Cut } \\ \text { mark on the lateral }\end{array} \\ \text { surface about } 8.5 \mathrm{~cm} \\ \text { from the proximal } \\ \text { end. Calcium }\end{array}\right]$

V	1	C	29	Frontal fragment		Mostly the right side. Obvious skull modification (frontal flattening/elongating). Possible cut mark in orbital area (more evident from the internal surface). Calcium carbonate on the interior and exterior surface. Supraorbital torus is pronounced, but the margin is blunt. Probable male.	
V	1	C	30	Femur fragments	right	Proximal fragment and shaft fragment. Calcium carbonate on the posterior surface. Damage to the trochanter crest. Post depositional longitudinal cracking.	3.90 cm head diameter
V	1	C	31	Humerus fragment	left	Distal fragment. Calcium carbonate and carbon on the posterior and anterior surface. Olecranon fossa more triangular shaped, asymmetrical trochlea, less spool	

shaped, medial condyle is straight.

Probable male.

V	1	C	32	Femur fragment	left	Distal fragment. Epiphysis not fused, probably 5 years of age.
V	1	C	33	Tibia fragment	left	Distal fragment. Epiphyseal line still visible. Damage to the anterior surface near the epiphysis.
V	3	C	34	Femur fragment	left	Distal fragment of the condyles and part of the shaft. Calcium carbonate on the posterior shaft portion. Lateral and medial surfaces deteriorated. Holes on the popliteal surface (disease?)

V	1	C	35	Humerus fragments	left	Proximal head with a large portion of shaft and many shaft fragments that shattered when they were picked up in the lab. Calcium carbonate on anterior surface and holes near the head (disease?) H 1 on sketch.	3.76 cm head diameter.
V	1	C	36	Calcaneus	left	Complete. Calcium carbonate mainly on the medial surface.	7.05 cm length
V	1	C	37	Scapula	right	Lateral fragment, Spine broken, glenoid fossa present.	$\begin{gathered} 3.56 \mathrm{~cm} \text { fossa } \\ \text { height, } 2.42 \text { fossa } \\ \text { width } \\ \hline \end{gathered}$
V	1	C	38	Femur fragment	Undetermined	Shaft fragment. Calcium carbonate on posterior surface.	
V	1	C	39	Radius fragment	left	Distal fragment with shaft. Epiphysis unfused, but styloid process visible. Between 10 and 14 probably.	
V	1	C	40	Femur fragment	left	Proximal fragment. Damage to the trochater crest. Calcium carbonate on posterior surface. On	3.80 cm head diameter

						the small size, probable adolescent/young adult.	
V	1	C	41	Radius fragment	left	Distal fragment. Calcium carbonate on all surfaces. another bone fragment is cemented to the anterior surface that cannot be identified.	
V	1	C	41	First Metatarsal	left	Complete. Calcium carbonate on medial and dorsal surfaces.	5.55 cm length
v	1	C	42	Mandible		Complete. Calcium carbonate on all surfaces. all six molars are present and the second left incisor and the left canine. abscess developing on the first left molar's anterior buccal root, left right canine, left second premolar and left first molar. Broad Chin, probable male.	

V	1	C	43	Thoracic Vertebra	Probably T2-T6. Most of the posterior Surface except for the superior articular facets are missing. Severe lipping on the body. Epiphyses fused, line not visible. Some holes on the body (disease)	1.57 cm body height
V	1	C	44	Lumbar Vertebra	Probably L3. Damage to the posterior area and transverse processes. Epiphyses fused and extreme lipping/arthritis on the superior/anterior surface.	$\begin{gathered} 2.35 \mathrm{~cm} \text { body } \\ \text { height } \end{gathered}$
V	1	C	45	Lumbar Vertebra fragment	anterior body fragment. Epiphyses fused but line is visible. Holes in the body (disease)	2.74 cm body height
V	1	C	46	Lumbar Vertebra	Probably L3 or L4. Damage to the superior surface of the body. Transverse processes absent, inferior articular facets absent. Epiphyses fused, but	2.83 cm body height

$\left.\begin{array}{ccccc} & \begin{array}{c}\text { line is still present. } \\ \text { Slight reddish }\end{array} \\ \text { discoloration on the } \\ \text { inferior anterior } \\ \text { portion of the body. }\end{array}\right]$

| | | | transverse process,
 and the left transverse
 foramen. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | | | | Possible cut marks??
 Holes visible on the
 posterior surface
 (disease) |

V	1	C	55	Ilium	right	Calcium carbonate on lateral and medial surfaces. Iliac crest is heavily developed. Narrow greater sciatic notch. Probably male. Superior epiphysis is fused but the line is visible. The lunate surface appears relatively smooth. acetabular notch is barely visible. The rim stage is $3 / 4$. The auricular surface is covered with calcium carbonate.	
V	1	C	56	Thoracic Vertebra		Probably T10. Spinous process broken. Epiphyses fused but line is visible. Slight lipping on the body. a few holes developing on the body (disease)	$\begin{gathered} 1.97 \mathrm{~cm} \text { body } \\ \text { height } \\ \hline \end{gathered}$

V	,	C	57	Ischium	left	Not fused with the other bones of the os coxae. Probably less than 4-8 years of age. Calcium carbonate is mainly on the lateral surface inferior to the acetabulum, but there is more on the medial surface. Belongs to the same Individual as 59.	
V	1	C	58	Thoracic Vertebra		Probably T2-T6. Damage to the body's anterior and lateral sides	1.15 cm body height
V	1	C	59	Pubis	left	Probably less than 4-8 years of age. Belongs to the same Individual as 57. More calcium carbonate on the medial than lateral surface. More bleached in color than 57.	
V	1	C	60	Fibula fragment	right	Shaft fragment. Calcium carbonate light on all surfaces.	

V	1	C	61	Lumbar Vertebra		L2. Damage to the body and left transverse process. Epiphysis sealed but the line is still visible. Calcium carbonate on all surfaces. Holes forming on the body (disease)	$\begin{gathered} 2.55 \mathrm{~cm} \text { body } \\ \text { height } \\ \hline \end{gathered}$
V	1	C	62	Ischium	right	Has part of the acetabulum, but not enough for a diameter measurement. Small juvenile. Ischial tuberosity is not fully developed.	
V	1	C	63	Parietal fragment	Undetermined	Thick mud covered by calcium carbonate on the interior surface, calcium carbonate on the exterior as well. Thinness and size suggests young individual. Cranial suture clearly defined and had probably not fused yet. Pitting developing.	

Part of the acetabulum is present.
Part of the Iliac crest
does not appear fused. There are holes on the lateral surface (disease). The acetabulum appears small. Yet the Rim appears slightly worn acetabulum and the lunate surface diameter is 3.87

V	1	C	64	Ilium fragment	Undetermined	is slightly porous.	cm
V		C	65	Sacral Vertebrae		S1 and S2, partly fused together, but not complete. The superior epiphysis for S 1 has not fused. The auricular surface is not fused either. Evidence of insect activity and damage to the posterior surface.	S1 aprox. 2.18 body height, S2 aprox. 1.95 cm body height.
V	1	C	66	Thoracic Vertebra		Probably T10. Damage to the anterior surface of the body. Calcium carbonate on the posterior surface.	2.05 cm body height

V	1	C	67	Ischium	right	Lateral surface has some calcium carbonate. Unfused. Perinate to 1 year aprox. See 68.
V	1	C	68	Ilium	left	Calcium carbonate on lateral surface. Perinate - 1 year aprox. See 67.
V	1	C	69	rib fragments (2)	right	Two shaft fragments from two separate rib bones. Calcium carbonate on both anterior and posterior surfaces.
V	1	C	70	Unidentified fragment	Undetermined	Possibly skull or os coxae fragment. Calcium carbonate on all surfaces.
V	1	C	71a	Skull fragments	Undetermined	One parietal fragment with calcium carbonate on both surfaces. The other is a frontal fragment of the left orbital margin, which is rounded. Probable male.

abnormal, thick piece
with irregular
thinning. Pitting
forming on the
interior surface. Most
of the calcium
carbonate is on the
exterior with little on

V	C	C	71B	molar	Undetermined	the inside
V	1	C	72	Skull fragment	Undetermined	Unidentifiable fragment. Calcium carbonate on both surfaces.
V	1	C	73	Skull fragment	Undetermined	Calcium carbonate on all surfaces.
V						Calcium carbonate on most of the exterior with little on the interior surface.
C						Slight pitting on the interior surface (disease)

first molar present.
Heavy calcium
carbonate on all
surfaces.

V	1	C	76	Maxilla fragments		Both right incisors and the first left incisor is missing, other than that up to the first premolar is still in the socket. right lower first molar has a carry developing on the lingual surface. right Second first molar has a carry developing on the buccal side (center). left first molar has a huge chunk missing from lingual surface
V	1	C	77a	Mandible fragment	Undetermined	Thick mud covered by calcium carbonate on the interior surface, calcium carbonate on the exterior as well. Thinness and size

suggests young

 individual. Cranial suture clearly defined and had probably not fused yet.$\left.\begin{array}{cccccc}\hline & & & & \begin{array}{c}\text { Young child. Calcium } \\ \text { carbonate and mud on } \\ \text { the interior surface. } \\ \text { Light white circular } \\ \text { deposit on the } \\ \text { exterior, probably }\end{array} \\ \text { where the head was in } \\ \text { contact with the } \\ \text { ground. }\end{array}\right\}$

						erupted along with left canine and premolars. No absorption	
V	1	C	85	Femur fragments		Distal condyle fragments. It may be possible that one is left and one is right.	
V	1	C	86	Humerus fragment	Unknown	head only	38.83 mm head diameter
V	1	C	87	Cervical vertebra		C 2 , lamina missing, no significant lipping.	
V	1	C	88	Talus	left	Complete. Calcium carbonate on the plantar surface larger facet.	
V	1	C	89	rib fragments	Unknown	4 shaft fragments some taphonomic breakage	
V	1	C	90	rib	right	Middle rib	
V	1	C	91	Femur fragment	left	Greater trochanter broken off, head and neck absent. Relatively gracile. Calcium carbonate on the anterior surface.	
V	1	C	92	Sacrum fragments		S3-5 present and fused together. Coccyx is not present nor was it fused	

V	1	C	93	Femur fragment	left	fragment from the neck to below the greater trochanter. Head and trochanters are not yet fused, 9 or younger.	
V	1	C	94	Femur head fragment	Unknown	Only part of the head with the fovea capitis.	
V	1 1	C	95	Scapula fragment	right	Medial border of the scapula from the inferior part of the glenoid to most of the way to the apex.	
V	1	C	96	rib 1	left	Possibly from the same person as 81	
V	1	C	97	Ischium	right	Part of the acetabulum and most of the Ischial tuberosity.	
V	1	C	98	Medial Phalanx			
V	1	C	99	4th Metacarpal	left	Complete.	58.15 mm
V	1	C	100	5th Metacarpal	left	Complete	51.58 mm
V	1	C	101	4th Metatarsal	left	Head missing	
V	1	C	102	2 unidentified fragments.			
V	1	E	1	clavicle			
V	1	E	2	humerus			
V	1	E	3	parietal			
V	1	E	4	humerus			

V	1	E	5	Maxilla
V	1	E	6	Maxillae; nasals; etc.
V	1	E	7	tibia \& fragments
				crushed bone S.E.
V	1	E	8	corner
V	1	E	9	Crushed Bones
V	1	E	10	Crushed Bones
V	1	E	11	Crushed Bones
V	1	E	12	tibia
V	1	E	13	clavicle
V	1	E	14	rib (1st)
V	1	E	15	vertebra fragment
V	1	E	16	metacarpal (3rd)
V	1	E	17	tibia
V	1	E	18	tibia fragment
V	1	E	19	Humerus fragment
V	1	E	20	thoracic vertebra
V	1	E	21	lumbar vertebra
V	1	E	22	Iliac fragment
V	1	E	23	sternum
V	1	E	24	radius
V	1	E	25	clavicle
V	1	E	26	Thoracic vertebra
V	1	E	27	Crushed Bones
V	1	E	27	Fifth Metatarsal
V	1	E	27	Fifth Metatarsal
V	1	E	28	Thoracic Vertebra 10

V	1	E	29	clavicle
V	1	E	30	lumbar vertebra
V	1	E	31	rib fragment
V	1	E	32	Fourth metacarpal
V	1	E	33	Vertebra fragment
V	1	E	34	thoracic lumbar
V	1	E	35	Misc Bones (classified)
				Thoracic Vertebra
V	1	E	36	fragment
V	1	E	37	
V	1	E	38	
V	1	E	39	lumbar vertebra
V	1	E	40	lumbar vertebra
V	1	E	41	rib fragment
V	1	E	42	Fifth Metatarsal
V	1	E	43	Fourth Metatarsal
V	1	E	44	Third Metatarsal
V	1	E	45	Second metatarsal
V	1	E	46	Second Cuneiform
V	1	E	47	Navicular
V	1	E	48	Third Cuneiform
V	1	E	49	Cuboid
V	1	E	50	Parietal
V	1	E	51	tibia
V	1	E	52	lumbar vertebra
V	1	E	53	Proximal Phalanx

V	1	E	54	ulna
V	1	E	55	rib fragment
V	1	E	56	tibia
V	1	E	57	humerus
V	1	E	58	rib fragment
V	1	E	59	Calcaneus
V	1	E	60	Proximal Phalanx (Foot) Probably 2nd
V	1	E	61	Distal Phalanx 1
V	1	E	62	Proximal Phalanx
(Foot)				

V	1	E	77	long bone fragment
V	1	E	78	femur fragment
V	1	E	79	femur fragment
V	1	E	80	humerus fragment
V	1	E	81	humerus fragment
V	1	E	82	femur fragment
V	1	E	83	sacrum
V	1	E	84	metatarsal (2nd)
V	1	E	85	thoracic vertebra
				proximal phalanx
V	1	E	86	(2nd)(hand)
				proximal phalanx
V	1	E	87	(hand)
V	1	E	88	
V	1	E	89	humerus fragment
V	1	E	90	sacrum fragment
V	1	E	91	ulna
V	1	E	92 a	mandible
V	1	E	$92 B$	molar
V	1	E	92 C	molar
V	1	E	93	fibula
V	1	E	94	long bone fragment
V	1	E	95	Mandible fragments
V	1	E	96	scapula
V	1	E	97	rib fragment
V	1	E	98	mandible
V	1	E	99	radius ?

V	1	E	100	manubrium
V	1	E	101	Femur fragment
V	1	E	102	mandible
V	1	E	103	Cervical vertebra
V	1	E	104	rib 1
V	1	E	105	Vertebra
V	1	E	106	rib fragment
V	1	E	107	Thoracic vertebra 10
V	1	E	108	
V	1	E	109	radius
V	1	E	110	talus
V	1	E	111	rib fragment
V	1	E	112	fragment
V	1	E	113	Os Coxae
V	1	E	114	Parietal
V	1	E	115	Radius
V	1	E	116	Occipital
V	1	E	117	Fourth Metacarpal
V	1	E	118	Cervical vertebra fragments
V	1	E	119	Proximal Phalanx
V	1	E	120	Proximal Metatarsal
Probably 2nd				

V	1	E	124	Parietal	
V	1	E	125	Occipital fragment	
V	1	E	126	Occipital fragment	
V	1	E	127	Radius fragment	
V	1	E	128	Parietal	
V	1	E	129	Femur fragment	
V	1	E	130	Humerus fragment	
V	1	E	131	Vertebra	
V	1	E	132	Femur fragment	
V	1	E	133	Humerus fragment	
V	1	E	134	Radius fragment	
V	1	E	135	Femur fragment	
V	1	E	136	Femur	
V	1	E	137	Vertebra fragment	
V	1	E	138	Os Coxae fragment	
V	1	E	139	Parietal fragment	
V	1	E	140	Temporal	
V	1	E	141	Tibia fragment	
V	1	E	142	Humerus fragment	
V	1	E	143	Ulna fragment	
			Os Coxae fragment		
V	1	E	144	(probable)	
V	1	E	145	Tibia	
V	1	E	146	Femur fragment	
V	1	E	147	Long bone fragment	
V	1	E	148	Scapula	
V	1	E	149	Lumbar Vertebra 3	

V	1	E	150	
V	1	E	151	Os Coxae fragments
V	1	E	152	Thoracic vertebra
V	1	E	153	Thoracic vertebra
V	1	E	154	fragment
V	1	E	155	Vertebra
V	1	E	156	rib fragment
V	1	E	157	Parietal fragments
V	1	E	158	Femur fragment
V	1	E	159	Patella
V	1	E	160	
V	1	E	161	
V	1	E	162	Third metacarpal
V	1	E	163	Temporal
V	1	E	164	Frontal fragments
V	1	E	165	Scapula fragment
V	1	E	166	rib fragment
V	1	E	167	Radius
V	1	E	168	Os Coxae fragment
V	1	E	169	First metatarsal
V	1	E	170	Humerus fragment
V	1	E	171	Long bone fragment
V	1	E	172	Manubrium and Talus
V	1	E	173	Os Coxae
V	1	E	174	Humerus
V	1	E	175	Humerus
V	1	E	176	Ulna fragment

V	1	E	177	Femur fragment
V	1	E	178	Ulna fragment
V	1	E	179	Vertebra fragment
V	1	E	180	Maxilla
V	1	E	181	Parietal
V	1	E	182	Humerus fragment
V	1	E	183	Humerus fragment
V	1	E	184	Fibula fragment
V	1	E	185	Clavicle
V	1	E	186	Femur fragment
V	1	E	187	Femur fragment
V	1	E	188	Frontal
V	1	E	189	Tibia fragment
V	1	E	190	Femur fragment
V	1	E	191	ulna
V	1	E	192	humerus
V	1	E	193	Maxilla fragments
V	1	E	194	Ilium
V	1	E	195	clavicle
V	1	E	196	mandible
V	1	E	197	tibia
V	1	E	198	femur fragment
V	1	E	199	Talus
V	1	E	200	Femur fragment
V	1	E	201	Tibia
V	1	E	202	Scapula fragment
V	1	E	203	Vertebra fragment

V	1	E	204	rib fragments
V	1	E	205	Vertebra fragment
V	1	E	206	Humerus (probable)
				Tibia fragment
V	1	E	206	(probable)
V	1	E	207	rib fragment
V	1	E	208	Os Coxae
V	1	E	209	Mandible fragment
V	1	E	210	Femur fragment
V	1	E	211	Humerus fragment
V	1	E	212	Os Coxae fragment
V	1	E	213	Patella
V	1	E	214	Fifth Metatarsal
V	1	E	215	Fibula fragment
V	1	E	216	fragment
V	1	E	217	Pubic Symphysis
V	1	E	217	rib fragment
V	1	E	218	Tibia
V	1	E	219	Vertebra fragment
V	1	E	220	Tibia fragment
V	1	E	221	Tibia
V	1	E	222	Femur fragment
V	1	E	223	Tibia
V	1	E	224	Humerus fragment
V	1	E	225	Thoracic vertebra
V	1	E	226	Humerus fragment
V	1	E	227	Third metacarpal

V	1	E	228	Femur
V	1	E	229	Tibia
V	1	E	230	Humerus fragment
V	1	E	231	Occipital fragment
V	1	E	232	Vertebra fragment
V	1	E	233	Ischium
V	1	E	234	Tibia fragment
V	1	E	235	Fibula fragment
V	1	E	236	humerus fragment
V	1	E	237	Pubic Symphysis
V	1	E	238	Os Coxae fragments
V	1	E	239	Lumbar Vertebra
V	1	E	240	Vertebral fragments
V	1	E	241	Lumbar 5 vertebra
V fragment				
V	1	E	242	ilium
	1	E	243	Cervical vertebra 7
V	1	E	244	Clavicle fragment
V	1	E	245	Femur fragments
V	1	E	246	Humerus
V	1	E	247	Tibia fragment
V	1	E	248	Femur fragment
V	1	E	249	Femur fragment
V	1	E	250	Os Coxae fragments
V	1	E	251	Calcaneus
V	1	E	252	Calcaneus

V	1	E	253	Third Metatarsal
V	1	E	254	Proximal Phalanx (foot)
V	1	E	255	Lumbar Vertebra
V	1	E	256	Lumbar 3 vertebra
V	1	E	257	Tibia
V	1	E	258	Talus
V	1	E	259	Fourth metacarpal
V	1	E	259	Radius
V	1	E	260	Humerus
V	1	E	261	Ulna
V	1	E	262	Os Coxae fragment
V	1	E	263	Scapula fragment
V	1	E	264	Third metacarpal
V	1	E	265	Third Metatarsal
V	1	E	266	First metatarsal
V	1	E	267	Fifth Metatarsal
V	1	E	268	Third Metatarsal
V	1	E	269	Third Metatarsal
V	1	E	270	First Proximal Phalanx
V	1	E	271	foot
V	1	E	272	Talus
V	1	E	273	Tibia fragment
V	1	E	274	Fifth Metatarsal
V	1	E	275	Proximal Phalanx (foot)

V	1	E	276	Proximal Phalanx (foot)
V	1	E	277	Proximal Phalanx (foot)
V	1	E	278	Intermediate Phalanx (foot)
V	1	E	279	Distal Phalanx 1 (foot)
V	1	E	280	Proximal Phalanx (foot)
V	1	E	281	Humerus fragments
V	1	E	282	Cuboid
V	1	E	283	Thoracic Vertebra
V	1	E	284	Third Cuneiform
V	1	E	285	Second metatarsal
V	1	E	286	Fourth metatarsal
V	1	E	287	Ulna?
V	1	E	288	Radius fragment
V	1	E	289	Shaft fragment with
interosseous border				
V	1	E	290	Patella
V	1	E	291	Femur fragment
V	1	E	292	Humerus
V	1	E	292	Humerus
V	1	E	293	Third Metatarsal
V	1	E	294	rib fragments
V	1	E	296	incisor
V	1	E	297	incisor

V	1	E	298	Parietal
V	1	E	299	Mandible
V	1	E	300	Tibia fragment
V	1	E	301	Humerus
V	1	E	302	Humerus fragment
V	1	E	303	Radius
V	1	E	304	Clavicle
V	1	E	305	Humerus fragments
V	1	E	306	Humerus fragment
V	1	E	307	Tibia fragment
V	1	E	308	Humerus fragments
V	1	E	309	Humerus fragment
V	1	E	310	Femur fragment
V	1	E	311	Humerus
V	1	E	312	Femur
V	1	E	313	Femur fragment
V	1	E	314	Femur fragments
V	1	E	315	Humerus fragment
V	1	E	316	Femur fragment
V	1	E	317	Femur fragment
V	1	E	318	Mandible
V	1	E	319	Femur fragment
V	1	E	320	Manubrium
V	1	E	321	Humerus fragment
V	1	E	322	Ilium
V	1	E	323	Tibia fragment
V	1	E	324	Calcaneus

V	1	E	325	Tibia
V	1	E	326	Frontal
V	1	E	327	Maxilla fragments
V	1	E	328	Ilium
V	1	E	329	Humerus
V	1	E	330	rib
V	1	E	331	Femur fragment
V	1	E	332	Tibia fragment
V	1	E	333	Tibia
V	1	E	334	Tibia
V	1	E	335	Femur fragment
V	1	E	336	Sacrum
V	1	E	337	Ilium fragment
V	1	E	338	Femur fragments
V	1	E	339	Humerus fragments
V	1	E	340	Femur
V	1	E	341	Tibia fragments
V	1	E	342	Femur fragment
V	1	E	344	Tibia
V	1	E	345	Mandible
V	1	E	347	Humerus fragment
V	1	E	348	Radius
V	1	E	349	Mandible fragment
V	1	E	350	Mandible
V	1	E	351	Temporal fragment
V	1	E	352	3rd Metacarpal?
V	1	E	353	3rd Metacarpal

V	1	E	354	2nd Metacarpal	Possible left	Head absent, distal end deteriorated	
V	1	E	355	Proximal Phalanx		Probable Hand	68.6 mm
V	1	E	356	Proximal Phalanx			43.84 mm
V	1	E	357	5th metacarpal	left		60.68 mm
V	1	E	358	Metatarsal fragment	Undetermined	Head and part of shaft, may be metacarpal	
V	1	E	359	Proximal Phalanx			30.24 mm
V	1	E	360	Proximal Phalanx			28.58 mm
V	1	E	361	5th metacarpal	right		64.84 mm
V	1	E	362	Proximal Phalanx			26.39 mm
V	1	E	363	Proximal Phalanx			43.49 mm
V	1	E	364	4th Metatarsal	right		60.88 mm
V	1	E	365	Medial Phalanx			26.9 mm
V	1	E	366	5th Metatarsal	right		59.3 mm
V	1	E	367	1st Metatarsal	right		58.48 mm
V	1	E	368	3rd Metatarsal	right		61.89 mm
V	1	E	369	2nd Metatarsal	right		60.99 mm
V	1	E	370	Proximal Phalanx		probable foot	27.08 mm
V	1	E	371	Radius fragment	Probable left	Head and tuberosity	19.75 mm head diameter, 70.85 mm available length
V	1	E	372	Ulna fragment	right	Distal Fragment with part of the shaft	118.54 mm
V	1	E	373	Ulna fragment	right	Proximal fragment	69.05 mm
V	1	E	374	Talus	right		50.06 mm length

V	1	E	375	Calcaneus	right		68.72 mm length
V	1	E	376	Clavicle	right	Lateral fragment, slightly over 5 years	41.01 mm available
V	1	E	377	Ulna fragment	right	Proximal fragment with most of shaft , slightly over 5 years	85.15 mm available
V	1	E	378	Ulna	left	Complete, little over 5 years of age	111.89 mm
V	1	E	379	Radius	Probable right	Complete unfused, slightly over 5 years	122.63 mm
V	1	E	380	Fibula	?		
V	1	E	381	Fibula	?	One end slightly broken	
V	1	E	382	Tibia	left	Cortical layer is absent in many areas	
V	1	E	383	Tibia	right	Cortical layer is absent in many areas	
V	1	E	384	Proximal Femur head epiphysis			
V	1	E	385	Proximal Humerus epiphysis			
V	1	E	386	Femur	left	Slightly more than 5 years of age.	
V	1	E	387	9 Vertebra Bodies		Unfused	
V	1	E	388	Os Coxa	left		
V	1	E	389	Os Coxa	right		
V	1	E	390	Parietal	right	More adult, thicker	
V	1	E	391	Parietal		Juvenile	
V	1	E	392	Parietal		Juvenile	

V	1	E	393	Maxilla fragment	left	premolars and three molars present, post mortem loss of canine and incisors. Possible abscess over incisor.
V		E	394	Maxilla fragment	right	Two molars present, a molar in the process of eruption and an incisor in the process of eruption. ~ 4 years of age.
V	1	E	395	rib 1	left	Some blackening, calcium carbonate on the inferior surface
V	1	E	396	rib	left	Middle rib, some blackening
V	1	E	397	rib fragment	right	Shaft fragment with angle, some blackening
V	1	E	398	Probable 2nd metacarpal	right	Head is unfused, the proximal end is not fully formed, some fire blackening
V	1	E	399	Scapula fragment	left	Spine fragment, some fire blackening
V	1	E	400	Clavicle	left	Fire blackening, Probably five or so.
V	1	E	401	1st Cuneiform	right	Complete
V	1	E	402	Ischium	left	Child complete
V	1	E	403	rib	right	Child complete

V	1	E	404	Mandible fragment	left	Ramus fragment of an adult	
V	1	E	405	Mandible fragment	right	Ramus fragment of an adult	
V	1	E	406	Ulna fragment	Probable left	Distal Fragment with part of the shaft	
V	1	E	407	Navicular	right	Complete adult	
V	1	E	408	Scapula fragment	left	Glenoid and part of spine	Height 33.68 mm , width 25.57 mm
V	1	E	409	Cervical Vertebra		Young individual	
V	1	E	410	Mandible fragment	left	Ramus with left side, molars are erupted	
V	1	E	411	Vertebra fragment		Lamina fragment unfused of a young child, possible thoracic	
V	1	E	412	Vertebra fragment		Lamina fragment unfused of a young child, possible lumbar	
V	1	E	413	3rd Cuneiform	right	complete from an adult.	
V	1	E	414	Tibia fragment	left	Shaft fragment, gracile, probably a young individual, taphonomic cracking, calcium carbonate on the posterior surface.	176 mm available
V	1	E	415	Tibia fragment	left	Shaft fragment, more proximal shaft fragment, but	

						possibly the same as 414. Cut Marks located by the number	
V	1	E	416	Scapula fragment	left	Glenoid and part of the medial and superior border. Some fire blackening	glenoid height $33.45 \mathrm{~mm}, 23.15$ mm width
V	1	E	417	Temporal	right	mostly complete with zygomatic process	
V	1	E	418	Thoracic Vertebra		No lipping fusion incomplete, younger adult. Damage to the lamina, spine missing	
V	1	E	419	Thoracic Vertebra		No lipping fusion incomplete, younger adult.	
V	1	E	420	Manubrium		Complete, adult	
V	1	E	421	Tibia fragment	right	Proximal fragment, unfused epiphysis, cortical layer is abnormal, possibly 5 years of age.	
V	1	E	422	Proximal Phalanx		Complete, lytic on posterior proximal area near facet.	42.8 mm
V	1	E	423	Pubic		Under 8 years of age, probably closer to 5	
V	1	E	424	Humerus fragment	right	Distal fragment, minimal shaft. Probably close to 5	

years of age.

V	1	E	425	4th Metacarpal	right	Head absent, distal end deteriorated
V	1	E	426	Scapula fragment	Undetermined	Coracoid process only
V	1	E	427	Vertebra fragment		Lamina only, unfused, child, probably thoracic
V	1	E	428	Vertebra fragment		Lamina fragment, unfused, child probable lumbar
V		E	429	Occipital fragment		Somewhat thin, possibly a younger individual. Cortical layer on the exterior is somewhat damaged, interior cannot be completely viewed due to clay and calcium carbonate.
V	1	E	430	Occipital fragment		adult, lytic activity on the interior. Diploë is irregular and thickened in some area, sample was taken for porotic hyperostosis.

$\left.\begin{array}{cccccccc} & & & & & & & \begin{array}{c}\text { M1 10.23 labial- } \\ \text { lingual, 10.39 }\end{array} \\ \text { anterior-posterior } \\ \text { M2 9.9 lingual- } \\ \text { labial, 10.22mm } \\ \text { anterior-posterior }\end{array}\right]$

V	1	E	440	Talus	left	Complete, small possible young adult of juvenile	38.32 mm length
V	1	E	441	Clavicle	left	Damage to the medial and lateral edge, probably the same individual as 442 . adult	144mm available
V	1	E	442	Clavicle	right	Damage to medial and lateral edges, probably same individual as 441 . adult.	116.5 mm available
V	1	E	443	Talus	right	adult complete	53.17 mm length
V	1	E	444	Probable Humerus fragment	Undetermined	Juvenile. Proximal end with unfused epiphysis	
V	1	E	445	Vertebra fragment		Body fragment, probably a thoracic from an adult	
V	1	E	446	1st Proximal Metatarsal		adult complete. Lytic on superior proximal surface.	31.39 mm
V	1	E	447	2nd cuneiform	right	Complete adult	
V	1	E	448	Probable Ulna fragment	Undetermined	Calcium carbonate on surface. Child greater than 5, distal fragment with most of the shaft.	$\begin{gathered} 103.85 \mathrm{~mm} \\ \text { available } \end{gathered}$

V	1	E	449	Probable Ulna fragment	Undetermined	Child greater than 5 , distal fragment with most of the shaft.	77.73 mm
V	1	E	450	Proximal Phalanx		Foot, adult	26.8 mm
V	1	E	451	4th Metatarsal	left	Fire blackening on lateral surface, calcium carbonate on medial surface, adult	58.68 mm
V	1	E	452	3rd Metacarpal	left	complete, adult Calcium carbonate on the medial surface, some fire blackening	58.59 mm
V	1	E	453	3rd Metacarpal	right	Fire blackening adult complete, same individual as 452	61.46 mm
V	1	E	454	2nd Metacarpal	left	Light fire blackening, complete, adult	61.8 mm
V	1	E	455	3rd cuneiform	left	complete, adult, calcium carbonate on surface with larger facet	
V	1	E	456	Cranial fragment	Undetermined		
V	1	E	457	Cranial (anterior majority)		Part of the left frontal, maxillae, palatines, part of the sphenoid, and all the bones between. Resorption of molars, only premolars are present, one fell out post	

mortem. Possible
male.

V	1	E	458	Ulna fragment	right	```proximal fragment. Young individual with proximal epiphysis unfused```	
V	1	E	459	Radius fragment	right	shaft fragment with radial tuberosity and a majority of the shaft	
V	1	E	460	Ulna fragment	right	Proximal fragment with part of the shaft	
V	1	E	461	Humerus fragment	Undetermined	Shaft fragment, fire blackening, cut mark on shaft.	
V	1	E	462	Scapula fragment	right	Glenoid with base of acromion and spine.	35.01 mm glenoid height, 24.25 mm glenoid width
V	1	E	463	Vertebra fragment		lamina fragment with a bifurcated spine	
V	1	E	464	Calcaneus	right	Complete, adult, fire blackening,	75.71 mm length
V	1	E	465	1st Proximal Metatarsal		calcium carbonate on the superior surface. Fire blackening on superior surface	27.38 mm
V	1	E	466	Medial Phalanx		foot, adult	20 mm

V	1	E	467	Medial Phalanx		foot, adult	24.9 mm
V	1	E	468	Medial Phalanx		foot, adult, calcium carbonate on superior	26.43 mm
V	1	E	469	Medial Phalanx		hand, adult	29.51 mm
V	1	E	470	Medial Phalanx?		hand, adult, may be proximal 1st.	26.74 mm
V	1	E	471	Medial Phalanx		hand, adult, fire blackened, calcium carbonate on posterior surface	
V	1	E	472	Pubis	left	child complete, fire blackened, little calcium carbonate on the interior superior surface	
V	1	E	473	Pubis	right	child, complete, smaller than 472 , calcium carbonate on the anterior surface.	
V	1	E	474	Fibula fragment	Probable right	epiphysis line visible but fused.	
V	1	E	475	5th metacarpal fragment	left	Proximal fragment, lytic around proximal facet	
V	1	E	476	Navicular	right	complete adult, fire blackened	
V	1	E	477	Navicular	right	complete, adult fire blackened, lytic	
V	1	E	478	3rd cuneiform	right	Complete, adult, fire blackening,	

V	1	E	479	Talus	right	complete adult, fire blackened	49.02 mm long
V	1	E	481	metacarpal fragment		head fragment, extremely lytic, possibly arthritic	
V	1	E	480	Femur fragment	left	distal fragment consisting of the condyles, some lytic activity on the lateral condyle	
V	1	E	482	Femur fragment	left	distal fragment consisting of condyles and some of the shaft, larger than 480, vascularization of the anterior surface around the popliteal surface.	
V	1	E	483	rib fragment	left	vertebral and shaft fragment, child rib, mid area, some fire blackening	
V	1	E	484	rib fragment	left	vertebral fragment, fire blackening, calcium carbonate at the interior surface near the vertebral end.	
V	1	E	485	Radius fragment	right	Calcium carbonate on the posterior surface, some fire blackening	

Calcium carbonate on

V	1	E	486	Radius fragment	Undetermined	some fire blackening	
V	1	E	487	Ulna fragment	Probably left	Fire blackening	
V	1	E	488	Ulna fragment	Probably right	Fire blackening, cortical layer is disturbed.	
V	1	E	489	1st rib	right	child, fire blackening, calcium carbonate on the inferior surface near the vertebral end	
V	1	E	490	rib fragment	Probable right	Shaft fragment, fire blackening, adult, probably a third or fourth rib.	
V	1	E	491	rib fragment	right	Lower rib, probably 11 or 12	
V	1	E	492	rib fragment	right	Child, most of the rib, fire blackened, probably rib 4-6	
V	1	E	493	rib fragment	Undetermined	Shaft fragment, slight staining, adult middle rib	
V	1	E	494	Vertebra fragment		spinous process	
V	1	E	495	Temporal fragment	left	Petrous portion with mastoid, large mastoid, possible male.	
V	1	E	496	Femur fragment	right	Proximal fragment, with head and neck,	38.36 mm head diameter

trochanters absent

V	1	E	497	metacarpal fragment	Undetermined	distal fragment of head and part of shaft	
V	1	E	498	Tibia fragment	left	Distal fragment, fire blackening, adult	
V	1	E	499	Navicular	left	adult, surface with multiple faceted facet is badly damaged, fire blackened	
V	1	E	500	Vertebra fragment		transverse process of an adult, probably from a sacrum	
V	1	E	501	Medial Phalanx	Undetermined	adult foot, fire blackened	25.85 mm
V	1	E	502	Ischium fragment	Undetermined	possible child part of the lunate surface is intact	
V	1	E	503	Cranial fragment		pin prick porosity on exterior, possible porotic hyperostosis, adult, fire blackening	
V	1	E	504	Cranial fragment		Probable child based on thinness, calcium carbonate on the exterior	
V	1	E	505	Temporal fragment	left	Petrous portion with mastoid, possible female?, fire blackened	

V

V	1	E	515	Patella	right	Complete adult,	38.11 mm length
V	1	E	516	Patella	left	Medial side is damaged, adult, fire blackened	34.09 mm
V	1	E	517	Patella	right	adult, complete, fire blackened, some lytic activity on proximal and distal surfaces	34.36 mm
V	1	E	518	Patella	right	adult, fire blackened, some lytic activity on the distal end.	34.51 mm
V	1	E	519	Patella	right	adult, fire blackened, some damage on the proximal and distal end.	39.96 mm length
V	1	E	520	Humerus fragment	right	Child, distal end, epiphysis not fused	estimated distal width 32.71 mm
V	1	E	521	Ulna fragment	right	Child, epiphysis unfused, proximal fragment, 1.5-5 years of age, probably closer to 3 years.	
V	1	E	522	Radius fragment	right	adult, distal and shaft fragment, taphonomic cracking, cortical destruction at distal end, very slight fire blackening at distal end	97.22 mm available

V	1	E	523	Radius fragment	Undetermined	Shaft fragment, covered completely in calcium carbonate, taphonomic cracking	
V	1	E	524	rib fragment	left	Child, shaft with angle, fire blackening, middle rib.	
V	1	E	525	Radius fragment	Undetermined	Proximal head fragment, adult	
V	1	E	526	Vertebra fragment		child, body not present because it is not fused, fire blackened, calcium carbonate on the posterior and anterior of the lamina, lower lumbar most likely.	
V	1	E	527	2nd Metatarsal	left	adult, calcium carbonate on the shaft, fire blackening	67.73 mm
V	1	E	528	rib fragment	left	vertebral end fragment, adult, fire blackening	
V	1	E	529	Vertebra fragment		Child, body epiphysis unfused and body is undulated, fire blackening, left pedicle and superior articular facet present	

V	1	E	530	Tibia fragment	left	Distal fragment, adult, slight vascularization and some cortical damage	
V	1	E	531	Thoracic Vertebra		Only the left transverse process and spine are damaged, line not visible on the epiphysis, lytic cavities on the body, higher thoracic vertebra, only one facet on the body	
V		E	532	Thoracic Vertebra		left transverse process and spine damaged, epiphysis line visible, lytic body, fire blackening, calcium carbonate on posterior	
V	1	E	533	Scapula fragment	right	Glenoid with coracoid and part of the lateral border, calcium carbonate on anterior and posterior, fire blackening, adult,	$\begin{gathered} \text { glenoid height } \\ 31.50 \text {, width } \\ 22.11 \\ \hline \end{gathered}$

V	1	E	542	Manubrium		Damage to all edges, fire blackening, calcium carbonate on anterior, adult	
V	1	E	543	Thoracic Vertebra		damage to the spine and transverse processes, middle thoracic region, demi facets are small	
V	1	E	544	Calcaneus	left	Child, covered in calcium carbonate, unfused epiphyses, 23 years of age	34.7 mm length
V	1	E	545	Thoracic Vertebra		damage throughout, fire blackening, adult, lower probably 11th	
V	1	E	546	Vertebra fragment		Child, body unfused, based on size probably lumbar or sacrum	
V	1	E	547	Vertebra fragment		Child, 546 fits well under it, lumbar probably 5, fused pedicle, damage to right transverse process	
V	1	E	548	Cervical Vertebra fragment		Child, cervical, unfused lamina and pedicle	

adult, damage to the transverse process, higher up due to positioning of the superior articular facet.
Proximal fragment, fire blackened, mud on posterior could not

V	1	E	550	Tibia fragment	Probable right	
V	1	E	551	Lumbar Vertebra	right	Young child, possible lumbar of thoracic. Pedicle unfused to body, lamina is not fused to the other lamina, fire blackened
V	1	E	552	Ilium	right	Young child
V	1	E	553	Scapula fragment	Probable left	Lateral border, calcium carbonate on the anterior surface
V	1	E	554	Parietal fragment	Undetermined	Child, calcium carbonate and mud on the interior prevent siding, slight fire blackening
V	1	E	555	Distal phalanx	possible left	1st phalanx, adult, foot
V	1	E	556	Frontal fragment	right	adult, probably belongs to 457 face, possible male due to

						rounding of the margin.	
V	1	E	557	Temporal fragment	right	Petrous portion, relatively small mastoid	
V	1	E	558	Vertebra fragment		adult, lytic body, Probable thoracic, but no demi facets	
V	1	E	559	Cervical Vertebra fragment	left portion	Lamina and facets of an adult 1st cervical	
V	1	E	560	Sacral Vertebra		Child, probably lower sacral.	
V	1	E	561	Metacarpal?		Child Metacarpal, unfused head, possibly the 5th	
V	1	E	562	Tibia fragment	right	Distal adult	
V	1	E	563	Humerus fragment	Undetermined	Child proximal fragment, unfused epiphysis.	diameter at epiphysis is 30.02 mm
V	1	E	564	Pelvis fragment	right	Ilium, acetabulum, ischium	acetabulum rim diameter 49.89
V	1	E	565	Sacrum		Complete adult, short broad, lytic, mud covering the anterior surface	
V	1	E	566	Vertebra fragment		Child, lamina and transverse processes with pedicle, but no body, probably thoracic	

V

V	1	E	573	Vertebra fragment		Epiphysis line visible but fused, possible Schmorl's node, lower cervical or upper thoracic	
V	1	E	574	Ischium	right	Young child, unfused	
V	1	E	575	Calcaneus	right	adult complete fire blackening, cortical layer is slightly worn away in some areas	65.81 mm length
V	1	E	576	2nd Cuneiform	left	adult, complete, slight fire blackening	
V	1	E	577	Intermediate Phalanx		Foot, adult, complete, 4th or 5th, fire blackening, and calcium carbonate on the posterior surface.	
V	1	E	578	Intermediate Phalanx		Foot adult, complete, 2nd or 3rd, fire blackening, and calcium carbonate on the posterior surface	
V	1	E	579	Temporal fragment	left	Petrous portion, small mastoid, possible female	
V	1	E	580	1st proximal Metatarsal?		Head is unfused, child, fore blackened	
V	1	E	581	Cranial fragment		Fire blackening, uneven diploë	

Inferior articular facet, spine, adult, possible lumbar Child, probably 1 newborn
Body, line of fusion between the body and the pedicle is visible but fused, taphonomic damage to the lamina. Demi facets visible adult, complete, foot, fire blackened, calcium carbonate on the plantar surface molars and premolars erupted and lost post

V	1	E	586	Mandible fragment	right	mortem	
V	1	E	587	Femur fragment	Probable right	Medial distal condyle of an adult, mud could not be removed easily	
V	1	E	588	Radius fragment	Undetermined	Head only, adult	19.86 mm head diameter
V	1	E	589	Epiphysis	Undetermined	Probable femur epiphysis	
V	1	E	590	1st cuneiform	right	adult, complete, fire blackening	
V	1	E	591	Medial Phalanx		adult, foot, complete,	
fire blackening, and							

calcium carbonate on all surfaces.

V	1	E	592	Thoracic Vertebra	Relatively complete, full facet on top of body (lower),	
V	1	E	593	Lumbar Vertebra	taphonomic breakage to body, transverse processes broken	
V	1	E	594	Lumbar Vertebra	child, body epiphysis unfused	
V	1	E	595	Thoracic Vertebra	adult, fire blackening, body epiphysis line visible, inferior body destroyed	
V	1	E	596	Thoracic Vertebra fragment	adult, epiphysis line still visible, calcium carbonate on the anterior body, body fragment	
V	1	E	597	Vertebra fragment	Body with pedicle and part of transverse process, child.	
V	1	E	598	Calcaneus fragment	Proximal fragment	
V	1	E	599	Cervical Vertebra fragment	C2, adult, fragment consists of the dens and the superior articular facets	
V	1	E	600	Epiphysis	Child, distal femur?	
V	1	E	601	Femur epiphysis	Child, head epiphysis	$\begin{gathered} 26.65 \text { head } \\ \text { diameter } \end{gathered}$

V	1	E	602	Vertebra fragment		Lamina of probably a sacral vertebra, child, spine is bifurcated, some calcium carbonate on the articular facets	
V	1	E	603	Tibia Epiphysis	right	Proximal epiphysis	29.56 mm width
V	1	E	604	Scapula fragment		coracoid of an adult	
V	1	E	605	Vertebra fragment			
V	1	E	606	fragment		Calcium carbonate and fire blackened	
V	1	E	607	Vertebra fragment		Spinous process of an adult lumbar	
V	1	E	608	Vertebra fragment		Body of a child, not yet fused to the pedicle, fire blackened with calcium carbonate	
V	1	E	609	Vertebra fragment		transverse process of an adult	
V	1	E	610	Cervical Vertebra fragment		transverse foramen and articular facet present	
V	1	E	611	Cervical Vertebra fragment		Child, lamina fused, right pedicle is not fused to the body	
V	1	E	612	Vertebra fragment		spinous process	
V	1	E	613	Radius Epiphysis		Head epiphysis	15.26 mm
V	1	E	614	Medial Phalanx		Child, unfused head and proximal portion,	

probably hand

V	1	E	615	Vertebra fragment		Fire blackened
V	1	E	616	Skull fragment		
V	1	E	617	Shaft fragment		
V	1	E	618	Sphenoid fragment		adult, part of the wings
V	1	E	619	Possible Triquetral	Undetermined	Fire blackened
V	1	E	620	fragment		
V	1	E	621	Lumbar vertebra		adult, severe arthritis with lipping and syndesmophyte formation on the inferior margin, lytic body.
V	1	E	622	Thoracic Vertebra fragment		Body fragment with fire blackening
V	1	E	623	21 fragments		
V	1	E	624	6 cranial fragment with calcium carbonate		
V	1	E	625	Thoracic Vertebra		adult, Middle thoracic, demi facets are roughly the same size
V	1	E	626	Temporal fragment	right	adult, damage to the mastoid process, petrous process

V	1	E	627	Cervical Vertebra fragment		Body, adult
V	1	E	628	Proximal Phalanx		adult, foot
V	1	E	629	Proximal Phalanx		adult, foot
V	1	E	630	Lumbar Vertebra		
V	1	E	631	rib fragment		Child, sternal fragment
V	1	E	632	rib fragment		Vertebral end, possible child or young adult
V	1	E	633	Thoracic Vertebra fragment		Lamina and left transverse process fragment
V	1	E	634	Temporal fragment	left	Mud and calcium carbonate on interior and exterior
V	1	E	635	1st Cuneiform	left	Taphonomic damage, adult
V	1	E	636	Vertebra fragment	anterior portion	Possible lumbar
V	1	E	637	rib fragment	Possible right	adult, lower 6, fire blackened
V	1	E	638	Thoracic Vertebra fragment		Child, lamina, articular facets, and pedicle, not yet fused to the body
V	1	E	639	Thoracic Vertebra fragment		Child, lamina, articular facets, and pedicle, not yet fused to the body

V	1	E	640	Tibia fragment	Possible right	Proximal fragment, unfused, fragmentary
V	1	E	641	Vertebra		right transverse process is broken, some damage to the spine and body, adult, lower thoracic vertebra
V	1	E	642	Cranial fragment		Too much mud that could not be removed from the interior prevents further siding
V	1	E	643	Maxilla fragment		Small fragment with only two intact root sockets, possible first premolar in socket, the cusps are covered by calcium carbonate
V	1	E	644	Temporal fragment	right	Mud and calcium carbonate on interior and exterior
V	1	E	645	Radius fragment	left	Distal fragment, adult
V	1	E	646	rib fragment		Shaft fragment, adult, upper 6
V	1	E	647	Thoracic Vertebra fragment		Lamina, transverse process, and articular facet fragment, adult
V	1	E	648	Cervical Vertebra fragment		adult, body fragment with right articular

facet, lower cervical

					adult, Middle thoracic, demi facets are roughly the same
V	1	E	649	Thoracic Vertebra	adult
V	1	E	650	Parietal fragment	adult, calcium carbonate and mud prevents further analysis
V	1	E	651	Occipital/Parietal fragment	rib fragment

			with a chopping trauma. Near the cut mark there is evidence of healing, possibly of a lesion from blunt force trauma		
V	E			adult, calcium carbonate and mud prevents further analysis	
V	1	E	657	Clavicle fragment	Parietal fragment

V	1	E	663	Lumbar Vertebra fragment		Body fragment, slight syndesmophyte formation, arthritis	
V	1	E	664	Probable Humerus fragment		Head fragment	
V	1	E	665	Tibia fragment	right	Proximal fragment, perinate	
V	1	G	1	probable humerus	Undeterminable	Very badly deteriorated. Midsection of shaft.	11.62 cm
V	1	G	2	tibia	Undeterminable	Badly deteriorated. Midsection of shaft.	$\begin{gathered} 85.28 \mathrm{~mm} \\ \text { (available length) } \end{gathered}$
V	1	G	3	femur	left	Very badly deteriorated. Primarily in 6 fragments (proximal end, long shaft, small shaft fragment. distal end, and the condyles are each a fragment). appears to be an adult. Estimated shaft length 23 cm . Estimated overall length 38 cm .	23 cm (est. shaft), 38 cm (est. overall), 44.12 mm head diameter.
V	1	G	4	humerus	left	Both the proximal and distal ends are deteriorated. Large deltoid tuberosity. Multiple post mortem	$\begin{gathered} 23.8 \mathrm{~cm} \\ \text { (available) } \end{gathered}$

factures down the shaft.

V	1	G	5	long bone fragment	Undeterminable	Possible humerus Badly deteriorate, post mortem damage. Rodent gnaw marks.	10 cm
V	1	G	6	Thoracic vertebra (probably age 2-7)		Spinous process and left transverse process absent. V-01 g-0048 discovered between the inferior articular facets and the body. Epiphyseal union is stage $1 / 2$	19.61 mm body height
V	1	G	7	femur fragment	right (probable)	Multiple fragments (including: shaft, head, and 6 other fragments). The bone is slightly deformed due to post mortem pressure and moisture due to mud. Shaft length approximately 26 cm .	26 cm shaft aprox., 46.65 mm head diameter.
V	1	G	8	Lumbar vertebra (1 or 2)		Transverse processes absent. Epiphyseal union at stage 1	23.24 mm body height

V	1	G	9	radius	right	Distal and proximal ends deteriorated. Radial tuberosity is partly present. Shaft is missing about half of the posterior surface.	21 cm available
V	1	G	10	Tibia	left	Slightly deformed with post mortem fractures running down the length of the shaft. Distal and proximal ends broken. Distal fragment and six shaft fragments were recovered and are included with this number. Shaft fragment measures 21.9 cm . Distal fragment 4.8 cm . fragments range from 3 to 6 cm in length.	See notes
V	1	G	11	Os Coxae fragments		Five large fragments and numerous small ones, porosity stagel, acetabular fossa stage 1 , rim stage 2	

V	1	G	12	Lumbar vertebra (probably age 3)		The right superior facet is broken but present. Spinous process, and the transverse processes are absent. Body is in excellent condition. Epiphyseal union at stage 2	27.74 mm body height
V	1	G	13	ulna	right	Distal end absent. Most mortem fractures caused by weight and wetness of mud.	$\begin{gathered} 18.1 \mathrm{~cm} \\ \text { (available) } \end{gathered}$
V	1	G	14	calcaneus	left	anterior facet and most of the anterior end is absent. Dorsal superior edge is badly deteriorated.	77.64 mm (available)
V	1	G	15	metacarpal	(4th)	Proximal medial end is damaged.	67.61 mm
V	1	G	16	fragments		Misc fragments, including: a few skull fragments, shaft fragments, a child's distal humerus fragment (right probable male)	

V	1	G	17	fragments	Undetermined	Misc small fragments that are unidentifiable, unwashed due to brittle nature.	
V	1	G	18	long bone	Undeterminable	Undeterminable shaft fragment.	13 cm
V	1	G	19	Os coxa	right (probable)	fragment of the greater sciatic notch region, narrow notch	
V	1	G	20	Lunate	right	V-01g-0046 is probably the pair to this one. Excellent condition.	35.22 mm
V	1	G	21	long bone fragment	Undeterminable	Shaft fragment with an interosseous border	$\begin{gathered} 62.3 \mathrm{~mm} \\ \text { (available) } \\ \hline \end{gathered}$
V	1	G	22	molar/1st lower	left	Cusps in excellent condition.	
V	1	G	23	Long bone fragments		Mainly shaft fragments, one fragment has an interosseous border and is either from an ulna or radius.	
V	1	G	24	fragments	Undetermined	Unidentifiable 3 fragments	
V	1	G	25	Vertebra		Body fragment, probably thoracic of cervical.	17.49 mm body height

V	1	G	26	fragments	Undetermined	Unidentifiable 12 frags	
V	1	G	27	missing			
V		G	28	Scapula fragment	right	fragment is of the infraspinous fossa with the lateral border, and a few centimeters of the supraspinous fossa.	
V	1	G	29	ulna	left	Distal end is absent. Post mortem fractures down the length of the shaft due to pressure and wetness of mud. Possibly the same person as V -01g-0043.	$\begin{gathered} 12.8 \mathrm{~cm} \\ \text { (available) } \end{gathered}$
V	1	G	30	fragments		Unidentifiable 5 fragments	
V	1	G	31	fragments	(Will be in two locations)	Mostly unidentifiable fragments. a fragment of a right temporal, and a molar which has been placed with other teeth.	
V	1	G	32	humerus	left	Distal fragment, trochlear outline spooled, symmetrical trochlear, olecranon fossa oval, medial	$\begin{gathered} 99.65 \mathrm{~cm} \\ \text { (available) } \end{gathered}$

epicondyle angled.

V	1	G	33	scapula	left	fragment with only the glenoid cavity and 5 cm of the lateral border.	33.88 mm glenoid height
V	1	G	34	rib fragments	Undetermined	10 count, Eight of the fragments are shaft fragments ranging from 3.36 cm to 7.4 cm in length. Two of the smaller fragments appear to possibly be vertebral ends	See notes
V	1	G	35	humerus fragments	right	Two fragments (a distal and proximal end) broken below midshaft. The two bones do not mend perfectly and will probably not be consolidated back together. The distal end is damaged below the medial supracondylar ridge. Trochlea is absent.	30.4 cm (aprox.), 38.40 mm head diameter
V	1	G	36	skull			

$\left.\begin{array}{lllllll} & & & \begin{array}{c}\text { fragment of a right } \\ \text { rib, scapula fragment } \\ \text { of the spine, and a } \\ \text { child left parietal with } \\ \text { other unidentifiable }\end{array} \\ \text { V fragments. }\end{array}\right]$

V	1	G	40	ulna	left (probable)	The proximal end is absent. There appears to be a deformity at the distal end. The bone curves about 3.5 cm from the styloid process. Epiphysis fused	$\begin{gathered} 17.3 \mathrm{~cm} \\ \text { (available) } \end{gathered}$
V	1	G	41	fragments	Undetermined	Misc small fragments that are unidentifiable, unwashed due to brittle nature.	
V	1	G	42	long bone fragment		Midsection shaft fragment. Post mortem damage.	$\begin{gathered} 14.6 \\ \mathrm{~cm} \text { (available) } \\ \hline \end{gathered}$
V	1	G	43	ulna fragment	right	Distal end and olecranon are absent. Post mortem fractures down the length of the shaft due to pressure and wetness of mud. Possibly the same person as V -01g-0029.	$\begin{gathered} 9.13 \mathrm{~cm} \\ \text { (available) } \end{gathered}$
V	1	G	44	?			

Two fragments of a mandible. They were together when discovered but fractured below the right canine when excavated. right condyle neck and head are also broken. Four incisors and two canines are absent but the sockets are not reabsorbed. The socket for the left third molar is open, but no tooth visible No such socket. on
the right. This indicates eruption was to occur soon.

V	1	G	45	mandible		Chin broad	
V	1	G	46	navicular	left	excellent condition	42.48 mm
						Misc small fragments	
V	1	G	47	fragments	Undetermined	that are unidentifiable	
V	1	G	48	First metatarsal fragment		distal fragment	
V	1	G	49	molar			

V	2	1	humerus	right	broken shaft fragments (2) mid shaft fragment possibly from excavation, head fragments and smaller fragments. Slight calcium carbonate on the lateral mid section. Olecranon fossa more oval, possible female	shaft approximately 22 cm, distal fragment aprox. 14 cm , proximal aprox. 11 cm
V	2	2	tibia	right	two fragments one shaft and the other proximal. Calcium carbonate present on the medial and posterior surfaces of the proximal end and the shaft fragment. The proximal condyles are badly deteriorated.	fragment 11 cm , proximal tibia 11.3 cm
V	2	3	calcaneus	right	dorsal posterior surface is badly deteriorated, with only slight damage to superior surface.	6.9 cm in length

V	2	4	parietal	right	parietal fragment, wormian sutures, irregular holes (not all the way through?) calcium carbonate on the exterior surface. Probable adult.	aprox. $9 \times 7 \mathrm{~cm}$ fragment
V	2	5	parietal	undetermined	calcium carbonate is thick on internal and exterior surfaces, makes the meningeal grooves difficult to use for siding.	aprox. $7 \times 6 \mathrm{~cm}$ fragment
V	2	6	thoracic vertebrae		body fragment probably T 5-9	1.87 cm body height
V	2	7	maxilla	right	has two molars and first molar still in the socket. all sides covered in calcium carbonate.	
V	2	8	humerus	left	5 fragment some calcium carbonate.	largest distal fragment is 11.6 cm others range from 3 to 7 cm
V	2	9	rib fragment	undetermined	sternal fragment is badly destroyed and not useful for aging	3.27 cm
V	2	10	phalanx (foot)	left	excellent condition	3.72 cm

calcium carbonate on both surfaces, shaft fragment, calcium
carbonate on anterior surface indicates anterior side was against the ground

V	2	11	rib fragment	undetermined	(face down)	4.6 cm
V	2	12	skull fragments			
V	2	13	tibia fragment	left	proximal fragment, calcium carbonate on posterior surface and tibial tuberosity. approximately 5 years of age or slightly older based on size. Hole on lateral surface.	
V	2	14	femur fragments	right	three shaft fragments and the distal condlyes. Heavy calcium carbonate on all surfaces. adult	
V	2	15	humerus fragments	right	shaft fragments and a distal fragment. Olecranon fossa indicates possible female. Calcium carbonate on all surfaces but thicker deposit on the	

anterior surface.

V	2	16	humerus fragment	undetermined	shaft fragment with calcium carbonate on all surfaces. Probable juvenile due to circumference.
V	2	17	tibia fragments	left	shaft fragments, the larger one has the beginning of the flaring of the proximal end. Calcium carbonate is slightly on the anterior surface with more on the posterior side.
V	2	18	occipital fragments		three larger pieces and numerous small ones, heavy calcium carbonate deposits on interior and posterior surfaces. Some parietal present. Sutures are not fully fused, there may be some skull modification pre or

> post mortem preventing the ability
> to piece the parts together.
$\left.\begin{array}{cccc}\hline & & \begin{array}{c}\text { shaft fragment, } \\ \text { longitudinal cracking, } \\ \text { base of trochanters } \\ \text { and crest present, }\end{array} \\ \text { calcium carbonate on } \\ \text { posterior surface with } \\ \text { some dripping onto } \\ \text { the anterior surface. } \\ \text { Probable adult. Same } \\ \text { individual as 20. }\end{array}\right]$

V	2	21	ulna fragment	left	proximal fragment, calcium carbonate on the medial and anterior surfaces. Olecranon badly damaged, and appears to not have been completely fused. Over 5 years of age. Has 007 pink flagging tag with it.
V	2	22	tibia fragments	left	mostly shaft fragments, most of the calcium carbonate is on the posterior surface, with some also on the medial surface.
V	2	23	femur fragment	left	distal fragment consisting of the condlyes and the popliteal surface. Cemented in a chunk of calcium carbonate with posterior surface facing up.

V	2	24	tibia fragments	right	distal and most of the shaft fragments, longitudinal cracking. Calcium carbonate mostly on medial surface with some on anterior and posterior. Has pink tagging tape that reads 015	
V	2	25	tibia fragments	undetermined	shaft fragments, one has a heavy deposit of calcium carbonate/cave formation on the posterior side. The other fragment is badly deteriorated and crushed on one side.	
V	2	25	calcaneus	right	not yet fused	
V	2	10	Cervical Vertebra		possible child	$\begin{gathered} 1.14 \mathrm{~cm} \text { body } \\ \text { height } \end{gathered}$
V	2	9	Femur fragment		Proximal fragment of the head area with an unfused epiphysis, about 6 years of age.	
V	2	22	fibula?		shaft fragment. about 1 year?	
V	2	3	Fifth metacarpal	right	Proximal fragment	51.76 mm available length

V	2	18	fragments		that mend. Either the ulna or radius	
V	2	26	fragments		8 unidentifiable fragments	
V	2	5	Intermediate Phalanx (hand)			28.25 mm long
V	2	6	Intermediate Phalanx \qquad			24.22 mm long
V	2	11	Intermediate Phalanx (hand)		fragment proximal end	23.29 mm
V	2	24	mandible fragment?		head?	
V	2	14	Metacarpal	?	Both ends deteriorated	
V	2	27	molar and two pre molars		in DNA box	
V	2	12	Navicular (foot)	right	Slightly deteriorated	
V	2	8	Proximal epiphysis		approximately 6 years of age	4.46 cm wide, 1.1 cm tall
V	2	4	Proximal phalanx (hand)			46.3 mm long
V	2	7	Proximal phalanx (hand)		distal fragment	33.41 mm long
V	2	21	Radius fragment	right	proximal fragment between 1 and 6 years of age	
V	2	20	rib fragment	left	Possibly rib 2 or 3, child	
V	2	13	Second Cuneiform	left		

V	2	1	Third Metacarpal	right		68.66 mm
V	2	16	Third Metacarpal	left	proximal fragment	5.28 cm
V	2	17	Third Metatarsal?	right?	proximal fragment	5.11 cm
V	2				Tibia fragment	right?

				carbonate on the dorsal surface of the distal end and onto the medial side.		
V	2	58	Fourth Metatarsal	left	abnormal bone growth on the lateral/posterior area. Calcium carbonate on the proximal area (light). Some damage to the distal head.	7.74 cm
V	2	59	Tibia	left	Proximal fragment. 34 years of age. Shaft fragment with proximal epiphysis unfused. Possible cut marks on the posterior surface	7.44 cm long fragment. 1.38 cm width at proximal epiphysis
V	2	60	Proximal phalanx (hand)	undetermined	Probably 5th phalanx, calcium carbonate on the dorsal proximal surface.	3.62 cm
V	2	61	cranial fragments	undetermined	One is a parietal and the other cannot be identified. Calcium carbonate on interior and outer surfaces. More calcium carbonate is on the exterior of the parietal	

and more one the interior of the undetermined fragment.

V	2	65	Teeth		one molar, one premolar	Not Photographed
V	3	1	cervical vertebra		probably 4 or 5, only one inferior facet is visible	
V	3	2	intermediate phalanx (foot)	undetermined	irregular dorsal side	1.97 cm
V	3	3	proximal first phalanx (right)	undeterminable	juvenile or child	$\begin{gathered} 2.1 \mathrm{~cm} \text { long, } 0.9 \\ \mathrm{~cm} \text { wide } \\ \hline \end{gathered}$
V	3	4	tibia fragment	left	shaft fragment, calcium carbonate on medial surface, anterior surface, most of posterior surface, and part of the lateral surface. Juvenile	
V	3	5	femur fragment	left	all of the shaft and part of the proximal end, calcium carbonate heavily deposited on the posterior surface. Probable juvenile or teen.	
V	3	6	scapula fragment	left	inferior angle	
V	3	7	shaft fragments	undeterminable	over 15 fragments	
V	3	8	femur fragment	undetermined	Femoral head fragment, badly deteriorated	

$\left.\begin{array}{cccccc} & & \begin{array}{c}\text { Shaft fragment with } \\ \text { part of the greater } \\ \text { trochanter. 6-10 years } \\ \text { of age due to size, }\end{array} \\ \text { calcium carbonate on } \\ \text { the anterior surface. }\end{array}\right]$

V	4	2	thoracic vertebra		mid thoracic vertebra. Less than 6 years of age, body fused, but line is still visible. Some damage to body, spinous process broken.
V	4	3	sacral vertebra, first		part of the right ala is present, majority is in horrible condition.
V	4	4	calcaneus	left	posterior and dorsal surface badly deteriorated
V	4	5	femur fragment	right	distal fragment with only the condyles and part of the popliteal surface, anterior surface badly deteriorated.
V	4	6	shaft fragments		10 shaft fragments, insect activity on half. Some insect holes are bored all the way through.
V	4	7	humerus fragment	indeterminable	shaft fragment, badly deteriorated, irregular discoloration
V	4	8	tibia fragment	undeterminable	shaft fragment, nutrient foramen

V	4	9	rib fragment	undeterminable	shaft fragment, interior surface has two scratches that are too small to be rodent.
V	4	10	radius fragment	probable right	over 5 years of age, proximal fragment
V	4	11	talus fragment	right	distal end is badly deteriorated and the plantar side
V	4	12	scapula fragment	left	lateral fragment with part of the base for the scapular spine, acromion, glenoid fossa, and coracoid absent.
V	4	13	rib fragments undeterminable		three shaft fragments
V	4	14	shaft fragments	undeterminable	over 20 bone fragments.
V	4	15	tibia fragment	right?	shaft fragment, calcium carbonate on medial and posterior surface, cracking at the distal portion of the shaft fragment, small faunal bone fused to the calcium carbonate (probable

$\left.\begin{array}{ccccc}\hline & & & \begin{array}{c}\text { two distal fragments, } \\ \text { one shaft fragment } \\ \text { and a proximal } \\ \text { fragment, trochlea } \\ \text { spool shaped, medial } \\ \text { condyle angled }\end{array} \\ \text { upward. Large deltoid } \\ \text { tubercle, but distal } \\ \text { morphology suggest } \\ \text { woman }\end{array}\right]$
lipping on L-1. right ala, L-1, and two other fragments.

V	4	20	skull fragment	undetermined	possible frontal fragment. Calcium carbonate on internal and external surface. Thinness indicative of a younger juvenile or teen.
V	4	21	Tibia fragments	right	Two shaft fragments, broken in excavation. Calcium carbonate on the anterior and lateral surface. Juvenile over 5, but probably under 10 .
V	4	22	radius fragments	right	Two fragments, one shaft and the other proximal with the tibial tuberosity but lacking the head. Calcium carbonate on the anterior surface.
V	4	23	humerus fragment	undetermined	shaft fragment. Probable juvenile due to size. Heavy calcium carbonate on

V	4	24	ischium	left	Not fused to ilium or pubis. Younger than 4-8 years.
V	4	25	Tibia fragments	left	Two larger shaft fragments and many smaller ones. Insect damage. Juvenile.
V	4	26	femur fragment	undetermined	Distal fragment of one of the condlyes.
V	4	27	Tibia fragment	Possible right	Proximal shaft fragment with just the tibial tuberosity
V	4	28	skull fragments	undetermined	two skull fragments, probable frontal. Suture visible on larger fragment looks like it was not completely fused, and the exterior of that piece is badly damaged post mortem. Both pieces badly cracked.
V	4	29	rib fragment	undetermined	Cemented into a fragment of calcium carbonate. Possible juvenile or young

adult.

V	4	30	Tibia fragments	undetermined	One fragment is an articular facet, one complete diameter shaft fragment and numerous longitudinal shaft fragments. Thick calcium carbonate on the lateral surface of the full diameter fragment.
V	4	31	fragments	undetermined	Small fragments, morphologically looks like condlyes or heads, but much smaller than expected.
V	4	32	molar		9 molars, 4 premolars, multiple root fragments
V	4	33	molar		
V	4	34	molar		
V	4	35	molar		
V	4	36	molar		
V	4	37	molar		
V	4	38	molar		
V	4	39	molar		
V	4	40	molar		

V	5	7	unidentifiable fragments		50+ nondiagnostic fragments, many from long bones	
V	5	8	Femur fragments	left	Head fragment and a proximal fragment with a very deteriorated intertrochanteric ridge and greater and lesser trochanter. Epiphysis around the head is fused but the line is still viable. The head is slightly damaged.	4.39 cm head diameter
V	5	9	fragments	undetermined	20+ nondiagnostic fragments, many of them are shaft fragments.	
V	5	10	teeth		16 molars, 3 canines, 12 incisors (some modified), 9 premolars	
V	5	11	molars		1 canine (modified), 1 premolar, 1 molar	
V	5	12	molars		left upper first molar	
V	5	13	molars		left lower first molar	
V	5	14	molars		left upper first molar	
V	5	15	molars		left upper second molar	
V	5	16	molars		left upper first molar	

V	5	17	molars	right lower third molar
V	5	18	molars	
V	5	19	molars	right upper first or second molar
V	5	20	molars	right lower first molar
V	5	21	molars	
V	5	22	molars	
V	5	23	molars	left lower third molar
V	5	24	molars	left lower third molar
V	5	25	molars	right upper second molar
V	5	26	molars	left upper first molar
V	5	27	canine	right upper first molar
V	5	28	canine	
V	5	29	canine	
V	5	30	canine	
V	5	31	canine	
V	5	32	premolar	
V	5	33	premolar	
V	5	34	premolar	
V	5	35	premolar	
V	5	36	premolar	
V	5	37	premolar	
V	5	38	premolar	
V	5	39	incisor	
V	5	40	incisor	
V	5	41	incisor	

V	6	9	metacarpal fragment	undeterminable	distal fragment
V	6	10	shaft fragments	undeterminable	over 20 bones
V	6	11	femur figments	right	shaft fragment and proximal fragment, epiphyses not completely fused, beginning of the lesser trochanter suggest 7-12 years of age.
V	6	12	radius fragment	possible left	shaft fragment with the radial tuberosity
V	6	13	rib fragment	undetermined	12 rib fragments, mostly shafts, one vertebral end
V	6	14	metacarpal fragment	undetermined	mostly shaft fragment with some of the distal portion
V	6	15	vertebra fragments		two transverse processes, possibly not belonging to the same vertebra
V	6	16	cervical vertebra fragment		C-2. Body present and part of the dens.
V	6	17	phalanx (hand)	undetermined	Mostly shaft fragment with deteriorated distal end. Cut on

					dorsal side, possible defense wound.
V	6	18	phalanges (hand)	undetermined	distal fragments of two phalanges, longitudinal cracking on both.
V	6	19	vertebra fragment		body, badly deteriorated
V	6	20	metacarpal fragment	undetermined	distal fragment, hole on dorsal side
V	6	21	unidentifiable fragments	undetermined	50+ nondiagnostic small fragments
V	6	22	fragments	undetermined	10+ nondiagnostic small fragments
V	6	23	Tibia fragments	possible left	Shaft and proximal fragments that can be mended, calcium carbonate on all surfaces.
V	6	24	rib fragments	one right, others undetermined	6 rib fragments, two sternal ends, rest shaft.
V	6	25	Tibia fragments	undetermined	5 shaft fragments, and two proximal tubercular fragments
V	6	26	Second rib fragments	right	One fragment has the superior groove, the other piece barely mends

V	6	27	scapula fragments	right	glenoid fossa and coracoid fragments
V	6	28	proximal phalanx (hand)	undetermined	Proximal end badly deteriorated
V	6	29	intermediate phalanx (hand)	undetermined	fits well with 28
V	6	30	talus	right	badly deteriorated inferior, posterior and anterior surfaces.
V	6	31	talus	left	even smaller superior surface than 30 , but appears to be the same individual.
V	6	32	Third Metacarpal	left	Distal end in missing. Medial proximal facets are missing, sided by the proximal facet shape.
V	6	33	Fourth Metacarpal	left	distal and proximal ends badly deteriorated, sided by medial facet.
V	6	34	Fourth Metacarpal	right	head missing proximal lateral surface deteriorated, sided based on proximal facet and medial facet

V

this may be caused by the damage/cracking.

V	7	8	fifth metacarpal	right	complete, calcium carbonate on dorsal surface, ridges are abnormally defined.	4.75 cm
V	7	9	proximal phalanx (hand)	undetermined	calcium carbonate on dorsal surface, possibly 2,3 , or 4 .	4.23 cm
V	7	10	proximal phalanx (hand)	undetermined	calcium carbonate on dorsal surface, possibly 2 or 4 . Slight damage to the proximal area.	
V	7	11	proximal phalanx (foot)	undetermined	probably 1st phalanx	2.6 cm
V	7	12	second metacarpal fragment	right	proximal fragment wit most of the shaft, ridges overly defined.	
V	7	13	fifth metatarsal	left		6.2 cm
V	7	14	first metacarpal		damage to the proximal and distal end is slight	4.76 cm
V	7	15	third metacarpal fragment		proximal fragment with most of the shaft very gracile, defined ridges, some damage at the proximal end as	

well.

V	7	16	rib fragment	undetermined	shaft fragment with calcium carbonate on the anterior surface. Damage to the inferior margin.	5 cm fragment
V	7	17	proximal phalanx (foot)	undetermined	damage to the proximal end	2.3 cm
V	7	18	proximal phalanx (foot)	undetermined	damage to the proximal end, abnormal extra bone formation on dorsal surface	2.65 cm
V	7	19	proximal phalanx (foot) fragment	undetermined	dorsal fragment with proximal end absent.	
V	7	20	metacarpal fragment		shaft fragment	
V	7	21	metacarpal fragment		shaft fragment	
V	7	22	clavicle fragments	left	lateral fragment, gracile and rather flat. Shaft fragment is also small. Probable adolescent. Similar in size to right clavicle 26	medial fragment 5.4 cm long, 1.85 cm wide
V	7	23	metacarpal fragment	undeterminable	distal fragment calcium carbonate on one lateral surface and half the dorsal	

and palmar side.

V	7	24	fifth metacarpal fragment	left	proximal fragment wit most of the shaft, ridges overly defined. Damage to the proximal end.	
V	7	25	ulna fragment	right	shaft fragment, calcium carbonate on the medial surface	9.2 cm fragment
V	7	26	clavicle	right	damage to the lateral edge, sternal epiphysis is present but not completely fused. Similar in size to left clavicle 22	
V	7	27	metacarpal fragment	undeterminable	shaft fragment	
V	7	28	ulna fragments	left	Proximal end is badly damaged. Shaft fragment has pronator ridge is large. External surface has some insect damage.	
V	7	29	zygomatic	left	part of the zygomatic process of the temporal bone is attached but the suture is still visible	

and not perfectly
aligned.

V	7	30	ulna fragments	left	lateral surface covered with calcium carbonate	10.8 cm present
V	7	31	ulna fragment	possible left	shaft fragment with calcium carbonate on the medial surface.	
V	7	32	radius fragments	undeterminable	shaft fragment, calcium carbonate on one surface.	
V	7	33	humerus fragments	left	three fragments (attempts will be made to mend with b72). Two shaft fragments and a distal fragment. Calcium carbonate on posterior surface. Possible juvenile.	distal fragment estimated width at condyle 3.53 cm
V	7	34	shaft fragments	undeterminable	two flat surface shaft fragments with calcium carbonate.	
V	7	35a	maxillary fragments		well worn third premolar included, but not in socket	
V	7	35B	premolar			
V	7	36	metacarpal fragment	undetermined	shaft fragment, calcium carbonate on	

			one of the lateral edges
V			
V			scratches on the internal surface of the occipital bone are probably from excavation, many parietal fragments as well. attempts will be made to piece back together. Possible insect activity and disease.
V	7	37	skull fragments

V	7	45	Femur fragment	undetermined	shaft fragment with calcium carbonate on all surfaces.	
V	7	46	fragments	undetermined	$20+$ nondiagnostic fragments	
V	7	47	humerus fragment	right	distal fragment. Calcium carbonate on the entire anterior surface, and on posterior distal portion. Olecranon fossa is triangular is shape, juvenile or young adult.	7.23 cm body height, 2.11 cm body width
V	7	48	vertebra fragment		body fragment, unfused. 2-4 years of age	
V	7	49	calcaneus fragment	left	superior and anterior portion of the bone is badly deteriorated, crushing on plantar surface.	
V	7	50	phalanx (foot)	undetermined	distal portion of a phalanx	
V	7	51	First proximal phalanx (foot)	undetermined	deterioration on the proximal end. abnormal bone growth on the anterior surface proximal end.	
V	7	52	rib fragments	left	4 left shaft fragments, all different	

V	7	53	rib fragments	right	2 right shaft fragments, both different
V	7	54	vertebra fragment		lumbar body fragment broken in half, no body height measurement taken because incomplete.
V	7	55	humerus fragment	undetermined	head fragment, pair to 56
V	7	56	humerus fragment	undetermined	head fragment, pair to 55
V	7	57	radius fragment	left	Shaft fragment. Calcium carbonate on the posterior surface.
V	7	58	frontal fragment		frontal crest present, indication of disease, possible skull modification, calcium carbonate on interior surface
V	7	59	frontal fragment		frontal crest present, possible skull modification, smaller than 58
V	7	60	parietal fragments	undetermined	10+ parietal fragments. Interior surface is very irregular (undulations)on one fragment.

V	7	61	vertebra fragment		spinous process probably from a thoracic vertebra	
V	7	62	ulna fragment	right	anterior surface covered with calcium carbonate	2.94 cm anterior to posterior
V	7	63	tibia fragments	right	shaft fragments with thick calcium carbonate on lateral surface. Young adult probably due to size	
V	7	64	rib fragments	undetermined	4 shaft fragments, and one sternal fragment. Calcium carbonate on the posterior surface	
V	7	65	skull fragments	undetermined	4 nondiagnostic skull fragments	
V	7	66	vertebra fragment		anterior body fragment, lumbar probably,	
V	7	67	skull fragments	undetermined	2 non diagnostic skull fragments	3.06 cm aprox. height, 2.34 cm width
V	7	68	scapula fragment	left	fragment of the glenoid fossa	
V	7	69	radius fragment	left	shaft fragment, calcium carbonate on all surfaces. More on the posterior/lateral	
V	7	70	metacarpal fragment	undetermined	head fragment	

V	7	71	metatarsal fragment	undetermined	head fragment and part of the shaft. Calcium carbonate on all surfaces.	2.29 cm long
V	7	72	intermediate phalanx (hand)	undetermined		
V	7	73	fibula fragments	probable left	Calcium carbonate on the posterior surface, two shaft fragments	
V	7	74	metacarpal fragment	undetermined	Posterior surface has calcium carbonate. Proximal end is missing.	
V	7	75	rib fragments	both	one right and one left rib (vertebral end) fragments, two shaft fragments	
V	7	76	rib fragments	right	two shaft rib fragments of an adult 7-10	
V	7	77	intermediate phalanges (hang	undetermined	three, the two smaller ones have damage to the proximal ends, and the larger one has damage to head.	
V	7	78	metacarpal fragment	undetermined	2 shaft fragments	
V	7	79	thoracic vertebra fragment		Probable 11 thoracic vertebra body with the vertebral foramen and the right superior	

V	7	80	shaft fragments	undetermined	6
V	7	81	canine		$\begin{gathered} \text { LC (upper), RC } \\ \text { (upper) - different } \\ \text { people, LP3 (upper) } \end{gathered}$
V	7	82	Tibia fragment	undetermined	distal or proximal fragment
V	7	83	lateral cuneiform	right	planter side is badly deteriorated, part of the facets on the side where the intermediate cuneiform articulates
V	7	84	fragments	undetermined	nondiagnostic fragments.
V	7	85	Mandible fragment	right	Teeth present: right canine, first premolar, and first and second molars.
V	7	86	Humerus fragments	right	Distal fragment and shaft fragment. Proximal epiphysis is not completely fused. Trochlea badly deteriorated. Olecranon fossa more triangular shaped. Calcium carbonate on

posterior surface.

V	7	87	left Upper Second premolar		N.W. pit written on package.
V	7	88	rib fragments	left	Two rib fragments found in NW pit
V	7	89	canine		7 molars, 5 premolars, 3 canines, and one incisor
V	7	90	molar		
V	7	91	molar		
V	7	92	molar		
V	7	93	molar		
V	7	94	molar		
V	7	95	molar		
V	7	96	molar		
V	7	97	incisor		
V	7	98	canine		
V	7	99	canine		
V	7	100	canine		
V	7	101	premolar		
V	7	102	premolar		
V	7	103	premolar		
V	7	104	premolar		
V	7	105	premolar		

V	1	G	49	humerus fragments		
V	1	E	666	proximal manual phalanx fragments		
V	7		90	metatarsal fragment		
V	1	G	50	proximal manual phalanx fragments		
V	1	G	51	vertebra fragment		
V	1	G	52	rib fragment		
V	1	E	667	second metacarpal		
V	1	G	53	ulna fragment		
V	1	E	668	rib fragments		
V	1	G	54	fifth metatarsal		
V	7		91	cranial fragment		
V	1	G	55	mandible fragment		
V	1	G	56	vertebra fragment		
V	1	G	57	rib fragment		
V	1	G	58	rib fragments		
V	1	E	669	mandible fragment		
V	1	E	670	mandible fragment		
V	1	E	671	mandible fragment		
VI	1	a	1	humerus fragments	undetermined	3 humerus shaft fragments, small, possible female or juvenile
VI	1	a	2	first metatarsal fragment	right	distal fragment, treated with b-72
VI	1	a	3	cranial fragment	undetermined	tympanic portion of an adult, treated with

VI	1	a	4	second metatarsal fragment	left	proximal fragment, treated with b-72
VI	1	a	5	parietal fragment	right	pin pick porosity internal defect suggestive of porotic hyperostosis
VI	1	a	6	scaphoid	right	adult
VI	1	a	7	scaphoid	left	adult, post mortem damage
VI	1	a	8	capitate	right	adult
VI	1	a	9	proximal manual phalanx	undetermined	adult
VI	1	a	10	intermediate manual phalanx	undetermined	adult
VI	1	a	11	proximal manual phalanx	undetermined	adult
VI	1	a	12	fourth metacarpal	left	adult
VI	1	a	13	metacarpal fragment	undetermined	shaft and head
fragment						

$\left.\begin{array}{ccccccc} & & & & \text { in length } \\ \text { VI } & 1 & \text { a } & 18 & \text { rib fragment } & \text { undetermined } & \text { shaft , roughly } 3 \mathrm{~cm} \\ \text { in length }\end{array}\right]$

VI	1	B	3	ulna fragment	left	adult, proximal fragment with most of the shaft, calcite	lateral to medial $14.58 \mathrm{~mm}, 6.6$ mm anterior to posterior, taken just below nutrient foramen
VI	1	B	4	radius fragment	right	distal fragment of the head and tuberosity	$\begin{aligned} & 19.38 \mathrm{~mm} \text { head } \\ & \text { diameter } \end{aligned}$
VI	1	B	5	ulna fragment	right	proximal fragment , adult, calcite	
VI	1	B	6	navicular	right	adult, calcite	
VI	1	B	7	first cuneiform	right	adult, calcite	
VI	1	B	8	patella	right	possible subadult, badly deteriorated, calcite	
VI	1	B	9	cervical fragment		first cervical	
VI	1	B	10	cervical vertebra		either C3 or C4, articulate with 11 , all of these vertebra have a red discoloration	
VI	1	B	11	cervical vertebra		either C4 or C5, articulates with 10 and 12	
VI	1	B	12	cervical vertebra		either C5 or6, articulates with 11 and 13	
VI	1	B	13	cervical vertebra		either C6 or 7, articulates with 12	
VI	1	B	14	thoracic vertebra fragment		body fragment, T3-7 probably, covered in	

reddish substance

VI	1	B	15	interproximal manual phalanx	undetermined	covered in reddish substance	20.29 mm
VI	1	B	16	interproximal manual phalanx	undetermined	covered in reddish substance	23.78 mm
VI	1	B	17	first metacarpal	left	covered in reddish substance	39.48 mm length
VI	1	B	18	proximal manual phalanx	undetermined	covered in reddish substance	37.36 mm
VI	1	B	19	distal manual phalanx	undetermined	covered in reddish substance	15.68 mm
VI	1	B	20	bone fragment		covered in reddish substance	
VI	1	B	21	first metatarsal	right	calcite	
VI	1	B	22	metatarsal fragment		calcite	
VI	1	B	23	second or third metatarsal	second left, third right	head broken off, damage to the distal end, calcite	
VI	1	B	24	third or fourth metatarsal	third right, fourth left	distal end is abnormal due to pathology, additional bone growth on the pedal proximal surface, bone remodeling similar to gout, 5.76 mm in diameter, calcite	69.58 mm
VI	1	B	25	fifth metatarsal	right	calcite	58.02 mm

$\left.\begin{array}{cccccccc} & \text { n } & & & \begin{array}{c}\text { shaft fragment, } \\ \text { possible subadult } \\ \text { given the size of the } \\ \text { bone, possible cut } \\ \text { mark on the lateral }\end{array} \\ \text { surface of the bone, } \\ \text { calcite }\end{array}\right]$
medial epicondyle is level
27.21 mm
anterior to
posterior, 30.11 mm medial to
lateral

VI	1	B	37	proximal manual phalanx	undetermined		36.11 mm
VI	1	B	38	proximal pedal phalanx	undetermined		18.82 mm
VI	1	B	39	manual phalanx fragment	undetermined	badly deteriorated, calcite, reddish color	
VI	1	B	40	humerus	right	proximal epiphysis is fused but still open, spool like trochlea, triangular shaped fossa, wide angle, medial epicondyle is level, mate to 36	39.88 mm head diameter, 57.56 mm epicondylar width
VI	1	B	41	first rib	left	subadult, unfused vertebral end	
VI	1	B	42	first rib	right	subadult, mate to 41?, reddish discoloration	
VI	1	B	43	rib fragment	left	vertebra end	
VI	1	B	44	rib fragment	left	vertebra end	
VI	1	B	45	rib fragment	undetermined	shaft fragment, possible subadult	
VI	1	B	46	rib fragment	right	vertebra end	
VI	1	B	47	humerus fragments	probable right	shaft fragment, badly deteriorated	

VI	1	B	48	calcaneus	right		71.87 mm length
VI	1	B	49	radius fragment	probable left	shaft fragment, calcite	
VI	1	B	50	talus fragments	right	posterior fragment	
VI	1	B	51	second cuneiform	right	adult, calcite	
VI	1	B	52	third cuneiform	right	adult, calcite	
VI	1	B	53	frontal fragment	right	child, eye orbit, possible cut marks	
VI	1	B	54	humerus fragments	undetermined	subadult, head only	
VI	1	B	55	talus fragments	right	anterior portion, may be the same as 50	
VI	1	B	56	metatarsal fragment	undetermined	head only	
VI	1	B	57	triquetral	left		
VI	1	B	58	hamate	left		
VI	1	B	59	scapula fragment	undetermined	spine fragment	
VI	1	B	60	cervical vertebra fragment		C1, left fragment, slight reddish color	
VI	1	B	61	vertebra fragment		spinous process fragment, slight reddish color	
VI	1	B	62	femur fragment	undetermined	distal condyle fragment	
VI	1	B	63	vertebra fragment		body fragment, probably a thoracic vertebra	
VI	1	B	64	first rib fragment	possible left	sternal end fragment, reddish color	
VI	1	B	65	4 unidentified fragments			
VI	1	B	66	unidentified fragment		reddish color	

VI	1	B	67	unidentified fragment		reddish color
VI	1	B	68	unidentified fragment		reddish color
VI	1	B	69	80+ unidentified fragments		
VI	1	B	70	femur fragment	left	proximal fragment, head, neck, and part of the greater trochanter, too much damage to the head for measurement
VI		B	71	occipital and parietal fragments	both	pin prick porosity suggestive of porotic hyperostosis, suture between occipital and parietals was open enough to allow for a clean fracture in shipping, parietal sutures are much more closed
VI	1	B	72	parietal fragment	left	slight reddish color
VI	1	B	73	occipital fragment		basioccipital region
VI	1	B	74	frontal fragment		rather thin, possible subadult
VI	1	B	75	frontal fragment		rather thin, possible subadult
VI	1	B	76	tibia fragment	right	proximal lateral fragment, proximal epiphysis is fused but still open, treated

with B-72
$\left.\begin{array}{cccccccc}\hline \text { VI } & 1 & \text { B } & 77 & \text { occipital fragment } & & \begin{array}{c}\text { left portion with } \\ \text { jugular tubercle, } \\ \text { reddish color on } \\ \text { exterior }\end{array} \\ \hline \text { VI } & 1 & \text { B } & 78 & \text { scapula fragment } & \text { undetermined } & \begin{array}{c}\text { reddish color and } \\ \text { calcite on posterior }\end{array} \\ \hline \text { VI } & 1 & \text { B } & 79 & \text { tibia fragment } & \text { undetermined } & \begin{array}{c}\text { proximal fragment, } \\ \text { possibly part of } \\ \text { number 76 }\end{array} \\ \hline \text { VI } & 1 & \text { B } & 80 & \text { temporal fragment } & \text { probable left } & \begin{array}{c}\text { mastoid process } \\ \text { fragment }\end{array} \\ \hline \text { VI } & 1 & \text { B } & 81 & \text { rib fragment } & & \begin{array}{c}\text { vertebral end } \\ \text { fragment }\end{array} \\ \hline \text { VI left } & \text { parible left } & \begin{array}{c}\text { orangish red color on } \\ \text { exterior }\end{array} \\ \hline \text { VI } & 1 & \text { B } & 82 & \text { pagment } & \text { parangish red color on } \\ \text { exterior }\end{array}\right]$

VI	2	a	1	proximal pedal phalanx	undetermined	adult	29.56 mm
VI	2	a	2	hyoid fragment	right	horn, unfused, subadult, from water pit	
VI	2	a	3	scapula fragment	right	inferior margin, adult, from water pit	
VI	2	B	1	proximal pedal phalanx	undetermined	possible subadult	20.53 mm
VI	2	B	2	femur fragment	undetermined	adult, distal condyle fragment	
VI	2	B	3	ilium fragment	undetermined	adult, fragment from near the crest	
VI	2	B	4	occipital fragment		adult, some porosity	
VI	2	B	5	temporal bone	left	mastoid process is narrow and slightly elongated	
VI	2	B	6	calcaneus	left	adult, damaged	71.59 mm length
VI	2	B	7	os coxa fragment	right	part of the lunate surface, inferior aspect of the preauricular surface	
VI	2	B	8	temporal fragment	undetermined	seems thicker than normal	
VI	2	B	9	cranial fragment	undetermined	pin prick porosity visible on exterior	
VI	2	B	10	cranial fragment	undetermined		
VI	2	B	11	cranial fragment	undetermined		
VI	2	B	12	cranial fragment	undetermined		

VI	2	B	13	temporal fragment	undetermined	
VI	2	B	14	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	15	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	16	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	17	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	18	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	19	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	20	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	21	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	22	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	23	rib fragment	right	adult, vertebral end, possibly rib 11
VI	2	B	24	rib fragment	left	adult, vertebral end, probably rib 7-10
VI	2	B	25	rib fragment	right	possible subadult
VI	2	B	26	thoracic vertebra fragment		adult, lamina fragment of a lower thoracic
VI	2	B	27	thoracic vertebra fragment		adult, lamina fragment of a lower thoracic

VI	2	B	28	thoracic vertebra fragment		adult, transverse process and left articular facets of a middle thoracic
VI	2	B	29	thoracic vertebra fragment		subadult, unfused pedicle on this lamina fragment, upper thoracic
VI	2	B	30	occipital fragment		adult, macroporosity on exterior, sample taken for isotope testing
VI	2	B	31	parietal fragments	both	adult, posterior portion of both parietals, sutures are beginning to become obliterated on the superior portion, pin prick porosity, sample taken on right parietal, this is not the same individual as 30
VI	2	B	32	frontal and parietal fragment	left	cranial modification, adult, suture was still relatively open, which eased the fracturing of the parietal, no supraorbital torus, sharp supraorbital margin, possible female, interior has

			adult, blunt supraorbital margins, raised supraorbital torus, possible male, pin prick porosity further up on the forehead, possible cranial modification given the flatness of the forehead, frontal crest is practically	
VI	2	B	33	frontal fragment
VI	2	B	34	frontal fragment

						premolar is present all others appear to be lost post mortem	
VI	2	B	37	scapula fragment	right	adult, glenoid, part of the spine and coracoid, slight lipping on the glenoid is suggestive of arthritis	glenoid height 35.54 mm , width 26.5 mm
VI	2	B	38	thoracic vertebra		probable t 7-9, adult, covered in calcite	
VI	2	B	39	scapula fragment	right	inferior medial border fragment, probably the same as 37	
VI	2	B	40	rib fragment	left	vertebral fragment, probably rib 8-10	
VI	2	B	41	rib fragment	right	vertebral fragment, probably rib 3-6	
VI	2	B	42	rib fragment	undetermined	shaft fragment, upper rib, possibly subadult	
VI	2	B	43	rib fragment	undetermined	shaft fragment, upper rib, possibly subadult	
VI	2	B	44	first rib	right		
VI	2	B	45	first rib	right		
VI	2	B	46	proximal manual phalanx fragment	undetermined	most of the phalanx, part of the proximal is broken	47.52 mm
VI	2	B	47	proximal manual phalanx	undetermined	lateral ridges are well defined	44.17 mm

		proximal manual phalanx fragment				undetermined	distal fragment

VI	2	B	67	thoracic vertebra fragment		transverse processes are missing along with the spinous process
VI	2	B	68	thoracic vertebra fragment		lamina fragment with part of the right transverse process
VI	2	B	69	cervical vertebra fragment		lamina fragment
VI	2	B	70	rib fragment	left	adult, vertebral end fragment
VI	2	B	71	rib fragment	left	adult, shaft fragment, rib 3-10
VI	2	B	72	rib fragment	right	adult, neck fragment, possibly second rib
VI	2	B	73	rib fragment	right	adult, vertebral end fragment
VI	2	B	74	rib fragment	left	adult, vertebral end fragment
VI	2	B	75	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	76	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	77	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	78	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	79	rib fragment	undetermined	adult, shaft fragment, rib 3-10
VI	2	B	80	rib fragment	undetermined	adult, shaft fragment,

> rib 3-10

VI	2	B	81	rib fragment	possible right	adult, shaft fragment, rib 3-10	
VI	2	B	82	mandible fragment	left	left ramus fragment, covered in calcite, third molar area was in the act of reabsorbing	
VI	2	B	83	ygomatic and spheno fragment	right		
VI	2	B	84	os coxa fragment	possible right	acetabular fossa fragment, adult	
VI	2	B	85	ischium fragment	possible left		
VI	2	B	86	os coxa fragment	undetermined		
VI	2	B	87	os coxa fragment	possible right	acetabular fossa fragment, possible adult	
VI	2	B	88	talus	left		41.19 mm length, 35.97 mm width
VI	2	B	89	ilium fragment	right	crest fragment with the anterior portion of the iliac tuberosity	
VI	2	B	90	ilium fragment	undetermined	crest fragment	
VI	2	B	91	mandible fragment		masculine looking chin	
VI	2	B	92	scapula fragment	right	acromion only	
VI	2	B	93	os coxa fragment	probable left	fragment with the arcuate lone and the margin of the preauricular surface	

VI	2	B	94	tibia fragment	undetermined	shaft fragment	31.56 anterior to posterior, 20.92 medial to lateral, 10.8 cm circumference
VI	2	B	95	humerus fragment	right	subadult, over 5 years of age, distal fragment, distal epiphysis is still not fused	$\begin{gathered} 33.23 \mathrm{~mm} \\ \text { epicondylar width } \\ \hline \end{gathered}$
VI	2	B	96	scapula fragment	right	young child, spine fragment	
VI	2	B	97	scapula fragment	left	adult, fragment of where the spine and glenoid come together, calcite on all surfaces	
VI	2	B	98	vertebra fragment		body fragment, possibly a thoracic, possible Schmorl's node 5.7 mm in diameter	
VI	2	B	99	vertebra fragment		body fragment, possibly a cervical	
VI	2	B	100	vertebra fragment		body fragment, possibly a cervical	
VI	2	B	101	first rib	left	subadult, calcite on superior surface	

upper rib, sternal fragment with sternal facet intact, unsure if it is rib four, but it is an upper rib. The pit is U shaped, thick walls, with only mild scalloping, indicating

VI	2	B	102	rib fragment	undetermined	age 24.1-27.7
VI	2	B	103	rib fragment	right	middle rib, adult, neck fragment
VI	2	B	104	thoracic vertebra		adult, transverse processes broken off
VI	2	B	105	thoracic vertebra		subadult, body is unfused
VI	2	B	106	first metacarpal	left	adult
VI	2	B	107	scapula fragment	possible left	inferior angle fragment
VI	2	B	108	first metacarpal	undetermined	subadult, unfused proximal end
VI	2	B	109	ilium fragment	undetermined	
VI	2	B	110	thoracic vertebra		transverse process
fragment			fragment with only the lateral incisor crypt to the first premolar, adult			
VI	2	B	111	maxilla fragment	right	
VI	2	B	112	tibia fragment	left	
VI	2	B	113	thoracic vertebra fragment		lamina fragment

VI	2	B	114	tibia fragment	left	subadult, slight bowing indicative of rickets, calcium on the posterior surface, shaft fragment, over 5 years of age based on size	19.08 mm anterior to posterior, 15.01 mm medial to lateral
VI	2	B	115	lumbar vertebra fragment		L2 or L3	
VI	2	B	116	thoracic vertebra fragment		body only	
VI	2	B	117	thoracic vertebra fragment		subadult, unfused body	
VI	2	B	118	cervical vertebrae		fused first and second cervical vertebrae, arthritic lipping on the inferior facet of the second	
VI	2	B	119	lumbar vertebra fragment		probably L3 or 4, lamina fragment only	
VI	2	B	120	femur fragment		head only, not enough to measure diameter	
VI	2	B	121	rib fragment	undetermined	middle rib, shaft fragment, calcite	
VI	2	B	122	rib fragment	undetermined	probably rib 8-10, shaft fragment, calcite	
VI	2	B	123	rib fragment	undetermined	middle rib, shaft fragment, calcite	
VI	2	B	124	rib fragment	undetermined	subadult, shaft fragment, calcite	

VI	2	B	125	sacrum fragment	undetermined	adult, too small to determine age or sex
VI	2	B	126	vertebra fragment		adult, probably cervical, body fragment only
VI	2	B	127	thoracic vertebra fragment		subadult, unfused pedicle
VI	2	B	128	cranial fragment	undetermined	
VI	2	B	129	cranial fragment	undetermined	
VI	2	B	130	fibula fragment	probable right	proximal shaft
fragment						

VI	2	B	142	long bone fragment	undetermined	subadult based on the unfused epiphysis, too fragmentary to identify further
VI	2	B	143	humerus fragment	undetermined	subadult, possible cut marks, over 5 years of age
VI	2	B	144	radius fragment	left	adult, shaft fragment of the distal end, oblique line and crest present
VI	2	B	145	thoracic vertebra fragment		left lamina fragment
VI	2	B	146	49 skull fragments	undetermined	various bones, cannot be sided due to size or lack of morphology
VI	2	B	147	tibia fragment	right	proximal fragment, adult, condyles only, covered in calcite
VI	2	B	148	132 unidentified fragments	undetermined	
VI	2	B	149	60 skull fragments	undetermined	appears to be mostly adults,
VI	2	B	150	40 unidentified fragments	undetermined	
VI	2	B	151	tibia fragment	right	proximal shaft fragment, soleal line present
VI	2	B	152	humerus fragment	undetermined	subadult shaft fragment

VI	2	B	153	long bone fragment	undetermined	subadult, possible radius or ulna	
VI	2	B	154	sphenoid fragment	right	greater wing fragment	
VI	2	B	155	50 unidentified fragments			
VI	2	B	156	rib fragment	right	vertebral end fragment, adult	
VI	2	B	157	humerus fragment	left	distal fragment, with the medial border of the trochlea	
VI	2	B	158	probable calcaneus fragment	undetermined		
VI	2	B	159	cervical vertebra fragment		right lamina fragment with superior and inferior articular facets	
VI	2	B	160	10 unidentified fragments	undetermined		
VI	2	C	1 1	3 radius fragments	right	adult, fragment with tuberosity, shaft fragment, and distal fragment, calcite covering most surfaces	
VI	2	C	2	first metatarsal	right	adult, fragment with tuberosity, shaft fragment, and distal fragment, calcite covering most surfaces, calcite on	63.67 mm length

plantar surface

VI	2	C	3	clavicle fragment	left	lateral fragment with part of the shaft gracile in size	
VI	2	C	4	fourth metatarsal	right	adult, slight post mort damage to head	65.07 mm length
VI	2	C	5	femur fragment	right	adult, proximal fragment, damage to head and trochlear area	42.95 mm head diameter
VI	2	C	6	humerus fragment	right	adult, proximal fragment, calcite on posterior surface	41.94 mm head diameter
VI	2	C	7	humerus fragments	undetermined	adult, badly deteriorated, could not label	
VI	2	C	8	ulna fragment	right	proximal shaft fragment	
VI	2	C	9	ischium fragment	probable left	adult, post mortem damage has squished the bone and altered the natural morphology	
VI	2	C	10	10+ unidentifiable fragments	undetermined	could not label due to size	

cut marks on the anterior surface of this distal fragment of an adult. Cut marks are roughly 1 cm in length. Some are not

VI	3	D	1	radius fragment	left	cut marks	
VI	3	D	2	rib fragment	left	neck fragment, adult	
VI	3	D	3	rib fragment	right	neck fragment, adult	
VI	3	D	4	rib fragment	right	neck fragment, adult	
VI	3	D	5	rib fragment	undetermined	shaft fragment	
VI	3	D	6	rib fragment	undetermined	shaft fragment	
VI	3	D	7	femur fragment	left	proximal fragment of an adult with head and trochlear region, bad condition, numerous cut marks on the lateral surface	42.13 mm head diameter
VI	3	D	8	rib fragment	right	adult rib 3-10, vertebral end	
VI	3	D	9	rib fragment	right	adult rib 3-10, vertebral end	
VI	3	D	10	first rib fragment	left	neck fragment, adult	
VI	3	D	11	rib fragment	right	most of the rib, missing part of the sternal end, most likely 3rd	
VI	3	D	12	radius fragment	probable left	proximal fragment with part of the tuberosity, adult	

adult, badly
deteriorated, possible

VI	3	D	13	10+ humerus fragments	undetermined	deteriorated, possible cut marks
VI	3	D	14	rib fragment	right	neck and shaft fragment, probably rib 4-6
VI	3	D	15	femur fragment	left	distal fragment of an adult with only the condyles
VI	3	D	16	cervical vertebra fragment		adult body fragment

VI	3	E	3	humerus fragment	right	adult, head fragment	44.44 mm head diameter
VI	3	E	4	patella	left	adult	43.09 mm height, 44.66 mm width
VI	3	E	5	clavicle fragment	right	adult, lateral fragment, large	
VI	3	E	6	ulna fragments	right	adult, three fragments, distal and shaft fragments	17.94 mm anterior to posterior, 12.85 lateral to medial
VI	3	E	7	humerus fragment	left	adult, distal fragment, narrow trochlear notch, spool shaped, trochlea projects out, triangular shaped fossa	
VI	3	E	8	femur fragment	left	adult, proximal fragment with head, neck and trochanteric crest, calcite and mud coating the posterior surface	43.06 mm head diameter
VI	3	E	9	femur fragment	right	shaft and distal fragment, broke in transit, lots of calcite on all surfaces	
VI	3	E	10	femur fragment	left	juvenile, shaft and head fragment, femur head and trochlea crest are fused, so at	33.75 mm head diameter

						least 15 years of age, gracile	
VI	3	E	11	first meta tarsal	left	adult	62.22 mm length
VI	3	E	12	first meta tarsal	left	adult	63.93 mm length
VI	3	E	13	first meta tarsal	right	adult, badly deteriorated	55.74 mm length
VI	3	E	14	humerus fragment	right	shaft fragment of an adult, well developed deltoid tubercle	$\begin{aligned} & \text { available length } \\ & 22 \mathrm{~cm} \\ & \hline \end{aligned}$
VI	3	E	15	femur fragment	undetermined	adult shaft fragment	$\sim 15 \mathrm{~cm}$ length
VI	3	E	16	clavicle	left	adult, complete, calcite more on the inferior surface, large in size, probably male, lateral surface is spongy in appearance, possible arthritis	16.5 cm length
VI	3	E	17	humerus fragment	left	adult, but gracile, triangular shaped fossa, wide trochlea angle, level, covered in calcite	18.88 mm ant to post diameter, 16.86 mm med to lateral
VI	3	E	18	talus	right	adult, slight reddish discoloration	56.87 mm length, 52.44 mm width
VI	3	E	19	cervical vertebra		adult, probably one of the lower cervical, lamina broke in transit	

VI	3	E	20	fibula fragments	right	adult, distal end and part of the shaft fragment, red discoloration	
VI	3	E	21	humerus fragment	left	adult shaft fragment, large deltoid tuberosity	
VI	3	E	22	proximal pedal phalanx	undetermined	adult	30.82 mm length
VI	3	E	23	proximal manual phalanx	undetermined	adult	34.13 mm length
VI	3	E	24	fourth metacarpal	right	adult	58.13 mm length
VI	3	E	25	probable third metatarsal	left	adult, if not it is the second right	69.50 mm length
VI	3	E	26	third metacarpal	right	adult	68.19 mm length
VI	3	E	27	proximal pedal phalanx	undetermined	adult, slight damage to proximal edge	27.71 mm length
VI	3	E	28	first proximal pedal phalanx \qquad	undetermined	adult	33.04 mm length
VI	3	E	29	proximal manual phalanx	undetermined	adult, defined lateral ridges on the palmar surface	42.48 mm length
VI	3	E	30	second metacarpal	right	adult	70.44 mm length
VI	3	E	31	proximal pedal phalanx	undetermined	adult	25.47 mm length
VI	3	E	32	5 unidentifiable cranial fragments	undetermined		
VI	3	E	33	30+ unidentifiable long bone fragments	undetermined		

VI	3	E	34	premolar	right	probably right maxillary second premolar	9.26 mm lingual to buccal, 7.04 mm lateral to medial
VI	3	E	35	skull fragments and teeth	undetermined	most of the left side of the skull and two large parietal fragments. Pin prick porosity and internal defects suggests porotic hyperostosis. all teeth have erupted but only the second premolar, and first two upper left molars are present. Facets are well worn, blunt supraorbital margin, mastoid process looks more masculine, minimal supraorbital torus	premolar lingual to buccal9.13 mm , anterior to posterior. 10 mm , 1 m labial to lingual 11.56 mm anterior to posterior 9.84 $\mathrm{mm}, 2 \mathrm{~m}$ lingual to buccal 11.03 mm anterior to posterior 9.80 mm
VI	3	E	36	4 parietal fragments	undetermined	pin prick porosity, some red staining, slight internal defects	
VI	3	E	37	frontal and nasal fragment		central fragment, red staining, large supraorbital torus	

$\left.\begin{array}{ccccccc} & & & & \begin{array}{c}\text { greater sciatic notch } \\ \text { partly available, but } \\ \text { not enough to }\end{array} \\ \text { VI } & 3 & \text { E } & & & & \begin{array}{c}\text { determine sex, part of } \\ \text { the lunate surface is }\end{array} \\ \text { visible }\end{array}\right]$

						shaft, rather gracile possible your adult or female	
VI	3	E	46	femur fragment	right	proximal fragment, adult, not gracile but not overly defined, lots of calcium carbonate on all surfaces	43.75 mm head diameter
VI	3	E	47	femur fragment	right	adult distal portion, broke in transit, possible arthritis on the condlyes, sample taken for testing	
VI	3	E	48	molar	left	first lower	
VI	3	E	49	mandible fragment		left portion with three molars, canine and right central incisor	
VI	3	E	50	mandible fragment		left portion with three molars	
VI	3	F	1	tibia fragment	left	shaft fragment of a juvenile	available length $\sim 6 \mathrm{~cm}$
VI	3	F	2	femur	right	juvenile, no epiphyses are fused, calcium carbonate and caked on mud is caked on the posterior surface, reddish discoloration	$\begin{gathered} 102.65 \mathrm{~mm} \\ \text { length } \\ \hline \end{gathered}$

VI	3	F	3	frontal fragment	right	orbital fragment, probable adult male based on the rounded orbital margin, slight supraorbital torus, reddish discoloration	
VI	3	F	4	mandible fragments		deciduous incisors have not erupted, but there crown is fully formed, deciduous molar formation is started, estimated age 6 month +/-3 months	
VI	3	F	5	6 sphenoid fragments		adult, mostly part of the body of the sphenoid with some of nearby foramen, one fragment has part of the volmer attached	
VI	3	G	1	proximal manual phalanx	undetermined	adult	40.65 mm
VI	3	G	2	fourth metatarsal fragment	left	shaft and proximal fragment	
VI	3	G	3	metacarpal fragment	undetermined	probably second or third	
VI	3	G	4	3 fibula fragments	possible right	adult, shaft fragments, covered in calcite	

VI	3	G	5	humerus fragment	right	distal portion of shaft and upper margin of the lateral epicondyle, adult, calcite on all surfaces	
VI	3	G	6	talus	left	adult, reddish staining, small	48.42 mm length, 41.35 mm width
VI	3	G	7	metatarsal fragment	undetermined	possibly second or third, adult, shaft and distal fragment	
VI	3	G	8	humerus fragment	right	distal adult fragment, gracile, medial epicondyle is angled, triangular shaped fossa, calcite thick on posterior surface	
VI	3	G	9	proximal manual phalanx	undetermined	adult	45.85 mm
VI	3	G	10	third metacarpal	left	adult, distal end is badly deteriorated	63.33 mm
VI	3	G	11	femur fragments	undetermined	adult, possibly part of the head and numerous shaft fragments, cut marks	
VI	3	G	12	fifth metatarsal fragment	right	adult, proximal and shaft fragment	
VI	3	G	13	first proximal palmar \qquad phalanx	undetermined		31.64 mm
VI	3	G	14	proximal palmar phalanx	undetermined	covered in calcite	

VI	3	G	15	intermediate palmar \qquad	undetermined		20.16 mm
VI	3	G	16	intermediate palmar phalanx	undetermined		28.92 mm
VI	3	G	17	proximal pedal phalanx	undetermined	covered in calcite	29.12 mm
VI	3	G	18	distal palmar phalanx	undetermined		17.62 mm
VI	3	G	19	proximal pedal phalanx	undetermined	badly deteriorated at proximal end	
VI	3	G	20	intermediate palmar phalanx	undetermined		24.07 mm
VI	3	G	21	intermediate palmar phalanx	undetermined		28.55 mm
VI	3	G	22	intermediate palmar phalanx	undetermined	calcite covering both sides	30 mm
VI	3	G	23	first proximal palmar phalanx	undetermined	calcite mostly on the palmar side	30.11 mm
VI	3	G	24	first proximal palmar phalanx	undetermined		46.17 mm
VI	3	G	25	first proximal palmar phalanx	undetermined		41.38 mm
VI	3	G	26	fifth metacarpal	right		56.72 mm
VI	3	G	27	first proximal pedal phalanx	undetermined		33.62 mm
VI	3	G	28	tibia fragment	right	distal fragment of an adult, only roughly 7 cm in length	

VI	3	G	29	first distal pedal phalanx	undetermined	adult, slight damage to distal end	
VI	3	G	30	first distal manual phalanx	undetermined		23.6 mm
VI	3	G	31	distal manual phalanx	undetermined		15.97 mm
VI	3	G	32	navicular (foot)	probably right	adult, badly deteriorated	
VI	3	G	33	cuboid	right	adult, badly deteriorated	
VI	3	G	34	first cuneiform	left	adult, badly deteriorated	
VI	3	G	35	second cuneiform	left	adult, badly deteriorated	
VI	3	G	36	first meta tarsal	left	adult, badly deteriorated	
VI	3	G	37	long bone fragment	undetermined	???	
VI	3	G	38	metacarpal or metatarsal fragment	undetermined	head, badly deteriorated	
VI	3	G	39	unidentified fragment	undetermined		
VI	4		1	2 rib fragments	left	adult rib, probably 510, broke in transit	
VI	4		2	rib fragment	undetermined	adult shaft fragment	
VI	4		3	rib fragment	undetermined	adult shaft fragment	
VI	4		4	rib fragment	undetermined	adult shaft fragment	
VI	4		5	rib fragment	undetermined	adult shaft fragment	
VI	4		6	rib fragment	undetermined	adult shaft fragment	
VI	4		7	rib fragment	undetermined	adult shaft fragment	
VI	4		8	rib fragment	undetermined	adult shaft fragment	

rim of the lunate surface that is visible is irregular with remodeling, no macroporosity present, adult but
$\left.\left.\begin{array}{cccccc}\text { VI } & 4 & 9 & \text { ischium fragment } & \text { probable right } & \text { small in size } \\ \hline \text { VI } & 4 & 10 & \begin{array}{c}\text { cervical vertebra } \\ \text { fragment }\end{array} & & \text { body } \\ \hline \text { VI } & 4 & 11 & \text { femur fragment } & \text { left } & \begin{array}{c}\text { fragment of the } \\ \text { condyles, adult }\end{array} \\ \hline \text { VI } & 4 & & & & \begin{array}{c}\text { fragment of one of } \\ \text { the condyles, does not } \\ \text { cross mend with } \\ \text { number 11 }\end{array} \\ \hline \text { VI } & 4 & 12 & \text { femur fragment } & \text { unidentified } & \text { unidentified }\end{array} \begin{array}{c}\text { adult, badly } \\ \text { deteriorated }\end{array}\right] \begin{array}{c}\text { adult, cannot identify } \\ \text { further }\end{array}\right]$
$\left.\begin{array}{cccccc}\text { VI } & 4 & 19 & \text { rib fragment } & \text { left } & \begin{array}{c}\text { adult, neck fragment, } \\ \text { mid rib }\end{array} \\ \hline \text { VI } & 4 & 20 & \text { rib fragment } & \text { undetermined } & \begin{array}{c}\text { adult, shaft fragment, } \\ \text { mid rib }\end{array} \\ \hline \text { VI } & 4 & 21 & \text { rib fragment } & \text { right } & \begin{array}{c}\text { adult, neck fragment, } \\ \text { mid rib }\end{array} \\ \hline \text { VI } & 4 & 22 & \text { rib fragment } & \text { undetermined } & \begin{array}{c}\text { adult, shaft fragment, } \\ \text { mid rib }\end{array} \\ \hline \text { VI } & 4 & 23 & \text { rib fragment } & & \text { adult, neck fragment, } \\ \text { mid rib }\end{array}\right]$
some of the articular
facets

VI	4	33	humerus fragments	left	adult, shaft fragments, cracking	
VI	4	34	cranial fragments	undetermined	adult, 40 + fragments	
VI	4	35	long bone fragments	undetermined	adult, 16 large long bone fragments	
VI	4	36	sternal fragment		superior portion of the sternum	
VI	4	37	ilium fragment	undetermined	blade fragment	
VI	4	38	unidentifiable fragments	undetermined	85+	
VI	6	1	canine	right	probable right upper canine with IK modification	
VI	8	1	radius fragment	right	proximal fragment, head with most of the shaft	21.71 head diameter, 13.6 medial to lateral, 10.92 anterior to posterior
VI	8	2	ulna fragment	right	proximal fragment	13.80 mm lateral to medial, 12.63 mm anterior to superior
VI	8	3	rib fragment	right	vertebral end fragment, middle rib	
VI	8	4	rib fragment	left	shaft fragment	
VI	8	5	rib fragment	left	shaft fragment, possibly rib 10	

$\left.\begin{array}{ccccccc}\text { VI } & 8 & 6 & \text { rib fragment } & \text { possible left } & \text { shaft fragment } & \\ \hline \text { VI } & 8 & 7 & \text { rib fragment } & \text { right } & \text { vertebral end } \\ \text { fragment }\end{array}\right]$

VI	8	24	capitate	right	
VI	8	25	trapezium	right	
VI	8	26	trapezoid	right	
VI	8	27	vertebra fragment		body only, probably a cervical vertebra
VI	8	28	rib fragment	undetermined	shaft fragment
VI	8	29	faunal	undetermined	shaft fragment, seems distorted morphologically
VI	8	30	faunal	undetermined	
VI	8	31	rib fragment	undetermined	rib 1 or 2 shaft fragment
VI	8	32	shaft fragment	undetermined	subadult, unfused epiphysis on one end
VI	8	33	tibia fragment	probable right	shaft fragment, most of the length but a horrible fragment
VI	8	34	thoracic vertebra fragment		body fragment, T 310
VI	8	35	femur fragment	undetermined	condyle fragment
VI	8	36	vertebra fragment		probably thoracic based on size and shape of the body
VI	8	37	fifth metatarsal fragment	right	proximal and shaft fragment
VI	8	38	second metatarsal fragment	right	proximal and shaft fragment
VI	8	39	tarsal fragment	undetermined	
VI	8	40	tarsal fragment	undetermined	

VI	8		41	distal manual phalanx	undetermined		16.03 mm
VI	8		42	rib fragment	undetermined	shaft fragment	
VI	8		43	clavicle fragment	undetermined	shaft fragment	
VI	8		44	ulna fragment	undetermined	shaft fragment	
VI	8		45	possible clavicle fragment	undetermined	shaft fragment	
VI	8		46	60+ unidentified fragments	undetermined		
VI	9		1	mandible fragment			
VI	9		2	mandible fragment			
VI	9		3	os coxa fragment	undetermined		
VI	9		4	os coxa fragment	undetermined		
VI	9		5	os coxa fragment	undetermined		
VI	9		6	os coxa fragment	undetermined		
VI	9		7	os coxa fragment	undetermined		
VI	9		8	os coxa fragment	undetermined		
VI	9		9	os coxa fragment	undetermined		
VI	9		10	cranial fragments	undetermined		
VI	11	C	1	rib	right	almost complete, calcite and mud	
VI	11	C	2	thoracic vertebra		almost complete, calcite and mud, probably T3-6	
VI	11	C	3	radius fragment	left	proximal fragment	20.63 mm head diameter
VI	11	C	4	3 unidentified fragments	undetermined	shaft fragments	

VI	12	1	ilium fragment	right	phase 1 for auricular surface, age 20-24, no transverse organization, billows	
VI	12	2	rib fragment	right	vertebral end fragment	
VI	12	3	rib fragment	right	vertebral end fragment	
VI	12	4	clavicle fragment	undetermined	shaft fragment	
VI	12	5	rib fragment	undetermined	shaft fragment	
VI	12	6	os coxa fragment	probable left	acetabular fossa fragment, small	
VI	12	7	first metatarsal	right	calcite and carbon, much like everything else in this deposit	58.6 mm
VI	12	8	intermediate manual phalanx	undetermined		21.76 mm
VI	12	9	vertebra fragment		probable thoracic vertebra fragment with an articular facet	
VI	12	10	3 os coxa fragment	undetermined	greater sciatic notch fragment is not large enough to determine sex	
VI	12	11	humerus fragment	undetermined	head fragment only	
VI	12	12	rib fragment	undetermined	sternal end fragment	the phase appears to be a phase 2 , age 20.8-23.1

VI	12	13	28 unidentified fragments	undetermined		
VII	1	1	femur fragment	left	head and neck of an adult, head badly damaged - prevents measurement, appears gracile	
VII	1	2	mandible fragment		arc fragment extends from second left molar socket to first right molar. Only tooth present is left lower first molar. Pinched chin suggests male. Set aside for sampling.	10.57 mm lingual to labial, 10.93 anterior to posterior, 6 cusps, wear is mild
VII	1	3	proximal manual phalanx		carbon covered	37.97 mm
VII	1	4	proximal manual phalanx		pronounced ridges on the lateral margins, carbon covered	40.86 mm
VII	1	5	second metatarsal	left	adult, carbon covered	
VII	1	6	rib fragment	right	adult, carbon covered, vertebral end fragment	
VII	1	7	rib fragment	left	adult, carbon covered, vertebral end fragment	
VII	1	8	rib fragment	undetermined	shaft, adult	
VII	1	9	rib fragment	undetermined	shaft, adult	

vertebral end, neck,
and most of the shaft,

VII	1	10	rib fragment	left	carbon covered	
VII	1	11	rib fragment	undetermined	shaft adult fragment, carbon covered	
VII	1	12	rib fragment	undetermined	shaft adult fragment, carbon covered	
VII	1	13	rib fragment	undetermined	shaft adult fragment, carbon covered	
VII	1	14	rib fragment	undetermined	shaft adult fragment, carbon covered	
VII	1	15	rib fragment	undetermined	shaft adult fragment, carbon covered	
VII	1	16	parietal fragment	right	adult, appears healthy	
VII	1	17	humerus fragment	undetermined	adult, shaft fragment, covered in carbon	
VII	1	18	second metacarpal	right	adult, covered in carbon	63.99 mm
VII	1	19	second metacarpal	left	adult, covered in carbon	66.3 mm
VII	1	20	fifth metatarsal	left	adult, covered in carbon	65.76 mm
VII	1	21	humerus	left	adult, complete, trochlea is spool like with a wide angle, medial epicondyle is level, fossa is triangular	44.81 mm head diameter, 32 cm in length

VII	1	22	sternal fragment		covered with carbon, possible subadult, three sternal facets present on the fragment
VII	1	23	first proximal manual phalanx fragment	undetermined	distal fragment, covered in carbon
VII	1	24	ulna fragment	right	distal fragment, covered in carbon
VII	1	25	vertebra fragment		unfused body of a cervical or thoracic belonging to a subadult
VII	1	26	vertebra fragment		unfused pedicle of a cervical or thoracic vertebra with superior articular facet
VII	1	27	metacarpal fragment	undetermined	shaft and upper distal portion of an adult metacarpal
VII	1	28	2 tibia fragments	undetermined	broke in transit, two shaft fragments, one had part of the medial malleolus, adult, covered in carbon
VII	1	29	femur fragment	undetermined	adult, condyle fragment, covered in carbon
VII	1	30	rib fragment	undetermined	vertebral end of rib 3- 10

VII	1	31	rib fragment	undetermined	adult, shaft fragment, covered in carbon	
VII	1	32	rib fragment	undetermined	adult, shaft fragment, covered in carbon	
VII	1	33	vertebra fragment		body fragment, too fragmentary to identify further	
VII	1	34	vertebra fragment		body fragment, too fragmentary to identify further	
VII	1	35	27 humerus fragments			
VII	1	36	124 unidentified fragments		mostly long bone fragments	
VII	1	37	proximal manual phalanx		adult, very defined lateral margins	42.54 mm
VII	1	38	fifth metatarsal	right	adult, covered with some carbon, eburnation on the proximal facet	
VII	1	39	fourth metatarsal	left	adult, covered with carbon	70.34 mm
VII	1	40	fifth metacarpal	right	adult, defined muscle attachments on palmar surface	51.70 mm
VII	1	41	humerus fragment	right	probable subadult, proximal head fragment only, possibly belonging to the same humerus	36.34 mm head diameter

shaft fragments for number 42

VII	1	42	humerus fragments		shaft fragments of a subadult	$\begin{aligned} & 16.21 \mathrm{~mm} \text { ant to } \\ & \text { post, } 15.67 \mathrm{~mm} \\ & \text { lateral to medial } \end{aligned}$
VII	1	43	cervical vertebra		adult, probably c 3-6, superior articular facets have lipping and indicate arthritis (especially the left one), similarly on the inferior right facet, lipping on the body as well	
VII	1	44	lumbar vertebra		probably L 1, damage to the right lamina, lightly covered in carbon, lipping on the superior margin of the body with small spondylophyte formation, pinching of the body in the anterior margin	
VII	1	45	first metacarpal	left	adult, light carbon covering	45.53 mm
VII	1	46	third metacarpal	right	adult, light carbon covering, defined muscle attachments	58.25 mm

VII	1	47	proximal pedal phalanx		adult, light carbon covering	26.3 mm
VII	1	48	proximal pedal phalanx		adult, light carbon covering, slight eburnation on proximal facet.	27.8 mm
VII	1	49	third metatarsal fragment		, proximal and shaft fragment	
VII	1	50	talus	right	damaged and covered in carbon, possible subadult due to size	
VII	1	51	clavicle	right	adult	14.97 cm length, superior to inferior 8.80 mm , 12.08 mm anterior to posterior
VII	1	52	scapula fragments	right	adult, two fragments of the spine and acromion	
VII	1	53	clavicle fragment	probable left	healed shaft fracture, damage to the medial and lateral sides, no active healing, indicating it occurred long before death	
VII	1	54	first metatarsal fragment	probable right	distal fragment, covered in carbon	

VII	1	55	mandible fragment	right	right ramus fragment, covered with some carbon, taphonomic damage has changed morphology, probably an older individual due to an absence and reabsorption of the second and third molars	
VII	1	56	mandible fragment	left	fragment of the arc, no teeth, reabsorption apparent, taphonomic damage to the morphology of the fragment	
VII	1	57	first metacarpal	right	adult, possible button osteoma	44.48 mm
VII	1	58	first metatarsal	right	adult, slight damage to proximal end	54.47 mm
VII	1	59	scapula fragment	left	adult, fragment of the glenoid	$\begin{gathered} \text { height } 32.08 \text {, } \\ 22.59 \mathrm{~mm} \text { width } \end{gathered}$
VII	1	60	rib fragment	undetermined	adult, shaft fragment	
VII	1	61	rib fragment	undetermined	adult, shaft fragment	
VII	1	62	rib fragment	left	second rib, most of the rib, adult	
VII	1	63	rib fragment	right	vertebral fragment	

					covered with carbon	
VII	1	70	rib fragment	undetermined	shaft fragment, adult, covered with carbon	
VII	1	71	rib fragment	right	vertebral fragment, adult, covered with carbon, slightly deformed possibly	
VII	1	72	rib fragment	right	vertebral fragment, adult, covered with carbon	
VII	1	73	rib fragment	right	vertebral fragment, adult, covered with carbon	
VII	1	74	rib fragment	left	first rib	
VII	1	75	radius fragment	left	adult, shaft fragment, covered in carbon	15.25 mm medial to lateral, 10.66 mm anterior to posterior
VII	1	76	second metacarpal fragment	right	adult, proximal fragment, covered with carbon, well defined muscle attachment	
VII	1	77	scapula fragment	undetermined	medial border fragment from an adult, covered in carbon	
VII	1	78	radius fragment	left	distal fragment, covered in carbon, adult, button osteoma	

					present on the medial surface	
VII	1	79	rib fragment	undetermined	shaft fragment, upper rib, covered in carbon	
VII	1	80	rib fragment	right	vertebral end fragment, adult, covered in carbon, rib 3-6 probably	
VII	1	81	rib fragment	undetermined	shaft fragment, upper rib, covered in carbon	
VII	1	82	rib fragment	right	neck fragment, adult, covered in carbon, rib 3-6 probably	
VII	1	83	rib fragment	undetermined	shaft fragment, upper rib, covered in carbon	
VII	1	84	lumbar vertebra fragment		body with left transverse process and superior articular facet, adult, covered in carbon, lipping, spondylophytes forming on the superior margin of the body	
VII	1	85	first metacarpal	right	adult, covered in carbon	42.44 mm
VII	1	86	proximal manual phalanx		adult, covered in carbon, lateral margins are well	42.05 mm

defined

VII	1	87	proximal pedal phalanx		adult, covered in carbon	22.30 mm
VII	1	88	first proximal pedal phalanx		adult, covered in carbon, bone remodeling on the distal end of the foot	
VII	1	89	proximal manual phalanx fragment		adult, covered in carbon, proximal fragment	
VII	1	90	cervical vertebra fragment		second cervical vertebra, most of the left side is present, adult, covered in carbon, inferior articular facet is arthritic	
VII	1	91	vertebra fragment		probably lumbar fragment, adult, covered in carbon, body fragment with part of a transverse process	
VII	1	92	metacarpal fragment		adult, covered in carbon, shaft and head fragment	
VII	1	93	first metatarsal fragments	left	head and proximal fragment, adult, covered in carbon, do	

not cross mend

VII	1	94	ulna fragment	undetermined	shaft fragment	
VII	1	95	thoracic vertebra fragment		body fragment, adult, slight lipping, taphonomic damage, covered in carbon, probably T2-8 based on size	
VII	1	96	talus	left	badly detonated, small, adult, covered in carbon	
VII	1	97	vertebra fragment		probably a thoracic transverse process fragment, adult, covered in carbon	
VII	1	98	vertebra fragment		adult, body fragment, covered in carbon, slight lipping	
VII	1	99	first proximal pedal phalanx		adult, covered in carbon	33.81 mm
VII	1	100	rib fragment	undetermined	adult, covered in carbon, vertebral end fragment	
VII	1	101	vertebra fragment		adult, covered in carbon, spinous process	
VII	1	102	first metatarsal fragment	left	adult, covered in carbon	

VII	1	103	first proximal pedal phalanx fragment		adult, covered in carbon
VII	1	104	rib fragment	undetermined	shaft fragment, adult, covered in carbon
VII	1	105	proximal manual phalanx fragment		adult, lateral ridges slightly developed, covered in carbon
VII	1	106	rib fragment	left	adult, vertebral fragment, covered in carbon
VII	1	107	femur fragment	undetermined	condyle fragment
VII	1	108	ischium fragment	undetermined	adult, covered with carbon
VII	1	109	rib fragment	undetermined	adult, shaft fragment, covered in carbon
VII	1	110	clavicle fragment	left	shaft fragment, gracile, covered in carbon
VII	1	111	vertebra fragment		probable cervical fragment with articular facet, covered in carbon
VII	1	112	12 unidentified fragments		
VII	1	113	cervical vertebra		probably C2-5, major arthritis on inferior margin of the body and the inferior articular facets
VII	1	114	cervical vertebra		probably C4-6

VII	1	115	thoracic vertebra fragment		transverse processes are broken, abnormal growth on the anterior portion of the body that runs superior to inferior, no more than a cm in width	
VII	1	116	thoracic vertebra fragment		body only, abnormal growth on the anterior portion of the body that runs superior to inferior, no more than a cm in width	
VII	1	117	thoracic vertebra		probably the 10th	
VII	1	118	thoracic vertebra		probably the 11th, some spondylophyte formation and anterior margin of the body is slightly pinched	
VII	1	119	lumbar vertebra		fourth lumbar, spondylophytes on the superior margin	
VII	1	120	radius fragment	right		
VII	1	121	rib fragment	right	sternal end, subadult	
VII	1	122	thoracic vertebra fragment		body fragment with one superior articular facet	
VII	1	123	proximal manual phalanx			40.69 mm

VII	1	138	rib fragment	left	neck fragment, some calcite, lower rib
VII	1	139	thoracic vertebra fragment		lamina and spine fragment of a mid thoracic, adult, slight calcite
VII	1	140	cervical vertebra		adult, complete, mid to lower cervical
VII	1	141	ulna fragment		adult, distal fragment, dorsal tubercle is highly defined
VII	1	142	rib fragment	left	adult, sternal end, calcite, mid rib
VII	1	143	rib fragment	right	adult, sternal end, calcite, lower rib
VII	1	144	humerus fragment	left	adult, distal fragment of the shaft right above the medial epicondyle and fossa, calcite
VII	1	145	calcaneus	right	posterior portion, adult, calcite and carbon
VII	1	146	thoracic vertebra		adult, mostly complete, some damage to the lamina and spine on the left side, calcite, mid thoracic

VII	1		147	thoracic vertebra		adult, T12 probably due to full costal facet position, damage to the lamina, body is slightly pinched on the anterior margin, syndesmophytes mostly on the inferior anterior margin	
VII	1		148	calcaneus fragment	right	adult, fragment of the superior facets	
VII	2	a	1	radius fragment	unidentifiable	adult shaft fragment	
VII	2	a	2	proximal pedal phalanx		adult shaft fragment	22.21 mm
VII	2	a	3	probable second metatarsal	right	adult, covered in calcite	67.27 mm
VII	2	a	4	fifth metatarsal	undetermined	adult, covered with calcite, and bone fragments are fused together with calcite at the distal portion, thus preventing siding	
VII	2	a	5	6 shaft fragments			
VII	2	a	6	19 unidentified fragments			
VII	1		1	long bone fragment		Duplicate number	
VII	1		2	long bone fragment		Duplicate number	
VII	1		3	cranial fragment		Duplicate number	
VII	1		4	cranial fragment		Duplicate number	

VII	1	5	proximal pedal phalanx	undetermined	Duplicate number, adult, calcite and carbon	22.81 mm
VII	1	6	proximal manual phalanx	undetermined	Duplicate number, adult, calcite, defined lateral margins	33.96 mm
VII	1	7	proximal manual phalanx	undetermined	Duplicate number, adult, first digit, calcite and carbon	33.87 mm
VII	1	8	intermediate manual phalanx	undetermined	Duplicate number, adult, calcite and carbon, defined lateral ridges	25.94 mm
VII	1	9	proximal manual phalanx		Duplicate number, adult, lateral margins are pronounced	42.31 mm
VII	1	10	proximal manual phalanx		Duplicate number, adult, lateral margins are pronounced, small bone spurs on the distal lateral margins, probably the first digit	32.26 mm
VII	1	11	proximal manual phalanx		Duplicate number, adult, lateral margins are pronounced	41.77 mm
VII	1	12	greater multangular	left	Duplicate number, adult, calcite and carbon	

VII	1	13	intermediate manual phalanx	undetermined	Duplicate number, adult, lateral margins are pronounced	29.94 mm
VII	1	14	intermediate manual phalanx	undetermined	Duplicate number, adult, lateral margins are pronounced	21.63 mm
VII	1	15	manual phalanx fragment	undetermined	Duplicate number, adult, distal fragment of a proximal or intermediate phalanx	
VII		16	first metatarsal fragment	left	Duplicate number, adult, proximal fragment, additional bone growth and porosity on the proximal facet, possibly arthritis or early stage gout	
VII	1	17	fifth metatarsal	left	Duplicate number, adult, not the same person as 18 , calcite and carbon	58.69 mm
VII	1	18	fifth metatarsal	right	Duplicate number, adult, not the same person as 17, calcite and carbon	66.62 mm
VII	1	19	second metacarpal	left	Duplicate number, adult, calcite, possible gout or arthritis on the proximal facet	65.78 mm

VII	1	20	first metatarsal	right	Duplicate number, adult, smaller than 16 , so probably not the same person	58.34 mm
VII	1	21	second metacarpal fragment	left	Duplicate number, adult, proximal and shaft fragment, head missing, some damage to the proximal facets	
VII	1	22	fourth metatarsal fragment	left	Duplicate number, adult, proximal fragment, some porosity on the proximal facet	
VII	1	23	fifth metacarpal	right	Duplicate number, adult, calcite and carbon, bone spurs on the posterior proximal surface	51.67 mm
VII	1	24	fifth metatarsal	right	Duplicate number, adult, probably the mate to 17 , calcite and carbon	60.43 mm
VII	1	25	third metatarsal	left	adult, calcite and carbon	66.13 mm
VII	1	26	thoracic vertebra fragment		Duplicate number, adult, body fragment, mid thoracic region, body margins is not lipping but is	

becoming irregular due to compression

VII	1	27	thoracic vertebra		Duplicate number, adult, slight damage to the left inferior articular facet, probably T12, due to the position of the full costal facet, some macroporosity of the body
VII	1	28	rib fragment	right	Duplicate number, vertebral end, adult, mid rib
VII	1	29	rib fragment	left	Duplicate number, sternal end, adult, calcite and carbon, mid rib
VII	1	30	rib fragment	right	Duplicate number, vertebral end, adult, mid rib
VII	1	31	rib fragment	undetermined	Duplicate number, sternal end, adult, calcite and carbon, mid rib, appears young due to smooth margins

VII	1	32	rib fragment	undetermined	Duplicate number, shaft fragment, lower rib, some irregular growth on the surface of the bone, no porosity, adult,
VII	1	33	rib fragment	undetermined	Duplicate number, sternal fragment, adult, calcite and carbon, irregular margins and thickening on the interior surface is suggestive of a healed break, mid rib
VII	1	34	rib fragment	undetermined	Duplicate number, sternal end, mid rib, adult, calcite and carbon
VII	1	35	rib fragment	left	Duplicate number, neck fragment, lower/mid rib, carbon and calcite, adult
VII	1	36	cervical vertebra		Duplicate number, damage to the transverse processes, major arthritis, pinching of the body, lipping and syndesmophytes, adult, calcite and

carbon, lower cervical

VII	1	37	cervical vertebra	Duplicate number, upper cervical, damage to the spine and left transverse process, slight lipping on the inferior margin of the anterior portion of the body
VII	1	38	thoracic vertebra fragment	Duplicate number, body fragment, adult, mid thoracic region, calcite and carbon
VII		39	thoracic vertebra fragment	Duplicate number, body fragment, adult, mid thoracic region, calcite and carbon, slight lipping on the inferior margin of the body
VII	1	40	lumbar vertebra fragment	Duplicate number, part of a body and the transverse process with an articular facet, adult, carbon and calcite

Duplicate number, adult, upper thoracic, some visible porosity

VII	1	thoracic vertebra	Duplicate number, adult, mid thoracic, right superior articular facet is	
VII	1			broken off, some porosity in the body
VII	1	42	thoracic vertebra	Duplicate number, adult, damage to the transverse processes, lipping on the body
				thoracic vertebra

VII	1	47	vertebra fragment		Duplicate number, adult, probably a lumbar body fragment, anterior pinching and lipping, crushed body
VII	1	48	thoracic vertebra fragment		Duplicate number, adult, possibly T11, most of the body, some slight lipping
VII	1	49	rib fragment	right	Duplicate number, adult, first rib, vertebral end, almost complete, calcite and carbon
VII	1	50	rib fragment	right	Duplicate number, adult, vertebral end fragment, mid rib, calcite and carbon
VII	1	51	rib fragment	right	Duplicate number, adult, neck fragment, upper rib, calcite and carbon
VII	1	52	rib fragment	left	Duplicate number, adult, vertebral end fragment, possibly 12th rib, calcite and carbon
VII	1	53	rib fragment	undetermined	Duplicate number, adult, shaft fragment, mid to lower rib

Duplicate number, adult, shaft fragment,

VII	1	54	rib fragment	undetermined	mid to lower rib
VII	1	55	rib fragment	undetermined	Duplicate number, adult, shaft fragment, mid to lower rib
VII	1	56	rib fragment	undetermined	Duplicate number, adult, shaft fragment, mid to lower rib, calcite and carbon
VII	1	57	rib fragment	left	Duplicate number, adult, neck fragment, upper rib, calcite and carbon
VII	1	58	rib fragment	right	Duplicate number, adult, neck fragment, middle rib, calcite and carbon
VII	1	59	rib fragment	right	Duplicate number, adult, neck fragment, middle rib, calcite and carbon
VII	1	60	rib fragment	undetermined	Duplicate number, adult, shaft fragment, mid to lower rib
VII	1	61	rib fragment	undetermined	Duplicate number, adult, shaft fragment, mid to lower rib
VII	1	62	rib fragment	right	Duplicate number, adult, vertebral

fragment, mid rib

VII	1	rib fragment	right	Duplicate number, adult, vertebral end, possibly 12th rib	
VII	1	63	rib fragment	left	Duplicate number, adult, neck fragment, upper rib, calcite and carbon
VII	1	64	rib fragment	left	Duplicate number, adult, vertebral end fragment, mid rib, calcite and carbon
VII	1	65	rib fragment		left

damage to identify

VII	1	71	clavicle fragments	left	Duplicate number, adult, two lateral fragments that cross mend
VII	1	72	tibia fragment	undetermined	Duplicate number, proximal fragment, adult, calcite and carbon, not complete, may be the same as 73 and 74
VII	1	73	tibia fragment	undetermined	Duplicate number, proximal fragment, adult, calcite and carbon, not complete, may be the same as 72 and 74
VII	1	74	tibia fragment	undetermined	Duplicate number, proximal fragment, adult, calcite and carbon, not complete, may be the same as 73 and 72
VII	1	75	humerus fragment	right	Duplicate number, adult, distal fragment, with only the anterior portion of the medial epicondyle and the medial portion of the

trochlea, calcite and carbon

VII	1	navicular	probable left		Duplicate number, adult, plantar portion of the navicular, calcite and carbon
VII	1	76	cuboid	left	Duplicate number, adult, distal fragment, calcite and carbon
VII	1	77	radius fragment	undetermined	Duplicate number, adult, head only, too incomplete to measure, looks small
VII	1	79	rib fragment	undetermined	Duplicate number, shaft fragment, adult, calcite and carbon
VII	1	80	rib fragment	undetermined	Duplicate number, shaft fragment, adult, calcite and carbon
VII	1	81	rib fragment	undetermined	Duplicate number, shaft fragment, adult, calcite and carbon
VII	1	82	rib fragment	undetermined	Duplicate number, shaft fragment, adult, calcite and carbon

VII	1	84	rib fragment	undetermined	Duplicate number, shaft fragment, adult, calcite and carbon
VII	1	85	rib fragment	undetermined	Duplicate number, shaft fragment, adult, calcite and carbon
VII	1	86	rib fragment	undetermined	Duplicate number, shaft fragment, adult, calcite and carbon
VII	1	87	rib fragment	undetermined	Duplicate number, shaft fragment, adult, calcite and carbon
VII	1	88	rib fragment	right	Duplicate number, vertebral end, adult, calcite and carbon, upper rib
VII	1	89	cuboid	right	Duplicate number, adult, complete, kind of small
VII	1	90	humerus fragment	possible left	Duplicate number, distal fragment of most of the trochlea, adult, calcite and carbon
VII	1	91	ulna fragment	right	Duplicate number, proximal fragment of the olecranon, adult, calcite and carbon, bone spurs developing on the most proximal

VII	1	92	metatarsal fragment	undetermined	Duplicate number, adult, distal fragment, calcite and carbon
VII	1	93	manual phalanx fragment	undetermined	Duplicate number, adult, distal fragment, additional growth on the palmar surface, calcite and carbon
VII	1	94	metacarpal fragment	undetermined	Duplicate number, adult, shaft fragment
VII	1	95	fibula fragment	undetermined	Duplicate number, adult, shaft fragment, calcite and carbon
VII	1	96	radius fragment	undetermined	Duplicate number, adult, shaft fragment, some carbon
VII	1	97	scapula fragment	undetermined	Duplicate number, adult, body fragment, carbon
VII	1	98	scapula fragment	undetermined	Duplicate number, adult, margin
VII	1				
scapula fragment	undetermined	Duplicate number, adult, neck fragment, calcite and carbon			

fragment, carbon

VII	1	101	scapula fragment	undetermined	Duplicate number, adult, possible left, inferior margin, carbon
VII	1	102	cranial fragments	undetermined	Duplicate number, adult, 16 small cranial fragments, some are parietal and frontal it appears, carbon
VII	1	103	cervical vertebra fragment		Duplicate number, adult, upper cervical, lamina and spine fragment
VII	1	104	cervical vertebra fragment		Duplicate number, adult, body fragment, not the same as 103 , carbon
VII	1	105	thoracic vertebra fragment		Duplicate number, adult, lamina fragment of a lower thoracic with inferior articular facets and the left superior articular facet (with some evidence of lipping

VII	1	106	lumbar vertebra fragment	Duplicate number, adult, anterior body fragment, with part of the left transverse process, heavily covered in carbon
VII	1	107	thoracic vertebra fragment	Duplicate number, adult, left transverse process, articular facets, left portion of the lamina and the spine, upper thoracic
VII	1	108	cervical vertebra fragment	Duplicate number, adult, possibly lower cervical, spine and most of the lamina
VII	1	109	thoracic vertebra fragment	Duplicate number, adult, posterior body fragment, carbon
VII	1	110	thoracic vertebra fragment	Duplicate number, adult, transverse process, carbon
VII	1	111	thoracic vertebra fragment	Duplicate number, adult, transverse process, carbon
VII	1	112	thoracic vertebra fragment	Duplicate number, adult, spinous process
VII	1	113	lumbar vertebra fragment	Duplicate number, adult, transverse process, carbon

VII	1	114	lumbar vertebra fragment		Duplicate number, adult, transverse process, carbon
VII	1	115	cervical vertebra fragment		Duplicate number, adult, lamina fragment
VII	1	116	thoracic vertebra fragment		Duplicate number, adult, transverse process, carbon
VII	1	117	thoracic vertebra fragment		Duplicate number, adult, transverse process, carbon
VII	1	118	thoracic vertebra fragment		Duplicate number, adult, superior or inferior portion of an upper thoracic body, carbon
VII	1	119	thoracic vertebra fragment		Duplicate number, adult, lamina fragment of a lower thoracic with inferior articular facets
VII	1	120	lumbar vertebra fragment		Duplicate number, adult, transverse process, carbon
VII	1	121	maxilla fragment	undetermined	Duplicate number, probable adult, carbon, anterior teeth root sockets, lost post mortem

VII	1	122	lumbar vertebra fragment		Duplicate number, adult, inferior articular facet, carbon	
VII	1	123	vertebra fragment		Duplicate number, adult, anterior body fragment, possibly a thoracic based on height	
VII	1	124	ischium fragment	undetermined	adult, carbon	
VII	1	125	cranial fragments	undetermined	6 cranial fragments, carbon and calcite	
VII	1	126	26 long bone fragments	undetermined		
VII	1	127	91 unidentified fragments	undetermined		
VII	11	 1	lumbar fragment		possible L3, adult, fragment of superior articular facet and right transverse process	
VII	11	2	femur fragment	left	proximal fragment with head and upper portion of the shaft	$\begin{gathered} 32.83 \mathrm{~mm} \text { head } \\ \text { diameter } \\ \hline \end{gathered}$
VII	11	3	rib fragment	probable left	sternal fragment, damage to the sternal end, unable to age	
VII	11	4	rib fragment	right	vertebral end fragment	
VII	11	5	ulna fragment	undetermined	shaft fragment	

$\left.\begin{array}{lccccc} & & & & \begin{array}{c}\text { shaft fragment, badly } \\ \text { deteriorated, } \\ \text { measurements cannot } \\ \text { be made }\end{array} \\ \text { VII } & 12 & 1 & \text { humerus fragment } & \text { undetermined } & \text { probably 3-9 } \\ \hline \text { VII } & 12 & 2 & \text { thoracic vertebra } & & \text { undetermined } \\ \hline \text { VII } & 12 & 3 & \text { femur fragment } & \text { shaft fragment } \\ \hline \text { VII } & 12 & 4 & \text { fibula fragment } & \text { undetermined } & \text { shaft fragment } \\ \hline \text { VII } & 12 & 5 & \text { radius fragment } & \text { undetermined } & \text { shaft fragment } \\ \hline \text { VII } & 12 & 6 & \begin{array}{c}\text { fourth metatarsal } \\ \text { fragment }\end{array} & \text { right } & \text { proximal fragment } \\ \hline \text { VII } & 12 & 7 & \text { third metacarpal } & \text { left } & \\ \hline \text { VII } & 12 & 8 & \text { humerus fragment } & \text { undetermined } & \text { proximal humerus } \\ \text { head epiphysis }\end{array}\right]$
what it is

VII	12	16	radius fragment	possible left	distal shaft fragment, child over 5	
VII	12	17	rib fragment	undetermined	shaft fragment	
VII	12	18	rib fragment	undetermined	shaft fragment	
VII	12	19	first proximal pedal phalanx			28.82 mm
VII	12	20	humerus fragment	possible left	proximal subadult fragment, older than 5 years	
VII	12	21	os coxa fragment	undetermined	young child, lunate surface is not developed yet	
VII	12	22	vertebra fragment		transverse process of a thoracic vertebra	
VII	12	23	ulna fragment	probable right	proximal fragment	
VII	12	24	molar		lower left, 6 cusps?	13.04 mm anterior to posterior, 10.93 mm lingual to buccal, 7.65 mm height
VII	12	25	rib fragment	undetermined	sternal end fragment, stage $2 / 3$, age $20.8-$ 27.7	
VII	12	26	0+ unidentified shaft fragments			

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VII \& 12 \& \& 27 \& 52 unidentified fragments \& \& a few shaft fragments, possibly a fibula, radius, and ulna

\hline VIII \& ren

1 \& a \& - \& Cervical Vertebra \& \& 1st vertebra, adult, gray calcium carbonate, left articular facets are broken but the piece is there

\hline VIII \& \& a \& 5 \& Thoracic Vertebra \& \& adult, calcium carbonate is grey, Enlarged inferior demi facets with lipping, syndesmophytes on the right and anterior superior surface, possible Schmorl's node on inferior surface

\hline VIII \& 1 \& a \& 6 \& Cuboid \& Right \& adult, grey calcium carbonate, slight fire blackening underneath

\hline VIII \& 1 \& a \& 8 \& Thoracic Vertebra \& \& adult, fire blackened, taphonomic damage to the body, slight lipping on the inferior margin of the body, superior demi facet is much larger than the

\hline
\end{tabular}

inferior ones

VIII	1	a	9	Probable Femur Fragment	Undetermined	Relatively small proximal end, no greater trochanter or head fused	25.75 mm epiphysis width
VIII	1	a	11	Rib fragment	Possible Left	Shaft fragment, grayish calcium carbonate, middle rib, adult	
VIII	1	a	12	Rib fragment	Right	Vertebral end fragment, probably an adult, grey calcium carbonate	
VIII	1	a	13	Rib fragment	Right	angle/shaft fragment of an adult, calcium carbonate with fire blackening	
VIII	1	a	14	Rib fragment	Right	Vertebra end, child, possible middle rib	
VIII	1	a	15	Rib fragment	Undetermined	Child, sternal end, grayish calcium carbonate	
VIII	1	a	16	Rib fragment	Left	Child, relatively complete, grayish calcium carbonate, middle rib	

VIII	1	a	17	Rib fragment	Left	Child, relatively complete, grayish calcium carbonate, upper 6, fused with another sternal end fragment
VIII	1	a	18	Rib fragment	Right	Child, sternal end, grayish calcium carbonate
VIII	1	a	19	Rib fragment	Right	Sternal fragment, child, grayish calcium carbonate
VIII	1	a	20	Rib fragment	Left	Sternal fragment, child, grayish calcium carbonate
VIII	1	a	21	Rib fragment	Right	Sternal fragment, child, grayish calcium carbonate
VIII	1	a	22	Rib fragment	Right	Shaft fragment, grayish calcium carbonate, middle rib, adult
VIII	1	a	23	Rib fragment		
VIII	1	a	24	Rib fragment	Left	Child, relatively complete, grayish calcium carbonate, upper 6 , fused with another sternal end fragment
VIII	1	a	25	Shaft fragment		

VIII	1	a	26	Shaft fragment	Undetermined	Too much calcium carbonate on the fragment prevents identification
VIII	1	a	27	Ulna	Left	Perinate, covered in calcium carbonate and fire blackening
VIII	1	a	28	Lesser Multangular	Left	adult, grey calcium carbonate, slight fire blackening underneath
VIII	1	a	29	Zygomatic	Right	adult, grey calcium carbonate, slight fire blackening underneath
VIII	1	a	30	Vertebra Fragment		Spinous process, grayish calcium carbonate, with fire blackening, adult
VIII	1	a	31	Second Cuneiform	Right	adult, grey calcium carbonate, slight fire blackening underneath
VIII	1	a	32	Ilium	Right	Perinate, covered in calcium carbonate and fire blackening
VIII	1	a	33	Third cuneiform	Right	adult, grey calcium carbonate, slight fire blackening underneath

VIII	1	a	34	Hamate	Left	adult, grey calcium carbonate, slight fire blackening underneath	
VIII	1	a	35	5th sacral vertebra		Perinate, covered in calcium carbonate and fire blackening	
VIII	1	a	36	Intermediate phalanx	Undetermined	not completely fused, foot, grayish calcium carbonate	16.23 mm
VIII	1	a	37	Distal phalanx	Undetermined	adult	16.87 mm
VIII	1	a	38	Intermediate phalanx	Undetermined	not completely fused, foot, grayish calcium carbonate	11.31 mm
VIII	1	a	39	Distal phalanx	Undetermined	does not appear completely fused yet	15.20 mm
VIII	1	a	40	Thoracic Vertebra Fragment		Transverse process fragment, adult, covered in a grayish calcium carbonate	
VIII	1	a	41	Distal phalanx	Undetermined	adult, possible 1st phalanx	21.12 mm
VIII	1	a	42	Triquetral	Left	adult, calcium carbonate is grayish with fire blackening	
VIII	1	a	43	Cranial Fragment		Thinness suggests a very young individual, taphonomic breakage	

VIII	1	a	44	Thoracic Neural arch	Right	Perinate, covered in calcium carbonate and fire blackening	
VIII	1	a	45	Cervical Neural arch	Left	Perinate, covered in calcium carbonate and fire blackening	
VIII	1	a	46	Vertebra body		Perinate, probable thoracic	$\begin{gathered} 10.8 \mathrm{~mm} \text { at the } \\ \text { widest } \end{gathered}$
VIII	1	a	47	Fragment			
VIII	1	a	48	Rib fragment	Undetermined	Shaft fragment, grayish coloring, light calcium carbonate covering, adult, middle rib	
VIII	1	a	49	Rib fragment	Right	Shaft fragment, light dusting of grayish calcium carbonate	
VIII	1	a	50	Metacarpal Fragment		Distal fragment with shaft, hand, adult, grayish calcium carbonate	
VIII	1	a	51	Probable Ulna Fragment		Taphonomic cracking prevents more definitive siding, light dusting of gray calcium carbonate	
VIII	1	a	52	Radius Fragment	Right	Shaft Fragment, adult, grayish calcium carbonate	

VIII	1	a	53	5th Metatarsal	Right	adult, heavy coating of grey calcium carbonate on all surfaces	72.66 mm
VIII	1	a	54	4th Metacarpal	Right	Head not yet fused, grayish calcium carbonate	
VIII	1	a	55	Metacarpal Fragment	Undetermined	Possible 3rd Metacarpal, proximal fragment, fire blackened, calcium carbonate	
VIII	1	a	56	1st Rib	Left	adult, grayish calcium carbonate, and fire blackening, vertebral end	
VIII	1	a	57	Lunate	Left	adult, grayish calcium carbonate	
VIII	1	a	58	Femur	Left	Between third trimester and perinate according to Baker, completely covered in grayish calcium carbonate	77.1 mm
VIII	1	a	59	3rd Metacarpal	Left	adult, completely covered in grayish calcium carbonate	61.12 mm
VIII	1	a	60	Radius Fragment	Left	Distal end, adult, grayish calcium carbonate	

VIII	1	a	61	Proximal phalanx		Hand, adult, grayish calcium carbonate	42.19 mm
VIII	1	a	62	5th Metacarpal	Left	adult, light dusting of calcium carbonate	
VIII	1	a	63	Ulna Fragment	Right	Proximal fragment, adult, very slight grayish calcium carbonate	
VIII	1	a	64	3rd Metatarsal	Right	grayish calcium carbonate and fire blackening	69.87 mm
VIII	1	a	65	Intermediate phalanx		Foot, adult, grayish calcium carbonate and fire blackening	
VIII	1	a	66	1st Metacarpal	Left	adult, light dusting of calcium carbonate	34.90 mm
VIII	1	a	67	2nd Metacarpal	Left	adult, light dusting of calcium carbonate	63.11 mm
VIII	1	a	68	Humerus	Right	Perinate, light calcium carbonate	65.67 mm
VIII	1	a	69	Proximal phalanx		Hand, adult, calcium carbonate and fire blackening	40.78 mm
VIII	1	a	70	1st Metatarsal		Foot, child, head and base not fused yet, grayish calcium carbonate,, probably 5-8 years of age	37.55 mm
VIII	1	a	71	Intermediate phalanx		Hand, adult, grayish calcium carbonate on	27.68 mm

all surfaces

VIII	1	a	72	Metacarpal Fragment		Shaft and head, adult, more fire blackening than calcium carbonate
VIII	1	a	73	Radius Fragment	Possible Right	Proximal fragment, taphonomic damage and cracking, fire blackened and light dusting of calcium carbonate
VIII	1	a	74	Thoracic Vertebra		adult, lower thoracic vertebra, single body facet, grayish calcium carbonate on all surfaces.
VIII	1	a	75	Parietal	Left	Possible older child or young adult (temporal suture probably not completely fused)grayish calcium carbonate (more on interior), pitting on interior.
VIII	1	a	76	Occipital Fragment		Possible older child or young adult (sutures not fully fused)grayish calcium

carbonate with more fire blackening

VIII	1	a	77	Rib fragment	Undetermined	Shaft fragment, heavy coating of grayish calcium carbonate, middle rib	
VIII	1	a	78	Rib fragment	Left	Vertebral, angle and shaft fragment, adult, heavy coating of grayish calcium carbonate, upper 6	
VIII	1	a	79	Tibia	Left	~ 1 year old, completely covered in grayish calcium carbonate	66.92 mm
VIII	1	a	80	4th Metatarsal	Right	adult, light dusting of calcium carbonate and fire blackening	63.99 mm
VIII	1	a	81	Calcaneus	Right	adult, grayish calcium carbonate and fire blackening	69.51 mm
VIII	1	a	82	Intermediate phalanx		adult, light gray calcium carbonate, and fire blackening	36.65 mm
VIII	1	a	83	Intermediate phalanx		adult, gray calcium carbonate	42.77 mm
VIII	1	a	84	Fibula Fragment	Right	Distal fragment, adult, grey calcium carbonate.	

VIII	1	a	85	Scapula	Right	~ 1 year old, completely covered in grayish calcium carbonate	
VIII	1	a	86	Rib fragment		Shaft fragment, adult, middle rib, covered in calcium carbonate	
VIII	1	a	87	Rib	Right	Probably 11 or 12 , covered in grey calcium carbonate	
VIII	1	a	88	Rib fragment	Probable Right	Middle rib, adult, slight orangish tint with light coating of calcium carbonate	
VIII	1	a	89	Rib fragment	Left	Upper 6, adult, grayish calcium carbonate	
VIII	1	a	90	Cervical Vertebra		adult, C2, Light dusting of calcium carbonate	
VIII	1	a	91	3rd Metatarsal	Left	Head absent, heavy coating of grey calcium carbonate on the shaft	
VIII	1	a	92	Shaft Fragment			
VIII	1	a	93	Talus	Right	adult, grayish calcium carbonate.	50.46 mm
VIII	1	a	94	Tibia Fragment	left	Proximal fragment, a little over 5 years of age, thick coating of	46.57 mm

VIII	1	a	95	5th Metatarsal	Right	adult, light coating of calcium carbonate with more fire blackening	59.75 mm
VIII	1	a	96	Occipital Fragment		superior portion of the occipital, grayish calcium carbonate	
VIII	1	a	97	4th Metacarpal	Right	Head does not appear to be fused, morphology on proximal end is hazy, more fire blackening than calcium carbonate	
VIII	1	a	98	Basioccipital portion		adult, light grayish calcium carbonate with fire blackening	
VIII	1	a	99	Intermediate phalanx		adult, hand, light grey calcium carbonate with fire blackening	
VIII	1	a	100	Proximal phalanx		adult, hand, more grey calcium carbonate on the palmar surface	31.18 mm
VIII	1	a	101	1st Metacarpal	Right	More calcium carbonate on the palmar surface, some	43.63 mm

						fire blackening on posterior surface, adult	
VIII	1	a	102	Humerus	Left	Same as person in 68, perinate, heavier calcium carbonate with fire blackening	66.79 mm
VIII	1	a	103	Ulna Fragment	possible Right	Distal fragment, grayish calcium carbonate on all surfaces	
VIII	1	a	104	1st Metatarsal	Right	Heavy coating of grayish calcium carbonate	64.34 mm
VIII	1	a	105	Possible fibula		possibly same person as 108, Young child, light dusting of grey calcium carbonate	
VIII	1	a	106	4th Metacarpal	Left	Proximal fragment, missing head, adult, grey calcium carbonate and fire blackening	
VIII	1	a	107	5th Metatarsal	Left	adult, thick layer of grey calcium carbonate	60.81 mm
VIII	1	a	108	Possible fibula		possibly same person as 104, Young child, light dusting of grey calcium carbonate	

VIII	1	a	109	Navicular	Right	Thick coating of pale gray calcium carbonate	
VIII	1	a	110	Rib fragment	Right	Young child, sternal end, shaft, and angle, grayish calcium carbonate with fire blackening	
VIII	1	a	111	Scapula Fragment	Undetermined	Coracoid process, adult thick grey calcium carbonate	
VIII	1	a	112	Humerus Fragment	Left	Proximal fragment of an adult, light coating of grayish calcium carbonate	36.86 mm
VIII	1	a	113	Rib fragment	Left	Vertebral end fragment, dark grey calcium carbonate, adult, upper 6 rib	
VIII	1	a	114	Parietal Fragment	Undetermined	Slight lytic activity on exterior, light dusting of grey calcium carbonate	
VIII	1	a	115	Rib fragment	Undetermined	Child, light calcium carbonate, more fire blackening	
VIII	1	a	116	Zygomatic	Right	With Maxilla of lower orbit, adult, thick light grey calcium carbonate covering	

VIII	1	a	117	Parietal	Left	Heavy coating of grayish calcium carbonate	
VIII	1	a	118	Intermediate phalanx fragment		adult, foot, proximal fragment, some calcium carbonate and fire blackening	
VIII	1	a	119	Rib fragment	Undetermined	Vertebral end fragment, adult, grayish calcium carbonate	
VIII	1	a	120	Rib fragment	Vertebral end, grayish calcium carbonate, child		
VIII	1	a	121	Epiphysis	Undetermined	Possible femur epiphysis, unsure due to taphonomic breakage	
VIII	1	a	122	Rib fragment	Undetermined	Shaft fragment, adult, upper 6 ribs, grayish calcium carbonate	
VIII	1	a	123	Scapula Fragment	Right	Glenoid, coracoid, and part of blade, grayish calcium carbonate, adult	33.4 mm glenoid height, 23.4 mm wide
VIII	1	a	124	Humerus Fragment	Right	Proximal adult fragment, probably same person as 112 ,	$\begin{gathered} 39.38 \mathrm{~mm} \text { head } \\ \text { diameter } \\ \hline \end{gathered}$

				light coating of grey calcium carbonate mostly on the shaft		
VIII	1	a				Distal Fragment, adult, light calcium carbonate, ovate olecranon fossa, angled medial epicondyle,

VIII	1	a	130	Zygomatic	Right	adult, darker grey calcium carbonate
VIII	1	a	131	Rib fragment		Sternal end, child, grey calcium carbonate
VIII	1	a	132	Rib fragment		Sternal end, child, grey calcium carbonate
VIII	1	a	133	Rib fragment		Child, grey calcium carbonate
VIII	1	a	134	Humerus Fragment	Undetermined	Shaft fragment, juvenile, white and grey calcium carbonate
VIII	1	a	135	Rib fragment		Shaft fragment, grey calcium carbonate, probable adult
VIII	1	a	136	Rib fragment		Shaft fragment, grey calcium carbonate, probable adult
VIII	1	a	137	Tibia Fragment	Right	Proximal fragment, adult, grayish calcium carbonate, some additional shaft fragments
VIII	1	a	138	Shaft fragments		Tibia probable, adult, grayish calcium carbonate
VIII	1	a	139	Rib Fragment	Left	adult, shaft fragment, upper 6, calcium

				carbonate on the interior surface		
VIII	1	a	140	Rib Fragment	Left	adult, vertebral end, calcium carbonate and fire blackening over most of the surface, upper 6
VIII	1	a	141	Rib Fragment		adult, vertebral end, calcium carbonate and fire blackening over most of the surface, upper 6
VIII	1	a	142	Scapula Fragment	Possible Right	medial border and the beginning of the spine
VIII	1	a	143	Thoracic Vertebra		adult, grayish coloring, light calcium carbonate, upper thoracic one large demi facet
VIII	1	a	144	Talus Fragment	Undetermined	
VIII	1	a	145	Thoracic Vertebra		Fragment
VIII	1	a	146	Ulna Fragment		Right

Distal fragment,
adult, grayish calcium

VIII	1	a	149	Tibia Fragment	Right	carbonate	
VIII	1	a	150	Rib Fragment		Shaft Fragment, adult, Calcium carbonate and fire blackening	
VIII	1	a	151	Metacarpal Fragment	Undetermined	adult, distal and shaft fragment	
VIII	1	a	152	Intermediate Phalanx		adult, hand, grayish calcium carbonate	
VIII	1	a	153	Proximal Phalanx		adult, hand, calcium carbonate, taphonomic breakage to the palmar surface proximal area	
VIII	1	a	154	Ulna Fragment	Possible Right	Shaft fragment, fire blackening and calcium carbonate	
VIII	1	a	155	Femur Fragment	Right	Distal fragment, adult, sample taken, cut marks near the distal end above the popliteal surface, four cut marks in total, three are very close, the proximal one is further away	from proximal to distal, length of cuts 13.18 mm , $9.53 \mathrm{~mm}, 7.65$ $\mathrm{mm}, 10.58 \mathrm{~mm}$
VIII	1	a	156	Shaft Fragment			
VIII	1	a	157	Shaft Fragment			

VIII	1	a	158	Rib fragment	Right	adult, vertebral end, calcium carbonate and fire blackening over most of the surface, upper 6	
VIII	1	a	159	Metacarpal/Metatarsal epiphysis		Distal unfused head of a child	
VIII	1	a	159	Ulna Fragment	Left	Proximal fragment, younger individual, more gracile, olecranon process fragment	
VIII	1	a	160	Sternum		adult	
VIII	1	a	161	Ulna Fragment		distal fragment, probable adult	
VIII	1	a	162	3rd Metatarsal Fragment	Right		
VIII	1	a	163	1st Rib	Right	adult, most of the calcium carbonate is on the inferior surface	
VIII	1	a	164	Patella	Left	adult, some calcium carbonate and fire blackening	
VIII	1	a	165	Scapula Fragment	Left	adult, glenoid and lateral border, calcium carbonate	34.06 mm height, 25.74 mm width
VIII	1	a	166	Ulna Fragment	Right	Distal shaft fragment of an adult	
VIII	1	a	167	Radius Fragment	Left		
VIII	1	a	168	Femur fragment	Possible Right	adult	

VIII	1	B	1	Cervical Vertebra	2nd adult, grey and black coloring
VIII	1	B	2	Cervical Vertebra	Lower cervical articulates with number 3, lipping of the inferior body margin, calcium carbonate and fire blacking
VIII	1	B	3	Cervical Vertebra	Lower cervical articulates with number 2, lipping of the inferior body margin, calcium carbonate and fire blacking
VIII	1	B	7	Cervical Vertebra	Middle cervical, no lipping, possibly not the same person as 2 and 3 , covered in calcium carbonate and fire blackened
VIII	1	B	9	Cervical Vertebra	Lower cervical articulates with number 3 , lipping of the inferior body margin, calcium carbonate and fire blacking

VIII	1	B	10	Cervical Vertebra	Young child, lower cervical based on superior articular facets
VIII	1	B	29	Thoracic Vertebra Fragment	Just the body of a child, pedicle is fused but line still visible, rest is broken off, covered in calcium carbonate
VIII	1	B	30	Lumbar Vertebra Fragment	Lamina fragment, adult, covered in calcium carbonate and fire blackening, probably C 3
VIII	1	B	31	Lumbar Vertebra Fragment	Lamina fragment, adult, covered in calcium carbonate and fire blackening, probably C4 or C5
VIII	1	B	32	Lumbar Vertebra Fragment	Lamina fragment, adult, covered in calcium carbonate and fire blackening, probably C 1 or C 2
VIII	1	B	33	Thoracic Vertebra	adult, fully covered with calcium carbonate that is grey, left transverse process slightly broken

VIII	1	B	34	Lumbar Vertebra Fragment	Lamina fragment, adult, covered in calcium carbonate and fire blackening, probably C 1 or C2
VIII	1	B	35	Lumbar Vertebra Fragment	Lamina fragment, adult, covered in calcium carbonate and fire blackening, probably C 1 or C2
VIII	1	B	36	Thoracic Vertebra	Mostly covered with calcium carbonate, and fire blackening, middle thoracic, inferior end articulates with 37
VIII	1	B	37	Thoracic Vertebra	Mostly covered with calcium carbonate, and fire blackening, middle thoracic, superior end articulates with 36
VIII	1	B	38	Thoracic Vertebra Fragment	Calcium carbonate covering most of it, right lamina fragment with spine, possibly T1 or T2
VIII	1	B	39	Sacrum Vertebra	Either S1 or S2, ala/transverse processes are fused but the line is visible,

covered in calcium
carbonate

VIII	1	B	40	Basioccipital portion		adult, grayish colored calcium carbonate	
VIII	1	B	41	Manubrium Fragment		Covered with calcium carbonate on the posterior with fire blackening on the anterior, young child	
VIII	1	B	42	Femur Epiphysis		somewhat fire blackened	27.09 mm
VIII	1	B	43	Cervical Vertebra Fragment		Covered with calcium carbonate, adult, fragment has a transverse foramen and articular facets	
VIII	1	B	44	Thoracic Vertebra Fragment		Child, lamina fragment, pedicle appears unfused	
VIII	1	B	45	Neural arch	Left	Probably lumbar, perinate	
VIII	1 1	B	46	Thoracic Vertebra Fragment		Calcium carbonate covering most of it, left lamina fragment, probable juvenile (same as 108 or 109	
VIII	1	B	47	Thoracic Vertebra Fragment		Calcium carbonate covering most of it, right lamina	

						fragment, probable juvenile (same as 108 or 109
VIII	1	B	48	Lumbar Vertebra Fragment		articular facet and transverse process fragment, calcium carbonate, adult
VIII	1	B	49	Scapula Fragment	Right	glenoid fossa and base of spine, young child
VIII	1	B	50	Cervical Vertebra Fragment		Neural arch, left of a perinate, calcium carbonate and fire blackened
VIII	1	B	51	Ilium	Left	Perinate, grayish calcium carbonate
VIII	1	B	52	Tibia Epiphysis		Proximal epiphysis
VIII	1	B	53	Possible vertebra fragment		Facet, completely covered in calcium carbonate
VIII	1	B	54	Capitate	Left	adult, covered in calcium carbonate and fire blackening
VIII	1	B	55	Thoracic Vertebra Fragment		Left Lamina fragment, pedicle is unfused, child
VIII	1	B	56	Thoracic Vertebra Fragment		Right Lamina fragment, pedicle is unfused, child

VIII	1	B	57	Thoracic Vertebra Fragment		Spinous process, grayish calcium carbonate, with fire blackening, adult
VIII	1	B	58	Lunate	Right	adult, calcium carbonate
VIII	1	B	59	Metacarpal Fragment		adult, head fragment, covered in calcium carbonate
VIII	1	B	60	Rib fragment		Child, upper 6 ribs, calcium carbonate and fire blackening
VIII	1	B	61	Intermediate phalanx		adult, covered in calcium carbonate and fire blackening
VIII	1	B	62	Rib fragment		Calcium carbonate and fire blacking, there is a juvenile intermediate phalanx fused to it.
VIII	1	B	63	Proximal Phalanx		adult, hand, fire blackening and calcium carbonate
VIII	1	B	64	Metacarpal		Child, head unfused, proximal end is not developed
VIII	1	B	65	Medial Phalanx Fragment		distal fragment with shaft, hand, adult, fire blackening

VIII	1	B	66	Rib fragment		shaft fragment, grayish calcium carbonate, middle rib, child
VIII	1	B	67	Rib fragment		shaft fragment, grayish calcium carbonate, middle rib, child
VIII	1	B	68	Rib fragment		shaft fragment, grayish calcium carbonate, middle rib, adult?
VIII	1	B	69	Rib fragment	Right	Vertebral and shaft fragment, grayish calcium carbonate, middle rib, child
VIII	1	B	70	Rib fragment	Left	Vertebral and shaft fragment, grayish calcium carbonate, middle rib, child
VIII	1	B	71	Rib fragment	Left	Vertebral and shaft fragment, grayish calcium carbonate, middle rib, child
VIII	1	B	72	Rib fragment		shaft fragment, grayish calcium carbonate, middle rib, adult?
VIII	1	B	73	Rib fragment		shaft fragment, grayish calcium carbonate, middle rib,

VIII	1	B	74	Rib fragment	Left	vertebral and shaft fragment, grayish calcium carbonate, middle rib, adult?
VIII	1	B	75	Rib fragment	Left	vertebral fragment, grayish calcium carbonate, middle rib, child
VIII	1	B	76	Rib	Left	Child, relatively complete, most of the calcium carbonate is on the anterior surface, unlike all the previous ones
VIII	1	B	77	Rib	Right	Young child, calcium carbonate and fire blackening. There is breakage with misalignment, before it was covered with calcium carbonate, upper 6 ribs
VIII	1	B	78	Rib	Right	shaft fragment, grayish calcium carbonate, upper 6, child
VIII	1	B	79	Rib	Possible Left	shaft fragment, grayish calcium

						carbonate, middle rib, child
VIII	1	B	80	Rib	Possible Right	shaft fragment, grayish calcium carbonate, middle rib, child
VIII	1	B	81	Rib		shaft fragment, grayish calcium carbonate, middle rib, child
VIII	1	B	82	Rib	Possible Right	Probable 1st rib, taphonomic breakage makes confirming side difficult
VIII	1	B	83	Rib	Left	shaft fragment, grayish calcium carbonate, upper 6, child
VIII	1	B	84	Shaft fragment		Covered in grayish calcium carbonate
VIII	1	B	85	Shaft fragment		Covered in grayish calcium carbonate
VIII	1	B	86	Rib fragment		shaft fragment, grayish calcium carbonate, upper 6, adult
VIII	1	B	87	Rib fragment		shaft fragment, grayish calcium carbonate, upper 6, adult

VIII	1	B	88	Rib fragment		shaft fragment, grayish calcium carbonate, middle rib, adult
VIII	1	B	89	Rib fragment		shaft fragment, grayish calcium carbonate, middle rib, adult
VIII	1	B	90	Rib fragment		shaft fragment, grayish calcium carbonate, middle rib, adult
VIII	1	B	91	Rib fragment	Probable Right	shaft fragment, grayish calcium carbonate, middle rib, adult
VIII	1	B	92	Rib fragment	Left	Calcium carbonate on inferior surface, fire blackened
VIII	1	B	93	Rib fragment	Right	Middle rib, adult, calcium carbonate and fire blackening
VIII	1	B	94	Rib fragment	Left	Middle rib, adult, calcium carbonate and fire blackening
VIII	1	B	95	Rib fragment	Left	shaft fragment with angle, Upper 6 rib, possibly a juvenile or small adult, covered in calcium carbonate and fire blackened

VIII	1	B	96	Rib fragment	Right	Sternal fragment, adult, grayish colored calcium carbonate, sternal end is slightly wavy.
VIII	1	B	97	Rib fragment	Left	Vertebral end fragment, adult, middle rib, grey calcium carbonate
VIII	1	B	98	Rib fragment	Left	Vertebral end, probably adult, completely covered in calcium carbonate, middle rib
VIII	1	B	99	Rib fragment	Undetermined	calcium carbonate prevents siding, adult, possibly lower 6
VIII	1	B	100	Rib fragment	Possible Right	Calcium carbonate and fire blackening, vertebral fragment, adult, middle rib
VIII	1	B	101	Rib fragment	Left	grayish calcium carbonate, angle and shaft fragment, middle rib, adult
VIII	1	B	102	Rib fragment	Right	grayish calcium carbonate, angle and shaft fragment, upper 6 , adult

VIII	1	B	103	Shaft fragment	Undetermined	Juvenile, covered in calcium carbonate and fire blackening, possible ulna or radius	
VIII	1	B	104	Rib fragment	Undetermined	Shaft fragment, adult, middle rib, covered in calcium carbonate	
VIII	1	B	105	Fragment	Undetermined	Possibly the distal end of a juvenile femur, covered in calcium carbonate	
VIII	1	B	106	Calcaneus	Left	Possible perinate to 1 year of age, calcium carbonate and fire blackening	35.48 mm length
VIII	1	B	107	Thoracic vertebra		Probably the same person as the next two, Upper thoracic, Body fused with pedicle and lamina, juvenile, pedicle fusion line still visible, calcium carbonate mainly on the lamina and spine, fire blackening	

VIII	1	B	108	Thoracic vertebra		articulated on the inferior surface with 109, juvenile, covered in calcium carbonate and fire blackening, middle to lower thoracic vertebra
VIII	1	B	109	Thoracic vertebra		articulated on the inferior surface with 108, juvenile, covered in calcium carbonate and fire blackening, middle to lower thoracic vertebra
VIII	1	B	110	Fragment	Undetermined	Calcium carbonate completely covering it, an articular facet is visible but the breakage and calcium prevents further identification
VIII	1	B	111	Zygomatic	Left	Possible adult, calcium carbonate is grayish in color, some of the maxilla is present
VIII	1	B	112	Rib fragment	Right	angle and shaft fragment, adult, middle rib, covered in grayish calcium carbonate

$\left.\begin{array}{lllllll}\text { VIII } & \text { B } & & & \begin{array}{c}\text { angle and shaft } \\ \text { fragment, adult, } \\ \text { middle rib, covered in } \\ \text { grayish calcium }\end{array} \\ \text { carbonate }\end{array}\right]$
carbonate

VIII	1	B	118	Rib fragment	Left	vertebral, angle and shaft fragment, adult, lower 6, covered in grayish calcium carbonate	
VIII	1	B	119	Rib fragment	Right	vertebral, angle and shaft fragment, adult, lower 6, covered in grayish calcium carbonate	
VIII	1	B	120	Ulna Fragment	Right	Proximal fragment with most of the shaft, covered in grayish calcium carbonate and fire blackening, around 5 years of age.	$\begin{gathered} 104.09 \mathrm{~mm} \\ \text { available } \end{gathered}$
VIII	1	B	121	Lumbar Vertebra Fragment		Juvenile, calcium carbonate and fire blackening, body epiphysis is unfused, superior articular facets are present, calcium carbonate prevents determination of breakage or fusion of pedicle.	

VIII	1	B	122	Calcaneus	Right	Probably 8 years or younger (check measurement), covered in grayish calcium carbonate and fire blackening	65.12 mm length
VIII	1	B	123	Rib fragment	Undetermined	shaft fragment, grayish calcium carbonate, and fire blackening, adult	
VIII	1	B	124	2nd Metacarpal	Right	adult, lighter covering of calcium carbonate and fire blackening	68.05 mm
VIII	1	B	125	2nd Metacarpal	Left	adult, lighter covering of calcium carbonate and fire blackening	67.57 mm
VIII	1	B	126	Intermediate phalanx		Hand, adult, most of the calcium carbonate is on the posterior surface	32.88 mm
VIII	1	B	127	Proximal phalanx		Hand, adult, grayish calcium carbonate, probably the 1st	
VIII	1	B	128	1st Metatarsal	Probable Right	Little calcium carbonate and fire blackening, adult, taphonomic breakage to the proximal end prevents definitive siding	59.6 mm

VIII	1	B	129	Metatarsal fragment	
VIII	1	B	130	Shaft fragments	
VIII	1	B		Two unidentifiable shaft fragments fused together with grayish colored calcium carbonate	
VIII	1	B	131	Tibia Fragment	Left

the calcium carbonate
is on the internal surface.

VIII	1	B	136	Shaft Fragment	Undetermined	Undeterminable due to breakage at one end and grayish calcium carbonate covering the entire surface.
VIII		B	137	Rib fragment		Shaft fragment, grayish calcium carbonate mostly on the anterior surface, with more fire blackening on the interior surface, adult
VIII	1	B	138	Metacarpal Fragment	Undetermined	Young child, head unfused, the proximal end is covered in calcium carbonate and is partly deteriorated, thus preventing further identification, calcium carbonate is mainly on one of the sides, with additional fire blackening

VIII	1	B	139	Thoracic Vertebra Fragment		Superior articular facet and transverse process, higher thoracic vertebra, calcium carbonate is covering the transverse process, adult
VIII	1	B	140	Lunate	Left	adult, grayish calcium carbonate, and fire blackening
VIII	1	B	141	Thoracic Vertebral Body		Child 2-4 years of age, calcium carbonate and fire blackening
VIII	1	B	142	Scaphoid	Left	adult, slight grayish calcium carbonate, but more fire blackening
VIII	1	B	143	Lumbar Vertebra Body		Child 2-4 years of age, calcium carbonate and fire blackening
VIII	1	B	144	Scaphoid	Right	Same person as 142, more calcium carbonate than the left, some fire blackening, odd bone growth on the convex surface

VIII	1	B	145	Hamate	Left	adult, grayish calcium carbonate, and fire blackening	
VIII	1	B	146	Rib fragment		possible juvenile, calcium carbonate and fire blackening	
VIII		B	147	Fibula Fragment		Fire blackened proximal end, completely covered with grayish calcium carbonate, over 5 years of age due to the width	
VIII	1	B	148	Rib fragment	Possible Left	adult, middle rib, covered in grayish calcium carbonate and fire blackening	
VIII	1	B	149	Calcaneus	Right	Juvenile, smaller than 122 , covered in grayish calcium carbonate, probably close to 5 years of age.	48.6 mm
VIII	1	B	150	Femur Epiphysis	Left	Calcium carbonate and fire blackening	54.53 mm width
VIII	1	B	151	Calcaneus	Right	Older child (proximal epiphysis line is still distinct under the calcium carbonate, everything is fused, calcium carbonate	76.54 mm

almost completely
covers it

VIII	1	B	152	Scapula Fragment	Right	acromion Fragment of an adult	
VIII	1	B	153	Mandible Fragment	anterior and left	Most mortem loss of incisors and canines, two left molars are present 2-5 years of age, calcium carbonate and fire blackening	
VIII	1	B	154	Tibia Epiphysis		Calcium carbonate and fire blackening is slight	34 mm width
VIII	1	B	155	Parietal	Left	Pretty much complete, young child, light coating of grayish calcium carbonate interior and exterior.	
VIII	1	B	156	5th Metatarsal	Left	adult, found articulated in place, Most of the calcium carbonate is on the plantar surface, some fire blackening on the superior surface	70.62 mm

adult, found
articulated in place, Most of the calcium carbonate is on the plantar surface, some fire blackening on the

VIII	1	B	157	2nd Metatarsal	Left	superior surface	76.2 mm
VIII	1	B	158	3rd Metatarsal	Left	adult, found articulated in place, Most of the calcium carbonate is on the plantar surface, some fire blackening on the superior surface	72.5 mm
VIII	1	B	159	4th Metatarsal	Left	adult, found articulated in place, Most of the calcium carbonate is on the plantar surface, some fire blackening on the superior surface	72.92 mm
VIII	1	B	160	3rd Cuneiform	Left	adult, found articulated in place, some calcium carbonate and fire blackening	
VIII	1	B	161	Proximal Phalanx	Left	adult, found articulated in place, Most of the calcium carbonate is on the plantar surface, some	

fire blackening on the superior surface

VIII	1	B	162	Intermediate Phalanx	Left	adult, hand, Most of the calcium carbonate is on the palmar surface, some fire blackening on the superior surface
VIII	1	B	163	Proximal Phalanx	Left	adult, found articulated in place, some calcium carbonate and fire blackening
VIII	1	B	164	Proximal Phalanx	Left	adult, found articulated in place, some calcium carbonate and fire blackening
VIII	1	B	165	Rib Fragment		Vertebral end, adult, some calcium carbonate and fire blackening
VIII	1	B	166	4th Metatarsal		
(probably)	Right	Child, head not fused, proximal end not fully developed				

adult, found
articulated in place, Most of the calcium carbonate is on the plantar surface, some fire blackening on the

VIII	1	B	167	Distal phalanx	Left	superior surface
VIII	1	B	168	Proximal Phalanx	Left	adult, found articulated in place, fire blackening
VIII	1	B	169	Proximal Phalanx	Left	adult, found articulated in place, fire blackening
VIII		B	170	Distal phalanx	Left	adult, found articulated in place, Most of the calcium carbonate is on the plantar surface, some fire blackening on the superior surface
VIII	1	B	171	Proximal Phalanx	Left	adult, found articulated in place, fire blackening
VIII	1	B	172	Sesamoid?		adult, found with articulated foot
VIII	1	B	173	Thoracic Vertebra Fragment		Superior articular facet and part of the body some fire blackening and calcium carbonate

VIII	1	B	174	Femur Fragment	Right	Child, closer to 5 than to 9 years of age, proximal fragment, epiphyses not fused, completely covered in grayish colored calcium carbonate	
VIII	1	B	175	Femur Fragment	Left	Child, probably 2-3 years of age, covered in calcium carbonate	
VIII	1	B	176	Humerus Fragment	Possible Right?	Proximal end, head not fused, ~ 9 years of age	
VIII	1	B	177	Humerus Fragment	Right	Distal end, adult, grayish calcium carbonate, with underlying fire blackening, asymmetrical trochlea, triangular shaped olecranon fossa, taphonomic damage to the medial epicondyle	24.95 mm olecranon fossa width, H7-H5: 3.8 cm
VIII	1	B	178	Tibia Fragment	Left	Proximal fragment, epiphysis not yet fused, probably closer to 9 years than 5, child, covered with calcium carbonate	

VIII	1	B	179	Temporal Fragment	Right	Mandibular fossa present, interior is covered with calcium carbonate, thin cranial bone indicative of a younger individual
VIII		B	180	Sacral Vertebra		Child, possibly S2, taphonomic damage to the anterior superior surface and right transverse process, covered in grayish calcium carbonate
VIII	1	B	181	Cuboid	Left	adult, calcium carbonate on all surfaces more so on the surface without the cuboid tubercle
VIII	1	B	182	Calcaneus	Left	Child, less than 2-3 years old, almost completely covered in calcium carbonate
VIII	1	B	183	Femur epiphysis	possible Right	Distal epiphysis of a child, less than 9 years of age
VIII	1	B	184	Fragment	Undetermined	Child bone based upon the unfused epiphyseal surface, but calcium carbonate prevents further

identification

VIII	1	B	185	Pubic Fragment		Young adult, billows are still visible with all of the calcium carbonate
VIII	1	B	186	Scapula Fragment	Left	Blade portion, glenoid fossa, covered with calcium carbonate along the borders and fire blackening in other areas
VIII	1	B	187	Tibia Fragment		Right

$\%$ of the posterior is covered, fire
blackening, upper 6

VIII	1	B	190	Rib fragment	Right
VIII	1	B	191	Rib fragment	Vertebral end, more calcium carbonate on the posterior surface, some fire blackening, lower 6, adult
VIII	1	B	192	Rib fragment	Shaft fragment, middle rib, covered in calcium carbonate, adult
VIII	1	B	193	Rib fragment	Right

VIII	1	B	196	Rib fragment	Shaft fragment, middle rib, covered in calcium carbonate, adult
VIII	1	B	197	Rib fragment	Shaft fragment, middle rib, covered in calcium carbonate, adult
VIII	1	B	198	Rib fragment	Shaft fragment, Viddle rib, covered in calcium carbonate, adult
VIII	1	B	199	Clavicle Fragment	Left

VIII	1	B	203	Fibula Fragment	Probable Right	Distal fragment, on the small side, completely covered in calcium carbonate
VIII	1	B	204	Radius Fragment	Probable Left	Proximal fragment with taphonomic damage, adult, completely covered in calcium carbonate
VIII	1	B	205	Pubis	Left	Young child, most of the calcium carbonate is on the epiphyses, some fire blackening
VIII	1	B	206	Rib fragment		Upper 6, shaft fragment, covered in calcium carbonate, adult
VIII	1	B	207	Thoracic Vertebra		adult, middle thoracic, demi facets are of roughly similar size, almost completely covered in calcium carbonate
VIII	1	B	208	Cervical Vertebra		Lower cervical vertebra, adult, covered in calcium carbonate, slightly less on the superior surface, fire blackening

VIII	1	B	209	Thoracic Vertebra		adult, taphonomic damage at the pedicle fusion area, grey calcium carbonate more on the superior surface, underlying fire blackening, higher thoracic due to larger demi facet on superior and smaller on inferior
VIII		B	210	1st rib	Right	vertebral end, adult or older child, more calcium carbonate on the posterior than superior surface, fire blackening
VIII	1	B	211	Thoracic Vertebra		adult, middle thoracic, demi facets are of roughly similar size, almost completely covered in calcium carbonate
VIII	1	B	212	Cervical vertebra		Child, completely covered in calcium carbonate, middle cervical
VIII	1	B	213	Thoracic Vertebra		Possibly young adult (body epiphysis line visible), covered in calcium carbonate

(more on superior surface), middle
thoracic
Child, pedicle fused, but line is still visible, calcium carbonate on all surfaces, fire
blackened, middle
$\left.\left.\begin{array}{cccccc}\text { VIII } & 1 & \text { B } & 214 & \text { Thoracic Vertebra } & \begin{array}{c}\text { thoracic } \\ \text { Lamina fragment } \\ \text { with left articular } \\ \text { facets and transverse } \\ \text { process, child most } \\ \text { likely, middle } \\ \text { thoracic, calcium } \\ \text { carbonate on both } \\ \text { surfaces }\end{array} \\ \text { VIII } & 1 & \text { B } & 215 & \begin{array}{c}\text { Thoracic Vertebra } \\ \text { Fragment }\end{array} & \begin{array}{c}\text { Child, possible } \\ \text { thoracic, billows still } \\ \text { present }\end{array} \\ \hline \text { VIII } & 1 & \text { B } & 216 & \text { Vertebra Body } & \begin{array}{c}\text { Proximal fragment, } \\ \text { adult, taphonomic } \\ \text { damage occurred }\end{array} \\ \text { VIII } & 1 & \text { B } & 217 & \text { Ulna Fragment } & \text { Possible Right torick layer of } \\ \text { calcium carbonate }\end{array}\right] \begin{array}{c}\text { Proximal Fragment, } \\ \text { no more than 5 years } \\ \text { of age, covered in } \\ \text { calcium carbonate } \\ \text { and fire blackening }\end{array}\right]$

VIII	1	B	219	Scapula Fragment	Right	Glenoid fragment, glenoid surface does not have calcium carbonate, but everything else does
VIII	1	B	220	Tibia Epiphysis		Proximal epiphysis, child, taphonomic damage to one surface, calcium carbonate on both surfaces
VIII	1	B	221	1st Cuneiform	Left	adult, covered in calcium carbonate and fire blackening
VIII	1	B	222	Humerus Epiphysis	Left	Young child, more fire blackening that calcium carbonate, mate to 188
VIII	1	B	223	3rd Cuneiform	Right	all surfaces covered in calcium carbonate
VIII	1	B	224	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate, adult
VIII	1	B	225	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate, adult
VIII	1	B	226	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate,

adult

VIII	1	B	227	Talus	Left	adult, fire blackened with calcium carbonate (more on plantar surface)
VIII	1	B	228	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate, adult
VIII	1	B	229	Shaft Fragment		Covered in calcium carbonate
VIII	1	B	230	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate, adult
VIII	1	B	231	1st Rib fragment		adult, sternal end, calcium carbonate and fire blackening on both sides
VIII	1	B	232	Rib Fragment	Right	Child, Sternal end, covered in calcium carbonate and fire blackening
VIII	1	B	233	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate, child
VIII	1	B	234	Rib fragment		Shaft fragment, middle rib, covered in

calcium carbonate, child

VIII	1	B	235	Rib fragment	Right	Vertebral end, Child, calcium carbonate and fire blackening, upper 6
VIII	1	B	236	Rib fragment	Left	Vertebral end, Child, calcium carbonate and fire blackening, lower 6
VIII	1	B	237	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate and fire blackening, possible child
VIII	1	B	238	Rib fragment	Left	Shaft fragment, lower 6 , rib, covered in calcium carbonate, child
VIII	1	B	239	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate and fire blackening, possible child
VIII	1	B	240	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate and fire blackening, possible child

VIII	1	B	241	Rib fragment		Shaft fragment, middle rib, covered in calcium carbonate and fire blackening, possible child
VIII	1	B	242	Rib fragment	Possible Left	Shaft fragment, middle rib, covered in calcium carbonate and fire blackening, adult
VIII	1	B	243	Rib fragment	Possible Left	Sternal end fragment, middle rib, covered in calcium carbonate, adult
VIII	1	B	244	Lumbar Vertebra		Vertebral body lipping on the superior and inferior margins, adult, probably L1 or L2, completely covered in calcium carbonate, taphonomic damage to the inferior articular facet, there is a metacarpal wedged in the vertebral canal

$\left.\begin{array}{cccccc} \\ \text { VIII } & \text { B } & & & \begin{array}{c}\text { Younger adult than } \\ \text { 244, Epiphysis line is } \\ \text { visible, with some } \\ \text { billowing still }\end{array} \\ \text { noticeable, probably } \\ \text { L1 or L2, calcium } \\ \text { carbonate covers the } \\ \text { entire surface }\end{array}\right]$

VIII	1	B	249	Tibia Fragment	Left	Proximal fragment, unfused epiphysis, aprox. 5 years of age, covered in calcium carbonate
VIII	1	B	250	Radius Fragment	Possible Right	proximal fragment, more calcium carbonate on the posterior, more fire blackening on the anterior surface, unfused epiphyseal head, closer to 9 years of age
VIII	1	B	251	Humerus Fragment	Right	Child, calcium carbonate on most surfaces, fire blackening, closer to 9 years of age
VIII	1	B	252	Radius Fragment	Possible Left	Younger than 250, closer to 5 years old, proximal fragment, covered in calcium carbonate and fire blackening
VIII	1	B	253	Rib fragment	Left	Sternal end fragment, possible older child, calcium carbonate and fire blackening on both surfaces

VIII	1	B	254	Rib fragment	Left	Vertebral end fragment, upper 6, more calcium carbonate on the posterior surface, possible older child
VIII	1	B	255	Rib fragment		Child, shaft fragment, covered in calcium carbonate and fire blackening
VIII	1	B	256	Rib fragment		Child, shaft fragment, covered in calcium carbonate and fire blackening, upper 6
VIII	1	B	257	Mandible Fragment		adult, only missing the right ramus portion, originally completely covered in calcium carbonate, the carbonate on the teeth (except the Right canine and 3rd left molar came off. Left incisors and first premolar are worn exposing the dentine, Second premolar has no issues, first molar has pin prick exposure of dentine on every cusp and a

caries in the center, second molar has
slight wear on the two
lingual cusps, third is
in process of erupting, linear enamel hypoplasia on the left canine mid way, rest of the teeth are lost post mortem.

VIII	1	B	258	Fragment of Calcium carbonate		
VIII	1	B	259	Fragment of Calcium carbonate		
VIII	1	B	260	Parietal	Calcium carbonate on interior and exterior, meningeal grooves just barely visible, possible child	Right
VIII	1	B	261	Thoracic Vertebra	adult, calcium carbonate on everything except the superior surface of the body, middle thoracic (upper demi facet is larger than the	

lower one).

VIII	1	B	262	Tibia Fragment	Right	adult, proximal fragment with some of the shaft, calcium carbonate over the whole thing with less on the lateral surface	
VIII	1	B	263	Clavicle	Right	adult, calcium carbonate on all surfaces	
VIII	1	B	264	Rib Fragment	Left	Vertebral end, adult, lower rib completely covered in calcium carbonate	
VIII	1	B	265	Clavicle	Right	Child, calcium carbonate on all surfaces	95.53 mm
VIII	1	B	266	Humerus Fragment	Left	distal fragment, child ~ 1.5 years of age	
VIII	1	B	267	Rib Fragment		adult shaft fragment, calcium carbonate covers all surfaces, taphonomic damage to the anterior surface	
VIII	1	B	268	Rib Fragment	Right	Vertebral end fragment, adult, upper 6 , completely covered	

in calcium carbonate

VIII	1	B	269	Rib Fragment	Right	Vertebral end fragment, adult, upper 6, completely covered in calcium carbonate	
VIII	1	B	270	Rib Fragment	Left	Vertebral end, adult, lower rib completely covered in calcium carbonate	
VIII	1	B	271	Rib Fragment	Right	Vertebral end fragment, adult, lower rib, completely covered in calcium carbonate	
VIII	1	B	272	Tibia Fragment	Right	Child, possibly the same as 128 , proximal fragment, completely covered in calcium carbonate	
VIII	1	B	273	Humerus Fragment	Right	adult, proximal fragment (head and upper shaft), completely covered in calcium carbonate	43.9 mm head diameter
VIII	1	B	274	Ilium	Right	Young Child, over 5 probably, maybe closer to 9 , more calcium carbonate on the posterior surface	

than the anterior

VIII	1	B	275	Basioccipital Fragment	Possible young adult of child due to thinness
VIII	1	B	276	Thoracic Vertebra Body	Young child, body not fused to anything, covered in calcium carbonate and fire blackening
VIII	1	B	277	Thoracic Vertebra Body	Young child, body not fused to anything, covered in calcium carbonate and fire blackening
					Body, with a spinous process broken and fused onto the transverse process area. Young
VIII	1	B	278	Vertebra Fragment	individual, billows on the body and body epiphysis not fused, possible Thoracic or lumbar

VIII	1	B	279	Thoracic Vertebra	Child, everything is fused, but the pedicle line is still visible, middle Thoracic, everything but the superior part of the body has calcium carbonate, there is a rib cemented in with calcium carbonate n the vertebral canal
VIII	1	B	280	Thoracic Vertebra Body	Everything appears fused, adult, taphonomic breakage of the posterior area, covered in calcium carbonate and fire blackening
VIII	1	B	281	Cervical Vertebra	adult, calcium carbonate on all surfaces, less on the superior part of the body, middle cervical, bifurcated spine
VIII	1	B	282	Shaft Fragment	Taphonomic morphology and calcium carbonate prevents further identification

VIII	1	B	283	Femur Fragment	Left	Child, calcium carbonate on all surfaces, possible mate to 174
VIII	1	B	284	Cervical Vertebra		adult, calcium carbonate on all surfaces, lower cervical
VIII	1	B	285	Ulna Fragment	Right	Proximal Fragment, calcium carbonate over fire blackening, probably closer to 9 years of age
VIII	1	B	286	Fibula Shaft Fragment		Child, shaft fragment, calcium carbonate on all surfaces
VIII	1	B	287	Rib Fragment		adult, middle rib, calcium carbonate on all surfaces, but there is more on the posterior, shaft fragment
VIII	1	B	288	Number not assigned		
VIII	1	B	289	Rib fragment	Right	Vertebral fragment, adult, calcium carbonate on all surfaces, middle rib
VIII	1	B	290	Lumbar Vertebra		adult, probably L1 or L2, light calcium carbonate and fire

VIII	1	B	291	Vertebra Fragment		adult, body fragment, possible lower Thoracic or upper lumbar, taphonomic damage to the posterior area, more calcium carbonate on the superior surface of the body	
VIII	1	B	292	Lumbar Vertebra		Child, calcium carbonate on all surfaces except the superior surface of the body, Probably L 2 , everything is fused, body still has some billows	
VIII		B	293	Radius	Right	adult, complete, calcium carbonate is more on the lateral and media surfaces, posterior surface looks like it was resting on something	21.98 mm head diameter, 23.1 cm length
VIII	1	B	294	Hamate	Left	adult, covered with calcium carbonate and fire blackening	

Young Child,
vertebral end, calcium
carbonate on the

VIII	1	B	295	Rib Fragment	possible Right	superior surface
VIII	1	B	296	Mandibular Fragment		Mandibular condyle, possibly a child
VIII	1	B	297	Cervical Vertebra Fragment		Child, higher cervical, possibly even the first, neural arch fragment with articular facets and transverse foramen
VIII	1	B	298	Shaft Fragment		Child, unfused epiphysis, possible metacarpal or metatarsal?
VIII	1	B	299	Vertebra Body		Child, calcium carbonate and fire blackening, probable Lumbar
VIII	1	B	300	Rib Fragment		Young adult, shaft fragment, calcium carbonate on all surfaces
VIII	1	B	301	Triquetral	Left	adult, covered with calcium carbonate and fire blackening
VIII	1	B	302	Rib Fragment		adult, shaft fragment, covered in calcium carbonate

VIII	1	B	303	1st Metatarsal (probably)		Child, unfused proximal and distal epiphyses, covered in calcium carbonate
VIII	1	B	304	Lumbar Vertebra		Child, pedicle fused but the line is visible, most of the calcium carbonate is on the posterior surface
VIII	1	B	305	Shaft Fragment		Unfused epiphysis at one end, possibly a 1st phalanx of the foot
VIII	1	B	306	Lunate	Right	adult, covered in calcium carbonate and fire blackening
VIII	1	B	307	Greater Multangular	Left	adult, covered in calcium carbonate and fire blackening
VIII	1	B	308	Rib Fragment	Possible left	child, angle and shaft fragment
VIII	1	B	309	Cervical Neural arch	Left	Perinate, calcium carbonate covering the lamina, some fire blackening
VIII	1	B	310	Occipital Fragment		Most f it, covered on the interior and exterior with calcium carbonate, some additional bone fragments fused to the

inside via calcium carbonate

VIII	1	B	311	Vertebra Body Fragment	anterior	Child, body epiphysis is not fused and the body has billows
VIII	1	B	312	Capitate	Right	adult, covered with calcium carbonate and fire blackening
VIII	1	B	313	Vertebra Fragment		Lamina fragment of a very young child
VIII	1	B	314	Thoracic Neural arch	Left	Perinate, calcium carbonate, some fire blackening
VIII	1	B	315	Metacarpal/Metatarsal		Neonate calcium carbonate and fire blackening
VIII	1	B	316	Metacarpal/Metatarsal		Neonate calcium carbonate and fire blackening
VIII	1	B	317	Metacarpal/Metatarsal		Neonate calcium carbonate and fire blackening
VIII	1	B	318	5th Metatarsal fragment?		Child, epiphysis is not yet fused
VIII	1	B	319	Vertebra Body Fragment		Small fragment, possibly a child, covered with calcium carbonate

VIII	1	B	320	Thoracic Neural arch	Maybe 1 year or older due to size, epiphyses do not appear fused
VIII	1	B	321	Coccyx	adult, three fused together
VIII	1	B	322	Thoracic Neural arch	Between perinate and 1 year most likely, calcium carbonate and fire blackening
VIII	1	B	323	Proximal Phalanx	adult, calcium carbonate and fire blackening on all surfaces
VIII	1	B			
VIII	1	B			Rib Fragment

						carbonate and fire blackening
VIII	1	B	328	Rib Fragment		Probable child, shaft fragment, covered with calcium carbonate and fire blackening
VIII	1	B	329	Vertebra Fragment		Transverse process fragment with an articular facet, covered in grayish calcium carbonate
VIII	1	B	330	1st Rib Fragment	Left	Child, covered with calcium carbonate and fire blackening
VIII	1	B	331	Greater Multangular	Right	adult, covered with calcium carbonate and fire blackening
VIII	1	B	332	Lunate	Probable Left	adult, badly deteriorated fire blackened and calcium carbonate
VIII	1	B	333	Sacral Vertebra		5th Sacral vertebra, not fused, probably neonate?
VIII	1	B	334	Vertebra Fragment		Possible child, possibly a neural arch fragment
VIII	1	B	335	Rib fragment		Child, upper rib, Sternal end, covered

						in calcium carbonate and fire blackening
VIII	1	B	336	Rib fragment		Child, shaft fragment, middle rib, covered in calcium carbonate and fire blackening
VIII	1	B	337	Vertebra Fragment		Possible child, possibly a neural arch fragment
VIII	1	B	338	Vertebra Fragment		Possible child, possibly a neural arch fragment
VIII	1	B	339	Rib fragment		Child, upper rib, Shaft fragment, covered in calcium carbonate and fire blackening
VIII	1	B	340	unidentified fragment		
VIII	1	B	341	Cervical Neural arch fragment	Possible Left	Perinate, covered in calcium carbonate and fire blackening
VIII	1	B	342	Hyoid	Right	greater horn of the cornu, Child
VIII	1	B	343	Hyoid	Left	greater horn of the cornu, Child
VIII	1	B	344	Calcaneus Fragment	Left	adult, medial distal fragment
VIII	1	B	345	Sacrum Fragment		Possibly and older child, Right superior fragment, completely

covered in calcium carbonate

VIII	1	B	346	Navicular	Left	adult, covered in calcium carbonate	
VIII	1	B	347	Vertebra Body		Child, very small, possible cervical, fire blackened and calcium carbonate	
VIII	1	B	348	Patella	Left	adult, calcium carbonate is on the superior portions of both the anterior and posterior surfaces, some fire blackening	38.46 mm height
VIII	1	B	349	Talus	Left	Young Child, calcium carbonate on the proximal and plantar surfaces	
VIII	1	B	350	Manubrium		Complete, adult, covered on both surfaces with calcium carbonate	
VIII	1	B	351	5th Metacarpal	Right	Head is not yet fused, shaft and proximal end has calcium carbonate	
VIII	1	B	352	Rib fragment		Child, calcium carbonate and fire blackened	

VIII	1	B	353	Shaft Fragment		Child, probably proximal fibula fragment
VIII	1	B	354	Rib	Left	Middle rib, child, superior border on the anterior and posterior surface have calcium carbonate
VIII	1	B	355	Rib Fragment	Left	adult, upper 6, vertebral end is fire blackened and the angle is covered in calcium carbonate
VIII	1	B	356	Rib Fragment	Left	adult, upper 6, vertebral end is fire blackened and the angle is covered in calcium carbonate
VIII	1	B	357	3rd Metacarpal		Calcium carbonate on all surfaces with underlying fire blackening
VIII	1	B	358	Proximal Phalanx		adult, calcium carbonate mostly on the palmar surface, hand
VIII	1	B	359	Proximal Phalanx		adult, calcium carbonate mostly on the palmar surface, hand

VIII	1	B	360	5th Metacarpal	Right	adult, calcium carbonate on most surfaces, some fire blackening
VIII	1	B	361	Proximal Phalanx		adult, calcium carbonate mostly on the palmar surface, hand
VIII	1	B	362	1st Metacarpal	Left	adult, almost completely covered with calcium carbonate
VIII	1	B	363	Proximal Phalanx		adult, calcium carbonate mostly on the palmar surface, hand
VIII	1	B	364	Intermediate Phalanx		adult, calcium carbonate mostly on the palmar surface, hand
VIII	1	B	365	Phalanx fragment		Probably proximal or intermediate hand, most of the calcium carbonate is on the posterior surface
VIII	1	B	366	Rib Fragment		Child, middle rib, covered in calcium carbonate and fire blackening, shaft fragment

VIII	1	B	367	Rib Fragment	Child, middle rib, covered in calcium carbonate and fire blackening, shaft fragment	
VIII	1	B	368	Phalanx fragment	Probably proximal or intermediate hand, most of the calcium carbonate is on the posterior surface	
VIII	1	B	369	Rib Fragment	Child, middle rib, covered in calcium carbonate and fire blackening, shaft fragment	
VIII	1	B	370	Vertebra Body Fragment	adult, calcium carbonate and fire blackening, anterior portion probably of a lower Thoracic or lumbar	
VIII	1	B	371	Rib Fragment	Child, middle rib, covered in calcium carbonate and fire blackening, shaft fragment	
VIII	1	C	1	1st Metatarsal	Child, head unfused, proximal end is not developed	38.22 mm

VIII	1	C	2	Intermediate Phalanx		with light grey calcium carbonate	26.9 mm
VIII	1	C	3	Metacarpal Fragment		Probably an adult, light grey calcium carbonate, head deteriorated, proximal end damaged as well	
VIII	1	C	4	Proximal phalanx		adult, hand, completely covered in calcium carbonate	46.5 mm
VIII	1	C	5	5th Metatarsal	Right	Completely covered with calcium carbonate, adult	65.87 mm
VIII	1	C	6	Metacarpal Fragment		Darker gray calcium carbonate, distal fragment and shaft	
VIII	1	C	7	Metacarpal/Metatarsal Fragment		Shaft fragment with irregular coating with calcium carbonate	
VIII	1	C	8	3rd Metacarpal	Left	grayish calcium carbonate, adult	59.89 mm
VIII	1	C	9	2nd or 3rd Metatarsal	Undetermined	Calcium carbonate completely covers it, thus preventing accurate determination, adult	76.21 mm
VIII	1	C	10	2nd Metatarsal	Left	Completely covered with calcium	71.38 mm

carbonate, adult

VIII	1	C	11	Proximal phalanx		Hand, adult, grayish calcium carbonate	43.82 mm
VIII	1	C	12	3rd Metacarpal	Right	adult, grayish calcium carbonate	58.01 mm
VIII	1	C	13	Proximal phalanx		adult, hand, light grey calcium carbonate with fire blackening	44.94 mm
VIII	1	C	14	Possible 1st Metacarpal		adult, completely covered in grayish calcium carbonate	45.86 mm
VIII	1	C	15	1st Metacarpal Fragment		Distal fragment, probable adult	
VIII	1	C	16	Intermediate phalanx		adult foot, calcium carbonate covering most of it, more on the anterior surface	19.44 mm
VIII	1	C	17	Intermediate phalanx		adult foot, calcium carbonate covering most of it, more on the posterior surface, fire blackening	26.63 mm
VIII	1	C	18	Metacarpal Fragment		adult, shaft fragment, covered with calcium carbonate in numerous areas	
VIII	1	C	19	Proximal 1st Phalanx	Probable Left	adult, foot, grayish calcium carbonate mostly on the plantar	31.64 mm

surface

VIII	1	C	20	1st Metacarpal	Possible Right	adult, bone is fire blackened under a lighter grey calcium carbonate	43.54 mm
VIII	1	C	21	Metacarpal/Metatarsal Fragment		adult, shaft fragment, covered with calcium carbonate in numerous areas	
VIII	1	C	22	Intermediate Phalanx		adult, hand, no real calcium carbonate but there is fire blackening	33.28 mm
VIII	1	C	23	Intermediate Phalanx		adult, hand, probably 1st phalanx, calcium carbonate on palmar surface, fire blackening noticeable on posterior	30.72 mm
VIII	1	C	24	Intermediate Phalanx		adult, foot, calcium carbonate on posterior surface, fire blackening on posterior.	22.41 mm
VIII	1	C	25	Possible 5th Metacarpal		Completely covered with calcium carbonate, adult, taphonomic damage to proximal and distal	

| | | | | adult, hand, calcium
 carbonate is mostly
 on the palmar and
 sides, with a thin line
 of fire blackening on
 the posterior surface | 38.47 mm | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIII | 1 | C | 26 | Proximal phalanx | adult, completely
 covered in grayish
 calcium carbonate | |
| VIII | 1 | C | 27 | Rib fragment | adult, completely
 covered in grayish
 calcium carbonate | 39.84 mm |

$\left.\begin{array}{llllll} & & \begin{array}{c}\text { adult, most of the } \\ \text { manubrium, minus } \\ \text { the edges, most of the } \\ \text { grayish calcium } \\ \text { carbonate is restricted } \\ \text { to the posterior }\end{array} \\ \text { VIII } & \text { Surface and the edges } \\ \text { of the anterior, some } \\ \text { fire blackening }\end{array}\right]$

VIII	1	C	37	Tibia Fragment	Right	Same person as 131 and 132, light coating of grey calcium carbonate throughout, epiphysis is fused, but line is very visible	
VIII	1	C	38	Scapula Fragment	Left	Spine, acromion, and glenoid fossa fragment with some of the superior border and lateral border	35.65 mm glenoid height, 23.92 mm width
VIII	1	C	39	Possible Radius Fragment		Proximal end, young child, head is not fused, calcium carbonate is light with more fire blackening	
VIII	1	C	40	Ulna Fragment	Left	proximal and shaft fragment covered in calcium carbonate and fire blackening (more on lateral surface, older than 5 years of age, possibly 9 years	
VIII	1	C	41	1st Metatarsal	Left	head s broken post mortem, completely covered with calcium carbonate	

VIII	1	C	42	Lumbar Vertebra		body epiphysis line is fused but line is visible, covered in grayish calcium carbonate, adult, probably L1 or L2	
VIII	1	C	43	Rib fragment	Undetermined	Possible Middle rib, adult, vertebral and shaft fragment, completely covered in calcium carbonate	
VIII	1	C	44	Rib fragment	Undetermined	Possible Middle rib, adult, vertebral and shaft fragment, completely covered in calcium carbonate	
VIII	1	C	45	Rib fragment	Left	vertebral end, Upper 6, adult, grayish calcium carbonate	
VIII	1	C	46	Shaft Fragment	Undetermined	Grey calcium carbonate and some fire blackening	
VIII	1	C	47	Radius Fragment	Undetermined	Proximal fragment, adult, almost completely covered with calcium carbonate	
VIII	1	C	48	Humerus	Right	Child, covered in a grayish calcium carbonate, epiphyses unfused, length is	18 cm length

carbonate

VIII	1	C	54	Scapula Fragment	Left	Glenoid and coracoid fragment, covered with grey calcium carbonate	31.66 mm glenoid height, 21.42 width
VIII	1	C	55	Vertebra fragment		Body, with a fused lamina and articular facet, body epiphysis is not fully fused possible Thoracic	
VIII	1	C	56	Vertebra body		Unused body and unfused pedicle, possible Thoracic	
VIII	1	C	57	Rib fragment		adult, grayish calcium carbonate with underlying fire blackening, upper 6 adult, shaft fragment	
VIII	1	C	58	Rib fragment		adult, grayish calcium carbonate with underlying fire blackening, middle rib, shaft fragment	
VIII	1	C	59	Possible Clavicle	Left	Completely covered in calcium carbonate, not very grey, young individual	

VIII	1	C	60	Rib fragment		adult, grayish calcium carbonate with underlying fire blackening, upper 6 adult, shaft fragment
VIII	1	C	61	Clavicle Fragment	Left	Lateral Fragment, large adult, grayish calcium carbonate almost completely covers it.
VIII	1	C	62	Cervical Vertebra		C2, adult, superior surface is completely covered in grayish calcium carbonate, fire blackened on the inferior surface
VIII	1	C	63	Vertebra body		Possible Thoracic vertebra, taphonomic breakage at the pedicle, completely covered in calcium carbonate.
VIII	1	C	64	Rib fragment		Shaft fragment, adult, almost completely covered with calcium carbonate
VIII	1	C	65	Rib fragment	Left	adult, angle fragment, grayish calcium carbonate on the superior surface with fire blackening on the

VIII	1	C	66	Rib fragment	adult, shaft fragment, covered with calcium carbonate
VIII	1	C	67	Rib fragment	Vertebral end, most of the calcium carbonate is focused on the superior, anterior and posterior surfaces, inferior margin is fire blackened
VIII	1	C			Right

VIII	1	C	71	Scapula Fragment	Undetermined	Fragment from one of the borders, adult, calcium carbonate and fire blackening
VIII	1	C	72	Thoracic Vertebra fragment		Child, body epiphysis is not fused yet, grayish calcium carbonate around the anterior and lateral surfaces of the body, pedicle is fused, but taphonomic damage leaves only the right superior articular facet
VIII	1	C	73	Rib Fragment		Shaft fragment, adult, light calcium carbonate mostly on the superior margin, patchy fire blackening.
VIII		C	74	Rib Fragment		Shaft fragment, adult, most of the calcium carbonate in on the interior surface, with fire blackening more noticeable on the anterior surface

VIII	1	C	75	Rib Fragment		Shaft fragment, adult, most of the calcium carbonate on the anterior surface with fire blackening on the interior surface	
VIII	1	C	76	Rib Fragment		Shaft fragment, adult, most of the calcium carbonate in on the interior surface, with fire blackening more noticeable on the anterior surface	
VIII	1	C	77	Rib Fragment		Shaft fragment, adult, most of the calcium carbonate on the anterior surface with fire blackening on the interior surface	
VIII	1	C	78	3rd Metacarpal Fragment	Left	Proximal end and shaft fragment, adult, mostly covered in grayish calcium carbonate and fire blackened	
VIII	1	C	79	Proximal phalanx		adult, foot, probably the 1st, grayish calcium carbonate covers all but one lateral surface	32.96 mm

VIII	1	C	80	Possible Proximal Phalanx		adult, probable hand, almost completely covered with grayish calcium carbonate	
VIII	1	C	81	Intermediate Phalanx		adult, foot, plantar surface completely covered in grayish calcium carbonate, rest has fire blackening.	20.55 mm
VIII	1	C	82	Femur Epiphysis		Proximal epiphysis, light calcium carbonate	$\begin{gathered} 26.93 \mathrm{~mm} \text { head } \\ \text { diameter } \\ \hline \end{gathered}$
VIII	1	C	83	Proximal phalanx		adult, hand, almost completely covered with grayish calcium carbonate, taphonomic crack on the posterior surface	38.88 mm
VIII	1	C	84	Metatarsal fragment		adult, distal fragment, completely covered in calcium carbonate	
VIII	1	C	85	Patella	Right	adult, calcium carbonate mostly on the posterior surface	36.41 mm height
VIII	1	C	86	Proximal phalanx		adult, foot, calcium carbonate mostly on the posterior surface, slight fire blackening on other areas	29.63 mm

VIII	1	C	87	Ulna Fragment	Right	adult, proximal fragment, calcium carbonate covers all surfaces, more on the posterior, medial and lateral margins, additional bones fused with calcium carbonate.	
VIII	1	C	88	Humerus Fragment	Left	adult, distal fragment, light calcium carbonate, taphonomic damage to the posterior surface prevent morphological sexing	$\begin{gathered} 47.9 \mathrm{~mm} \\ \text { epicondylar width } \end{gathered}$
VIII	1	C	89	2nd Metacarpal Fragment	Left	adult, calcium carbonate on all surfaces, with fire blackening more noticeable on the palmar surface, proximal fragment with most of the shaft.	
VIII	1	C	90	Intermediate phalanx		adult, hand, most of the calcium carbonate is on the posterior surface, with additional fire blackening	25.07 mm

VIII	1	C	91	Possible Proximal Phalanx		Possible that fusion has not fully occurred, foot, probably 1st phalanx, calcium carbonate is mostly on the superior surface, fire blackening on the plantar surface	
VIII	1	C	92	2nd or 3rd Metacarpal	Undetermined	Calcium carbonate prevent better identification, adult	74.8 mm
VIII	1	C	93	Sternum Fragment		adult, distal end, Most of the calcium carbonate is on the posterior surface, with a little and fire blackening on the anterior surface	
VIII	1	C	94	Navicular	Right	adult, Taphonomic damage, almost complete coverage with a pale grey calcium carbonate	
VIII	1	C	95	3rd Metatarsal Fragment	Left	adult, calcium carbonate on all surfaces, proximal and shaft fragment	

VIII	1	C		Head not yet fused, lightest grayish calcium carbonate, morphology on the distal end is not fully developed	
VIII	1	C		2nd Metacarpal	Right

VIII	1	C	102	Humerus Fragment	Right	Distal fragment, grayish calcium carbonate on all surfaces, epiphysis not fused, olecranon fossa not visible, third trimester or new born	
VIII	1	C	103	Intermediate phalanx		adult, foot, calcium carbonate mostly on the posterior surface, slight fire blackening on other areas	28.57 mm
VIII	1	C	104	Scaphoid	Left	adult, light dusting of calcium carbonate on all surface, fire blackening on underlying surfaces	
VIII	1	C	105	Vertebra fragment		Transverse process fragment with an articular facet, covered in grayish calcium carbonate	
VIII	1	C	106	Cuboid	Right	adult, light coating of calcium carbonate with fire blackening	
VIII	1	C	107	Capitate	Right	adult, calcium carbonate on the back side (of the face)	
VIII	1	C	108	Hamate	Left	adult, grayish calcium carbonate	

VIII	1	C	109	1st Cuneiform	Left	Light calcium carbonate on all surfaces on underlying fire blackening
VIII	1	C	110	Maxilla fragment	anterior	Root sockets , calcium carbonate in and around the sockets, with fire blackening in other areas.
VIII	1	C	111	Cervical Vertebra		C1, calcium carbonate on mostly the superior surface, with fire blackening on the inferior surface
VIII	1	C	112	Scapula Fragment	Right	adult, spine fragment, calcium carbonate covers most of the surface
VIII	1	C	113	Rib fragment	Left	Vertebral fragment, grayish calcium carbonate, adult, possibly upper 6
VIII	1	C	114	Scapula Fragment	Left	adult, spine fragment, light dark grey calcium carbonate, mostly fire blackening

VIII	1	C	115	Rib fragment	Right	Vertebral fragment, adult, covered in calcium carbonate	
VIII	1	C	116	Proximal Phalanx		adult, hand, calcium carbonate on all surfaces, another bone is cemented on	42.04 mm
VIII	1	C	117	5th Metacarpal	Left	adult, most of the calcium carbonate is on the palmar side	40.87 mm
VIII	1	C	118	Rib Fragment		adult, shaft fragment, covered completely in grayish calcium carbonate, middle rib	
VIII	1	C	119	Shaft Fragment		Completely covered in calcium carbonate	
VIII	1	C	120	Intermediate phalanx		little calcium carbonate and fire blackening, proximal end not fully fused.	
VIII	1	C	121	Radius Epiphysis		Distal radius epiphysis	22.03 mm
VIII	1	C	122	Scaphoid	Right	adult, light calcium carbonate and fire blackening	
VIII	1	C	123	Rib fragment	Left	Vertebral end fragment, adult, completely covered in calcium carbonate, with additional bones	

attached.

VIII	1	C	124	Tibia Epiphysis	Right	Rather large, grayish calcium carbonate on all surfaces, same individual as 125 , slight taphonomic damage	
VIII	1	C	125	Tibia Epiphysis	Left	Calcium carbonate on all surfaces, some fire blackening, same individual as 124	49.45 mm
VIII	1	C	126	Humerus Epiphysis	Left	Proximal epiphysis, light coating of grey calcium carbonate on all surfaces, under 9 years of age	33.54 mm head diameter
VIII	1	C	127	Scapula Fragment	Right	Spine and glenoid fragment with part of the superior and medial border, calcium carbonate on anterior and posterior surfaces, more on the posterior surface	
VIII	1	C	128	Fibula Fragment	Right	Distal fragment, adult, grey calcium carbonate.	

Part of the acetabulum and the ischial tuberosity, grey calcium carbonate on all

VIII	1	C	129	Ischium Fragment	Left	surfaces	
VIII	1	C	130	Talus Fragment	Left	Distal end has damage, grayish calcium carbonate and fire blackening	
VIII	1	C	131	Tibia Fragment	Left	Between 9 and 15 years of age, Shaft fragment, unfused epiphysis is 132 , taphonomic cracking, lots of the calcium carbonate is on the posterior surface, some fire blackening	
VIII	1	C	132	Tibia Epiphysis	Left	Proximal epiphysis, light calcium carbonate	
VIII	1	C	133	Femur Fragment	Right	Badly deteriorated, treated with treated with B72, adult	
VIII	1	C	134	Tibia Fragment	Left	Distal end, epiphysis is fused, calcium carbonate on all surfaces of the shaft, cross mends with 131,	34 cm when all pieces are together but without the medial condyle

VIII	1	C	135	Femur Fragment	Right	Proximal fragment, young child, greater, lesser trochanter, and head are not yet fused calcium carbonate on all surfaces, slightly less on the posterior, no greater than 9 years, possibly younger
VIII		C	136	Humerus Fragment	Probable Right	Proximal end, head not fused, no greater than 9 years of age, lateral and posterior surface have the most grayish calcium carbonate
VIII	1	C	137	Possible Humerus	Left	Proximal end, young child, possibly not the same as 136 because the head area is more developed on this individual
VIII	1	C	138	Tibia Fragment	Right	Shaft Fragment, possible adult, completely covered in calcium carbonate, first rib fused to proximal end

VIII	1	C	139	Sternum		Relatively complete, calcium carbonate on both posterior and anterior surfaces	
VIII	1	C	140	Mandible Fragment	Right	Ramus Fragment, covered in calcium carbonate	
VIII	1	C	141	Talus Fragment	Right	Light coating of gray calcium carbonate, adult, proximal end damaged post mortem	
VIII	1	C	142	Cervical Vertebra Fragment		Left fragment of C1, adult, heavily coated in calcium carbonate on all surfaces	
VIII	1	C	143	Tibia Epiphysis	Possible Left	Proximal epiphysis, possibly ~ 9 years of age, fire blackening, grayish calcium carbonate on all surfaces, more so at the inferior surface of the epiphysis	
VIII	1	C	144	Proximal phalanx		adult, hand, completely covered with calcium carbonate, more so on the palmar surface.	42.36 mm

VIII	1	C	145	Sacral Vertebra		Young child, more grey calcium carbonate on the anterior surface, damage to the left transverse area and posterior prevents further identification	
VIII	1	C	146	5th Metatarsal Fragment	Undetermined	adult Proximal fragment, covered in a grey calcium carbonate to the point where it cannot be sided	
VIII	1	C	147	Capitate	Right	adult, covered in calcium carbonate	
VIII	1	C	148	Proximal phalanx		adult, foot, more calcium carbonate on the anterior surface, but on all surfaces	26.94 mm
VIII	1	C	149	Proximal phalanx		adult, foot, more calcium carbonate on the anterior surface, with only fire blackening on the superior surface	28.11 mm
VIII	1	C	150	Thoracic Vertebra fragment		adult, lamina, right transverse process and articular facets, upper Thoracic	

VIII	1	C	151	Unidentified	Possible epiphysis, too much calcium carbonate to identify
VIII	1	C	152	Unidentified	as many as three unidentifiable bones fused together with a thick coating of calcium carbonate, one is a shaft fragment and could be a young child
VIII	1	C	153	Thoracic Vertebra fragment	Body, adult, covered with calcium carbonate, taphonomic breakage to the rest
VIII	1	C	154	Cervical Vertebra	Complete, adult, lower cervical vertebra, calcium carbonate on all surfaces, but it is thicker on the inferior
VIII	1	C	155	Unidentified	Possible Vertebra body fragment or Calcaneus with calcium carbonate fully covering one surface

VIII	1	C	156	Sacral Vertebra		S3 of an adolescent, light gray calcium carbonate and fire blackening	
VIII	1	C	157	Phalanx Fragment		Proximal end is unfused, unsure if it is a proximal or intermediate foot phalanx, grey calcium carbonate.	
VIII	1	C	158	Rib Fragment	Right	Vertebral end, adult, calcium carbonate on the superior margin with fire blackening on all other areas.	
VIII	1	C	159	Phalanx		Foot, adult, calcium carbonate chipped off, but was restricted to the plantar surface with underlying fire blackening on other areas	21.23 mm
VIII	1	C	160	Lunate	Left	adult, covered in calcium carbonate	
VIII	1	C	161	Metacarpal Fragment		adult, head is broken off and the rest is covered in calcium carbonate to the point where is too difficult to identify	

VIII	1	C	162	Possible Tibia Epiphysis		Distal epiphysis of ~ 5 year old, light dusting of calcium carbonate and fire blackening, most of the calcium carbonate in of the inferior surface
VIII	1	C	163	5th Metacarpal fragment	Right	Proximal and shaft fragment, most of the calcium carbonate is on the palmar surface with fire blackening on the posterior
VIII	1	C	164	Rib fragment	Left	Vertebral end fragment, calcium carbonate on the superior margin, fire blackening on the inferior
VIII	1	C	165	Radius Epiphysis		Distal epiphysis older than 5 years of age, very slight calcium carbonate
VIII	1	C	166	Proximal Phalanx Fragment		Hand, adult, distal fragment, fire blackening, no real deposit of calcium carbonate

Of a young child, most of the calcium carbonate is on the anterior surface, with more fire blackening on the posterior

VIII	1	C	167	Possible sternum		surface
VIII	1	C	168	Metatarsal fragment		Distal end, completely covered in calcium carbonate
VIII	1	C	169	1st Metatarsal fragment		Distal end, most of the calcium carbonate is on the shaft, adult
VIII	1	C	170	Possible clavicle fragment	Left	adolescent, most of the calcium carbonate is restricted to the inferior surface with fire blackening on the superior surface
VIII	1	C	171	Possible Navicular Fragment	Undetermined	adult, fragment of the concave and convex facet, light dusting of calcium carbonate
VIII	1	C	172	Second Cuneiform	Left	Calcium carbonate on most surfaces, adult
VIII	1	C	173	Hamate	Left	adult, calcium carbonate on most surfaces
VIII	1	C	174	Rib fragment		adult, badly deteriorated shaft fragment, grayish

					colored calcium carbonate	
VIII	1	C	175	Vertebra fragment	Transverse process fragment with an articular facet, covered in grayish calcium carbonate	
VIII	1	C	176	Thoracic Vertebra fragment	Right lamina fragment with superior articular facet, most of the grey calcium carbonate is on the anterior surface	
VIII	1	C	177	Fragment	Unidentifiable fragment that is broken with thick layer of calcium carbonate on most surface.	
VIII	1	C	178	Vertebra fragment	Child, body unfused, covered in a grayish calcium carbonate, left pedicle fused but the line is visible	
VIII	1	C	179	Rib fragment	Small shaft fragment, possible adult with gray calcium carbonate	
VIII	1	C	180	Intermediate Phalanx	Probable adult, foot	14.69 mm

VIII	1	C	181	Rib fragment		Small shaft fragment, possible adult with gray calcium carbonate
VIII	1	C	182	Intermediate phalanx		adult, hand, calcium carbonate on the palmar surface, fire blackening on the posterior
VIII	1	C	183	Possible femur epiphysis		Relatively small, may be a fragment, slight dusting of calcium carbonate
VIII	1	C	184	Metacarpal Fragment		Head only, unfused, slight calcium carbonate
VIII	1	C	185	Metacarpal Fragment		Head only, unfused, slight calcium carbonate
VIII	1	C	186	Phalanx		Probably the hand, a proximal phalanx of the hand, adult, calcium carbonate on the palmar surface
VIII		C	187	Femur	Left	Under 15 years of age, head is not fused yet, calcium carbonate on most surfaces, was found posterior surface facing up, fused with

the rest of the bones
with this number.

VIII	1	C	187	Talus	Left	adult
VIII	1	C	187	1st Metacarpal		
VIII	1	C	187	Ribs		Probably 3+ rims in the calcium carbonate matrix
VIII	1	C	187	Thoracic Vertebra		
VIII	1	C	187	Cervical Vertebra		
VIII	1	C	187	2nd Cuneiform	Right	
VIII	1	C	187	2nd Metatarsal	Right	
VIII	1	C	187	3rd Metatarsal	Right	
VIII	1	C	188	Rib fragment	Left	Lower 6, adult, calcium carbonate on all surfaces
VIII	1	C	189	Mandible Fragment	Right	Part of the ramus , first two molars have erupted the 3 rd is still in the crypt, premolars and canines lost post mortem, calcium carbonate on all surfaces, more on the interior surface.

VIII	1	C	190	Shaft Fragment	Undetermined	Narrow shaft fragment, possible radius? Completely covered in calcium carbonate	
VIII	1	C	191	Radius Fragment	Left	Distal fragment with the proximal epiphysis unfused	
VIII	1	C	192	Ilium	Right	Young Child, not yet fused, most of the calcium carbonate is on the posterior surface	
VIII	1	C	193	Scapula Fragment	Left	Glenoid fragment with part of the medial border, most of the calcium carbonate is on the anterior surface	31.37 mm glenoid height, 25.91 mm
VIII	1	C	194	Lumbar Vertebra		Child, body still has billows, probably L4 or L5, taphonomic damage to the posterior, calcium carbonate on all surfaces, fire blackening underneath	

VIII

VIII	1	C	199	Cervical Vertebra		adult, lower cervical, calcium carbonate is mostly restricted to the superior surface of the vertebra	
VIII	1	C	200	Proximal Phalanx		adult, 1st foot phalanx, most of the calcium carbonate is restricted to the plantar surface, fire blackening noticeable on the superior surface	34.68 mm
VIII	1	C	201	Proximal Phalanx fragment		adult, hand, calcium carbonate on the posterior surface, fire blackening on the palmar surface, taphonomic breakage, and the distal end is missing	
VIII	1	C	202	Capitate	Right	adult, completely covered in light gray calcium carbonate	
VIII	1	C	203	Pelvis fragment		Unable to side due to the calcium carbonate, inferior of the obturator foramen	
VIII	1	C	204	1st Metatarsal	Probable Left	Proximal epiphysis is unfused, light calcium carbonate layer	

mainly on the shaft

VIII	1	C	205	Rib fragment	Right	Calcium carbonate on all surfaces, most of the rib minus the sternal end, upper 6 rib	
VIII	1	C	206	Lumbar Vertebra		adult, L1 or L2, completely covered in calcium carbonate	
VIII	1	C	207	Thoracic Vertebra Fragment		Body, taphonomic damage to the lamina, completely covered with calcium carbonate, adult	
VIII	1	C	208	Thoracic Vertebra		adult, Upper Thoracic vertebra, calcium carbonate covers all but the superior surface of the body	
VIII	1	C	209	Patella	Left	adult, calcium carbonate covers the anterior surface and medial facet	38.14 mm height
VIII	1	C	210	Thoracic Vertebra		adult, Upper Thoracic vertebra, calcium carbonate covers all but the superior surface of the body	

VIII	1	C	211	Lumbar Vertebra Fragment		Lamina, transverse process and articular facet fragment of L4 or L5, post mortem breakage
VIII	1	C	212	Possible Radius Fragment	Undetermined	Proximal Fragment, calcium carbonate almost completely covers it
VIII	1	C	213	4th Metatarsal	Left	Completely covered in calcium carbonate
VIII	1	C	214	Humerus Fragment	Right	Shaft fragment beginning right below the unfused epiphysis, light calcium carbonate with fire blackening
VIII	1	C	215	Lumbar Vertebra		Completely covered with calcium carbonate, body and spine still have billows, probably L3
VIII	1	C	216	Thoracic Vertebra		Completely covered with calcium carbonate, probably middle Thoracic vertebra
VIII	1	C	217	Rib fragment		Shaft fragment of a middle rib, light calcium carbonate with fire blackening

VIII	1	C	218	3rd Cuneiform	Right	adult, light coating of calcium carbonate and fire blackening	
VIII	1	C	219	3rd Cuneiform	Left	adult, possibly not the mate to 218 , but taphonomic damage prevents confirmation, light calcium carbonate	
VIII	1	C	220	Lumbar Vertebra		Covered with calcium carbonate, less on the superior surface of the body, adult, probably L1 or L2	
VIII	1	C	221	Rib Fragment		Shaft fragment, completely covered with calcium carbonate, another bone is fused to the anterior surface	
VIII	1	C	222	Proximal Phalanx		adult, hand, calcium carbonate on all surfaces	38.37 mm
VIII	1	C	223	Possible Fibula Fragment		Young child, end fragment, light covering of calcium carbonate	
VIII	1	C	224	Metacarpal		Head is not yet fused calcium carbonate and lack of definition on the proximal end	

						prevent further identification.	
VIII	1	C	225	4th Metacarpal	Right	adult, calcium carbonate and fire blackening	66.86 mm
VIII	1	C	226	5th Metacarpal	Left	adult, grey calcium carbonate mostly on the medial and posterior surface	64.09 mm
VIII	1	C	227	Epiphysis		Possible distal tibia epiphysis of an individual ~ 5 years old, calcium carbonate is on what appears to be the distal end	
VIII	1	C	228	Parietal	Left	Part of the occipital bone is present, there is lytic activity and vascularization along the midline	
VIII	1	C	229	Cervical Vertebra		adult, calcium carbonate on most of the surface, lower cervical due to the positioning of the superior articular facet	

VIII	1	C	230	Rib Fragment		adult, middle rib, covered in grayish calcium carbonate and fire blackening most of the calcium carbonate is on the interior surface
VIII	1	C	231	Shaft Fragment		Completely covered in calcium carbonate, possible unfused epiphysis
VIII	1	C	232	Rib Fragment	Right	Calcium carbonate all over, less on the inferior surface, vertebral end, adult, upper 6
VIII	1	C	233	Rib Fragment		adult, shaft fragment, grayish calcium carbonate, middle rib
VIII	1	C	234	Rib Fragment		adult, shaft fragment, grayish calcium carbonate, middle rib
VIII	1	C	235	Rib Fragment		adult, shaft fragment, grayish calcium carbonate, middle rib
VIII	1	C	236	Rib Fragment		adult, shaft fragment, grayish calcium carbonate, middle rib
VIII	1	C	237	Patella	Right	Probable juvenile, calcium carbonate on both surfaces, badly

deteriorated

VIII	1	C	238	Distal phalanx		Foot, possibly the first, has not completely fused	
VIII	1	C	239	Metacarpal fragment		Distal fragment of the head, line is visible thus not completely fused	
VIII	1	C	240	Possible Scapula Fragment	Probable Left	Blade portion, covered in calcium carbonate	
VIII	1	C	241	Femur Epiphysis	Possible Right	Medial condyle, older child, older than 9 , probably closer to 12	
VIII	1	C	242	Lumbar Vertebra		Child, body still has billows, probably L4 or L5, taphonomic damage to the posterior, calcium carbonate on all surfaces with less on the inferior surface	
VIII	1	C	243	Thoracic Vertebra		adult, middle Thoracic, grayish calcium carbonate light all over	
VIII	1	C	244	Femur Epiphysis		Head epiphysis	38.67 mm head diameter

VIII	1	C	245	Cervical Vertebra Fragment	Body fragment with right transverse foramen, child, calcium carbonate is mostly on the superior surface
VIII	1	C	246	Rib Fragment	adult, shaft fragment, grayish calcium carbonate, middle rib
VIII	1	C	247	Rib Fragment	adult, shaft fragment, grayish calcium carbonate, middle rib
VIII	1	C	248	Rib Fragment	adult, shaft fragment, grayish calcium carbonate, middle rib
VIII	1	C	249	Rib Fragment	adult, shaft fragment, grayish calcium carbonate, middle rib
VIII		C	250	Rib Fragment	adult, shaft fragment, thick calcium carbonate with most on the superior surface, upper 6, vertebral and angle fragment
VIII	1	C	251	Rib Fragment	adult, shaft fragment, grayish calcium carbonate, middle rib

VIII	1	C	252	Rib Fragment		adult, shaft fragment, thick calcium carbonate with most on the superior surface, upper 6, vertebral and angle fragment	
VIII	1	C	253	Rib Fragment		adult, shaft fragment, grayish calcium carbonate, middle rib	
VIII	1	C	254	Rib Fragment		adult, shaft fragment, grayish calcium carbonate, lower 6, vertebral end	
VIII	1	C	255	Frontal Fragment		Superior portion of the frontal, young individual, has cranial modification	
VIII	1	C	256	Lumbar Vertebra		light calcium carbonate, lots of taphonomic damage	
VIII	1	C	257	Cervical Vertebra		Lower vertebra, light calcium carbonate, adult	
VIII	1	C	258	3rd Cuneiform	Right	adult, some taphonomic damage, some fire blackening, calcium carbonate on the other surface	
VIII	1	C	259	Proximal Phalanx		Maybe juvenile, hand, fire blackening	29.08 mm

VIII	1	C	260	Rib Fragment		adult, shaft fragment, more fire blackening than calcium carbonate, upper 6, vertebral and angle fragment
VIII	1	C	261	Shaft Fragment		
VIII	1	C	262	Rib Fragment	Possible Right	Rib 1 sternal end, adult, light calcium carbonate and fire blackening
VIII	1	C	263	Vertebra fragment		Body, juvenile, possible lumbar, taphonomic damage to the body and
VIII	1	C	264	Thoracic Vertebra		Body still has some billows but is fused, taphonomic damage to the posterior surface, light calcium carbonate on all surfaces
VIII	1	C	265	Rib (first)	Right	Juvenile, calcium carbonate on all surfaces with fire blackening
VIII	1	C	266	Rib (first)	Left	Juvenile, calcium carbonate on all surfaces with fire blackening, less than

VIII	1	C	267	Tibia Fragment?		Possible proximal anterior fragment with calcium carbonate on the surface	
VIII	1	C	268	Patella	Left	Heavily covered in calcium carbonate	
VIII	1	C	269	Femur Fragment	Left	Distal Fragment of the popliteal surface	
VIII	1	C	270	Radius Fragment	Probable Left	adult, completely covered in calcium carbonate, unidentifiable shaft fused to it	19.65 mm head diameter
VIII	1	C	271	Ilium	Left	Young Child, covered in grayish calcium carbonate, taphonomic damage to the blade	
VIII	1	C	272	Lumbar Vertebra		Younger (indicated by the billows), possible L4 or L5, taphonomic damage to the right transverse process, grayish calcium carbonate with fire blackening	

VIII	1	C	273	Mandible Fragment	Left	Probable child, does not appear that there are any molars that have erupted, what little of the ramus is present is indicative of a child	
VIII	,	C	274	3rd Cuneiform	Right	adult, completely covered in calcium carbonate	
VIII	1	C	275	Femur Fragment	Left	Distal fragment, epiphysis unfused, young child	$\begin{gathered} 46.05 \mathrm{~mm} \text { distal } \\ \text { width } \\ \hline \end{gathered}$
VIII	1	C	276	Thoracic Vertebra		Body, young child, slight billows visible on one surface, rest is covered in calcium carbonate, taphonomic damage to the posterior surface	
VIII	1	C	277	Humerus Fragment	Left	Shaft fragment covered with calcium carbonate, gracile or young adult	
VIII	1	C	278	Vertebra fragment		Body of a young individual indicated by the billows, possible lower cervical or upper Thoracic, grayish	

calcium carbonate

VIII	1	C	279	Femur Fragment	Left	Distal fragment of the condyles, adult, covered in calcium carbonate
VIII	1	C	280	1st Cuneiform	Right	adult, little calcium carbonate, taphonomic damage
VIII	1	C	281	Lumbar Vertebra		Young adult, body epiphysis line is still visible, probably L1 or L2, grayish calcium carbonate on entire surface except inferior body
VIII	1	C	282	Pelvis fragment		adult, part of the blade and ischium
VIII	1	C	283	Rib fragment		Sternal fragment, thick calcium carbonate with underlying fire blackening, middle rib, possible young individual
VIII	1	C	284	Cervical Vertebra		Lower cervical vertebra, adult, covered in calcium carbonate, slightly

less on the superior surface

VIII	1	C	285	Number not assigned?		
VIII	1	C	286	Thoracic Vertebra		adult, middle Thoracic, completely covered in calcium carbonate
VIII	1	C	287	Thoracic Vertebra		adult, upper Thoracic, completely covered in light amount of grey calcium carbonate
VIII	1	C	288	Thoracic Vertebra Fragment		Lamina and transverse process fragment of a lower Thoracic vertebra
VIII	1	C	289	5th Metatarsal Fragment	Undetermined	Distal fragment, no heavy calcium carbonate
VIII	1	C	290	Capitate	Left	adult, covered almost completely with calcium carbonate
VIII	1	C	291	Ischium	Left	Young Child, not fused with other bones, light coating of grayish calcium carbonate, probably the mate to 292

VIII	1	C	292	Ischium	Right	Young Child, not fused with other bones, thick coating of grayish calcium carbonate, probably the mate to 291
VIII		C	293	Thoracic Vertebra		Young adult, spine is slightly burned, possible Schmorl's node on the inferior surface of the body, body is slightly lytic, bottom demi facet is larger than the top
VIII	1	C	294	Talus Fragment	Probable Right	Larger concave facet on plantar surface is visible, res is taphonomically damaged and/or covered with calcium carbonate
VIII	1	C	295	Ischium Fragment	Probable Left	Part of the underdeveloped lunate surface is present, young child probably over 5 but younger than 9

VIII	1	C	296	Thoracic Vertebra fragment		young adult, body with part of the lamina, calcium carbonate over the entire surface, demi facets are small but two on each side are noticeable
VIII	1	C	297	Clavicle Fragment	Right	Lateral fragment, large adult, more of the calcium carbonate on the inferior surface, more fire blackening noticeable on the superior surface
VIII	1	C	298	Epiphysis?		Calcium carbonate completely covers one surface and most of the other, thus preventing identification
VIII	1	C	299	Lunate	Left	adult, grayish colored calcium carbonate
VIII	1	C	300	Lumbar Vertebra Fragment		Body, light covering of grayish calcium carbonate, adult
VIII	1	C	301	Radius Fragment	Left	Proximal fragment, unfused head, adolescent, calcium carbonate and fire

						blackening on all surfaces	
VIII	1	C	302	3rd Metatarsal	Right	adult, grayish calcium carbonate and fire blackening	67.15 mm
VIII	1	C	303	2nd Metacarpal	Left	adult, more calcium carbonate on the palmar surface, fire blackening underneath	
VIII	1	C	304	4th Metacarpal	Right	grayish calcium carbonate and blackening mostly on the palmar surface, head not present due to damage	
VIII	1	C	305	2nd Metacarpal	Right	Head not fused, young adult, most of the calcium carbonate is on the palmar surface	
VIII	1	C	306	Proximal Phalanx		adult, hand, calcium carbonate on all surfaces	
VIII	1	C	307	Intermediate phalanx		adult, hand, fire blackening on the posterior surface and grey calcium carbonate on the	

palmar surface

VIII	1	C	308	Lumbar Vertebra		adult, completely covered in calcium carbonate, probably L3
VIII	1	C	309	Vertebra fragment		adult, possibly cervical, covered with calcium carbonate
VIII	1	C	310	Rib fragment		Shaft fragment, adult, middle rib, covered in calcium carbonate, more on the posterior surface
VIII	1	C	311	Clavicle Fragment	Left	Lateral fragment, gracile adult possibly, covered in grey calcium carbonate with more on the superior surface
VIII	1	C	312	5th Metacarpal (probable)	Probable Left	Calcium carbonate over everything but the fire blackened head, adult
VIII	1	C	313	Metacarpal	Undetermined	Too much calcium carbonate prevents identification
VIII	1	C	314	Manubrium		Young, more calcium carbonate on the

posterior surface

VIII	1	C	315	Cervical Vertebra		Grayish calcium carbonate on all surfaces, adult, middle cervical most likely	
VIII	1	C	316	Thoracic vertebra		Lower Thoracic, covered in calcium carbonate, adult	
VIII	1	C	317	Tibia Fragment (probably)		Proximal unfused fragment covered in calcium carbonate	
VIII	1	C	318	Mandible Fragment	Right	adult, three molars erupted, only the first molar is present, calcium carbonate and fire blackened	11.26 lingual buccal, 12.86 mesial distal
VIII	1	C	319	Proximal Phalanx		adult, foot, calcium carbonate on the plantar surface, fire blackening on the superior	
VIII	1	C	320	Shaft Fragment		Possible distal radius fragment of a young child, completely covered in calcium carbonate	
VIII	1	C	321	Vertebra Fragment		Cervical or Thoracic vertebra fragment of a	

						lamina with calcium carbonate on it
VIII	1	C	322	Vertebra Fragment		young adult, billows are not well define, mostly covered in thick calcium carbonate
VIII	1	C	323	Thoracic Vertebra		Young (billows), lower Thoracic, grayish calcium carbonate on all but the superior surface of the body
VIII	1	C	324	Lumbar Vertebra Fragment		adult, posterior spine and left transverse process, probably L3 or L4, grayish calcium carbonate
VIII	1	C	325	Navicular	Right	adult, more of the grayish calcium carbonate is in the concave depression
VIII	1	C	326	4th Metacarpal (probably)	Right	Mostly covered in calcium carbonate, adult
VIII	1	C	327	Femur epiphysis	Left	Over 5 years of age, covered in calcium carbonate, greater trochanter, mate to 345

VIII	1	C	328	Talus Fragment	Right	adult, fire blackened
VIII	1	C	329	Humerus Fragment	Left	adult, triangular shaped olecranon fossa, angled medial epicondyle
VIII	1	C	330	Sacral Vertebra		Probably 1st, younger than adolescent, grayish calcium carbonate
VIII	1	C	331	Pubis	Left	Young Child, covered in grayish calcium carbonate, taphonomic damage to the blade
VIII		C	332	Rib Fragment		Middle rib, adult, grey calcium carbonate on superior edge that drips down to midway on the anterior and posterior surface
VIII	1	C	333	Capitate	Left	adult, covered in calcium carbonate
VIII	1	C	334	Lumbar Vertebra Fragment		Body, young child, billows, fire blackened and calcium carbonate, taphonomic damage to posterior
VIII	1	C	335	Intermediate phalanx		adult, hand, grayish

VIII	1	C	336	Femur Epiphysis fragment	Left	Distal epiphysis, lateral condyle is more intact, grayish calcium carbonate	
VIII	1	C	337	Humerus Fragment	Probable Right	Head fragment covered in calcium carbonate	36.68 mm
VIII	1	C	338	Scapula Fragment	Right	Glenoid, coracoid, and part of blade, grayish calcium carbonate, adult	glenoid height $37.2 \mathrm{~mm}, 26.58$ mm width
VIII	1	C	339	Cervical Vertebra		2nd vertebra, adult, covered in grayish calcium carbonate	
VIII	1	C	340	Thoracic Vertebra		```Young child, completely fused, upper Thoracic, light calcium carbonate```	
VIII	1	C	341	Mandible Fragment	Right	Ramus Fragment, covered in calcium carbonate	
VIII	1	C	342	Humerus Fragment		Proximal epiphysis	
VIII	1	C	343	1st Metatarsal fragment		distal fragment, light covering of grey calcium carbonate	
VIII	1	C	344	Patella	Left	adult, more fire black than calcium carbonate	36.06 mm

VIII	1	C	345	Femur epiphysis	Right	Over 5 years of age, covered in calcium carbonate, greater trochanter, mate to 327
VIII	1	C	346	Ilium fragment	Probable Right	Crest fragment, epiphysis on the crest is not fused
VIII	1	C	347	3rd Metacarpal fragment	Left	Adult, proximal fragment, adult, covered in calcium carbonate
VIII	1	C	348	Cervical Vertebra		Child, but everything is fused, probably a lower cervical, most of the grayish calcium carbonate is on the superior surface
VIII	1	C	349	Proximal Olecranon Epiphysis		Child, covered in calcium carbonate thus prevents siding
VIII	1	C	350	Cervical Vertebra		Child, but everything is fused, probably a lower cervical, most of the grayish calcium carbonate is on the superior surface
VIII	1	C	351	Vertebra fragment		Body of an adult, light coating of calcium carbonate, taphonomic damage,

possible Thoracic

				Proximal fragment, child, head absent but the greater and lesser trochanter are not yet fused, possibly same age as the greater trochanter epiphyses	
VIII	1	C	352	Femur Fragment	Vertebral end, adult, upper 6, light calcium carbonate and fire blackening
VIII	1	C	353	Rib Fragment	Shaft fragment, child, probably rib 1, calcium carbonate and fire blackening
VIII	1	C	354	Rib Fragment	Shaft fragment, middle rib, calcium carbonate and fire blackening
VIII	1	C	355	Rib Fragment	Child, foot, not yet fused, light calcium carbonate on superior surface
VIII	1	C			
				Proximal Phalanx	adult foot, calcium carbonate on superior surface and shaft of the plantar surface

VIII	1	C	358	Rib Fragment	Sternal end fragment, middle rib, calcium carbonate and fire blackening
VIII	1	C	359	Rib Fragment	Shaft fragment, middle rib, calcium carbonate and fire blackening
VIII	1	C	360	4th sacral vertebra	grayish calcium carbonate
VIII	1	C	361	Intermediate phalanx	
VIII	1	C	362	Lunate	adult, hand, calcium carbonate on the proximal facet, fire blackening on the rest of the bone
VIII	1	C	363	Rib Fragment	Right

VIII	1	C	367	Ischium Fragment	Probable Right	Child, covered in calcium carbonate
VIII	1	C	368	Thoracic Vertebra Fragment		adult, lamina and facet fragment
VIII	1	C	369	Cranial Fragment		Child, probably occipital
VIII	1	C	370	Thoracic Vertebra Fragment		adult, lamina and facet fragment
VIII	1	C	371	Thoracic Vertebra Fragment		adult, lamina and facet fragment
VIII	1	C	372	Scapula Fragment	possible right	adult, coracoid fragment
VIII	1	C	373	Vertebra Fragment		adult, transverse process
VIII	1	C	374	Femur Fragment	Probable Right	Young child, 5-9, heary grey calcium carbonate
VIII	1	C	375	Radius Epiphysis	Possible Left	Child, Calcium carbonate on the proximal surface Blade portion, covered in calcium carbonate
VIII	1	C	376	Scapula Fragment		adult, superior articular facet and left transverse process
VIII	1	C	378	Thoracic Vertebra		Fragment adult, Shaft fragment, midde rib, calcium carbonate and fire blackening

VIII	1	C	379	Proximal Phalanx		adult, probably the foot, heavily covered in calcium carbonate
VIII	1	C	380	Scapula Fragment	Possible left	Child, coracoid is not yet fused to the rest of the scapula
VIII	1	C	381	Proximal Phalanx		adult, foot, heavily covered in calcium carbonate
VIII	1	C	382	Rib Fragment		young adult, Sternal fragment, middle rib, calcium carbonate and fire blackening
VIII	1	C	383	Intermediate phalanx		adult, hand, calcium carbonate on shaft
VIII	1	C	384	Phalanx fragment		Child, proximal fragment not completely developed, light calcium carbonate
VIII	1	C	385	Rib fragment		adult, Shaft fragment, middle rib, calcium carbonate and fire blackening
VIII	1	C	386	Rib Fragment		young adult, Shaft fragment, middle rib, fire blackening
VIII	1	C	387	Thoracic Vertebra		child, body and left transverse process, fire blackened and

						light calcium carbonate
VIII	1	C	388	Shaft Fragment		child, proximal tibia fragment or unfused radius from different aged children, completely covered in calcium carbonate
VIII	1	C	389	Metacarpal epiphysis		light calcium carbonate
VIII	1	C	390	Cuneiform		Probably a child, facets cannot be easily made out
VIII	1	C	391	Metacarpal epiphysis		light calcium carbonate
VIII	1 1	C	392	Intermediate Phalanx		adult, foot, superior surface completely covered in calcium carbonate, plantar side - just the shaft
VIII	1	C	393	Epiphysis fragment		
VIII	1	C	394	Lunate	Left	Child, fire blackened
VIII	1	C	395	Clavicle Fragment	Left	Child, lateral fragment, both surfaces covered in calcium carbonate
VIII	1	C	396	Metatarsal fragment		adult, proximal phalanx, calcium carbonate

VIII	1	C	397	3rd Cuneiform Fragment	Left	adult,, calcium carbonate covers all surfaces
VIII	1	C	398	Cervical Vertebra		Young adult/child, body does not have billows and line is more fused, body and left transverse process are present, everything but the superior portion of the body is covered in grayish calcium carbonate
VIII	1	C	399	Thoracic Vertebra Fragment		adult, lamina fragment, covered in calcium carbonate, and fused to premolar
VIII	1	C	399	Premolar		adult Premolar
VIII	1	C	400	Possible Patella Fragment	Right	Child, light calcium carbonate and fire blackening
VIII	1	C	401	Thoracic Vertebra Fragment		Body, Child, pedicle lines fused but visible, fire blackening and calcium carbonate
VIII	1	C	402	Scaphoid	Right	adult, calcium carbonate is mainly on the convex surface

VIII	1	C	403	Metacarpal Fragment		Child, shaft and part of the unfused distal head
VIII	1	C	404	Cervical Vertebra Fragment		Child, not yet fused, some taphonomic damage
VIII	1	C	405	Lesser Multangular	Left	adult, slight grayish calcium carbonate, but more fire blackening
VIII	1	C	406	Scapula Fragment	Possible right	Child, coracoid is not yet fused to the rest of the scapula
VIII	1	C	407	Number not assigned?		
VIII	1	C	408	Proximal Phalanx		adult, foot, covered in calcium carbonate
VIII	1	C	409	Shaft Fragment		Light covering of calcium carbonate
VIII	1	C	410	Shaft Fragment		Covered in grayish calcium carbonate mostly on one surface
VIII	1	C	411	Ischium	Left	Child, light grayish calcium carbonate and fire blackening
VIII	1	C	412	Proximal Phalanx		Child, 1st phalanx, not yet fused, more of the calcium carbonate is on the posterior surface

adult, some calcium carbonate and fire
$\left.\begin{array}{ccccccc}\text { VIII } & 1 & \text { C } & 413 & \text { Cuboid Fragment } & \text { Possible Right } & \text { blackening } \\ \text { VIII } & 1 & \text { C } & 413 & \begin{array}{c}\text { Mandible Fragment } \\ \text { with 2 molars and a } \\ \text { premolar }\end{array} & \\ \hline \text { VIII } & 1 & \text { C } & 414 & \begin{array}{c}\text { Thoracic Vertebra } \\ \text { Fragment }\end{array} & \begin{array}{c}\text { adult, body, lamina, } \\ \text { and left transverse } \\ \text { process, very friable, } \\ \text { grayish, possibly } \\ \text { burned }\end{array} \\ \hline \text { VIII } & 1 & \text { C } & 414 & \text { Molar } & \begin{array}{c}\text { Taken For Isotope } \\ \text { analysis 3/2012 }\end{array} \\ \hline \text { VIII } & 1 & \text { C } & 415 & \text { Epiphysis } & \\ \hline \text { VIII } & 1 & \text { C } & 415 & \text { Molar } & \begin{array}{c}\text { Taken For Isotope } \\ \text { analysis 3/2012 }\end{array} \\ \hline \text { VIII } & 1 & \text { C } & 416 & \text { Cuneiform } & \begin{array}{c}\text { Child, not developed } \\ \text { enough to fully } \\ \text { identify }\end{array} \\ \hline \text { VIII } & 1 & \text { C } & 416 & \text { Molar } & \begin{array}{c}\text { Taken For Isotope } \\ \text { analysis 3/2012 }\end{array} \\ \hline & & & & \text { Thoracic Vertebra } & \text { adult, possible } & \text { transverse process } \\ \text { fragment, grey }\end{array}\right]$

VIII	1	C	420	Vertebra Fragment	fragment, covered in calcium carbonate
VIII	1	C	420	Molar	Possible Ulna
VIII	1	C	421	Epiphysis	
VIII	1	C	421	Molar	Young adult, epiphysis line fused but visible, calcium carbonate fused to metacarpal
					possibly the 5th metacarpal, covered in calcium carbonate, fused to vertebra
VIII	1	C	422	Cervical Vertebra	
					adolescent
VIII	1	C	422	Metacarpal	
VIII	1	C	422	Molar	adolescent
VIII	1	C	423	Radius Epiphysis	
VIII	1	C	423	Molar	Epiphysis fragment, possible long bone, flat
VIII	1	C	424	Clavicle Epiphysis	Molar
VIII	1	C	424		Epiphysis

VIII	1	C	426	Canine	body fragment
VIII	1	C	427	Vertebra Fragment	
VIII	1	C	427	Canine	adult, grayish calcium carbonate
VIII	1	C	428	Navicular Fragment	
VIII	1	C	428	Canine	adult, transverse process
VIII	1	C	429	Vertebra fragment	
VIII	1	C	429	Premolar	adolescent
VIII	1	C	430	Clavicle Epiphysis	
VIII	1	C	430	Premolar	
VIII	1	C	431	tarsal fragment?	
VIII	1	C	431	Incisor	adult, treated with treated with B72
VIII	1	C	432	22 Unidentifiable	Fragments
VIII	1	C	432	Incisor	adult, treated with treated with B72
VIII	1	D	1	Cranial Fragment	adult, treated with treated with B72
VIII	1	D	2	Temporal Fragment	adult, treated with treated with B72
VIII	1	D	3	Cranial Fragment	adult, treated with treated with B72
VIII	1	D	4	Cranial Fragment	adult, treated with treated with B72
VIII	1	D	5	Cranial Fragment	Parietal Fragment
	1	D	6		

VIII	1	D	7	Tibia Fragment	Left	adult, distal fragment, treated with treated with B72	
VIII		D	8	Pubis Fragment	Left	adult, billows on pubic face indicate young, crest is pinchable but not sharp, treated with treated with B72	
VIII	1	D	9	Radius Fragment	Right	Distal Fragment, epiphysis is not fused yet, treated with treated with B72	
VIII	1	D	10	Metacarpal Fragment		Shaft and distal fragment, head not fused, treated with treated with B72	
VIII	1	D	11	Cuboid	Right	treated with treated with B72	
VIII	1	D	12	Vertebra Fragment		Body, badly deteriorated, possible cervical or Thoracic, treated with treated with B72	
VIII	1	D	13	Femur Epiphysis		Head epiphysis, treated with treated with B72	38.05 mm
VIII	1	D	14	Cranial Fragment		adult, treated with treated with B72, treated with treated with B72	

VIII	1	D	15	Ulna Fragment	Right	Proximal Fragment, badly deteriorated, adult, treated with treated with B72
VIII	1	D	16	Vertebra Fragment		anterior body and transverse process, billows on the body, covered in calcium carbonate, possible lumbar or sacral vertebra, treated with treated with B72
VIII	1	D	17	Proximal Phalanx		adult, foot, badly deteriorated, treated with treated with B72
VIII	1	D	18	Shaft Fragment		treated with treated with B72
VIII	1	D	19	unidentified fragment		treated with treated with B72
VIII	1	D	20	Cranial Fragment		adult, treated with treated with B72
VIII	1	D	21	Thoracic Vertebra		adult, treated with treated with B72
VIII	1	D	22	Thoracic Vertebra		billows on inferior of the body, treated with treated with B72
VIII	1	D	23	Pelvis fragment		Part of the ischium and ilium, badly deteriorated, treated with b73, probable

$\left.\begin{array}{ccccccc}\hline \text { VIII } & 1 & \text { D } & 24 & \text { Ilium fragment } & & \begin{array}{c}\text { adult, narrow sciatic } \\ \text { notch, treated with } \\ \text { treated with B72 }\end{array} \\ \hline \text { VIII } & 1 & \text { D } & 25 & \text { Humerus Fragment } & \text { Right } & \begin{array}{c}\text { Distal fragment, } \\ \text { trochlea is } \\ \text { symmetrical, medial } \\ \text { epiphysis is level, } \\ \text { olecranon fossa is } \\ \text { somewhat ovate }\end{array} \\ \hline \text { VII } & 1 & \text { D } & 26 & \text { Ilium fragment } & & \text { adult, crest fragment } \\ \text { 52.48, olecranon 23.04 mm }\end{array}\right]$

VIII	1	D	33	Proximal Phalanx		and fire blackening	
VIII	1	D	34	Thoracic Vertebra Fragment		Lamina, transverse process and articular facet fragment adult	
VIII	1	D	35	Rib fragment		adult, shaft fragment fire blackening and calcium carbonate	
VIII	1	D	36	Navicular	Right	Fire blackened	
VIII	1	D	37	Rib fragment	Right	Vertebral and neck fragment, adult	
VIII	1	D	38	Rib fragment		adult, shaft fragment fire blackening and calcium carbonate	
VIII	1	D	39	Thoracic Vertebra Fragment		Young, body has billows pedicle is fused but line is visible	
VIII	1	D	40	Thoracic Vertebra Fragment		Lamina fragment, adult	
VIII	1	D	41	2nd Metacarpal	Left	adult	64.88 mm
VIII	1	D	42	1st Metacarpal	Left	adult	39.7 mm
VIII	1	D	43	Cuboid	Left	adult	
VIII	1	D	44	Metacarpal Fragment		adult, distal fragment with some shaft	
VIII	1	D	45	Intermediate Phalanx		adult, hand	
VIII	1	D	46	Proximal Phalanx		adult, hand	
VIII	1	D	47	Proximal Phalanx		adult, hand	

VIII	1	D	48	3rd Metatarsal	Right	adult	
VIII	1	D	49	3rd Metacarpal	Right	adult	
VIII	1	D	50	2nd Metatarsal, fragment	Right	adult, proximal fragment	
VIII	1	D	51	Ulna Fragment	Right	Proximal Fragment, covered in grayish calcium carbonate	
VIII	1	D	52	Tibia Fragment	Right	Shaft Fragment, fire blackened	
VIII	1	D	53	Tibia Fragment	Left	Shaft Fragment, fire blackened	
VIII	2	a	1	Tibia Fragment	Right	Proximal and majority of the shaft (right at the flaring before the medial malleolus), most of the calcium carbonate is focused on the shaft, with more on the posterior surface, some vascularization at the tibial tuberosity	$\begin{gathered} \text { T7-6: } 2.5 \mathrm{~cm}, \mathrm{~T} 7- \\ 3: 12 \mathrm{~cm} \end{gathered}$
VIII	2	a	1	molar		Duplicate Number	
VIII	2	a	2	Tibia Fragment	Left	Proximal and shaft fragment, less than \#1, same individual as \#1, calcium carbonate mainly on the posterior surface of the shaft, some	$\begin{gathered} \text { T7-6: 2.7, T7- } \\ 5: 7.7 \mathrm{~cm}, \mathrm{~T} 7-\mathrm{T} 4: \\ 10 \mathrm{~cm} \\ \hline \end{gathered}$

vascularization at the tibial tuberosity

VIII	2	a	3	Femur	Right	Complete, more of the calcium carbonate is on the posterior surface, there is taphonomic cracking of the shaft which has created a bowing affect, a shaft fragment is cemented to the neck, and there is damage to the trochanteric crest.	
VIII	2	a	4	Scapula	Left	adult, burnt	33.12 mm glenoid height, 25.12 mm wide
VIII	2	a	5	Proximal Phalanx		adult, burnt	
VIII	2	a	6	1st proximal phalanx		adult, burnt	
VIII	2	a	7	Talus Fragment	Probable Right	adult, burnt	
VIII	2	a	8	1st Rib	Right	Child, burnt	
VIII	2	a	9	Phalanx		Possible proximal of a child	
VIII	2	a	10	Distal Phalanx		Foot, adult, burnt	
VIII	2	a	11	2nd rib	Left	Child, burnt	

VIII	2	a	12	Thoracic Vertebra Fragment		Lamina fragment, unfused to the body, older child, burnt	
VIII	2	a	13	Patella	Right	adult, burnt	41.88 mm
VIII	2	a	14	Vertebra Body		Probable Thoracic vertebra of a child, grey from burning	
VIII	2	a	15	Thoracic Vertebra Fragment		adult, Inferior body fragment, burnt, possibly middle Thoracic	
VIII	2	a	16	Proximal Phalanx		adult, foot	
VIII	2	a	17	Proximal Phalanx		adult, foot	
VIII	2	a	18	Proximal Phalanx		adult, foot	
VIII	2	a	19	1st proximal phalanx		Child, unfused, probably hand	
VIII	2	a	20	Rib Fragment	Right	adult, upper 6, burnt	
VIII	2	a	21	Scapula Fragment	Undetermined	Child, part of the lateral border and the spine	
VIII	2	a	22	Thoracic Vertebra Fragment		Child, lamina fragment with a superior articular facet	
VIII	2	a	23	Patella	Right	adult burnt	$\begin{gathered} 39.62 \text { patella } \\ \text { height } \end{gathered}$
VIII	2	a	24	Proximal Phalanx		adult, foot, possible pathology on distal end (lytic malformation)	

VIII	2	a	25	Humerus Epiphysis	Right	Child, burnt
VIII	2	a	26	Metacarpal		Child, head not completely fused and proximal end is not fully developed
VIII	2	a	27	Thoracic Vertebra		Lamina is fused to the body, but the epiphysis line is still visible, taphonomic damage to the spine, middle Thoracic
VIII	2	a	28	5th Metatarsal	Right	adult, burnt
VIII	2	a	29	Phalanx fragment		adult, proximal facet
VIII	2	a	30	Rib Fragment		Young Child, burnt
VIII	2	a	31	3rd Cuneiform	Right	adult, burnt
VIII	2	a	32	Thoracic Vertebra Fragment		adult right transverse process, right superior articular facet and part of the lamina
VIII	2	a	33	1st Metatarsal fragment		Distal end, young adult or older child, the epiphysis is fused but the line is very visible
VIII	2	a	34	Mandible Fragment	Right	Child, a molar had erupted and lost post mortem, a molar is in the crypt, burned
VIII	2	a	35	Manubrium Fragment		Superior portion, adult, burnt

VIII	2	a	36	Talus Fragment	Right	adult, burned	
VIII	2	a	37	Patella Fragment	Possible Right	adult (small), burnt	
VIII	2	a	38	Navicular Fragment	Left	adult, concave facet with some of the other facet	
VIII	2	a	39	Vertebra Body		Child, probable Thoracic, burnt, unfused	
VIII	2	a	40	Proximal Phalanx		Child, unfused, probably hand	
VIII	2	a	41	Lumbar Vertebra Fragment		Child, unfused lamina, burnt, possibly L4 or L5	
VIII	2	a	42	Thoracic Vertebra Fragment		Child, unfused lamina, burnt, possible middle Thoracic	
VIII	2	a	43	Patella	Left	adult, burned	46.18 mm
VIII	2	a	44	1st Distal Phalanx		Young adult, or older child, the head does not appear fused, burned	
VIII	2	a	45	Proximal Phalanx		adult, hand	
VIII	2	a	46	Proximal Phalanx		adult, foot	
VIII	2	a	47	Proximal Phalanx Fragment		Distal fragment, adult, possible foot	
VIII	2	a	48	2nd Metatarsal fragment	Right	proximal fragment, adult, burnt	
VIII	2	a	49	Proximal Phalanx		adult, foot, burnt	

VIII	2	a	50	4th Metatarsal Fragment	Right	proximal fragment, adult, burnt	
VIII	2	a	51	Calcaneus	Right	Young Child (2-3), burnt	32.27 mm length
VIII	2	a	52	Cervical Vertebra		adult, burnt, mid to lower cervical	
VIII	2	a	53	Proximal Phalanx		adult, foot, burnt	
VIII	2	a	54	Distal Phalanx		adult Hand, blackened	
VIII	2	a	55	Intermediate Phalanx		adult Hand, blackened	
VIII	2	a	56	Intermediate Phalanx		adult probable foot, blackened	
VIII	2	a	57	Intermediate Phalanx		adult Hand, blackened	
VIII	2	a	58	Scaphoid	Left	Largest scaphoid I've ever seen	
VIII	2	a	59	Lunate	Left	adult, same individual as 57,59 , large person	
VIII	2	a	60	Capitate	Right	adult, same as 57 and 58	
VIII	2	a	61	Capitate	Left	adult same as 57, 58, 59	
VIII	2	a	62	Ischium	Left	Child, burned	
VIII	2	a	63	Rib Fragment		adult, shaft fragment, middle rib, burned	
VIII	2	a	64	Vertebra Body		Child, burned, possible Thoracic vertebra	

VIII	2	a	65	Metacarpal		yet
VIII	2	a	66	Distal Phalanx	adult, foot	
VIII	2	a	67	2nd Metacarpal Fragment		Proximal Fragment, adult, burnt, HUGE
VIII	2	a	68	Pubis	Right	Possible perinate, or under 1 year, burnt
VIII	2	a	69	Intermediate Phalanx (probable)	Child, proximal end is not fully formed, burnt	
VIII	2	a	70	Scaphoid	Left	adult, small, burnt
VIII	2	a	71	Cervical Vertebra Fragment		Child, pedicle fused, major taphonomic damage
VIII	2	a	72	Tibia Fragment	Left	Proximal end is unfused, burned, no older than 5 year
VIII	2	a	73	Proximal Phalanx	Older child or young adult, foot	
VIII	2	a	74	Cervical Vertebra		Lower cervical, adult, burned
VIII	2	a	75	Cervical Vertebra Fragment		right lamina and superior articular facet of an older child, burned
VIII	2	a	76	a Rib Fragment	77	Ilium Fragment

						surface is present, but burned
VIII	2	a	78	Rib Fragment		adult, shaft fragment, middle rib, burned
VIII	2	a	79	Rib Fragment	Right	Vertebral end fragment, adult, burned
VIII	2	a	80	Rib Fragment		Child, shaft fragment
VIII	2	a	81	Cervical Neural arch fragment	Right	Perinate to 1 year old probably, burned
VIII	2	a	82	Rib Fragment		adult, shaft fragment, middle rib, burned
VIII	2	a	83	Cervical Vertebra Fragment		The dens from an adult C2
VIII	2	a	84	Cervical Vertebra Fragment		Young adult of child based on the body, most of the lamina and transverse processes are gone
VIII	2	a	85	Phalanx		Child, possibly a distal hand
VIII	2	a	86	1st Distal Phalanx		adult, foot, blackened
VIII	2	a	87	Coccyx		1st Coccyx, unfused with the others, child
VIII	2	a	88	1st proximal phalanx		Child, foot
VIII	2	a	89	Ulna Diaphysis	Possible Left	approximately 5
VIII	2	a	90	Cervical Neural arch fragment	Left	Perinate most likely, burned
VIII	2	a	91	Intermediate Phalanx		Hand, probably child

VIII	2	a	Rib Fragment		Shaft fragment, middle rib, probably adult	
VIII	2	a	93	Lunate	Right	adult, burned
VIII	2	a	94	Rib Fragment	Sternal end, edges are only slightly uneven, young adult	
VIII	2	a	95	Ilium Fragment	Possible Right	Perinate, appears to be part of the auricular facet for articulation with the sacrum, burned
VIII	2	a	96	Lumbar Vertebra Fragment	Child, right portion, burned	
VIII	2	a	97	Metatarsal Fragment	Distal fragment, adult, burned	
VIII	2	a	98	Proximal Phalanx	Child, probably a foot, unfused epiphyses, blackened	
VIII	2	a			Child, burned, epiphyses are not well formed yet	
VIII	2	a	100	Metacarpal/Metatarsal	Intermediate phalanx	Cuboid

VIII	2	a	116	Temporal Fragment	Right	petrous portion, adult, burned
VIII	2	a	117	Thoracic Neural arch	Left	Probably perinate, burned
VIII	2	a	118	Rib Fragment		Shaft fragment, middle rib, child
VIII	2	a	119	Thoracic Vertebra Body		Child, burned, not fused to pedicle
VIII	2	a	120	1st proximal phalanx		adult, foot, burned
VIII	2	a	121	Rib Fragment		Shaft Fragment, burned
VIII	2	a	122	Lumbar Vertebra Fragment		Inferior articular facet with some lamina, lipping is slight on the facet, adult, burned
VIII	2	a	123	Number Not assigned		
VIII	2	a	124	Hamate	Right	adult, HUGE, burned
VIII	2	a	125	Thoracic Vertebra Fragment		lamina fragment, adult, burned, upper Thoracic
VIII	2	a	126	Unidentified Fragment		Large facet, burned, possibly from the foot, adult?
VIII	2	a	127	Rib Fragment		adult, shaft fragment, middle rib, burned
VIII	2	a	128	Temporal Fragment	Left	petrous portion, adult, burned
VIII	2	a	129	Vertebra Body		Child, burned,

VIII	2	a	130	Metacarpal Fragment		possibly Thoracic
VIII	2	a	131	3rd Metatarsal Fragment	Left	adult, proximal fragment, burned
VIII	2	a	132	Metacarpal/Metatarsal		Child, ends not fully developed
VIII	2	a	133	Cuboid	Right	adult, slightly burned
VIII	2	a	134	Neural arch	Right	Probable cervical of a perinate
VIII	2	a	135	Lesser Multangular	Right	adult
VIII	2	a	136	Navicular Fragment		Probably a forming navicular
VIII	2	a	137	Greater Multangular	Right	Child, not fully developed
VIII	2	a	138	Thoracic Vertebra	Fragment	Transverse process with part of the superior articular facet, adult
VIII	2	a	139	Tibia Epiphysis	Possible Left	Distal epiphysis of a child
VIII	2	a	140	Thoracic Neural arch	Right	Perinate to very young child, taphonomic damage to the lamina, burned
VIII	2	a	141	Vertebra Body		Child, possible lumbar
				Proximal epiphysis, probably 5 years of age		

VIII	2	a	143	Cervical Neural arch	Left	Perinate to young child, burned
VIII	2	a	144	Distal Phalanx		adult, probably the hand
VIII	2	a	145	Cervical Neural arch	Right	Perinate to young child, burned
VIII	2	a	146	Proximal Phalanx Fragment		distal fragment, adult, burned
VIII	2	a	147	Cervical Neural arch	Left	Perinate to young child, burned
VIII	2	a	148	Greater Multangular	Left	adult
VIII	2	a	149	Cervical Vertebra Fragment		Left portion of C1, adult, it is Huge
VIII	2	a	150	Lumbar Neural arch	Left	Perinate or young child
VIII	2	a	151	Intermediate Phalanx		adult, foot burned
VIII	2	a	152	1st Metatarsal fragment	Undetermined	Proximal fragment, adult
VIII	2	a	153	Vertebra Body		Child, lumbar or Thoracic, burned
VIII	2	a	154	1st proximal phalanx fragment		Child, distal fragment, epiphysis is barely fused, line clearly visible
VIII	2	a	155	Lunate	Left	adult, burned
VIII	2	a	156	Vertebra Fragment		Lamina fragment, adult, burned, possible cervical

VIII	2	a	157	1st Metacarpal Epiphysis		$\begin{gathered} \text { Older child } \sim 8, \\ \quad \text { burned } \\ \hline \end{gathered}$
VIII	2	a	158	Intermediate Phalanx		adult, foot, burned
VIII	2	a	159	Intermediate Phalanx		adult, foot, burned
VIII	2	a	160	Intermediate Phalanx		adult, foot, burned
VIII	2	a	161	Intermediate Phalanx		adult, foot, burned
VIII	2	a	162	Intermediate Phalanx		adult, foot, burned
VIII	2	a	163	Sesamoid		adult
VIII	2	a	164	Thoracic Neural arch	Right	Young child, burned
VIII	2	a	165	Coracoid Epiphysis		Child, unfused epiphysis surface
VIII	2	a	166	Thoracic Vertebra Fragment		adult, lamina fragment with left articular facets
VIII	2	a	167	Thoracic Vertebra Fragment		adult, lamina fragment with articular facet
VIII	2	a	168	Metacarpal Fragment		Distal fragment of just the head, adult
VIII	2	a	169	Metacarpal Fragment		Distal fragment of just the head, adult
VIII	2	a	170	Lumbar Neural arch	Right	Perinate or child, burned
VIII	2	a	171	Metacarpal Fragment		Distal fragment of just the head, adult
VIII	2	a	172	Cervical Neural arch	Undetermined	Perinate
VIII	2	a	173	Lunate	Left	Possibly an older child

VIII	2	a	174	Lumbar Vertebra Fragment		adult, inferior articular facet	
VIII	2	a	175	Rib Fragment		adult, shaft fragment, middle rib, burned	
VIII	2	a	176	Triquetral	Right	Child	
VIII	2	a	177	5th metatarsal Fragment		Distal fragment, adult, burned	
VIII	2	a	178	1st Proximal Phalanx		Child, foot	
VIII	2	a	179	Thoracic Neural arch	Right	Perinate or young child, white from burning	
VIII	2	a	180	5th Distal and Intermediate Phalanx		adult, fused together	
VIII	2	a	181	Intermediate Phalanx		adult, foot	
VIII	2	a	182	Hyoid Body		Young Child, it may be the match for the horns found in VIII01B	
VIII	2	a	183	Calcaneus	Left	young adult, or older child, burned	66.73 mm
VIII	2	a	184	Talus	Right	adult, burned, grey	62.16 mm length
VIII	2	a	185	Lumbar Vertebra		Child, Probably L5, burned, pedicle line is still visible	
VIII	2	a	186	Ischium	Left	Child, burned	
VIII	2	a	187	Cervical Vertebra		Child, mid to lower cervical, burned, bifurcated spine	

VIII	2	a	188	Pubis	Right	Possibly same individual as 67, Child, burned	
VIII	2	a	189	3rd Cuneiform	Left	adult, burned	
VIII	2	a	190	Thoracic Vertebra Fragment		adult, HUGE, left transverse process and superior articular facet, part of body	
VIII	2	a	191	4th Metacarpal	Left	adult, extremely slender	54.46 mm
VIII	2	a	192	1st Proximal Phalanx		adult	29.81 mm
VIII	2	a	193	Rib Fragment		adult, shaft fragment, middle rib, burned	
VIII	2	a	194	Ulna Fragment	Possible Left	Child, older than 5 years of age, distal fragment, epiphysis not yet fused	
VIII	2	a	195	3rd Metacarpal Fragment	Right	adult, possibly the huge dude, proximal fragment	
VIII	2	a	196	Rib Fragment		adult, shaft fragment, middle rib, burned	
VIII	2	a	197	Rib Fragment		adult, shaft fragment, middle rib, burned	
VIII	2	a	198	4th Metatarsal	Right	Child, head not yet fused, slightly burned	
VIII	2	a	199	Intermediate phalanx		adult, hand, blackened	29.45 mm
VIII	2	a	200	Proximal Phalanx		adult, hand	33.92 mm

VIII	2	a	201	Intermediate Phalanx Fragment		adult, hand, proximal and shaft fragment, just missing the distal end, grey from burning	
VIII	2	a	202	1st Distal Phalanx		adult, hand	27.16 mm
VIII	2	a	203	Proximal Phalanx		adult, hand	46.45 mm
VIII	2	a	204	3rd Metacarpal Fragment	Left	Proximal and shaft fragment, adult, blackened	
VIII	2	a	205	4th Metacarpal	Left	adult, grey from burning	61.34 mm
VIII	2	a	206	2nd Metatarsal fragment	Left	adult, proximal fragment, burned	
VIII	2	a	207	Proximal Phalanx		adult, foot, slightly burned	28.14 mm
VIII	2	a	208	1st Metacarpal	Right	adult, slightly blackened	44.28 mm
VIII	2	a	209	Proximal Phalanx		adult, foot, slightly burned	30.83 mm
VIII	2	a	210	Metacarpal Fragment		Child, proximal end is not fully formed, burnt, distal area is taphonomically broken	
VIII	2	a	211	Rib Fragment	Possible Left	Child, Vertebral end fragment with an unfused epiphysis	
VIII	2	a	212	Rib Fragment		adult, shaft fragment, middle rib, burned	

VIII	2	a	213	Metacarpal/Metatarsal		Neonate, grey, burned, more likely foot	26.66 mm
VIII	2	a	214	Metacarpal/Metatarsal		Neonate, grey, burned, more likely hand	18.14 mm
VIII	2	a	215	Proximal Phalanx		adult, foot, slightly burned	23.33 mm
VIII	2	a	216	Proximal Phalanx		adult, possible hand, slightly burned	25.73 mm
VIII	2	a	217	Proximal Phalanx		adult, possible hand, slightly burned	23.53 mm
VIII	2	a	218	Proximal Phalanx		adult, possible hand, slightly burned	23.65 mm
VIII	2	a	219	Metatarsal Fragment		adult, distal fragment	
VIII	2	a	220	Proximal Phalanx		adult, foot, grey and burned	20.3 mm
VIII	2	a	221	Metatarsal Fragment		\qquad	
VIII	2	a	222	Metacarpal/Metatarsal		$\begin{aligned} & \text { Neonate, grey, } \\ & \text { burned, more likely } \\ & \text { foot } \end{aligned}$	22.72 mm
VIII	2	a	223	Rib Fragment		Sternal end, edges are only slightly uneven, young adult	
VIII	2	a	224	Proximal Phalanx Fragment		adult, foot, slightly burned	
VIII	2	a	224	Rib Fragment	Right	Child, upper 6, blackened	

VIII	2	a	225	Rib Fragment	Probable Left	Child, Middle Rib
VIII	2	a	226	Rib Fragment		adult, middle rib, shaft fragment
VIII	2	a	227	Fibula Fragment	Right	Distal Fragment, adult
VIII	2	a	228	4th Metacarpal	Right	adult, slight blackening
VIII	2	a	229	Rib Fragment	Left	Child, lower 6, vertebral end
VIII	2	a	230	3rd Metacarpal	Right	Child, head is not yet fused, and the proximal edge is not fully defined, blackened
VIII	2	a	231	Ulna Fragment	Left	Distal Fragment, adult, blackened
VIII	2	a	232	Rib Fragment	Left	adult, vertebral end, blackened
VIII	2	a	233	Rib Fragment	Right	adult, vertebral end, grey from burning
VIII	2	a	234	Rib Fragment	Possible Left	Sternal end, edges are only slightly uneven, interior surface is deep and relatively smooth, young adult
VIII	2	a	235	Rib Fragment		adult, probably rib 2, shaft fragment, grey and black from burning

VIII	2	a	236	1st Rib		Left, adult, sternal end has some taphonomic damage, grayish from burning	
VIII	2	a	237	Rib Fragment	Right	adult, probably rib 46, slight orangish color with some grey	
VIII	2	a	238	Rib Fragment	Right	adult, sternal end with most of the shaft and angle, grey from burning, some calcium carbonate, probably rib 6-8, sternal end is a little more uneven than 237, interior is still smooth with only slight pitting, young to middle aged adult.	
VIII	2	a	239	Humerus Fragment	Left	Proximal Fragment with most of the shaft, massive deltoid tubercle, grayish calcium carbonate	$\begin{gathered} \hline 38.03 \mathrm{~mm} \text { head } \\ \text { diameter, H0- } \\ \mathrm{H} 1=6.23 \mathrm{~mm}, \\ \mathrm{H} 0-\mathrm{H} 2=11.92, \\ \mathrm{H} 0-\mathrm{H} 3=34.91, \\ \text { H0- } \\ \mathrm{H} 4=119.71 \mathrm{~mm} \\ \hline \end{gathered}$
VIII	2	a	240	Navicular	Left	adult, taphonomic damage all around the facets, blackened	

Child, Shaft
fragment, with an
unfused head
adult, grey from
burning, distal end
has pathology similar

VIII	2	a	242	Proximal Phalanx	to gout	
VIII	2	a	243	Proximal Phalanx	adult, probable foot, slightly grey	23.13 mm
VIII	2	a	244	Metacarpal/Metatarsal	Child, not fully developed	29.27 mm
VIII	2	a	245	Rib fragment	adult, shaft fragment, middle rib, burned	
VIII	2	a	246	1st Proximal Phalanx	adult, foot, large tubercle on the superior proximal surface, taphonomic damage on the plantar distal surface, black from fire	29.5 mm
VIII	2	a	247	1st Proximal Phalanx	adult, probably the mate to 246 , taphonomic damage is more sever	
VIII	2	a	248	Proximal Phalanx	adult, probably foot	27.66 mm
VIII	2	a	249	Proximal Phalanx	Child, hand, proximal end does not appear to be fused	25.31 mm
VIII	2	a	250	Metacarpal Fragment	adult, shaft fragment	
VIII	2	a	251	Intermediate Phalanx	adult, foot	

VIII	2	a	252	Proximal phalanx		posterior surface	30.76 mm
VIII	2	a	253	Metatarsal	Right	Child, probably fourth, grey from burning, ~ 8 or younger	37.22 mm
VIII	2	a	254	1st Rib	Right	Child, grey and white from burning	
VIII	2	a	255	Distal Phalanx		adult, hand, grayish on palmar side	18.87 mm
VIII	2	a	256	Proximal Phalanx		adult, hand, grey and black in color, distal end is rotated slightly counterclockwise	33.61 mm
VIII	2	a	257	Intermediate Phalanx		adult, hand, blackened	27.39 mm
VIII	2	a	258	Proximal Phalanx		adult, probably foot, grayish on superior surface	24.78 mm
VIII	2	a	259	Proximal Phalanx Fragment		adult, probable foot, proximal fragment	
VIII	2	a	260	Proximal Phalanx		adult, probably foot	25.98 mm
VIII	2	a	261	Intermediate Phalanx		adult, hand, blackened	31.06 mm
VIII	2	a	262	Scaphoid	Right	adult, HUGE, grayish from burning	
VIII	2	a	263	5th Metacarpal Fragment	Right	adult, proximal fragment, burned, and taphonomic damage	

VIII	2	a	264	Proximal Phalanx Fragment		adult, hand, distal end	45.34 mm
VIII	2	a	265	Proximal Phalanx		adult, Hand, blackened, taphonomic cracking	
VIII	2	a	266	2nd Metacarpal Fragment	Right	adult, proximal fragment with most of the shaft, blackened with grey calcium carbonate on the lateral and posterior surfaces	
VIII	2	a	267	Humerus Fragment	Left	Perinate, proximal end with most of the shaft, grayish calcium carbonate on anterior surface	
VIII	2	a	268	4th Metatarsal Fragment	Left	adult, proximal fragment with shaft, taphonomic damage to the proximal end	
VIII	2	a	269	Cervical Vertebra		1st, adult, rather large	
VIII	2	a	270	5th Metatarsal	Right	adult, blackened from burning	
VIII	2	a	271	4th Metatarsal	Right	adult, black and grey from burning	70.48 mm
VIII	2	a	272	3rd Metatarsal	Right	adult, blackened from burning	76.85 mm
VIII	2	a	273	Shaft Fragment		Child, possible perinate, unfused end,	

grey from burning

VIII	2	a	274	5th Metatarsal	Right	adult, grey from burning and calcium carbonate on numerous surfaces	77.37 mm
VIII	2	a	275	Femur Fragment	Left	Perinate, proximal fragment, calcium carbonate is on the anterior surface	
VIII	2	a	276	Radius Fragment	Right	Child ~ 1.5 years old, distal fragment, calcium carbonate on all surfaces	
VIII	2	a	277	Rib Fragment	Left	Vertebral end fragment, adult, burned, middle rib, calcium carbonate on the anterior surface	
VIII	2	a	278	Shaft Fragment	Probable Left	Shaft Fragment, grey from burning, adult	
VIII	2	a	279	Humerus Fragment	Left	adult Distal Fragment, orangish discoloration, most calcium carbonate on lateral surfaces, medial epicondyle angled, trochlea symmetrical, olecranon fossa semi	24.29 mm olecranon width, 53.04 mm epicondylar width

triangular

VIII	2	a	280	Proximal Phalanx		adult, grey burning and calcium carbonate on plantar surface	25.6 mm
VIII	2	a	281	Cervical Neural arch	Right	Not fused to body or lamina yet, but too large to be a perinate, grey and blackened	
VIII	2	a	282	Metatarsal Fragment (probably)		Child, proximal and shaft fragment, not fully developed	
VIII	2	a	283	Metacarpal fragment (possibly)		Child, shaft fragment	
VIII	2	a	284	Metacarpal/Metatarsal		Child, grey and white from burning, unfused ends	24.45 mm
VIII	2	a	285	Intermediate Phalanx		adult, blackened from burning	22.29 mm
VIII	2	a	286	Possible Vertebra fragment		adult? Circular facet is the only identifying feature	
VIII	2	a	287	1st Proximal Phalanx Fragment		Distal fragment, adult	

VIII	2	a	288	Intermediate Phalanx Fragment		Proximal end has taphonomic damage, adult	24.03 mm
VIII	2	a	289	Intermediate Phalanx		adult, taphonomic damage has vertically halved it	28.97 mm
VIII	2	a	290	Vertebra Body		Child vertebra, possibly a lumbar due to the width	
VIII	2	a	291	5th Metatarsal Fragment	Left	Distal end, adult, white and grey from burning	
VIII	2	a	292	Rib Fragment		Child, shaft fragment, blackened	
VIII	2	a	293	Proximal Phalanx		Neonate, possible hand	14.26
VIII	2	a	294	Proximal Phalanx		Neonate, possible hand	15.27
VIII	2	a	295	Thoracic Neural arch	Left	Perinate	
VIII	2	a	296	Rib Fragment		Child, blackened	
VIII	2	a	297	Tibia Epiphysis	Possible Left	Distal epiphysis of a child	$\begin{gathered} 23.94 \mathrm{~mm} \text { lat to } \\ \text { med } \\ \hline \end{gathered}$
VIII	2	a	298	Clavicle Fragment	Left	Neonate lateral fragment	
VIII	2	a	299	Radius Epiphysis		Child	9.42 mm
VIII	2	a	300	Proximal Phalanx		Neonate, foot	9.13 mm
VIII	2	a	301	Lumbar Neural arch		Maybe a year old, grey from burning	
VIII	2	a	302	Vertebra Fragment		Possible lumbar lamina with an	

inferior articular facet

VIII	2	a	303	Intermediate phalanx		adult, slightly blackened
VIII	2	a	304	5th Metacarpal Fragment (possibly)	adult, shaft fragment, slightly burned	
VIII	2	a	305	Radius Epiphysis	Child 1.5 years of age, distal epiphysis	
VIII	2	a	306	Rib Fragment	adult, shaft fragment	Child
VIII	2	a	307	Coracoid Epiphysis	Child, distal fragment, older than VIII	2
		a	308	Proximal Phalanx Fragment	Child, possibly under 8	
VIII years old,						

VIII	2	a	315	Proximal Phalanx Fragment		adult, proximal fragment, blackened
VIII	2	a	316	Proximal Phalanx	Child, possible foot	25.51 mm
VIII	2	a	317	Ulna Fragment	Possible Right	Child ~ 1.5 years old, proximal fragment, medial surface is gone, badly burned
VIII	2	a	318	Undetermined Epiphysis Fragment	Child, Somewhat ovate shape and thick	
VIII	2	a	319	Metatarsal Fragment		Proximal fragment, child, burned
VIII	2	a	320	Proximal Phalanx		Neonate-1 year, hand, burned
VIII	2	a	321	Metatarsal Fragment		Proximal fragment, child, burned
VIII	2	a	322	Capitate	Right	adult
VIII	2	a	323	Proximal Phalanx Fragment		adult, proximal
fragment						

of the ramus

VIII	2	a	332	Distal Phalanx		adult, distal portion is damaged	
VIII	2	a	333	Metacarpal/Metatarsal		Child, maybe a year old	
VIII	2	a	334	Intermediate Phalanx		adult	26.63 mm
VIII	2	a	335	Intermediate Phalanx		adult	22.32 mm
VIII	2	a	336	Proximal Phalanx		Child, neonate, hand	12.51 mm
VIII	2	a	337	Proximal/Intermediate Phalanx		Child, neonate, hand	9.18 mm
VIII	2	a	338	Intermediate Phalanx		adult, foot	
VIII	2	a	339	Proximal/Intermediate Phalanx		Child, neonate, hand	11.0 mm
VIII	2	a	340	Proximal Phalanx		Child, neonate, foot	
VIII	2	a	341	Thoracic Neural arch	Left	Young Child	
VIII	2	a	342	Proximal Phalanx		Child, neonate, hand?	14.14 mm
VIII	2	a	343	Vertebra Fragment		Unknown	
VIII	2	a	344	Distal Phalanx		Child, possible hand	16.84 mm
VIII	2	a	345	Undetermined Epiphysis		Roundish and thick, possible trochanter	
VIII	2	a	346	Distal Phalanx (Probably)		Young child, grey from burning, taphonomic damage	13.18 mm
VIII	2	a	347	Distal Phalanx		adult, foot	9.78 mm
VIII	2	a	348	Proximal Phalanx		adult hand, posterior surface grey from burning	

					Neonate, some taphonomic damage to the ends		22.35 mm
VIII	2	a	349	Metacarpal/Metatarsal		Horn of a child, smaller end is fractured	
VIII	2	a	350	Hyoid Fragment	Possible Left		Perinate to young child, burned
VIII	2	a	351	Cervical Neural arch			Neonate

$\left.\begin{array}{lccccccc}\text { VIII } & 2 & \text { a } & 361 & \begin{array}{c}\text { 2nd Metacarpal } \\ \text { Fragment }\end{array} & \text { Right } & \text { adult, proximal } \\ \text { fragment, burned }\end{array}\right]$

VIII	2	a	372	Vertebra Body Fragment	Child, burned, one pedicle is partly fused, line visible, probable Thoracic
VIII	2	a	373	Lumbar Vertebra Fragment	adult, anterior portion of the body, some lytic activity on the body, burned
VIII	2	a	374	Lumbar Vertebra Fragment	adult, anterior portion of the body, some lytic activity on the body, burned
VIII	2	a	375	Thoracic Vertebra	adult, grey from burning, inferior portion of the body is only surface without calcium carbonate, demi facets are roughly the same size, middle Thoracic
VIII	2	a	376	Thoracic Vertebra	adult, upper Thoracic, slightly burned, inferior demi facets are slightly larger, upper Thoracic
VIII	2	a	377	Thoracic Vertebra	adult, upper Thoracic, slightly burned, inferior demi facets are slightly larger, upper Thoracic, anterior inferior

portion of the body has an indentation (abnormality)

VIII	2	a	378	Thoracic Vertebra		adult, upper Thoracic, superior articular facet larger than inferior, slightly burned, anterior inferior portion of body has indentation, superior articulation to 377
VIII	2	a	379	Lumbar Vertebra		adult, possible L4 or L5, body fused, line barely visible, slightly burned, calcium carbonate on superior surface
VIII	2	a	380	Thoracic Vertebra		adult, only one demi facet mid body, body semi lytic, body line visible
VIII	2	a	381	Rib	Left	adult, lower 6, sternal end rim is smooth, no projections, interior surface is not very deep, but is smooth, some calcium carbonate on the

interior posterior surface

VIII	2	a	382	Rib Fragment	Left	adult, Lower 6, vertebral end fragment, calcium carbonate on interior posterior surface.	
VIII	2	a	383	Humerus Fragment	Right	adult, distal end, hole through the olecranon fossa, olecranon fossa is more ovate, trochlea is asymmetrical, medial epicondyle somewhat level	24.54 mm fossa width, epicondylar width greater than 55.97 mm
VIII	2	a	384	Thoracic Vertebra		Child, billows on body, inferior burned, pedicle lines still visible, mid Thoracic, demi facets of roughly equal size	
VIII	2	a	385	1st Distal Phalanx	Left	adult, foot	26.11 mm
VIII	2	a	386	Frontal Fragment		adult, burned and blackened, slight modification, lytic activity noticeable on the interior surface	
VIII	2	a	387	1st Distal Phalanx		Child, foot	13.64 mm

VIII	2	a	388	5th Metatarsal	Left	adult, blackened from burning	76.02 mm
VIII	2	a	389	Rib Fragment	Left	adult, sternal end, grey from burning, sternal end is semi wavy, some lytic activity on interior surface	
VIII	2	a	390	Humerus Fragment	Left	adult, large burned, damage to medial epicondyle area so measurements were not taken	
VIII	2	a	391	Proximal Phalanx Fragment		adult, hand, distal fragment	
VIII	2	a	392	Femur Fragment	Left	adult, calcium carbonate on head and shaft, proximal end fragment, large muscle attachment right under the midpoint of the trochanteric crest	40.62 mm head diameter
VIII	2	a	393	Ulna Fragment	Left	adult, proximal fragment, calcium carbonate on medial surface, large muscle attachments	

VIII	2	a	394	5th Metacarpal	Right	adult, large muscle attachment on lateral distal end widens the shaft, grey and blackened	55.93 mm
VIII	2	a	395	1st Metacarpal	Right	adult, large muscle attachments at distal shaft end widens the shaft, slight discoloration from burning	50.06 mm
VIII	2	a	396	Proximal Phalanx		adult, hand	42.86 mm
VIII	2	a	397	Intermediate Phalanx		adult, foot	16.07 mm
VIII	2	a	398	Ilium Fragment	Left	Child, badly burned, most of crest is gone	
VIII	2	a	399	5th Metatarsal	Right	adult, proximal end is damaged, burned	58.07 mm
VIII	2	a	400	Sacral Vertebra		Child, probably the first, lamina in process of fusing to other lamina	
VIII	2	a	401	Fibula Fragment		Shaft fragment	
VIII	2	a	402	Ulna Fragment	Right	Mate to 393, proximal fragment, calcium carbonate on medial surface, huge muscle attachments	
VIII	2	a	403	Tibia Fragment	Left	Child, shaft fragment, burned, ~ 1.5 years old	

VIII	2	a	404	Clavicle Fragment	Right	Child, burned	72.36 mm
VIII	2	a	405	2nd Metatarsal	Left	adult, burned	72.84 mm
VIII	2	a	406	Clavicle Fragment	Left	Child, older than 404, shaft fragment	74.16 mm is fragment length
VIII	2	a	407	Rib Fragment	Left	adult, vertebral end, blackened	
VIII	2	a	408	Metatarsal Fragment (probably)		Child, proximal fragment and shaft, distal end not fully formed	
VIII	2	a	409	1st Metacarpal fragment		adult, distal fragment, rib fragments fused to the shaft	
VIII	2	a	410	Metacarpal Fragment		Child, taphonomic damage to the distal and proximal ends	
VIII	2	a	411	Navicular	Left	adult, damaged	
VIII	2	a	412	Rib Fragment		adult, upper 6 rib, sternal end, rim is relatively flat and the sternal facet is not deep or smooth, the cortical layer of bone over the surface of the rib is gone in numerous areas	
VIII	2	a	413	Radius Fragment	Right	Child, distal and shaft fragment	
VIII	2	a	414	Metatarsal Fragment		Child, mostly shaft fragment	

VIII	2	a	415	Rib Fragment	Probable Right	Child, blackened	
VIII	2	a	416	Intermediate Phalanx Fragment		adult, hand, distal end	
VIII	2	a	417	Metatarsal Fragment		adult, distal fragment, burned	
VIII	2	a	418	Distal Phalanx		adult, hand	18.45 mm
VIII	2	a	419	Neural arch Fragment	Left	Perinate, possible Thoracic or Lumbar vertebra	
VIII	2	a	420	Thoracic Vertebra Fragment		adult, transverse process with articular facet	
VIII	2	a	421	Rib Fragment		Child, arch fragment	
VIII	2	a	422	Intermediate Phalanx Fragment		adult, proximal fragment	
VIII	2	a	423	Shaft Fragment		adult, burned, morphological damage from heat	
VIII	2	a	424	Radius	Right	adult, burned, became fragmentary during analysis, attempt was made to repair with treated with B72, head was deteriorated prior, length is a very close estimate taken after repair	24 cm
VIII	2	a	425	Thoracic Vertebra Body		Child, Burned, unfused	

VIII	2	a	426	Cervical Vertebra Body		Child, Burned, unfused	
VIII	2	a	427	Thoracic Neural arch	Left	Child, part of the body appears either deformed or fused at the pedicle area	
VIII	2	a	428	Cervical Vertebra Body		Child, Burned, unfused	
VIII	2	a	429	Intermediate Phalanx		Child Hand, possibly 8 yrs or younger	13.17 mm
VIII	2	a	430	Cervical Neural arch	Left	Perinate	
VIII	2	a	431	Proximal Phalanx		Child Hand, possibly 8 yrs or younger	15.81 mm
VIII	2	a	432	Lunate		Child Hand, possibly 8 yrs or younger	
VIII	2	a	433	Proximal Phalanx		Child Hand, possibly 8 yrs or younger	10.93 mm
VIII	2	a	434	Metacarpal/Metatarsal Head		Child, unfused head	
VIII	2	a	435	Proximal Phalanx		Child Hand, possibly 8 yrs or younger	16.51 mm
VIII	2	a	436	Intermediate Phalanx		Child Hand, possibly 8 yrs or younger	10.67 mm
VIII	2	a	437	Pisiform	Right	adult	
VIII	2	a	438	Distal Phalanx		adult, foot	
VIII	2	a	439	Metatarsal Head		Child, unfused head	
VIII	2	a	440	Metatarsal Head		Child, unfused head	
VIII	2	a	441	Cervical Vertebra Body		Child, Burned, unfused	

VIII	2	a	442	Intermediate Phalanx		adult, foot	
VIII	2	a	443	Intermediate Phalanx		adult, foot	
VIII	2	a	444	Proximal Phalanx Fragment		Child Hand, distal fragment, possibly 8 yrs or younger	
VIII	2	a	445	Sacral Vertebra Fragment		Child, unfused, probably a lower vertebra of a child 5-8 yrs old	
VIII	2	a	446	Cervical Neural arch	Right	Perinate, burned	
VIII	2	a	447	Thoracic Vertebra Fragment		adult, right lamina fragment and transverse process with a facet on it	
VIII	2	a	448	1st Distal Phalanx		adult, hand, taphonomic damage at the distal end, blackened	
VIII	2	a	449	Proximal Phalanx		Child Hand, possibly 8 yrs or younger	13.81 mm
VIII	2	a	450	Lunate	Right	adult, grey and covered with some calcium carbonate, rib fused to it	
VIII	2	a	451	Intermediate Phalanx		adult, foot	
VIII	2	a	452	Distal Phalanx		Child, possible 1st hand phalanx	17.77 mm
VIII	2	a	453	Possible Navicular Fragment		Child, smooth facets similar to a navicular but underdeveloped	

margins

VIII	2	a	454	Capitate	Left	Child, not fully developed
VIII	2	a	455	Metacarpal/Metatarsal Fragment		Head distal fragment, adult
VIII	2	a	456	Metacarpal Fragment		adult, proximal fragment, facet only
VIII	2	a	457	Rib Fragment	Probably Right	Child, arch fragment with some of the shaft, upper 6, grey and black from burning
VIII	2	a	458	Rib Fragment	Probably Right	Child, arch fragment with some of the shaft, upper 6, grey and black from burning
VIII	2	a	459	Pisiform	Left	adult, possibly the same as 437
VIII	2	a	460	Metacarpal Fragment		Distal head unfused
VIII	2	a	461	Thoracic Vertebra Body		Child, unfused, grey from burning
VIII	2	a	462	Distal Phalanx		adult, foot
VIII	2	a	463	Proximal Phalanx Fragment		adult or older child, distal fragment of the foot
VIII	2	a	464	Rib Fragment		Child, Vertebral end fragment with an unfused epiphysis

VIII	2	a	465	Rib Fragment		grey from burning
VIII	2	a	466	Rib Fragment		adult, shaft fragment
VIII	2	a	467	Rib Fragment		adult, shaft fragment
VIII	2	a	468	Vertebra Body Fragment		Possible Thoracic or lumbar fragment from an adult, badly deteriorated, lytic activity on surface of body
VIII	2	a	469	Rib Fragment		adult, shaft fragment, some fire blackening
VIII	2	a	470	Proximal Phalanx Fragment		adult, foot, proximal fragment of just the facet
VIII	2	a	471	Rib Fragment		adult, shaft fragment, some fire blackening
VIII	2	a	472	Ilium Fragment	Left	Fragment of a young child, under 5 most likely, auricular surface is present
VIII	2	a	473	Talus Fragment	Right	Child, burned, possibly close to 5 years of age
VIII	2	a	474	Talus Fragment	Probable Left	adult, burned, facets on plantar side are visible
VIII	2	a	475	Fibula Fragment	Left	Distal Fragment, adult

VIII	2	a	476	Navicular Fragment	Probable Left	Burned and deteriorated, adult
VIII	2	a	477	Thoracic Vertebra Fragment		Body fragment, adult, demi facets are just barely visible, body is semi lytic
VIII	2	a	478	Patella Fragment	Left	Badly burned, adult, edges deteriorated
VIII	2	a	479	2nd Cuneiform	Probable Right	adult, burned, slightly deteriorated
VIII	2	a	480	Humerus Epiphysis	Left	Proximal head epiphysis already fused to the greater and lesser trochanter
VIII	2	a	481	Unidentified Fragment		
VIII	2	a	482	Vertebra Fragment		Body Fragment, Thoracic or lumbar of an adult
VIII	2	a	483	Talus Fragment	Right	adult, burned, probably not the same individual as 474
VIII	2	a	484	Thoracic Vertebra Fragment		Body fragment, adult, demi facets are just barely visible, body is semi lytic
VIII	2	a	485	2nd Cuneiform	Probable Left	adult, burned, slightly deteriorated, probable mate to 479

VIII	2	a	486	Vertebra Fragment		Body fragment, adult, thickness suggests Thoracic
VIII	2	a	487	Lumbar Vertebra Fragment		adult, superior articular facet and a transverse process
VIII	2	a	488	3rd Cuneiform	Undetermined	adult, facets are too badly burned to identify
VIII	2	a	489	Vertebra Fragment		Body fragment, adult, thickness suggests Thoracic
VIII	2	a	490	Vertebra Fragment		Body fragment, adult, thickness suggests Thoracic
VIII	2	a	491	Unidentified Fragment		
VIII	2	a	492	Lumbar Vertebra Fragment		adult, facet fragment
VIII	2	a	493	Thoracic Vertebra Fragment		Lamina fragment with part of a transverse process, burned, adult
VIII	2	a	494	Femur Epiphysis (probably)		Head epiphysis, burned
VIII	2	a	495	Cuboid	Possible Right	adult, burned, large facet is the only real marker
VIII	2	a	496	Lumbar Vertebra Fragment		articular Facet, adult, burned

VIII	2	a	497	Vertebra Fragment		Body fragment, adult, only cortical bone left, no cortical	
VIII	2	a	498	Tibia Epiphysis	Possible Left	Proximal Facet	27.84 mm
VIII	2	a	499	Vertebra Fragment		Body Fragment, undeterminable, adult, burned	
VIII	2	a	500	Unidentified Fragment			
VIII	2	a	501	Vertebra Fragment		Child, burned, and missing much of it	
VIII	2	a	502	Tibia Fragment	Right	adult, proximal , badly deteriorated due to burning	
VIII	2	a	503	Proximal Phalanx Fragment		adult Hand, proximal fragment	
VIII	2	a	504	Thoracic Vertebra Fragment		adult body fragment with the left pedicle, burned	
VIII	2	a	505	Calcaneus Fragment	Left	adult, burned, cannot take length measurement	
VIII	2	a	506	Lumbar Fragment		Child, everything is fused, but small in size, burned and badly deteriorated	
VIII	2	a	507	Head Fragment		adult, undeterminable if it is femur or humerus, burned	
VIII	2	a	508	Talus Fragment	Right	adult, burned	58.04 mm

VIII	2	a	509	Unidentified Fragment		
VIII	2	a	510	Femur Epiphysis		Head, proximal epiphysis
VIII	2	a	511	Talus Fragment	Right	adult, burned, proximal end
VIII	2	a	512	Patella Fragment	Possible Right	adult, badly burned, and much of one of the facets (probable medial) is mostly gone
VIII	2	a	513	Femur Fragment		Right

\(\left.$$
\begin{array}{cccccc}\text { VIII } & 2 & \text { a } & 520 & \text { Coccyx Fragment } & \begin{array}{c}\text { adult, two fused, and } \\
\text { fragmentary from } \\
\text { burning }\end{array} \\
\text { VIII } & 2 & \text { a } & 521 & \text { 1st Metacarpal fragment } & \begin{array}{c}\text { Child, shaft with } \\
\text { proximal epiphysis, } \\
\text { which is fused but } \\
\text { line is visible }\end{array} \\
\hline \text { VIII } & 2 & \text { a } & 522 & \begin{array}{c}\text { Vertebra Body } \\
\text { Fragment }\end{array} & \begin{array}{c}\text { Child, burned, } \\
\text { possible Thoracic } \\
\text { vertebra based on size }\end{array} \\
\hline \text { VIII } & 2 & \text { a } & 523 & \text { Femur Fragment } & \begin{array}{c}\text { adult, condyle } \\
\text { fragment, burned }\end{array}
$$

\hline VIII \& 2 \& a \& 524 \& Unidentified Fragment \&

\hline VIII \& 2 \& a \& 525 \& Proximal Phalanx \& Child, maybe 8 or

younger\end{array}\right]\)| VIII |
| :--- |
| 2 |

						on the interior, expanded diploë (more noticeable at the suture line
VIII	2	B	3	Unidentified Fragment		Possibly from the cranium (maxilla or zygomatic maybe)
VIII	2	B	4	Rib Fragment		adult, burned, middle rib, shaft fragment
VIII	2	B	5	3rd Metacarpal Fragment (probably)	Possible right	Shaft fragment with the general shape of the proximal end, adult, burned
VIII	2	B	6	Unidentified Fragment		Slightly burned
VIII	2	B	7	Sphenoid Fragment (Probably)		Burned, adult, cranial \qquad
VIII	2	B	8	Rib Fragment		adult, burned, middle rib, shaft fragment
VIII	2	B	9	Metacarpal Fragment		adult, burned, distal head and shaft
VIII	2	B	10	Vertebra Fragment		
VIII	2	B	11	Rib Fragment	Right	Vertebral end fragment, adult, burned, upper rib
VIII	2	B	12	Distal Phalanx		adult, foot, taphonomic damage to eh proximal end
VIII	2	B	13	Rib Fragment	Left	Vertebral end fragment, adult,

burned, upper rib

VIII	2	B	14	Proximal Phalanx		adult, foot, burned
VIII	2	B	15	Proximal Phalanx		adult, foot, burned
VIII	2	B	16	2nd Cuneiform	Left	adult, burned
VIII	2	B	17	2nd Cuneiform	Right	adult, burned
VIII	2	B	18	Capitate	Left	adult, burned
VIII	2	B	19	3rd Cuneiform	Right	adult, slightly burned
VIII	2	B	20	Navicular Fragment	Left	adult, burned, taphonomic damage
VIII	2	B	21	3rd Cuneiform	Left	adult, burned
VIII	2	B	22	Scapula Fragment (Probable)	Undetermined	Probable coracoid process
VIII	2	B	23	Cuboid	Left	adult, burned
VIII	2	B	24	Thoracic Vertebra Fragment		adult, burned, most of the body and some of the pedicle is preserved
VIII	2	B	25	Ischium Fragment	Left	Most of the ischial tuberosity and some of the lunate surface, adult, burned
VIII	2	B	26	Frontal Fragment		Fragment has part of the supraorbital torus and the frontal sinus, adult, burned
VIII	2	B	27	Frontal Fragment		Has rest of frontal crest, cross mends with \#1, adult, burned

VIII	2	B	28	Frontal Fragment		Superior portion of the left orbit, rounded, possible male, adult, burned
VIII	2	B	29	Radius Fragment	Right	Shaft fragment just below the tuberosity, adult, burned
VIII	2	B	30	Radius Fragment	Left	distal fragment, adult, burned
VIII	2	B	31	2nd Metacarpal	Right	adult, slightly burned, very large proximal lateral facet
VIII	2	B	32	Thoracic Vertebra		adult, but the body epiphysis line is still visible, burned, middle Thoracic
VIII	2	B	33	Rib	Right	adult, upper 6, burnt
VIII	2	B	34	3rd cuneiform	Right	adult, burned

						process, cross mends with 38	
VIII	2	B	41	Thoracic Vertebra		adult, upper Thoracic, left transverse process slightly burned	
VIII	2	B	42	Lumbar Vertebra		Probably L2, adult, burned	
VIII	2	B	43	Thoracic Vertebra Fragment		Body with the superior articular facets, adult, burned	
VIII	2	B	44	Calcaneus	Right	adult, slightly burned	80.41 mm length
VIII	2	B	45	4th tarsal fragment	Possible Left	Distal facet morphology suggests left, while lateral and medial suggests right	
VIII	2	B	46	5th Metacarpal	Right	adult, slightly burned on the proximal end	
VIII	2	B	47	3rd Metacarpal	Left	adult, slightly burned and blackened	
VIII	2	B	48	2nd Metacarpal	Left	adult, completely grey from burning	
VIII	2	B	49	Thoracic Vertebra Fragment		Left superior articular facet and transverse process, facet on process, slightly burned	
VIII	2	B	50	5th Metatarsal Fragment	Right	proximal end, burned, adult	
VIII	2	B	51	Intermediate Phalanx		adult, hand, burned	

VIII	2	B	52	1st Distal Phalanx Fragment		adult, damage to the proximal end
VIII	2	B	53	Proximal Phalanx		adult, foot
VIII	2	B	54	Cuboid	adult, burned, mate to	
VIII	2	B	55	Cuboid	Right	adult, burned, mate to 54
VIII	2	B	56	Thoracic Vertebra Fragment		Body fragment, demi facets are roughly similar in size, mid Thoracic, adult, burned
VIII	2	B	57	Vertebra Body		adult, burned, small, possible Thoracic or cervical
VIII	2	B	58	Unidentified Fragment		
VIII	2	B	59	Navicular		Right

VIII	4	11	Rib Fragment	coloring with some orange
VIII	4	12	Rib Fragment	adult, shaft fragment, middle rib, grayish coloring with some orange
VIII	4	13	Scapula Fragment	Coracoid process
VIII	4	14	Ilium Fragment	adult Crest fragment, grayish black color
VIII	4	15	Vertebra fragment	adult, grayish coloring, transverse process with an articular facet (probable Thoracic)
VIII	4	16	Vertebra fragment	adult, grayish coloring, transverse process with an articular facet (probable Thoracic)
VIII	4	17	Cranial Fragment	grayish coloring
VIII	4	18	Temporal Fragment	Part of the zygomatic process and the mandibular fossa are Left \quad visible
VIII	4	19	Rib Fragment	adult, shaft fragment, middle rib, grayish coloring

VIII	4	20	Vertebra fragment		Probable cervical, articular facet present along with what appears to be part of a transverse foramen, grayish coloring
VIII	4	21	Vertebra fragment		Probable lumbar based on the vertical positioning of the articular facet, adult, grayish coloring.
VIII	4	22	Radius Fragment	Undetermined	Shaft fragment of an adult, grayish coloring
VIII	4	23	Hamate	Left	adult, grayish coloring
VIII	4	24	Rib Fragment		adult, shaft fragment, middle rib, grayish coloring with some orange
VIII	4	25	Rib Fragment		adult, shaft fragment, middle rib, grayish coloring with some orange
VIII	4	26	Rib Fragment	Left	adult, grayish coloring, probably one of the upper six ribs due to the angling
VIII	4	27	Ilium Fragment		

VIII	4	28	Temporal Fragment	Right	dark grayish coloring, mandibular fossa present, adult	
VIII	4	29	Distal Phalanx		adult, grayish coloring, hand	18.44 mm
VIII	4	30	Greater Multangular	Right	grayish coloring	
VIII	4	31	Possible Scapula Fragment		Grayish coloring, possibly part of the glenoid fossa with some of the surrounding area.	
VIII	4	32	Rib Fragment		adult, shaft fragment, middle rib, grayish coloring with some orange	
VIII	4	33	Rib Fragment		adult, shaft fragment, middle rib, grayish coloring with some orange	
VIII	4	34	Frontal Fragment		adult, frontal crest on the interior	
VIII	4	35	Lunate	Right	Grayish color	
VIII	4	36	Radius Fragment	Right	Most of the bone, just missing the head, grayish calcium carbonate adult, epiphysis is fused but line is visible	estimated 24 cm , 0.745 is the ratio against the femur according to Genoves 1967, femur formula $\mathrm{S}=2.26(\mathrm{~F})+$ $66.379+/-3.417$

VIII	4	37	Tibia Fragment	Left	almost complete shaft fragment of an adult, grayish coloring	26.4 cm long
VIII	4	38	Shaft Fragment		Probable the Right Tibia, grayish coloring	
VIII	4	39	Shaft Fragment		Probable the Right Tibia, grayish coloring	
VIII	4	40	Cranial Fragment		Grayish in color	
VIII	4	41	Cervical Fragment		adult, part of the body and one of the transverse processes, determined to be cervical do to the body shape and height	
VIII	4	42	Rib Fragment		Shaft Fragment	
VIII	4	43	Shaft Fragment	Undetermined	Too small to determine which bone, grayish color	
VIII	4	44	Shaft Fragment	Undetermined	Too small to determine which bone, grayish color	
VIII	4	45	Vertebra fragment?		Possible anterior portion of a vertebra body	
VIII	4	46	Rib Fragment		Shaft fragment, adult, grayish color	
VIII	4	47	Thoracic Vertebra		adult, grayish color,	

				two demi facets		
VIII	4	48	Cranial Fragment		Grayish color	
VIII	4	49	Rib Fragment	Right	angle and part of the shaft, orangish discoloration	
VIII	4	50	Number Unassigned			
VIII	4	51	Radius Fragment	Left	Proximal fragment with head and tuberosity, taphonomic breakage to the head, grayish color	
VIII	4	52	Rib Fragment		adult, grayish color	
VIII	4	53	Cervical Fragment	right portion	Part of the body, transverse process with transverse foramen, right lamina with articular facets	
VIII	4	54	Ulna Fragment	Left	Proximal fragment, grayish in color	
VIII	4	55	Temporal Fragment	Left	$\begin{gathered} \text { Grayish color, } \\ \text { zygomatic process } \\ \text { present } \end{gathered}$	
VIII	4	56	Lesser Multangular	Left	adult, grayish in color	
VIII	4	57	Rib Fragment	Left	Shaft Fragment, orangish coloration	
VIII	4	58	Clavicle Fragment	Right	Lateral fragment, grayish in color	
VIII	4	59	Proximal Phalanx		Hand, probably the second, grayish	31.2 mm

				coloring		
VIII	4	60	Proximal Phalanx		Hand, grayish coloring	44.63 mm
VIII	4	61	Proximal Phalanx		Hand, grayish coloring	39.6 mm
VIII	4	62	Proximal Phalanx		Hand, probably the first, grayish coloring	31.23 mm
VIII	4	63	Intermediate Phalanx		Hand, grayish coloring	21.19 mm
VIII	4	64	Capitate	Left	Grayish and orange discoloration	
VIII	4	65	Capitate	Right	Grayish and orange discoloration	
VIII	4	66	1st Metacarpal	Undetermined	Grayish coloring, deterioration of the proximal end prevents siding	
VIII	4	67	Intermediate Phalanx		Hand, grayish and orangish coloring	
VIII	4	68	Rib Fragment		Shaft fragment, grayish coloring	
VIII	4	69	Cranial Fragment		Probable Temporal Bone	
VIII	4	70	Vertebra Body Fragment		Body Fragment	
VIII	4	71	Intermediate Phalanx		grayish orange color, adult, possible foot	21.96 mm
VIII	4	72	Rib Fragment		Shaft Fragment	
VIII	4	73	Lunate	Left	Grayish color	

VIII	4	74	Cuneiform Fragment		to the facets	
VIII	4	75	Triquetral	Left		
VIII	4	76	Intermediate Phalanx		Probable hand, grayish color	18.82 mm
VIII	4	77	Vertebra Fragment			
VIII	4	78	Femur Fragment	Possible Right	Distal fragment, anterior surface badly deteriorated, fire blackened	
VIII	4	79	Sacral vertebra		First sacral vertebra, fire blackened	
VIII	4	80	Ischium Fragment	Left	acetabulum partly present	
VIII	4	81	Mandible Fragment	Right	adult, inferior portion, fire blackened	
VIII	4	82	Parietal Fragment	Probable Right	adult, taphonomic cracking, fire blackened	
VIII	4	83	Manubrium		adult, rather large, possibly burned, sternal end does not appear as though it fused to the sternum	
VIII	4	84	Humerus Fragment		Shaft fragment, adult, grayish color, taphonomic cracking	

VIII	4	85	Frontal Fragment	Right portion	adult, rounded supraorbital, possible male, cranial modification (flattening of the front)
VIII	4	86	Radius Fragment	Possible Right	Shaft Fragment
VIII	4	87	Rib Fragment	Right	vertebral end, grayish and friable
VIII	4	88	Cave Formation		
VIII	4	89	Clavicle Fragment	Right	Lateral fragment, grayish in color
VIII	4	90	Thoracic Vertebra		Epiphysis on the body is fused, line still visible, rim around the superior surface of the body still
VIII	4	91	Ilium Fragment	Possible Left	Crest fragment
VIII	4	92	Ilium Fragment	Left	Narrow Sciatic notch, adult, grayish coloring
VIII	4	93	Thoracic Vertebra		adult, upper Thoracic, one large demi facet
VIII	4	94	Cervical Vertebra		Broken transverse processes, orangish staining on the spinous process, lower cervical
VIII	4	95	Humerus Fragment	Left	Shaft fragment, grayish coloring

VIII	4	96	Humerus Fragment	Right	Distal fragment, olecranon fossa is triangular shaped, medial epicondyle is level, trochlea is somewhat symmetrical
VIII	4	97	Humerus Fragment	Undetermined	head fragment
VIII	4	98	Thoracic Vertebra Fragment		Body fragment, grayish in color, badly deteriorated
VIII	4	99	Maxilla Fragment		Small fragment with two root sockets
VIII	4	100	Rib Fragment		Shaft fragment, Upper 6, slight orangish staining
VIII	4	101	Rib Fragment		Middle Rib,, orangish coloring, fire blackening
VIII	4	102	Frontal Fragment	Left portion	See other Frontal description
VIII	4	103	Ulna Fragment	Probable Right	Distal Ulna shaft fragment, grayish, taphonomic cracking
VIII	4	104	Ulna Fragment	Left	Distal Fragment
VIII	4	105	Lumbar Vertebra Fragment		L1 or L2, posterior portion of lamina
VIII	4	106	Humerus Fragment	Left	Distal fragment, see other humerus descriptions

VIII	4	107	Patella	Left	Grayish coloring	35.13 mm
VIII	4	108	Scaphoid	Left	Grayish color	
VIII	4	109	1st Metacarpal	Left	grayish calcium carbonate on posterior surface, some fire blackening	
VIII	4	110	Intermediate Phalanx		Calcium carbonate on the on posterior, orangish discoloration on palmar surface	
VIII	4	111	Cervical Vertebra		Middle cervical, orangish discoloration	
VIII	4	112	Temporal Fragment		petrous portion	
VIII	4	113	Scapula Fragment	Right	Glenoid and part of the lateral border, orangish discoloration	38.36 mm height, width cannot be measured
VIII	4	114	Humerus Fragment		treated with treated with B72, Head fragment, fire blackened	
VIII	4	115	Possible Femur Fragment		Condyle fragment, fire blackened	
VIII	4	116	Thoracic Vertebra		treated with treated with B72, Lower Thoracic vertebra, lower part of lamina is orangish color	

VIII	4	117	Tibia Fragment	Right	treated with treated with B72, Proximal fragment, fire blackened
VIII	4	118	Vertebra Fragment		treated with treated with B72, body fragment, grayish in color, badly deteriorated, possible cervical or Thoracic
VIII	4	119	Possible Femur Fragment		treated with treated with B72, Condyle fragment, fire blackened
VIII	4	120	Tibia Fragment	Left	treated with treated with B72, Distal fragment, badly deteriorated, fire blackened
VIII	4	121	Vertebra Fragment		treated with treated with B72, Body fragment, fire blackened, anterior portion, possible lumbar
VIII	4	122	Femur Fragment	Left	treated with treated with B72, Proximal fragment with head and tuberosity, taphonomic breakage to the head, blackish

VIII	4	123	Vertebra Fragment	treated with treated with B72, Body fragment, inferior portion of the body, probable lumbar
VIII	4	124	Possible Femur Fragment	treated with treated with B72, Condyle fragment, fire blackened
VIII	4	125	Lumbar Vertebra	treated with treated with B72, Probably L1 or L2, badly treated, fire blackened
VIII	4	126	Rib Fragment	Shaft fragment, middle rib, orangish color
VIII	4	127	Intermediate Phalanx fragment	Hand, proximal facet
VIII	4	128	Rib Fragment	Shaft fragment, orangish coloration and fire blackening
VIII	4	129	Rib Fragment	Shaft fragment, fire blackened
VIII	4	130	Vertebra Fragment	transverse process with facet
VIII	4	131	Vertebra Fragment	transverse process

$\left.\left.\begin{array}{llccc}\hline \text { VIII } & 4 & 132 & \begin{array}{c}28 \text { unidentifiable } \\ \text { fragments }\end{array} & \begin{array}{c}\text { orangish discoloration }\end{array} \\ \hline \text { frany are shaft } \\ \text { fragments with } \\ \text { grayish coloring } \\ \text { and/or fire }\end{array}\right\} \begin{array}{c}\text { blackening. Have a } \\ \text { dozen or so may have } \\ \text { been burned }\end{array}\right]$

VIII	5	C	1	humerus fragment
VIII	5	C	2	lunate
VIII	5	C	3	greater multangular
VIII	5	C	4	hamate fragment
VIII	5	C	5	metacarpal fragment
VIII	5	C	6	proximal metatarsal
				fourth metacarpal
VIII	5	C	7	fragment
VIII	5	C	8	femur fragment
VIII	5	C	9	femur fragment
VIII	5	C	10	femur fragment
VIII	5	C	11	greater multangular
VIII	5	C	12	scaphoid
VIII	5	C	13	capitate
VIII	5	C	14	fibula fragment
VIII	5	C	15	os coxa fragment
VIII	5	C	16	fibula fragment
VIII	5	C	17	femur fragment
				third cuneiform
VIII	5	C	18	fragment
VIII	5	C	19	proximal pedal phalanx
fragment				
VIII	5	C	20	metacarpal/metatarsal
VIII	5	C	21	cagment
VIII	5	C	22	unidentified fragment
VIII	5	C	23	mandible fragment
VIII	5	D	1	femur fragment

VIII	5	D	2	fifth metatarsal
VIII	5	D	3	Proximal manual phalanx
VIII	5	D	4	intermediate manual phalanx
VIII	5	D	5	metacarpal fragment
VIII	5	D	6	Proximal manual phalanx
VIII	5	D	7	proximal pedal phalanx
VIII	5	D	8	intermediate pedal phalanx
VIII	5	D	9	Proximal manual phalanx
VIII	5	D	10	intermediate pedal phalanx
VIII	5	D	11	proximal pedal phalanx
VIII	5	D	12	distal pedal phalanx
VIII	5	D	13	proximal pedal phalanx fragment
VIII	5	D	14	intermediate manual phalanx
VIII	5	D	intermediate pedal phalanx	
VIII	5	D	16	Proximal manual phalanx fragment

VIII	5	D	17	intermediate manual phalanx
VIII	5	D	18	fifth metacarpal
VIII	5	D	19	third metatarsal fragment
VIII	5	D	20	metatarsal fragment
VIII	5	D	21	intermediate manual phalanx
VIII	5	D	22	first cuneiform
VIII	5	D	23	third cuneiform
VIII	5	D	24	second cuneiform
VIII	5	D	25	capitate
VIII	5	D	26	patella
VIII	5	D	27	hyoid body
VIII	5	D	28	proximal manual phalanx
VIII	5	D	29	intermediate pedal phalanx
VIII	5	D	30	unidentified fragment
VIII	5	D	31	distal manual phalanx
VIII	5	D	32	third metatarsal
VIII	5	D	33	fragment

VIII	5	D	38	first cuneiform fragment
VIII	5	D	39	parietal fragment
VIII	5	D	40	unidentified fragments
VIII	5	D	41	long bone fragments
VIII	5	E	1	tibia fragment
VIII	5	E	2	distal manual phalanx
VIII	5	E	3	distal pedal phalanx
VIII	5	E	4	distal manual phalanx
VIII	5	E	5	Proximal manual phalanx
VIII	5	E	6	Proximal manual phalanx
VIII	5	E	7	Proximal manual phalanx
VIII	5	E	8	proximal pedal phalanx
VIII	5	E	9	Proximal manual phalanx
VIII	5	E	10	tibia fragment
VIII	5	E	11	femur fragment
VIII	5	E	12	parietal fragment
VIII	5	E	13	calcaneus
VIII	5	E	14	talus
VIII	5	E	15	Proximal manual phalanx
VIII	5	E	16	first metacarpal

VIII	5	E	17	Proximal manual phalanx
VIII	5	E	18	proximal metatarsal
VIII	5	E	19	distal pedal phalanx
VIII	5	E	20	intermediate manual phalanx
VIII	5	E	21	intermediate manual phalanx
VIII	5	E	22	intermediate manual phalanx
VIII	5	E	23	navicular
VIII	5	E	24	cuboid
VIII	5	E	25	scaphoid
VIII	5	E	26	capitate
VIII	5	E	27	triquetral
VIII	5	E	28	triquetral
VIII	5	E	29	second cuneiform
VIII	5	E	30	intermediate manual phalanx
VIII	5	E	31	humerus
VIII	5	E	32	mandible
VIII	5	E	33	manubrium
VIII	5	E	34	ilium fragment
VIII	5	E	35	vertebra
VIII	5	E	36	patella
VIII	5	E	37	radius fragment
VIII	5	E	38	capitate
VIII	5	E	39	hamate

VIII	5	E	40	pisiform
VIII	5	E	41	rib fragment
VIII	5	E	42	metacarpal fragment
VIII	5	E	43	metatarsal fragment
VIII	5	E	44	metatarsal fragment
VIII	5	E	45	metacarpal fragment
VIII	5	E	46	fifth metatarsal fragment
VIII	5	E	47	second metatarsal fragment
VIII	5	E	48	third metacarpal
VIII	5	E	49	fourth metatarsal fragment
VIII	5	E	50	fifth metacarpal fragment
VIII	5	E	51	third metatarsal
VIII	5	E	52	femur fragment
VIII	5	E	53	metacarpal fragment
VIII	5	E	54	humerus fragment
VIII	5	E	55	tibia fragment
VIII	5	E	56	rib fragment
VIII	5	E	57	rib fragment
VIII	5	E	58	lumbar vertebra fragment
VIII	5	E	59	lumbar vertebra fragment
VIII	5	E	60	metacarpal/metatarsal fragment

VIII	5	E	61	unidentified fragment
VIII	5	E	62	premolar
VIII	5	E	63	canine
VIII	5	E	64	premolar
VIII	5	E	65	premolar
VIII	5	E	66	pisiform
VIII	5	E	67	molar
VIII	5	E	68	molar
VIII	5	E	69	incisor
VIII	5	E	70	canine
VIII	5	E	71	premolar
VIII	5	E	72	sacral vertebra fragment
VIII	5	E	73	sacral vertebra fragment
VIII	5	E	74	radius fragment
VIII	5	E	75	radius fragment
VIII	5	E	76	humerus fragment
VIII	5	E	77	patella
VIII	5	E	78	thoracic vertebra
VIII	5	E	79	humeragment
VIII	5	E	80	ulnagment fragment
VIII	5	E	81	tibia fragment
VIII	5	E	82	tibia fragment
VIII	5	E	83	thoracic vertebra

VIII	5	E	84	lumbar vertebra fragment			
VIII	5	E	85	maxilla fragment			
VIII	5	E	86	ischium fragment			
VIII	5	E	87	pubic fragment			
VIII	5	E	88	pubic fragment			
VIII	5	E	89	tibia fragment			
VIII	5	E	90	unidentified fragments			
VIII	7	a	1	femur	left	subadult, all epiphyses unfused	20.5 cm length
VIII	7	a	2	ulna fragment	right	proximal fragment, probable adult	
VIII	7	a	3	femur epiphysis		subadult, unable to side due to deterioration	43.12 mm wide
VIII	7	a	4	femur epiphysis		subadult, unable to side due to deterioration	43.02 mm wide
VIII	7	a	5	talus	left	subadult, young child roughly 2-3 years of age based in size	
VIII	7	a	6	fibula fragments	probable right	subadult, broke in transit	16 cm long
VIII	7	a	7	proximal pedal phalanx		adult	25.8 mm
VIII	7	a	8	proximal manual phalanx		adult	35.13 mm

VIII	7	a	9	proximal manual phalanx		adult	adult

$\left.\begin{array}{ccccccc} & & & & & \begin{array}{c}\text { adult, probable } \\ \text { lumbar or lower } \\ \text { thoracic body }\end{array} \\ \text { VIII } & 7 & \text { a } & \text { vagment with another } \\ \text { unknown bone calcite } \\ \text { on top of it }\end{array}\right]$

					possible subadult		
VIII	7	a	29	radius fragment	undetermined	shaft fragment	
VIII	7	a	30	radius fragment	undetermined	shaft fragment	
VIII	7	a	31	6 os coxae fragments	undetermined	badly deteriorated	
VIII	7	a	32	humerus fragment	right	distal fragment with just the fossa, which Is indeterminate in shape	
VIII	7	a	33	proximal manual phalanx			41 mm
VIII	7	a	34	proximal manual phalanx			40.7 mm
VIII	7	a	35	third metacarpal fragment	right	proximal fragment	
VIII	7	a	36	second metacarpal fragment	left	proximal fragment	
VIII	7	a	37	first metacarpal	right		
VIII	7	a	38	third metacarpal fragment	left	proximal fragment	
VIII	7	a	39	trapezoid	left	adult	
VIII	7	a	40	triquetral	right	adult	
VIII	7	a	41	hamate	right	adult	
VIII	7	a	42	first metacarpal fragment		subadult, unfused proximal end	
VIII	7	a	43	metacarpal		subadult	
VIII	7	a	44	metacarpal		subadult	
VIII	7	a	45	metacarpal		subadult	
VIII	7	a	46	metatarsal fragment			

VIII	7	a	47	metatarsal fragment	
VIII	7	a	48	metatarsal fragment	subadult, proximal end unfused
VIII	7	a	49	metatarsal fragment	subadult, proximal end unfused
VIII	7	a	50	tibia fragments	subadult, distal fragment, unfused
VIII	7	a	51	femur fragment	probably pedal
VIII	7	a	52	distal phalanx	probably pedal
VIII	7	a	53	distal phalanx	first manual subadult
VIII	7	a	54	distal phalanx	probable manual phalanx, possibly interproximal
VIII	7	a	55	phalanx fragment	subadult, head epiphysis, possibly humerus
VIII	7	a	56	epiphysis	condyle fragment
VIII	7	a	57	probable femur	
fragment	probable femur	condyle fragment	subadult, shaft		
VIII	7	a	58	fragment	pragment

$\left.\begin{array}{ccccccc}\text { VIII } & 7 & \text { a } & 65 & \text { rib fragment } & \text { right } & \text { vertebral end, } \\ \text { vabadult }\end{array}\right]$

VIII	7	a	76	frontal fragments	left	adult, has part of the left supraorbital margin, which is blunt	
VIII	7	a	77	fibula fragments	left	adult, distal end with part of the shaft	
VIII	7	a	78	talus	right	adult	56.32 mm length, 44.04 mm width
VIII	7	a	79	thoracic vertebra fragment		adult, lower thoracic, probably 6-10, transverse processes broken	
VIII	7	a	80	calcaneus fragment	right	adult, calcite on pedal surface	78.23 mm length
VIII	7	a	81	ulna fragment	probable left	adult shaft fragment	
VIII	7	a	82	femur fragment	undetermined	adult, head fragment, covered in calcite	
VIII	7	a	83	tibia fragment	right	proximal posterior fragment, adult, covered in calcite	
VIII	7	a	84	tibia fragment	possible left	distal anterior fragment, adult, covered in calcite	
VIII	7	a	85	calcaneus fragment	left	adult, badly deteriorated	78.87 mm length
VIII	7	a	86	tibia fragment	probable left	distal fragment of the shaft, covered in calcite	
VIII	7	a	87	femur fragment	undetermined	distal fragment of a condyle	

VIII	7	a	88	sesamoid			
VIII	7	a	89	femur fragment	undetermined	proximal fragment of just the head, badly deteriorated, cannot take measurement	
VIII	7	a	90	distal manual phalanx		probably the first, adult	19.69 mm
VIII	7	a	91	proximal pedal phalanx		adult	28.53 mm
VIII	7	a	92	second cuneiform	probable right	adult	
VIII	7	a	93	rib fragment	undetermined	child	
VIII	7	a	94	first metatarsal	right	adult, calcite on all surfaces	61.09 mm
VIII	7	a	95	occipital fragment	right	adult, occipital condyle present	
VIII	7	a	96	rib fragment	undetermined	adult, covered in calcite	
VIII	7	a	97	carpal fragment	undetermined	adult, distal and shaft fragment, calcite covered	
VIII	7	a	98	clavicle fragment	left	lateral fragment with coracoid process, gracile is size	
VIII	7	a	99	humerus fragment	undetermined	shaft fragments, adult	
VIII	7	a	100	radius fragment	undetermined	shaft fragment	
VIII	7	a	101	humerus fragment	undetermined	well defined deltoid attachment	
VIII	7	a	102	calcaneus fragment	undetermined	posterior surface of the calcaneus, adult	
VIII	7	a	103	cranial fragment	undetermined	adult, badly	

					deteriorated	
VIII	7	a	104	cranial fragment	undetermined	adult, badly deteriorated
VIII	7	a	105	cranial fragment	undetermined	adult, badly deteriorated
VIII	7	a	106	cranial fragment	undetermined	adult, badly deteriorated
VIII	7	a	107	tibia fragment	undetermined	adult, covered in calcite
VIII	7	a	108	humerus fragment	probable left	distal portion right above the fossa
VIII	7	a	109	metacarpal/metatarsal		
fragment	undetermined	shaft fragment, covered in calcite				
VIII	7	a	110	clavicle fragment	undetermined	shaft fragment, covered in calcite
VIII	7	a	111	femur fragment		adult, fragment of the trochanteric crest and part of the neck, covered in calcite
						foramen ovale is present on the fragment

VIII	7	a	114	canine	undetermined	permanent, adult, dental wear score $2 / 3$	8.37 mm anterior to posterior, 8.6 mm lingual to labial, 9.8 mm crown height
VIII	7	a	115	premolar		first upper, no root	7.02 mm anterior to posterior, 9.47 mm lingual to labial, 8.44 mm crown height
VIII	7	a	116	premolar		first upper, no root	7.27 mm anterior to posterior, 10.10 mm lingual to labial, 8.17 mm height
VIII	7	a	117	premolar		first lower, no root	6.38 mm anterior to posterior, 9.37 mm lingual to labial, 7.88 mm height
VIII	7	a	118	canine		deciduous, lower, left	
VIII	7	a	119	canine		deciduous, upper, left	
VIII	7	a	120	incisor		deciduous, left second lower	
VIII	7	a	121	incisor		deciduous, right second lower	
VIII	7	a	122	incisor		deciduous, left first lower	
VIII	7	a	123	incisor		deciduous, right first lower	

VIII	7	a	124	molar		deciduous, lower right first molar
VIII	7	a	125	canine		upper right, attempted Ik modification
VIII	7	a	126	molar		right lower second, huge caries that dominates the anterior lingual cusp
VIII	7	a	127	incisor		upper left, dentine exposed
VIII	7	a	128	root fragment		
VIII	7	a	129	15 unidentified fragments		
VIII	7	a	130	shaft fragment	undetermined	subadult, possible humerus or femur shaft fragment, possibly as young as a perinate, calcite
VIII	7	a	131	tibia fragment	right	subadult, shaft fragment, possibly as old as 5 years, calcite, most on the posterior surface
VIII	7	a	132	rib fragment	left	subadult, upper rib, vertebral end, calcite
VIII	7	a	133	rib fragment	left	subadult, lower rib, vertebral end, calcite
VIII	7	a	134	rib fragment	undetermined	subadult, mid rib, shaft, calcite
VIII	7	a	135	rib fragment	undetermined	subadult, upper rib,

shaft, calcite

				shaft, calcite		
VIII	7	a	136	rib fragment	left	subadult, upper rib, shaft, calcite
VIII	7	a	137	rib fragment	undetermined	subadult, mid rib, shaft, calcite
VIII	7	a	138	rib fragment	undetermined	subadult, mid rib, shaft, calcite
VIII	7	a	139	scapula fragment	undetermined	subadult, coracoid, unfused, young child
VIII	7	a	140	ischium fragment, calcite	right	subadult, over 1, but under 5 most likely
VIII	7	a	141	cranial fragment		subadult, calcite

					fragment, calcite	
VIII	7	a	153	radius fragment		subadult, shaft fragment, calcite
VIII	7	a	154	metatarsal fragment		subadult, shaft fragment, calcite
VIII	7	a	155	metatarsal fragment		subadult, shaft fragment, calcite
VIII	7	a	156	radius fragment		subadult, shaft fragment, calcite
VIII	7	a	157	epiphysis	undetermined	subadult, possible tibia distal epiphysis??
VIII	7	a	158	ulna fragment	undetermined	subadult, proximal epiphysis of the olecranon, probably older than 5 but younger than 9
VIII	7	a	159	rib fragment	undetermined	subadult, mid rib, shaft, calcite
VIII	7	a	160	rib fragment	undetermined	subadult, mid rib, shaft, calcite
VIII	7	a	161	44 unidentified fragments		
VIII	7	a	162	femur fragment	undetermined	adult, shaft fragment, completely covered with calcite
VIII	7	a	163	occipital fragment		adult, inferior portion of the occipital , interior is heavily coated with calcite

VIII	7	,	164	cranial fragments		adult, six small cranial fragments
VIII	7	a	165	femur fragment	undetermined	subadult, around 1.5 years old, calcite on carbon, shaft fragment
VIII	7	a	166	humerus fragment	right	subadult roughly 1.5 years old, distal shaft fragment, distal epiphysis is unfused, carbon and calcite on the anterior surface
VIII	7	a	167	rib fragment	undetermined	subadult, probably the 1.5 year old, shaft fragment, mid rib, calcite and carbon
VIII	7	a	168	rib fragment	undetermined	subadult, probably the 1.5 year old, shaft fragment, mid rib, calcite and carbon
VIII	7	a	169	rib fragment	right	subadult, probably the 1.5 year old, sternal fragment, mid rib, calcite and carbon
VIII	7	a	170	rib fragment	right	subadult, probably the 1.5 year old, shaft fragment, mid rib,

calcite and carbon

VIII	7	a	171	rib fragment	undetermined	subadult, probably the 1.5 year old, shaft fragment, mid rib, calcite and carbon
VIII	7	a	172	rib fragment	undetermined	subadult, probably the 1.5 year old, shaft fragment, mid rib, calcite and carbon
VIII	7	a	173	rib fragment	undetermined	subadult, probably the 1.5 year old, shaft fragment, upper rib, calcite and carbon
VIII	7	a	174	shaft fragment	undetermined	possibly the 1.5 year old subadult
VIII	7	a	175	shaft fragment	undetermined	possibly the 1.5 year old subadult
VIII	7	a	176	rib fragment	undetermined	subadult, probably the 1.5 year old, sternal fragment, mid rib, calcite and carbon
VIII	7	a	177	rib fragment	undetermined	subadult, probably the 1.5 year old, sternal fragment, mid rib, calcite and carbon
						subadult, probably the 1.5 year old, shaft fragment, mid rib, calcite and carbon

VIII	7	a	179	rib fragment	undetermined	subadult, probably the 1.5 year old, shaft fragment, mid rib, calcite and carbon
VIII	7	a	180	tarsal (probably)	undetermined	subadult, probably the 1.5 year old, either the talus or the calcaneus fragment
VIII	7	a	181	lumbar body		subadult, probably the 1.5 year old
VIII	7	a	182	sacral body		subadult, probably the 1.5 year old
VIII	7	a	183	vertebra body		either lower thoracic or upper lumbar, probably the 1.5 year old, other unidentified fragments are stuck to the vertebra body with calcite
VIII	7	a	184	ulna fragment	probable right	subadult, probably the 1.5 year old, proximal medial fragment, some calcite and carbon
VIII	7	a	185	neural arch	right	lumbar, subadult, probably the 1.5
VIII	7	a	186	neural arch	left	lumbar, subadult, probably the 1.5
VIII	7	a	187	neural arch	right	lumbar, subadult, probably the 1.5

VIII	7	a	188	neural arch	right	cervical, subadult, probably the 1.5 year old
VIII	7	a	189	neural arch	right	cervical, subadult, probably the 1.5 year old
VIII	7	a	190	neural arch	left	thoracic, subadult, probably the 1.5 year old
VIII	7	a	191	neural arch	right	thoracic, subadult, probably the 1.5 year old
VIII	7	a	192	neural arch	right	cervical, subadult, probably the 1.5 year old
VIII	7	a	193	phalanx	undetermined	probably the first digit, unsure if it is pedal or manual, probably the 1.5 year old
VIII	7	a	194	neural arch fragment	undetermined	probably lumbar or thoracic, probably the 1.5 year old
VIII	7	a	195	neural arch fragment	undetermined	probably lumbar or thoracic, probably the 1.5 year old
VIII	7	a	196	incisor	right	upper, complete, central
VIII	7	a	197	incisor	left	upper, complete, central

VIII	7	a	198	incisor	right	upper, complete, lateral
VIII	7	a	199	incisor	left	lower, complete, lateral
VIII	7	a	200	canine	undetermined	lower, root only partially formed, root formation indicates 1 yr 1 month to 1 year 3 months
VIII	7	a	201	canine	undetermined	upper, root only partially formed, 1 yr 1 month to 1 year 3 months
VIII	7	a	202	canine	undetermined	upper, root only partially formed, 1 yr 1 month to 1 year 3 months
VIII	7	a	203	molar	undetermined	lower, root formation not complete, 1 yr 2 weeks to 1 yr 2months
VIII	7	a	204	molar	undetermined	upper, root formation only partial, 1 yr 2 months
VIII	7	a	205	molar	undetermined	upper, root formation only partial, 1 yr 2 months
VIII	7	a	206	molar	right	lower first, permanent, probably belongs to the 1 yr

						old since only part of the crown has developed	
VIII	7	a	207	molar	left	lower first, permanent, probably belongs to the 1 yr old since only part of the crown has developed	
VIII	7	a	208	molar	right	upper, undetermined if it is the first or second, probably the 1 yr old, because of crown development	
VIII	7	a	209	unidentified fragments		40 unidentified fragment, some of them belong to the 1 year old	
VIII	7	B	1	humerus fragment	right	adult, distal fragment, spool shaped, tighter trochlear notch	
VIII	7	B	2	skull fragment		covered in calcite and disfigured morphologically due to taphonomic processes	
VIII	7	B	3	unidentifiable long bone fragments			
VIII	7	B	4	interproximal palmar phalanx		possible adult	27.88 mm

VIII	7	B	5	interproximal palmar phalanx fragment	possible subadult	
VIII	7	B	6	interproximal palmar phalanx fragment	possible subadult	
VIII	7	B	7	interproximal palmar phalanx fragment	possible subadult	
VIII	7	B	8	interproximal palmar phalanx fragment	possible subadult	
VIII	7	B	9	distal manual phalanx	probably an older child, first digit, age 8-15 closer to 8	19.21 mm
VIII	7	B	10	distal manual phalanx	probably an older child, first digit, age 8-15 closer to 8	16.41 mm
VIII	7	B	11	distal pedal phalanx	probably an older child, first digit, age 8-15 closer to 8	19.52 mm
VIII	7	B	12	distal pedal phalanx	probably an older child, first digit, age 8-15 closer to 8	20.17 mm
VIII	7	B	13	distal pedal phalanx	probably an older child, 5th digit age 8 15 , closer to 8	11.63 mm
VIII	7	B	14	pedal phalanx	probably interproximal of an older child	12.5 mm
VIII	7	B	15	pedal phalanx	probably interproximal of an older child	11.34 mm
VIII	7	B	16	pedal phalanx	probably	10.67 mm

interproximal of an older child

VIII	7	B	17	proximal pedal phalanx		older child, first digit	14.8 mm
VIII	7	B	18	temporal fragment	probable right	tympanic portion	
VIII	7	B	19	trapezoid	left	adult	
VIII	7	B	20	probable lunate	undetermined	adult	
VIII	7	B	21	rib fragment	undetermined	subadult, shaft fragment	
VIII	7	B	22	distal phalanx		probable manual	16.62 mm
VIII	7	B	23	proximal manual phalanx fragment		proximal portion	
VIII	7	B	24	manual phalanx fragment		distal portion	
VIII	7	B	25	manual phalanx fragment		distal portion	
VIII	7	B	26	rib fragment		shaft fragment of a subadult	
VIII	7	B	27	metacarpal or metatarsal fragment		subadult	
VIII	7	B	28	phalanx		probably distal pedal of a young child	5.82 mm
VIII	7	B	29	first metacarpal fragment	undetermined	subadult, unfused proximal end, so closer to 8 years of age	
VIII	7	B	30	epiphysis		unknown	
VIII	7	B	31	epiphysis		circular in shape	
VIII	7	B	32	epiphysis		circular in shape	

VIII	7	B	33	epiphysis	bulbous	
VIII	7	B	34	epiphysis	bulbous	
VIII	7	B	35	7 unidentified fragments		
VIII	7	C	1	cranial fragment	unknown fragment	
VIII	7	C	2	tibia fragment	distal fragment, adult, poor condition, calcite	
VIII	7	C	3	occipital fragment	adult, calcite	
VIII	7	C	4	occipital fragment	subadult, basiooccipital portion, possible perinate	
VIII	7	C	5	cervical vertebra	C2 adult, some calcite	
VIII	7	C	6	thoracic vertebra	damage to the body, lower thoracic, subadult, pedicle line is visible	
VIII	7	C	7	rib fragment	adult, shaft fragment, calcite, lower rib	
VIII	7	C	8	rib fragment	adult, shaft fragment, calcite, lower rib	
VIII	7	C		rib fragment	adult, shaft fragment, calcite, mid rib	
VIII	7	C	10	rib fragment	adult, shaft fragment, calcite, mid rib	
VIII	7	C	11	intermediate manual phalanx	adult, calcite	27.09 mm
VIII	7	C	12	intermediate manual phalanx	adult, calcite	18.05 mm

VIII	7	C	13	first proximal pedal phalanx		adult, calcite	30.88 mm
VIII	7	C	14	proximal manual phalanx		adult, calcite	36.02 mm
VIII	7	C	15	lunate	left	adult, calcite	
VIII	7	C	16	trapezium	right	adult, calcite	
VIII	7	C	17	trapezoid	right	adult, calcite	
VIII	7	C	18	intermediate manual phalanx		adult, calcite	28.17 mm
VIII	7	C	19	cranial fragment		adult, calcite	
VIII	7	C	20	mandible fragment		adult, anterior portion, post mortem loss, crypt empty, calcite	
VIII	7	C	21	patella	right	possible subadult, calcite	32.68 mm height, 38.51 mm width
VIII	7	C	22	rib fragment	undetermined	adult, shaft fragment, calcite, mid rib	
VIII	7	C	23	rib fragment	undetermined	adult, shaft fragment, calcite, mid rib	
VIII	7	C	24	rib fragment	undetermined	adult, shaft fragment, calcite, mid rib	
VIII	7	C	25	rib fragment	undetermined	adult, shaft fragment, calcite, lower rib	
VIII	7	C	26	rib fragment	undetermined	adult, shaft fragment, calcite, mid rib	
VIII	7	C	27	rib fragment	undetermined	adult, shaft fragment, calcite, lower rib	
VIII	7	C	28	rib fragment	undetermined	adult, shaft fragment,	

calcite, mid rib

VIII	7	C	29	rib fragment	right	adult, shaft fragment, calcite, upper rib
VIII	7	C	30	clavicle fragment	right	subadult, perinate possibly, lateral fragment
VIII	7	C	31	first distal pedal phalanx		adult, calcite

VIII	7	C	43	fifth metatarsal	left	adult, calcite
VIII	7	C	44	navicular	left	adult, calcite
VIII	7	C	45	os coxa fragment	undetermined	sciatic notch fragment, adult, calcite
VIII	7	C	46	os coxa fragment	undetermined	lunate surface fragment, possible adult, calcite
VIII	7	C	47	cervical vertebra fragment		body fragment, adult, calcite, lower cervical, adult
VIII	7	C	48	cervical vertebra fragment		body fragment, adult, calcite, upper cervical, adult
VIII	7	C	49	thoracic vertebra fragment		body fragment, adult, calcite, upper thoracic, adult
VIII	7	C	50	humerus fragments	undetermined	distal portion above the trochlea and fossa, possible subadult, calcite
VIII	7	C	51	radius fragments	undetermined	proximal fragment, adult, badly deteriorated
VIII	7	C	52	rib fragments	possible left	adult, mid rib, calcite
VIII	7	C	53	rib fragments	right	first rib, adult, calcite, damage to vertebral and sternal ends

VIII	7	C	54	mandible fragments		subadult, adult incisors have crown development, along with a canine, it appears that the right lateral incisor is rotated 90 degrees posteriorly, deciduous molar with broken roots present, second deciduous molar erupted but not in crypt, young child 6 year +/- 24 months
VIII	7	C	55	rib fragments	right	adult, lower ribs, shaft fragments, calcite
VIII	7	C	56	lumbar fragments		adult, most of the vertebra, but very fragmentary, possibly L4, calcite
VIII	7	C	57	tibia fragments	right	shaft fragment and a large shaft fragment with the distal facet, covered in calcite, adult
VIII	7	C	58	temporal fragments	possible left	adult, petrous portion fragments, calcite
VIII	7	C	59	occipital fragment		subadult, basiooccipital portion, unfused sphenoid

						occipital suture, under 18	
VIII	7	C	60	metacarpal fragments		adult, proximal fragments, badly damaged	
VIII	7	C	61	rib fragments	right	adult, upper rib, shaft fragments, calcite	
VIII	7	C	62	rib fragments	possible right	subadult, first rib, calcite	
VIII	7	C	63	rib fragments	undetermined	subadult, mid rib, calcite, badly damaged	
VIII	7	C	64	rib fragments	possible left	possible subadult, upper rib, possibly the second, calcite	
VIII	7	C	65	sphenoid fragments		right wind portion, adult, some calcite	
VIII	7	C	66	cranial fragments	undetermined	adult, calcite, badly damaged	
VIII	7	C	67	cranial fragments	undetermined	adult, calcite, badly damaged	
VIII	7	C	68	shaft fragment	undetermined	undetermined because of their condition	
VIII	7	C	69	rib fragments	undetermined	subadult, vertebral end fragments, badly damaged	
VIII	7	C	70	first proximal manual phalanx fragment		adult, proximal fragment, calcite	42.17 mm
VIII	7	C	71	first metacarpal	right	adult, calcite	
VIII	7	C	72	metatarsal fragment	undetermined	adult, distal fragment,	

$\left.\begin{array}{cccccc}\hline & & & & \text { calcite } \\ \text { VIII } & 7 & \text { C } & 73 & \text { proximal pedal phalanx } & \text { adult, calcite }\end{array} \quad 24.42 \mathrm{~mm}, ~ \begin{array}{c}\text { incomplete body } \\ \text { fragment (possibly } \\ \text { the rest of 75), mid } \\ \text { cervical adult }\end{array}\right]$

VIII	7	C	81	rib fragment	right	first rib, adult, calcite, damage to vertebral and sternal ends
VIII	7	C	82	rib fragment	right	adult, upper rib, shaft fragments, calcite, healed fracture has changed the morphological shape of the bone
VIII	7	C	83	rib fragment		adult, shaft fragment, calcite
VIII	7	C	84	rib fragment		adult, vertebral end fragment, calcite
VIII	7	C	85	tibia fragment	possible right	adult, distal fragment, calcite
VIII	7	C	86	zygomatic fragment	right	possible subadult, calcite, most of the bone
VIII	7	C	87	thoracic vertebra fragment		possible subadult, fragment of the lamina with one superior articular facet
VIII	7	C	88	radius fragments	left	two shaft fragments (one has the distal portion of the tuberosity, calcite (thicker on lateral surface, adult
VIII	7	C	89	cranial fragment	undetermined	adult, calcite

VIII	7	C	90	cranial fragment	undetermined	adult, calcite
VIII	7	C	91	cranial fragment	undetermined	adult, calcite
VIII	7	C	92	vertebra fragment		perinate, vertebra body, unfused, probably lumbar
VIII	7	C	93	vertebra fragment		perinate, vertebra body, unfused, probably cervical
VIII	7	C	94	cervical vertebra fragment		adult, calcite, lamina fragment with superior and inferior articular facet
VIII	7	C	95	thoracic vertebra fragment		adult, partial body fragment with left costal facet, probably T10 or 11
VIII	7	C	96	radius fragment	undetermined	adult, shaft fragment, calcite
VIII	7	C	97	shaft fragment	undetermined	undetermined, adult, calcite
VIII	7	C	98	humerus fragment	undetermined	subadult, shaft fragment, calcite, unable to give more precise age due to fragmentary nature
VIII	7	C	99	fifth metatarsal fragment	possible left	proximal and shaft fragment with damage to the distal area, adult, calcite

VIII	7	C	100	vertebra fragment		vertebra body, calcite
VIII	7	C	101	rib fragment	left	sternal end, subadult, calcite
VIII	7	C	102	frontal fragment		subadult, right portion above the orbit
VIII	7	C	103	clavicle fragment	right	shaft fragment, adult, calcite
VIII	7	C	104	metatarsal fragment	undetermined	distal head fragment, adult
VIII	7	C	105	fibula fragment	undetermined	shaft fragment, adult, calcite
VIII	7	C	106	shaft fragment	undetermined	possible adult, calcite
VIII	7	C	107	shaft fragment	undetermined	possible adult, calcite
VIII	7	C	108	radius fragment	undetermined	adult, shaft fragment, calcite
						subadult based on the openness of the sutures on the fragment
VIII	7	C	109	occipital fragment		adult calcite
VIII	7	C	110	cranial fragment	undetermined	adult calcite
VIII	7	C	111	cranial fragment	undetermined	adt
VIII	7	C	112	parietal fragment	undetermined	adult calcite, sutures still somewhat open
VIII	7	C	113	parietal fragment	undetermined	adult calcite
VIII	7	C	114	parietal fragment	undetermined	subadult
VIII	7	C	115	cranial fragment	undetermined	adult calcite
VIII	7	C	116	parietal fragment	undetermined	subadult

VIII	7	C	117	parietal fragments	left	adult, calcite, together the fragments form most of the parietal
VIII	7	C	118	occipital fragments		adult, calcite, together the fragments form most of the occipital
VIII	7	C	119	temporal fragments	undetermined	adult, calcite, petrous portion
VIII	7	C	120	cranial fragments	undetermined	adult, calcite
VIII	7	C	121	cranial fragments	undetermined	adult, calcite
VIII	7	C	122	parietal fragment	undetermined	adult calcite
VIII	7	C	123	parietal fragment	undetermined	adult calcite
VIII	7	C	124	capitate	left	adult calcite
VIII	7	C	125	cervical vertebra		fragment
VIII	7	C	126	neural arch		fragment, adult,
falcite						

VIII	7	C	133	frontal fragment		subadult, left portion above the eye, calcite	
VIII	7	C	134	occipital fragment		subadult calcite	
VIII	7	C	135	parietal fragment	undetermined	subadult calcite	
VIII	7	C	136	cranial fragment		subadult calcite	
VIII	7	C	137	cranial fragment		subadult calcite	
VIII	7	C	138	cranial fragment		subadult calcite	
VIII	7	C	139	cranial fragment		subadult calcite	
VIII	7	C	140	cranial fragment		subadult calcite	
VIII	7	C	141	parietal fragment	undetermined	subadult calcite	
VIII	7	C	142	cranial fragment		subadult calcite	
VIII	7	C	143	hyoid fragment	right	greater horn, unfused, subadult, calcite	
VIII	7	C	144	manual phalanx		subadult, proximal end unfused	20.46 mm
VIII	7	C	145	intermediate phalanx fragment		adult, calcite, damage to the proximal end	
VIII	7	C	146	first distal pedal phalanx		subadult, epiphyses are unfused, calcite	9.76 mm
VIII	7	C	147	distal manual phalanx		adult, calcite	16.85 mm
VIII	7	C	148	cervical vertebra fragments		right lamina fragment and spinous process fragment, lower cervical, adult, calcite	
VIII	7	C	149	vertebra fragment		subadult, lamina fragment, broken off, possibly cervical or thoracic	
VIII	7	C	150	humerus fragment		subadult, distal shaft	

\(\left.$$
\begin{array}{ccccccc}\hline \text { VIII } & 7 & \text { C } & 151 & \text { shaft fragment } & & \text { fragment, calcite } \\
\hline \text { VIII } & 7 & \text { C } & 152 & \text { shaft fragment } & & \text { calcite } \\
\hline \text { VIII } & 7 & \text { C } & 153 & \text { shaft fragment } & & \begin{array}{c}\text { calcite, possible } \\
\text { subadult humerus }\end{array} \\
\hline \text { VIII } & 7 & \text { C } & 154 & \text { shaft fragment } & & \begin{array}{c}\text { calcite, possible ulna } \\
\text { fragment }\end{array}
$$

\hline VIII \& 7 \& C \& 155 \& zygomatic fragment \& undetermined \& calcite, possible

radius fragment\end{array}\right]\)| adult, calcite |
| :---: |

calcite

VIII	7	C	164	sacrum fragment		subadult, unfused body and one lateral portion of the lamina unfused to any of the other sacral bodies, calcite
VIII	7	C	165	vertebra fragment		perinate, cervical vertebra body unfused
VIII	7	C	166	metacarpal fragment	undetermined	shaft fragment, adult, calcite
VIII	7	C	167	humerus fragment		shaft fragment, subadult, calcite
VIII	7	C	168	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	7	C	169	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	7	C	170	radius fragment	undetermined	distal end, subadult, calcite
VIII	7	C	171	pisiform	undetermined	adult, calcite
VIII	7	C	172	proximal manual phalanx	undetermined	subadult, proximal end is broken, distal end has not finished forming, calcite
VIII	7	C	173	intermediate phalanx fragment	undetermined	possible pedal, adult, calcite
VIII	7	C	174	metatarsal	undetermined	perinate, proximal and distal ends have

						not formed yet, calcite
VIII	7	C	175	metatarsal	undetermined	perinate, proximal and distal ends have not formed yet, calcite
VIII	7	C	176	shaft fragment	undetermined	probably a perinate fibula end, calcite
VIII	7	C	177	rib fragment	undetermined	subadult, sternal end fragment
VIII	7	C	178	cuneiform	undetermined	adult, badly deteriorated, calcite
VIII	7	C	179	incisor	right	first upper, no crown development yet, ~ 4 years +/-12 months
VIII	7	C	180	phalanx		adult, proximal end, possibly the first distal manual phalanx
VIII	7	C	181	115 unidentified fragments		
VIII	7	C	182	parietal fragment	undetermined	from skull deposit, adult, calcite, suture on the exterior is not fully closed
VIII	7	C	183	parietal fragment	undetermined	from skull deposit, adult, calcite
VIII	7	C	184	cranial fragment	undetermined	from skull deposit, adult, calcite
VIII	7	C	185	cranial fragment	undetermined	from skull deposit, adult, calcite

VIII	7	C	186	cranial fragment	undetermined	from skull deposit, adult, calcite
VIII	7	C	187	temporal fragment	left	from skull deposit, mastoid process is about a 4, possible male, calcite, adult
VIII	7	C	188	temporal fragment	probable right	from skull deposit, petrous portion, adult, calcite
VIII	7	C	189	cranial fragment	undetermined	from skull deposit, adult, calcite
VIII	7	C	190	cranial fragment	undetermined	from skull deposit, adult, calcite
VIII	7	C	191	cranial fragment	undetermined	from skull deposit, adult, calcite
VIII	7	C	192	cranial fragment	undetermined	from skull deposit, adult, calcite
VIII	7	C	193	cranial fragment	undetermined	from skull deposit, adult, calcite
VIII	7	C	194	sphenoid fragment		from skull deposit, adult, calcite,
VIII	7	C	195	sphenoid fragment		from skull deposit, adult, calcite
VIII	7	C	196	cranial fragments	undetermined	from skull deposit, adult, calcite
VIII	7	C	197	cranial fragments	undetermined	from skull deposit, adult, calcite
VIII	7	C	198	radius fragment	possible right	b72, adult, distal fragment, calcite

VIII	7	C	199	first metacarpal fragment	undetermined	b72, adult, distal fragment, calcite
VIII	7	C	200	ilium fragment	undetermined	b72, adult, calcite
VIII	7	C	201	ilium fragment	undetermined	b72, adult, calcite
VIII	7	C	202	temporal fragments	undetermined	b72, adult, calcite
VIII	7	C	203	vertebra fragment		b72, body fragment, adult, calcite, possible lumbar
VIII	7	C	204	vertebra fragment		b72, body fragment, adult, calcite, possible thoracic
VIII	7	C	205	vertebra fragment		b72, body fragment, adult, calcite, possible lumbar or sacral
VIII	7	C	206	vertebra fragment		b72, body fragment, adult, possible lumbar
VIII	7	C	207	cervical vertebra		b72, adult, calcite, mid cervical
VIII	7	C	208	cervical vertebra fragment		b72, body fragment, adult, calcite, mid cervical
VIII	7	C	209	humerus fragment	undetermined	b72, head fragment, adult, calcite
VIII	7	C	210	femur fragment	undetermined	b72, subadult, head fragment
VIII	7	C	211	humerus fragment	undetermined	b72, head fragment, adult, calcite, not the same as 209
VIII	7	C	212	vertebra fragment		b72, adult, calcite, body fragment

VIII	7	C	213	radius fragment	possible right	b72, possible subadult, distal fragment
VIII	7	C	214	vertebra fragment		b72, adult, lamina fragment, probably thoracic, calcite
VIII	7	C	215	vertebra fragment		b72, adult, lamina fragment, probably thoracic, calcite
VIII	7	C	216	vertebra fragment		b72, adult, lamina fragment, probably lumbar, with superior and inferior articular facets, calcite
VIII	7	C	217	vertebra fragment		b72, probable subadult lamina fragment, calcite, possible thoracic
VIII	7	C	218	pubis	right	b72, perinate
VIII	7	C	219	metacarpal fragment	undetermined	b72, possible adult, proximal end, too much damage to determine side or number, calcite
VIII	7	C	220	vertebra fragment		b72, adult, lamina fragment with one inferior and superior articular facet of a cervical

VIII	7	C	221	os coxa fragment	possible right	b72, portion between the ischium and the pubis, calcite, adult	
VIII	7	C	222	os coxa fragment		b72, adult, calcite, possible ilium fragment	
VIII	7	C	223	mandible fragment		b72, adult, anterior portion, no teeth in crypts, but a root is present	
VIII	7	C	224	ischium fragment	undetermined	b72, adult, calcite	
VIII	7	C	225	second cuneiform	right	b72, calcite, adult	
VIII	7	C	226	9 unidentified fragments		b72	
VIII	7	C	227	molar	left	lower first molar, just the crown	
VIII	7	C	228	humerus fragment	left	adult, distal fragment, triangular fossa, level medial epicondyle, spool like and the trochlear angle is wide. The distal end is damaged to the point where it prevents measurements, taphonomic damage	
VIII	7	C	229	third metacarpal	left	possible subadult due to size, complete	58.53 mm
VIII	7	C	230	first metatarsal	left	adult, complete	56.58 mm

VIII	7	C	231	proximal manual phalanx	undetermined	adult, complete	40.85 mm
VIII	7	C	232	proximal manual phalanx	undetermined	adult, complete	42.94 mm
VIII	7	C	233	sacrum fragment		adult, most of the sacrum, with damage to the inferior and alas. Lytic, but much of it may be taphonomic, narrow, may be male	
VIII	7	C	234	lumbar		adult, damage to the transverse processes, micro and macro porosity, probably L3	
VIII	7	C	235	first metacarpal	right	adult, complete, discolored on the medial aspect	48.02 mm
VIII	7	C	236	fifth metacarpal	right	adult, calcite	53.56 mm
VIII	7	C	237	proximal manual phalanx	undetermined	adult, calcite	45.62 mm
VIII	7	C	238	proximal manual phalanx	undetermined	adult, calcite	36.2 mm
VIII	7	C	239	cervical vertebra		possible subadult,, damage to the transverse processes, lower cervical	
VIII	7	C	240	thoracic vertebra fragment		possible subadult, body and right pedicle with facets	

VIII	7	C	241	second metacarpal	right	adult, calcite	68.08 mm
VIII	7	C	242	third metacarpal	left	adult, badly deteriorated head and distal end, insect activity	61.67 mm
VIII	7	C	243	fourth metacarpal fragment	left	adult, head broken off	
VIII	7	C	244	fifth metatarsal fragment	right	adult, proximal fragment	
VIII	7	C	245	proximal manual phalanx	undetermined	subadult, unfused proximal epiphysis	20.16 mm
VIII	7	C	246	intermediate manual phalanx	undetermined	adult	23.19 mm
VIII	7	C	247	proximal manual phalanx	undetermined	adult, first digit, insect activity	29.14 mm
VIII	7	C	248	proximal pedal phalanx	undetermined	possible subadult due to size, complete	21.46 mm
VIII	7	C	249	Cervical vertebra fragment		adult, blackened, left portion of C1	
VIII	7	C	250	Cervical vertebra		adult, lower cervical vertebra	
VIII	7	C	251	intermediate manual phalanx		adult, damage to the distal end, calcite	27.95 mm
VIII	7	C	252	metacarpal	undetermined	adult, possibly the fifth based on size, blackened, damage to the proximal facets	52.98 mm
VIII	7	C	253	intermediate manual phalanx		adult, calcite mostly on the manual surface	26.43 mm

VIII	7	C	254	third metatarsal fragment	right	adult, calcite, proximal fragment	
VIII	7	C	255	first cuneiform	right	adult, blackened	
VIII	7	C	256	talus	right	possible adult	43.51 mm length, 36.74 mm width
VIII	7	C	257	sternum fragment		subadult, blackened	
VIII	7	C	258	rib fragment	left	vertebral end fragment, probable subadult, blackened, mid rib	
VIII	7	C	259	rib fragment	right	vertebral end fragment, probable subadult, blackened, mid rib	
VIII	7	C	260	rib fragment	undetermined	shaft fragment, subadult, calcite	
VIII	7	C	261	rib fragment	undetermined	shaft fragment, subadult, calcite	
VIII	7	C	262	shaft fragments	undetermined	possibly a subadult femur or humerus, hard to determine due to taphonomic damage	
VIII	7	C	263	vertebra fragment		transverse process probably of a thoracic vertebra, adult, calcite and blackened	
VIII	7	C	264	ilium fragment	right	perinate, damage to the blade, slightly blackened	

VIII	7	C	265	radius fragment	undetermined	proximal head fragment only, adult, calcite and blackened	24.59 mm head diameter
VIII	7	C	266	scapula fragment	left	adult, blackened, coracoid process only	
VIII	7	C	267	sacral lamina	right	child 1-2 years of age, unfused first sacral lamina	
VIII	7	C	268	vertebra fragment		left lamina fragment of a cervical or thoracic vertebra, possibly from a subadult, blackened	
VIII	7	C	269	vertebra fragment		thoracic or lumbar fragment of the lamina with facets, probably lumbar, adult, blackened	
VIII	7	C	270	radius fragment	right	adult, distal fragment, blackened	
VIII	7	C	271	fibula fragment	probable right	adult, proximal end, blackened	
VIII	7	C	272	rib fragments	undetermined	shaft fragments, possibly two from a subadult, blackened	
VIII	7	C	273	shaft fragment	undetermined	possible adult, blackened	
VIII	7	C	274	tibia fragment	undetermined	proximal end, blackened, badly deteriorated	

VIII	7	C	275	possible clavicle fragment	right	perinate, lateral shaft end, if not a clavicle then it is an upper rib fragment
VIII	7	C	276	possible clavicle fragment	left	adult, lateral fragment, blackened, morphology is distorted due to cracking
VIII	7	C	277	vertebra fragment		body fragment, adult, blackened, possible thoracic based on size
VIII	7	C	278	possible manubrium fragment		adult, superior lateral fragment, blackened
VIII	7	C	279	possible rib fragment	undetermined	adult, shaft fragment, blackened, morphology has changed due to cracking
VIII	7	C	280	lamina fragment	right	subadult, probable thoracic or lumbar vertebra of a perinate, blackened
VIII	7	C	281	lamina fragment	undetermined	subadult, blackened, articular facet present, possible thoracic
VIII	7	C	282	tibia fragment	left	adult, proximal fragment, badly deteriorated, needs conservation, treated

with treated with B72

VIII	7	C	283	calcaneus fragment	right	adult, mostly the posterior portion, carbon and calcite, treated with treated with B72
VIII	7	C	284	tibia fragment	left	adult, proximal fragment, badly deteriorated, needs conservation, treated with treated with B72
VIII	7 7	C	285	os coxa fragment	right	adult, part of the lunate surface and ischium, , treated with treated with B72
VIII	7	C	286	patella	left	adult, badly deteriorated, cannot measure, treated with treated with B72
VIII	7	C	287	patella fragments	right	adult, badly deteriorated, cannot measure, treated with treated with B72
VIII	7	C	288	lumbar vertebra fragment		adult, body fragment, insect activity, some macroporosity, treated with treated

VIII	7	C	289	lumbar vertebra	adult, body slightly damaged, probably L2, treated with treated with B72
VIII	7	C	290	lumbar vertebra fragment	adult, body fragment, insect activity, some macroporosity, treated with treated with B72
VIII	7	C	291	thoracic vertebra fragment	adult, body, treated with treated with B72
VIII	7	C	292	thoracic vertebra fragment	adult, mid thoracic, transverse processes are broken off, calcite and carbon, treated with treated with B72
VIII	7	C	293	cervical vertebra fragment	adult, right portion of body and some of the right transverse process, upper cervical, treated with treated with B72
VIII	7	C	294	vertebra fragment	adult, spine fragment with inferior articular facets, either cervical or thoracic, calcite and carbon, treated

with treated with B72

VIII	7	C	295	humerus fragment	undetermined	age unknown, most of the cortical layer is gone, shaft fragment, badly weathered appearance, treated with treated with B72
VIII	7	C	296	tibia fragment	probable left	adult, distal fragment, badly deteriorated, calcite, treated with treated with B72
VIII	7	C	297	ilium fragment	undetermined	age unknown, most of the cortical layer is gone, shaft fragment, badly weathered appearance, treated with treated with B72
VIII	7	C	298	ilium fragment	undetermined	age unknown, most of the cortical layer is gone, shaft fragment, badly weathered appearance, treated with treated with B72

VIII	7	C	299	ilium fragment	undetermined	age unknown, most of the cortical layer is gone, shaft fragment, badly weathered appearance, treated with treated with B72
VIII	7	C	300	ilium fragment	undetermined	age unknown, most of the cortical layer is gone, shaft fragment, badly weathered appearance, treated with treated with B72
VIII	7	C	301	ilium fragment	undetermined	age unknown, most of the cortical layer is gone, shaft fragment, badly weathered appearance, treated with treated with B72
VIII	7	C	302	ilium fragment	undetermined	age unknown, most of the cortical layer is gone, shaft fragment, badly weathered appearance, treated with treated with B72
VIII	7	C	303	femur fragment	undetermined	probable adult, head and part of the neck, badly deteriorated, treated with treated with B72

VIII	7	C	304	tibia fragment	right	adult, proximal fragment, badly deteriorated, treated with treated with B72
VIII	7	C	305	ulna fragment	right	adult, proximal fragment of just the olecranon, badly deteriorated, treated with treated with B72
VIII	7	C	306	cuboid	left	adult, badly deteriorated, treated with treated with B72
VIII	7	C	307	third cuneiform fragment	right	adult, superior fragment, badly deteriorated, treated with treated with B72
VIII	7	C	308	first cuneiform fragment	undetermined	adult, inferior fragment, badly deteriorated, treated with treated with B72
VIII	7	C	309	cervical vertebra		adult, damage to the body, lower cervical, calcite and carbon, treated with treated with B72
VIII	7	C	310	talus fragment	right	adult, lateral portion, calcite and carbon, treated with treated with B72

VIII	7	C	311	tibia fragment (probable)	undetermined	subadult, morphology is slightly altered by taphonomy, treated with treated with B72
VIII	7	C	312	humerus fragment (probably)	undetermined	possible subadult, morphology is slightly altered by taphonomy, treated with treated with B72
VIII	7	C	313	talus fragments	undetermined	possible adult, badly deteriorated, treated with treated with B72
VIII	7	C	314	unidentified fragment		treated with treated with B72
VIII	7	D	1	thoracic vertebra body		unfused body, around 2-4 years of age (VIII7D numbers 187 were found in the alcove)
VIII	7	D	2	thoracic vertebra body		unfused body, around 2-4 years of age
VIII	7	D	3	thoracic vertebra body		unfused body, around 2-4 years of age
VIII	7	D	4	thoracic vertebra body		unfused body, around 2-4 years of age
VIII	7	D	5	first metacarpal	undetermined	subadult, probably around 8 years of life, some calcite

VIII	7	D	6	proximal pedal phalanx	undetermined	subadult, proximal end is not fused yet
VIII	7	D	7	metatarsal	undetermined	perinate or slightly older, covered in grey calcium carbonate
VIII	7	D	8	metacarpal	undetermined	subadult, unfused head and base is under developed, probably around 5 years of
VIII	7	D	9	talus	left	adult, covered in grayish calcite
VIII	7	D	10	calcaneus	left	subadult, small, covered in grayish calcite
VIII	7	D	11	lumbar vertebra body		subadult, probably 24 years over age
VIII	7	D	12	lumbar vertebra body		subadult, probably 2 4 years over age, calcite
VIII	7	D	13	thoracic vertebra body		subadult, probably 2 - 4 years over age
VIII	7	D	14	thoracic vertebra body		subadult, probably 24 years over age
VIII	7	D	15	lumbar vertebra		subadult, just fused to body, line still visible, calcite, probably 2-4 or slightly older
VIII	7	D	16	lumbar vertebra		subadult, just fused to body, line still visible,

calcite, probably 2-4 or slightly older

VIII	7	D	17	patella	left	possible subadult	35.58 mm height, 34.81 mm width
VIII	7	D	18	patella	right	possible subadult	36.61 mm height, 34.78 mm width
VIII	7	D	19	rib fragment	undetermined	subadult, shaft fragment, calcite	
VIII	7	D	20	rib fragment	undetermined	subadult, shaft fragment, calcite	
VIII	7	D	21	rib	left	first rib, subadult, probably a perinate, calcite	
VIII	7	D	22	rib fragment	right	subadult, lower rib, vertebral end, calcite	
VIII	7	D	23	pubis	probable left	subadult, probably around 5 years of age	
VIII	7	D	24	sacral vertebra		subadult, probably mid sacral, calcite, body is fused to the lamina	
VIII	7	D	25	talus	left	adult, damage to the superior facet, calcite	47.80 mm length, 36.67 mm width
VIII	7	D	26	cuboid	left	adult, calcite	
VIII	7	D	27	navicular	left	adult, damage to the plantar aspect	
VIII	7	D	28	proximal pedal phalanx	undetermined	subadult, unfused proximal epiphysis	24.37 mm
VIII	7	D	29	pubis	probable right	subadult, probably the mate to number 23	

VIII	7	D	30	ischium	left	subadult, probably around 5 years of age
VIII	7	D	31	frontal fragment	right	subadult, fragment with the supraorbital ridge, young child, calcite
VIII	7	D	32	tibia fragment	possible left	subadult, probably around 5 years of age, calcite, posterior superior fragment
VIII	7	D	33	rib fragment	left	subadult, calcite, vertebral end fragment with most of the shaft present
VIII	7	D	34	fifth metatarsal	right	subadult, head is unfused, aprox 15 years of age, calcite
VIII	7	D	35	tibia epiphysis	left	subadult, probably 5 years of age or younger, calcite
VIII	7	D	36	tibia epiphysis	right	subadult, probably closer to 9 years of age, lots of calcite
VIII	7	D	37	shaft fragment	undetermined	subadult, possible humerus or femur shaft fragment, calcite
VIII	7	D	38	shaft fragment	undetermined	subadult, possible humerus or femur shaft fragment, calcite
VIII	7	D	39	shaft fragment	undetermined	possible subadult,

						possible femur, calcite	
VIII	7	D	40	radius fragment	right	proximal fragment, subadult, probably around 1.5 years old, calcite	
VIII	7	D	41	fibula fragment	undetermined	shaft fragment, subadult, probably around 1.5 years of age	
VIII	7	D	42	fourth metatarsal fragment	right	proximal fragment with half of the shaft, calcite	
VIII	7	D	43	metacarpal fragment	undetermined	shaft fragment, calcite, probable adult	
VIII	7	D	44	sacral vertebra		subadult, lower sacral, calcite	
VIII	7	D	45	metatarsal	undetermined	subadult, possible perinate, calcite	25.1 mm
VIII	7	D	46	proximal manual phalanx	undetermined	subadult, possible perinate, calcite	20.03 mm
VIII	7	D	47	distal manual phalanx	undetermined	subadult, probably around 2-5 years of age	13.9 mm
VIII	7	D	48	second cuneiform	left	adult, calcite	
VIII	7	D	49	femur epiphysis	undetermined	subadult around five years of age, distal epiphysis	
VIII	7	D	50	fifth metatarsal fragment	left	probable subadult, proximal fragment	

with most of the shaft

VIII	7	D	51	calcaneus epiphysis	undetermined	probably around 8 years of age, posterior epiphysis, calcite	
VIII	7	D	52	proximal pedal phalanx	undetermined	subadult, calcite, proximal end is not yet fused	
VIII	7	D	53	metacarpal fragment	undetermined	subadult, probably perinate, calcite	
VIII	7	D	54	rib fragment	right	subadult, probably perinate, calcite, vertebra end fragment	
VIII	7	D	55	lumbar neural arch	left	subadult, unfused to the body, probably around 2-4 years of age, calcite	
VIII	7	D	56	cervical vertebra fragment		subadult based on size, lamina fragment	
VIII	7	D	57	lumbar neural arch	left	subadult, unfused to the body, probably around 2-4 years of age, calcite	
VIII	7	D	58	proximal pedal phalanx	undetermined	subadult, first digit, calcite	15.93 mm
VIII	7	D	59	first metacarpal	undetermined	subadult, calcite, probably 1-2 years of age	15.88 mm
VIII	7	D	60	proximal pedal phalanx fragment	undetermined	possible adult, distal fragment	

VIII	7	D	61	first metacarpal fragment	undetermined	subadult, probably around 8 years of life, some calcite
VIII	7	D	62	cervical vertebra fragment		probable subadult, lamina fragment, calcite
VIII	7	D	63	femur epiphysis	undetermined	subadult, probably around 8 years of life, some calcite
VIII	7	D	64	greater multangular fragment	right	possible subadult
VIII	7	D	65	rib fragment	undetermined	subadult, sternal end fragment, mid rib
VIII	7	D	66	rib fragment	left	subadult, vertebral end fragment, calcite
VIII	7	D	67	rib fragment	left	subadult, mid to lower rib, shaft fragment, calcite
VIII	7	D	68	rib fragment	undetermined	subadult, mid to lower rib, shaft fragment, calcite
VIII	7	D	69	shaft fragment	undetermined	subadult, probably 1.5 years old, shaft fragment of a radius or ulna
VIII	7	D	70	metatarsal fragment	undetermined	subadult, possible perinate, proximal fragment

subadult, second deciduous molar present, first permanent molar is in the crypt along with the second molar.
Child is 4-5 years old
plus or minus 1 year, buccal carries on the second deciduous

VIII	7	D	71	maxilla fragment	left	molar
VIII	7	D	72	vertebral body		subadult, anterior portion of the body, based on the height, it is probably a thoracic or lumbar vertebra, calcite
VIII	7	D	73	basio cranial	left	subadult, probably four or under calcite and carbon
VIII	7	D	74	sternal fragment		subadult, unfused
VIII	7	D	75	canine	probable left	upper canine, age cannot be determined due to quantity of calcite around the CEJ
VIII	7	D	76	cranial fragment	undetermined	subadult, calcite
VIII	7	D	77	rib fragment	undetermined	subadult, shaft fragment, mid rib, calcite

VIII	7	D	78	rib fragment	undetermined	subadult, shaft fragment, mid rib, calcite
VIII	7	D	79	fibula epiphysis	right	subadult, distal epiphysis, under 15 years of age
VIII	7	D	80	vertebra body fragment		subadult, damage to the posterior aspect, calcite and carbon, probably a thoracic or lumbar
VIII	7	D	81	ulna epiphysis	left	subadult, under 15 years, proximal epiphysis calcite
VIII	7	D	82	cuneiform fragment	undetermined	subadult, second or third cuneiform, probably around 8 years of age
VIII	7	D	83	calcaneus fragment	probable right	subadult, lateral portion, distal epiphysis is not fused, calcite
VIII	7	D	84	rib fragment	undetermined	subadult, vertebral end, calcite
VIII	7	D	85	rib fragment	undetermined	subadult, shaft fragment
VIII	7	D	86	frontal fragment	undetermined	subadult, fragment with the supraorbital ridge, young child, calcite

VIII	7	D	87	unidentified fragments		some are subadult, 8 fragments, calcite
VIII	7	D	88	proximal manual phalanx fragment	undetermined	adult, most of the phalanx, some damage to the distal end
VIII	7	D	89	rib fragment	possible left	adult, shaft fragment
VIII	7	D	90	capitate	right	adult, some blackening
VIII	7	D	91	cranial fragment	undetermined	possible subadult based on the thinness
VIII	7	D	92	cranial fragment	undetermined	possible subadult based on the thinness
VIII	7	D	93	parietal fragment	undetermined	subadult, suture appears to have been completely open, grey calcite covered
VIII	7	D	94	cranial fragment	undetermined	possible subadult based on the thinness, calcite covered
VIII	7	D	95	vertebra fragment		possible subadult, blackened, lamina fragment of a lower thoracic or possibly a lumbar
VIII	7	D	96	hamate	left	adult, blackened, some damage on the posterior surface
VIII	7	D	97	metacarpal fragment	undetermined	possible adult, proximal fragment,

						blackened and damaged	
VIII	7	D	98	rib fragment	right	adult, vertebral end fragment, calcite	
VIII	7	D	99	temporal fragment	undetermined	adult, badly damaged tympanic portion	
VIII	7	D	100	maxilla fragment	possible right	adult,	
VIII	7	D	101	femur fragment	undetermined	subadult, proximal fragment with and unfused epiphysis, possibly around 5 years of age based on size	
VIII	7	D	102	unidentified fragments		35+ unidentified fragments	
VIII	7	D	103	proximal pedal phalanx	undetermined	subadult, unfused proximal end, probably around 8 years of age based on the size, first digit	23.65 mm
VIII	7	D	104	proximal pedal phalanx	undetermined	subadult, unfused proximal end, probably around 8 years of age based on the size	19.1 mm
VIII	7	D	105	distal pedal phalanx	undetermined	subadult, the proximal epiphysis is not completely fused, no more than 15 years of age	21.72 mm

VIII	7	D	106	first metacarpal	undetermined	subadult, not a new born, maybe only a year or two	16.54 mm
VIII	7	D	107	proximal manual phalanx	undetermined	subadult, not a new born, maybe only a year or two	18.83 mm
VIII	7	D	108	proximal pedal phalanx	undetermined	subadult, unfused proximal end, probably around 8 years of age based on the size	15.94 mm
VIII	7	D	109	metacarpal epiphysis	undetermined	subadult, under 15 years of age, distal epiphysis, calcite	
VIII	7	D	110	metacarpal epiphysis	undetermined	subadult, under 15 years of age, distal epiphysis, calcite	
VIII	7	D	111	metatarsal epiphysis	undetermined	subadult, under 15 years of age, distal epiphysis, calcite	
VIII	7	D	112	vertebral body		subadult, calcite and carbon blackened, probably thoracic	
VIII	7	D	113	vertebral body		subadult, calcite and carbon blackened, probably thoracic, damage to the anterior portion of the body	
VIII	7	D	114	neural arch	left	subadult, thoracic,	

calcite

calcite						
VIII	7	D	115	thoracic vertebra fragment		fused lamina unfused to the body, probably $4-5$ years of age, calcite
VIII	7	D	116	neural arch	left	subadult, thoracic, calcite
VIII	7	D	117	cervical vertebra fragment		possible subadult, possibly C 1 or C 2 based upon the relationship of the superior and inferior articular facets
VIII	7	D	118	third cuneiform fragment	right	adult, dorsal fragment, not the mate to 120
VIII	7	D	119	navicular	left	possible subadult, based on size, calcite
VIII	7	D	120	third cuneiform fragment	left	adult, dorsal fragment, smaller than the 118 one, so it is not a pair
VIII	7	D	121	femur fragment	undetermined	adult head fragment, small fragment
VIII	7	D	122	first cuneiform fragment	right	possible subadult, calcite, damage to the plantar surface
VIII	7	D	123	mandible fragment	undetermined	adult, mandibular condyle fragment

VIII	7	D	124	vertebral body		subadult, 2-4 years old, calcite, probable lumbar
VIII	7	D	125	thoracic vertebra fragment		subadult, lamina fused, transverse process seems underdeveloped, based on size, possibly around 5 years, mid thoracic
VIII	7	D	126	neural arch	left	subadult, neonate, probably thoracic
VIII	7	D	127	thoracic vertebra fragment		subadult, calcite, probably had a fused lamina, now broken, fusion of body unknown, upper thoracic
VIII	7	D	128	vertebral body		subadult, calcite, probably thoracic, 2-4 years of age
VIII	7	D	129	neural arch	right	subadult, lower lumbar, 2-4 years old probably, calcite
VIII	7	D	130	neural arch	left	subadult, mid lumbar, 2-4 years old probably, calcite
VIII	7	D	131	vertebral body		subadult, probably the lumbar vertebra, calcite

VIII	7	D	132	vertebral body		subadult, probably the lumbar vertebra, calcite, damage to the posterior margin
VIII	7	D	133	cervical vertebra fragment		possible adult fragment with transverse foramen
VIII	7	D	134	neural arch	right	subadult, upper to mid thoracic, 2-4 years old
VIII	7	D	135	neural arch	left	possible neonate or subadult 2-4 years old, some damage
VIII	7	D	136	neural arch	undetermined	subadult, possible thoracic neural arch, too much damage to side, probably 2-4 years old
VIII	7	D	137	distal pedal phalanx	undetermined	subadult, probably around 5 years old, calcite
VIII	7	D	138	vertebral body fragment		subadult, 2-4 years of age, possibly a lumbar vertebra based on thickness
VIII	7	D	139	metacarpal fragment	undetermined	subadult, unfused end on a small shaft fragment
VIII	7	D	140	rib fragment	left	subadult, vertebral end fragment, calcite

VIII	7	D	141	first metacarpal fragment	undetermined	subadult, probably 2 - 4 years of age based on the size, distal fragment	
VIII	7	D	142	manual phalanx	undetermined	subadult, probably 2 4 years of age based on the size, probably first digit	8.34 mm
VIII	7	D	143	intermediate manual phalanx		subadult, possibly 5-8 years of age based on size	13.23 mm
VIII	7	D	144	metatarsal	undetermined	neonate, unfused proximal and distal ends	15.63 mm
VIII	7	D	145	distal manual phalanx	undetermined	subadult, probably 2 - 4 years of age	8.65 mm
VIII	7	D	146	intermediate manual phalanx	undetermined	subadult, based on unfused proximal end, possibly as old as 15 years	10.25 mm
VIII	7	D	147	neural arch fragment	undetermined	subadult, 2-4 years, transverse process fragment	
VIII	7	D	148	neural arch fragment	undetermined	subadult, 2-4 years, pedicle fragment	
VIII	7	D	149	neural arch fragment	undetermined	subadult, 2-4 years, superior articular facet and part of the lamina fragment	

VIII	7	D	150	neural arch fragment	right	possible neonate or subadult 2-4 years old, some damage, thoracic vertebra	
VIII	7	D	151	scapula fragment	undetermined	subadult, 2-4 years of age, unfused coracoid	
VIII	7	D	152	scapula fragment	undetermined	subadult, 2-4 years of age, unfused coracoid	
VIII	7	D	153	scapula fragment	undetermined	subadult, 2-4 years of age, unfused coracoid	
VIII	7	D	154	cervical vertebra fragment		subadult 3-4 years old, first cervical, lamina part	
VIII	7	D	155	epiphysis	undetermined	subadult, possible neonate calcaneus	
VIII	7	D	156	sesamoid or epiphysis	undetermined	subadult	
VIII	7	D	157	epiphysis fragment	undetermined	subadult	
VIII	7	D	158	epiphysis	undetermined	subadult, possible distal epiphysis of a left radius	
VIII	7	D	159	epiphysis	undetermined	subadult, possible proximal epiphysis of a radius	
VIII	7	D	160	molar	right	first, lower, X groove pattern	12.47 mm anterior to posterior, 11.48 mm buccal to lingual, 8.16 mm crown height

VIII	7	D	161	premolar	possible right	second lower, root missing	8.18 mm anterior to posterior, 8.67 mm buccal to lingual, 9.88 mm crown height
VIII	7	D	162	unidentified fragments		13 unidentified fragments	
VIII	7	D	163	ulna fragments	left	adult, proximal and shaft fragments, grayish calcite, needs conservation	
VIII	7	D	164	fibula fragment	probable left	adult, proximal fragment with a few short shaft fragments, needs conservation	
VIII	7	D	165	ulna fragments	undetermined	probable adult, shaft fragments, needs conservation	
VIII	7	D	166	cranial fragments	undetermined	probable adult, needs conservation, possible temporal fragments	
VIII	7	D	167	parietal fragment	undetermined	probable adult, covered in calcite	
VIII	7	D	168	parietal fragment	undetermined	probable adult, covered in calcite	
VIII	7	D	169	cranial fragment	undetermined	probable adult, taphonomic cracking	
VIII	7	D	170	calcaneus fragment	right	adult, posterior fragment, evidence of burning	

VIII	7	D	171	cervical vertebra		adult, damage to the transverse processes
VIII	7	D	172	radius fragment	undetermined	adult, proximal fragment of the head and part of the shaft, the radial tuberosity is absent
VIII	7	D	173	humerus fragment	left	adult, distal fragment with part of the trochlea and the medial epicondyle
VIII	7	D	174	talus	right	adult, damage to the medial, lateral, and distal portions of the bone
VIII	7	D	175	femur fragment	undetermined	adult, head fragment
VIII	7	D	176	proximal manual phalanx fragment	undetermined	adult, distal end with most of the shaft, calcite and carbon
VIII	7	D	177	rib fragment		adult, shaft fragment, upper rib
VIII	7	D	178	rib fragment		adult, shaft fragment
VIII	7	D	179	rib fragment		adult, neck fragment
VIII	7	D	180	zygomatic fragment	left	adult, most of the zygomatic, some blackening and flaking
VIII	7	D	181	frontal fragment	left	adult, part of the supraorbital area, some blackening and

flaking

VIII	7	D	182	unidentified fragments		8 unidentified fragments	
VIII	7	D	183	molar	right	first lower, root broken off, some calcite	12.81 mm anterior to posterior, 11.83 mm lingual to buccal, 9.88 mm crown height
VIII	7	D	184	molar	left	possible third lower, root broken off, some damage to the buccal anterior portion of the crown	11.79 mm anterior to posterior, 10.19 mm lingual to buccal, 6.67 mm crown height
VIII	7	D	185	molar	left	possible third lower	11.68 mm anterior to posterior, 9.82 mm lingual to buccal, 6.45 ch
VIII	7	D	186	molar	left	upper, probably third, some calcite, intact	10.44 mm anterior to posterior, 11.48 mm lingual to buccal, 6.44 mm crown height
VIII	7	D	187	molar	left	possible second lower, root broke off, some calcite	$\begin{gathered} 11.74 \mathrm{~mm} \\ \text { anterior to } \\ \text { posterior, } 10.95 \\ \hline \end{gathered}$

							mm lingual to buccal, 7.62 mm crown height
VIII	7	D	188	molar	left	first lower, no root, some calcite	12.53 mm anterior to posterior, 12.17 mm lingual to buccal, 7.59 mm crown height
VIII	7	D	189	molar	left	probable lower third, no root some calcite	10.13 mm anterior to posterior, 9.48 mm lingual to buccal, 6.85 mm crown height
VIII		D	190	canine	right	upper, rather large, tip of root broken, calcite, buccal surface caries right above the anterior surface rim of calculus which is slightly above the CEJ	9.33 mm anterior to posterior, 9.94 mm lingual to buccal, 13.31 mm crown height
VIII	7	D	191	canine	left	lower, calcite, intact	6.41 mm anterior to posterior, 6.08 mm lingual to buccal, 8.81 mm crown height
VIII	7	D	192	incisor	left	lower, calcite and shoveling	6.05 mm anterior to posterior, 5.6 mm lingual to

							buccal, 10.41 mm crown height
VIII	7	D	193	incisor	possible left	upper first probably, root broken, calcite and other fragments around the CEJ, pronounced shoveling	8.30 mm anterior to posterior, 6.04 mm lingual to buccal, 11.2 mm crown height
VIII	7	D	194	canine	right	lower, calcite, complete	7.46 mm anterior to posterior, 6.45 mm lingual to buccal, 7.16 mm crown height
VIII	7	D	195	incisor	right	first upper, calcite, complete	9.47 mm anterior to posterior, 7.8 mm lingual to buccal, 12.85 mm crown height
VIII	7	D	196	incisor	left	possible second, upper, worn, calcite on anterior surface prevents crown measurement	7.87 mm anterior to posterior, 6.08 mm lingual to buccal,
VIII	7	D	197	premolar	left	first lower, root broken off, calcite	8.34 mm anterior to posterior, 10.54 mm lingual to buccal, 9.03 mm crown height
VIII	7	D	198	canine	right	upper, no root, calcite prevents crown height measurement	8.37 mm anterior to posterior, 8.98 mm lingual to buccal

VIII	7	D	199	premolar	left	first lower, no root, calcite, broke during analysis	7.55 mm anterior to posterior, 8.52 mm lingual to buccal
VIII	7	D	200	incisor	undetermined	possibly second upper, no root, calcite	7.15 mm anterior to posterior, 6.54 mm lingual to buccal, 12.48 mm crown height
VIII	7	D	201	canine	left	lower, calcite, broken root tip	6.16 mm anterior to posterior, 5.2 mm lingual to buccal, 7.2 mm crown height
VIII	7	D	202	molar	right	first lower deciduous, root broken off, minimal wear	9.38 mm anterior to posterior, 7.56 mm lingual to buccal, 5.98 mm crown height
VIII	8	a	1	third metatarsal	right	adult	73.18 mm
VIII	8	a	2	third metatarsal	left	sub adult, unfused head	48.41 mm
VIII	8	a	3	proximal pedal phalanx		adult	28.44 mm
VIII	8	a	4	proximal pedal phalanx		adult	27.2 mm
VIII	8	a	5	distal phalanx		adult, probably hand	
VIII	8	a	6	distal phalanx		adult, probably hand	
VIII	8	a	7	distal phalanx		possible subadult, probably foot	

VIII	8	a	8	distal phalanx	adult, probably foot
VIII	8	a	9	proximal pedal phalanx	subadult, unfused
VIII	8	a	10	proximal pedal phalanx	subadult, unfused
VIII	8	a	11	proximal pedal phalanx	subadult, unfused proximal end
VIII	8	a	12	proximal manual phalanx	subadult, proximal end broken
VIII	8	a	13	distal pedal phalanx	subadult, probably the first
VIII	8	a	14	epiphysis	subadult
VIII	8	a	15	epiphysis	subadult
VIII	8	a	16	vertebra epiphysis	subadult, possible cervical
VIII	8	a	17	lunate	right adult
VIII	8	a	18	hyoid fragment	subadult, unfused horn of the hyoid
VIII	8	a	19	metacarpal	subadult, unfused head and base
VIII	8	a	20	metacarpal	subadult, unfused head and base
VIII	8	a	21	metatarsal	subadult, possibly the fourth, unfused head and base
VIII	8	a	22	fifth metatarsal	subadult, unfused head and base
VIII	8	a	23	epiphysis	looks like a transverse process

VIII	8	a	24	manual phalanx		subadult, unfused	
VIII	8	a	25	pedal phalanx		subadult, unfused	
VIII	8	a	26	epiphysis		possible vertebra	
VIII	8	a	27	ilium	left	subadult, 3-9 years of age, probably around 5 years, badly deteriorated, prevents measurements	
VIII	8	a	28	femur epiphysis	left	subadult, over 5 years old, probably closer to 9 years of age, badly deteriorated	
VIII	8	a	29	calcaneus fragment	left	adult, blackened, medial fragment	
VIII	8	a	30	lumbar vertebra		adult, probably L3, blackened and some damage throughout	
VIII	8	a	31	talus fragment	right	adult, blackened, medial fragment	
VIII	8	a	32	calcaneus fragment	right	adult, blackened, medial fragment	
VIII	8	a	33	first metatarsal fragment	left	adult, distal fragment, blackened	
VIII	8	a	34	humerus epiphysis	undetermined	subadult, possibly around 9 years of age, distal epiphysis, blackened, about 4 cm wide	
VIII	8	a	35	proximal pedal phalanx	undetermined	adult, distal end has remodeling	24.02 mm

						suggestive of gout or arthritis, blackened	
VIII	8	a	36	proximal pedal phalanx	undetermined	adult, base has an anteriorly enlarged facet, blackened	21.64 mm
VIII	8	a	37	proximal pedal phalanx	undetermined	adult, blackened, medial fragment	25.02 mm
VIII	8	a	38	distal pedal phalanx	undetermined	adult, first digit, blackened	23.07 mm
VIII	8	a	39	proximal pedal phalanx fragment	undetermined	adult, distal fragment, blackened	
VIII	8	a	40	intermediate manual phalanx	undetermined	adult, blackened, slight damage to the palmar proximal surface	26.77 mm
VIII	8	a	41	intermediate pedal phalanx	undetermined	adult, blackened	11.7 mm
VIII	8	a	42	patella	left	adult, blackened	39.29 mm height, 41.87 mm est. width
VIII	8	a	43	first metacarpal	undetermined	subadult, probably around 8 or younger, blackened	18.54 mm
VIII	8	a	44	first metacarpal	undetermined	subadult, probably around 8 or younger, blackened	17.95 mm
VIII	8	a	45	proximal manual phalanx	undetermined	subadult, probably around 8 or younger, blackened	27.41 mm

VIII	8	a	46	proximal manual phalanx	undetermined	subadult, probably around 8 or younger, blackened, slight damage to the proximal end	20.3 mm
VIII	8	a	47	proximal manual phalanx	undetermined	subadult, probably around 8 or younger, blackened	14.87 mm
VIII	8	a	48	metatarsal	undetermined	subadult, probably around 8 or younger, blackened, head and proximal epiphysis is unfused	30.03 mm
VIII	8	a	49	metatarsal	undetermined	subadult, probably around 8 or younger, blackened, head and proximal epiphysis is unfused	29.64 mm
VIII	8	a	50	metatarsal	undetermined	subadult, probably around 8 or younger, blackened, head and proximal epiphysis is unfused, damage to the distal end.	
VIII	8	a	51	metacarpal	undetermined	subadult, probably around 8 or younger, blackened	24.12 mm
VIII	8	a	52	sacrum fragment	undetermined	adult, blackened, superior portion os S1, ala broken off	

VIII	8	a	53	cranial fragments	undetermined	adult, blackened, badly deteriorated,
VIII	8	a	54	femur epiphysis	undetermined	subadult, damage to one of the margins prevents measurement, probably around 5 years of age
VIII	8	a	55	sacral neural arch	undetermined	subadult
VIII	8	a	56	sacral neural arch and body		subadult, possible adolescent, lower sacral
VIII	8	a	57	sacral neural arch	undetermined	subadult
VIII	8	a	58	thoracic body		subadult, unfused, under 5 or 6 years of age
VIII	8	a	59	lumbar body		subadult, under 4 years of age
VIII	8	a	60	greater horn	probable left	probable subadult
VIII	8	a	61	rib	right	subadult, probably young, mid rib
VIII	8	a	62	rib fragment	right	subadult, probably young, lower rib, vertebral end
VIII	8	a	63	rib fragment	right	subadult, probably young, lower rib, neck and shaft fragment
VIII	8	a	64	hyoid body		probable subadult
VIII	8	a	65	hyoid body		probable subadult

subadult, not

VIII	8	a	66	metacarpal/metatarsal	undetermined	completely formed	
VIII	8	a	67	metacarpal epiphysis	undetermined		
VIII	8	a	68	metatarsal epiphysis	undetermined	subadult, head epiphysis	
VIII	8	a	69	proximal manual phalanx	undetermined	subadult, proximal end is unfused, palmar proximal surface I missing, blackened	
VIII	8	a	70	tibia epiphysis (probable)	undetermined	subadult, distal epiphysis, probably around 5 years of age	
VIII	8	a	71	humerus epiphysis	undetermined	subadult, probably around 5 years of age, blackened	
VIII	8	a	72	sacral fragment	undetermined	subadult	
VIII	8	a	73	sacral fragment	undetermined	subadult	
VIII	8	a	74	unidentified fragments	undetermined	6 fragments, possibly os coxa or cranial fragments of a subadult?	
VIII	8	a	75	molar	left	lower third molar, tips of roots broken off, carries in distal groove on occlusal surface	10.69 mm anterior to posterior, 10.63 mm lingual to buccal, 6.12 mm crown height
VIII	8	a	76	molar	right	second lower, no root, carries on the buccal	$10.59 \mathrm{~mm}$

7.03 mm anterior
to posterior, 8.33
possible second
upper, wear on cusps,
root intact, some
calcite possible second, upper, calculus $\quad 7.11 \mathrm{~mm}$ anterior around the tooth at to posterior, 6.54 the CEJ, enamel mm lingual to defect 2.21 mm up buccal, 8.69 mm

VIII	8	a	82	incisor	left	from CEJ	crown height
VIII	8	a	83	canine	left	upper, broken root, some calcite	7.33 mm anterior to posterior, 7.79 mm lingual to buccal, 11 mm crown height
VIII	8	a	84	incisor	undetermined	lower, calculus on anterior and lingual surface, slight line of dentine due to wear	5.87 mm anterior to posterior, 6.08 mm lingual to buccal, 7.56 mm crown height
VIII	8	a	85	incisor	undetermined	lower, calculus on medial and lateral surfaces, root tip broken	5.55 mm anterior to posterior, 5.06 mm lingual to buccal, 7.75 mm crown height
VIII	8	a	86	incisor	undetermined	lower, root tip broken, linear enamel defect 4.53 mm above CEJ (slight	5.43 mm anterior to posterior, 5.68 mm lingual to buccal, 10.48 mm

						indentation and color change)	crown height
VIII	8	a	87	incisor	undetermined	upper deciduous, possibly the second, calcite	5.18 mm anterior to posterior, 4.6 mm lingual to buccal, 5.79 mm crown height
VIII	8	a	88	canine	right	upper deciduous	7.27 mm anterior to posterior, 6.45 mm lingual to buccal, 6.67 mm crown height
VIII	8	a	89	incisor	undetermined	lower, calculus completely covers the lingual surface, and wraps around to the anterior at the CEJ	5.4 mm anterior to posterior, 5.41 mm lingual to buccal, 7.95 mm crown height
VIII	8	a	90	incisor	undetermined	probably upper, broken crown	7.29 mm anterior to posterior
VIII	8	a	91	canine	left	lower, possible deciduous, root broken	7.37 mm anterior to posterior, $5.79 \mathrm{lb}, 7.02 \mathrm{~mm}$ crown height
VIII	8	a	92	distal manual phalanx	undetermined	adult, slight calcite	14.2 mm
VIII	8	a	93	molar fragment	undetermined	well worn crown fragment	
VIII	8	a	94	premolar fragment	undetermined	mostly lingual crown fragment	
VIII	8	a	95	incisor fragment	undetermined	upper occlusal	

					fragment		
VIII	8	a	96	root fragment	undetermined		
VIII	8	a	97	incisor	left	first upper, root broken, some calcite, enamel broken at CEJ on anterior surface and lateral edge	7.32 mm lingual to buccal 10.23 ch
VIII	8	a	98	incisor	undetermined	lower deciduous, complete, some calcite	4.12 mm anterior to posterior, 4.1 mm lingual to buccal 5.4ch
VIII	8	a	99	incisor	right	possible second, upper, root broken off	6.84 mm anterior to posterior, 6.23 mm lingual to buccal 10.72ch
VIII	8	a	100	molar	left	upper third, heavily worn	9.53 mm anterior to posterior, 11.32 mm lingual to buccal 5.98 ch , 13.04ch
VIII	8	a	101	premolar	left	first, upper, no root	7.67 mm anterior to posterior, 9.78 mm lingual to buccal 8.87 ch
VIII	8	a	102	premolar	left	second, lower, complete	7.87 mm anterior to posterior, 8.05 mm lingual to buccal 7.61 ch , 15.37 root
VIII	8	a	103	premolar	right	upper first, no root	7.45 mm anterior

							to posterior, 10.19 mm lingual to buccal 9.72ch
VIII	8	a	104	incisor	undetermined	lower, modified with a possible E	5.73 mm anterior to posterior, 5.66 mm lingual to buccal 9.84ch
VIII	8	a	105	incisor	undetermined	upper, possible lateral, modified with a E design, some calculus around CEJ	7.39 mm anterior to posterior, 6.93 mm lingual to buccal 8.07 ch
VIII	8	a	106	incisor	undetermined	stalagmite walkway, lower incisor, modified with a v like incision in the center of the tooth at an angle, calculus on lingual surface, that wraps around the tooth at the CEJ	5.94 mm anterior to posterior, 5.94 mm lingual to buccal 8.55 ch
VIII	8	a	107	incisor	left	stalagmite walkway, probably an upper lateral incisor, modified with an Ik motif, calculus around the medial and lateral sides at the CEJ	7.45 mm anterior to posterior, 6.23 mm lingual to buccal 8.58ch, 11.72 root

VIII	8	a	108	incisor	left	stalagmite walkway, lower incisor, modified with a v like incision in the center of the tooth at an angle, calculus on a side at the CEJ	6.62 mm anterior to posterior, 6.24 mm lingual to buccal 9.24ch, 11.11 root
VIII	8	a	109	incisor	undetermined	stalagmite walkway, probably an upper lateral incisor, modified with an Ik motif, calculus around the CEJ	7.32 mm anterior to posterior, 5.56 mm lingual to buccal 7.4ch
VIII	8	a	110	canine	left	stalagmite walkway, upper, modified with an Ik motif, slight calculus on anterior at CEJ	8.88 mm anterior to posterior, 8.32 mm lingual to buccal 9.27 ch
VIII	8	C	1	epiphysis		unknown epiphysis, badly deteriorated	
VIII	8	C	1	distal manual phalanx	undetermined	adult, calcite, possibly the first digit	21.92
VIII	8	C	2	intermediate manual phalanx	undetermined	adult, calcite and carbon	23.33
VIII	8	C	3	proximal pedal phalanx	undetermined	adult, calcite	22.8
VIII	8	C	4	intermediate manual phalanx	undetermined	subadult, proximal end is unfused, calcite and carbon	19.21

VIII	8	C	5	ulna fragment	left	subadult, probably around 15 years of age (or it is badly deteriorated) calcite	
VIII	8	C	6	radius fragment	left	subadult, unfused proximal epiphysis, under 15 probably closer to 9	
VIII	8	C	7	talus	right	adult, damage to the medial aspect and anterior facet prevents measurement, calcite and carbon	
VIII	8	C	8	first cuneiform	left	adult, blackened, slight damage to the palmar proximal surface	
VIII	8	C	9	thoracic vertebra		adult, blackened, mid thoracic	
VIII	8	C	10	talus	right	adult, blackened, damage to the anterior facet and lateral styloid	
VIII	8	C	11	patella	left	adult, calcite	37.74h, 39.66w
VIII	8	C	12	cuboid	right	adult, calcite	
VIII	8	C	13	rib fragment	left	subadult, mid rib blackened, shaft fragment	

VIII	8	C	14	rib fragment	right	subadult, upper rib, blackened, shaft fragment	
VIII	8	C	15	rib fragment		subadult, vertebral end, blackened	
VIII	8	C	16	clavicle fragment	right	subadult, lateral fragment, taphonomic damage, blackened	
VIII	8	C	17	proximal pedal phalanx	undetermined	adult, first digit, blackened	27.53
VIII	8	C	18	proximal manual phalanx	undetermined	subadult, proximal epiphysis is unfused, probably around 8 years of age	32.94
VIII	8	C	19	proximal manual phalanx	undetermined	subadult, proximal epiphysis is unfused, probably around 8 years of age, damage to the proximal margin	33.27
VIII	8	C	20	proximal manual phalanx fragment	undetermined	adult, calcite, damage to the proximal end and the distal end	
VIII	8	C	21	humerus epiphysis	right	subadult, proximal epiphysis, under 15, probably closer to 9 , blackened	
VIII	8	C	22	sacral vertebra		subadult, probably a lower sacral, blackened, damage to	

the right transverse
portion

VIII	8	C	23	vertebra fragment	lamina fragment with articular facets, possible subadult, probable lumbar, blackened		
VIII	8	C	24	fourth metatarsal fragment	left	adult proximal fragment, calcite	
VIII	8	C	25	third metatarsal fragment	right	adult proximal fragment, calcite	
VIII	8	C	26	third metatarsal fragment	right	adult, proximal and shaft fragment, blackened	
VIII	8	C	27	metacarpal fragment	undetermined	adult, distal fragment, blackened	
VIII	8	C	28	metacarpal	undetermined	subadult, possible perinate, slightly blackened	26.83
VIII	8	C	29	metatarsal	undetermined	subadult, possible perinate, blackened	33.44
VIII	8	C	30	second metacarpal fragment	left	possible adult, calcite, proximal fragment with half of the shaft	

$\left.\begin{array}{ccccccc}\text { VIII } & 8 & \text { C } & \text { fifth metatarsal } & & & \begin{array}{c}\text { adult, proximal and } \\ \text { shaft fragment, } \\ \text { blackened }\end{array} \\ \text { VIII } & 8 & \text { C } & 32 & \text { ischium fragment } & \text { right } & \text { right }\end{array} \begin{array}{c}\text { subadult, probably } \\ \text { under 5 years of age }\end{array}\right]$

VIII	8	C	41	proximal pedal phalanx	undetermined	subadult, proximal epiphysis is unfused, blackened, first digit	14.13
VIII	8	C	42	rib fragment	left	subadult, blackened, upper rib neck and shaft fragment, possible perinate	
VIII	8	C	43	rib fragment	right	subadult, blackened, upper rib neck and shaft fragment, possible perinate	
VIII	8	C	44	rib fragment	undetermined	subadult, blackened, shaft fragment	
VIII	8	C	45	rib fragment	undetermined	subadult, blackened, shaft fragment	
VIII	8	C	46	rib fragment	undetermined	subadult, blackened, shaft fragment	
VIII	8	C	47	patella	right	subadult, some calcite	28.85h, 26.95w
VIII	8	C	48	capitate	right	adult, blackened	
VIII	8	C	49	scaphoid	left	adult, blackened	
VIII	8	C	50	first cuneiform	left	adult, blackened	
VIII	8	C	51	intermediate manual phalanx	undetermined	subadult, proximal epiphysis is unfused, under 8 years of age, probably close to 5 years	14.25

VIII	8	C	52	proximal manual phalanx	undetermined	subadult, damage to the proximal and distal ends prevents measurement, under 8 years, probably closer to 5, blackened	
VIII	8	C	53	distal manual phalanx	undetermined	subadult, blackened	12.3
VIII	8	C	54	proximal pedal phalanx	undetermined	subadult, blackened, epiphysis unfused, under 8 , probably closer to 5, first digit	14.68
VIII	8	C	55	proximal pedal phalanx	undetermined	adult, calcite	24
VIII	8	C	56	neural arch	right	subadult, cervical, mid, calcite	
VIII	8	C	57	thoracic vertebra fragment		probable subadult, transverse processes are not fully developed, blackened	
VIII	8	C	58	cervical vertebra fragment		part of the body and left transverse process and superior articular facet	
VIII	8	C	59	neural arch	right	subadult, thoracic vertebra, blackened	
VIII	8	C	60	cervical vertebra fragment		probable adult, left lamina and articular facets	
VIII	8	C	61	neural arch	left	subadult C1, calcite	
VIII	8	C	62	neural arch	right	subadult, thoracic	

$\left.\begin{array}{ccccccc}\text { VIII } & 8 & \text { C } & \text { cervical vertebra } \\ \text { fragment }\end{array} \quad \begin{array}{c}\text { probable adult, left } \\ \text { lamina and articular } \\ \text { facets, grayish calcite }\end{array}\right]$

VIII	8	C	71	tibia fragment	probable left	adult, distal fragment, calcite and blackening	
VIII	8	C	72	talus	right	adult, calcite and carbon, lateral styloid is broken off	58.081
VIII	8	C	73	metatarsal fragment	undetermined	adult, distal fragment with most of the shaft, blackened	
VIII	8	C	74	second metacarpal	left	adult, blackened, defined muscle attachment on the palmar surface	59.28
VIII	8	C	75	fourth metatarsal	left	adult, blackened	64.01
VIII	8	C	76	fibula fragment	left	subadult, probably around 15 years of age (or it is badly deteriorated) blackened	
VIII	8	C	77	unidentified fragments	left	subadult, shaft fragment, blackened, over 5 years of age based on size	
VIII	8	C	78	long bone fragments	undetermined	possible adult shaft fragments, badly deteriorated, 2 pieces	

VIII	8	C	79	humerus fragment	undetermined	subadult, probably 1.5 years old based on the size, blackened	
VIII	8	C	80	rib fragment	undetermined	shaft fragment, subadult	
VIII	8	C	81	clavicle fragment	left	subadult, older child, lateral fragment, taphonomic damage, blackened	
VIII	8	C	82	pubis	left	subadult, probably around 5 years of age, calcite covered	
VIII	8	C	83	fifth metatarsal	right	adult, blackened	68.43
VIII	8	C	84	third metacarpal	right	adult, broken in two calcite and carbon	
VIII	8	C	85	parietal fragments	right	adult, blackened, four fragments, posterior portion along the sutures	
VIII	8	C	86	vertebra fragment		adult, body fragment, probably thoracic	
VIII	8	C	87	vertebral body		subadult, age 2-4 years, calcite and carbon, unfused body	
VIII	8	C	88	third metacarpal fragment	left	adult, proximal fragment, blackened	
VIII	8	C	89	metacarpal fragment	undetermined	adult, distal fragment with part of the shaft	
VIII	8	C	90	thoracic vertebra fragment		probable subadult, lamina fuse (probably	

						over 4 years of age, blackened
VIII	8	C	91	cervical vertebra fragment		probable adult, lamina fragment, blackened
VIII	8	C	92	vertebra fragment		probable adult, blackened, probably lumbar or first sacral vertebra fragment based on the morphology of the articular facet present
VIII	8	C	93	scapula fragment	left	subadult, blackened, glenoid and spine fragment, probably around 4-5 years old based on the size
VIII	8	C	94	cervical vertebra fragment		adult, body fragment with part of the left transverse process
VIII	8	C	95	radius epiphysis	left	subadult, probably around 5 years of age, blackened
VIII	8	C	96	root fragment	undetermined	probable adult, probable canine root
VIII	8	C	97	metatarsal fragment	undetermined	subadult, distal unfused epiphysis
VIII	8	C	98	hamate	right	subadult, blackened
VIII	8	C	99	phalanx fragment	undetermined	adult, distal fragment, possible proximal

						pedal phalanx, blackened
VIII	8	C	100	occipital fragment	undetermined	subadult, blackened, left occipitomastoid structure
VIII	8	C	101	femur fragment	right	subadult, probably around 1.5 years old, blackened, proximal fragment
VIII	8	C	102	radius fragment	left	subadult, probably a little over 5 years of age based on the size, distal fragment, unfused epiphysis
VIII	8	C	103	talus	left	subadult, unfused and small, blackened, probably around 2-3 years old
VIII	8	C	104	rib fragment	undetermined	subadult, vertebral end, blackened
VIII	8	C	105	occipital fragment		subadult, basilar part, blackened
VIII	8	C	106	epiphysis	undetermined	subadult, blackened, possible femoral head
VIII	8	C	107	femoral epiphysis fragment	undetermined	subadult, blackened, distal epiphysis fragment
VIII	8	C	108	epiphysis fragment	undetermined	subadult, blackened, either a fragment of the distal femur

						epiphysis or the superior humerus epiphysis
VIII	8	C	109	long bone fragment	undetermined	subadult, possible proximal humerus fragment with unfused epiphysis, otherwise possible a femur, too fragmentary to determine
VIII	8	C	110	cranial fragment	undetermined	small fragment, blackened and warped
VIII	8	C	111	cranial fragment	undetermined	small fragment, blackened and warped
VIII	8	C	112	rib fragment	left	adult, vertebral end
VIII	8	C	113	unidentified fragments	undetermined	35 unidentified fragments
VIII	8	C	114	sacrum fragment		subadult, first sacral body with superior articular facets, probably under age 12 but over age 5 based upon size and stage of development, blackened

VIII	8	C	115	vertebra fragment		possible adult, body fragment, probable lumbar based upon vertebral body height, blackened
VIII	8	C	116	coccyx fragment		adult, first part of the coccyx with the cornu
VIII	8	C	117	neural arch	left	subadult, lumbar vertebra, possibly the last lumbar, calcite,24 years of age
VIII	8	C	118	neural arch	left	subadult, cervical neural arch, calcite covered, 2-4 years of age
VIII	8	C	119	neural arch	left	subadult, cervical neural arch, 2-4 years of age
VIII	8	C	120	neural arch	left	subadult, thoracic vertebra, blackened, 2-4 years of age
VIII	8	C	121	neural arch	right	subadult, thoracic vertebra, blackened, 2-4 years of age, damage to the lamina
VIII	8	C	122	lumbar vertebra		subadult, epiphyseal line at pedicle is still visible, probably 4-5 years old

VIII	8	C	123	lumbar vertebra fragment		subadult, body fragment with semifused pedicle, probably same individual as 122 , blackened	
VIII	8	C	124	vertebra fragment		possible adult, lamina fragment from a lower cervical or upper thoracic vertebra, calcite	
VIII	8	C	125	vertebra body		subadult, 2-4 years of age, possibly a lumbar of a younger child or a slightly older child's thoracic	
VIII	8	C	126	tibia epiphysis	right	subadult, probably closer to 9 years old, blackened, smaller than 127 , probably different child	
VIII	8	C	127	tibia epiphysis	left	subadult, probably closer to 9 years old, blackened, smaller than 126, probably different child	
VIII	8	C	128	interproximal manual phalanx		adult, blackened	26 mm
VIII	8	C	129	proximal manual phalanx		subadult, proximal epiphysis is unfused,	29.85 mm

VIII	8	C	130	proximal manual phalanx		subadult, proximal epiphysis is unfused, blackened	32.12 mm
VIII	8	C	131	proximal manual phalanx		subadult, proximal epiphysis is unfused, blackened	24.68 mm
VIII	8	C	132	distal manual phalanx		adult, blackened	17.78 mm
VIII	8	C	133	distal manual phalanx		adult, blackened	16.04 mm
VIII	8	C	134	proximal manual phalanx		adult, slightly blackened	33.59 mm
VIII	8	C	135	proximal pedal phalanx		adult, blackened	24.39 mm
VIII	8	C	136	proximal pedal phalanx		adult, grey calcite	27.48 mm
VIII	8	C	137	first metatarsal	undetermined	subadult, blackened, slight damage to proximal and distal ends, probably around 4-5 years old based on the size	25.56 mm
VIII	8	C	138	proximal manual phalanx	undetermined	subadult, blackened, probably 4-5 years old based on the size	27.92 mm
VIII	8	C	139	proximal pedal phalanx	undetermined	adult, blackened	22.23 mm
VIII	8	C	140	intermediate pedal phalanx	undetermined	adult, blackened	14.54 mm

VIII	8	C	141	distal pedal phalanx	undetermined	adult, blackened	22.57 mm
VIII	8	C	142	proximal manual phalanx	undetermined	subadult, probably 24 based on size, blackened	19.47 mm
VIII	8	C	143	distal manual phalanx	undetermined	adult, slightly blackened	17.5 mm
VIII	8	C	144	intermediate pedal phalanx	undetermined	adult, blackened	10.31 mm
VIII	8	C	145	proximal manual phalanx fragment	undetermined	adult, distal and shaft fragment, blackened	
VIII	8	C	146	proximal manual phalanx	undetermined	subadult, probably around 2-4 years of age based on the size, blackened	20.58 mm
VIII	8	C	147	proximal manual phalanx	undetermined	subadult, probably around 2-4 years of age based on the size, blackened	17.69 mm
VIII	8	C	148	proximal manual phalanx fragment	undetermined	subadult, probably around 2-4 years of age based on the size, blackened, distal fragment with half of the shaft	
VIII	8	C	149	proximal manual phalanx	undetermined	subadult, probably around 2-4 years of age based on the size, blackened, some damage to the proximal palmar	

$\left.\begin{array}{ccccccc}\hline \text { VIII } & 8 & \text { C } & 150 & \text { lunate } & \text { left } & \begin{array}{c}\text { subadult based on } \\ \text { size, blackened }\end{array} \\ \hline \text { VIII } & 8 & \text { C } & 151 & \text { scaphoid } & & \text { left }\end{array} \begin{array}{c}\text { subadult based on } \\ \text { size, blackened, same } \\ \text { size as 152 }\end{array}\right]$

VIII	8	C	160	vertebral body		subadult, 2-4 years of age, probable lower thoracic
VIII	8	C	161	vertebral body		subadult, 2-4 years of age, probable upper thoracic
VIII	8	C	162	vertebral body		subadult, 2-4 years of age, lumbar, blackened and damage to the posterior portion
VIII	8	C	163	vertebral body		subadult, 2-4 years of age, lumbar, blackened
VIII	8	C	164	sternal body (sternebra)		subadult, blackened, older child based on thickness
VIII	8	C	165	manubrium		subadult (probably slightly over 3 years of age based on size and shape)
VIII	8	C	166	navicular	left	adult, covered in calcite
VIII	8	C	167	metacarpal		subadult, distal and proximal epiphyses not fused, probably 2 4 years old based on the size, blackened
VIII	8	C	168	humerus epiphysis	possible left	subadult, probably closer to 9 years old

than 5

VIII	8	C	169	humerus fragment	undetermined	cannot be determined if it is a distal humerus fragment or a subadult distal epiphysis, badly blackened
VIII	8	C	170	ilium fragment	probable left	perinate, blackened and brittle
VIII	8	C	171	tibia epiphysis	possible right	subadult, probably closer to 9 than 5 , proximal epiphysis, blackened and brittle
VIII	8	C	172	os coxa fragments	left	adult, blackened and in many pieces, needs conservation, part of the lunate surface is present but that is about it.
VIII	8	C	173	shaft fragment	undetermined	adult, blackened, needs conservation
VIII	8	C	174	third cuneiform fragment	left	adult, plantar surface is broken off, some blackening
VIII	8	C	175	vertebra fragment		adult, body fragment, blackened, morphological damage due to taphonomic

						processes, either sacral or lumbar body
VIII	8	C	176	rib fragment	undetermined	adult, mid rib, blackened, shaft fragment less than 6 cm long
VIII	8	C	177	calcaneus fragment	left	adult, narrow posterior fragment, with most of the medial portion gone, slight blackening
VIII	8	C	178	fifth metacarpal fragment	right	adult, proximal and shaft fragment, blackened
VIII	8	C	179	metacarpal fragment	undetermined	adult, proximal fragment, blackened, probably the fourth or fifth, most likely the fourth right
VIII	8	C	180	radius fragment	undetermined	subadult, probably around 5 years old, fragment with the radial tuberosity, blackened
VIII	8	C	181	epiphysis		subadult, possibly around two years old, possibly femoral head epiphysis, blackened

VIII	8	C	182	epiphysis		subadult, possible humeral head epiphysis, blackened	
VIII	8	C	183	epiphysis		subadult, possible humeral head epiphysis, blackened	
VIII	8	C	184	vertebra body		subadult, probably around 2 years old, first sacral body vertebra, blackened	
VIII	8	C	185	metatarsal fragment	undetermined	adult, distal fragment of only the head, blackened	
VIII	8	C	186	rib fragment	undetermined	subadult, shaft fragment, blackened	
VIII	8	C	187	unidentified fragments		7 unidentified fragments	
VIII	8	C	188	molar	left	first lower, root broken off, caries in buccal groove	12.6 mm anterior to posterior, 11.37 mm lingual to buccal 8.63 mm crown height
VIII	8	C	189	molar	left	possibly third lower, root broken off, caries in the occlusal grove near the posterior buccal groove	12.02 mm anterior to posterior, 10.56 mm lingual to buccal 6.94 mm crown height
VIII	8	C	190	molar	left	upper, possible second, broken root	10.08 mm anterior to posterior, 11.38 mm lingual

VIII	8	C	191	molar	undetermined	too much wear and no root makes siding and identification difficult, possibly and upper	
VIII	8	C	192	incisor	possible left	possibly the first, upper, some damage to root makes siding difficult, some shoveling	8.76 mm anterior to posterior, 6.8 mm lingual to buccal 10.79 mm crown height
VIII	8	C	193	incisor	undetermined	probable lower	6.78 mm anterior to posterior, 6.98 mm lingual to buccal 10.36 mm crown height, 13.46 root
VIII	8	C	194	premolar	right	upper, possible second, broken root	7.03 mm anterior to posterior, 9.03 mm lingual to buccal 7.96 mm crown height
VIII	8	C	195	premolar	right	upper, possible first, no root	7.18 mm anterior to posterior, 9.15 mm lingual to buccal
VIII	8	C	196	canine	right	lower, no root because it appears to still be developing	6.67 mm anterior to posterior, 5.71 mm lingual

							to buccal 10.13 mm crown height
VIII	8	C	197	premolar	left	upper second, no root	7.13 mm anterior to posterior, 9.37 mm lingual to buccal 8.10 mm crown height
VIII	8	C	198	premolar	right	lower possible second, complete , damage to lateral enamel	7.08 mm anterior to posterior, 8.38 mm lingual to buccal 7.9 mm crown height
VIII	8	C	199	premolar	left	lower possible second, complete root	7.04 mm anterior to posterior, 7.36 mm lingual to buccal 7.15 mm crown height
VIII	8	C	200	incisor	right	upper first, root broken	
VIII	8	C	201	molar	undetermined	upper, heavily worn, root broken off	8.62 mm anterior to posterior, 7.13 mm lingual to buccal 10.31 mm crown height
VIII	8	C	202	molar	undetermined	upper, heavily worn, root broken off	
VIII	8	C	203	molar fragment	undetermined	partial crown fragment, worn	

VIII	8	C	204	molar fragment	undetermined	partial crown fragment, worn	
VIII	8	C	205	incisor	undetermined	upper, possibly central, modified with an E motif	8.66 mm anterior to posterior, 7.24 mm lingual to buccal 11.88 mm crown height
VIII	8	C	206	incisor	undetermined	upper, possibly central, modified with an Ik motif, slight ring of calculus around the tooth above the CEJ	8.99 mm anterior to posterior, 7.55 mm lingual to buccal 10.39 mm crown height
VIII	8	C	207	incisor	undetermined	possibly upper, broken, was modified with a chunk taken out of either the medial or lateral part of the tooth, neither line is perfectly perpendicular	
VIII	8	C	208	canine	left	possibly upper, was modified with a chunk taken out of either the medial part of the tooth	7.63 mm anterior to posterior, 6.99 mm lingual to buccal 10.13 mm crown height, 17.06 root

VIII	10	a	1	humerus fragment	left	proximal fragment, subadult, unfused head, under 14 years of age, calcite on lateral surface	
VIII	10	a	2	second metatarsal fragment	right	adult, covered in calcite, damage to the base and head	
VIII	10	a	3	fifth metatarsal	right	subadult, head is not fully fused, covered in calcite	64.11 mm
VIII	10	a	4	first metatarsal fragment	right	adult, distal fragment, covered in calcite	
VIII	10	a	5	third metatarsal fragment	right	adult, proximal and shaft fragment, covered in calcite	
VIII	10	a	6	proximal manual phalanx	undetermined	adult, covered in calcite, head worn away	
VIII	10	a	7	fifth metacarpal fragment	left	proximal fragment, possibly subadult based on size, calcite	
VIII	10	a	8	proximal pedal phalanx	undetermined	subadult, proximal epiphysis is not fully fused, covered in calcite, first digit	30.8 mm
VIII	10	a	9	proximal pedal phalanx	undetermined	subadult, proximal epiphysis is not fully fused, covered in calcite	23.58 mm

VIII	10	a	10	distal and intermediate pedal phalanx	undetermined	fused together, possible subadult	6.75 mm prox, 9.27 mm dist
VIII	10	a	11	distal pedal phalanx	undetermined	possible subadult	10.3 mm
VIII	10	a	12	intermediate pedal phalanx	undetermined	possible subadult	7.97 mm
VIII	10	a	13	humerus fragment	left	probable adult, rather small though, fossa is intermediate, medial epicondyle is slightly elevated, not spool like, trochlea is slightly angled, may be a subadult, calcite mostly on the anterior surface, distal fragment	50.84 mm epicondylar width, 22.25 mm fossa width
VIII	10	a	14	ilium fragment	undetermined	subadult, unfused iliac crest, probably under 14 years old, size is large indicating it is an older child, calcite	
VIII	10	a	15	humerus fragment	left	subadult, unfused proximal epiphysis, over 5 but under 15, probably close to 9	

VIII	10	a	16	radius fragment	left	subadult, distal fragment, possibly same bone as 17 but does not cross mend, epiphysis present but not fused, under 16 years of age, calcite
VIII	10	a	17	radius fragment	left	subadult, distal shaft fragment, calcite, probably the same bone as 16 but does not cross med
VIII	10	a	18	rib fragment	left	subadult, neck fragment, calcite, badly deteriorated
VIII	10	a	19	rib fragment	left	subadult, neck fragment, calcite, badly deteriorated
VIII	10	a	20	rib fragment	undetermined	subadult, shaft fragment, calcite
VIII	10	a	21	rib fragment	undetermined	subadult, shaft fragment, calcite
VIII	10	a	22	cervical vertebra fragment		subadult, middle cervical, covered in calcite, modern break, left portion of the vertebra
VIII	10	a	23	thoracic vertebra		subadult based on size, transverse processes are broken off, body badly

						deteriorated, covered in calcite	
VIII	10	a	24	fourth metatarsal fragment	right	adult, proximal fragment, covered in calcite	
VIII	10	a	25	first cuneiform fragment	probable right	adult, covered in calcite, damage to the superior portion	
VIII	10	a	26	metatarsal fragment	undetermined	probable adult, head fragment, covered in calcite	
VIII	10	a	27	ilium fragment	undetermined	age undetermined, part of the blade, calcite	
VIII	10	a	28	os coxa fragment	undetermined	age undetermined, part of the lunate surface	
VIII	10	a	29	rib fragments	undetermined	possible subadult, shaft fragment, calcite	
VIII	10	a	30	rib fragments	undetermined	possible subadult, shaft fragment, calcite	
VIII	10	a	31	incisor	left	upper first incisor, calculus at CEJ on anterior medial and lateral surfaces, foil says two teeth, but only one present, slight wear and shoveling	8.95 anterior to posterior, 6.24 mm lingual to buccal 10.66 mm crown height

VIII	10	a	32	incisor	undetermined	upper, possibly central, large chunk filed out of the medial or lateral corner, neither line is perfectly perpendicular	8.94 mm anterior to posterior, 7.03 mm lingual to buccal 9.43 mm crown height
VIII	10	B	1	femur fragment	left	adult, proximal fragment, calcite and carbon, trochanteric crest is damaged, fragment ends right under the lesser trochanteric tubercle	44.14 mm head diameter
VIII	10	B	2	first metacarpal	left	adult, calcite and carbon, the distal lateral margins are wider than near the base	45.83 mm
VIII	10	B	3	fourth metatarsal fragment	right	adult, proximal and complete shaft fragment, calcite and carbon	
VIII	10	B	4	distal manual phalanx	undetermined	adult, calcite and carbon	17.65 mm
VIII	10	B	5	metacarpal fragment	undetermined	subadult, unfused proximal and distal ends, probably a perinate based on size	23.48 mm
VIII	10	B	6	fibula fragment	right	adult, distal fragment, blackened	

adult, too much
calcite on interior and

VIII	10	B	7	parietal fragments	undetermined	exterior
VIII	10	B	8	tibia epiphysis	possible right	proximal epiphysis, over 5 years of age but under 9 probably, calcite
VIII	10	B	9	humerus epiphysis	undetermined	subadult, over 5 years of age, but not by much, calcite
VIII	10	B	10	humerus epiphysis	possible right	subadult, over 5 years of age, but not by much, calcite
VIII	10	B	11	cranial fragments	undetermined	possible subadult frontal
VIII	10	B	12	occipital fragment		adult, calcite, some enlargement of the dura, but some of it may be taphonomic
VIII	10	B	13	proximal pedal phalanx	undetermined	first didgit, covered in carbon
VIII	10	B	14	third cuneiform		adult, inferior margin has damage, some carbon
VIII	10	B	15	second cuneiform		right

fragment

VIII	10	B	17	fifth metatarsal fragment	left	adult, proximal fragment, calcite and carbon	
VIII	10	B	18	metacarpal fragment	undetermined	subadult, shaft, calcite and carbon, unfused proximal and distal ends	40.21 mm
VIII	10	B	19	navicular fragment	right	adult, badly deteriorated, blackened	
VIII	10	B	20	thoracic vertebra fragment		adult, lamina fragment, lower thoracic	
VIII	10	B	21	distal manual phalanx		subadult, unfused proximal epiphysis, first digit, possible perinate or slightly older	13.39 mm
VIII	10	B	22	metacarpal fragment	undetermined	subadult, calcite and carbon, unfused proximal and distal epiphyses, little under 8 years of age	33.6 mm
VIII	10	B	23	metacarpal fragment	undetermined	subadult, calcite and carbon, unfused proximal and distal epiphyses, little under 8 years of age	31.75 mm

VIII	10	B	24	talus fragment	undetermined	adult, badly deteriorated, blackened, superior facet only	
VIII	10	B	25	tibia fragment	undetermined	adult, distal end, blackened, taphonomic damage	
VIII	10	B	26	premolar	left	permanent first, lower, root not fully developed, around 2 years of age	
VIII	10	B	27	unidentified fragment	undetermined	1 unidentified fragment	
VIII	10	B	28	premolar	undetermined	heavily worn on buccal facet, no dentine exposed, possibly second based on root curvature, calculus at CEJ on lingual surface	7.38 mm anterior to posterior, 8398mm lingual to buccal 8.24 mm crown height
VIII	10	B	29	premolar	right	upper second, root broken off, no real wear	7.91 mm anterior to posterior, 9.41 mm lingual to buccal 7.08 mm crown height
VIII	10	B	30	molar	right	first lower, root broken, no real wear	12.08 mm anterior to posterior, 10.3 mm lingual to buccal 6.56 mm crown height

VIII	10	B	31	molar	right	second upper, slight wear on the cusps, possible carabelli's cusp	10.78 mm anterior to posterior, 10.17 mm lingual to buccal 6.36 mm crown height
VIII	10	B	32	molar	possible left	upper deciduous second molar, root absent, damage to crown	9.71 mm anterior to posterior, 9.171b
VIII	10	B	33	incisor	possible right	central upper, modified with an E design and a line that goes medial to laterally half way up the crown	8.53 mm anterior to posterior, 7.11 mm lingual to buccal 12.57 mm crown height
VIII	10	B	34	canine	undetermined	upper, modified with an Ik motif, calculus along the lateral and medial edges above the CEJ, root broken off, damage to crown	8.25 mm anterior to posterior, 8.3 mm lingual to buccal
VIII	10	E	1	mandible fragment		subadult, anterior fragment with incisors, left canine, both premolars and molar, first permanent molars are in the process of erupting. 5 years plus or minus 1 year	

VIII	10	E	2	proximal pedal phalanx	undetermined	adult, covered in calcite	33.07 mm
VIII	10	E	3	proximal manual phalanx	undetermined	subadult probably close to 15 , proximal unfused, calcite and carbon	32.06 mm
VIII	10	E	4	intermediate manual phalanx	undetermined	subadult probably close to 15 , proximal unfused, calcite and carbon	26.04 mm
VIII	10	E	5	proximal manual phalanx	undetermined	damage to the distal end, subadult probably close to 15 , proximal unfused, calcite and carbon	
VIII	10	E	6	proximal pedal phalanx	undetermined	adult, calcite and carbon covered	34.97 mm
VIII	10	E	7	first metacarpal	undetermined	subadult, probably between 1-2 years old based upon the size	
VIII	10	E	8 8	distal manual phalanx	undetermined	subadult, probably around 15 years old, proximal epiphysis is unfused, calcite and carbon	
VIII	10	E	,	intermediate manual phalanx	undetermined	subadult, proximal epiphysis not fused, calcite and carbon, probably around 15 years of age	

VIII	10	E	10	proximal manual phalanx	undetermined	subadult, between 5 and 8 years of age probably, unfused proximal epiphysis, calcite and carbon	
VIII	10	E	11	proximal manual phalanx	undetermined	adult, calcite and carbon	39.56 mm
VIII	10	E	12	proximal manual phalanx	undetermined	adult, calcite and carbon	31.47 mm
VIII	10	E	13	proximal manual phalanx	undetermined	subadult, probably around 15 years old, proximal epiphysis is unfused, calcite and carbon	28.94 mm
VIII	10	E	14	proximal manual phalanx	undetermined	subadult, probably around 15 years old, proximal epiphysis is unfused, calcite and carbon	29.32 mm
VIII	10	E	15	humerus fragment	left	subadult, probably closer to 8 or 9 years of age, distal fragment, triangular shaped fossa, distal epiphysis unfused	
VIII	10	E	16	humerus fragment	right	subadult, probably closer to 5 years of age, distal fragment, somewhat triangular shaped fossa, distal	

epiphysis unfused

VIII	10	E	17	clavicle fragment	left	subadult, probably no more than 2 years of age, calcite and carbon, lateral fragment
VIII	10	E	18	clavicle fragment	left	possible adult, lateral fragment, calcite and carbon, damage to the lateral end
VIII	10	E	19	rib fragment		left

						fragment, calcite and carbon	
VIII	10	E	25	rib fragment	undetermined	subadult, shaft fragment, calcite and carbon	
VIII	10	E	26	rib fragment	undetermined	subadult, sternal fragment, calcite and carbon	
VIII	10	E	27	rib fragment	undetermined	subadult, sternal fragment, calcite and carbon	
VIII	10	E	28	rib fragment	undetermined	adult, shaft fragment, calcite and carbon, mid to lower rib	
VIII	10	E	29	fourth metatarsal	left	adult, calcite and carbon	71.37 mm
VIII	10	E	30	first metatarsal	left	adult, calcite and carbon, some damage to the proximal end	63.75 mm
VIII	10	E	31	third metatarsal	left	adult, calcite and carbon	75.12 mm
VIII	10	E	32	second metatarsal	left	adult, calcite and carbon	78.9 mm
VIII	10	E	33	first metatarsal	right	adult, calcite and carbon	59.66 mm
VIII	10	E	34	second metatarsal	right	adult, calcite and carbon	72.31 mm
VIII	10	E	35	fifth metatarsal	right	adult, calcite and carbon	67.52 mm
VIII	10	E	36	third metatarsal	right	adult, calcite and	68.08 mm

					carbon		
VIII	10	E	37	fourth metacarpal	right	adult, calcite and carbon	53.83 mm
VIII	10	E	38	first metacarpal	right	adult, calcite and carbon	49.35 mm
VIII	10	E	39	fourth metacarpal fragment	left	adult, calcite and carbon, head is broken off	
VIII	10	E	40	fourth metatarsal	right	adult, calcite and carbon	65.52 mm
VIII	10	E	41	third metacarpal	right	adult, calcite and carbon	58.71 mm
VIII	10	E	42	metatarsal fragment	undetermined	adult, shaft and distal fragment, calcite and carbon	
VIII	10	E	43	second metacarpal fragment	right	adult, calcite and carbon, shaft and proximal fragment	
VIII	10	E	44	fifth metacarpal fragment	right	possible subadult, head absent, covered in calcite and carbon	
VIII	10	E	45	talus	right	adult, calcite and carbon	52.51 mm length, 40.20 mm width
VIII	10	E	46	cuboid	right	adult, calcite and carbon	
VIII	10	E	47	navicular	right	adult, calcite and carbon	
VIII	10	E	48	thoracic vertebra fragment		subadult, body fused to the pedicle, but line still visible, right	

					transverse process present, calcite and carbon, mid thoracic
VIII	10	E	49	thoracic vertebra	subadult, body fused to the pedicle, line still visible, calcite and carbon, upper thoracic
VIII	10	E	50	thoracic vertebra fragment	subadult, body only, pedicle and body fused, line still visible, calcite and carbon
VIII	10	E	51	cervical vertebra fragment	adult, fragment of C1 with right superior and inferior articular facets, calcite and carbon
VIII	10	E	52	cervical vertebra fragment	possible subadult, body is badly deteriorated, lower cervical, calcite
VIII	10	E	53	cervical vertebra	adult, C 1 , calcite and carbon
VIII	10	E	54	thoracic vertebra fragment	possible subadult, lamina fragment, calcite and carbon
VIII	10	E	55	thoracic vertebra fragment	possible subadult, left transverse process fragment, calcite and

carbon

VIII	10	E	56	thoracic vertebra fragment		possible adult, transverse process, calcite and carbon	
VIII	10	E	57	humerus epiphysis	right	subadult, mate to 58 , calcite and carbon, probably around 9 years old	
VIII	10	E	58	humerus epiphysis	left	subadult, mate to 57, calcite and carbon, probably around 9 years old	
VIII	10	E	59	calcaneus	right	adult, calcite and carbon covered, damage to the lateral aspect	76.18 mm length
VIII	10	E	60	patella	left	adult, calcite covered	$39.84 \mathrm{~h}, 38.17 \mathrm{w}$
VIII	10	E	61	femur epiphysis	undetermined	subadult, probably around 9 years old, calcite covered	$\begin{gathered} 31.87 \mathrm{~mm} \text { head } \\ \text { diameter } \end{gathered}$
VIII	10	E	62	second cuneiform	right	adult, calcite	
VIII	10	E	63	third cuneiform	right	adult, calcite	
VIII	10	E	64	first cuneiform	right	adult, calcite	
VIII	10	E	65	third cuneiform	left	adult, calcite	
VIII	10	E	66	scapula fragment	left	subadult, young child probably around 5 years old, calcite and carbon	
VIII	10	E	67	third cuneiform	left	adult, calcite	

VIII	10	E	68	distal pedal phalanx		adult, calcite	18.98 mm
VIII	10	E	69	tibia epiphysis	right	proximal epiphysis, probably around 9 years of age, calcite covered	
VIII	10	E	70	cervical vertebra fragment		adult, calcite, damage to the lamina, lower cervical	
VIII	10	E	71	vertebra body		subadult, thoracic vertebra, probably 2-4 years of age, calcite	
VIII	10	E	72	fibula fragment	undetermined	adult, shaft fragment less than 5 cm long, calcite and carbon	
VIII	10	E	73	radius fragment	undetermined	adult, shaft fragment	
VIII	10	E	74	fibula fragment	undetermined	subadult, calcite and carbon	
VIII	10	E	75	thoracic vertebra fragment		adult, left superior articular facet, and spine, calcite	
VIII	10	E	76	sternal fragments		adult, grey calcite covered 4 pieces	
VIII	10	E	77	pubic fragment	probable right	adult, part of the pubic symphysis, heavily worn, calcite	
VIII	10	E	78	first cuneiform	right	adult, badly deteriorated, calcite covered	
VIII	10	E	79	rib fragment	left	adult, probable first rib, calcite	

VIII	10	E	80	first metatarsal fragment	right	adult, distal fragment, calcite covered
VIII	10	E	81	vertebra fragment		possible subadult, part of a body and a superior articular fact, probable lumbar or sacral, covered in calcite
VIII	10	E	82	rib fragment	probable right	subadult, neck fragment, calcite, first or second rib
VIII	10	E	83	triquetral	right	adult, covered in calcite
VIII	10	E	84	third metacarpal fragment	left	adult, head is broken off, covered in calcite
VIII	10	E	85	metacarpal	undetermined	subadult, calcite and carbon covered
VIII	10	E	86	clavicle fragment	right	adult, calcite and carbon covered, lateral shaft fragment
VIII	10	E	87	fibula epiphysis	undetermined	subadult, probably around 9 years old, calcite covered, proximal
VIII	10	E	88	unidentified fragments		5 unidentified frags

VIII	10	E	89	incisor	right	upper first, adult modified incisor, groove cut from lateral occlusal surface toward the central portion of the buccal surface at a 45 degree angle, slight calculus and calcite, slight shoveling	8.11 mm anterior to posterior, 7.3 mm lingual to buccal 9.26 mm crown height, 13.68 root
VIII	10	E	90	molar	left	lower first, heavily worn, no dentine exposure, root broken off, slight damage to base of crown	11.48 mm anterior to posterior, 10.99lb
VIII	10	E	91	molar	left	upper first, heavily worn, no dentine exposed, root broken off	10.68 mm anterior to posterior, 11.71 mm lingual to buccal 5.49 mm crown height
VIII	10	E	92	molar	possible right	lower second, root broken off, slight wear, no dentine, slight damage to the base of the crown	10.5 mm anterior to posterior, 9.91 lb
VIII	10	E	93	molar	possible left	root broken heavy wear but no dentine	10.88 mm anterior to posterior, 10.86 mm lingual to buccal 5.16 mm

VIII	10	E	94	molar	possible left	third lower, root broken off, damage to the base of the crown	12.11 mm anterior to posterior, 10.87 mm lingual to buccal
VIII	10	F	1	vertebra fragment		probable subadult, unfused pedicel for a thoracic vertebra	
VIII	10	F	2	intermediate hand phalanx		slight damage to the proximal end	
VIII	10	F	3	second metatarsal	right	subadult, unfused head and proximal end	
VIII	10	F	4	metacarpal fragment	undetermined	subadult, unfused base, head broken off	
VIII	10	F	5	metatarsal fragment	undetermined	subadult, unfused base, head broken off	
VIII	10	F	6	tibia fragment	undetermined	superior fragment of an adult, badly damaged	
VIII	10	F	7	femur fragment	undetermined	badly deteriorated, grey from carbon	
VIII	10	F	8	rib fragment	undetermined	shaft fragment	
VIII	10	F	9	rib fragment	undetermined	shaft fragment	
VIII	10	F	10	4 long bone fragments	undetermined	three tubular fragments that have taphonomic damage that has distorted the	

						original morphology, another fragment is flat	
VIII	10	F	11	vertebra fragment		possible thoracic vertebra fragment with a superior articular facet	
VIII	10	F	12	epiphysis	undetermined	possible radius epiphysis	
VIII	10	F	13	epiphysis	undetermined	unknown	
VIII	10	F	14	epiphysis	undetermined	appears to be a transverse process of a vertebra or a phalanx	
VIII	10	F	15	epiphysis	undetermined	unknown	
VIII	10	F	16	molar	right	first lower, calcite on buccal surface, slight damage to root	12.35 mm anterior to posterior, 11.44 mm lingual to buccal 8.64 mm crown height
VIII	10	F	17	molar	left	third lower molar, root broken at base of crown, slightly broken 11 mm anterior to posterior, 10 lb	
VIII	10	F	18	molar	right	second upper, root broken, crown slightly broken	10.87 mm anterior to posterior, 10.1 mm lingual to

VIII	10	F	19	premolar	right	first upper, some calcite, tip of the root broken	7.11 mm anterior to posterior, 7.91 mm lingual to buccal 8.45 mm crown height
VIII	11	a	1	ulna fragment	right	proximal fragment, covered in calcite, subadult, over 5 years, probably closer to 9	
VIII	11	a	2	ischium fragment	possible right	covered in calcite, probable adult	
VIII	11	a	3	humerus fragment	undetermined	calcite, proximal fragment of part of the head, not enough to measure	
VIII	11	a	4	rib fragment	right	neck fragment, covered in calcite, adult, middle rib	
VIII	11	a	5	rib fragment	right	shaft fragment, adult, middle rib, covered in calcite	
VIII	11	a	6	rib fragment	right	vertebral end, covered in calcite, middle rib	
VIII	11	a	7	tibia fragment	right	distal portion, adult, covered in calcite	
VIII	11	a	8	patella	right	adult, covered in calcite	40.03 mm height, 45.77 mm width

VIII	11	a	9	scapula fragment	right	spine fragment, adult, covered in calcite
VIII	11	a	10	fibula fragment	probable left	proximal fragment, adult, covered in calcite
VIII	11	a	11	hamate	right	adult, covered in calcite
VIII	11	a	12	zygomatic fragment	right	adult, covered in calcite, numerous bone fragments attached via calcite to the posterior surface.
VIII	11	a	13	frontal fragment		adult, light calcite, the frontal groove on the interior is more pronounced than normal, possible active lesion on the exterior that measures $\sim 9.99 \mathrm{~mm}$ in diameter, thickness of the bone varies throughout, indicating some type of reactive growth and degeneration.
VIII	11	a	14	fibula fragment	right	adult, distal fragment with part of the shaft, covered in calcite

VIII	11	a	15	frontal/parietal/temporal fragment	right	could be the same individual as 13 but the pieces do not fit back together, pin prick porosity, rounded supraorbital margin, slight torus, adult male, possible cut mark above the eye.	
VIII	11	a	16	molar	left	upper first, root broken, some enamel chipped off, calcite	12.56 mm anterior to posterior, 10.56 mm lingual to buccal 7.13 mm crown height
VIII	11	a	17	molar	right	third lower	11.6 mm anterior to posterior, 9.63 mm lingual to buccal 5.31 mm crown height
VIII	11	a	18	maxilla fragment	left	first molar roots in socket, others lost perimortem	

VIII	11	a	19	mandible fragment	right portion	subadult, first and second deciduous molars are in their sockets, heavily covered in calcite makes it hard to determine if other anterior teeth were lost peri or post mortem, first adult molar is forming in the crypt (amount is hard to determine) probably 2-4 years of age.	
VIII	11	B	1	scapula fragment	right	lateral margin and the glenoid, doubtful of fragment al0 being from the same individual due to the base of the spine present on this fragment, covered in calcite, adult	39.35 mm height, 30.74 mm width
VIII	11	B	2	tibia fragment	right	proximal fragment, damaged in antiquity to the superior condyles, indicated by the fact that they are covered in calcite, adult, completely	

covered in calcite
$\left.\begin{array}{ccccccc}\hline & & & & & \begin{array}{c}\text { proximal fragment, } \\ \text { possible subadult } \\ \text { based on size and } \\ \text { epiphyseal line } \\ \text { around neck visible } \\ \text { under the calcite that } \\ \text { covers the whole } \\ \text { surface, possible }\end{array} \\ \text { VIII } & 11 & \text { B } & & & & \\ \text { rodent gnaw marks on } \\ \text { medial surface. }\end{array} \quad \begin{array}{c}41.36 \mathrm{~mm} \text { head } \\ \text { diameter }\end{array}\right]$

VIII	11	B	10	proximal manual phalanx		calcite, adult	36.83 mm
VIII	11	B	11	talus	left	adult, calcite, most of which is on the pedal surface	53.41 mm length, 40.74 mm width
VIII	11	B	12	cuboid	right	adult, calcite	
VIII	11	B	13	first cuneiform	right	adult, calcite	
VIII	11	B	14	proximal manual phalanx		calcite, adult	39.9 mm
VIII	11	B	15	first proximal manual phalanx		calcite, adult	32.89 mm
VIII	11	B	16	first proximal pedal phalanx		calcite, adult	31.49 mm
VIII	11	B	17	proximal pedal phalanx		calcite, adult	37.55 mm
VIII	11	B	18	intermediate manual \qquad		calcite, adult	31.68 mm
VIII	11	B	19	intermediate manual phalanx		calcite, adult	24.48 mm
VIII	11	B	20	intermediate manual phalanx		subadult, proximal and distal epiphysis is not fused yet	26.25 mm
VIII	11	B	21	proximal manual phalanx fragment		proximal end, adult, covered in calcite	
VIII	11	B	22	second metatarsal	left	covered in calcite, adult	73.66 mm
VIII	11	B	23	metatarsal	undetermined	covered in calcite which obscures the facets, adult	69.87 mm

VIII	11	B	24	third metatarsal	left	covered in calcite, adult	68.1 mm
VIII	11	B	25	second metacarpal	right	covered in calcite, adult	66.13 mm
VIII	11	B	26	first metacarpal	right	covered in calcite, adult	66.52 mm
VIII	11	B	27	first metacarpal	left	covered in calcite, adult	68.22 mm
VIII	11	B	28	second metacarpal	left	covered in calcite, adult	66 mm
VIII	11	B	29	third metacarpal fragment	left	proximal fragment, covered in calcite, adult	
VIII	11	B	30	talus	left	badly deteriorated, adult, calcite	
VIII	11	B	31	thoracic vertebra fragment		lamina is broken, calcite is thicker on the right lateral surface, mid thoracic vertebra, adult	
VIII	11	B	32	thoracic vertebra fragment		subadult, unfused lamina, upper thoracic region, calcite on anterior surface mostly, was originally found attached to 33	
VIII	11	B	33	cuboid	left	adult, calcite	

second or third based
on size, facets are
difficult to make out
due to calcite

VIII	11	B	34	cuneiform		covering all surfaces
VIII	11	B	35	courth metatarsal fragment	left	proximal fragment, adult, covered in calcite
VIII	11	B	36	metatarsal fragment	undetermined	distal portion, adult, covered in calcite
VIII	11	B	37	fourth metatarsal	right	proximal fragment, adult, covered in calcite
VIII	11	B	38	ulna fragment	left	distal portion, adult, covered in calcite
VIII	11	B	39	scapula fragment	left	inferior corner, adult, calcite mostly on the anterior surface
VIII	11	B	40	clavicle	right	perinate, calcite
VIII	11	B	41	hamate	right	adult, calcite
VIII	11	B	42	clavicle fragment	right	possible subadult based on size, slight damage to this lateral fragment, calcite
VIII	11	B	43	ischium	right	perinate, calcite
VIII	11	B	44	calcaneus	left	perinate, calcite
						subadult, tuberosity and shaft fragment, covered in calcite
VIII	11	B	45	radius fragment	undetermined	

VIII	11	B	46	ulna fragment	probable left	shaft fragment, completely covered in calcite	
VIII	11	B	47	clavicle fragment	undetermined	shaft fragment	
VIII	11	B	48	scapula fragment	possible right	spine fragment, adult, covered in calcite	
VIII	11	B	49	shaft fragment	undetermined	subadult shaft fragment, completely covered in calcite	
VIII	11	B	50	fibula fragment	undetermined	adult, small shaft fragment, completely covered with calcite	
VIII	11	B	51	proximal pedal phalanx		adult, calcite	29.67 mm
VIII	11	B	52	proximal pedal phalanx		adult, calcite	23.66 mm
VIII	11	B	53	first proximal pedal phalanx		adult, calcite	34.86 mm
VIII	11	B	54	proximal pedal phalanx		adult, calcite	27.09 mm
VIII	11	B	55	proximal pedal phalanx		adult, calcite	32.35 mm
VIII	11	B	56	proximal pedal phalanx		adult, calcite	20.57 mm
VIII	11	B	57	first proximal pedal \qquad phalanx		adult, calcite	32.08 mm
VIII	11	B	58	first proximal pedal phalanx		adult, calcite	34.14 mm
VIII	11	B	59	lunate	left	adult, calcite	

VIII	11	B	60	capitate	right	adult, calcite	
VIII	11	B	61	capitate	right	adult, calcite	
VIII	11	B	62	capitate	right	adult, calcite	
VIII	11	B	63	proximal manual phalanx		adult, calcite, lateral margins well defined	49.16 mm
VIII	11	B	64	proximal manual phalanx		adult, calcite, lateral margins well defined	43.35 mm
VIII	11	B	65	proximal manual phalanx		adult, calcite, lateral margins well defined, damage to the proximal area	45.74 mm
VIII	11	B	66	proximal manual \qquad		adult, calcite, lateral margins well defined, damage to the proximal and distal areas	
VIII	11	B	67	patella	left	adult, calcite	45.06 mm height, 45.51 mm width
VIII	11	B	68	talus	left	adult, calcite	53.68 mm length, 44.18 mm width
VIII	11	B	69	scapula fragments	right	adult, covered in calcite, glenoid fragment and a lateral border fragment	42.74 mm height, 29.23 mm width
VIII	11	B	70	humerus fragments	left	adult, three fragments form a complete humerus, covered in calcite, triangular shaped fossa, slightly	60.40 mm epicondylar breath, 44.93 mm head diameter

						angled medial epicondyle, spool shaped, angle is wide
VIII	11	B	71	femur fragment	left	adult, covered in calcite, trochanter fragment
VIII	11	B	72	tibia fragment	left	adult, proximal fragment, covered in calcite, large
VIII	11	B	73	frontal fragment		adult, calcite covered (including some of the fractures), groove on interior surface rather than the typical crest, cranial modification
VIII	11	B	74	mandible fragment		right ramus and part of the lateral aspect, third molar erupted, no teeth in any of the crypts, possible abscess between M1 and M2, calcite
VIII	11	B	75	frontal fragment		right fragment above the orbit, rounded margin, raised torus, probable male, calcite covered, meningeal grooves are well

```
defined on the interior given it is a frontal
bone
```

VIII	11	B	76	frontal fragment		forehead portion, groove noticeable on the interior of this fragment, calcite
VIII	11	B	77	frontal fragment		supraorbital fragment, ridge is kind of sharp, but it also appears to be a subadult based on size, calcite
VIII	11	B	78	frontal fragment		fragment right above the frontal sinus with the crest, calcite
VIII	11	B	79	frontal fragment		possibly a parietal fragment, calcite
VIII	11	B	80	zygomatic fragment	right	adult, calcite

VIII	11	B	84	occipital and parietal fragment	both	adult, calcite, pin prick porosity with larger macroscopic pitting on the left parietal, sample was taken in previous seasons for isotope testing	
VIII	11	B	85	parietal fragments	left	two fragments that cross mend, pin prick porosity, heavy calcite covering interior and exterior, even covers old fractures, possible subadult	
VIII	11	B	86	femur fragments	right	distal fragment, adult, calcite covered	84.61 mm epicondylar width
VIII	11	B	87	mandible fragment		left fragment, possibly the same bone as 74 , all teeth erupted and broken, roots are still in crypts, calcite	
VIII	11	B	88	frontal fragment		above one of the orbits, blunt margin, torus noticeable, possible male, calcite	
VIII	11	B	89	cranial fragment		adult, calcite	

VIII	11	B	90	thoracic vertebra fragment		upper thoracic, possible subadult, calcite, damage to the entire bone	
VIII	11	B	91	thoracic vertebra fragment		mid thoracic, calcite, damage to the entire bone	
VIII	11	B	92	thoracic vertebra fragment		body only, calcite, probably T10	
VIII	11	B	93	first metacarpal	right	adult, calcite	48.74 mm
VIII	11	B	94	fourth metacarpal	left	adult, calcite	57.8 mm
VIII	11	B	95	fourth metacarpal	left	left	61.96 mm
VIII	11	B	96	fifth metacarpal	left	left	56.89 mm
VIII	11	B	97	femur fragment	undetermined	head only, adult, calcite	45.09 mm head diameter
VIII	11	B	98	tibia fragment	undetermined	proximal condyle fragment, adult, calcite	
VIII	11	B	99	temporal fragment	right	fragment with mandibular fossa and zygomatic process, adult, completely covered in calcite (including the old fractures)	
VIII	11	B	100	temporal fragment	left	fragment with internal auditory meatus, tympanic portion, and a broken mastoid process,	

adult, covered in calcite

VIII	11	B	101	clavicle fragment	right	lateral portion, calcite
VIII	11	B	102	scapula fragment	right	acromion fragment, rather large, new bone growth on anterior surface, possible arthritis or healed dislocation
VIII	11	B	103	femur fragment	possible right	distal portion of one condyle, adult, covered in calcite, not the same bone as 104
VIII	11	B	104	femur fragment	undetermined	distal portion of one condyle, adult, covered in calcite, not the same bone as 103
VIII	11	B	105	thoracic vertebra fragment		lamina fragment, adult, upper thoracic, calcite
VIII	11	B	106	cervical vertebra fragment		adult, calcite, lower cervical
VIII	11	B	107	cervical vertebra fragment		adult, calcite, upper cervical
VIII	11	B	108	calcaneus	right	adult, calcite, damaged
VIII	11	B	109	scapula fragment	right	acromion fragment

VIII	11	B	110	thoracic vertebra fragment		posterior portion of the body, and part of the right superior articular facet, adult, calcite
VIII	11	B	111	fibula fragment	right	distal fragment, adult, calcite covered
VIII	11	B	112	thoracic vertebra fragment		body only, calcite, mid thoracic
VIII	11	B	113	thoracic vertebra fragment		body fragment
VIII	11	B	114	scapula	right	perinate, calcite
VIII	11	B	115	scapula	left	perinate, calcite
VIII	11	B	116	thoracic vertebra fragment		body only, adult, phalanx stuck to it via calcite
VIII	11	B	117	tibia fragment	right	distal fragment, adult, calcite covered
VIII	11	B	118	cuboid	left	damaged, adult, calcite
VIII	11	B	119	ulna fragment	left	distal portion, adult, covered in calcite
VIII	11	B	120	third metacarpal fragment	right	proximal fragment, adult, covered in calcite
VIII	11	B	121	second metacarpal	right	proximal fragment, adult, covered in calcite
VIII	11	B	122	navicular	left	adult, calcite, damaged

$\left.\begin{array}{ccccccc}\text { VIII } & 11 & \text { B } & 123 & \begin{array}{c}\text { nasals and frontal } \\ \text { fragments }\end{array} & \text { both } & \begin{array}{c}\text { possible subadult, } \\ \text { sutures are fused, but } \\ \text { still open }\end{array} \\ \hline \text { VIII } & 11 & \text { B } & 124 & \text { humerus fragment } & \text { left } & \begin{array}{c}\text { perinate, calcite, } \\ \text { distal fragment }\end{array} \\ \hline \text { VIII } & 11 & \text { B } & 125 & \text { ulna fragment } & \text { left } & \begin{array}{c}\text { subadult } \sim \text { 1 year of } \\ \text { age, proximal } \\ \text { fragment, calcite }\end{array} \\ \hline \text { VIII } & 11 & \text { B } & 126 & \text { ulna fragment } & \text { right } & \begin{array}{c}\text { perinate, proximal } \\ \text { fragment, calcite }\end{array} \\ \hline \text { VIII } & 11 & \text { B } & 127 & \text { ischium } & \text { left } & \text { perinate, calcite } \\ \hline \text { VIII } & 11 & \text { B } & 128 & \text { rib fragment } & \text { undetermined } & \text { shaft fragment, calcite } \\ \hline \text { VIII } & 11 & \text { B } & 129 & \text { rib fragment } & \text { undetermined } & \text { shaft fragment, calcite } \\ \hline \text { VIII } & 11 & \text { B } & 130 & \text { rib fragment } & \text { undetermined } & \text { shaft fragment, calcite } \\ \hline \text { VIII } & 11 & \text { B } & 131 & \text { rib fragment } & & \text { left } \\ \text { VIII } & 11 & \text { B } & 132 & \text { first distal manual } \\ \text { in calcite, lower rib }\end{array}\right]$

VIII	11	B	139	second metatarsal	right	adult, calcite	78.07 mm
VIII	11	B	140	metatarsal		possible third right, calcite covers facets	70.66 mm
VIII	11	B	141	fifth metatarsal fragment	right	proximal fragment, adult, covered in calcite	
VIII	11	B	142	fifth metatarsal fragment	left	proximal fragment, adult, covered in calcite	
VIII	11	B	143	intermediate pedal phalanx		adult, calcite	16.27 mm
VIII	11	B	144	intermediate pedal phalanx		adult, calcite	15.31 mm
VIII	11	B	145	intermediate pedal phalanx		adult, calcite	13.81 mm
VIII	11	B	146	intermediate pedal phalanx		adult, calcite	12.54 mm
VIII	11	B	147	thoracic vertebra fragment		body and lamina, transverse processes are broken off, adult, calcite, mid thoracic	
VIII	11	B	148	thoracic vertebra fragment		inferior articular facets and part of the lamina, adult, calcite	
VIII	11	B	149	cervical vertebra		adult, calcite, probably C7	
VIII	11	B	150	rib fragment	undetermined	shaft fragment, adult, mid rib, calcite	
VIII	11	B	151	rib fragment	undetermined	shaft fragment, adult, mid rib, calcite	

VIII	11	B	152	rib fragment	undetermined	shaft fragment, adult, mid rib, calcite	
VIII	11	B	153	rib fragment	undetermined	shaft fragment, adult, lower rib, calcite	
VIII	11	B	154	rib fragment	right	rib 1, vertebra fragment, adult, calcite	
VIII	11	B	155	temporal, parietal, and occipital fragment	left	sutures are still very open, young adult, calcite	
VIII	11	B	156	cranial fragment	undetermined	adult, calcite	
VIII	11	B	157	cranial fragment	undetermined	adult, calcite	
VIII	11	B	158	ilium	left	perinate, calcite	
VIII	11	B	159	femur fragment	probable left	perinate, proximal fragment, calcite	
VIII	11	B	160	radius fragment	left	perinate, damage to the proximal end, calcite	
VIII	11	B	161	ulna fragment	right	perinate, damage to the distal end, calcite	
VIII	11	B	162	proximal manual phalanx		adult, calcite	45.88 mm
VIII	11	B	163	proximal manual phalanx fragment		adult, calcite	
VIII	11	B	164	intermediate manual phalanx		adult, calcite	30.09 mm
VIII	11	B	165	proximal pedal phalanx		adult, calcite	24.62 mm

VIII	11	B	166	proximal pedal phalanx		adult, calcite	24.6 mm
VIII	11	B	167	proximal pedal phalanx		adult, calcite	24.04 mm
VIII	11	B	168	proximal pedal phalanx		adult, calcite	28.03 mm
VIII	11	B	169	first distal pedal phalanx		adult, calcite	22.06 mm
VIII	11	B	170	hamate	left	adult calcite	
VIII	11	B	171	capitate	left	adult calcite	
VIII	11	B	172	hamate	right	adult calcite	
VIII	11	B	173	trapezium	right	adult calcite	
VIII	11	B	174	maxilla fragment	right	young child, no teeth present but the molar crypts are open, calcite	
VIII	11	B	175	femur fragment	undetermined	proximal fragment, perinate, covered in calcite	
VIII	11	B	176	radius fragment	undetermined	proximal epiphysis, at least a year old, calcite	
VIII	11	B	177	thoracic vertebra fragment		unfused body, less than 3, calcite	
VIII	11	B	178	mandible fragment		anterior portion, adult, many broken roots in crypts, calcite	

VIII	11	B	179	mandible fragment		left portion with first and second molar, adult, calcite	M1 anterior to posterior 12.48, lingual to buccal 11.22, 6.35 crown height, M2 anterior to posterior 10.69 lingual to buccal 9.91, 6.63 crown height
VIII	11	B	180	mandible fragment		anterior portion, subadult, teeth have erupted but are not in the crypt, calcite	
VIII	11	B	181	rib fragment	left	subadult, calcite, mid rib, shaft fragment	
VIII	11	B	182	rib fragment	left	subadult, calcite, mid rib, shaft fragment	
VIII	11	B	183	rib fragment	left	subadult, calcite, upper rib, shaft fragment	
VIII	11	B	184	rib fragment	right	subadult, calcite, upper rib, sternal and shaft fragment	
VIII	11	B	185	rib fragment	left	subadult, calcite, upper rib, shaft fragment	
VIII	11	B	186	rib fragment	left	subadult, calcite, upper rib, shaft fragment	

VIII	11	B	187	rib fragment	left	subadult, calcite, mid rib, shaft fragment	
VIII	11	B	188	rib fragment	right	possibly the first rib, subadult, calcite, vertebral end	
VIII	11	B	189	interproximal pedal phalanx		adult, calcite	15 mm
VIII	11	B	190	interproximal pedal phalanx		adult, calcite	8.76 mm
VIII	11	B	191	distal manual phalanx		adult, calcite	16.48 mm
VIII	11	B	192	distal pedal phalanx		adult, calcite	9.59 mm
VIII	11	B	193	proximal manual phalanx		perinate, calcite	16.24 mm
VIII	11	B	194	intermediate manual phalanx		adult, calcite	19.07 mm
VIII	11	B	195	intermediate manual phalanx fragment		adult, distal end is broken	
VIII	11	B	196	intermediate manual phalanx		adult, calcite	22.75 mm
VIII	11	B	197	cranial fragment		unidentified, adult, calcite	
VIII	11	B	198	cranial fragment		unidentified, adult, calcite	
VIII	11	B	199	cranial fragment		unidentified, adult, calcite	
VIII	11	B	200	thoracic vertebra fragment		body fragment, adult, calcite	
VIII	11	B	201	thoracic vertebra fragment		lamina and transverse process fragment,	

adult, calcite

VIII	11	B	202	vertebra fragment		superior articular facet, probably lumbar, calcite, adult	
VIII	11	B	203	scaphoid	left	adult, calcite	
VIII	11	B	204	trapezoid	right	adult, calcite	
VIII	11	B	205	trapezium	left	adult, calcite	
VIII	11	B	206	trapezium	right	adult, calcite	
VIII	11	B	207	rib fragment	undetermined	subadult, shaft fragment, calcite	
VIII	11	B	208	rib fragment	undetermined	subadult, shaft fragment, calcite	
VIII	11	B	209	rib fragment	undetermined	subadult, shaft fragment, calcite	
VIII	11	B	210	rib fragment	undetermined	subadult, shaft fragment, calcite	
VIII	11	B	211	metacarpal fragment		distal end, adult, calcite	
VIII	11	B	212	metatarsal fragment		distal end, adult, calcite	
VIII	11	B	213	metatarsal fragment		distal end, adult, calcite	
VIII	11	B	214	fifth metacarpal fragment	right	head is broken off, calcite, adult	
VIII	11	B	215	first metacarpal fragment	probable left	proximal fragment, adult, calcite	
VIII	11	B	216	first proximal pedal phalanx		perinate, calcite	9.12 mm

VIII	11	B	217	first metatarsal	undetermined	perinate, calcite	19.48 mm
VIII	11	B	218	distal manual phalanx		adult, calcite	16.85 mm
VIII	11	B	219	distal pedal phalanx		adult, calcite	10.47 mm
VIII	11	B	220	cuneiform		possibly the second right, adult, calcite	
VIII	11	B	221	scaphoid	left	adult calcite	
VIII	11	B	222	triquetral	right	adult calcite	
VIII	11	B	223	trapezium	left	adult calcite	
VIII	11	B	224	occipital fragment	right	basilar portion of a new born	
VIII	11	B	225	neural arch	left	perinate, thoracic, calcite	
VIII	11	B	226	neural arch	left	perinate, thoracic, calcite	
VIII	11	B	227	neural arch	left	perinate, thoracic, calcite	
VIII	11	B	228	neural arch	left	perinate, lumbar, calcite	
VIII	11	B	229	neural arch	right	perinate, lumbar, calcite	
VIII	11	B	230	third metacarpal fragment	left	adult, proximal fragment, calcite	
VIII	11	B	231	capitate	right	subadult, calcite	
VIII	11	B	232	rib fragment	left	adult, upper rib, , shaft fragment	
VIII	11	B	233	rib fragment	undetermined	subadult, sternal fragment, calcite	
VIII	11	B	234	ulna fragment	probable left	proximal fragment, adult, calcite	

VIII	11	B	235	humerus fragment	probable left	distal fragment of part of the trochlea, calcite
VIII	11	B	236	cranial fragment		possibly temporal or frontal, adult, calcite
VIII	11	B	237	cranial fragment		subadult, younger than 5, calcite
VIII	11	B	238	cranial fragment		subadult, younger than 5, calcite
VIII	11	B	239	occipital		subadult, younger than 5 - probably perinate, lateral portion, calcite
VIII	11	B	240	manubrium fragment		adult, superior portion, calcite
VIII	11	B	241	femur fragment	undetermined	adult, calcite, medial portion just above the condyles
VIII	11	B	242	cranial fragment		adult, calcite, probably part of the occipital
VIII	11	B	243	femur fragment	undetermined	adult, distal condyle fragment, calcite
VIII	11	B	244	humerus fragment	right	distal portion of part of the capitulum, calcite, adult
VIII	11	B	245	talus fragment	right	posterior portion, adult, calcite
VIII	11	B	246	neural arch	left	thoracic, perinate
VIII	11	B	247	neural arch	right	lumbar, perinate
VIII	11	B	248	neural arch	right	lumbar, perinate

VIII	11	B	249	sacral body	perinate
VIII	11	B	250	thoracic vertebra fragment	adult, body and left pedicle area, calcite
VIII	11	B	251	vertebra fragment	adult, calcite, lamina fragment, probable lumbar
VIII	11	B	252	vertebra fragment	adult, body fragment, probably lumbar
VIII	11	B	253	first metatarsal fragment	proximal fragment, adult, calcite
VIII	11	B	254	coccyx	adult, calcite, just the horns
VIII	11	B	255	cervical vertebra fragment	adult, calcite, C1, fragment with two articular facets and part of the transverse process
VIII	11	B	256	metacarpal	perinate
VIII	11	B	257	epiphysis fragment	subadult, head fragment of humerus or femur, calcite
VIII	11	B	258	cranial fragment	perinate, calcite

calcite

VIII	11	B	262	lumbar vertebra fragment		unfused body, less than 3, calcite	
VIII	11	B	263	thoracic vertebra fragment		unfused body, less than 3, calcite	
VIII	11	B	264	proximal manual phalanx fragment		adult, proximal end, calcite	
VIII	11	B	265	vertebra fragment		perinate, body, possibly cervical	
VIII	11	B	266	temporal fragment		adult, calcite	
VIII	11	B	267	femur fragment	right	perinate, proximal fragment, calcite	
VIII	11	B	268	maxilla fragment	left	probable adult, empty crypts for incisors, canine, premolar	
VIII	11	B	269	maxilla fragment	left	subadult, 7 years +/24 months, first adult molar present, deciduous molars present, lateral incisor (permanent) ready to erupt, in fact it may have been infected since it was erupting strange, premolar crowns are formed, caries in the deciduous teeth, slight carabelli's	11.22 mm anterior to posterior, 10.71 mm lingual to buccal

VIII	11	B	270	temporal fragment	undetermined	petrous portion, adult, calcite
VIII	11	B	271	trapezoid	right	adult, calcite
VIII	11	B	272	rib fragment	undetermined	shaft fragment, adult, calcite
VIII	11	B	273	rib fragment	left	subadult, vertebral en fragment
VIII	11	B	274	vertebra fragment		adult, calcite, probably cervical fragment
VIII	11	B	275	rib fragment	left	perinate, probably 10th rib, calcite
VIII	11	B	276	rib fragment	right	perinate, first rib, calcite
VIII	11	B	277	rib fragment	right	perinate, upper rib, vertebral end
VIII	11	B	278	rib fragment	right	perinate, mid rib, vertebral end
VIII	11	B	279	neural arch	left	perinate, thoracic, calcite
VIII	11	B	280	neural arch	right	perinate, thoracic, calcite
VIII	11	B	281	neural arch	right	perinate, thoracic, calcite
VIII	11	B	282	neural arch	right	perinate, thoracic, calcite
VIII	11	B	283	vertebra fragment		cervical body perinate, calcite cervical body perinate, calcite
VIII	11	B	284	vertebra fragment		rent

VIII	11	B	285	neural arch	left	thoracic, perinate, calcite
VIII	11	B	286	neural arch	right	thoracic, perinate, calcite
VIII	11	B	287	neural arch	left	thoracic, perinate, calcite
VIII	11	B	288	neural arch	right	thoracic, perinate, calcite
VIII	11	B	289	neural arch	right	thoracic, perinate, calcite
VIII	11	B	290	neural arch	right	cervical, perinate, calcite
VIII	11	B	291	rib fragment	left	perinate, upper rib, vertebral end, calcite
VIII	11	B	292	neural arch	left	perinate, cervical, calcite
VIII	11	B	293	neural arch	left	perinate, cervical, calcite
VIII	11	B	294	neural arch	right	perinate, cervical, calcite
VIII	11	B	295	vertebra fragment		perinate body, possibly cervical, calcite
VIII	11	B	296	vertebra fragment		neral arch

VIII	11	B	299	radius fragment	right	distal end, perinate, calcite	
VIII	11	B	300	distal phalanx		subadult, probably pedal, calcite	
VIII	11	B	301	distal manual phalanx		adult, calcite	18.08 mm
VIII	11	B	302	distal pedal phalanx		subadult possibly, with a intermediate phalanx used to it	
VIII	11	B	303	clavicle fragment	left	damage to the lateral end, perinate, calcite	
VIII	11	B	304	rib fragment	possible left	shaft fragment, perinate, upper rib, calcite	
VIII	11	B	305	rib fragment	undetermined	shaft fragment, perinate, calcite	
VIII	11	B	306	rib fragment	right	shaft fragment, perinate, calcite	
VIII	11	B	307	radius fragment	left	proximal fragment, perinate, calcite	
VIII	11	B	308	clavicle fragment	right	lateral fragment, perinate, calcite	
VIII	11	B	309	rib fragment	undetermined	perinate, shaft fragment, calcite, mid rib	
VIII	11	B	310	rib fragment	right	perinate, shaft fragment, calcite, upper rib	
VIII	11	B	311	intermediate pedal phalanx		adult, calcite	14.92 mm

VIII	11	B	312	metacarpal fragment	undetermined	proximal end, perinate, calcite	
VIII	11	B	313	metatarsal	undetermined	perinate, calcite	21.15 mm
VIII	11	B	314	rib fragment	possible left	perinate, calcite	19.94 mm
VIII	11	B	315	metatarsal	undetermined	perinate, calcite	19.98 mm
VIII	11	B	316	metatarsal	undetermined	perinate, calcite	18.56 mm
VIII	11	B	317	metacarpal	undetermined	perinate, calcite	
VIII	11	B	318	neural arch	right	thoracic, perinate, calcite	
VIII	11	B	319	neural arch		perinate, cervical, calcite	
VIII	11	B	320	thoracic vertebra fragment		subadult, thoracic vertebra lamina fused, pedicle not fused yet	
VIII	11	B	321	radius fragment	undetermined	proximal epiphysis, subadult, over 5 years of age, probably closer to 9	
VIII	11	B	322	pubis	right	perinate, calcite	
VIII	11	B	323	neural arch	left	perinate, thoracic, calcite	
VIII	11	B	324	neural arch	right	perinate, thoracic, calcite	
VIII	11	B	325	neural arch	right	perinate, thoracic, calcite	
VIII	11	B	326	neural arch	left	perinate, lumbar, calcite	
VIII	11	B	327	neural arch	right	perinate, probable lumbar, calcite	
VIII	11	B	328	neural arch	left	perinate, lumbar,	

calcite

VIII	11	B	329	neural arch	left	perinate, cervical, calcite
VIII	11	B	330	vertebra fragment		perinate, body unfused, possible cervical, calcite
VIII	11	B	331	rib fragment	left	perinate, most of the rib, minus the sternal end, calcite
VIII	11	B	332	vertebra fragment		perinate, body fragment, calcite
VIII	11	B	333	neural arch fragment	undetermined	cervical, perinate, calcite
VIII	11	B	334	rib fragment	undetermined	perinate, calcite, shaft fragment, mid rib
VIII	11	B	335	rib fragment	probable left	perinate, calcite, neck/shaft fragment, upper rib
VIII	11	B	336	epiphysis fragment	undetermined	unknown epiphysis
VIII	11	B	337	probable radius		fistal fragment of a
fragment	undetermined	perinate, calcite				

VIII	11	B	344	shaft fragment	undetermined	clavicle
VIII	11	B	345	zygomatic fragment	left	adult, calcite
VIII	11	B	346	maxilla fragment	undetermined	adult, calcite
VIII	11	B	347	temporal fragment	undetermined	adult, calcite
VIII	11	B	348	temporal fragment	undetermined	adult, calcite
VIII	11	B	349	temporal fragment	undetermined	adult, calcite
VIII	11	B	350	temporal fragment	right	adult, calcite
VIII	11	B	351	temporal fragment	undetermined	adult, calcite
VIII	11	B	352	temporal fragment	undetermined	adult, calcite
VIII	11	B	353	cranial fragment		adult, calcite
VIII	11	B	354	cranial fragment		adult, calcite
VIII	11	B	355	cranial fragment		adult, calcite
VIII	11	B	356	rib fragment?		adult, calcite
VIII	11	B	357	metacarpal, metatarsal fragment		adult, calcite, head fragment
VIII	11	B	358	shaft fragment	undetermined	subadult, calcite
VIII	11	B	359	calcaneus fragment?	undetermined	adult, calcite
VIII	11	B	360	shaft fragment	undetermined	adult, calcite
VIII	11	B	361	32 unidentified fragments		
VIII	11	B	362	molar	left	first lower
VIII	11	B	363	molar	left	first lower
VIII	11	B	364	molar	left	first lower
VIII	11	B	365	parietal fragments	undetermined	three small fragments, with evidence of porotic hyperostosis

VIII	11	C	1	ulna fragment	left	b72, proximal fragment, adult, calcite	
VIII	11	C	2	humerus fragment	left	b72, subadult, distal fragment, calcite, older than 5 probably closer to 9 probably	
VIII	11	C	3	talus	left	b72, adult, badly deteriorated, calcite	
VIII	11	C	4	femur fragment	right	b72, subadult, proximal fragment with part of the shaft, badly deteriorated	38.35 mm
VIII	11	C	5	femur fragment	left	b72, distal medial condyle, possible subadult	
VIII	11	C	6	femur fragment	left	b72, distal lateral condyle, possible subadult	
VIII	11	C	7	tibia fragment	possible right	b72, proximal fragment of the condyles, adult, calcite	
VIII	11	C	8	tibia fragment	possible left	b72, proximal fragment of the condyles, adult, calcite	
VIII	11	C	9	femur fragment	right	b72, medial condyle, adult	
VIII	11	C	10	femur fragment	left	b72, lateral condyle	

VIII	11	C	11	humerus fragment	right	b72, subadult, proximal head fragment, calcite	36.69 mm head diameter
VIII	11	C	12	humerus fragment	left	b72, adult, proximal head fragment, calcite	43.19 mm head diameter
VIII	11	C	13	humerus epiphysis	right	b72, proximal head epiphysis, calcite, older than 5 probably, but younger than 9	
VIII	11	C	14	calcaneus	left	b72, possible subadult based on size, calcite	66.44 mm length, 35.8 mm width
VIII	11	C	15	ulna fragment	left	b72, proximal fragment, adult, calcite	
VIII	11	C	16	talus	left	b72, possible subadult, too damaged to take measurements, calcite	
VIII	11	C	17	sternum fragment		b72, proximal fragment, superior surface is unfused, subadult, calcite	
VIII	11	C	18	thoracic vertebra fragment		b72, body fragment, upper thoracic, slight lipping on the inferior margin	
VIII	11	C	19	femur fragment	possible right	b72, adult, distal fragment with both condyles, badly deteriorated, calcite	

VIII	11	C	20	femur fragment	undetermined	b72, distal condyle fragment, adult, calcite
VIII	11	C	21	tibia fragment	probable right	b72, lateral superior condyle, adult, calcite
VIII	11	C	22	calcaneus fragment	right	b72, anterior fragment, subadult, mate to 14 , calcite
VIII	11	C	23	scapula fragment	right	b72, acromion fragment, adult, calcite
VIII	11	C	24	femur fragment	left	b72, proximal fragment, subadult, older than 5 years of age
VIII	11	C	25	femur fragment	left	b72, proximal fragment, subadult, around 5 years of age, smaller than 24
VIII	11	C	26	vertebra fragment		b72, body fragment, possible lumbar vertebra, calcite
VIII	11	C	27	os coxa fragment	undetermined	b72, acetabular fragment, possible subadult
VIII	11	C	28	scapula fragment	left	b72, acromion fragment, adult, calcite
VIII	11	C	29	tibia fragment	undetermined	b72, distal fragment, probable adult, calcite

VIII	11	C	30	pubis	left	b72, child, over 1 year possibly closer to 5, calcite
VIII	11	C	31	pubis	right	b72, child, over 1 year possibly closer to 5, calcite
VIII	11	C	32	scapula fragment	left	b72, attaches to 28, most lateral portion of the acromion, adult, calcite
VIII	11	C	33	vertebra fragment		b72, body fragment, adult, calcite, possible lumbar vertebra
VIII	11	C	34	vertebra fragment		b72, body fragment, adult, calcite, possible lumbar vertebra, slight crushing of the posterior area of the body
VIII	11	C	35	vertebra fragment		b72, subadult thoracic vertebra, upper thoracic, body and left lamina fragment, calcite
VIII	11	C	36	vertebra fragment		b72, body and left transverse process fragment, adult, calcite, probable 5th lumbar

VIII	11	C	37	os coxa fragment	probable left	b72, auricular surface fragment, calcite on surface obscures morphology, no deep billows suggests an adult of older age, some microporosity, possibly phase $3 / 4$, 30-39 years of age	
VIII	11	C	38	femur fragment	left	b72, proximal fragment, probable subadult, calcite	37.41 head diameter
VIII	11	C	39	femur fragments	undetermined	b72, one distal condyle in two fragments, calcite	
VIII	11	C	40	ulna fragments	left	distal fragment with some of the shaft, adult, calcite	
VIII	11	C	41	fibula fragments	left	proximal fragments, adult, covered in calcite	
VIII	11	C	42	ulna fragments	right	distal fragment with some of the shaft, adult, calcite, mate to 40	
VIII	11	C	43	first metatarsal fragments	right	adult, calcite, badly deteriorated, too fragmentary to measure	

VIII	11	C	44	tibia	probable left	subadult, probably closer to 9 years of age, proximal and distal epiphyses are not fused, completely covered in calcite	19.4 cm length
VIII	11	C	45	fibula fragment	left	distal fragment, adult, calcite	
VIII	11	C	46	humerus fragments	left	distal and proximal fragments, subadult, covered in calcite, distal epiphysis is not fused, approximately 5 years of age based upon size	~ 13.7 cm length
VIII	11	C	47	humerus fragment	left	distal fragment, subadult, covered in calcite, distal epiphysis is not fused, older than 5 years possibly closer to 9	
VIII	11	C	48	temporal bone	left	mastoid process is short but very wide, possible male heavily coated in calcite	
VIII	11	C	49	talus	right	adult, calcite	49.98 mm length, 37.9 mm width
VIII	11	C	50	humerus fragment	left	subadult, proximal fragment, calcite, probably close to 9 in	

VIII	11	C	51	radius fragment	left	proximal fragment, calcite, subadult, probably close to 5 years of age	
VIII	11	C	52	first metacarpal	left	adult, calcite	43.14 mm
VIII	11	C	53	first metacarpal	right	adult, calcite	46.43 mm
VIII	11	C	54	first proximal pedal phalanx		adult, calcite	30.13 mm
VIII	11	C	55	first proximal pedal phalanx		adult, calcite	29.1 mm
VIII	11	C	56	proximal manual phalanx		adult, calcite	40 mm
VIII	11	C	57	proximal manual phalanx		adult, calcite	43.26 mm
VIII	11	C	58	first proximal manual phalanx		adult, calcite	32.17 mm
VIII	11	C	59	proximal pedal phalanx		adult, calcite	22.52 mm
VIII	11	C	60	proximal pedal phalanx		adult, calcite	19.63 mm
VIII	11	C	61	proximal pedal phalanx		adult, calcite	20.51 mm
VIII	11	C	62	intermediate manual phalanx		subadult, unfused epiphyses, calcite	20.28 mm
VIII	11	C	63	intermediate manual phalanx		subadult, unfused epiphyses, calcite	29.28 mm

VIII	11	C	64	fourth metacarpal	right	adult, calcite
VIII	11	C	65	fifth metatarsal	right	adult, calcite
VIII	11	C	66	fifth metatarsal	right	subadult, unfused distal epiphysis, calcite
VIII	11	C	67	fourth metatarsal	probable left	subadult, unfused distal epiphysis, calcite
VIII	11	C	68	metatarsal fragment	possible left	possibly the second metatarsal proximal fragment, distal head has not fused yet, calcite, probably around 8 years old
VIII	11	C	69	metatarsal fragment	possible left	possible third metatarsal proximal fragment, calcite, probably around 8 years old
VIII	11	C	70	metatarsal fragment	possible right	possible third metatarsal proximal fragment, distal head has not fused, calcite, probably around 8 years old
VIII	11	C	71	fourth metatarsal	left	subadult, probably 8 years of age or a little younger, calcite, distal head has not fused yet

VIII	11	C	72	metacarpal	undetermined	proximal and distal epiphyses have not fused yet, younger than 8 , calcite	
VIII	11	C	73	metacarpal	undetermined	proximal and distal epiphyses have not fused yet, younger than 8, calcite	
VIII	11	C	74	metacarpal	undetermined	proximal and distal epiphyses have not fused yet, younger than 8, calcite	
VIII	11	C	75	unidentified shaft fragment	undetermined	long bone shaft fragment	
VIII	11	C	76	patella	probable left	b72, subadult	24.57 mm height, 24.16 mm width
VIII	11	C	77	3 unidentified fragments	undetermined	b 72	
VIII	11	C	78	ulna fragments	right	adult, proximal and shaft fragment, light calcite	
VIII	11	C	79	tibia fragments	undetermined	possible subadult based on size, calcite covers completely, probable proximal shaft fragment.	
VIII	11	C	80	radius	right	adult, calcite	24.8 cm length, 14.89 mm medial to lateral, 12.47 mm anterior to

VIII	11	C	81	parietal	left	adult, covered with calcite, broken at the suture lines, suggesting a younger individual
VIII	11	C	82	femur fragment	undetermined	shaft fragment, adult, covered in calcite
VIII	11	C	83	ulna fragment	left	proximal fragment, adult, calcite
VIII	11	C	84	fibula fragment	undetermined	shaft fragment, adult, calcite
VIII	11	C	85	humerus fragment	right	shaft fragment, probable subadult, calcite
VIII	11	C	86	femur fragment	undetermined	shaft fragment, calcite, probable subadult
VIII	11	C	87	thoracic vertebra fragment		adult, lamina fragment, upper thoracic, calcite
VIII	11	C	88	lumbar vertebra fragment		subadult, body fragment, covered in calcite
VIII	11	C	89	cervical vertebra		C2, adult, calcite
VIII	11	C	90	cervical vertebra		C2, adult, calcite

VIII	11	C	91	thoracic vertebra fragment		transverse processes are broken, damage to anterior portion of the body, mid thoracic, adult, calcite
VIII	11	C	92	vertebra fragment		subadult, probable lumbar vertebra, body fragment, calcite
VIII	11	C	93	vertebra fragment		subadult, probable thoracic vertebra, body with epiphyseal lines of the pedicle still visible, lamina is broken off
VIII	11	C	94	rib fragment		adult, calcite, shaft fragment, mid rib
VIII	11	C	95	rib fragment		adult, calcite, shaft fragment, mid rib
VIII	11	C	96	rib fragment		adult, calcite, shaft fragment, mid rib
VIII	11	C	97	third metatarsal fragment	right	proximal fragment, adult, calcite
VIII	11	C	98	metacarpal/metatarsal fragment		shaft and part of the distal end, adult, calcite
VIII	11	C	99	metatarsal fragment		distal end, adult, calcite
VIII	11	C	100	second metacarpal fragment	right	proximal fragment, adult, calcite
VIII	11	C	101	first cuneiform	left	adult calcite

VIII	11	C	102	patella	left	adult calcite	
VIII	11	C	103	first metatarsal	left	adult calcite	
VIII	11	C	104	femur and clavicle fragment	both right	clavicle is a lateral fragment which is stuck to the trochanteric crest of a proximal fragment that lacks the head, adult calcite	
VIII	11	C	105	ilium fragment	right	crest is broken off, subadult, older than 6 , probably closer to 9 years of age, calcite	
VIII	11	C	106	occipital fragment		basioccipital fragment, unfused spheno occipital suture, subadult under 18, calcite	
VIII	11	C	107	proximal pedal phalanx fragment		part of the distal end is broken, adult, calcite	30.81 mm
VIII	11	C	108	first distal pedal phalanx		adult calcite	
VIII	11	C	109	metacarpal fragment		adult calcite, damage to distal and proximal ends	
VIII	11	C	110	proximal manual phalanx fragment		subadult, calcite, damage to proximal end	

VIII	11	C	111	proximal manual phalanx fragment		subadult, calcite, damage to proximal end
VIII	11	C	112	ilium fragments	left	mate to 105 , subadult, probably closer to 9 years of age, calcite
VIII	11	C	113	cervical vertebra fragments		most of the body and lamina, adult, calcite, lower cervical
VIII	11	C	114	thoracic vertebra fragments		adult, mid thoracic, calcite
VIII	11	C	115	thoracic vertebra fragments		adult, upper thoracic, calcite
VIII	11	C	116	mandible fragments		left ramus fragments, adult, calcite
VIII	11	C	117	femur fragments	right	subadult, proximal and shaft fragments, calcite, probably closer to 9 years of age or older
VIII	11	C	118	occipital fragment		possible subadult based on size, calcite
VIII	11	C	119	frontal fragment		right above the frontal sinus, crest is irregular and beginning of groove is on the fragment, calcite, possible subadult with cranial modification

VIII	11	C	120	humerus fragment	right	adult, calcite, badly damaged, triangular shaped fossa, angle is wide but not flat, medial condyle is level	$\begin{gathered} 61.88 \mathrm{~mm} \\ \text { epicondylar width } \end{gathered}$
VIII	11	C	121	talus	left	adult calcite	60.09 mm length, 41.69 mm width
VIII	11	C	122	talus	right	possible subadult, damage to the posterior and lateral edges	
VIII	11	C	123	patella	left	adult calcite	
VIII	11	C	124	rib fragments	undetermined	adult, shaft fragment, calcite, mid rib	
VIII	11	C	125	rib fragments	right	adult, calcite, vertebral end, lower rib probably 11	
VIII	11	C	126	rib fragments	undetermined	sub adult, shaft fragment, calcite, mid rib	
VIII	11	C	127	rib fragments	undetermined	adult, shaft fragment, calcite, upper rib	
VIII	11	C	128	parietal fragments	undetermined	adult, calcite	
VIII	11	C	129	mandible fragment		adult, right portion of the ramus minus the mandibular condyle, calcite, cannot determine anything about the teeth with	

this fragment

VIII	11	C	130	thoracic vertebra fragments		adult, mostly intact, lower thoracic, probably T10 or 11, calcite	
VIII	11	C	131	vertebra fragments		subadult, probable lower cervical or thoracic, calcite	
VIII	11	C	132	proximal manual phalanx		adult calcite, slightly raised margins	39.9 mm
VIII	11	C	133	intermediate manual phalanx		adult calcite, slightly raised margins	28.3 mm
VIII	11	C	134	proximal manual phalanx		subadult	27.22 mm
VIII	11	C	135	proximal manual phalanx fragment		adult calcite, head broken off	
VIII	11	C	136	navicular	left	adult, calcite	
VIII	11	C	137	navicular	left	adult, calcite	
VIII	11	C	138	scaphoid	right	adult, calcite	
VIII	11	C	139	clavicle fragment	right	adult, calcite, most of the clavicle, probably the mate to 140	
VIII	11	C	140	clavicle fragment	left	adult, calcite, lateral fragment, probably the mate to 139	

$\left.\begin{array}{cccccccc}\text { VIII } & 11 & \text { C } & 141 & \text { calcaneus } & \text { left } & \text { adult, calcite } & \begin{array}{c}\text { length 73.85 mm, } \\ 43.66 \mathrm{~mm} \text { width }\end{array} \\ \hline \text { VIII } & 11 & \text { C } & 142 & \text { talus } & \text { left } & \text { adult, calcite } & \begin{array}{c}47.97 \mathrm{~mm} \text { length, } \\ 40.32 \mathrm{~mm} \text { width }\end{array} \\ \hline \text { VIII } & 11 & \text { C } & 143 & \text { patella } & \text { right } & \text { adult, calcite } & \begin{array}{c}44.64 \mathrm{~mm} \text { height, } \\ 46.60 \mathrm{~mm} \text { width }\end{array} \\ \hline \text { VIII } & 11 & \text { C } & 144 & \text { cervical vertebra } & & \begin{array}{c}\text { adult, calcite, lower } \\ \text { cervical, probably C7, } \\ \text { slight lipping on the } \\ \text { superior border of the } \\ \text { body }\end{array} \\ \hline \text { VIII } & 11 & \text { C } & 145 & \text { cervical vertebra } & & \text { adult, calcite, upper } \\ \text { cervical }\end{array}\right]$

VIII	11	C	152	femur fragment	undetermined	probable femur, subadult, calcite, larger than 152	
VIII	11	C	153	rib fragment	left	neck and shaft fragment of a subadult, calcite	
VIII	11	C	154	rib	left	first rib, adult, calcite	
VIII	11	C	155	rib fragment	undetermined	subadult, calcite, mid rib, sterna fragment	
VIII	11	C	156	rib fragment	undetermined	adult, mid rib, shaft fragment, calcite	
VIII	11	C	157	humerus	left	perinate, calcite	64.71 mm
VIII	11	C	158	radius fragment	right	proximal fragment, subadult, probably ~ 5 years old, calcite	
VIII	11	C	159	metacarpal fragment	undetermined	subadult, epiphyses are not fused	
VIII	11	C	160	metatarsal fragment	undetermined	subadult, epiphyses are not fused	
VIII	11	C	161	scapula fragment	right	glenoid and acromion fragment, subadult, unfused glenoid, calcite	
VIII	11	C	162	thoracic vertebra		subadult, calcite, upper thoracic	
VIII	11	C	163	thoracic vertebra		subadult, calcite, upper thoracic	
VIII	11	C	164	metacarpal	undetermined	subadult, epiphyses	32.28 mm

are not fused							
VIII	11	C	165	metacarpal	undetermined	subadult, epiphyses are not fused	34.34 mm
VIII	11	C	166	fifth metatarsal	undetermined	subadult, epiphyses are not fused	44.34 mm
VIII	11	C	167	proximal manual phalanx		subadult, epiphyses are not fused	26.12 mm
VIII	11	C	168	first proximal pedal phalanx		adult, calcite	35.75 mm
VIII	11	C	169	first proximal manual phalanx		adult, calcite	26.04 mm
VIII	11	C	170	proximal manual phalanx fragment		adult, calcite	
VIII	11	C	171	proximal manual phalanx fragment		adult, calcite, slightly raised lateral margins	
VIII	11	C	172	first cuneiform	left	adult, calcite	
VIII	11	C	173	first cuneiform	right	adult, calcite, badly damaged, cannot determine if it is the mate to 172	
VIII	11	C	174	cuboid	left	adult, calcite	
VIII	11	C	175	second cuneiform	left	adult, calcite	
VIII	11	C	176	sacrum fragment		subadult, unfused first sacral vertebra, pedicle lines are very visible still, ala fused but not the lamina, age 2-5	

VIII	11	C	185	first distal pedal \qquad		adult, calcite	26.9 mm
VIII	11	C	186	rib fragment	left	subadult, mid rib, vertebral and shaft fragment, calcite	
VIII	11	C	187	rib fragment	left	subadult, upper rib, calcite, shaft fragment	
VIII	11	C	188	rib fragment	right	subadult, mid rib, vertebral and shaft fragment, calcite	
VIII	11	C	189	rib fragment	right	subadult, lower rib, calcite, shaft fragment	
VIII	11	C	190	thoracic vertebra		adult, calcite, damage to body and right transverse process, upper thoracic	
VIII	11	C	191	thoracic vertebra		adult, calcite, mid thoracic, damage to the body and transverse process	
VIII	11	C	192	sacral vertebra		subadult, calcite, other small bones stuck to it, one of the lower sacral vertebrae, probably age $2-5$, lamina is fused	
VIII	11	C	193	tibia fragment	right	distal fragment, adult, calcite	
VIII	11	C	194	ischium fragment	left	probable subadult,	

$\left.\begin{array}{ccccccc}\hline & & & & & \text { calcite } \\ \text { VIII } & 11 & \text { C } & 195 & \text { femur fragment } & \text { undetermined } & \begin{array}{c}\text { proximal head } \\ \text { fragment only, } \\ \text { subadult, calcite }\end{array} \\ \hline \text { VIII } & 11 & \text { C } & 196 & \text { humerus fragment } & \text { probable right } & \begin{array}{c}\text { 35.97 mm head } \\ \text { diameter }\end{array} \\ \text { end not fused, greater } \\ \text { than 5 years of age, } \\ \text { calcite }\end{array}\right]$

VIII	11	C	206	scaphoid	left	adult calcite	
VIII	11	C	207	capitate	left	adult calcite	
VIII	11	C	208	lunate	left	adult calcite	
VIII	11	C	209	trapezium	left	adult calcite	
VIII	11	C	210	first cuneiform	left	adult calcite	
VIII	11	C	211	cuboid	left	subadult, calcite	
VIII	11	C	212	second cuneiform	left	subadult, calcite	
VIII	11	C	213	third cuneiform	right	subadult, calcite	
VIII	11	C	214	third metacarpal fragment	right	head is broken off, calcite, adult	
VIII	11	C	215	metacarpal fragment	undetermined	possible fourth right, head is not fused, subadult, calcite	
VIII	11	C	216	metatarsal fragment		proximal end is damaged, adult, calcite	
VIII	11	C	217	third metatarsal fragment	left	head is broken off, calcite, adult	
VIII	11	C	218	proximal manual phalanx		subadult, calcite	30.98 mm
VIII	11	C	219	proximal pedal phalanx		adult calcite	28.82 mm
VIII	11	C	220	proximal pedal phalanx		adult calcite	25.45 mm
VIII	11	C	221	first proximal pedal \qquad phalanx		subadult, calcite	20.02 mm
VIII	11	C	222	proximal pedal phalanx		subadult, calcite	21.4 mm

VIII	11	C	223	scapula fragment	left	glenoid fragment, adult, calcite
VIII	11	C	224	patella	right	possible subadult, calcite
VIII	11	C	225	pubis	right	subadult, probably around 5 years of age, calcite
VIII	11	C	226	proximal manual phalanx		subadult, calcite
VIII	11	C	227	proximal manual phalanx		subadult, calcite
VIII	11	C	228	proximal manual phalanx fragment		subadult, calcite, proximal fragment
VIII	11	C	229	proximal pedal phalanx		subadult, proximal epiphysis is fused but the line is still visible
VIII	11	C	230	intermediate manual phalanx fragment		subadult, calcite, distal fragment
VIII	11	C	231	thoracic vertebra		subadult, pedicle line is still visible, upper thoracic, calcite
VIII	11	C	232	thoracic vertebra fragment		subadult, lamina fragment, calcite, upper thoracic
VIII	11	C	233	cervical vertebra fragment		subadult, lower cervical, calcite
VIII	11	C	234	vertebra fragment		possible lower cervical transverse process with superior articular facet, calcite

VIII	11	C	235	third metacarpal fragment	right	adult, proximal fragment, calcite	
VIII	11	C	236	metatarsal fragment		subadult, proximal fragment with an unfused epiphysis, almost complete	
VIII	11	C	237	metatarsal fragment		subadult, epiphyses are not fused, calcite	
VIII	11	C	238	metacarpal fragment		subadult, epiphyses are not fused, calcite	
VIII	11	C	239	metatarsal fragment		distal fragment, epiphysis not fused, calcite	
VIII	11	C	240	fifth metatarsal	right	adult, calcite, some damage to the proximal end	52.21 mm
VIII	11	C	241	metacarpal fragment		adult, probably the first, calcite	
VIII	11	C	242	first metacarpal	undetermined	subadult, calcite	23.58 mm
VIII	11	C	243	first metacarpal	undetermined	subadult, calcite	24.22 mm
VIII	11	C	244	proximal manual phalanx		adult, calcite, lateral margins defined	45.9 mm
VIII	11	C	245	intermediate manual phalanx		adult, calcite	19.02 mm
VIII	11	C	246	distal manual phalanx		adult, calcite	15.61 mm
VIII	11	C	247	hamate	left	adult, calcite	
VIII	11	C	248	hamate	left	adult, calcite	
VIII	11	C	249	triquetral	left	adult, calcite	
VIII	11	C	250	trapezium	left	adult, calcite	

$\left.\left.\begin{array}{cccccc}\text { VIII } & 11 & \text { C } & 251 & \text { vertebra fragment } & \\ \hline \text { VIII } & 11 & \text { C } & 252 & \begin{array}{c}\text { possible sternum } \\ \text { fragment }\end{array} & \begin{array}{c}\text { lamina fragment, } \\ \text { possible subadult }\end{array} \\ \hline \text { VIII } & 11 & \text { C } & 253 & \text { scapula fragments } & \text { right }\end{array} \begin{array}{c}\text { subadult, very young } \\ \text { child }\end{array}\right] \begin{array}{c}\text { subadult, acromion } \\ \text { and glenoid fragment, } \\ \text { calcite }\end{array}\right]$

VIII	11	C	261	metatarsal fragment	undetermined	subadult, proximal fragment, calcite
VIII	11	C	262	rib fragment	right	subadult, shaft fragment, upper rib, calcite
VIII	11	C	263	ulna fragment	possible left	very distal shaft fragment, possibly same bone as 264 , adult, calcite
VIII	11	C	264	ulna fragment	left	mid shaft fragment, adult, calcite
VIII	11	C	265	radius fragment	left	distal portion, adult, covered in calcite
VIII	11	C	266	talus fragment	left	subadult, damage to posterior and medial surfaces, calcite
VIII	11	C	267	radius fragment	probable left	subadult, distal fragment, ~ 1.5 years of age, calcite
VIII	11	C	268	radius fragment	undetermined	subadult, closer to 5 years of age, proximal fragment, calcite
VIII	11	C	269	humerus fragment	left	distal lateral fragment, adult, calcite, not enough for morphology or measurements
VIII	11	C	270	radius fragment	right	distal epiphysis, subadult, roughly 5

VIII	11	C	271	scaphoid	probable right	subadult, calcite
VIII	11	C	272	cuneiform	undetermined	subadult, facets are not easy to make out, calcite
VIII	11	C	273	phalanx		subadult, unfused proximal facet, distal end broken
VIII	11	C	274	cuneiform		possible right first, subadult, calcite
VIII	11	C	275	ossified cartilage		adult, calcite
VIII	11	C	276	ossified cartilage		adult, calcite
VIII	11	C	277	shaft fragment		shaft fragment, calcite
VIII	11	C	278	navicular	left	articulated foot 278286, adult, calcite
VIII	11	C	279	second cuneiform	left	articulated foot 278286, adult, calcite
VIII	11	C	280	third cuneiform	left	articulated foot 278286, adult, calcite
VIII	11	C	281	first proximal phalanx	left	articulated foot 278286, adult, calcite
VIII	11	C	282	first metatarsal	left	articulated foot 278286, adult, calcite
VIII	11	C	283	third metatarsal	left	articulated foot 278286, adult, calcite
VIII	11	C	284	fourth metatarsal	left	articulated foot 278286, adult, calcite
VIII	11	C	285	fifth metatarsal	left	articulated foot 278286, adult, calcite

VIII	11	C	286	second metatarsal	left	articulated foot 278286, adult, calcite
VIII	11	C	287	ischium	right	b72, subadult, probably around 6 years old, calcite
VIII	11	C	288	ischium	left	b72, subadult, probably around 6 years old, calcite
VIII	11	C	289	tibia fragment	left	b72, subadult, roughly 5 years of age, calcite, proximal fragment
VIII	11	C	290	radius fragment	right	b72, subadult, distal fragment, over 5 years of age, but not by much, calcite
VIII	11	C	291	femur fragment		b72, adult, calcite, head fragment only, too deteriorated to measure
VIII	11	C	292	ulna fragment	left	b72, adult, calcite, proximal fragment
VIII	11	C	293	lumbar vertebra fragment		b72, adult, calcite, lamina is badly damaged, probably L1
VIII	11	C	294	lumbar vertebra fragment		b72, adult, calcite, lamina is badly damaged, probably L2

VIII	11	C	295	os coxa fragment	undetermined	b72, adult, calcite, part of the lunate surface and ilium blade	
VIII	11	C	296	femur fragment	probable right	b72, subadult, unfused epiphysis, probably 9 or older, calcite, distal fragment, condyles only	
VIII	11	C	297	femur fragment	probable left	b72, subadult, unfused epiphysis, probably 9 or older, calcite, distal fragment, condyles only	
VIII	11	C	298	humerus fragments	undetermined	b72, shaft fragment, subadult, calcite	
VIII	11	C	299	molar	left	heavy wear, pin prick dentine exposure on posterior lingual cusp, root broken off	10.35 mm anterior to posterior, 12.15 mm lingual to buccal 6.27 ch
VIII	11	C	300	incisor	right	hair line dentine exposure, calcite on buccal surface	6.58 mm anterior to posterior, 5.48 mm lingual to buccal 7.15 ch , 13.19ch
VIII	11	C	301	proximal pedal phalanx	undetermined	some calcite and porosity, part of an articulated foot, wrapping says	26.06

medial, but it looks more proximal

VIII	11	C	302	incisor	right	modified with Ik, some calcite	8.05 mm anterior to posterior, 6.5 mm lingual to buccal 14.44 root
VIII	11	C	303	incisor	left	modified with Ik, some calcite, calculus on anterior surface at the CEJ	8.54 anterior to posterior, 6.91 lingual to buccal, 12.21 root
VIII	11	D	1	Humerus fragment	right	distal fragment, gray on posterior surface, triangular shaped fossa, medial epicondyle is slightly elevated	59.12 epicondylar breadth
VIII	11	D	2	talus	right	adult, light calcite and carbon	55.47 length, 38.72 width
VIII	11	D	3	calcaneus fragment	right	damage to the lateral portion of the bone, light calcite and carbon	77.47 length
VIII	11	D	4	cervical vertebra		C1, adult, light carbon and calcite	
VIII	11	D	5	cervical vertebra		probably C4-6	
VIII	11	D	6	calcaneus	left	adult, light calcite and carbon	79.44 length,
VIII	11	D	7	patella	left	adult, large macroporosity on	41.78 height, 37.04 width

						anterior surface, light carbon and calcite	
VIII	11	D	8	patella	right	adult, large macroporosity on anterior surface, light carbon and calcite	40.71 height, 37.99 width
VIII	11	D	9	mandible fragment		anterior portion with all crypts visible, adult, third molars erupted, the left third molar is reabsorbing, the rest of the teeth were lost post mortem, intermediate mental eminence (3)	
VIII	11	D	10	first metatarsal	right	adult, calcite and carbon	66.85 mm
VIII	11	D	11	first metatarsal	left	adult, calcite and carbon	68.15 mm
VIII	11	D	12	first cuneiform	right	adult, calcite and carbon	
VIII	11	D	13	proximal manual phalanx		adult, slightly defined lateral margins, carbon and calcite	46.7 mm
VIII	11	D	14	first proximal manual \qquad		subadult, unfused epiphyses, calcite	30.64 mm
VIII	11	D	15	first proximal manual phalanx		adult, calcite and carbon	32.87 mm
VIII	11	D	16	proximal manual phalanx		adult, slightly defined lateral margins,	42.11 mm

carbon and calcite

VIII	11	D	17	femur fragment	left	subadult, most of the bone - minus the epiphyses and the distal end, between 5 and 8 years of age
VIII	11	D	18	radius fragment	right	adult, distal fragment with part of the shaft, covered in calcite and carbon on the posterior surface
VIII	11	D	19	femur fragment	right	proximal fragment, unfused epiphyses, subadult, probably closer to 9 years old
VIII	11	D	20	thoracic vertebra		subadult, lamina fused to body, but body is not fused, calcite, upper thoracic
VIII	11	D	21	thoracic vertebra		subadult, lamina fused to body but the line at the pedicle is visible, and body is not fused, calcite, middle thoracic
VIII	11	D	22	ulna fragment	right	adult, calcite and carbon, mostly on the posterior surface, proximal fragment

VIII	11	D	23	rib fragment	and carbon	
VIII	11	D	24	rib fragment	adult, shaft fragment, covered with calcite and carbon	
VIII	11	D	25	rib fragment	adult, shaft fragment, covered with calcite and carbon	
VIII	11	D	26	rib fragment	adult, shaft fragment, covered with calcite and carbon	
VIII	11	D	27	proximal manual phalanx	adult, carbon and calcite	49.4 mm
VIII	11	D	28	proximal manual phalanx	adult, carbon and calcite	46.18 mm
VIII	11	D	29	proximal manual phalanx	adult, carbon and calcite	33.85 mm
VIII	11	D	30	first proximal pedal phalanx	adult, minimal calcite and carbon	36.72 mm
VIII	11	D	31	proximal pedal phalanx	adult, minimal calcite and carbon	32.08 mm
VIII	11	D	32	proximal pedal phalanx	adult, minimal calcite and carbon	31.24 mm
VIII	11	D	33	proximal pedal phalanx	adult, minimal calcite and carbon	27.48 mm
VIII	11	D	34	cervical vertebra	adult, probably C3-6, adult, calcite and carbon	

VIII	11	D	35	cervical vertebra		subadult, at least or greater than 3-4 years old, calcite and carbon
VIII	11	D	36	thoracic vertebra fragment		subadult between 1-3 years of age, lamina that is not fused to the body, upper thoracic, calcite and carbon
VIII	11	D	37	third cuneiform	right	adult, calcite and carbon, small pathological defect on one of the bones that measures 4.46 mm in diameter, looks like degenerative localized gout
VIII	11	D	38	second cuneiform	right	adult, calcite, and carbon
VIII	11	D	39	second cuneiform	left	adult, calcite, and carbon
VIII	11	D	40	humerus fragment	right	distal fragment, subadult, calcite and carbon, roughly 5 years old based on size
VIII	11	D	41	cranial fragment	undetermined	possible parietal fragment based on a slightly visible meningeal groove, adult, calcite covers

interior and exterior, fractures look recent

VIII	11	D	42	clavicle fragment	right	subadult, epiphyseal line on the medial surface is visible, lateral end is broken off, probably an adolescent
VIII	11	D	43	trapezium	right	adult, calcite and carbon
VIII	11	D	44	hamate	right	
VIII	11	D	45	clavicle fragment	left	lateral fragment, subadult, calcite and carbon covered, probably around 1-2 years old based upon size, 3 at the oldest
VIII	11	D	46	lumbar vertebra fragment		right lamina fragment of probably L3
VIII	11	D	47	thoracic vertebra fragment		body and a superior articular facet, upper thoracic, adult
VIII	11	D	48	pubis	left	subadult, calcite and carbon, child
VIII	11	D	49	scapula fragment	probable right	spine and acromion fragment covered in calcite mostly on the posterior surface

VIII	11	D	50	ischium fragment	right	subadult, child, most of the acetabulum, calcite and carbon	
VIII	11	D	51	rib fragment	undetermined	shaft fragment, carbon and calcite	
VIII	11	D	52	rib fragment	probable right	shaft fragment, subadult, calcite and carbon	
VIII	11	D	53	second metacarpal	right	adult, slight carbon and calcite	70.02 mm
VIII	11	D	54	third metacarpal	right	adult, slight carbon and calcite	70.42 mm
VIII	11	D	55	fourth metatarsal	right	adult, slight carbon and calcite, degenerative pathology on the proximal facet where it articulates with 37, this one measures 5 mm by 6 mm	74.25 mm
VIII	11	D	56	ulna fragment	left	proximal fragment, possible subadult, calcite and carbon	
VIII	11	D	57	second metatarsal fragment	left	adult, calcite and carbon, proximal fragment, gout on the dorsal aspect of the proximal facet, 4.3 by 5.3 in diameter	

VIII	11	D	58	third metatarsal fragment	right	subadult, head not fused, calcite and carbon
VIII	11	D	59	ulna fragment	left	distal fragment, adult, calcite and carbon
VIII	11	D	60	second metatarsal fragment	right	proximal fragment, adult, calcite and carbon
VIII	11	D	61	metacarpal fragment		shaft fragment with the head, adult, calcite and carbon
VIII	11	D	62	metacarpal fragment		shaft fragment, adult, calcite and carbon
VIII	11	D	63	first distal pedal phalanx		adult, carbon and calcite
VIII	11	D	64	intermediate or proximal manual phalanx		subadult, unfused proximal phalanx
VIII	11	D	65	metacarpal fragment		adult, calcite and carbon covered
VIII	11	D	66	sternum fragment		calcite and carbon covered on posterior, distal portion, subadult
VIII	11	D	67	temporal bone	right	adult, tympanic portion, calcite and carbon, mastoid broken
VIII	11	D	68	temporal bone	right	adult, tympanic portion, calcite and

						carbon, mastoid broken	
VIII	11	D	69	frontal fragment		adult, carbon and calcite	
VIII	11	D	70	parietal fragment	undetermined	adult, calcite and carbon covered, fragments adhered to the interior, macroporosity on the interior, pin prick porosity on the exterior	
VIII	11	D	71	radius fragment	left	shaft fragment, adult, carbon and calcite	16.21 mm medial to lateral, 11.9 mm anterior to posterior
VIII	11	D	72	radius fragment	undetermined	shaft fragment, adult, calcite and carbon	
VIII	11	D	73	humerus fragment	right	shaft fragment, adult, calcite and carbon, deltoid tuberosity is prominent	
VIII	11	D	74	thoracic vertebra		upper thoracic, adult, calcite and carbon covered	
VIII	11	D	75	radius fragment	possible left	radial tuberosity fragment, calcite and carbon covered	
VIII	11	D	76	long bone fragment	undetermined	subadult, unfused epiphysis, calcite and	

						carbon, possibly the tibia	
VIII	11	D	77	long bone fragment	undetermined	possible clavicle fragment, shaft fragment, calcium and carbon covered	
VIII	11	D	78	frontal and parietal fragments		superior portion of the frontal with the anterior portions of the parietal, calcite and carbon, adult, but the coronal suture is loose, indicating it has not completely fused, cranial modification is evident with the flattening of the forehead	
VIII	11	D	79	parietal and cranial fragment	left	parietal fragment with either a frontal or occipital fragment, adult, cranial modification, calcite and carbon	
VIII	11	D	80	scapula fragment	left	glenoid fragment, adult, calcite and carbon	38.87 mm height, 25.49 mm width
VIII	11	D	81	mandible fragment		anterior tip of an adult mandible	

most of the mandible minuses the rami,
teeth absent, lost post
mortem, adult, calcite

VIII	11	D	82	mandible fragment		and carbon	
VIII	11	D	83	talus	left	adult, calcite and carbon	56.03 mm length, 40.39 mm width
VIII	11	D	84	femur fragment	undetermined	epiphysis of the head	36.18 mm head diameter
VIII	11	D	85	humerus fragment	right	proximal epiphysis, head, calcite and carbon, over 5 closer to 9 , younger than 86	
VIII	11	D	86	humerus fragment	right	proximal epiphysis, head, calcite and carbon, over 5 closer to 9 , older than 86	
VIII	11	D	87	first proximal pedal phalanx		adult, calcite and carbon	
VIII	11	D	88	proximal manual phalanx fragment		adult, calcite and carbon	
VIII	11	D	89	proximal pedal phalanx		adult, calcite and carbon	
VIII	11	D	90	first proximal pedal phalanx		adult, calcite and carbon	
VIII	11	D	91	second metacarpal	right	adult, calcite, carbon	
VIII	11	D	92	fifth metacarpal fragment	left	proximal fragment, adult, calcite and carbon	

VIII	11	D	93	fourth metacarpal	right	adult, calcite, carbon
VIII	11	D	94	proximal manual phalanx		subadult, proximal epiphysis not fused, calcite and carbon
VIII	11	D	95	rib fragment	right	vertebral end, upper rib, calcite and carbon, adult
VIII	11	D	96	rib fragment	right	neck and shaft fragment, upper rib, carbon and calcite, possible subadult
VIII	11	D	97	rib fragment	left	vertebral end, calcite and carbon, lower rib, adult
VIII	11	D	98	rib fragment	left	vertebral end, calcite and carbon, lower rib, adult
VIII	11	D	99	radius fragment	right	shaft fragment, carbon and calcite
VIII	11	D	100	humerus fragment	left	distal shaft portion, possible subadult, calcite and carbon
VIII	11	D	101	clavicle fragment	left	shaft fragment, possible subadult, calcite and carbon
VIII	11	D	102	thoracic vertebra		subadult, pedicle line s still visible body not completely fused, middle thoracic, calcite and carbon

VIII	11	D	103	thoracic vertebra fragment	lamina only, mid thoracic, calcite and carbon, probable adult
VIII	11	D	104	thoracic vertebra	subadult, pedicle line s still visible body not completely fused, upper thoracic, calcite and carbon
VIII	11	D	105	cervical vertebra	adult, mid cervical, calcite and carbon
VIII	11	D	106	thoracic vertebra	adult, some damage to the body, mid thoracic, covered in calcite and carbon
VIII	11	D	107	lumbar vertebra fragment	body, adult, calcite and carbon
VIII	11	D	108	lumbar vertebra fragment	damage to the right transverse process and the anterior portion of the body, adult, calcite and carbon, probable L2
VIII	11	D	109	lumbar vertebra fragment	adult, body with part of the lamina, possible L1, calcite and carbon
VIII	11	D	110	lumbar vertebra fragment	adult, body with part of the lamina, possible L5, calcite

						and carbon, lipping on the superior border of the body
VIII	11	D	111	occipital fragment		adult, calcite and carbon
VIII	11	D	112	occipital fragment		adult, calcite and carbon
VIII	11	D	113	sacrum fragment		adult, distal posterior section, calcite and carbon
VIII	11	D	114	cuboid	right	adult, light calcite
VIII	11	D	115	cuboid	left	mate to 114 , adult, heavy calcite and carbon
VIII	11	D	116	scaphoid	left	adult, calcite and carbon
VIII	11	D	117	intermediate manual phalanx		adult, calcite and carbon
VIII	11	D	118	intermediate manual phalanx		adult, calcite and carbon
VIII	11	D	119	proximal manual phalanx		subadult, proximal head is not fused calcite and carbon
VIII	11	D	120	proximal manual phalanx		adult, calcite and carbon
VIII	11	D	121	fifth metacarpal		adult, calcite and carbon
VIII	11	D	122	metatarsal fragment		subadult, distal head is not fused yet,

						calcite and carbon, second or third
VIII	11	D	123	metatarsal fragment		subadult, distal head is not fused yet, calcite and carbon, probably the fourth
VIII	11	D	124	scaphoid	left	
VIII	11	D	125	thoracic vertebra body fragment		adult, calcite and carbon,
VIII	11	D	126	cervical vertebra fragment		lamina and transverse foramen fragment, calcite and carbon, adult
VIII	11	D	127	cervical vertebra fragment		C2 fragment of the dens, adult, calcite and carbon, mid cervical
VIII	11	D	128	neural arch	right	sacral arch, probably 2-3 years of age, calcite
VIII	11	D	129	neural arch	left	sacral arch, probably 2-3 years of age, calcite
VIII	11	D	130	thoracic vertebra fragment		subadult, lamina that is not fused to the body yet, between 1-3 years of age, calcite
VIII	11	D	131	thoracic vertebra fragment		subadult, lamina that is not fused to the body yet, between 1-3

years of age, calcite

VIII	11	D	132	thoracic vertebra fragment		subadult, lamina that is not fused to the body yet, between 1-3 years of age, calcite	
VIII	11	D	133	thoracic vertebra fragment		subadult, lamina that is not fused to the body yet, between 1-3 years of age, calcite	
VIII	11	D	134	scapula fragment	left	subadult, glenoid fragment, epiphysis on the glenoid has not fused yet, calcite	
VIII	11	D	135	scapula fragment	right	adult, glenoid fragment, calcite, damage to the inferior margin of the glenoid	
VIII	11	D	136	manual phalanx fragment		probably and subadult proximal, distal fragment, calcite	
VIII	11	D	137	proximal manual phalanx		subadult, proximal epiphysis not fused, calcite and carbon	25.64 mm
VIII	11	D	138	intermediate manual phalanx		subadult, proximal epiphysis not fused, calcite and carbon	20.36 mm
VIII	11	D	139	proximal pedal phalanx		adult, calcite	22.77 mm
VIII	11	D	140	distal manual phalanx		adult, calcite	20.86 mm

VIII	11	D	141	proximal pedal phalanx		adult, calcite
VIII	11	D	142	proximal pedal phalanx		adult, calcite
VIII	11	D	143	trapezoid	right	adult, calcite
VIII	11	D	144	capitate	left	adult, calcite
VIII	11	D	145	scaphoid	right	adult, calcite
VIII	11	D	146	metatarsal fragment		subadult, distal head epiphysis
VIII	11	D	147	first proximal manual phalanx		subadult, unfused proximal epiphysis
VIII	11	D	148	first metacarpal fragment	undetermined	distal fragment

mid rib, calcite						
VIII	11	D	157	rib fragment	right	subadult, vertebral end, lower rib, calcite
VIII	11	D	158	rib fragment	right	subadult, vertebral end, lower rib, calcite
VIII	11	D	159	rib fragment	right	subadult, vertebral end, upper rib, calcite
VIII	11	D	160	rib fragment	undetermined	subadult, shaft end, mid rib, calcite
VIII	11	D	161	cranial fragments		subadult, probable occipital bone
VIII	11	D	162	neural arch	right	subadult, cervical, 2 years and under, calcite
VIII	11	D	163	neural arch	right	subadult, cervical, 2 years and under, calcite
VIII	11	D	164	neural arch	left	subadult, cervical, 2 years and under, calcite
VIII	11	D	165	neural arch	left	subadult, cervical, 2 years and under, calcite
VIII	11	D	166	fibula fragment	right	distal fragment, adult, calcite
VIII	11	D	167	radius fragment	right	shaft fragment, adult, calcite
VIII	11	D	168	scapula fragment	right	acromion fragment, adult, calcite
VIII	11	D	169	scapula fragment	possible right	base of the spine

$\left.\begin{array}{cccccc} & & & & \begin{array}{c}\text { fragment, adult, } \\ \text { calcite }\end{array} \\ \hline \text { VIII } & 11 & \text { D } & 170 & \text { scapula fragment } & \text { left }\end{array} \begin{array}{c}\text { coracoid fragment, } \\ \text { adult, calcite }\end{array}\right]$

VIII	11	D	182	humerus fragment	left	subadult, proximal head epiphysis, calcite, probably around 5-9 years of age based on size
VIII	11	D	183	first cuneiform	right	adult, calcite
VIII	11	D	184	thoracic vertebra fragment		transverse process fragment, adult, calcite
VIII	11	D	185	vertebra fragment		probably the lamina of the 3 lumbar, unfused to a body, subadult, calcite
VIII	11	D	186	vertebra fragment		lamina fragment, probably of the thoracic region, subadult
VIII	11	D	187	thoracic vertebra body fragment		right lateral portion of the body, adult, calcite
VIII	11	D	188	sacrum fragment		subadult, young, first sacral vertebra with part of the ala, calcite
VIII	11	D	189	sacrum fragment		subadult, sacral body, older child based on the size of the unfused body, calcite
VIII	11	D	190	patella fragment	left	subadult, calcite, superior fragment

VIII	11	D	191	patella	right	subadult, mate to 190 , calcite	36.18 mm height, 31.27 mm width
VIII	11	D	192	navicular	left	badly deteriorated, adult, calcite	
VIII	11	D	193	vertebra fragment		subadult, body, unfused, probably thoracic, 2-4 years old, calcite	
VIII	11	D	194	vertebra fragment		subadult, body, unfused, probably thoracic, 2-4 years old, calcite	
VIII	11	D	195	vertebra fragment		subadult, body, unfused, cervical, probably C1, 2-4 years old, calcite	
VIII	11	D	196	manubrium		subadult, unfused	
VIII	11	D	197	ulna fragment	left	proximal fragment, calcite and carbon	
VIII	11	D	198	rib fragment	left	shaft fragment, middle rib	
VIII	11	D	199	femur fragment	right	neck fragment with the lesser trochanter, adult, calcite and carbon	
VIII	11	D	200	tibia fragment	right	subadult, proximal epiphysis, older child, probably around 9 years or older, calcite	

VIII	11	D	201	first metatarsal fragment	right	adult, proximal fragment, calcite
VIII	11	D	202	radius fragment	right	subadult, distal fragment, unfused epiphysis, probably around 5 years of age, calcite
VIII	11	D	203	humerus fragment	right	subadult, proximal end, unfused epiphysis, probably around 5 years of age, calcite
VIII	11	D	204	femur fragment	right	perinate, calcite, proximal fragment
VIII	11	D	205	scapula fragment	undetermined	subadult, unfused glenoid fragment, calcite
VIII	11	D	206	radius fragment	right	subadult, proximal fragment, calcite, probably close to 9 in age
VIII	11	D	207	rib fragment	undetermined	subadult, shaft end, upper rib, calcite
VIII	11	D	208	radius fragment	undetermined	subadult, unfused proximal epiphysis
VIII	11	D	209	unidentified fragment		

VIII	11	D	210	mandible fragment	right portion	adult, calcite, calculus on buccal surface of second right incisor and anterior portion of first right molar at the CEJ, other teeth between these are present	Molar - 12.24mm anterior to posterior, 11.34 mm lingual to buccal 8.34 ch ; I2 6.42 mm anterior to posterior, 6.45 mm lingual to buccal 10.34 ch ; C 8.18 mm anterior to posterior, 7.69 mm lingual to buccal 12.03 ch (enamel defect at 2.25); PM1 7.37 mm anterior to posterior, 7.74 mm lingual to buccal 9.62ch; PM2 7.41 mm anterior to posterior, 7.91 mm lingual to buccal 9.1ch
VIII	11	D	211	molar	left	first, lower, root broken	12.25 mm anterior to posterior, 11.13 mm lingual to buccal 6.79 ch

VIII	11	D	212	molar	left	first, lower, root broken	11.58 mm anterior to posterior, 11.2 mm lingual to buccal 6.86ch
VIII	11	D	213	molar	right	first, lower, root broken	12.35 mm anterior to posterior, 11.18 mm lingual to buccal 7.19ch
VIII	11	D	214	molar	right	first, upper, root intact	12.07 mm anterior to posterior, 11.77 mm lingual to buccal 7.25 ch
VIII	11	D	215	molar	right	possible second, upper, root intact,	12.51 mm anterior to posterior, 11.04 mm lingual to buccal 4.53 ch
VIII	11	D	216	molar	right	second, upper, root intact, calcite on buccal surface prevents measurements	11.09 mm anterior to posterior,
VIII	11	D	217	molar	left	possible third with a fourth cusp, root intact	11.29 mm anterior to posterior, 11.64 mm lingual to buccal 4.58ch
VIII	11	D	218	molar	right	possibly second upper, tips of root broken	
VIII	11	D	219	molar	right	first lower, root broken off	

VIII	11	D	220	molar	left	possibly second upper, calcite covered	
VIII	11	D	221	incisor	undetermined	lower, calculus on anterior and lingual surfaces, calculus prevents accurate measurement	
VIII	11	D	222	incisor	undetermined	lower, calculus on anterior and lingual surfaces, calculus prevents accurate measurement	
VIII	11	D	223	canine	undetermined	upper, modified, possible Ik, but slightly more spade shaped, calcite prevents measurement	
VIII	11	D	224	molar	left	third upper, calcite on posterior surface, tip of roots broken	11.28 mm lingual to buccal 8.53 mm anterior to posterior, 5.89 ch
VIII	11	D	225	canine	undetermined	possibly an upper, huge caries on occlusal surface, covered in calcite	
VIII	11	D	226	premolar	right	upper first, some calcite, slightly worn, calculus on lingual surface at CEJ	7.18 mm anterior to posterior, 8.67 mm lingual to buccal 8.07ch

VIII	11	D	227	premolar	left	lower first, some calcite, slight damage to the root	8.04 mm anterior to posterior, 10.43 mm lingual to buccal 8.07 ch
VIII	11	D	228	incisor	right	upper, possibly lateral, modified with an Ik design, calculus on the anterior surface just above the CEJ	
VIII	11	E	1	second metatarsal	left	adult, calcite, very long	81.43 mm
VIII	11	E	2	second metatarsal fragment	left	adult, calcite	
VIII	11	E	3	fifth metatarsal	left	subadult, head is not fused, calcite	
VIII	11	E	4	fourth metatarsal	left	subadult, head is not fused, calcite	
VIII	11	E	5	fibula fragment	probable right	adult, proximal fragment, calcite	
VIII	11	E	6	ulna fragment	left	proximal fragment, subadult, calcite, around 5 years of age based on the size	
VIII	11	E	7	rib fragment	undetermined	adult, shaft fragment, covered with calcite and carbon, upper rib	
VIII	11	E	8	rib fragment	undetermined	adult, shaft fragment, covered with calcite and carbon	

VIII	11	E	9	rib fragment	right	adult, vertebra end, mid rib, calcite and carbon	
VIII	11	E	10	rib fragment	right	adult, vertebra end, mid rib, calcite and carbon	
VIII	11	E	11	vertebra fragment		thoracic lamina fragment, adult, calcite, mid thoracic	
VIII	11	E	12	vertebra fragment		thoracic lamina fragment, adult, calcite, upper thoracic	
VIII	11	E	13	vertebra fragment		thoracic lamina fragment, adult, calcite, mid thoracic	
VIII	11	E	14	fifth metatarsal fragment	left	head is broken off, adult, calcite	
VIII	11	E	15	second metatarsal fragment	left	head is broken off, adult, calcite	
VIII	11	E	16	third metatarsal fragment	right	distal fragment, adult, calcite	
VIII	11	E	17	first distal pedal phalanx		adult, calcite and carbon	23.09 mm
VIII	11	E	18	proximal manual phalanx fragment		proximal fragment, adult, calcite and carbon	
VIII	11	E	19	first proximal pedal phalanx		adult, calcite and carbon	27.97 mm

VIII	11	E	20	fifth metatarsal fragment	left	proximal fragment, adult, calcite and carbon	
VIII	11	E	21	vertebra fragment		subadult, probably lumbar vertebra, calcite	
VIII	11	E	22	cervical vertebra fragment		body fragment, upper cervical, adult, calcite	
VIII	11	E	23	cervical vertebra fragment		part of the body and a transverse process, upper cervical, adult, calcite	
VIII	11	E	24	premolar	right	upper second premolar	10.76 lingual to buccal, 9.57 mesial to distal, 7.03 crown height
VIII	13		1	femur fragment	right	distal fragment with part of the shaft	
VIII	13		2	patella	right		40.53 width
VIII	13		3	patella	left	mate to 4	39.41 height, 39.97 width
VIII	13		4	patella	right	mate to 3	37.87 height, 38.11 width
VIII	13		5	iliac fragment	undetermined	crest fragment, epiphyseal line is still visible	
VIII	13		6	cranial fragment	undetermined		
VIII	13		7	shaft fragment	undetermined		
VIII	13		8	hamate	right		

VIII	13	9	vertebra fragment		transverse process of a thoracic vertebra
VIII	13	10	vertebra fragment		transverse process of a thoracic vertebra
VIII	13	11	sternum		superior portion with facets for articulation with manubrium, young child?
VIII	13	12	rib fragment	undetermined	shaft fragment, calcite
VIII	13	13	rib fragment	left	shaft fragment, calcite
VIII	13	14	second metacarpal fragment	left	calcite
VIII	13	15	third metatarsal fragment	right	calcite
VIII	13	16	metatarsal fragment	undetermined	calcite
VIII	13	17	cervical vertebra fragment		body fragment
VIII	13	18	cervical vertebra fragment		body fragment
VIII	13	19	femur fragment	undetermined	distal fragment, one of the condyles
VIII	13	20	femur fragment	undetermined	distal fragment, one of the condyles
VIII	13	21	vertebra fragment		probably sacral body fragment
VIII	13	22	femur fragment	undetermined	distal fragment where the patella articulates
VIII	13	23	femur fragment	undetermined	shaft fragment, calcite

VIII	13	24	mandible fragment		anterior portion, post mortem tooth loss, premolar still in crypt, calcite	7.51 anterior to posterior, 8.15 lingual to labial, 9.28 height
VIII	13	25	probable mandible fragment		loads of calcite, probable second molar still in crypt	10.51 ant to post, 10.12 ling to lab, 6.63
VIII	13	26	4 unidentified fragments			
VIII	13	27	humerus fragment	left	adult, calcite, proximal fragment, large muscle attachments	18.85 ant to post, 20.82 lat to med, 6.33 cm circumference
VIII	13	28	thoracic vertebra		adult, calcite, T10	
VIII	13	29	vertebra fragment		adult, calcite, lumbar body fragment, slight lipping on the lateral margin	
VIII	13	30	thoracic vertebra		adult, calcite, damage to laminae and transverse processes, mid thoracic	
VIII	13	31	proximal manual \qquad		adult, calcite	49.76 mm
VIII	13	32	proximal manual phalanx		adult, calcite, slightly raised lateral margins	45.48 mm
VIII	13	33	proximal manual phalanx		adult, calcite, slightly raised lateral margins	40.48 mm

first proximal manual

VIII	13	34	phalanx		adult, calcite	29.66 mm
VIII	13	35	proximal pedal phalanx		adult, calcite	26.5 mm
VIII	13	36	proximal pedal phalanx		adult, calcite	33.02 mm
VIII	13	37	proximal pedal phalanx		adult, calcite	29.97 mm
VIII	13	38	first proximal pedal \qquad phalanx		adult, calcite	31.4 mm
VIII	13	39	first metatarsal	right	adult, calcite	64.4 mm
VIII	13	40	first metatarsal	right	adult, calcite	60.87 mm
VIII	13	41	first metatarsal	right	adult, calcite	58.15 mm
VIII	13	42	first metatarsal	left	adult, calcite	57.71 mm
VIII	13	43	fibula fragment	right	adult, calcite, distal fragment	
VIII	13	44	calcaneus fragment	left	adult, calcite, damage to the lateral portion	80.51 length, 38.94 width
VIII	13	45	calcaneus fragment	left	adult, calcite	
VIII	13	46	tibia fragment	possible right	adult, calcite, distal fragment	
VIII	13	47	proximal manual phalanx		adult, calcite	36.67 mm
VIII	13	48	proximal manual phalanx		adult, calcite	31.56 mm
VIII	13	49	first proximal manual phalanx		adult, calcite	26.92 mm

VIII	13	50	proximal manual phalanx fragment		adult, calcite, distal portion	
VIII	13	51	proximal pedal phalanx		adult, calcite	25.48 mm
VIII	13	52	proximal pedal phalanx		adult, calcite	23.79 mm
VIII	13	53	intermediate manual phalanx		adult, calcite	30.13 mm
VIII	13	54	intermediate manual \qquad		adult, calcite	26.85 mm
VIII	13	55	patella	left	adult, calcite	35.03 mm height, 38.62 mm width
VIII	13	56	patella	right	adult, calcite, some damage to the distal and lateral ends, possibly the mate to 55	
VIII	13	57	ulna fragment	left	adult, calcite, proximal end	
VIII	13	58	femur fragment	right	subadult, proximal end with a large amount to the shaft, possibly a little under 5 years old	
VIII	13	59	second metacarpal fragment	left	adult, calcite, proximal end	
VIII	13	60	third metacarpal	right	adult, calcite, well defined muscle attachments	62.64 mm

VIII	13	61	third metacarpal	left	adult, calcite, well defined muscle attachments	68.63 mm
VIII	13	62	fifth metacarpal	right	adult, calcite	53.88 mm
VIII	13	63	proximal manual phalanx		adult, calcite, slightly raised lateral margins, proximal end is not fully fused, line visible	43.21 mm
VIII	13	64	proximal manual phalanx		adult, calcite, slightly raised lateral margins	43.11 mm
VIII	13	65	proximal manual phalanx		adult, calcite, slightly raised lateral margins	44.83 mm
VIII	13	66	proximal pedal phalanx		adult, calcite	26.44 mm
VIII	13	67	fifth metacarpal	left	adult, calcite, well defined muscle attachments	50.75 mm
VIII	13	68	first metacarpal	left	adult, calcite	46.68 mm
VIII	13	69	first metacarpal	right	adult, calcite	45.76 mm
VIII	13	70	third metacarpal fragment	right	adult, calcite, head is broken off	
VIII	13	71	talus	right	adult, calcite	47.16 mm length, 40.09 mm width
VIII	13	72	talus	right	adult, calcite	49.58 mm length, 38.74 mm width
VIII	13	73	talus	left	adult, calcite, not the mate to 71 or 72	55.08 mm length, 44.59 mm width
VIII	13	74	navicular	left	adult, calcite	

VIII	13	75	navicular	left	adult, calcite	
VIII	13	76	first cuneiform	left	adult, calcite	
VIII	13	77	first metatarsal	right	adult, calcite	56.51 mm
VIII	13	78	third metatarsal	left	adult, calcite	68.46 mm
VIII	13	79	first metacarpal	left	adult, calcite	44.26 mm
VIII	13	80	first metacarpal	right	adult, calcite	41.47 mm
VIII	13	81	thoracic vertebra fragment		adult, body fragment with right superior articular facet, mid thoracic	
VIII	13	82	thoracic vertebra fragment		body fragment, adult, right lamina portion present, possibly T10	
VIII	13	83	thoracic vertebra fragment		body fragment, adult, calcite, possibly T10	
VIII	13	84	thoracic vertebra fragment		adult, calcite, upper thoracic, lamina fragment	
VIII	13	85	vertebra fragment		adult, probable upper lumbar lamina fragment, calcite	
VIII	13	86	lumbar vertebra fragment		subadult, unfused lamina of a lower lumbar vertebra, probably L4 or L5	
VIII	13	87	calcaneus	left	adult, calcite, decent condition, damage to distal end	37.46 mm width

VIII	13	88	patella	right	adult, calcite	39.5 mm height, 35.08 mm width
VIII	13	89	lumbar vertebra fragment		adult, body fragment, calcite, lipping and macroscopic porosity on the body	
VIII	13	90	lumbar vertebra fragment		adult, body fragment, calcite, lipping and macroscopic porosity on the body	
VIII	13	91	rib fragment	right	adult, vertebral end, upper rib, calcite	
VIII	13	92	rib fragment	undetermined	adult, shaft fragment, calcite	
VIII	13	93	rib fragment	undetermined	adult, shaft fragment, calcite	
VIII	13	94	rib fragment	right	adult, shaft fragment, calcite	
VIII	13	95	rib fragment	right	adult, shaft fragment, calcite	
VIII	13	96	rib fragment	right	adult, shaft fragment, calcite	
VIII	13	97	rib fragment	right	adult, shaft fragment, calcite	
VIII	13	98	rib fragment	right	adult, shaft fragment, calcite	
VIII	13	99	first proximal pedal phalanx		adult, calcite	22.33 mm
VIII	13	100	proximal manual phalanx fragment		adult, calcite, proximal end	

fragment
$\left.\begin{array}{cccccc}\hline \text { VIII } & 13 & 101 & \text { metatarsal fragment } & & \begin{array}{c}\text { adult, calcite, distal } \\ \text { end, head only }\end{array} \\ \hline \text { VIII } & 13 & 102 & \begin{array}{c}\text { proximal manual } \\ \text { phalanx fragment }\end{array} & \begin{array}{c}\text { adult, calcite, distal } \\ \text { end }\end{array} \\ \hline \text { VIII } & 13 & 103 & \begin{array}{c}\text { second metatarsal } \\ \text { fragment }\end{array} & \text { left } & \begin{array}{c}\text { proximal fragment, } \\ \text { adult, calcite }\end{array} \\ \hline \text { VIII } & 13 & 104 & \text { fourth metacarpal } & \text { right } & \text { adult, calcite } \\ \hline \text { VIII } & 13 & 105 & \text { metacarpal fragment } & & \begin{array}{c}\text { distal fragment, adult, } \\ \text { calcite }\end{array} \\ \hline \text { VIII } & 13 & 106 & \begin{array}{c}\text { fourth metatarsal } \\ \text { fragment }\end{array} & \text { left } & \text { proximal fragment, } \\ \text { adult, calcite }\end{array}\right]$

VIII	13	115	talus fragment	right	adult, calcite, damage to the superior portion
VIII	13	116	clavicle fragment	right	adult, calcite, lateral portion with conoid process
VIII	13	117	humerus fragment	left	subadult, calcite, distal portion, roughly 1 year old
VIII	13	118	sternum fragment		possible subadult, about $1 / 3$ the body, possibly the superior portion?
VIII	13	119	femur fragment	probable left	adult, shaft fragment, calcite, portion below the trochanteric crest
VIII	13	120	thoracic vertebra fragment		adult, mid thoracic, lamina fragment, calcite
VIII	13	121	cervical vertebra fragment		adult, right lamina fragment, calcite
VIII	13	122	lumbar vertebra fragment		adult, upper lumbar lamina fragment, calcite
VIII	13	123	thoracic vertebra fragment		subadult, body fragment, body still has undulations, pedicle line still visible, possibly T 10 or 11

VIII	13	124	femur fragment	undetermined	adult, distal condyle fragment, one condyle only
VIII	13	125	femur fragment	undetermined	adult, distal condyle fragment, one condyle only
VIII	13	126	clavicle fragment	right	adult, lateral fragment with conoid tubercle, calcite
VIII	13	127	patella	right	adult, calcite and carbon, damaged distal and medial ends
VIII	13	128	ulna fragment	possible right	adult, calcite, olecranon fragment
VIII	13	129	thoracic vertebra fragment		adult, calcite, left transverse process, spinous process and superior and inferior articular facets along with a small part of the body, upper thoracic
VIII	13	130	cervical vertebra		adult, calcite, C2, broken dens
VIII	13	131	thoracic vertebra fragment		adult, calcite, left transverse process fragment
VIII	13	132	ulna fragment	left	distal fragment, adult, calcite, large pronator ridge

VIII	13	133	radius fragment	possible left	adult, calcite, head and tuberosity fragment	24.94 mm head diameter
VIII	13	134	radius fragment	possible right	tuberosity fragment only, adult, calcite	
VIII	13	135	cranial fragment	undetermined	adult, calcite	
VIII	13	136	cranial fragment	undetermined	adult, calcite	
VIII	13	137	occipital fragment		adult, calcite	
VIII	13	138	intermediate manual phalanx fragment		adult, proximal end, calcite	
VIII	13	139	intermediate manual phalanx fragment		adult, calcite	19.23 mm
VIII	13	140	distal manual phalanx		adult, calcite	20.28 mm
VIII	13	141	scaphoid	right	adult, calcite	
VIII	13	142	rib fragment	right	adult, first rib, vertebral end, calcite	
VIII	13	143	rib fragment		subadult, shaft fragment, mid rib, calcite	
VIII	13	144	rib fragment		subadult, shaft fragment, mid rib, calcite	
VIII	13	145	rib fragment		subadult, shaft fragment, mid rib, calcite	
VIII	13	146	radius fragment	right	adult, distal end, calcite, large muscle attachments	
VIII	13	147	navicular	right	adult, calcite	

VIII	13	148	radius fragment	undetermined	adult, head only	21.18 mm head diameter
VIII	13	149	radius fragment	left	proximal fragment, adult, calcite, head and tuberosity fragment	20.12 mm head diameter
VIII	13	150	cuboid	right	adult, calcite	
VIII	13	151	lunate	left	adult, calcite	
VIII	13	152	capitate	right	adult, calcite	
VIII	13	153	rib fragment		subadult, calcite, shaft fragment, upper rib	
VIII	13	154	rib fragment		subadult, calcite, shaft fragment, upper rib	
VIII	13	155	rib fragment		adult, calcite, shaft fragment, mid rib	
VIII	13	156	rib fragment		adult, calcite, shaft fragment, upper rib	
VIII	13	157	vertebra fragment		body fragment, adult, calcite	
VIII	13	158	vertebra fragment		body fragment, adult, calcite	
VIII	13	159	lumbar vertebra fragment		body fragment, adult, calcite	
VIII	13	160	fourth metacarpal fragment	right	proximal fragment, adult, calcite, possible healed fracture indicated by the deformity	

VIII	13	161	second cuneiform	left	adult, calcite, broken
VIII	13	162	fourth metatarsal fragment	right	adult, calcite, head broken off
VIII	13	163	fifth metacarpal fragment	right	adult, calcite, head broken off
VIII	13	164	humerus fragment	undetermined	distal portion of the adult humerus capitulum and part of the trochlea, calcite
VIII	13	165	humerus fragment	right	distal portion of the adult humerus, trochlea, and medial epicondyle, calcite
VIII	13	166	cervical vertebra fragment		body fragment, adult, upper cervical, calcite
VIII	13	167	femur fragment	undetermined	adult, shaft fragment, calcite
VIII	13	168	femur fragment	undetermined	adult, shaft fragment, calcite
VIII	13	169	cervical vertebra fragment		adult, C 1 fragment of the bony rim
VIII	13	170	rib fragment	right	subadult, neck fragment, upper rib
VIII	13	171	vertebra fragment		spinous process of a thoracic or cervical, adult, calcite
VIII	13	172	femur fragment	undetermined	adult, calcite, shaft fragment

$\left.\begin{array}{lccccc} & \text { VIII } & 13 & 173 & \text { femur fragment } & \text { possible left }\end{array} \begin{array}{c}\text { adult, calcite, shaft } \\ \text { fragment that appears } \\ \text { to begin right at the } \\ \text { distal margin of the } \\ \text { lesser trochanter }\end{array}\right]$

VIII	13	186	clavicle fragment	left	lateral portion, adult calcite
VIII	13	187	cranial fragment		subadult, calcite
VIII	13	188	cranial fragment		subadult, calcite
VIII	13	189	cranial fragment		subadult, calcite
VIII	13	190	scapula fragment	right	acromion fragment, calcite
VIII	13	191	rib fragment	undetermined	adult, calcite, shaft fragment, mid rib
VIII	13	192	rib fragment	undetermined	adult, calcite, shaft fragment, mid rib
VIII	13	193	rib fragment	undetermined	subadult, calcite, shaft fragment, upper rib
VIII	13	194	humerus fragment	left	subadult ~ 1.5 years of age, proximal fragment, head is not fused, calcite
VIII	13	195	cranial fragment	undetermined	adult, calcite
VIII	13	196	cranial fragment	undetermined	adult, calcite
VIII	13	197	ulna fragment	probable right	adult, proximal shaft fragment
VIII	13	198	vertebra fragment		adult, probably thoracic
VIII	13	199	vertebra fragment		lamina and transverse fragment with articular facets, adult, calcite, possibly lumbar

	VIII	vertebra fragment		lumbar superior articular facet fragment, adult, calcite	
VIII	13	200	rib fragment		adult, calcite, shaft fragment
VIII	13	201		subadult, calcite, unfused lamina, upper thoracic	
VIII	13	202	thoracic vertebra	cranial fragment	undetermined
VIII	13	203	adult, calcite		

					fragment, adult, calcite	
VIII	13	214	vertebra fragment		adult, body fragment of a thoracic probably, calcite	
VIII	13	215	vertebra fragment		adult, body fragment of a thoracic probably, calcite	
VIII	13	216	os coxa fragment	left	possible subadult based on the size, narrow sciatic notch, possible mate	
VIII	13	217	rib fragment		adult, shaft fragment, calcite	
VIII	13	218	rib fragment		adult, shaft fragment, calcite	
VIII	13	219	ulna fragment	undetermined	distal fragment of the olecranon,	
VIII	13	220	humerus fragment	undetermined	adult, distal portion	
VIII	13	221	cranial fragment	undetermined	adult, calcite	
VIII	13	222	vertebra fragment		adult, calcite, probably lumbar, inferior articular facet and part of the lamina	
VIII	13	223	tibia fragment	undetermined	proximal anterior portion with the tibial tuberosity, adult, calcite	
VIII	13	224	talus	left	adult, calcite	51.36 mm length

VIII	13	225	talus	left	adult, calcite	46.77 mm length, 39.46 mm width
VIII	13	226	talus	left	adult, calcite	59.47 mm length, 46.37 mm width
VIII	13	227	navicular	left	adult, calcite	
VIII	13	228	navicular	left	adult, calcite	
VIII	13	229	navicular	left	adult, calcite	
VIII	13	230	proximal pedal phalanx		adult, calcite	25.57 mm
VIII	13	231	proximal pedal phalanx		adult, calcite	22.03 mm
VIII	13	232	proximal pedal phalanx		adult, calcite	29.44 mm
VIII	13	233	proximal pedal phalanx		adult, calcite	26.25 mm
VIII	13	234	proximal pedal phalanx		adult, calcite	21 mm
VIII	13	235	proximal pedal phalanx		adult, calcite	28.18 mm
VIII	13	236	proximal pedal phalanx fragment		adult, calcite	
VIII	13	237	proximal pedal phalanx		adult, calcite	31.88 mm
VIII	13	238	first proximal pedal phalanx		adult, calcite	36.81 mm
VIII	13	239	first proximal pedal phalanx		adult, calcite	30.52 mm

VIII	13	240	first proximal pedal phalanx	adult, calcite	26.83 mm
VIII	13	241	first proximal pedal phalanx	adult, calcite, proximal superior margin has lipping	23.22 mm
VIII	13	242	intermediate manual phalanx	adult, calcite	21.97 mm
VIII	13	243	intermediate manual \qquad	adult, calcite	27.64 mm
VIII	13	244	intermediate manual phalanx	adult, calcite	26.38 mm
VIII	13	245	intermediate manual phalanx	subadult, calcite, proximal epiphysis is not fully fused	20.64 mm
VIII	13	246	proximal manual phalanx fragment	adult, proximal fragment, calcite	
VIII	13	247	proximal manual phalanx fragment	adult, distal fragment, calcite	
VIII	13	248	proximal pedal phalanx	adult, calcite	29.68 mm
VIII	13	249	intermediate manual phalanx	adult, calcite	21.92 mm
VIII	13	250	distal manual phalanx	adult, calcite	18.05 mm
VIII	13	251	distal manual phalanx	adult, calcite	20.87 mm
VIII	13	252	proximal manual phalanx	subadult, calcite	18.72 mm
VIII	13	253	distal manual phalanx	adult, calcite	17.16 mm
VIII	13	254	distal manual phalanx	adult, calcite	16.6 mm

VIII	13	255	talus	left	adult, calcite	49.12 mm length
VIII	13	256	talus	right	adult, calcite	50.23 mm length
VIII	13	257	calcaneus	left	adult, calcite	$\begin{gathered} 67.06 \mathrm{~mm}, 35.03 \\ \mathrm{~mm} \text { width } \\ \hline \end{gathered}$
VIII	13	258	navicular	left	adult, calcite	
VIII	13	259	patella	left	adult, calcite	38.76 mm height, 36.23 mm width
VIII	13	260	humerus	left	subadult, calcite, close to 5 years of age, bone complete other than the unfused epiphyses	13.2 cm length
VIII	13	261	cranial fragment		adult, calcite	
VIII	13	262	parietal fragment	undetermined	adult, calcite	
VIII	13	263	parietal fragment	undetermined	adult, calcite	
VIII	13	264	humerus fragment	right	distal portion, adult, no trochlea or capitulum, fossa is triangular, calcite	
VIII	13	265	ulna fragment	left	proximal fragment only, adult, calcite	
VIII	13	266	ulna fragment	right	proximal fragment, possible mate to 265 , adult, calcite	
VIII	13	267	navicular fragment	left	adult, calcite, damaged	
VIII	13	268	patella	left	adult, calcite, rather wide	$\begin{gathered} 38.94 \mathrm{~mm}, 45.44 \\ \mathrm{~mm} \text { width } \\ \hline \end{gathered}$

VIII	13	269	femur fragment	right	condyles, damage to the anterior portion	
VIII	13	270	proximal manual phalanx		lateral margins defined, adult, calcite	44.11 mm
VIII	13	271	proximal manual phalanx		adult calcite	38.46 mm
VIII	13	272	proximal manual phalanx		lateral margins defined, adult, calcite	36.41 mm
VIII	13	273	proximal manual phalanx		adult calcite	32.61 mm
VIII	13	274	proximal manual phalanx		adult calcite	30.72 mm
VIII	13	275	proximal pedal phalanx		adult calcite	27.65 mm
VIII	13	276	proximal pedal phalanx		adult calcite	27.47 mm
VIII	13	277	proximal pedal phalanx		subadult, proximal epiphysis is fused but line is visible	26.35 mm
VIII	13	278	second metacarpal	right	adult calcite	70.37 mm
VIII	13	279	fourth metatarsal	left	adult calcite	66.25 mm
VIII	13	280	second metatarsal	left	adult calcite	71.83 mm
VIII	13	281	fourth metacarpal	left	adult calcite	58.79 mm
VIII	13	282	fifth metacarpal	right	subadult, calcite, the head is not fused yet	
VIII	13	283	metacarpal fragment	undetermined	adult, calcite, distal and shaft fragment	

VIII	13	284	first metacarpal fragment	undetermined	adult, calcite
VIII	13	285	first metacarpal fragment	right	adult, calcite

$\left.\begin{array}{cccccc} & \text { VIII } & 13 & \text { thoracic vertebra } & \begin{array}{c}\text { subadult, calcite, } \\ \text { damage to right } \\ \text { transverse process, } \\ \text { upper thoracic, }\end{array} \\ \text { pedicle line still } \\ \text { visible }\end{array}\right]$

VIII	13	301	femur fragment	undetermined	subadult, possibly a little over 5	
VIII	13	302	fifth metatarsal fragment	possible right	proximal fragment, adult, calcite, head missing	
VIII	13	303	third metatarsal	right	adult, calcite	77.3 mm
VIII	13	304	fifth metatarsal fragment	right	adult, calcite	63.79 mm
VIII	13	305	fourth metatarsal fragment	left	adult, calcite, head broken off	
VIII	13	306	hamate	left	adult, calcite	
VIII	13	307	proximal manual phalanx fragment		distal fragment, adult, calcite	
VIII	13	308	intermediate manual phalanx		adult, calcite	18.97 mm
VIII	13	309	intermediate manual phalanx		adult, calcite	18.64 mm
VIII	13	310	proximal pedal phalanx		adult, calcite	24.63 mm
VIII	13	311	distal manual phalanx		adult, calcite	25.47 mm
VIII	13	312	intermediate manual phalanx		adult, calcite	20.92 mm
VIII	13	313	first proximal pedal phalanx		adult, calcite	30.13 mm
VIII	13	314	proximal pedal phalanx		adult, calcite	23.3 mm

VIII	13	315	proximal pedal phalanx		adult, calcite	20.45 mm
VIII	13	316	proximal pedal phalanx		adult, calcite	27.64 mm
VIII	13	317	intermediate manual \qquad		adult, calcite	19.91 mm
VIII	13	318	first metacarpal		subadult, calcite	27.82 mm
VIII	13	319	second metatarsal fragment	left	adult, calcite, head broken, damage to the proximal end	
VIII	13	320	fourth metatarsal fragment	left	adult, calcite, head broken, damage to the proximal end	
VIII	13	321	third metatarsal fragment	right	adult, calcite, head broken, damage to the proximal end	
VIII	13	322	metacarpal fragment		adult, calcite, damage to the proximal end	
VIII	13	323	first metatarsal fragment	left	adult, calcite, proximal end	
VIII	13	324	scapula fragment	undetermined	adult, glenoid fragment	
VIII	13	325	first metatarsal fragment	left	proximal end, adult, calcite, probably the same bone at 326	
VIII	13	326	first metatarsal fragment	left	distal end, adult, calcite, probably the same bone as 325	
VIII	13	327	lunate	left	adult, calcite	

VIII	13	328	lunate	right	adult, calcite
VIII	13	329	hamate	left	adult, calcite
VIII	13	330	capitate	left	adult, calcite
VIII	13	331	third metatarsal fragment	left	adult, calcite, proximal fragment with other bone fragments stuck to it
VIII	13	332	scaphoid	left	adult, calcite
VIII	13	333	second cuneiform	left	adult, calcite
VIII	13	334	second cuneiform	right	adult, calcite
VIII	13	335	proximal manual phalanx fragment		adult, calcite, proximal end
VIII	13	336	proximal manual phalanx fragment		adult, calcite, distal end
VIII	13	337	metatarsal fragment		distal fragment, adult, calcite
VIII	13	338	metatarsal fragment		distal fragment, adult, calcite
VIII	13	339	vertebra fragment		anterior portion of a body, possibly thoracic or lumbar, adult, calcite
VIII	13	340	humerus fragment	undetermined	adult, head fragment, calcite
VIII	13	341	vertebra fragment		lumbar fragment, transverse process and articular facet, adult, calcite

lumbar fragment,
lamina and inferior
articular facet, adult,

VIII	13	342	vertebra fragment	calcite
VIII	13	343	cranial fragment	adult, calcite
VIII	13	344	cranial fragment	adult, possible parietal, calcite, cut mark that is curved and measures a little over 1 cm
VIII	13	345	cranial fragment	adult, calcite
VIII	13	346	rib fragment	subadult, calcite, shaft fragment, mid rib
VIII	13	347	rib fragment	subadult, calcite, shaft fragment, upper rib
VIII	13	348	rib fragment	subadult, calcite, shaft fragment, mid rib
VIII	13	349	rib fragment	subadult, calcite, shaft fragment, mid rib
VIII	13	350	tibia fragment	adult, proximal fragment, calcite, probably most of a
VIII	13	351	tibia fragment	undeterminedadult, proximal fragment, calcite, probably most of a

lateral condyle

VIII	13	352	cranial fragment		adult, calcite
VIII	13	353	cranial fragment		adult, calcite
VIII	13	354	cranial fragment		adult, calcite
VIII	13	355	parietals fragment	both	adult, calcite
VIII	13	356	cranial fragment		adult, calcite
VIII	13	357	cranial fragment		subadult, calcite
VIII	13	358	tibia fragment	left	adult, calcite, distal portion, possible mate to 359
VIII	13	359	tibia fragment	right	adult, calcite, distal portion, possible mate to 358
VIII	13	360	vertebra fragment		adult, calcite, body fragment, inferior or superior anterior margin with lipping typical of arthritis, possible lower thoracic or lumbar
VIII	13	361	vertebra fragment		adult, calcite, anterior portion of the body, possible lower thoracic or lumbar
VIII	13	362	vertebra fragment		adult, calcite, possible lumbar, inferior or superior aspect of the body

VIII	13	363	cervical vertebrae fragment		adult, calcite, fused laminae of two mid cervical vertebrae, cross mends with 367 , indicating it is a C2/3 fusion
VIII	13	364	tibia fragment	undetermined	subadult, unfused proximal epiphyses, one condyle only (possibly the medial one), less than 15 years of age, probably closer to 9
VIII	13	365	thoracic vertebra fragment		lamina fragment of a mid thoracic, possible subadult based upon size, calcite
VIII	13	366	vertebra fragment		transverse process, adult, calcite, probably a lumbar
VIII	13	367	cervical vertebrae fragment		C 2 and C 3 fusion of bodies, dens is present, adult calcite
VIII	13	368	femur fragment	undetermined	head fragment, adult, calcite, additional bones attached
VIII	13	369	thoracic vertebra fragment		body fragment, adult, probably T9-11, calcite
VIII	13	370	coccyx		the superior portion only, calcite

VIII	13	371	intermediate pedal phalanx		adult, calcite
VIII	13	372	parietal fragment	undetermined	adult, calcite
VIII	13	373	cranial fragment		adult, calcite
VIII	13	374	scapula fragment	possible right	coracoid fragment, adult, calcite
VIII	13	375	femur fragment	possible right	subadult, proximal fragment, unfused epiphyses, probably ~ 5 years of age
VIII	13	376	femur fragment	possible left	subadult, proximal fragment, unfused epiphyses, probably ~ 5 years of age
VIII	13	377	thoracic vertebra fragment		adult, body fragment, upper thoracic, calcite
VIII	13	378	second metacarpal fragment	left	proximal fragment, adult, calcite
VIII	13	379	second metatarsal fragment	right	proximal fragment, adult, calcite
VIII	13	380	rib fragment	undetermined	sternal end, adult, mid rib, sternal end looks young (20-30s), calcite
VIII	13	381	rib fragment	left	sternal end, adult, lower rib, calcite
VIII	13	382	vertebra fragment		possible sacral fragment with an articular facet and a foramen, adult,

calcite

VIII	13	383	thoracic vertebra fragment		lamina fragment of a mid thoracic, possible subadult based upon size, calcite
VIII	13	384	femur fragment	undetermined	distal portion with only part of one condyle, adult, calcite
VIII	13	385	rib fragment	left	neck and shaft fragment, adult, calcite, mid rib
VIII	13	386	rib fragment	left	vertebra end fragment, adult, calcite, upper rib
VIII	13	387	rib fragment	undetermined	shaft fragment, adult, calcite, upper rib
VIII	13	388	rib fragment	undetermined	shaft fragment, adult, calcite, upper rib
VIII	13	389	rib fragment	right	vertebra end fragment, adult, calcite, upper rib
VIII	13	390	neural arch fragment	right	thoracic, subadult, under 5 probably
VIII	13	391	neural arch fragment	right	thoracic, subadult, under 5 probably
VIII	13	392	neural arch fragment	undetermined	possible lumbar, subadult, under 5 probably
VIII	13	393	rib fragment	undetermined	shaft fragment, adult,

					calcite, mid rib	
VIII	13	394	vertebra fragment		body fragment, inferior or superior anterior portion, adult, calcite, probable lumbar	
VIII	13	395	vertebra fragment		body fragment, inferior or superior anterior portion, adult, calcite, probable lumbar	
VIII	13	396	vertebra fragment		body fragment, inferior or superior anterior portion, adult, calcite, probable thoracic	
VIII	13	397	vertebra fragment		lamina fragment, adult, calcite, probable lumbar	
VIII	13	398	vertebra fragment		possible subadult, fragment with two articular facets, possible lumbar	
VIII	13	399	vertebra fragment		thoracic body fragment, adult, calcite	
VIII	13	400	patella	left	adult calcite	35.76 mm height, 35.51 mm width
VIII	13	401	cervical vertebrae fragment		C1 fragment with only one superior and	

inferior articular facet

VIII	13	402	intermediate manual phalanx fragment		distal fragment, adult, calcite	
VIII	13	403	proximal manual phalanx fragment		proximal fragment, adult, calcite	
VIII	13	404	proximal pedal phalanx fragment		proximal fragment, adult, calcite	
VIII	13	405	intermediate manual \qquad		adult, calcite	24.11 mm
VIII	13	406	scapula fragment	left	adult, calcite, spine fragment	
VIII	13	407	cervical vertebrae fragment		adult, body only, calcite	
VIII	13	408	second cuneiform	left	adult, calcite	
VIII	13	409	scapula fragment	undetermined	glenoid fragment	
VIII	13	410	epiphysis fragment	undetermined	possible radius distal epiphysis, calcite	
VIII	13	411	ilium fragment	undetermined	calcite	
VIII	13	412	humerus fragment	possible left	proximal head epiphysis, calcite	
VIII	13	413	humerus fragment	undetermined	capitulum epiphysis, calcite	
VIII	13	414	ulna fragment	left	shaft fragment, adult, calcite	
VIII	13	415	shaft fragment	undetermined	subadult shaft fragment, calcite	
VIII	13	416	radius fragment	right	proximal and most of the shaft fragment,	

					subadult, approximately 1.5 years old
VIII	13	417	shaft fragment	undetermined	subadult shaft fragment, calcite
VIII	13	418	cranial fragment		subadult, pin prick porosity, calcite
VIII	13	419	cranial fragment		subadult, pin prick porosity, calcite
VIII	13	420	tibia fragment	undetermined	adult, proximal end, calcite
VIII	13	421	tibia fragment	undetermined	subadult, calcite, shaft fragment, probably around 5 years old
VIII	13	422	humerus fragment	undetermined	subadult, calcite, shaft fragment, probably around 5 years old
VIII	13	423	radius fragment	undetermined	adult, shaft fragment, calcite
VIII	13	424	scapula fragment	undetermined	acromion fragment, calcite, adult
VIII	13	425	scapula fragment	undetermined	acromion fragment, calcite, adult
VIII	13	426	humerus fragment	undetermined	adult, distal fragment with trochlea and capitulum, calcite
VIII	13	427	maxilla fragment	undetermined	adult, calcite

VIII	13	428	ilium fragment	right	perinate, calcite, only part of the blade and inferior margin of auricular surface	
VIII	13	429	clavicle fragment	left	lateral fragment, adult, calcite	
VIII	13	430	pubis fragment	right	perinate, calcite	
VIII	13	431	capitate	left	adult, calcite	
VIII	13	432	second cuneiform	left	adult, calcite	
VIII	13	433	first metacarpal	undetermined	adult, calcite, distal fragment	
VIII	13	434	cervical vertebra fragment		body and right transverse process, adult, calcite, numerous fragments stuck to it	
VIII	13	435	first metacarpal fragment	undetermined	distal end, adult, calcite	
VIII	13	436	third cuneiform	possible left	adult, calcite	
VIII	13	437	cranial fragment	undetermined	adult, calcite	
VIII	13	438	second cuneiform	probable left	adult, calcite	
VIII	13	439	first distal pedal phalanx		adult, calcite	22.23 mm
VIII	13	440	metatarsal fragment	undetermined	head fragment, adult, calcite	
VIII	13	441	fifth metacarpal fragment	left	proximal fragment, adult, calcite	
VIII	13	442	16 unidentified shaft fragments			

VIII	13	443	metacarpal fragment	undetermined	adult, calcite, head only
VIII	13	444	third metacarpal fragment	right	adult, calcite, distal portion
VIII	13	445	metacarpal fragment	undetermined	adult, calcite, head only
VIII	13	446	metatarsal fragment	undetermined	subadult, proximal fragment, calcite
VIII	13	447	hamate	right	adult, calcite
VIII	13	448	rib fragment	undetermined	possible subadult, mid rib, calcite
VIII	13	449	rib fragment	left	adult, vertebral end, lower rib, calcite
VIII	13	450	rib fragment		possible subadult, vertebral end, calcite
VIII	13	451	rib fragment		possible subadult, vertebral end, calcite
VIII	13	452	metacarpal fragment		subadult, calcite
VIII	13	453	metacarpal fragment		subadult, calcite
VIII	13	454	metatarsal fragment	subadult, calcite	
VIII	13	455	metatarsal fragment	subadult, calcite	
VIII	13	456	proximal manual phalanx fragment		possible subadult,
calcite					

$\left.\begin{array}{lccccc}\text { VIII } & 13 & 460 & \text { vertebra fragment } & & \begin{array}{c}\text { spinous process, } \\ \text { calcite }\end{array} \\ \hline \text { VIII } & 13 & & & \begin{array}{c}\text { body fragment, } \\ \text { calcite, possible adult } \\ \text { thoracic }\end{array} \\ \hline \text { VIII } & 13 & 461 & \text { vertebra fragment } & & \text { adult, calcite } \\ \hline \text { VIII } & 13 & 462 & \text { scaphoid } & \text { left } & \text { adult, calcite } \\ \hline \text { VIII } & 13 & 463 & \text { triquetral } & \text { left } & \text { adult, calcite } \\ \hline \text { VIII } & 13 & 464 & \text { lunate } & \text { left } & \text { adult, calcite } \\ \hline \text { VIII } & 13 & 465 & \text { capitate } & \text { left } & \text { adult, calcite, head } \\ \text { fragment }\end{array}\right]$

VIII	13	477	triquetral	right	adult, calcite
VIII	13	478	rib fragment	undetermined	subadult, shaft fragment, calcite, mid rib
VIII	13	479	rib fragment	undetermined	subadult, shaft fragment, calcite, mid rib
VIII	13	480	rib fragment	left	subadult, vertebral end fragment, calcite, upper rib
VIII	13	481	rib fragment	right	subadult, neck fragment, upper rib, calcite
VIII	13	482	rib fragment	right	subadult, vertebral end fragment, calcite, mid rib
VIII	13	483	clavicle fragment	left	lateral fragment, possible perinate, calcite
VIII	13	484	neural arch fragment	right	thoracic, subadult, under 5 probably
VIII	13	485	rib fragment	left	first rib, head and sternal ends broken off, probable subadult, calcite
VIII	13	486	vertebra fragment		body fragment, possible cervical, subadult, calcite
VIII	13	487	vertebra fragment		body fragment, possible cervical,

calcite

					calcit
VIII	13	488	scapula fragment	left	coracoid fragment, adult, calcite
VIII	13	489	vertebra fragment		lamina fragment with inferior articular facets, adult, calcite, possible upper lumbar
VIII	13	490	vertebra fragment		lamina fragment, thoracic, adult, calcite
VIII	13	491	scapula fragment	undetermined	adult, inferior angle, calcite
VIII	13	492	vertebra fragment		lamina fragment, adult, calcite, probable lumbar
VIII	13	493	first metatarsal fragment		adult, calcite, distal fragment
VIII	13	494	intermediate manual phalanx fragment		adult, calcite, distal fragment
VIII	13	495	metatarsal fragment		subadult, calcite
VIII	13	496	vertebra fragment		spinous process, calcite, possibly thoracic, adult
VIII	13	497	metacarpal fragment		distal end, subadult, calcite
VIII	13	498	rib fragment	undetermined	subadult, shaft fragment, calcite, mid rib
VIII	13	499	calcaneus fragment	left	adult, calcite, posterior fragment
VIII	13	500	calcaneus fragment	right	adult, calcite,

					posterior fragment
VIII	13	501	scapula fragment	right	spine fragment, adult, calcite
VIII	13	502	proximal pedal phalanx fragments		adult, calcite, a proximal facet fragment and shaft fragment
VIII	13	503	femur fragment	undetermined	shaft fragments, adult, calcite
VIII	13	504	femur fragment	undetermined	numerous flakes, distal end fragments, badly deteriorated
VIII	13	505	cranial fragments		frontal and parietal fragments of a subadult, probably about a year old, calcite
VIII	13	506	10 shaft fragments		calcite, adult
VIII	13	507	rib fragment	undetermined	subadult, calcite, mid rib, shaft fragment
VIII	13	508	rib fragment	undetermined	subadult, calcite, mid rib, shaft fragment
VIII	13	509	rib fragment	undetermined	subadult, calcite, upper rib, shaft fragment
VIII	13	510	rib fragment	right	subadult, calcite, vertebral end, upper rib
VIII	13	511	rib fragment	undetermined	subadult, calcite, mid rib, shaft fragment

VIII	13	512	femur fragment	undetermined	adult, calcite, shaft fragment	
VIII	13	513	tibia fragment	undetermined	adult, calcite, shaft fragment	
VIII	13	514	11 shaft fragments		adult, calcite	
VIII	13	515	30 unidentified fragments			
VIII	13	516	48 unidentified fragments			
VIII	13	517	30 shaft fragments			
VIII	13	518	occipital fragment		subadult, calcite	
VIII	13	519	talus fragment	undetermined	adult, calcite, fragment is small	
VIII	13	520	humerus fragment	undetermined	adult, calcite, trochlea fragment	
VIII	13	521	proximal manual phalanx		adult, calcite	33.56 mm
VIII	13	522	third metatarsal fragment	right	adult, calcite, proximal fragment	
VIII	13	523	metacarpal fragment	undetermined	adult, shaft fragment, damage to the cortical layer	
VIII	13	524	rib fragment	possible left	vertebral end, possible subadult, mid rib	
VIII	13	525	radius fragment	undetermined	shaft fragment, adult, calcite	
VIII	13	526	rib fragment	undetermined	adult, calcite, shaft fragment, mid rib	

VIII	13	527	rib fragment	undetermined	subadult, calcite, shaft fragment, mid rib
VIII	13	528	rib fragment	undetermined	subadult, calcite, shaft fragment, mid rib
VIII	13	529	tibia fragment	undetermined	adult, calcite, proximal fragment
VIII	13	530	tibia fragment	undetermined	adult, calcite, proximal fragment
VIII	13	531	vertebra fragment		adult, calcite, superior or inferior margin of a body, probably lumbar or sacral
VIII	13	532	ilium fragment	undetermined	adult, calcite, part of the crest
VIII	13	533	radius fragment	right	subadult, probably around 9 years old, distal epiphysis, calcite
VIII	13	534	patella fragment	undetermined	adult, calcite, only part of one of the condyles is present
VIII	13	535	vertebra fragment		superior or inferior margin of the body, adult, calcite, probably thoracic
VIII	13	536	rib fragment	undetermined	adult, calcite, shaft fragment
VIII	13	537	rib fragment	undetermined	adult, calcite, shaft

fragment					
VIII	13	538	rib fragment	undetermined	adult, calcite, shaft fragment
VIII	13	539	rib fragment	undetermined	adult, calcite, vertebral end fragment
VIII	13	540	scapula fragment	undetermined	adult, calcite, spine fragment
VIII	13	541	scapula fragment	undetermined	adult, calcite, border fragment
VIII	13	542	vertebra fragment		adult, transverse process fragment, thoracic, calcite
VIII	13	543	navicular fragment	undetermined	adult, calcite, small fragment
VIII	13	544	vertebra fragment		adult, fragment of a vertebral body, calcite
VIII	13	545	vertebra fragment		adult, fragment of a vertebral body, calcite
VIII	13	546	vertebra fragment		adult, fragment of a vertebral body, calcite
VIII	13	547	vertebra fragment		adult, fragment of a vertebral body, calcite
VIII	13	548	cranial fragment		adult, calcite
VIII	13	549	epiphysis fragment		subadult, probably 5 years of age, possible distal tibia epiphysis
VIII	13	550	epiphysis fragment		subadult, possible humerus proximal epiphysis fragment,

calcite

VIII	13	551	radius fragment	undetermined	subadult, probably around 5 years of age, distal fragment, unfused epiphysis, calcite
VIII	13	552	proximal manual phalanx fragment		adult, distal fragment, calcite
VIII	13	553	distal manual phalanx		adult, calcite
VIII	13	554	first metacarpal fragment	undetermined	adult, proximal fragment, calcite
VIII	13	555	possible scapula fragment	undetermined	adult, calcite, lateral
VIII	13	556	cunerder		

VIII	13	562	vertebra fragment		subadult, lamina fragment, calcite, probable thoracic
VIII	13				subadult, cervical fragment with two articular facets and part of the body
VIII	13	563	vertebra fragment		subadult, cervical fragment with an articular facets and part of the body
VIII	13	564	vertebra fragment		vertebral end, possible subadult, calcite
VIII	13		565	rib fragment	undetermined

VIII	14	A	23	ulna fragment	right	proximal fragment, adult	
VIII	14	A	24	cuboid	left	adult	
VIII	14	A	25	temporal fragment	left	adult, mastoid is broken, so sexing cannot be determined	
VIII	14	A	26	probable occipital fragment		indicated by the internal fossa	
VIII	14	A	27	second metatarsal	right	adult	67.40 mm
VIII	14	A	28	third metacarpal fragment	right	adult, defined ridge on the medial surface	
VIII	14	A	29	first metacarpal	right	adult, defined ridge on the lateral surface	41.81 mm
VIII	14	A	30	third metacarpal fragment	right	adult, proximal fragment	
VIII	14	A	31	metacarpal fragment		probably fifth, very defined ridge on the manual surface	
VIII	14	A	32	first cuneiform	left		
VIII	14	A	33	scaphoid	right		
VIII	14	A	34	hamate	right		
VIII	14	A	35	third cuneiform	right		
VIII	14	A	36	lunate	right		
VIII	14	A	37	trapezoid	right		
VIII	14	A	38	capitate	right		
VIII	14	A	39	fourth metacarpal fragment	right	proximal and shaft fragment	
VIII	14	A	40	intermediate manual phalanx		defined ridges on the lateral margins	24.6 mm

VIII	14	A	41	intermediate manual phalanx		defined ridges on the lateral margins	26.37 mm
VIII	14	A	42	intermediate manual phalanx fragment		defined ridges on the lateral margins, distal end fractured	
VIII	14	A	43	intermediate manual phalanx		defined ridges on the lateral margins	27.77 mm
VIII	14	A	44	metacarpal fragment	undetermined	adult, shaft fragment	
VIII	14	A	45	proximal manual phalanx		defined ridges on the lateral margins	31.43 mm
VIII	14	A	46	proximal manual \qquad		defined ridges on the lateral margins	37.33 mm
VIII	14	A	47	proximal manual phalanx			27.52 mm
VIII	14	A	48	metacarpal		neonate, probably the first	13.55 mm
VIII	14	A	49	metacarpal			17.14 mm
VIII	14	A	50	metacarpal			14.71 mm
VIII	14	A	51	distal manual phalanx		probably first, if so then it is of an adolescent ~ 15 years old	17.58 mm
VIII	14	A	52	distal manual phalanx		unfused, between 8 and 15 years old	12.63 mm
VIII	14	A	53	ulna fragment	left	perinate to 1.5 years old based on size and development	
VIII	14	A	54	radius fragment	undetermined	proximal fragment this bone suggests the	

\(\left.$$
\begin{array}{cccccc} & & & & \begin{array}{c}\text { child is more a } \\
\text { perinate based on size }\end{array} \\
\hline \text { VIII } & 14 & \text { A } & 55 & \text { humerus fragment } & \text { left }\end{array}
$$ \begin{array}{c}distal fragment,

perinate\end{array}\right]\)| proximal fragment of |
| :---: |
| a perinate |

VIII	14	A	69	unfused vertebral body	probable thoracic vertebra, perinate
VIII	14	A	70	unfused vertebral body	probable thoracic vertebra, perinate
VIII	14	A	71	unfused vertebral body	probable thoracic vertebra, perinate
VIII	14	A	72	unfused vertebral body	probable lumbar vertebra, perinate
VIII	14	A	73	unfused vertebral body	probable lumbar vertebra, perinate
VIII	14	A	74	unfused vertebral body	probable lumbar vertebra, perinate
VIII	14	A	75	unfused vertebral body	probable lumbar vertebra, perinate
VIII	14	A	76	unfused vertebral body	probable lumbar vertebra, perinate
VIII	14	A	77	unfused vertebral body	probable sacral vertebra, perinate
VIII	14	A	78	unfused vertebral body	probable sacral vertebra, perinate
VIII	14	A	79	unfused vertebral body	fragmentary, perinate
VIII	14	A	80	unfused vertebral body	fragmentary, perinate
VIII	14	A	81	unfused vertebral body	neagmentary, perinate
VIII	14	A	82	metatarsal	nenate, probable the
fernd or third					

VIII	14	A	83	phalanx	neonate, possible proximal manual
VIII	14	A	84	phalanx fragment	neonate, possible proximal manual
VIII	14	A	85	phalanx fragment	neonate, possible proximal manual
VIII	14	A	86	phalanx fragment	neonate, possible proximal manual
VIII	14	A	87	phalanx	neonate, possible proximal pedal
VIII	14	A	88	phalanx	neonate, possible proximal pedal
VIII	14	A	89	phalanx	nenate, possible first proximal manual
VIII	14	A	90	phalanx	neonate, possible first proximal manual
VIII	14	A	91	phalanx	neonate, possible first proximal pedal
VIII	14	A	92	phalanx	
VIII	14	A	93	scapula fragment	
VIII	14	A	94	rib fragment	undetermined

VIII	14	A	97	rib fragment	undetermined	neonate, sternal fragment	
VIII	14	A	98	rib fragment	undetermined	neonate, sternal fragment	
VIII	14	A	99	rib fragment	undetermined	neonate, sternal fragment	
VIII	14	A	100	rib fragment	undetermined	neonate, sternal fragment	
VIII	14	A	101	rib fragment	undetermined	neonate, sternal fragment	
VIII	14	A	102	rib fragment	undetermined	neonate, sternal fragment	
VIII	14	A	103	12 unidentified fragments			
VIII	14	A	104	humerus fragment	left	distal fragment beginning at the top of the olecranon fossa and includes a large portion of the shaft	
VIII	14	A	105	talus fragment	right	adult, lateral section is broken off	
VIII	14	A	106	deciduous incisor		probably the right upper first	6.67 mm anterior to posterior, 4.69 mm lingual to labial, 6.98 mm crown height, 11.22 mm root length
VIII	14	A	107	trapezium	left	adult	
VIII	14	A	108	triquetral	left	adult	

VIII	14	A	109	trapezium	right	
VIII	14	A	110	trapezoid	right	
VIII	14	A	111	interproximal manual phalanx		defined ridges on the lateral margins
VIII	14	A	112	pubis	right	perinate
VIII	14	A	113	neural arch	right	cervical vertebra
VIII	14	A	114	thoracic neural arch	both	fused
VIII	14	A	115	thoracic neural arch	right	unfused
VIII	14	A	116	thoracic neural arch	right	unfused
VIII	14	A	117	thoracic neural arch	left	unfused
VIII	14	A	118	cervical neural arch	left	unfused
VIII	14	A	119	cervical neural arch	left	unfused
VIII	14	A	120	cervical neural arch	right	unfused
VIII	14	A	121	cervical neural arch	right	unfused
VIII	14	A	122	cervical neural arch fragment	undetermined	unfused
VIII	14	A	123	cervical neural arch fragment	undetermined	unfused
VIII	14	A	124	cervical neural arch fragment	undetermined	unfused
VIII	14	A	125	lumbar neural arch	left	unfused
VIII	14	A	126	lumbar neural arch	right	unfused
VIII	14	A	127	lumbar neural arch	right	unfused
VIII	14	A	128	neural arch fragment		
VIII	14	A	129	neural arch fragment		
VIII	14	A	130	neural arch fragment		
VIII	14	A	131	neural arch fragment		
VIII	14	A	132	neural arch fragment		

VIII	14	A	133	cervical neural arch	right		
VIII	14	A	134	neural arch fragment			
VIII	14	A	135	humerus fragment	undetermined	badly deteriorated, possible subadult	
VIII	14	A	136	femur fragment	undetermined	possible unfused head	
VIII	14	A	137	thoracic vertebra fragment		body fragment with left transverse process, young adult, only minimal lipping, calcite	
VIII	14	A	138	tibia fragment	left	adult, proximal fragment with the condyles	
VIII	14	A	139	proximal pedal phalanx			21.24 mm
VIII	14	A	140	proximal pedal phalanx			21.01 mm
VIII	14	A	141	proximal pedal phalanx			24.72 mm
VIII	14	A	142	proximal pedal phalanx			25.58 mm
VIII	14	A	143	proximal pedal phalanx			23.17 mm
VIII	14	A	144	proximal pedal phalanx			21.5 mm
VIII	14	A	145	proximal pedal phalanx			22.42 mm
VIII	14	A	146	proximal pedal phalanx			24.28 mm

VIII	14	A	147	patella	left	subadult, small	33.95 mm height, 34.45 mm width
VIII	14	A	148	navicular	right		
VIII	14	A	149	third cuneiform	left		
VIII	14	A	150	metatarsal fragment		adult, shaft and head	
VIII	14	A	151	metatarsal fragment		adult, shaft and head	
VIII	14	A	152	first metatarsal	right		54.91 mm
VIII	14	A	153	fourth metatarsal fragment	left		
VIII	14	A	154	first proximal pedal phalanx		abnormal bone growth on proximal superior surface, similar to early stage gout	26.95 mm
VIII	14	A	155	proximal pedal phalanx			21.96 mm
VIII	14	A	156	interproximal manual phalanx			19.26 mm
VIII	14	A	157	interproximal manual phalanx		subadult, proximal end is not fused	21.7 mm
VIII	14	A	158	proximal manual phalanx			29.72 mm
VIII	14	A	159	fifth metatarsal	probable left	subadult, unfused head	
VIII	14	A	160	second metatarsal	right	subadult, unfused head	
VIII	14	A	161	fifth metacarpal	right		46.82 mm
VIII	14	A	162	talus fragment	left		

VIII	14	A	163	fibula fragment	left	
VIII	14	A	164	navicular	right	
VIII	14	A	165	first cuneiform	right	
VIII	14	A	166	rib fragment		adult, shaft fragment
VIII	14	A	167	rib fragment	right	subadult, vertebral end
VIII	14	A	168	rib fragment	left	possibly rib one or 2 shaft fragment, subadult
VIII	14	A	169	rib fragment	probable right	shaft fragment, subadult
VIII	14	A	170	rib fragment	left	rib 1, subadult
VIII	14	A	171	rib fragment	right	rib 1, different individual than 170, subadult, slightly larger than 170
VIII	14	A	172	cervical vertebra		C 3-6
VIII	14	A	173	cervical vertebra fragment		body and left transverse process, left superior articular facet has additional bone growth but does not appear very arthritic yet
VIII	14	A	174	cervical vertebra fragment		just the body
VIII	14	A	175	thoracic vertebra		superior and inferior margins of the body are still wavy and undulated, indicating

it has not fused,
subadult

VIII	14	A	176	mandibular fragment	left	mandibular condyle and coronoid process fragment, calcite
VII	14	A	177	navicular	left	
VIII	14	A	178	cuboid	right	
VIII	14	A	179	hamate	left	
VIII	14	A	180	tibia epiphysis	right	proximal epiphysis, subadult under 9
VIII	14	A	181	tibia epiphysis	right	distal epiphysis, subadult under 9
VIII	14	A	182	coccyx	superior portion	
VIII	14	A	183	distal manual phalanx		
VIII	14	A	184	distal manual phalanx		
VIII	14	A	185	first distal manual		
VIII	14	A	186	first distal pedal		
VIII	14	A	187	distal pedal phalanx		
VIII	14	A	188	distal pedal phalanx		fused with a
VIII	14	A	189	intermediate pedal	phalanx	
VIII	14	A	190	rib fragment		
VIII	14	A	191	metacarpal epiphysis	head	
VIII	14	A	192	metatarsal epiphysis	head	

$\left.\begin{array}{lccccc}\text { VIII } & 14 & \text { A } & 193 & \text { metacarpal epiphysis } & \text { head } \\ \hline \text { VIII } & 14 & \text { A } & 194 & \text { metacarpal epiphysis } & \text { head } \\ \hline \text { VIII } & 14 & \text { A } & 195 & \text { clavicle fragment } & \text { left }\end{array} \begin{array}{c}\text { subadult, no older } \\ \text { than 1-2 years based } \\ \text { on size }\end{array}\right]$

VIII	14	A	208	pisiform	left	
VIII	14	A	209	pisiform	right	
VIII	14	A	210	sesamoid		
VIII	14	A	211	triquetral	right	
VIII	14	A	212	lunate	left	
VIII	14	A	213	trapezium	left	
VIII	14	A	214	cuneiform fragment		second or third
VIII	14	A	215	second cuneiform	left	
VIII	14	A	216	humerus fragment	undetermined	subadult, morphological damage
VIII	14	A	217	ilium fragment		unfused iliac crest, subadult
VIII	14	A	218	thoracic vertebra fragment		upper thoracic t2-5 probably, body and left pedicle
VIII	14	A	219	thoracic vertebra fragment		middle thoracic, t4-8 probably, left portion of the body and pedicle are present
VIII	14	A	220	thoracic vertebra fragment		body fragment, lower thoracic t7-10 most likely, macroporosity on the body
VIII	14	A	221	second metacarpal fragment	left	
VIII	14	A	222	second metatarsal fragment	right	proximal and shaft fragment
VIII	14	A	223	fifth metatarsal	undetermined	subadult, head is

unfused

unfused						
VIII	14	A	224	first metatarsal fragment	left	proximal fragment, adult
VIII	14	A	225	scapula fragment	right	glenoid fossa fragment
VIII	14	A	226	thoracic vertebra fragment		lamina fragment
VIII	14	A	227	first cuneiform fragment	right	
VIII	14	A	228	metatarsal fragment		possible fourth, proximal fragment
VIII	14	A	229	thoracic vertebra fragment		anterior/right body fragment
VIII	14	A	230	vertebra fragment		subadult, unfused anterior portion of a body, possibly lumbar or sacrum
VIII	14	A	231	vertebra fragment		subadult, unfused anterior portion of a body, probably first sacral
VIII	14	A	232	ischium fragment	undetermined	badly deteriorated, possible subadult
VIII	14	A	233	ischium fragment		part of the greater sciatic notch visible, badly deteriorated
VIII	14	A	234	pubis fragment		subadult, unfused, deep billows, small in size

VIII	14	A	235	clavicle fragment	left	lateral fragment
VIII	14	A	236	metacarpal/metatarsal fragment		proximal fragment, subadult, unfused proximal epiphysis
VIII	14	A	237	intermediate manual phalanx fragment		
VIII	14	A	238	phalanx fragment		unfused proximal end
VIII	14	A	239	tibia epiphysis	left	proximal epiphysis, subadult under 9, closer to 5
VIII	14	A	240	ischium	left	perinate
VIII	14	A	241	incisor	right	lower second deciduous
VIII	14	A	242	canine fragment	undetermined	possible upper, too little tooth available to determine
VIII	14	A	243	frontal fragments		child, right and left fragments, the right is much larger
VIII	14	A	244	11 unidentified fragments		
VIII	14	B	,	scaphoid	left	adult
VIII	14	B	2	hamate	right	
VIII	14	B	3	lunate	right	
VIII	14	B	4	lunate	right	
VIII	14	B	5	capitate	left	
VIII	14	B	6	pisiform	right	
VIII	14	B	7	pisiform	left	
VIII	14	B	8	trapezoid	right	

VIII	14	B	9	metacarpal head	subadult, unfused	
VIII	14	B	10	metatarsal head	subadult, unfused	
VIII	14	B	11	metacarpal fragment	distal fragment, adult	
VIII	14	B	12	cervical vertebra fragment	second vertebra fragment with only the dens, adult	
VIII	14	B	13	first proximal manual phalanx		32.10 mm
VIII	14	B	14	proximal manual phalanx		31.51 mm
VIII	14	B	15	proximal manual phalanx		36.19 mm
VIII	14	B	16	proximal manual phalanx		48.25 mm
VIII	14	B	17	interproximal manual phalanx fragment		
VIII	14	B	18	interproximal manual phalanx		28.7 mm
VIII	14	B	19	interproximal manual phalanx		25.71 mm
VIII	14	B	20	interproximal manual phalanx		24.94 mm
VIII	14	B	21	interproximal manual phalanx		20.39 mm
VIII	14	B	22	interproximal manual phalanx	subadult, proximal end unfused	24.8 mm
VIII	14	B	23	interproximal manual \qquad	subadult, proximal end unfused	16.32 mm

VIII	14	B	24	first proximal pedal phalanx		adult	32.78 mm
VIII	14	B	25	proximal pedal phalanx			
VIII	14	B	26	proximal pedal phalanx			16.69 mm
VIII	14	B	27	first intermediate pedal phalanx		subadult	18.25 mm
VIII	14	B	28	first distal manual phalanx			19.37 mm
VIII	14	B	29	first distal manual phalanx			20.49 mm
VIII	14	B	30	patella	right	adult	39.57 mm height, 40.53 mm width
VIII	14	B	31	proximal manual phalanx fragments		distal end broken, adult	
VIII	14	B	32	proximal manual phalanx		adult, possible pathology, circular depression with smooth margins on the distal manual surface measures 3.97 mm in diameter	32.2 mm
VIII	14	B	33	proximal manual phalanx		adult	36.15 mm
VIII	14	B	34	interproximal pedal phalanx			

VIII	14	B	35	interproximal pedal phalanx			
VIII	14	B	36	interproximal pedal phalanx			
VIII	14	B	37	interproximal manual phalanx			24.35 mm
VIII	14	B	38	interproximal manual phalanx			20.01 mm
VIII	14	B	39	interproximal manual phalanx		possible subadult	19.25 mm
VIII	14	B	40	interproximal manual phalanx			20.21 mm
VIII	14	B	41	distal pedal phalanx		possible subadult	11.64 mm
VIII	14	B	42	distal manual phalanx			15.39 mm
VIII	14	B	43	distal manual phalanx			17.17 mm
VIII	14	B	44	distal manual phalanx fragment		broken distal end	
VIII	14	B	45	distal manual phalanx			15.35 mm
VIII	14	B	46	distal manual phalanx			18.17 mm
VIII	14	B	47	distal manual phalanx			20.01 mm
VIII	14	B	48	distal manual phalanx		probable first	20.79 mm
VIII	14	B	49	fifth metatarsal	right		62.37 mm
VIII	14	B	50	third metatarsal	right		51.2 mm
VIII	14	B	51	fifth metacarpal	right		62.86 mm
VIII	14	B	52	fifth metatarsal	left		
VIII	14	B	53	third cuneiform	right		
VIII	14	B	54	metacarpal fragment		distal end broken, adult, possible fifth?	

$\left.\begin{array}{ccccccc}\text { VIII } & 14 & \text { B } & 55 & \text { metacarpal fragment } & & \begin{array}{c}\text { distal end broken, } \\ \text { adult, possible fifth? }\end{array} \\ \hline \text { VIII } & 14 & \text { B } & 56 & \text { distal tibia epiphysis } & \text { left } & \begin{array}{c}\text { subadult, same size as } \\ \text { in Baker page 119 }\end{array} \\ \hline \text { VIII } & 14 & \text { B } & 57 & \begin{array}{c}\text { proximal tibia epiphysis } \\ \text { fragment }\end{array} & \text { possible left } & \begin{array}{c}\text { subadult, same size as } \\ \text { in Baker page 119 }\end{array} \\ \hline \text { VIII } & 14 & \text { B } & 58 & \text { radius fragment } & \text { subadt, over 5 years } \\ \text { of age, distal } \\ \text { fragment }\end{array}\right]$

VIII	14	B	66	rib fragment	undetermined	shaft fragment
VIII	14	B	67	cuneiform fragment	undetermined	either the second or third, adult
VIII	14	B	68	first cuneiform fragment	right	adult, badly deteriorated
VIII	14	B	69	triquetral	right	squished in appearance, adult
VIII	14	B	70	sesamoid	undetermined	
VIII	14	B	71	first metacarpal proximal epiphysis	probable left	at least 4 or 5 years old, probably older
VIII	14	B	72	thoracic vertebra fragment		body fragment

VIII	14	B	81	cervical vertebra fragment		first cervical, right side, superior articular facet
VIII	14	B	82	vertebra fragment		possible cervical fragment, maybe part of the lamina on c 1 or c2
VIII	14	B	83	unidentified fragment		maybe part of the pelvis?
VIII	14	B	84	talus fragment	left	adult, treated with treated with B72, posterior portion, blackened
VIII	14	B	85	talus fragment	right	adult, probable mate to 84 , treated with treated with B72, blackened, damage to the medial and posterior surface prevents measurements
VIII	14	B	86	calcaneus fragment	possible right	adult, badly deteriorated, treated with treated with B72, blackened, breakage prevents measurement
VIII	14	B	87	first cuneiform	right	adult, badly deteriorated, treated with treated with B72, blackened

VIII	14	B	88	proximal manual phalanx	undetermined	adult, anterior portion is broken, first digit, treated with treated with B72	
VIII	14	B	89	rib fragment	undetermined	shaft fragment, possible subadult, calcite, treated with treated with B72	
VIII	14	B	90	radius fragment	undetermined	head fragment, possibly an unfused radial head, damage prevents confirmation, treated with treated with B72	
VIII	14	B	91	capitate (probable)	left	subadult, probably around 8 years of age, badly deteriorated, treated with treated with B72	
VIII	14	B	92	vertebral body		subadult, probably thoracic, possibly 2-4 years of age	
VIII	14	B	93	cervical vertebra fragment		subadult, right lamina and pedicle fragment, unfused to body, 2-4 years of age	
VIII	14	B	94	unidentified fragments		4 unidentified fragments	
VIII	14	B	95	proximal pedal phalanx	undetermined	adult, first digit, slightly deteriorated	32.72 mm

around the proximal
margin

margin							
VIII	14	B	96	proximal manual phalanx	undetermined	adult, some damage to the proximal posterior surface	38.5 mm
VIII	14	B	97	first metatarsal	right	adult, some damage to the proximal and medial surfaces	58.85 mm
VIII	14	B	98	metatarsal fragment	right	adult, probably the fourth, damage to the proximal and distal ends, head is absent	
VIII	14	B	99	proximal pedal phalanx fragment	undetermined	adult, proximal fragment	
VIII	14	B	100	interproximal manual phalanx	undetermined	adult, some damage to the proximal facet	28.27 mm
VIII	14	B	101	horn of cornu	right	subadult, unfused, but well developed	
VIII	14	B	102	scaphoid	left	adult	
VIII	14	B	103	sacral vertebral body		subadult, probably less than two based on the lack of fusion to lamina or other bodies	
VIII	14	B	104	lumbar body		subadult, probably around 2-4, carbon	
VIII	14	B	105	lumbar body		subadult, probably around 2-4, carbon	
VIII	14	B	106	thoracic body		subadult, probably around 2-4, carbon	

VIII	14	B	107	intermediate manual phalanx	undetermined	adult, blackened by burning
VIII	14	B	108	rib fragment	left	neck fragment, adult, cortical layer destroyed
VIII	14	B	109	rib fragment	left	subadult, lower rib
VIII	14	B	110	rib fragment	left	subadult, upper rib
VIII	14	B	111	fibula fragment	undetermined	subadult, probably 1.5 years of age
VIII	14	B	112	ischium	left	perinate
VIII	14	B	113	metacarpal fragment	undetermined	perinate to a year or two, some light carbon
VIII	14	B	114	metatarsal fragment	undetermined	adult, head fragment, some carbon
VIII	14	B	115	sacral neural arch	right	subadult, not fused to the body 2-4 years of age
VIII	14	B	116	cervical neural arch	left	subadult, it appears that it may have fused to the body, but the body is just broken off
VIII	14	B	117	thoracic neural arch	left	subadult, not fused to the body 2-4 years of age
VIII	14	B	118	thoracic neural arch	right	subadult, not fused to the body 2-4 years of age

VIII	14	B	119	proximal manual phalanx		subadult, perinate	14.19 mm
VIII	14	B	120	proximal manual phalanx		subadult, perinate	18.85 mm
VIII	14	B	121	proximal manual phalanx		subadult, perinate	18.99 mm
VIII	14	B	122	first metacarpal	undetermined	subadult, perinate	17.54 mm
VIII	14	B	123	distal manual phalanx	undetermined	adult, calcite	20.45 mm
VIII	14	B	124	distal manual phalanx	undetermined	adult, calcite	19.11 mm
VIII	14	B	125	distal manual phalanx	undetermined	perinate	8.87 mm
VIII	14	B	126	distal manual phalanx	undetermined	perinate	7.93 mm
VIII	14	B	127	intermediate manual \qquad phalanx	undetermined	adult, calcite	
VIII	14	B	128	metatarsal	undetermined	perinate	
VIII	14	B	129	metacarpal	undetermined	perinate	
VIII	14	B	130	rib fragment	right	perinate, first rib, neck and shaft fragment	
VIII	14	B	131	distal manual phalanx	undetermined	perinate	8.02 mm
VIII	14	B	132	distal manual phalanx	undetermined	perinate	8.84 mm
VIII	14	B	133	distal manual phalanx	undetermined	perinate	8.41 mm
VIII	14	B	134	distal manual phalanx	undetermined	subadult, proximal end is unfused, first \qquad digit	16.84 mm
VIII	14	B	135	proximal manual phalanx	undetermined	adult, calcite, some damage to a lateral aspect	

adult, calcite and
carbon, damage to the distal end prevents

VIII	14	B	136	proximal manual phalanx	undetermined	distal end prevents measurement	
VIII	14	B	137	proximal manual phalanx	undetermined	adult, calcite and carbon	
VIII	14	B	138	proximal pedal phalanx	undetermined	adult, calcite and carbon	
VIII	14	B	139	proximal manual phalanx	undetermined	probable perinate	19.86 mm
VIII	14	B	140	proximal pedal phalanx	undetermined	adult	22.66 mm
VIII	14	B	141	metatarsal	undetermined	probable perinate	20.54 mm
VIII	14	B	142	metacarpal	undetermined	probable perinate	21.7 mm
VIII	14	B	143	metatarsal	undetermined	probable perinate	23.55 mm
VIII	14	B	144	metatarsal	undetermined	probable perinate	24.77 mm
VIII	14	B	145	distal manual phalanx	undetermined	adult, first digit,	carbon

two old

VIII	14	B	151	distal pedal phalanx	undetermined	perinate probably, first digit	9.97 mm
VIII	14	B	152	intermediate pedal phalanx	undetermined	probably an adult	6.19 mm
VIII	14	B	153	proximal manual phalanx fragment	undetermined	damage to the distal and proximal end, probably perinate	
VIII	14	B	154	distal pedal phalanx	undetermined	adult	9.88 mm
VIII	14	B	155	temporal fragment	undetermined	adult, tympanic portion fragment	
VIII	14	B	156	cuboid	left	adult, badly deteriorated	
VIII	14	B	157	cervical vertebra fragment		adult, inferior and superior articular facet fragment	
VIII	14	B	158	lumbar vertebra		adult, probably L5, damage to the lamina, calcite	
VIII	14	B	159	patella	probable left	adult, calcite, the lateral aspect is absent along with the inferior aspect	
VIII	14	B	160	metatarsal fragment	undetermined	probable perinate to a year or two, shaft fragment	
VIII	14	B	161	intermediate manual phalanx	undetermined	young subadult, damage to the distal end prevents	

measurement

VIII	14	B	162	proximal manual phalanx	undetermined	perinate	12.2 mm
VIII	14	B	163	intermediate pedal phalanx	undetermined	adult	8.94 mm
VIII	14	B	164	second metatarsal fragment	right	adult, head is broken off	
VIII	14	B	165	third metatarsal	right	adult	69.43 mm
VIII	14	B	166	metatarsal fragment	undetermined	adult, distal fragment with head and most of the shaft	
VIII	14	B	167	fifth metatarsal	left	adult	69.05 mm
VIII	14	B	168	triquetral	right	adult	
VIII	14	B	169	greater multangular fragment	right	adult, palmar aspect is broken off	
VIII	14	B	170	proximal manual phalanx	undetermined	perinate	10.67 mm
VIII	14	B	171	manual phalanx fragment	undetermined	adult, distal fragment	
VIII	14	B	172	rib fragment	right	subadult, neck and shaft fragment, some calcite, upper rib	
VIII	14	B	173	thoracic vertebra fragment		subadult, lamina fragment unfused to the body	
VIII	14	B	174	vertebra fragment		adult, spinous process probably from a thoracic vertebra	

VIII	14	B	175	cervical vertebra fragment		subadult, neural arch of C1	
VIII	14	B	176	long bone fragment	undetermined	adult, burned	
VIII	14	B	177	probable sesamoid		if not, then it is a subadult carpal or tarsal	
VIII	14	B	178	rib fragment	undetermined	adult, shaft fragment, carbon, calcite	
VIII	14	B	179	rib fragment	undetermined	adult, shaft fragment	
VIII	14	B	180	4 unidentifiable fragments	undetermined	undetermined	
VIII	14	B	181	molar	right	first upper, complete with calcite, slightly worn cusps	12.63 mm anterior to posterior, 11.55 mm lingual to buccal 7.15 mm
VIII	14	B	182	molar	left	upper, possibly second, carabelli's cusp is more than slight, calcite, roots broken	11 mm anterior to posterior, 12.02 mm lingual to buccal 7.45 mm
VIII	14	B	183	molar	right	third upper	10.97 mm anterior to posterior, 11.78 mm lingual to buccal 7.43 mm
VIII	14	B	184	premolar	left	first upper, complete with calcite, slightly worn cusps, some calcite	6.85 mm anterior to posterior, 9.33 mm lingual to buccal 8.99 mm
VIII	14	B	185	premolar	right	second upper, broken root, some calcite	7.84 mm anterior to posterior,

							10.09 mm lingual to buccal 8.01 mm
VIII	14	B	186	premolar	possible left	second lower, no root	7.55 mm anterior to posterior, 8.56 mm lingual to buccal 7.11 mm
VIII	14	B	187	canine	right	upper, possibly modified with two linear grooves that extend lateral to medial mid way on the enamel crown, calculus on the anterior surface at the CEJ	7.34 mm anterior to posterior, 8.46 mm lingual to buccal 9.37 mm
VIII	14	B	188	incisor	left	first upper, pronounced shoveling, intact, calculus on anterior surface at the CEJ	8.99 mm anterior to posterior, 7.8 mm lingual to buccal 11.18 mm
VIII	14	B	189	incisor	probable right	second upper, intact, calculus on anterior surface at the CEJ	7.28 mm anterior to posterior, 7.05 mm lingual to buccal 10.13 mm
VIII	14	B	190	incisor	probable right	second upper, modified with an Ik that is slightly spaded	7.28 mm anterior to posterior, 6.56 mm lingual to buccal 9.4 mm

VIII	14	B	191	canine	undetermined	root broken off, might be lower due to the size, worn on the cusp, dentine exposed	6.87 mm anterior to posterior, 7.27 mm lingual to buccal 10.11 mm
VIII	14	B	192	incisor	right	upper first, complete, calcite, shoveling	8.52 mm anterior to posterior, 7.4 mm lingual to buccal 10.14 mm
VIII	14	B	193	canine	undetermined	possible upper due to size, root broken off, slightly worn cusps	8.33 mm anterior to posterior, 8.45 mm lingual to buccal 10.65 mm
VIII	14	B	194	root fragment	undetermined	possible incisor root	
VIII	14	B	195	molar	right	lower, probable second, broken roots, some calcite	10.55 mm anterior to posterior, 10.79 mm lingual to buccal 6.4 mm
VIII	14	B	196	molar	right	lower, probable second, broken roots, some calcite, caries in the grooves	11.37 mm anterior to posterior, 10.45 mm lingual to buccal 6.97 mm
VIII	14	B	197	molar	right	lower, probable third, crown broke off from root, some calcite	11.73 mm anterior to posterior, 10.64 mm lingual to buccal 7.3 mm
VIII	14	B	198	molar	left	lower, first molar, broken roots	12.32 mm anterior to posterior, 10.9 mm lingual

VIII	14	B	199	molar	right	upper, probably second molar, tips of roots are broken	10.51 mm anterior to posterior, 11.78 mm lingual to buccal 7.38 mm
VIII	14	B	200	molar	undetermined	upper, possible third right with an extra small cusp or second left with a reduced cusp, roots broken off	9.7 mm anterior to posterior, 11.67 mm lingual to buccal 6.26 mm
VIII	14	B	201	molar	left	lower first molar, roots broken off	12.12 mm anterior to posterior, 10.97 mm lingual to buccal 7.23 mm
VIII	14	B	202	molar	left	upper, probable second molar, roots broken off, carabelli's present	11.61 mm anterior to posterior, 12.38 mm lingual to buccal 6.69 mm
VIII	14	B	203	premolar	right	upper, second, complete, calcite	7.7 mm anterior to posterior, 10.12 mm lingual to buccal 7.25 mm
VIII	14	B	204	incisor	right	upper lateral, linear enamel defect 3.6 mm above CEJ	7.17 mm anterior to posterior, 7.43 mm lingual to buccal 11.27 mm
VIII	14	B	205	molar	right	lower, possible third, possibly still developing	11.79 mm anterior to posterior, 10.48 mm lingual

to buccal

VIII	14	B	206	molar	undetermined	still developing, upper, either right or left second probably	
VIII	14	B	207	molar	undetermined	still developing, upper, either right or left second probably	
VIII	14	B	208	incisor	undetermined	lower, no roots, worn, anterior chip at occlusal surface	6.52 mm anterior to posterior, 6.05 mm lingual to buccal
VIII	14	B	209	incisor	undetermined	lower, no roots, worn	5.82 mm anterior to posterior, 5.76 mm lingual to buccal 9.39 mm
VIII	14	B	210	canine	probable right	lower, no roots, worn	7.1 mm anterior to posterior, 7.34 mm lingual to buccal 11.32 mm
VIII	14	B	211	canine	undetermined	upper, possibly filed to a point, modified?, root broke off	8.48 mm anterior to posterior, 9.02 mm lingual to buccal 11.66 mm
VIII	14	B	212	premolar	right	lower second, root broke off	7.7 mm anterior to posterior, 8.74 mm lingual to buccal 7.63 mm

upper central, calculus on anterior surface above the CEJ, modified, from the medial occlusal surface, a groove was created that goes up $\quad 8.82 \mathrm{apm} 6.87 \mathrm{~mm}$ towards the center of lingual to buccal

VIII	14	B	213	incisor	possible right	the crown	11.24ch
VIII	14	C	1	rib fragment	right	adult, calcite, mid rib, vertebral end	
VIII	14	C	2	rib fragment	undetermined	adult, mid rib, calcite, shaft fragment	
VIII	14	C	3	rib fragment	undetermined	subadult, mid rib, calcite, shaft fragment	
VIII	14	C	4	rib fragment	right	subadult, calcite, mid rib, vertebral end	
VIII	14	C	5	intermediate pedal phalanx		adult, calcite	14.85 mm
VIII	14	C	6	first distal manual phalanx	adult, calcite	21.23 mm	
VIII	14	C	7	distal manual phalanx	adult, calcite	19.42 mm	
VIII	14	C	8	proximal pedal phalanx		adult, calcite	
VIII	14	C	9	metacarpal fragment		subadult, calcite, unfused distal end	
VIII	14	C	10	metacarpal fragment	subadult, calcite,		
VIII	14	C	11	metacarpal fragment		subadult, calcite, unfused distal end	

VIII	14	C	12	distal manual phalanx		adult, calcite	16.3 mm
VIII	14	C	13	intermediate manual phalanx		adult, calcite	15.58 mm
VIII	14	C	14	scaphoid	right	adult, calcite, carbon	
VIII	14	C	15	clavicle fragment	possible right	adult, calcite, shaft fragment	
VIII	14	C	16	rib fragment	right	adult, calcite, vertebral end fragment, lower rib	
VIII	14	C	17	rib fragment	right	adult, calcite, vertebral end fragment, lower rib	
VIII	14	C	18	rib fragment	undetermined	subadult, calcite, shaft fragment, upper rib	
VIII	14	C	19	rib fragment	undetermined	adult, calcite, shaft fragment, lower rib	
VIII	14	C	20	rib fragment	undetermined	adult, calcite, shaft fragment, lower rib	
VIII	14	C	21	phalanx fragment		adult, shaft and distal portion, calcite and carbon	
VIII	14	C	22	neural arch	left	cervical, perinate, calcite	
VIII	14	C	23	metacarpal fragment	undetermined	adult, calcite, proximal and shaft fragment are badly deteriorated	
VIII	14	C	24	tibia fragment	left	distal epiphysis, subadult under 9	

years of age

VIII	14	C	25	patella	left	adult calcite	41.97 mm height, 41.83 mm width
VIII	14	C	26	scapula fragment	undetermined	adult, glenoid fragment, badly deteriorated	
VIII	14	C	27	tibia fragment	undetermined	adult, proximal epiphysis fragment with one condyle, probably between 9 and 15 years old	
VIII	14	C	28	patella fragment	undetermined	superior portion, difficult to side due to morphological damage	
VIII	14	C	29	intermediate pedal phalanx		adult, calcite	
VIII	14	C	30	distal manual phalanx		adult, calcite	
VIII	14	C	31	hamate	right	adult, calcite and carbon	
VIII	14	C	32	fifth metatarsal fragment	undetermined	adult, calcite, proximal fragment	
VIII	14	C	33	epiphysis fragment		subadult	
VIII	14	C	34	proximal manual phalanx		adult, calcite, proximal fragment	
VIII	14	C	35	fifth metatarsal fragment	undetermined	adult, calcite, proximal fragment	

VIII	14	C	36	thoracic vertebra fragment		lamina fragment, possible subadult
VIII	14	C	37	cranial fragments	undetermined	possible parietal, subadult, calcite
VIII	14	C	38	scapula fragment	possible left	coracoid fragment, subadult, unfused
VIII	14	C	39	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	14	C	40	vertebra fragment		thoracic vertebra fragment, possible subadult, calcite, transverse fragment
VIII	14	C	41	intermediate manual phalanx fragment		adult, calcite, damage to proximal and distal ends
VIII	14	C	42	rib fragments	undetermined	adult, calcite
VIII	14	C	43	possible tibia fragment		adult, badly deteriorated, calcite
VIII	14	C	44	rib fragments	undetermined	perinate rib fragment, shaft, calcite,
VIII	14	C	45	possible scapula		
fragment	undetermined	possible subadult, spine fragment				
VIII	14	C	47	hamate	left	adult, calcite
VIII	14	C	48	phalanx fragment		adult, calcite, damage to the larger facet
VII	14	C	49	adult, calcite, distal		
fragment						

deteriorated

VIII	14	C	50	vertebra fragment		subadult, vertebra body fragment, anterior portion, possible thoracic, calcite
VIII	14	C	51	metacarpal fragment		adult, calcite, other material stuck to it, proximal and shaft end
VIII	14	C	52	possible scapula fragment	undetermined	possible coracoid fragment, possible subadult, calcite
VIII	14	C	53	vertebra fragment		transverse process with articular facet, adult, calcite
VIII	14	C	54	shaft fragment		subadult, shaft fragment, unidentified, calcite
VIII	14	C	55	shaft fragment		subadult, shaft fragment, unidentified, calcite
VIII	14	C	56	shaft fragment		subadult, shaft fragment, unidentified, calcite
VIII	14	C	57	rib fragment	undetermined	adult, shaft fragment, calcite
VIII	14	C	58	rib fragment	undetermined	adult, shaft fragment, calcite

| VIII | 14 | C | 59 | radius fragment | undetermined |
| :---: | :---: | :---: | :---: | :---: | :---: | | proximal end, adult, |
| :---: |
| calcite |,

adult, calcite, damage to the lamina

VIII	14	C	73	vertebra fragment		from blocked passage, thoracic vertebra, damage to right transverse process and body, upper from blocked passage, thoracic, adult, calcite
VIII	14	C	74	calcaneus fragment	left	from blocked passage, medial fragment from an adult, calcite
VIII	14	C	75	first cuneiform	right	from blocked passage, adult, calcite, damaged
VIII	14	C	76	calcaneus fragment	undetermined	from blocked passage, adult, posterior portion with most of the cortical bone missing, calcite
VIII	14	C	77	humerus fragment	undetermined	from blocked passage, head fragment, calcite, probable adult
VIII	14	C	78	humerus fragment	right	from blocked passage, , lateral portion of the distal

end, adult, calcite

VIII	14	C	79	talus fragment	undetermined	from blocked passage, most anterior condyle, adult	
VIII	14	C	80	vertebra fragment		from blocked passage, anterior portion of a body, possibly thoracic, adult, calcite	
VIII	14	C	81	talus fragment	undetermined	from blocked passage, inferior condyle fragment, adult, calcite	
VIII	14	C	82	radius fragment	undetermined	from blocked passage, subadult, proximal epiphysis, probably closer to 15 than 9, calcite	$\begin{gathered} 19.3 \mathrm{~mm} \text { head } \\ \text { diameter } \\ \hline \end{gathered}$
VIII	14	C	83	possible talus fragment	undetermined	from blocked passage, adult, calcite	
VIII	14	C	84	thoracic vertebra		b72, adult, slightly burned, calcite, upper thoracic	
VIII	14	C	85	thoracic vertebra		b72, damage to the lamina and body (not too much), mid thoracic, adult, calcite	
VIII	14	C	86	cuneiform fragment	right	b72, adult, slightly burned, calcite	

VIII	14	C	87	humerus fragment	undetermined	b72, adult, slightly burned, calcite, proximal head fragment
VIII	14	C	88	cervical vertebra fragment		b72, mainly just the body, slightly burned, calcite, adult
VIII	14	C	89	vertebra fragment		b72, subadult, probably a sacral vertebra, burned with calcite
VIII	14	C	90	vertebra fragment		b72, adult, probably thoracic, calcite
VIII	14	C	91	talus fragment	left	b72, adult, slightly burned, calcite, posterior fragment
VIII	14	C	92	calcaneus fragment	left	b72, adult, slightly burned, cortical layer is destroyed, posterior medial fragment, calcite
VIII	14	C	93	humerus fragment	left	b72, subadult, unfused proximal epiphysis, probably closer to 9 than 15
VIII	14	C	94	vertebra fragment		b72, adult, probably thoracic, calcite
VIII	14	C	95	calcaneus fragment	right	b72, adult, slightly burned, cortical layer is destroyed, posterior

VIII	14	C	105	tibia fragment	undetermined	b72, subadult, calcite, unfused distal fragment	
VIII	14	C	106	vertebra fragment		b72, subadult, thoracic vertebra fragment of the body	
VIII	14	C	107	second metatarsal	right	b72, adult, calcite, burnt	61.04 mm
VIII	14	C	108	talus fragment	undetermined	b72, adult, anterior condyle portion, burnt	
VIII	14	C	109	vertebra fragment		b72, adult, lumbar vertebra fragment, calcite, burnt	
VIII	14	C	110	ulna fragment	probable left	b72, perinate, calcite, burnt, proximal end	
VIII	14	C	111	proximal pedal phalanx		b72, adult, damage to the shaft, calcite	
VIII	14	C	112	trapezoid	right	b72, adult, calcite	
VIII	14	C	113	vertebra fragment		b72, adult, spine from a lumbar vertebra, calcite	
VIII	14	C	114	third cuneiform	possible left	b72, adult, calcite, damaged	
VIII	14	C	115	third cuneiform	possible right	b72, adult, calcite, damaged	
VIII	14	C	116	cervical vertebra fragment		b72, part of the body and a transverse process, calcite, adult	
VIII	14	C	117	radius fragment	left	b72, calcite and burnt, subadult, proximal	

						end, probably closer to 5	
VIII	14	C	118	19 unidentified fragments		treated with treated with B72	
VIII	14	C	119	ulna fragment	right	at blocked passage, covered in a grey calcite, proximal fragment, adult, well defined interosseous crest	
VIII	14	C	120	occipital fragment		at blocked passage, possible subadult based on thinness, there is some porosity evident on the exterior	
VIII	14	C	121	patella	left	at blocked passage, adult, carbon and calcite	46.87 mm height, 47.17 mm width
VIII	14	C	122	navicular	right	at blocked passage, adult, carbon and calcite	
VIII	14	C	123	talus	right	at blocked passage, adult, carbon and calcite, some damage to the anterior facet on the medial aspect	49.58 mm length, 35.18 mm width

VIII	14	C	124	proximal pedal phalanx	undetermined	at blocked passage, adult, additional bone growth and remodeling around the margin of the proximal facet, first digit, carbon and calcite	$\begin{aligned} & 31.39 \mathrm{~mm} \text { (some } \\ & \text { is growth) } \end{aligned}$
VIII	14	C	125	proximal pedal phalanx	undetermined	at blocked passage, adult, first digit	29.36 mm
VIII	14	C	126	proximal manual phalanx	undetermined	at blocked passage, subadult based on size, carbon	37.28 mm
VIII	14	C	127	proximal manual phalanx fragment	undetermined	at blocked passage, proximal fragment, adult, carbon and calcite	
VIII	14	C	128	scaphoid	left	at blocked passage, adult, carbon covered	
VIII	14	C	129	hamate	left	at blocked passage, adult, damage to the posterior surface	
VIII	14	C	130	hamate	left	at blocked passage, subadult based on size, carbon	
VIII	14	C	131	scaphoid	left	at blocked passage, subadult based on size, carbon	
VIII	14	C	132	first metatarsal	right	at blocked passage, adult, carbon	57.57 mm

VIII	14	C	133	fourth metatarsal	right	at blocked passage, adult, carbon	62.07 mm
VIII	14	C	134	proximal pedal phalanx	undetermined	at blocked passage, adult, carbon, first digit	29.29 mm
VIII	14	C	135	proximal pedal phalanx	undetermined	at blocked passage, adult, carbon, damage to the proximal and distal ends	
VIII	14	C	136	proximal manual phalanx	undetermined	at blocked passage, subadult, proximal epiphysis is not fused, some damage to the proximal end, carbon	31.22 mm
VIII	14	C	137	proximal manual phalanx	undetermined	at blocked passage, adult, carbon	33.7 mm
VIII	14	C	138	proximal manual phalanx	undetermined	at blocked passage, adult, carbon, probably first digit	25.18 mm
VIII	14	C	139	proximal pedal phalanx	undetermined	at blocked passage, adult, carbon	26.18 mm
VIII	14	C	140	cervical vertebra fragment	undetermined	at blocked passage, left portion of C 1 , possibly older subadult	
VIII	14	C	141	second cuneiform	left	at blocked passage, adult, carbon	
VIII	14	C	142	neural arch fragment	right	at blocked passage, probably older subadult, lumbar	

at blocked passage, proximal fragment, adult, carbon and

VIII	14	C	143	second metatarsal fragment	right	adult, carbon and calcite	
VIII	14	C	144	third metacarpal	left	at blocked passage, subadult based on size, but fully fused	54.54 mm
VIII	14	C	145	fourth metacarpal	left	at blocked passage, subadult based on size, but fully fused	47.14 mm
VIII	14	C	146	fourth metatarsal	left	at blocked passage, adult, carbon	62.86 mm
VIII	14	C	147	distal manual phalanx	undetermined	at blocked passage, probable adult, carbon	15.84 mm
VIII	14	C	148	intermediate manual phalanx	undetermined	at blocked passage, adult, carbon	13.63 mm
VIII	14	C	149	first metacarpal	undetermined	at blocked passage, subadult, epiphyses are not fused yet, carbon	18.94 mm
VIII	14	C	150	proximal pedal phalanx	undetermined	at blocked passage, adult, carbon, damage to the proximal end	21.56 mm
VIII	14	C	151	intermediate manual \qquad	undetermined	at blocked passage, subadult, epiphyses are not fused yet, carbon	20.84 mm
VIII	14	C	152	proximal manual phalanx	undetermined	at blocked passage, subadult, epiphyses	21.76 mm

						are not fused yet, carbon	
VIII	14	C	153	proximal manual phalanx	undetermined	at blocked passage, subadult, epiphyses are not fused yet, carbon	15.57 mm
VIII	14	C	154	manual phalanx	undetermined	at blocked passage, subadult, probably the first digit either intermediate or distal	12.64 mm
VIII	14	C	155	distal manual phalanx	undetermined	at blocked passage, subadult (older than number 155 probably), probably first digit	19.22 mm
VIII	14	C	156	metacarpal	undetermined	at blocked passage, perinate to a year based on size, carbon	28.63 mm
VIII	14	C	157	metacarpal	undetermined	at blocked passage, perinate to a year based on size, carbon	26.62 mm
VIII	14	C	158	metatarsal	undetermined	at blocked passage, perinate to a year based on size, carbon	23.94 mm
VIII	14	C	159	proximal manual phalanx	undetermined	at blocked passage, perinate to a year based on size, carbon	20.7 mm
VIII	14	C	160	proximal manual phalanx	undetermined	at blocked passage, perinate to a year based on size, carbon	18.87 mm

VIII	14	C	161	proximal manual phalanx	undetermined	at blocked passage, perinate to a year based on size, carbon, first digit	29.48 mm
VIII	14	C	162	intermediate pedal phalanx	undetermined	at blocked passage, adult, carbon	22.54 mm
VIII	14	C	163	metacarpal	undetermined	at blocked passage, perinate to a year based on size, carbon	37.07 mm
VIII	14	C	164	lumbar body		at blocked passage, unfused body, probably under 2 years of age, carbon	
VIII	14	C	165	thoracic body		at blocked passage, unfused body, probably under 2 years of age, carbon	
VIII	14	C	166	fifth metacarpal	left	at blocked passage, adult, calcite and carbon, rather gracile	
VIII	14	C	167	radius fragment	undetermined	at blocked passage, proximal fragment with some of the shaft, roughly 1.5 years old, carbon	
VIII	14	C	168	rib fragment	right	at blocked passage, lower rib, subadult, carbon	
VIII	14	C	169	horn of cornu	probable right	at blocked passage, probable older	

$\left.\begin{array}{ccccccccc} & & & & & & \begin{array}{c}\text { subadult, posterior } \\ \text { portion has a little } \\ \text { damage, carbon }\end{array} \\ \hline \text { VIII } & 14 & \text { C } & 170 & \text { rib fragment } & & \text { right } & \begin{array}{c}\text { at blocked passage, } \\ \text { adult, }\end{array} & \\ \hline \text { VIII } & 14 & \text { C } & 171 & \text { sesamoid } & & \text { at blocked passage, } \\ \text { adult }\end{array}\right]$

VIII	14	C	180	second metacarpal	right	subadult, distal epiphysis is not fused yet, probably close to 15 years of age	61.24 mm
VIII	14	C	181	third metacarpal	right	subadult, damage to the distal end, but it is still evident that the distal epiphysis is not fused yet, probably close to 15 years of age	60.45 mm
VIII	14	C	182	fourth metacarpal	right	subadult, head is unfused, carbon	50.55 mm
VIII	14	C	183	fifth metacarpal	left	adult, defined muscle attachments	53.65 mm
VIII	14	C	184	metatarsal fragment	undetermined	adult, distal head fragment with some of the shaft	
VIII	14	C	185	metatarsal fragment	undetermined	adult, distal head fragment with some of the shaft	
VIII	14	C	186	patella	right	adult, carbon	42.11 mm height, 44.14 mm width
VIII	14	C	187	patella	right	probable subadult based on size, carbon, damage to the medial and lateral edges	14.8 mm height
VIII	14	C	188	thoracic vertebra		adult, significant damage throughout, demi facet indicates it	

is a lower thoracic

VIII	14	C	189	radius fragment	probable right	adult, proximal fragment with the tibial tuberosity, carbon	19.25 mm head diameter
VIII	14	C	190	rib fragment	right	adult, first rib shaft fragment	
VIII	14	C	191	rib fragment	right	adult, vertebral end, carbon, lower rib	
VIII	14	C	192	rib fragment	undetermined	adult, shaft fragment mid to upper rib	
VIII	14	C	193	metatarsal fragment	undetermined	adult, mostly a shaft fragment, but the little bit of proximal available is suggestive of the fourth metatarsal, blackened	
VIII	14	C	194	fifth metacarpal fragment	left	adult, blackened, proximal and shaft fragment	
VIII	14	C	195	fifth metatarsal fragment	probable left	subadult, head is not fused, probably around 15 years of age	
VIII	14	C	196	proximal manual phalanx	undetermined	subadult, proximal epiphysis is not fused yet, blackened	
VIII	14	C	197	rib fragment	right	adult, vertebral end,	

carbon, upper rib							
VIII	14	C	198	rib fragment	right	adult, vertebral end, carbon, upper rib	
VIII	14	C	199	rib fragment	undetermined	adult, shaft fragment, mid to lower rib	
VIII	14	C	200	rib fragment	undetermined	adult, shaft fragment, mid to lower rib	
VIII	14	C	201	radius fragment	undetermined	subadult, aprox. 1.5 years old, proximal end, blackened	
VIII	14	C	202	humerus fragment	undetermined	distal fragment, subadult aprox. 1.5 years of age	
VIII	14	C	203	navicular fragment	probable right	adult, mostly the dorsal aspect	
VIII	14	C	204	proximal pedal phalanx	undetermined	adult, first digit, some damage to the distal end	
VIII	14	C	205	radius epiphysis	right	subadult, distal epiphysis, probably a little over 5 years of age	
VIII	14	C	206	shaft fragment	undetermined	blackened	
VIII	14	C	207	canine	left	adult, upper, calcite	6.88 mm lingual to buccal, 8.08 anterior to posterior
VIII	14	C	208	rib fragment	undetermined	adult, shaft fragment blackened	
VIII	14	C	209	navicular	left	adult, slight	

blackening

blackening							
VIII	14	C	210	navicular	left	adult, some damage and blackening	
VIII	14	C	211	first cuneiform	right	adult, some damage to the plantar surface, blackening	
VIII	14	C	212	intermediate manual phalanx	undetermined	adult, some blackening	27.7 mm
VIII	14	C	213	proximal pedal phalanx	undetermined	adult, some blackening, first digit	25.9 mm
VIII	14	C	214	proximal manual \qquad	undetermined	subadult, proximal epiphysis is not fused, some blackening, probably around 8 years of age	32.87 mm
VIII	14	C	215	proximal pedal phalanx	undetermined	adult, some blackening	23 mm
VIII	14	C	216	fifth metacarpal fragment	left	adult, proximal end with most of the shaft, some blackening	
VIII	14	C	217	second metatarsal fragment	left	adult, proximal and shaft fragment, some blackening	
VIII	14	C	218	third metatarsal	right	adult, damage to the head prevents measurement, some blackening	

VIII	14	C	219	metatarsal fragment	undetermined	adult, mostly a shaft fragment, blackened, damage to the proximal end prevents further identification	
VIII	14	C	220	scaphoid	left	adult, some blackening	
VIII	14	C	221	intermediate manual phalanx	undetermined	adult, some blackening	22.35 mm
VIII	14	C	222	metacarpal fragment	undetermined	perinate	23.28 mm
VIII	14	C	223	proximal pedal phalanx fragment	undetermined	adult, distal and shaft end	
VIII	14	C	224	ulna fragment	left	adult, proximal fragment, blackened	
VIII	14	C	225	rib fragment	undetermined	adult, shaft fragment, lower rib, blackening	
VIII	14	C	226	first metatarsal fragment	left	adult, blackened, distal end is badly damaged	
VIII	14	C	227	humerus fragment	right	subadult, distal fragment with damage to the distal posterior surface, but most of the shaft, blackening, probably around 1.5-2 years of age	
VIII	14	C	228	thoracic vertebra fragment		adult, body fragment, mid thoracic, slight	

blackening

VIII	14	C	229	cervical vertebra fragment		adult, body fragment with part of the left transverse process
VIII	14	C	230	third cuneiform	right	adult
VIII	14	C	231	rib fragment	left	subadult, most of the first rib, only light blackening
VIII	14	C	232	patella	right	adult, damage to the distal and medial edges prevents measurement, blackened
VIII	14	C	233	vertebra body		subadult 2-4 years old, probable thoracic
VIII	14	C	234	vertebra body		subadult 2-4 years old, possible lumbar or lower thoracic
VIII	14	C	235	neural arch fragment	left	subadult 2-4 years old, thoracic
VIII	14	C	236	neural arch fragment	right	subadult 2-4 years old, thoracic
VIII	14	C	237	neural arch fragment	right	subadult 2-4 years old, cervical
VIII	14	C	238	neural arch fragment	undetermined	subadult, probably closer to 4 or 5 based on size, possibly C1 based on the relationship between

superior and inferior articular facets

VIII	14	C	239	neural arch fragment	undetermined	subadult, probably closer to 4 or 5 based on size, possibly C1 based on the relationship between superior and inferior articular facets	
VIII	14	C	240	neural arch fragment	right	subadult, 2-4 years old, probable cervical	
VIII	14	C	241	neural arch fragment	left	subadult, 2-4 years old, probable cervical	
VIII	14	C	242	ischium fragment	right	perinate, posterior fragment without the section that will become the lunate surface	
VIII	14	C	243	rib fragment	undetermined	possible perinate, shaft fragment	
VIII	14	C	244	rib fragment	undetermined	possible perinate, shaft fragment	
VIII	14	C	245	intermediate manual phalanx	undetermined	adult, burnt	26.49 mm
VIII	14	C	246	unidentified fragments		4 unidentified fragments	
VIII	14	C	247	shaft fragments		6 shaft fragments, heavily burned	

subadult, shaft fragment, one of the epiphyses is not fused, the other is broken off, burned adult, shaft fragments, needs

VIII	14	C	249	ulna fragment	possible left	conservation, burned
					possible perinate, neck and shaft fragment of the first	
VIII	14	C	250	rib fragment	right	rib
VIII	14	C	251	neural arch fragment		possible perinate
VIII	14	C	252	neural arch fragment	possible perinate	

VIII	14	C	253	proximal pedal phalanx	undetermined	perinate	10.37 mm
VIII	14	C	254	canine	left	adult, upper, dental modification, groove extends from the medial edge at a slight upward angle to just beyond the center portion of the tooth, slight wear	8.4 mm anterior to posterior, 8.38 mm lingual to buccal 10 mm
VIII	14	C	255	incisor	left	adult, second lower, major shoveling, wear is a thin line	$6.76 \mathrm{~lm}, 6.06 \mathrm{~mm}$ lingual to buccal 8.85 mm
VIII	14	C	256	incisor	left	adult lower, calculus on the lingual and buccal surfaces at the	$4.93 \mathrm{ml}, 6.38 \mathrm{~mm}$ lingual to buccal 8.8 mm

VIII	14	C	257	incisor	right	deciduous, upper first	$6.86 \mathrm{ml}, 4.78 \mathrm{~mm}$ lingual to buccal 6.92ch
VIII	14	C	258	neural arch fragment	right	perinate, thoracic probably	
VIII	14	C	259	premolar	possible right	adult, lower first, root broken	7.84 mm anterior to posterior, 9.14 mm lingual to buccal 7.38 mm
VIII	14	C	260	molar	left	adult, lower first, appears to have belonged to a younger individual because the crowns are not worn, roots are broken	11.14 mm anterior to posterior, 9.4 mm lingual to buccal 7.46 mm
VIII	14	C	261	molar	right	adult, lower first, buccal carries in the groove	11.58 mm anterior to posterior, 10.28 mm lingual to buccal 6.55 crown height
VIII	14	C	262	incisor	left	deciduous, upper first, root tip broken	5.58 mm anterior to posterior, 5.14 mm lingual to buccal 5.86 mm

VIII	14	C	263	humerus fragment	right	adult, distal fragment in two pieces, already treated with treated with B72, cannot sex due to damage
VIII	14	C	264	ulna fragment	left	proximal fragments, adult, needs conservation, already treated with treated with B72, blackened
VIII	14	C	265	femur fragment	left	adult, somewhat gracile, blackened, damage to the head prevents measurement, treated with b-72
VIII	14	C	266	femur fragment	right	adult, somewhat gracile, blackened, head is broken off, treated with treated with B72
VIII	14	C	267	femur fragment	left	adult, distal fragment of the medial condyle, many fragments, needs conservation, treated with treated with B72
VIII	14	C	268	os coxa fragments	undetermined	adult, blackened and warped, needs conservation, treated with treated with B72

adult, blackened,
treated with treated

VIII	14	C	269	calcaneus fragment	probable left	with B72
VIII	14	C	270	thoracic vertebra fragment		subadult, lines at the pedicle still visible, probably around 5 or 6 years of age, lamina is broken off and the body is badly deteriorated, treated with treated with B72
VIII	14	C	271	pubis fragment	right	probable adult, the pubic symphysis is too worn to age
VIII	14	C	272	long bone fragment	undetermined	subadult, possible tibia fragment, large unfused epiphysis on one end, burned, treated with treated with B72
VIII	14	D	1	scaphoid	right	adult
VIII	14	D	2	scaphoid	left	adult
VIII	14	D	3	lunate	left	adult
VIII	14	D	4	lunate	right	adult
VIII	14	D	5	fourth metatarsal	right	61.68
VIII	14	D	6	fourth metatarsal	left	60.41
VIII	14	D	7	third metatarsal	left	67.63
VIII	14	D	8	fifth metatarsal	right	60.59
VIII	14	D	9	patella	left	$\begin{aligned} & 38.95 \text { height, } \\ & \text { 43.23idth } \end{aligned}$

VIII	14	D	10	thoracic vertebra fragment		adult, lamina fragment	
VIII	14	D	11	occipital fragment	left	occipital condyle fragment	
VIII	14	D	12	parietal fragments	left and right	suture still open, young adult	
VIII	14	D	13	proximal pedal phalanx		adult, there is an abnormal growth on the proximal end's superior surface, it is characteristically similar to early development of gout without the destructive qualities	26.72 mm
VIII	14	D	14	distal pedal phalanx			
VIII	14	D	15	distal pedal phalanx			
VIII	14	D	16	interproximal pedal phalanx			
VIII	14	D	17	sesamoid			
VIII	14	D	18	metatarsal fragment		unfused head	
VIII	14	D	19	calcaneus fragment	right	medial fragment from an adult	
VIII	14	D	20	cervical vertebra fragment		adult, body fragment with a transverse foramen	
VIII	14	D	21	cervical vertebra fragment		right lamina fragment from an adult	

VIII	14	D	22	first manual proximal phalanx	subadult, unfused proximal phalanx
VIII	14	D	23	hyoid fragment	unfused hyoid body
VIII	14	D	24	cranial fragment	
VIII	14	D	25	cranial fragment	slight microporosity and pitting, diploë appears somewhat expanded
VIII	14	D	26	zygomatic fragment	right

VIII	14	E	1	molar	right	root broken off, lower first	11.85 mm anterior to posterior, 10.53 mm lingual to buccal7.27ch
VIII	14	E	2	molar	left	root broken off, lower first	11.92 mm anterior to posterior, 10.39 mm lingual to buccal8.28ch
VIII	14	E	3	molar	right	lower deciduous molar, massive caries on the occlusal surface	10.82 mm anterior to posterior, 9.23 mm lingual to buccal5.52ch
VIII	14	E	4	canine	right	possibly upper, deciduous	6.77 mm anterior to posterior, 6.16 mm lingual to buccal7.29ch
VIII	14	E	5	canine	left	possibly lower, deciduous	5.64 mm anterior to posterior, 5.26 mm lingual to buccal7.29ch
VIII	14	E	6	incisor	undetermined	probably lower lateral, belonging to 8 and 9 , root not fully developed	
VIII	14	E	7	incisor	undetermined	probable lower central, belonging to 8 and 9 , root not fully	

VIII	14	E	8	mandible fragments	numerous small subadult mandible fragments
VIII	14	E	9	mandible fragment	subadult, a premolar is still in development in the crypt, probably around 4-5 years of age based on this and other teeth from the anterior/left portion deposit
VIII	15	a	1	tibia fragment	
VIII	15	a	2	tibia fragments	
VIII	15	a	3	proximal manual phalanx	
VIII	15	a	4	proximal pedal phalanx	
VIII	15	a	5	distal pedal phalanx	
VIII	15	a	6	proximal pedal phalanx	
VIII	15	a	7	metatarsal fragment	
VIII	15	a	8	first metacarpal fragment	
VIII	15	a	9	fourth metatarsal fragment	
VIII	15	a	10	proximal pedal phalanx fragment	
VIII	15	a	11	scaphoid	

VIII	15	a	12	second cuneiform
VIII	15	a	13	third cuneiform
VIII	15	a	14	first cuneiform
VIII	15	a	15	talus fragment
VIII	15	a	16	proximal pedal phalanx
				proximal pedal phalanx
VIII	15	a	16	prat
				first metatarsal
VIII	15	a	17	fragment
				first metatarsal
VIII	15	a	17	fragment
VIII	15	a	18	calcaneus fragment
VIII	15	a	18	calcaneus fragment
VIII	15	a	19	vertebra fragment
VIII	15	a	19	vertebra fragment
VIII	15	a	20	molar
VIII	15	a	21	molar
VIII	15	a	22	molar
VIII	15	a	23	premolar
VIII	15	a	24	incisor
VIII	15	a	25	premolar
VIII	15	a	26	canine

upper central,

? (found		calculus on anterior in a	8.92 mm anterior surface above the	to posterior,

surface, a groove was created that goes up towards the center of the crown

VIII	16	$\begin{gathered} ? \\ \text { (probably } \\ \text { a or B) } \end{gathered}$	1	humerus fragments	left	distal fragment with much of the shaft, triangular shaped fossa, level medial epicondyle, spool shaped trochlea
VIII	16	$\begin{gathered} ? \\ (\text { probably } \\ \text { a or B) } \end{gathered}$	2	ulna fragment	right	proximal fragment, adult, calcite
VIII	16	$\begin{gathered} ? \\ \text { (probably } \\ \text { a or B) } \end{gathered}$	3	ulna fragment	left	proximal fragment, adult, calcite
VIII	16	$\begin{gathered} ? \\ \text { (probably } \\ \text { a or B) } \\ \hline \end{gathered}$	4	calcaneus	right	adult, little calcite
VIII	16	$\begin{gathered} ? \\ \text { (probably } \\ \text { a or B) } \\ \hline \end{gathered}$	5	clavicle fragment	left	lateral fragment, gracile, calcite

VIII	16	$\begin{gathered} ? \\ \text { (probably } \\ \text { a or B) } \end{gathered}$	19	os coxa fragment	right	the iliopubic ramus, gracile, probably subadult	
VIII	16	a	1	patella	right	covered in calcium and carbon	45.12 mm height, 42.79 mm width
VIII	16	a	2	talus	right	$\begin{aligned} & 44.86 \text { length, } 37.28 \\ & \text { width } \\ & \hline \end{aligned}$	
VIII	16	a	3	patella	left	37.11 height, different person than 1	
VIII	16	a	4	scapula fragment	right	lateral fragment, damage to the superior margin of the glenoid	27.83 mm width
VIII	16	a	5	sternum fragment		most of the sternum, light carbon and calcite	
VIII	16	a	6	first metatarsal	right	darker staining on the superior surface, indicating it was plantar side up for a long period of time	
VIII	16	a	7	radius fragment	right	proximal fragment	19.22 diameter head
VIII	16	a	8	rib fragment	left	shaft fragment, calcite and carbon covered	
VIII	16	a	9	rib fragment	left	shaft fragment, calcite and carbon covered	

VIII	16	a	10	rib fragment	left	shaft fragment, calcite and carbon covered
VIII	16	a	11	rib fragment	left	vertebral and shaft fragment, completely covered in calcite
VIII	16	a	12	rib fragment	right	vertebral fragment
VIII	16	a	13	rib fragment	right	vertebral fragment, completely covered in calcite and carbon
VIII	16	a	14	rib fragment	right	vertebral fragment, completely covered in calcite and carbon
VIII	16	a	15	rib fragment	right	vertebral fragment, completely covered in calcite and carbon
VIII	16	a	16	rib fragment	right	vertebral fragment, completely covered in calcite and carbon
VIII	16	a	17	rib fragment	right	shaft fragment, calcite and carbon covered
VIII	16	a	18	rib fragment	right	shaft fragment, calcite and carbon covered
VIII	16	a	19	rib fragment	right	vertebral fragment, completely covered in calcite and carbon
VIII	16	a	21	rib fragment	rib fragment	undetermined

and carbon covered							
VIII	16	a	23	rib fragment	undetermined	shaft fragment, calcite and carbon covered	
VIII	16	a	24	rib fragment	undetermined	shaft fragment, light calcium and carbon	
VIII	16	a	25	rib fragment	right	shaft fragment, calcite and carbon covered	
VIII	16	a	26	tibia fragment	right	proximal and shaft fragment, proximal epiphysis is not fused, probably younger than 16 , older than 9 , calcite on posterior surface	
VIII	16	a	27	femur fragment	right	distal end, calcite and carbon, distal epiphysis unfused, probably same person as 26	
VIII	16	a	28	humerus fragment	right	shaft fragment right below the head, calcite on the anterior surface	
VIII	16	a	29	talus	left	small, probably subadult	45.49 mm length, 34.19 mm width
VIII	16	a	30	manubrium		epiphysis that connects to the body is not fused	
VIII	16	a	31	navicular	right	small, probably subadult	

VIII	16	a	32	occipital fragments		light calcite, subadult probably	
VIII	16	a	33	rib fragments	right	long shaft fragment and a sternal end fragment, phase 1 indicates a younger person, calcite covered	
VIII	16	a	34	cervical fragments		small, probably subadult, probably C3-C6	
VIII	16	a	35	rib fragment	undetermined	shaft fragment, calcite and carbon covered	
VIII	16	a	36	rib fragment	undetermined	shaft fragment, calcite and carbon covered	
VIII	16	a	37	radius fragment	left	proximal end, head too damaged to measure	
VIII	16	a	38	clavicle	right	complete, almost completely covered in calcite, rather large	17.1 cm long
VIII	16	a	39	cervical vertebra		C1, adult, covered in calcite	
VIII	16	a	40	cervical vertebra fragment		C1, adult, covered in calcite, right portion	
VIII	16	a	41	proximal manual phalanx		defined lateral ridges	46.5 mm
VIII	16	a	42	proximal manual phalanx		defined lateral ridges	36.77 mm

VIII	16	a	43	proximal manual phalanx fragment		distal fragment, reddish color	
VIII	16	a	44	first proximal manual phalanx			34.11 mm
VIII	16	a	45	fourth metacarpal	right		61.84 mm
VIII	16	a	46	proximal pedal phalanx		soil discoloration on the dorsal surface	32.22 mm
VIII	16	a	47	humerus fragment	right	head and neck fragment, covered in calcite, damage to the head prevents measurement	
VIII	16	a	48	scapula fragment	left	glenoid, lateral fragment, thick layer of calcite prevents measuring	
VIII	16	a	49	scapula fragment	right	glenoid, lateral fragment, 1glenoid broken	
VIII	16	a	50	femur fragment	left	distal fragment, very large, thick covering of calcite	
VIII	16	a	51	rib fragment	left	neck fragment upper rib, covered in calcite	
VIII	16	a	52	lumbar vertebra		second lumbar, body epiphyses are not fused	
VIII	16	a	53	thoracic vertebra		upper thoracic	
VIII	16	a	54	proximal manual phalanx			43.15 mm

VIII	16	a	55	fifth metacarpal	right		
VIII	16	a	56	proximal manual phalanx		calcite and carbon covered	38.84 mm
VIII	16	a	57	proximal pedal phalanx		subadult, proximal epiphysis is not fully fused	28.86 mm
VIII	16	a	58	thoracic vertebra fragment		missing transverse processes, calcite covered, mid thoracic	
VIII	16	a	59	thoracic vertebra fragment		body only, calcite covered	
VIII	16	a	60	thoracic vertebra fragment		body is broken, covered in calcite, probably T2-5	
VIII	16	a	61	cervical vertebra		second cervical vertebra, covered in calcite	
VIII	16	a	62	lumbar vertebra		third lumbar vertebra, covered in calcite	
VIII	16	a	63	radius fragment	right	proximal fragment, light calcite, head unfused, older than 5	
VIII	16	a	64	clavicle fragment	left	shaft fragment, covered in calcite, mate to 65	
VIII	16	a	65	clavicle fragment	right	shaft fragment, covered in calcite, mate to 64	
VIII	16	a	66	second metacarpal	right		
VIII	16	a	67	first metacarpal	right	calcite and carbon	

shaft only, covered in calcite, deltoid is well defined, lateral and anterior surfaces have

VIII	16	a	79	humerus fragment	left	most of the calcite
VIII	16	a	80	fibula fragment	undetermined	shaft fragment, light calcite and carbon
VIII	16	a	81	ulna fragment	left	shaft fragment
VIII	16	a	82	radius fragment	possible right	
VIII	16	a	83	ulna fragment	right	shaft fragment, light calcite and carbon
VIII	16	a	84	damage to the right lamina, upper		
thoracic vertebra						
fragment		thoracic, covered in calcite				
VIII	16	a	85	damage to the transverse processes, mid thoracic, covered in calcite		

| VIII | 16 | a | 86 | thoracic vertebra |
| :--- | :---: | :---: | :---: | :---: |\quad| thoracic most likely |
| :---: |
| covered in calcite |

two pieces that mend, distal and proximal
epiphyses are not yet fused, between
perinate and 1.5 years
of age, covered in

VIII	16	a	87	humerus fragments		calcite	99.28 mm length
VIII	16	a	88	rib fragment	left	shaft fragment,	

						overed in calcite
VIII	16	a	89	rib fragment	undetermined	shaft fragment, covered in calcite
VIII	16	a	90	rib fragment	undetermined	shaft fragment, covered in calcite
VIII	16	a	91	rib fragment	right	only a little calcite and carbon
VIII	16	a	92	radius fragment	right	distal fragment
VIII	16	a	93	radius fragment	left	distal fragment
VIII	16	a	94	frontal fragments		two fragments over the left eye orbit, the orbital margin is blunt and there is a slight torus, indicating possible male
VIII	16	a	95	frontal fragment		fragment over the right eye, blunt margin, mild torus, possible male, possibly the same individual as 94
VIII	16	a	96	mandible fragment		left part of the mandible with the second premolar and first two molars present, the first premolar root is in the socket, covered in calcite, chin is more masculine than

VIII	16	a	97	humerus fragment	right	distal fragment, calcite on anterior surface, triangle shaped fossa, level medial epicondyle, spool like trochlea, wide angle
VIII	16	a	98	parietal fragment	undetermined	covered in calcium and carbon
VIII	16	a	99	humerus fragment	left	distal fragment, completely covered in calcite, triangular shaped fossa
VIII	16	a	100	ulna fragment	right	proximal fragment, completely covered in calcite
VIII	16	a	101	femur fragment	undetermined	shaft fragment, covered in calcite
VIII	16	a	102	humerus fragment	left	completely covered in calcite, triangular shaped fossa, level medial epicondyle
VIII	16	a	103	lumbar vertebra		probably third lumbar, completely covered in calcite

probably fourth lumbar, completely

VIII	16	a	104	lumbar vertebra		covered in calcite	
VIII	16	a	105	lumbar vertebra fragments		upper lumbar, same quantity of calcite as 103 and 104	
VIII	16	a	106	lumbar vertebra		probably fifth lumbar, lamina broken off, completely covered in calcite	
VIII	16	a	107	parietal fragment	undetermined	completely covered in calcite	
VIII	16	a	108	rib fragment	right	vertebral end fragment, middle rib	
VIII	16	a	109	rib fragment	undetermined	shaft fragment	
VIII	16	a	110	rib fragment	left	shaft fragment, some calcite	
VIII	16	a	111	radius fragment	undetermined	shaft fragment	
VIII	16	a	112	proximal manual phalanx		well defined lateral ridges	41.77 mm
VIII	16	a	113	intermediate manual phalanx		well defined lateral ridges	24.93 mm
VIII	16	a	114	third metacarpal	right		71.32 mm
VIII	16	a	115	first metatarsal	left	covered in calcium and carbon, only part of the superior surface is not covered	61.46 mm
VIII	16	a	116	radius fragment	undetermined	completely covered in calcite	
VIII	16	a	117	rib	left	first rib, calcite and	

					carbon covered		
VIII	16	a	118	thoracic vertebra		mid thoracic, subadult, body is not yet fused	
VIII	16	a	119	thoracic vertebra		lipping on the superior and anterior portions of the body, damage to the lamina, mid thoracic, light calcite	
VIII	16	a	120	thoracic vertebra		mid thoracic, subadult, body is not yet fused, calcite	
VIII	16	a	121	os coxa fragment	left	acetabular fossa and most of the ischium	
VIII	16	a	122	thoracic vertebra		upper thoracic, possibly the first, completely covered in calcite	
VIII	16	a	123	thoracic vertebra fragment		lamina fragment, mid thoracic region, covered in calcite	
VIII	16	a	124	first proximal pedal phalanx		subadult, proximal end epiphysis line still visible	32.31 mm
VIII	16	a	125	proximal pedal phalanx		subadult, proximal end epiphysis line still visible	24.52 mm
VIII	16	a	126	proximal pedal phalanx	left	dirt caused staining on the superior	22.4 mm

surface

VIII	16	a	127	proximal pedal phalanx		subadult, unfused proximal facet	17.97 mm
VIII	16	a	128	first distal pedal phalanx			17.25 mm
VIII	16	a	129	first manual distal phalanx			24.51 mm
VIII	16	a	130	intermediate manual \qquad		subadult, unfused proximal end	19.59 mm
VIII	16	a	131	intermediate manual phalanx		subadult, unfused proximal end	18.68 mm
VIII	16	a	132	intermediate manual phalanx		very defined lateral margins	18.76 mm
VIII	16	a	133	first distal pedal phalanx			21.69 mm
VIII	16	a	134	lunate	right	calcite	
VIII	16	a	135	intermediate manual phalanx		subadult, unfused proximal epiphysis	
VIII	16	a	136	metacarpal/metatarsal fragment		subadult, proximal fragment, proximal epiphysis is unfused	
VIII	16	a	137	metatarsal fragment		distal fragment	
VIII	16	a	138	first proximal pedal phalanx		calcite on superior surface	33.33 mm
VIII	16	a	139	first proximal pedal phalanx		calcite on superior surface	35.53 mm

VIII	16	a	140	first proximal pedal \qquad phalanx		some calcite	34.64 mm
VIII	16	a	141	proximal pedal phalanx		some calcite	23.71 mm
VIII	16	a	142	fibula fragment	undetermined	adult, some calcite	
VIII	16	a	143	humerus fragment	undetermined	subadult, shaft fragment, calcite and carbon covered	
VIII	16	a	144	cervical vertebra		second cervical vertebra, covered in calcite	
VIII	16	a	145	cervical vertebra fragment		most of the cervical, lamina is absent	
VIII	16	a	146	thoracic vertebra fragment		lamina fragment, mid thoracic region, covered in calcite	
VIII	16	a	147	rib fragment	right	possibly second rib shaft fragment, light calcite and carbon	
VIII	16	a	148	rib fragment	undetermined	shaft fragment, covered in calcite	
VIII	16	a	149	rib fragment	left	neck fragment upper rib, covered in calcite	
VIII	16	a	150	rib fragment	undetermined	shaft fragment, calcite and dirt stuck to inferior surface	
VIII	16	a	151	cervical vertebra fragment		lamina is broken off, light calcium and carbon	
VIII	16	a	152	cervical vertebra		possibly C7,	

completely covered in calcite
probable thoracic, lower, maybe 10, body only, completely covered in

VIII	16	a	153	vertebra fragment		calcite
VIII	16	a	154	temporal bone fragment	undetermined	calcite, pin prick porosity
VIII	16	a	155	temporal bone fragment	undetermined	
VIII	16	a	156	cranial fragment	undetermined	unknown
VIII	16	a	157	temporal bone fragment	undetermined	completely covered in calcite, inside and out, suggests was broken in antiquity
VIII	16	a	158			right orbit area, blunt margin, no noticeable torus, completely covered in calcite inside and out,
VIII	16	a	159	parietal fragment	undetermined	suggesting it was broke in antiquity
VIII	16	a	160	cranial fragment	undetermined	porosity prick

VIII	16	a	164	cranial fragment	undetermined	unknown
VIII	16	a	165	temporal bone fragment	undetermined	light calcite
VIII	16	a	166	cranial fragment	undetermined	unknown, light calcite
VIII	16	a	167	occipital fragments		light calcite
VIII	16	a	168	cranial fragment	undetermined	possible temporal fragment, light calcite
VIII	16	a	169	parietal fragment	undetermined	light calcite and pin prick porosity
VIII	16	a	170	cranial fragment	undetermined	possible temporal fragment, light calcite
VIII	16	a	171	mandible fragment		right portion with third molar still in crypt and all of the ramus and condyles, completely covered , including on the fractured surface, indicating it was broken in antiquity
VIII	16	a	172	cuboid	left	slightly damage, completely covered in calcite
VIII	16	a	173	cervical vertebra fragment		lower thoracic, completely covered in calcite, part of the lamina is gone
VIII	16	a	174	sternum fragment		subadult, superior epiphysis is not fused

VIII	16	a	175	thoracic vertebra fragment		subadult, unfused body
VIII	16	a	176	thoracic vertebra fragment		subadult, unfused body
VIII	16	a	177	cranial fragment	undetermined	possible temporal fragment, light calcite
VIII	16	a	178	cranial fragment	undetermined	possible temporal fragment, light calcite
VIII	16	a	179	temporal bone fragment	right	had mandibular fossa, internal auditory meatus and the tympanic portion
VIII	16	a	180	humerus fragment	right	subadult unfused proximal epiphysis, under 14
VIII	16	a	181	ilium fragment	undetermined	crest fragment, even the fracture is covered in calcite, suggesting broken in antiquity
VIII	16	a	182	humerus fragment	right	distal fragment, adult, calcite on fracture, indicating broken in antiquity
VIII	16	a	183	vertebra fragment		lamina fragment, of either a lower cervical or a thoracic
VIII	16	a	184	cervical vertebra fragment		pedicle fragment, completely covered in calcite

VIII	16	a	185	cervical vertebra		damage to the lamina, mid cervical region, probable subadult
VIII	16	a	186	cervical vertebra fragment		lower thoracic, body is slightly compressed with some additional body growth along the margins, lamina broken off
VIII	16	a	187	temporal bone fragment	left	tympanic portion
VIII	16	a	188	temporal bone fragment	right	tympanic portion with more of the temporal, light calcite
VIII	16	a	189	parietal fragment	undetermined	completely covered in calcite, broke in antiquity
VIII	16	a	190	temporal bone fragment	left	area with mastoid, but it is broken, covered in calcite, broken in antiquity
VIII	16	a	191	humerus shaft fragment	undetermined	completely covered in calcite, modern break
VIII	16	a	192	femur fragment	right	subadult, proximal fragment with unfused epiphyses, roughly 1.5 years of age based on size
VIII	16	a	193	first metatarsal fragment	right	distal fragment with most of the shaft

VIII	16	a	194	rib fragment	left	shaft fragment, covered in calcite and carbon
VIII	16	a	195	distal manual phalanx		
VIII	16	a	196	intermediate manual phalanx		subadult, proximal epiphysis is not fused
VIII	16	a	197	trapezoid	left	subadult, epiphyseal line still visible
VIII	16	a	198	lunate	left	
VIII	16	a	199	trapezoid	right	much larger than 197
VIII	16	a	200	tibia fragment		left
VIII	16	a	201	femur fragment	undetermined	distal fragment of a condyle, calcite
VIII	16	a	202	ischium fragment	undetermined	calcite

VIII	16	a	209	rib fragment	right	vertebral end fragment, covered in calcite
VIII	16	a	210	rib fragment	undetermined	shaft fragment
VIII	16	a	211	rib fragment	undetermined	shaft fragment
VIII	16	a	212	rib fragment	undetermined	subadult shaft fragment
VIII	16	a	213	rib fragment	undetermined	shaft fragment
VIII	16	a	214	rib fragment	undetermined	shaft fragment with calcite
VIII	16	a	215	maxilla and zygomatic fragments	right	relatively complete third molar did not erupt yet, but the first molar (only other tooth, is heavily worn, with dentine exposure on 3 cusps, the other cusp is covered with calcite
VIII	16	a	216	rib fragments	undetermined	small, possible subadult, calcite
VIII	16	a	217	cranial fragment	undetermined	calcite
VIII	16	a	218	cranial fragment	undetermined	calcite
VIII	16	a	219	temporal fragment	undetermined	calcite
VIII	16	a	220	cranial fragment	undetermined	calcite
VIII	16	a	221	femur fragment	undetermined	subadult, shaft fragment, calcite
VIII	16	a	222	humerus fragment	possible right	subadult, shaft fragment, calcite
VIII	16	a	223	femur fragment	left	distal fragment with

						an unfused epiphysis
VIII	16	a	224	scapula fragment	right	glenoid fragment, appears small, may be subadult, broken and unable to measure
VIII	16	a	225	occipital fragment		calcite and carbon
VIII	16	a	226	maxilla fragment	left	most of the maxilla and part of a few other bones, no teeth visible due to breakage, calcite
VIII	16	a	227	clavicle fragment	right	lateral fragment, calcite
VIII	16	a	228	proximal pedal phalanx		calcite
VIII	16	a	229	rib fragment	left	vertebral end fragment, some lipping on the facet
VIII	16	a	230	cervical vertebra fragment		left lamina fragment, rather wide spinous process
VIII	16	a	231	cervical vertebra fragment		all but a lamina, small, subadult, unfused body
VIII	16	a	232	ulna fragment	probable right	proximal and shaft fragment, proximal epiphysis is unfused, older than 5, calcite
VIII	16	a	233	fibula fragment	undetermined	shaft fragment, calcite
VIII	16	a	234	femur fragment	undetermined	subadult shaft

						fragment, calc
VIII	16	a	235	shaft fragment	undetermined	subadult, possible humerus
VIII	16	a	236	shaft fragment	undetermined	subadult, possible tibia or ulna?, calcite
VIII	16	a	237	possible metatarsal fragment		possibly an unfused fifth metatarsal with a broken head, abnormal bone growth on the side near the facet (proximal), subadult, calcite
VIII	16	a	238	possible radius fragment	undetermined	shaft fragment, calcite
VIII	16	a	239	metacarpal/metatarsal fragment		shaft fragment, covered in calcite
VIII	16	a	240	maxilla fragment	undetermined	small fragment with incisor sockets, pin prick porosity on palate
VIII	16	a	241	thoracic vertebra fragments		lamina fragments, mid thoracic region
VIII	16	a	242	rib fragment	probable right	sternal end, probably the first rib, calcite
VIII	16	a	243	cranial fragment	undetermined	unknown
VIII	16	a	244	cranial fragment	undetermined	possible maxilla fragment
VIII	16	a	245	cranial fragment	undetermined	possible maxilla fragment

VIII	16	a	246	rib fragments	undetermined	shaft fragments, possible subadult, calcite	
VIII	16	a	247	first cuneiform	left	badly deteriorated	
VIII	16	a	248	second cuneiform	undetermined	badly deteriorated	
VIII	16	a	249	third cuneiform	right		
VIII	16	a	250	second cuneiform	right		
VIII	16	a	251	triquetral	right		
VIII	16	a	252	metatarsal fragment		unfused metatarsal head	
VIII	16	a	253	vertebra fragment		unfused body, subadult	
VIII	16	a	254	hyoid fragment	left	horn of cornu	
VIII	16	a	255	unidentified fragments		covered in calcite and sticking together	
VIII	16	a	256	femur fragments	right	b72, covered in calcite, unfused proximal and distal epiphyses, probably ~ 1.5 years old	$\sim 11.9 \mathrm{~cm}$ long
VIII	16	a	257	femur fragment	right	b72, proximal fragment, adult, badly deteriorated	41.4 mm head diameter
VIII	16	a	258	femur fragment	right	b72, proximal epiphysis for 259, under 15 , calcite	37.42 mm head diameter

	n				b-72, proximal fragment, unfused proximal epiphysis, greater and lesser trochater not fused either, older than 9, younger than 15, calcite	
VIII	16	a	259	femur fragment	right	femur fragment
VIII	16	a	260	possible left	b-72, unfused distal epiphysis fragment, calcite	
VIII	16	a	261	femur fragment		b-72, distal fragment of a condyle, calcite
VIII	16	a	262	calcaneus fragment	right	b-72, anterior portion

VIII	16	a	267	vertebra fragment		b-72, possibly a thoracic vertebra, body only, covered in calcite	
VIII	16	a	268	possible tibia fragment	undetermined	b-72, distal fragment, calcite	
VIII	16	a	269	femur fragment	right	b-72, calcite, broke off of 270	
VIII	16	a	270	femur fragment	right	b-72, calcite, adult, distal fragment with condyles	
VIII	16	a	271	rib fragment	undetermined	adult, shaft fragment, calcite	
VIII	16	a	272	rib fragment	undetermined	adult, shaft fragment, calcite	
VIII	16	a	273	rib fragment	undetermined	adult, shaft fragment, calcite	
VIII	16	a	274	rib fragment	undetermined	adult, shaft fragment, calcite	
VIII	16	a	275	parietal fragment	undetermined	adult, calcite and carbon covered	
VIII	16	a	276	temporal fragment	left	part of the mastoid process and internal auditory meatus, calcite	
VIII	16	a	277	cranial fragment	undetermined	adult, calcite, possible occipital fragment	
VIII	16	a	278	first distal pedal phalanx		adult, calcite	21.44 mm

$\left.\begin{array}{lccccccc}\text { VIII } & 16 & \text { a } & 279 & \begin{array}{c}\text { proximal manual } \\ \text { phalanx fragment }\end{array} & & \begin{array}{c}\text { subadult, calcite, } \\ \text { distal fragment }\end{array} \\ \hline \text { VIII } & 16 & \text { a } & 280 & \begin{array}{c}\text { first proximal manual } \\ \text { phalanx }\end{array} & & \begin{array}{c}\text { subadult, calcite, } \\ \text { distal fragment }\end{array} & 20.87 \mathrm{~mm} \\ \hline \text { VIII } & 16 & \text { a } & 281 & \text { distal manual phalanx } & \text { adult, calcite } & 18.76 \mathrm{~mm} \\ \hline \text { VIII } & 16 & \text { a } & 282 & \begin{array}{c}\text { first distal pedal } \\ \text { phalanx }\end{array} & & \text { adult, calcite } & 23.63 \mathrm{~mm} \\ \hline \text { VIII } & 16 & \text { a } & 283 & \text { first metacarpal } & \text { undetermined } & \text { subadult, calcite } & 19.63 \mathrm{~mm} \\ \hline \text { VIII } & 16 & \text { a } & 284 & \begin{array}{c}\text { proximal manual } \\ \text { phalanx fragment }\end{array} & & \text { adult, calcite, distal } \\ \text { fragment }\end{array}\right]$

VIII	16	a	294	rib fragment	left	adult, calcite, shaft fragment	
VIII	16	a	295	rib fragment	undetermined	adult, calcite, shaft fragment	
VIII	16	a	296	rib fragment	undetermined	subadult, calcite, sternal end	
VIII	16	a	297	rib fragment	undetermined	subadult, calcite, shaft fragment	
VIII	16	a	298	distal manual phalanx		possible subadult, calcite	
VIII	16	a	299	distal manual phalanx		possible subadult, calcite	
VIII	16	a	300	first distal manual phalanx		adult, calcite	
VIII	16	a	301	proximal pedal phalanx		subadult, proximal epiphysis is fused but the line is visible, calcite	
VIII	16	a	302	patella	left	adult, calcite	37.49 mm height, 33.81 mm width
VIII	16	a	303	thoracic vertebra fragment		body only, adult, covered in calcite	
VIII	16	a	304	thoracic vertebra fragment		body only, adult, covered in calcite	
VIII	16	a	305	frontal fragment		adult, forehead fragment, rounded margin, no real torus, groove above the crest on the interior, calcite	

VIII	16	a	306	frontal fragment		adult, groove present, may be same individual as 305, calcite	
VIII	16	a	307	proximal pedal phalanx		adult, calcite	29.02 mm
VIII	16	a	308	proximal pedal phalanx		subadult, proximal epiphysis is fused but the line is visible, calcite	25.46 mm
VIII	16	a	309	proximal pedal phalanx		subadult, proximal epiphysis is not fused, calcite	21.68 mm
VIII	16	a	310	proximal pedal phalanx		subadult, proximal epiphysis is fused but the line is visible, calcite	21.26 mm
VIII	16	a	311	trapezium	left	adult, calcite	
VIII	16	a	312	hamate	left	adult, calcite	
VIII	16	a	313	lunate	right	adult, calcite	
VIII	16	a	314	capitate	right	adult, calcite	
VIII	16	a	315	proximal manual phalanx fragment		adult, calcite, distal fragment	
VIII	16	a	316	intermediate manual phalanx		adult, calcite	23.95 mm
VIII	16	a	317	intermediate pedal phalanx		adult, calcite	20.28 mm
VIII	16	a	318	first distal pedal phalanx		adult, calcite	25.68 mm

$\left.\begin{array}{lcccccc}\text { VIII } & 16 & \text { a } & 319 & \begin{array}{c}\text { proximal manual } \\ \text { phalanx }\end{array} & \text { adult, calcite } \\ \text { VIII } & 16 & \text { a } & 320 & \begin{array}{c}\text { first proximal manual } \\ \text { phalanx }\end{array} & \text { adult, calcite }\end{array}\right]$

VIII	16	a	331	tibia fragment	left	subadult, proximal end, epiphysis not yet fused, under 15, probably closer to 9 years based on size, calcite
VIII	16	a	332	thoracic vertebra fragments		subadult based upon body, mid thoracic, calcite
VIII	16	a	333	temporal fragment	undetermined	probable perinate, calcite
VIII	16	a	334	cranial fragment	undetermined	adult, calcite
VIII	16	a	335	cranial fragment	undetermined	adult, calcite
VIII	16	a	336	cranial fragment	undetermined	adult, calcite
VIII	16	a	337	cranial fragment	undetermined	adult, calcite
VIII	16	a	338	parietal fragment	undetermined	adult, calcite, pin prick porosity
VIII	16	a	339	cranial fragment	undetermined	adult, calcite
VIII	16	a	340	parietal fragment	undetermined	adult, calcite, porosity with new bone growth, best case of porotic hyperostosis so far
VIII	16	a	341	cranial fragment	undetermined	adult, calcite, pin prick porosity
VIII	16	a	342	cranial fragment	undetermined	adult, calcite
VIII	16	a	343	cranial fragment	undetermined	adult, calcite
VIII	16	a	344	cranial fragment	undetermined	adult, calcite
VIII	16	a	345	cranial fragment	undetermined	adult, calcite

VIII	16	a	346	cranial fragment	undetermined	adult, calcite
VIII	16	a	347	cranial fragment	undetermined	adult, calcite
VIII	16	a	348	parietal fragment	undetermined	possible subadult, calcite
VIII	16	a	349	occipital fragment	undetermined	possible subadult, calcite
VIII	16	a	350	parietal fragment	undetermined	adult, calcite
VIII	16	a	351	rib fragment	left	shaft fragment, adult, calcite, upper rib
VIII	16	a	352	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	353	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	354	rib fragment	right	shaft fragment, adult, calcite, upper rib
VIII	16	a	355	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	356	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	357	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	358	rib fragment	left	shaft fragment, adult, calcite, upper rib
VIII	16	a	359	rib fragment	left	shaft fragment, adult, calcite, upper rib
VIII	16	a	360	rib fragment	left	shaft fragment, adult, calcite, upper rib
VIII	16	a	361	rib fragment	left	shaft fragment, adult, calcite, upper rib

VIII	16	a	362	rib fragment	left	vertebral end fragment, adult, calcite, upper rib
VIII	16	a	363	rib fragment	left	shaft fragment, subadult, calcite, upper rib
VIII	16	a	364	rib fragment	undetermined	shaft fragment, subadult, calcite, mid rib
VIII	16	a	365	rib fragment	undetermined	shaft fragment, subadult, calcite, mid rib
VIII	16	a	366	rib fragment	right	shaft fragment, subadult, calcite, lower rib
VIII	16	a	367	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	368	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	369	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	370	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	371	rib fragment	undetermined	shaft fragment, adult, calcite, mid rib
VIII	16	a	372	rib fragment	right	shaft fragment, subadult, calcite, upper rib
VIII	16	a	373	rib fragment	left	shaft fragment, adult, calcite, upper rib

shaft fragment,

VIII	16	a	374	rib fragment	undetermined	subadult, calcite, mid rib
VIII	16	a	375	os coxa fragments	right	lunate surface and a large portion of the blade, badly damaged, narrow sciatic notch, adult, calcite, possible male, auricular surface has a few parallel billows, but most of it is damaged to declare a phase
VIII	16	a	376	rib fragment	undetermined	shaft fragment, subadult, calcite, mid rib
VIII	16	a	377	rib fragment	undetermined	sternal fragment, subadult, calcite, mid rib
VIII	16	a	378	rib fragment	undetermined	sternal fragment, subadult, calcite, mid rib
VIII	16	a	379	rib fragment	left	vertebral end fragment, subadult, calcite, upper rib
VIII	16	a	380	rib fragment	left	vertebral end fragment, subadult, calcite, upper rib
VIII	16	a	381	rib fragment	undetermined	sternal fragment, subadult, calcite, mid

sternal fragment,
subadult, calcite, mid

VIII	16	a	382	rib fragment	undetermined	rib
VIII	16	a	383	rib fragment	undetermined	shaft fragment, adult
calcite, mid rib						

VIII	16	a	383	rib fragment	undetermined	calcite, mid rib	
VIII	16	a	384	intermediate manual phalanx		adult, calcite	32.73 mm
VIII	16	a	385	intermediate manual phalanx	adult, calcite	37.47 mm	
VIII	16	a	386	proximal manual phalanx fragment	adult, calcite		
VIII	16	a	387	proximal pedal phalanx fragment		adult, calcite	
VIII	16	a	388	first metacarpal	right	adult, calcite	52.96 mm

VIII	16	a	389	first proximal manual			
phalanx		adult, calcite	31.53 mm				
VIII	16	a	390	third metacarpal	right	adult, calcite	61.07 mm
VIII	16	a	391	fifth metatarsal	fragment	left	subadult, calcite, head is not fused yet
VIII	16	a	392	first metatarsal	possible right	perinate, calcite	
VIII	16	a	393	distal manual phalanx		adult, calcite	
VIII	16	a	394	fifth metacarpal	left	adult, calcite	
						proximal fragment, adult, calcite, other bone fragments stuck to it	
VIII	16	a	395	fourth metacarpal	fragment	left	

VIII	16	a	396	proximal pedal phalanx fragment		distal end, adult, calcite
VIII	16	a	397	manual phalanx fragment		distal end, calcite
VIII	16	a	398	metatarsal fragment		proximal end, subadult, unfused proximal epiphysis, calcite
VIII	16	a	399	lunate	right	adult, calcite
VIII	16	a	400	lumbar vertebra		third lumbar vertebra, covered in calcite, adult
VIII	16	a	401	thoracic vertebra fragment		covered in calcite, adult, upper thoracic
VIII	16	a	402	thoracic vertebra fragment		subadult, fused lamina not fused to the body, age est. 3-5 years, calcite
VIII	16	a	403	second metacarpal fragment		proximal fragment, adult, calcite
VIII	16	a	404	third metatarsal	right	subadult, calcite, head is not fused on
VIII	16	a	405	metacarpal fragment		subadult, distal end is unfused, calcite
VIII	16	a	406	metacarpal fragment		subadult, distal end is broken, calcite
VIII	16	a	407	cuboid	right	adult, calcite
VIII	16	a	408	navicular	left	adult, calcite
VIII	16	a	409	second cuneiform	left	adult, calcite

VIII	16	a	410	third cuneiform	right	adult, calcite
VIII	16	a	411	sternum fragment		possible subadult, calcite
VIII	16	a	412	cervical vertebra fragment		perinate, unfused body, calcite
VIII	16	a	413	lumbar vertebra fragments		perinate, unfused body, calcite
VIII	16	a	414	lumbar vertebra fragments		perinate, unfused body, calcite
VIII	16	a	415	calcaneus fragment	right	adult, posterior fragment, calcite
VIII	16	a	416	humerus fragment	possible right	capitulum fragment, adult, calcite
VIII	16	a	417	ilium fragment	possible left	subadult, roughly 6 years of age, calcite
VIII	16	a	418	radius fragment	right	distal epiphysis, between 9 and 15 years of age
VIII	16	a	419	fourth metatarsal fragment	left	adult, calcite, proximal fragment
VIII	16	a	420	metatarsal fragment	undetermined	distal head fragment, adult
VIII	16	a	421	sternum fragment		possible subadult, calcite
VIII	16	a	422	occipital fragment		subadult, basioccipital fragment with an unfused suture, indicating under 18 years old, calcite

VIII	16	a	423	clavicle fragment	right	lateral fragment, adult, calcite
VIII	16	a	424	metatarsal fragment		head fragment, adult, calcite
VIII	16	a	425	triquetral fragment	right	adult, calcite, posterior surface is damaged
VIII	16	a	426	neural arch	left	perinate, lumbar, calcite
VIII	16	a	427	neural arch	left	perinate, thoracic, calcite
VIII	16	a	428	neural arch	right	perinate, thoracic, calcite
VIII	16	a	429	neural arch	right	perinate, thoracic, calcite
VIII	16	a	430	cervical vertebra fragment		adult, part of the body and left transverse process, calcite, mid cervical
VIII	16	a	431	scapula fragment	left	part of the glenoid, adult, calcite
VIII	16	a	432	thoracic vertebra fragment		lamina fragment, adult, calcite, mid thoracic
VIII	16	a	433	metatarsal fragment	undetermined	perinate, calcite, unfused epiphysis, proximal end
VIII	16	a	434	metatarsal/metacarpal fragment		perinate, calcite, unfused epiphysis

VIII	16	a	435	metatarsal/metacarpal fragment		subadult, calcite, shaft fragment	
VIII	16	a	436	proximal manual phalanx fragment		possibly the first, proximal fragment, adult, calcite	
VIII	16	a	437	metacarpal fragment	undetermined	distal portion, calcite	
VIII	16	a	438	mandible fragment		mandibular condyle	
VIII	16	a	439	thoracic vertebra fragment		adult, transverse process, calcite	
VIII	16	a	440	triquetral	right	adult, calcite	
VIII	16	a	441	manual phalanx fragment		distal fragment, adult, calcite, possibly proximal manual phalanx	
VIII	16	a	442	intermediate pedal phalanx		adult calcite	12.66 mm
VIII	16	a	443	sphenoid fragment		adult, calcite, part of the greater wing	
VIII	16	a	444	radius fragment	undetermined	proximal end up to and including most of the tuberosity, adult, calcite	19.37 mm
VIII	16	a	445	radius fragment	left	subadult, distal epiphysis, calcite, between the ages of 9 and 15	
VIII	16	a	446	vertebra fragment		adult, spinous process, either lower cervical or upper thoracic, calcite	

VIII	16	a	447	scapula fragment	probable right	acromion fragment, adult, calcite
VIII	16	a	448	zygomatic	left	adult, calcite
VIII	16	a	449	humerus fragment	undetermined	subadult, shaft fragment, calcite and carbon covered
VIII	16	a	450	tibia fragment	undetermined	possible subadult, shaft fragment, calcite
VIII	16	a	451	femur fragment	possible right	shaft fragment, subadult at least 6 years or older, calcite
VIII	16	a	452	parietal fragments	possible right	pin prick porosity, sample was taken for isotope analysis, adult, calcite
VIII	16	a	453	scapula fragment	undetermined	adult, calcite
VIII	16	a	454	scapula fragment	undetermined	adult, calcite
VIII	16	a	455	radius fragment	right	subadult, distal portion with unfused epiphysis, older than 5, calcite
VIII	16	a	456	scapula fragment	undetermined	coracoid process fragment, adult, calcite
VIII	16	a	457	radius fragment	left	distal epiphysis, between 9 and 15 years of age, calcite
VIII	16	a	458	radius fragment	undetermined	proximal head fragment, covered in calcite

VIII	16	a	459	vertebra fragment		perinate, probable thoracic vertebra body unfused, calcite
VIII	16	a	460	cervical vertebra fragment		body and right transverse process, covered in calcite
VIII	16	a	461	cervical vertebra fragment		C2 dense fragment with parts of the superior articular facets
VIII	16	a	462	rib fragment	undetermined	shaft fragment, calcite, adult, mid rib
VIII	16	a	463	vertebra fragment		body fragment, adult, calcite, probably thoracic vertebra
VIII	16	a	464	fibula fragment	right	adult, distal portion, calcite
VIII	16	a	465	femur fragment	undetermined	adult, condyle fragment, covered in calcite
VIII	16	a	466	femur fragment	undetermined	adult, condyle fragment, calcite
VIII	16	a	467	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size
VIII	16	a	468	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size

VIII	16	a	469	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size
VIII	16	a	470	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size
VIII	16	a	471	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size
VIII	16	a	472	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size
VIII	16	a	473	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size
VIII	16	a	474	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size
VIII	16	a	475	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based upon the small size
VIII	16	a	476	rib fragment	undetermined	small rib fragment, calcite, not much can be determined based

upon the small size
$\left.\begin{array}{cccccc}\hline \text { VIII } & 16 & \text { a } & 477 & \text { temporal fragment } & \text { adult, calcite } \\ \hline \text { VIII } & 16 & \text { a } & 478 & \text { temporal fragment } & \text { adult, calcite } \\ \hline \text { VIII } & 16 & \text { a } & 479 & \text { temporal fragment } & \text { adult, calcite } \\ \hline \text { VIII } & 16 & \text { a } & 480 & \text { temporal fragment } & \begin{array}{c}\text { adult, calcite, mastoid } \\ \text { fragment }\end{array} \\ \hline \text { VIII } & 16 & \text { a } & 481 & \text { sphenoid fragment } & \begin{array}{c}\text { right portion with the } \\ \text { spheno occipital } \\ \text { suture, which is open, } \\ \text { subadult, under 18 }\end{array} \\ \hline \text { VIII } & 16 & \text { a } & 482 & \text { vertebra fragment } & \begin{array}{c}\text { adult, calcite, } \\ \text { possibly thoracic } \\ \text { fragment of lamina } \\ \text { and transverse } \\ \text { process }\end{array} \\ \hline \text { VIII } & 16 & \text { a } & 483 & \text { vertebra fragment } & \begin{array}{c}\text { adult, calcite, } \\ \text { possibly thoracic }\end{array} \\ \text { fragment of lamina } \\ \text { and transverse } \\ \text { process }\end{array}\right]$
epiphysis, subadult,
probably ~ 5 years of

VIII	16	a	488	radius fragment	possible left	age
VIII	16	a	489	humerus fragment		subadult, medial epicondyle epiphysis, age 5 or slightly older
VIII	16	a	490	probable ulna fragment	undetermined	distal ulna epiphysis subadult, around 5 years old, calcite
VIII	16	a	491	epiphysis fragment	unknown epiphysis, possibly the glenoid of the scapula	
VIII	16	a	492	proximal phalanx fragment		
VIII	16	a	493	probable scaphoid fragment	vertebral end fragment	
VIII	16	a	494	rib fragment	lower permanent premolar crown, root broken off	
VIII	16	a	495	premolar	lower permanent premolar crown, root broken off	
VIII	16	a	496	premolar	right upper deciduous molar	
VIII	16	a	497	a molar	498	scapula fragments

lunate surface,

 calcite, too small and lacks features to determine anything| VIII | 16 | a | 499 | os coxa fragments | | else | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIII | 16 | a | 500 | radius fragments | left | subadult, covered in calcite, distal end is unfused, probably around 9 years of age | |
| VIII | 16 | a | 501 | radius fragments | right | adult, calcite, head is broken off | |
| VIII | 16 | a | 502 | maxillary fragments | left | adult, anterior teeth are no longer in crypts, first molar is present | anterior to posterior 11.30 mm , lingual to buccal 10.92 mm |

VIII	16	a	502	maxillary fragments	left	present	
VIII	16	a	503	58 unidentified			

subadult, third molars
in process of
erupting, all other
molars are present
(some broken along with other teeth),
$\left.\begin{array}{cccccc}\text { VIII } & 16 & \text { a } & 504 & \text { mandible fragments } & \text { calcite } \\ \hline & & & & & \begin{array}{c}\text { covered in calcite, } \\ \text { distal and shaft } \\ \text { fragment, ovate }\end{array} \\ \text { VIII } & 16 & \text { B } & 1 & \text { humerus fragments } & \text { left }\end{array} \begin{array}{c}\text { shaped fossa, medial } \\ \text { epicondyle is level }\end{array}\right]$
as 1 , shaft fragments
numerous shaft
fragments, broke in
route, bleached white
by taphonomic

VIII	16	B	3	femur fragments	undetermined	processes, adult	
VIII	16	B	4	humerus fragments	undetermined	shaft fragments, adult, large deltoid tubercle	
VIII	16	B	5	femur fragments	left	shaft fragment beginning at the lesser trochater, most of the shaft, possible cut marks, mid shaft on the lateral surface	
VIII	16	B	6	mandible fragment		right section, first molar may have been lost antemortem, with full resorption, second and third molar present	
VIII	16	B	7	ulna fragment	left	most of the bone, proximal with most of the shaft	15.91 mm medial to lateral, 19.21 mm anterior to posterior, diameter 6.6 cm
VIII	16	B	8	tibia fragment	undetermined	shaft fragment	
VIII	16	B	9	radius fragment	right	pronator teras insertion is well pronounced, shaft	16.17 mm medial to lateral, 12.18 mm anterior to

VIII	16	B	10	ulna fragment	right	proximal fragment
VIII	16	B	11	humerus fragment	probable left	shaft fragment with prominent deltoid tubercle, gnaw marks
VIII	16	B	12	femur fragment	left	child, proximal fragment with unfused epiphyses, close to 5 years of age based on size, calcite
VIII	16	B	13	fibula fragment	undetermined	shaft fragment
VIII	16	B	14	rib fragment	left	most of a rib, light calcite, rib 5-9 most likely
VIII	16	B	15	rib fragment	left	second rib, most of it, light calcite
VIII	16	B	16	rib fragment	left	probably rib 5-9, light calcite
VIII	16	B	17	rib fragment	left	first rib, light calcite
VIII	16	B	18	thoracic vertebra fragment		lamina fragment, mid thoracic region, covered in calcite
VIII	16	B	19	thoracic vertebra		most of the vertebra, damage to the spine, upper thoracic, calcite
VIII	16	B	20	radius fragment	left	distal fragment, adult, calcite

VIII	16	B	21	ulna fragment	left	medial aspect of the proximal end	
VIII	16	B	22	radius fragment	right	distal fragment, adult, damaged, light calcite	
VIII	16	B	23	humerus fragment	right	subadult, probably 5 years of age, proximal fragment with unfused epiphysis	
VIII	16	B	24	proximal manual phalanx		calcite, defined lateral ridges	47.63 mm
VIII	16	B	25	first proximal pedal phalanx	left	calcite	33.72 mm
VIII	16	B	26	first proximal pedal phalanx	right	calcite	33.96 mm
VIII	16	B	27	proximal manual phalanx		calcite, defined lateral ridges	41.22 mm
VIII	16	B	28	fourth metatarsal	left		63.36 mm
VIII	16	B	29	third metacarpal	left		61.83 mm
VIII	16	B	30	third metatarsal	right		64.95 mm
VIII	16	B	31	second metatarsal	left		69.23 mm
VIII	16	B	32	proximal manual phalanx		calcite, defined lateral ridges	47.61 mm

VIII	16	B	33	proximal manual phalanx		calcite, defined lateral ridges	39.86 mm
VIII	16	B	34	proximal manual phalanx		calcite, defined lateral \qquad ridges	38.6 mm
VIII	16	B	35	proximal manual phalanx		calcite, defined lateral ridges	29.83 mm
VIII	16	B	36	scaphoid	right		
VIII	16	B	37	navicular	right		
VIII	16	B	38	metacarpal fragment		distal portion, adult	
VIII	16	B	39	scapula fragment	right	glenoid fossa fragment	35.89 mm height, 24.15 mm width
VIII	16	B	40	rib fragment	right	vertebral end, mid rib	
VIII	16	B	41	second metacarpal	right	calcite	69.56 mm
VIII	16	B	42	first metacarpal	left	calcite	42.74 mm
VIII	16	B	43	ulna fragment	left	distal fragment, calcite	
VIII	16	B	44	radius fragment	right	proximal end, big radial tuberosity!, calcite	25.49 mm
VIII	16	B	45	ilium	left	child probably ~6 years of age, calcite	
VIII	16	B	46	ilium	right	child, calcite, damage to the t , probably ~ 6 years of age, mate to 45	
VIII	16	B	47	ulna	left	complete, proximal and distal epiphyses are not fused, roughly 1.5 years of age,	8.4 cm length

calcite

VIII	16	B	48	tibia fragment	probable right	proximal fragment, proximal epiphysis is not fused, size appears to be ~ 1.5 years old, calcite
VIII	16	B	49	radius fragment	possible left	distal end with and unfused epiphysis, width is similar to a 5 year old, but the length suggests older, calcite
VIII	16	B	50	cervical vertebra		lower cervical vertebra, calcite
VIII	16	B	51	thoracic vertebra fragment		body only, probably upper thoracic
VIII	16	B	52	mandible fragment		right portion, subadult, canine crown formed, not erupted, molar crown visible in crypt, dental growth suggests 5 years +/16 months, two deciduous molars, calcite
VIII	16	B	53	mandible fragments		left portion, more fragmentary, same as individual 52, two

premolar crowns, deciduous molars
present, calcite

VIII	16	B	54	scapula fragment	right	spine fragment, adult, calcite
VIII	16	B	55	cuboid	left	calcite
VIII	16	B	56	capitate	left	huge, calcite
VIII	16	B	57	third cuneiform	right	calcite
VIII	16	B	58	patella fragment	right	damage to the distal end, calcite
VIII	16	B	59	proximal pedal phalanx		calcite

much, calcite

VIII	16	B	67	tibia fragment	right	proximal fragment, unfused epiphysis, roughly 1.5 years of age, calcite
VIII	16	B	68	vertebra fragment		probably a lumbar body, calcite
VIII	16	B	69	cervical vertebra		damage to the left portion of the lamina, mid cervical, adult
VIII	16	B	70	fibula fragment	undetermined	subadult, calcite
VIII	16	B	71	radius fragment	undetermined	proximal fragment, probably older than a 5 year old, calcite
VIII	16	B	72	radius fragment	left	distal end, unfused, calcite
VIII	16	B	73	humerus fragment	right	proximal fragment, perinate based on size (unless I have the wrong bone)
VIII	16	B	74	first metacarpal	undetermined	unfused proximal and distal ends, older than 8 but younger than 15, calcite
VIII	16	B	75	thoracic vertebra fragment		lamina fragment, calcite
VIII	16	B	76	rib fragment		shaft fragment, subadult, calcite

VIII	16	B	calcaneus fragment	left	unfused epiphyses, probably around 5-8 years of age, calcite	
VIII	16	B	78	sacrum fragment		unfused first sacral, adolescent, calcite
VIII	16	B	79	cervical		second, adult, light calcite
VIII	16	B	80	cuboid	right	calcite
VIII	16	B	81	third metacarpal fragment	right	proximal fragment, calcite
VIII	16	B	82	shaft fragment	undetermined	subadult, calcite
VIII	16	B	83	femur fragment	right	proximal fragment, unfused epiphyses, roughly 5 years of age, calcite
VIII	16	B	84	rib fragment	left	vertebral end, upper rib, subadult, calcite
VII	16	B	85	rib fragment	undetermined	shaft fragment, calcite

$\left.\begin{array}{ccccccc}\text { VIII } & 16 & \text { B } & 90 & \text { femur fragments } & \text { right } & \begin{array}{c}\text { b72, distal end, adult, } \\ \text { calcite }\end{array} \\ \hline \text { VIII } & 16 & \text { B } & 91 & \text { femur fragments } & \text { left } & \begin{array}{c}\text { b72, distal end, adult, } \\ \text { calcite }\end{array} \\ \hline \text { VIII } & 16 & \text { B } & 92 & \text { tibia fragments } & \text { right } & \begin{array}{c}\text { b72, proximal end, } \\ \text { adult, calcite }\end{array} \\ \hline \text { VIII } & 16 & \text { B } & 93 & \text { os coxa fragments } & \text { left } & \begin{array}{c}\text { b72, subadult, light } \\ \text { calcite, possible cut } \\ \text { mark across the } \\ \text { ischium? }\end{array} \\ \hline \text { VIII } & 16 & \text { B } & 94 & \text { humerus fragment } & \text { right } & \begin{array}{c}\text { b72, distal end, adult, } \\ \text { calcite, narrower } \\ \text { notch, level medial } \\ \text { epicondyle }\end{array} \\ \hline \text { VIII } & 16 & \text { B } & 95 & \text { humerus fragment } & & \text { left }\end{array} \begin{array}{c}\text { b72, distal end, adult, } \\ \text { calcite, wide notch }\end{array}\right]$
angle, calcite
$\left.\begin{array}{ccccccc}\hline \text { VIII } & 16 & \text { B } & 100 & \text { rib fragment } & \text { undetermined } & \begin{array}{c}\text { b72, shaft fragment, } \\ \text { calcite, mid rib }\end{array} \\ \hline \text { VIII } & 16 & \text { B } & 101 & \text { rib fragment } & \text { undetermined } & \begin{array}{c}\text { b72, shaft fragment, } \\ \text { calcite, upper rib }\end{array} \\ \hline \text { VIII } & 16 & \text { B } & 102 & \text { cranial fragment } & \text { undetermined } & \text { b72, subadult, calcite } \\ \hline \text { VIII } & 16 & \text { B } & 103 & \text { cranial fragment } & \text { undetermined } & \text { b72, adult, calcite } \\ \hline \text { VIII } & 16 & \text { B } & 104 & \text { cranial fragment } & \text { undetermined } & \text { b72, adult, calcite } \\ \hline \text { VIII } & 16 & \text { B } & 105 & \text { lumbar fragment } & \begin{array}{c}\text { b72, adult, } \\ \text { macroporosity, } \\ \text { calcite, body only }\end{array} \\ \hline \text { VIII } & 16 & \text { B } & 106 & \text { lumbar fragment } & & \begin{array}{c}\text { b72, adult, } \\ \text { macroporosity, } \\ \text { calcite, body only, } \\ \text { syndesmophytes on }\end{array} \\ \text { the inferior margin of } \\ \text { the body indicative of } \\ \text { arthritis }\end{array}\right]$

				one of the body surfaces	
VIII	16	B	109	lumbar fragment	
VIII	16	B	110	lumbar fragment	b72, adult, macroporosity, calcite, body only
VIII	16	B	111	b72, adult, macroporosity, calcite, body only	
VIII	16	B		112	thagment

VIII	16	B	118	thoracic vertebra fragment		b72, body, adult, calcite, probably T10
VIII	16	B	119	fibula fragment	right	b72, distal end, adult, calcite
VIII	16	B	120	ulna fragment	right	b72, distal fragment, adult, calcite
VIII	16	B	121	os coxa fragment	possible left	b72, calcite, appears to have the same auricular surface morphology as 107, hard to side this one
VIII	16	B	122	femur fragment	possible left	b72, calcite, distal epiphysis, probably 5 years or slightly older
VIII	16	B	123	vertebra fragment		b72, body only, calcite, probably thoracic
VIII	16	B	124	ulna fragment	left	b72, adult, proximal fragment, calcite
VIII	16	B	125	vertebra fragment		b72, body only, calcite, probably thoracic
VIII	16	B	126	vertebra fragment		b72, body only, calcite, probably thoracic
VIII	16	B	127	calcaneus fragment	left	b72, subadult, unfused, 2-3 years of age based on size, calcite

VIII	16	B	128	pubis fragment	right	b72, subadult, probably close to 6 years old, calcite
VIII	16	B	129	ischium fragment	left	b72, subadult, probably close to 6 years old, calcite
VIII	16	B	130	metacarpal fragment	undetermined	b72, adult, head fragment, calcite
VIII	16	B	131	metacarpal fragment	undetermined	b72,proximal/shaft fragment, calcite
VIII	16	B	132	second cuneiform	probable right	b72, broken, calcite, adult
VIII	16	B	133	mandible fragment		b72, child, anterior portion, central incisor is formed but has not erupted, all other teeth lost post mortem, 3-6 years of age with standard deviations based on what is visible of that one tooth
VIII	16	B	134	tibia fragment	undetermined	b72, adult, distal portion, taphonomic damage has distorted morphology, calcite
VIII	16	B	135	ilium fragment	undetermined	b72, subadult, calcite, much older than 5, closer to teen years
VIII	16	B	136	cranial fragment	undetermined	b72, adult, calcite

VIII	16	B	137	long bone fragment	undetermined	b72, subadult, possible tibia proximal portion, calcite
VIII	16	B	138	vertebra fragment		b72, adult, either a lumbar or sacral body fragment, calcite
VIII	16	B	139	temporal fragment	undetermined	b72, adult, tympanic portion
VIII	16	B	140	rib fragment	left	b72, upper rib, adult, calcite, sternal end, too badly deteriorated to make any estimate
VIII	16	B	141	possible ilium fragment	undetermined	b72, adult, calcite
VIII	16	B	142	humerus fragment	right	b72, proximal epiphysis, older than 5, probably closer to 9
VIII	16	B	143	lumbar vertebra		adult, probably L4 or 5 , some damage throughout
VIII	16	B	144	lumbar vertebra		adult, probably L1, some damage throughout, especially the left lamina section
VIII	16	B	145	tibia fragment	left	adult, proximal fragment, heavy calcite coating

VIII	16	B	146	vertebra fragment		badly damaged	
VIII	16	B	147	thoracic vertebra fragment		body, adult, heavy calcite coating, probably T10 or 11	
VIII	16	B	148	thoracic vertebra fragment		body, adult, heavy calcite coating, probably T10 or 11	
VIII	16	B	149	proximal manual phalanx		adult, heavily coated in calcite	41.83 mm
VIII	16	B	150	proximal pedal phalanx		adult, heavily coated in calcite	24.77 mm
VIII	16	B	151	proximal pedal phalanx		adult, heavily coated in calcite	22.55 mm
VIII	16	B	152	distal manual phalanx		adult, heavily coated in calcite	18.5621 mm
VIII	16	B	153	first metatarsal fragment	left	proximal fragment, adult, calcite	
VIII	16	B	154	fifth metacarpal	left	adult, calcite	56.41 mm
VIII	16	B	155	third metacarpal fragment	right	proximal fragment, adult, calcite	
VIII	16	B	156	third metacarpal fragment	right	proximal fragment, adult, calcite	
VIII	16	B	157	patella	right	adult, calcite	44.49 mm height, 42.87 mm width
VIII	16	B	158	vertebra fragment		lamina, possible lower cervical or	

upper thoracic

VIII	16	B	159	vertebra fragment		lamina, possible lower mid thoracic
VIII	16	B	160	rib fragment	right	shaft fragment, subadult, mid rib, calcite
VIII	16	B	161	rib fragment	right	shaft fragment, adult, calcite
VIII	16	B	162	rib fragment	right	shaft fragment, adult, calcite
VIII	16	B	163	cranial fragment		adult, calcite covered
VIII	16	B	164	cranial fragment		adult, calcite covered
VIII	16	B	165	cranial fragment		adult, calcite covered
VIII	16	B	166	occipital fragment		adult, calcite covered
VIII	16	B	167	tibia fragment	undetermined	adult, calcite covered
VIII	16	B	168	rib fragment	right	first rib, calcite, adult
VIII	16	B	169	shaft fragment	undetermined	adult, calcite covered
VIII	16	B	170	shaft fragment	undetermined	adult, calcite covered
VIII	16	B	171	first metatarsal		fragment
VIII	16	B	172	right	distal fragment, adult,	
calcite						

on the posterior

VIII	16	B	176	neural arch	right	subadult, 3-4 years of age, C1
VIII	16	B	177	vertebra fragment		body, perinate, probable lumbar
VIII	16	B	178	vertebra fragment		body, subadult, probable lumbar or thoracic
VIII	16	B	179	vertebra fragment		transverse process of an adult lumbar
VIII	16	B	180	intermediate manual phalanx		night
VIII	16	B	181	pisiform	adult, calcite	

VIII	16	B	189	metatarsal	undetermined	subadult, younger than 8, calcite
VIII	16	B	190	neural arch	right	mid sacrum, subadult, young, body present, left arch is not, calcite
VIII	16	B	191	temporal fragment	left	petrous portion, adult, calcite
VIII	16	B	192	femur fragment	left	subadult, proximal end, epiphyses not fused, calcite, roughly 1.5 years old
VIII	16	B	193	vertebra fragment		subadult, possibly perinate, transverse process, possibly from a neural arch
VIII	16	B	194	clavicle fragment	left	lateral portion, subadult, calcite
VIII	16	B	195	rib fragment	undetermined	subadult, shaft fragment, mid rib, calcite
VIII	16	B	196	rib fragment	undetermined	subadult, shaft fragment, mid rib, calcite
VIII	16	B	197	thoracic vertebra fragment		subadult, upper thoracic, lamina fragment, calcite
VIII	16	B	198	tibia fragment	right	subadult, probably between 5 and 9 years of age, proximal epiphysis, calcite

VIII	16	B	199	tibia fragment	left	subadult, probably between 5 and 9 years of age, proximal epiphysis, calcite	
VIII	16	B	200	probable femur fragment	left	subadult, probably close to 5 years of age, distal epiphysis	
VIII	16	B	201	incisor	right	upper right incisor with modification, I-1 by standards classification, slight dentine exposed	
VIII	16	B	202	4 unidentified fragments			
VIII	16	B	203	proximal manual phalanx fragment		distal end, adult	
VIII	16	B	204	shaft fragments	undetermined	adult, heavily coated in calcite	
VIII	16	B	205	metacarpal fragments	undetermined	subadult, unfused proximal end, damaged	
VIII	16	B	206	deciduous molar	right	lower, partial crown formation only, second molar, 9 months +/- 3 months	
VIII	16	B	207	deciduous molar	right	lower first molar, see 207 for age	
VIII	16	C	1	radius	right	covered in calcite, cannot measure shaft	25.8 cm length, 23.99 mm head diameter

VIII	16	C	2	ulna fragment	left	proximal and shaft fragment, covered in calcite	
VIII	16	C	3	ulna fragment	right	proximal and shaft fragment, covered in calcite	
VIII	16	C	4	radius	left	covered in calcite, cannot measure shaft	25.6 cm length, 24.78 mm head diameter
VIII	16	C	5	tibia fragment	left	proximal and shaft fragment, covered in calcite	
VIII	16	C	6	rib fragment	right	shaft fragment, covered in calcite	
VIII	16	C	7	rib fragment	right	shaft fragment, covered in calcite	
VIII	16	C	8	rib fragment	left	shaft fragment, covered in calcite	
VIII	16	C	9	femur fragment	right	distal fragment of the condyles, covered in calcite	
VIII	16	C	10	mandible fragment		right portion, adult, first molar still in crypt, other molars and second premolar lost post mortem, damage to anterior teeth (roots still in sockets), covered in calcite	

VIII	16	C	11	rib fragment	right	vertebral end, covered in calcite
VIII	16	C	12	rib fragment	undetermined	shaft fragment, covered in calcite
VIII	16	C	13	rib fragment	undetermined	shaft fragment, covered in calcite
VIII	16	C	14	rib fragment	right	neck fragment upper rib, covered in calcite
VIII	16	C	15	thoracic vertebra	mid thoracic, covered in calcite, adult	
VIII	16	C	16	thoracic vertebra	lower thoracic, covered in calcite, adult	
VIII	16	C	17	thoracic vertebra	mid thoracic, covered in calcite, adult	
VIII	16	C	18	thoracic vertebra	mid thoracic, covered in calcite, adult	
VIII	16	C	19	thoracic vertebra	upper thoracic, covered in calcite, adult	
VIII	16	C	20	thoracic vertebra	upper thoracic, covered in calcite, adult	
VIII	16	C	21	thoracic vertebra	C	
VIII	16	C	22	thoracic vertebra	mid thoracic, covered in calcite, adult	
VIII thoracic, covered						
in calcite, adult						

VIII	16	C	24	vertebra fragment		probable thoracic body, adult, covered in calcite
VIII	16	C	25	vertebra fragment		possible thoracic or lumbar vertebra body, adult, covered in calcite
VIII	16	C	26	lumbar fragment		damage to the superior portion of the lamina, adult, covered in calcite, probable L5, possibly some lipping on the body
VIII	16	C	27	lumbar fragment		lamina completely gone, adult, covered in calcite
VIII	16	C	28	scapula fragment	right	inferior angle, calcite on the posterior surface, adult
VIII	16	C	29	scapula fragment	right	spine fragment, adult, calcite
VIII	16	C	30	scapula fragment	left	spine fragment, adult, calcite
VIII	16	C	31	long bone fragment	undetermined	covered in calcite, adult, possible femur fragment
VIII	16	C	32	long bone fragment	undetermined	covered in calcite, adult, possible femur fragment

VIII	16	C	33	scapula fragment	left	glenoid fragment, covered in calcite, cannot measure	
VIII	16	C	34	patella	left	large, posterior covered in calcite	46.02 mm height, 44.37 mm width
VIII	16	C	35	navicular	left	covered in calcite	
VIII	16	C	36	mandible fragment		left portion, covered in calcite	
VIII	16	C	37	cervical vertebra		lower cervical vertebra, calcite	
VIII	16	C	38	vertebra fragment		probably an upper lumbar lamina, covered in calcite	
VIII	16	C	39	cervical vertebra		first cervical, covered in calcite	
VIII	16	C	40	thoracic vertebra fragment		mid thoracic, covered in calcite, adult, lamina fragment	
VIII	16	C	41	mandible fragment		condyle only, probably left, adult, covered in calcite	
VIII	16	C	42	clavicle	left	covered in calcite damage to medial section, part of the anterior superior portion has no calcite	15.5 cm long
VIII	16	C	43	clavicle fragment	right	lateral fragment, pair to 42 , covered in calcite	

VIII	16	C	44	proximal manual phalanx		more calcite is on the palmar surface	42.74 mm
VIII	16	C	45	proximal manual phalanx fragment		distal fragment, more calcite on palmar surface	
VIII	16	C	46	intermediate manual phalanx		more calcite is on the palmar surface	28.51 mm
VIII	16	C	47	proximal manual phalanx		more calcite is on the palmar surface	34.71 mm
VIII	16	C	48	proximal manual phalanx		more calcite is on the palmar surface	44.74 mm
VIII	16	C	49	first proximal manual phalanx		more calcite on the posterior surface	31.5 mm
VIII	16	C	50	intermediate manual phalanx		calcite covered	24.36 mm
VIII	16	C	51	intermediate manual phalanx		calcite covered	25.41 mm
VIII	16	C	52	rib fragment	undetermined	calcite, shaft fragment mostly on posterior surface	
VIII	16	C	53	rib fragment	right	vertebral end fragment, covered in calcite	
VIII	16	C	54	rib fragment	right	vertebral end fragment, covered in calcite	
VIII	16	C	55	rib fragment	right	vertebral end fragment, covered in calcite	

VIII	16	C	56	rib fragment	undetermined	shaft fragment covered in calcite	
VIII	16	C	57	distal manual phalanx		first, covered in calcite	25.89 mm
VIII	16	C	58	distal manual phalanx		calcite	18.58 mm
VIII	16	C	59	intermediate manual phalanx		calcite	18.3 mm
VIII	16	C	60	proximal pedal phalanx		calcite	26.24 mm
VIII	16	C	61	scapula fragment	left	coracoid process, covered in calcite	
VIII	16	C	62	third metacarpal fragment	right	proximal fragment, covered in calcite	
VIII	16	C	63	metacarpal/metatarsal fragment		shaft and distal fragment, covered in calcite	
VIII	16	C	64	fourth metacarpal	left	covered in calcite	60.91 mm
VIII	16	C	65	fifth metatarsal		covered in calcite, cannot side	73.74 mm
VIII	16	C	66	scaphoid	left	large, covered in calcite	
VIII	16	C	67	capitate	right	covered in calcite	
VIII	16	C	68	hamate	right	covered in calcite	
VIII	16	C	69	capitate	left	mate to 67 , less calcite	
VIII	16	C	70	tibia	right	just under 5 years of age most likely, calcite, most on the medial and posterior	10 cm in length

VIII	16	C	71	femur fragment	right	proximal fragment, epiphysis unfused, close to 5 years of age, same individual as 70 , calcite is thicker on posterior surface
VIII	16	C	72	pubis fragment	probable right	perinate, light calcite covering
VIII	16	C	73	ischium	left	perinate, light calcite covering
VIII	16	C	74	trapezoid	probable left	covered in calcite
VIII	16	C	75	vertebra fragment		lamina fragment, either lower thoracic or upper lumbar
VIII	16	C	76	fibula fragment	right	distal fragment, calcite covered
VIII	16	C	77	fibula fragment	undetermined	shaft fragment
VIII	16	C	78	ulna fragment	undetermined	shaft fragment, calcite covered
VIII	16	C	79	shaft fragment	undetermined	calcite covered
VIII	16	C	80	shaft fragment	undetermined	calcite covered
VIII	16	C	81	shaft fragment	undetermined	calcite covered
VIII	16	C	82	possible first metatarsal		perinate, calcite
VIII	16	C	83	rib fragment	left	perinate, mid rib,

VIII	16	C	neural arch	right	calcite calcite, perinate	
VIII	16	C	85	neural arch	right	lower thoracic, calcite, perinate
VIII	16	C	86	neural arch	left	lower thoracic, calcite, perinate
VIII	16	C	87	rib fragment	right	first rib, covered in calcite
VIII	16	C	88	scapula fragment	probable right	inferior margin
fragment, calcite						
mostly on the						
posterior surface						

$\left.\begin{array}{lcccccc} & & & & & \begin{array}{c}\text { posterior surface, } \\ \text { adult }\end{array} \\ \hline \text { VIII } & 16 & \text { C } & 96 & \text { vertebra fragment } & & \begin{array}{c}\text { body fragment, } \\ \text { thoracic or upper }\end{array} \\ \hline \text { VIII } & 16 & \text { C } & 97 & \text { ossified cartilage } & & \text { calcite calcite }\end{array}\right]$
$\left.\begin{array}{lcccccc}\text { VIII } & 16 & \text { D } & 7 & \text { femur fragment } & \text { undetermined } & \begin{array}{c}\text { distal femur fragment, } \\ \text { treated with B72 }\end{array} \\ \hline \text { VIII } & 16 & \text { D } & 8 & \text { femur fragment } & \text { undetermined } & \begin{array}{c}\text { distal femur fragment, } \\ \text { treated with B72 }\end{array} \\ \hline \text { VIII } & 16 & \text { D } & 9 & \text { tibia fragment } & \text { undetermined } & \begin{array}{c}\text { distal fragment, } \\ \text { calcite and carbon, } \\ \text { treated with B72 }\end{array} \\ \hline \text { VIII } & 16 & \text { D } & 10 & \begin{array}{c}3 \text { unidentified } \\ \text { fragments }\end{array} & & \text { b72 } \\ \hline \text { VIII } & 16 & \text { E } & 1 & \text { cranial fragment } & & \\ \hline \text { VIII } & 16 & \text { E } & 2 & \text { cranial fragment } & & \\ \hline \text { VIII } & 16 & \text { E } & 3 & \text { cranial fragment } & & \text { subadult } \\ \hline \text { VIII } & 16 & \text { E } & 4 & \text { 3 frontal fragments } & & \begin{array}{c}\text { most of the temporal } \\ \text { bone, same subadult } \\ \text { as 4 probably }\end{array} \\ \hline \text { VIII } & 16 & \text { E } & 5 & \text { temporal bone fragment } & \text { right } & \begin{array}{c}\text { most of the bone } \\ \text { same individual as 4 } \\ \text { and 5 }\end{array} \\ \hline \text { VIII } & 16 & \text { E } & 6 & \text { occipital fragment } & & \begin{array}{c}\text { adult, calcite and } \\ \text { carbon covered }\end{array} \\ \hline \text { VIII } & 16 & \text { E } & 7 & \text { navicular } & \text { right } & \text { calcite and carbon } \\ \text { covered }\end{array}\right]$

VIII	16	E	12	rib fragment	left	shaft fragment, calcite and carbon covered
VIII	16	E	13	rib fragment	undetermined	shaft fragment, calcite and carbon covered
VIII	16	E	14	rib fragment	undetermined	shaft fragment, calcite and carbon covered
VIII	16	E	15	rib fragment	undetermined	shaft fragment, calcite and carbon covered
VIII	16	E	16	rib fragment	right	rib 2 probably, shaft fragment, calcite and carbon covered
VIII	16	E	17	metacarpal fragment		distal end with part of the shaft, calcite and carbon covered
VIII	16	E	18	third metacarpal	right	calcite and carbon covered
VIII	16	E	19	proximal manual phalanx		calcite and carbon covered
VIII	16	E	20	first proximal pedal phalanx		calcite and carbon covered, additional bone growth on the superior proximal surface
VIII	16	E	21	humerus fragment	right	distal posterior fragment, wide angle, spool shaped, triangular fossa, medial epicondyle is level, calcium and

carbon covered

VIII	16	E	22	ilium fragment	undetermined	iliac crest fragment, epiphyseal line is visible, calcium and carbon covered
VIII	16	E	23	thoracic vertebra		probably t 3-8, calcium and carbon covered
VIII	16	E	24	sphenoid fragment	left	left part of the lesser wings, unfused spheno occipital synchondrosis, under 18
VIII	16	E	25	sphenoid fragment	right	right part of the lesser wings, unfused spheno-occipital synchondrosis, under 18
VIII	16	E	26	occipital fragment		basioccipital portion, unfused, same person as 25 and 27
VIII	16	E	27	occipital fragment		unfused portion with the occipital condyle
VIII	16	E	28	scapula fragment	left	coracoid, unfused, covered in carbon and calcite
VIII	16	E	29	vertebra fragment		

VIII	16	E	30	proximal manual phalanx fragment		distal fragment, calcite and carbon
VIII	16	E	31	long bone fragments		
VIII	16	E	32	17 cranial fragments		
VIII	16	E	33	tibia fragments	left	unfused, at least 5 years of age, calcite and carbon on the posterior surface and lateral and medial
VIII	16	E	34	tibia fragments	right	unfused, at least 5 years of age, calcite and carbon on the posterior surface and lateral and medial
VIII	16	E	35	radius fragment	right	distal fragment, calcite and carbon
VIII	16	E	36	third cuneiform	probable right	covered in calcium and carbon
VIII	16	E	37	frontal fragment		same as 4, 5, 6
VIII	16	E	38	frontal fragment		same as 4, 5, 6
VIII	16	E	39	rib fragment	left	shaft fragment, calcite and carbon covered
VIII	16	E	40	rib fragment	undetermined	shaft fragment, calcite and carbon covered
VIII	16	E	41	rib fragment	undetermined	subadult, shaft fragment, calcite and carbon covered
VIII	16	E	42	rib fragment	probable right	first rib, shaft fragment, calcite and carbon covered

VIII	16	E	43	rib fragment	undetermined	sternal end, possible subadult, stage 1
VIII	16	E	44	31 unidentified fragments		

APPENDIX C R CODE FOR SILER MODELS

/*Fit Siler Model Life Table Mortality Model Using Horticulturalist Average from Gurven and Kaplan 2007*/

```
a1<-0.418
b1<-1.657
a3<-0.012
b3<-0.074
t<-matrix(c(1,5,10,15,20,25,30,35,40,45,50,55))
St<-exp((-a1/b1*(1-exp(-b1*t)))*exp(a3/b3*(1-exp(b3*t))))
s1<-St[1,]
s2<-St[2,]
s3<-St[3,]
s4<-St[4,]
s5<-St[5,]
s6<-St[6,]
s7<-St[7,]
s8<-St[8,]
s9<-St[9,]
s10<-St[10,]
s11<-St[11,]
s12<-St[12,]
10<-1
11<-10-(1-s1)
12<-10-(1-(s1*s2))
13<-10-(1-(s1*s2*s3))
14<-10-(1-(s1*s2*s3*s4))
15<-10-(1-(s1*s2*s3*s4*s5))
16<-10-(1-(s1*s2*s3*s4*s5*s6))
17<-10-(1-(s1*s2*s3*s4*s5*s6*s7))
18<-10-(1-(s1*s2*s3*s4*s5*s6*s7*s8))
19<-10-(1-(s1*s2*s3*s4*s5*s6*s7*s8*s9))
110<-10-(1-(s1*s2*s3*s4*s5*s6*s7*s8*s9*s10))
111<-10-(1-(s1*s2*s3*s4*s5*s6*s7*s8*s9*s10*s11))
112<-10-(1-(s1*s2*s3*s4*s5*s6*s7*s8*s9*s10*s11*s12))
Lt<-matrix(c(10,11,12,13,14,15,16,17,18,19,110,111,112))
t2<-matrix(c(0,t))
plot(t2,Lt,type="l",col="red")
/*create "observed" dx function from model LT*/
```

```
mtcobs<-read.table(file="C:/Users/Kieffer/Documents/SantaCatalina.csv",sep=",")
mtc<-as.matrix(mtcobs)
mtctot<-colSums(mtcobs)
d1<-mtctot*(1-s1)
d2<-(mtctot-d1)*(1-s2)
d3<-(mtctot-(d1+d2))*(1-s3)
d4<-(mtctot-(d1+d2+d3))*(1-s4)
d5<-(mtctot-(d1+d2+d3+d4))*(1-s5)
d6<-(mtctot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(mtctot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(mtctot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(mtctot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(mtctot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(mtctot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(mtctot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
Dt<-as.integer(matrix(c(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12)))
plot(t,Dt,type="l",col="red")
lines(t,mtc,col="green")
diff<-(Dt-mtc)
plot(t,diff,type="l",col="red")
tbl<-table(Dt,mtc)
tbl
chisq.test(tbl)
fisher.test(tbl)
/*simulated corrections of death counts based on observability*/
o01m<-.80
o01s<-. 05
o14m<-.55
o14s<-.066
o59m<-.35
059s<-.033
o1014m<-. }1
o1014s<-.033
o1519m<-. }1
o1519s<-.033
o2024m<-. }1
o2024s<-.033
o2529m<-. }1
02529s<-.033
o3034m<-. }1
```

o3034s<-. 033
o3539m<-. 15
o3539s<-. 033
o4044m<-. 25
o4044s<-. 033
o4549m<-. 35
o4549s<-. 066
05054m<-. 45
$05054 \mathrm{~s}<-.066$
/*execute calibrated monte-carlo resampling with thinning*/
obs01sim<-replicate(10000,matrix(c(rnorm(10000,o01m,o01s)),nrow=10000,ncol=1)) t01<-obs01sim[seq(100,10000,100),1:1,100]
obs14sim<-replicate(10000,matrix(c(rnorm(10000,o14m,o14s)),nrow=10000,ncol=1)) t14<-obs14sim[seq(100,10000,100),1:1,100]
obs59sim<-replicate(10000,matrix(c(rnorm(10000,o59m,o59s)),nrow=10000,ncol=1))
t59<-obs59sim[seq(100,10000,100),1:1,100]
obs1014sim<-
replicate(10000,matrix(c(rnorm(10000,o1014m,o1014s)),nrow=10000,ncol=1)) t1014<-obs1014sim[seq(100,10000,100), 1:1,100]
obs1519sim<-
replicate(10000,matrix(c(rnorm(10000,o1519m,o1519s)),nrow=10000,ncol=1)) t1519<-obs1519sim[seq(100,10000,100),1:1,100]
obs2024sim<-
replicate(10000,matrix(c(rnorm(10000,o2024m,o2024s)),nrow=10000,ncol=1)) t2024<-obs2024sim[seq(100,10000,100),1:1,100]
obs2529sim<-
replicate(10000,matrix(c(rnorm(10000,o2529m,o2529s)),nrow=10000,ncol=1))
t2529<-obs2529sim[seq(100,10000,100), 1:1,100]
obs3034sim<-
replicate (10000,matrix(c(rnorm(10000,o3034m,o3034s)),nrow=10000,ncol=1))
t3034<-obs3034sim[seq(100,10000,100),1:1,100]
obs3539sim<-
replicate (10000, matrix(c(rnorm(10000,o3539m,o3539s)), nrow=10000,ncol=1))
t3539<-obs3539sim[seq(100,10000,100),1:1,100]
obs4044sim<-
replicate(10000,matrix(c(rnorm(10000,o4044m,o4044s)),nrow=10000,ncol=1)) t4044<-obs4044sim[seq(100,10000,100),1:1,100]
obs4549sim<-
replicate(10000,matrix(c(rnorm(10000,o4549m,o4549s)),nrow=10000,ncol=1))
t4549<-obs4549sim[seq(100,10000,100),1:1,100]
obs5054sim<-
replicate (10000,matrix(c(rnorm(10000,05054m,o5054s)), nrow=10000,ncol=1))
t5054<-obs5054sim[seq(100,10000,100),1:1,100]
/*Compute Observability Raising Factors*/

```
ht01<-t(1/(1-t01))
ht14<-t(1/(1-t14))
ht59<-t(1/(1-t59))
ht1014<-t(1/(1-t1014))
ht1519<-t(1/(1-t1519))
ht2024<-t(1/(1-t2024))
ht2529<-t(1/(1-t2529))
ht3034<-t(1/(1-t3034))
ht3539<-t(1/(1-t3539))
ht4044<-t(1/(1-t4044))
ht4549<-t(1/(1-t4549))
ht5054<-t(1/(1-t5054))
```

ht<-rbind(ht01,ht14,ht59,ht1014,ht1519,ht2024,ht2529,ht3034,ht3539,ht4044, ht4549,ht5054)
h1<-as.matrix(ht[,1])
h2<-as.matrix (ht[,2])
h3<-as.matrix (ht[,3])
h4<-as.matrix (ht[,4])
h5<-as.matrix(ht[,5])
h6<-as.matrix (ht[,6])
h7<-as.matrix(ht[,7])
h8<-as.matrix(ht[,8])
h9<-as.matrix (ht[,9])
h10<-as.matrix(ht[,10])
h11<-as.matrix(ht[,11])
h12<-as.matrix(ht[,12])
h13<-as.matrix(ht[,13])
h14<-as.matrix(ht[,14])
h15<-as.matrix(ht[,15])
h16<-as.matrix(ht[,16])
h17<-as.matrix(ht[,17])
h18<-as.matrix(ht[,18])
h19<-as.matrix (ht[,19])
h20<-as.matrix (ht[,20])
h21<-as.matrix(ht[,21])
h22<-as.matrix (ht[,22])
h23<-as.matrix(ht[,23])
h24<-as.matrix (ht[,24])
h25<-as.matrix (ht[,25])
h26<-as.matrix(ht[,26])
h27<-as.matrix(ht[,27])
h28<-as.matrix(ht[,28])
h29<-as.matrix(ht[,29])
h30<-as.matrix (ht[,30])
h31<-as.matrix(ht[,31])
h32<-as.matrix(ht[,32])
h33<-as.matrix (ht[,33])
h34<-as.matrix (ht[,34])
h35<-as.matrix(ht[,35])
h36<-as.matrix(ht[,36])
h37<-as.matrix(ht[,37])
h38<-as.matrix (ht[,38])
h39<-as.matrix(ht[,39])
h40<-as.matrix (ht[,40])
h41<-as.matrix(ht[,41])
h42<-as.matrix(ht[,42])
h43<-as.matrix (ht[,43])
h44<-as.matrix(ht[,44])
h45<-as.matrix(ht[,45])
h46<-as.matrix (ht[,46])
h47<-as.matrix (ht[,47])
h48<-as.matrix (ht[,48])
h49<-as.matrix(ht[,49])
h50<-as.matrix(ht[,50])
h51<-as.matrix (ht[,51])
h52<-as.matrix (ht[,52])
h53<-as.matrix(ht[,53])
h54<-as.matrix(ht[,54])
h55<-as.matrix (ht[,55])
h56<-as.matrix (ht[,56])
h57<-as.matrix (ht[,57])
h58<-as.matrix(ht[,58])
h59<-as.matrix (ht[,59])
h60<-as.matrix(ht[,60])
h61<-as.matrix(ht[,61])
h62<-as.matrix(ht[,62])
h63<-as.matrix(ht[,63])
h64<-as.matrix(ht[,64])
h65<-as.matrix(ht[,65])
h66<-as.matrix (ht[,66])
h67<-as.matrix(ht[,67])
h68<-as.matrix(ht[,68])
h69<-as.matrix(ht[,69])
h70<-as.matrix(ht[,70])
h71<-as.matrix (ht[,71])
h72<-as.matrix(ht[,72])
h73<-as.matrix(ht[,73])
h74<-as.matrix(ht[,74])
h75<-as.matrix(ht[,75])
h76<-as.matrix(ht[,76])
h77<-as.matrix(ht[,77])
h78<-as.matrix(ht[,78])
h79<-as.matrix(ht[,79])
h80<-as.matrix(ht[,80])
h81<-as.matrix(ht[,81])
h82<-as.matrix(ht[,82])
h83<-as.matrix(ht[,83])
h84<-as.matrix(ht[,84])
h85<-as.matrix(ht[,85])
h86<-as.matrix(ht[,86])
h87<-as.matrix(ht[,87])
h88<-as.matrix(ht[,88])
h89<-as.matrix(ht[,89])
h90<-as.matrix(ht[,90])
h91<-as.matrix(ht[,91])
h92<-as.matrix(ht[,92])
h93<-as.matrix(ht[,93])
h94<-as.matrix(ht[,94])
h95<-as.matrix(ht[,95])
h96<-as.matrix(ht[,96])
h97<-as.matrix(ht[,97])
h98<-as.matrix(ht[,98])
h99<-as.matrix(ht[,99])
h100<-as.matrix (ht[,100])
/*death count estimates upweighted by observability parameters--100 iterations*/
$\mathrm{dt} 1<-\mathrm{as}$. matrix(as.integer(mtc*h1))
d1tot<-colSums(dt1)
d1<-d1tot*(1-s1)
d2<-(d1tot-d1)*(1-s2)
d3<-(d1tot-(d1+d2))*(1-s3)

```
d4<-(d1tot-(d1+d2+d3))*(1-s4)
d5<-(d1tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d1tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d1tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d1tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d1tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d1tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d1tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d1tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp1<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt10<-as.matrix(as.integer(mtc*h10))
d10tot<-colSums(dt10)
d1<-d10tot*(1-s1)
d2<-(d10tot-d1)*(1-s2)
d3<-(d10tot-(d1+d2))*(1-s3)
d4<-(d10tot-(d1+d2+d3))*(1-s4)
d5<-(d10tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d10tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d10tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d10tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 10$ tot-(d1 + d2+d3+d4+d5+d6+d7+d8) $) *(1-s 9)$
d10<-(d10tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d10tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 10 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp10<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt20<-as.matrix(as.integer(mtc*h20))
d20tot<-colSums(dt20)
d1<-d20tot*(1-s1)
d2<-(d20tot-d1)*(1-s2)
d3<-(d20tot-(d1+d2))*(1-s3)
d4<-(d20tot-(d1+d2+d3))*(1-s4)
d5<-(d20tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d20tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d20tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d20tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d20tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d20tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d20tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d20tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp20<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt30<-as.matrix(as.integer(mtc*h30))
d30tot<-colSums(dt30)
d1<-d30tot*(1-s1)
d2<-(d30tot-d1)*(1-s2)
d3<-(d30tot-(d1+d2))*(1-s3)
d4<-(d30tot-(d1+d2+d3))*(1-s4)
d5<-(d30tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d30tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d30tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d30tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d30tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d30tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d30tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d30tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp30<-as.matrix(as.integer(rbind(d1,d2,d3,d4, d5, d6, d7,d8, d9, 10, d11, d12)))
$\mathrm{dt} 40<$-as.matrix(as.integer(mtc*h40))
d40tot<-colSums(dt40)
d1<-d40tot*(1-s1)
d2<-(d40tot-d1)*(1-s2)
d3<-(d40tot-(d1+d2))*(1-s3)
d4<-(d40tot-(d1+d2+d3))*(1-s4)
d5<-(d40tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d40tot- $(d 1+d 2+d 3+d 4+d 5))^{*}(1-s 6)$
d7<-(d40tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d40tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 40$ tot-(d1 + d2+d3+d4+d5+d6+d7+d8) $) *(1-s 9)$
d10<-(d40tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9))^{*}(1-\mathrm{s} 10)$
$\mathrm{d} 11<-(\mathrm{d} 40 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 40$ tot $-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11)) *(1-\mathrm{s} 12)$
dsilexp40<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt50<-as.matrix(as.integer(mtc*h50))
d50tot<-colSums(dt50)
d1<-d50tot*(1-s1)
d2<-(d50tot-d1)*(1-s2)
d3<-(d50tot-(d1+d2))*(1-s3)
d4<-(d50tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)) *(1-\mathrm{s} 4)$
d5<-(d50tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d50tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d50tot-(d1+d2+d3+d4+d5+d6))*(1-s7)

```
d8<-(d50tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d50tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d50tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d50tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d50tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp50<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt60<-as.matrix(as.integer(mtc*h60))
d60tot<-colSums(dt60)
d1<-d60tot*(1-s1)
d2<-(d60tot-d1)*(1-s2)
d3<-(d60tot-(d1+d2))*(1-s3)
d4<-(d60tot-(d1+d2+d3))*(1-s4)
d5<-(d60tot- (d1+d2+d3+d4))*(1-s5)
d6<-(d60tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d60tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d60tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 60$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d60tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d60tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d60tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp60<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt70<-as.matrix(as.integer(mtc*h70))
d70tot<-colSums(dt70)
d1<-d70tot* ${ }^{*}(1-\mathrm{s} 1)$
d2<-(d70tot-d1)*(1-s2)
d3<-(d70tot-(d1+d2))*(1-s3)
d4<-(d70tot-(d1+d2+d3))*(1-s4)
d5<-(d70tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d70tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d70tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d70tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d70tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d70tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d70tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 70 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp70<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt80<-as.matrix(as.integer(mtc*h80))
d80tot<-colSums(dt80)
d1<-d80tot*(1-s1)
d2<-(d80tot-d1)*(1-s2)

```
d3<-(d80tot-(d1+d2))*(1-s3)
d4<-(d80tot-(d1+d2+d3))*(1-s4)
d5<-(d80tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d80tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d80tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d80tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d80tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d80tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d80tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d80tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp80<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt90<-as.matrix(as.integer(mtc*h90))
d90tot<-colSums(dt90)
d1<-d90tot*(1-s1)
d2<-(d90tot-d1)*(1-s2)
d3<-(d90tot-(d1+d2))*(1-s3)
d4<-(d90tot-(d1+d2+d3))*(1-s4)
d5<-(d90tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d90tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d90tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d90tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 90$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d90tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d90tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d90tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp90<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt100<-as.matrix(as.integer(mtc*h100))
d100tot<-colSums(dt100)
d1<-d100tot*(1-s1)
d2<-(d100tot-d1)*(1-s2)
d3<-(d100tot-(d1+d2))*(1-s3)
d4<-(d100tot-(d1+d2+d3))*(1-s4)
d5<-(d100tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d100tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d100tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d100tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d100tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d100tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d $11<-(\mathrm{d} 100 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
d12<-(d100tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp100<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
/*compute chi-squared and Fisher's Exact Tests for diffs between remediated differences
and
null expectation under Siler model*/
tbl<-table(dt1,dsilexp1)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt10,dsilexp10)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt20,dsilexp20)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt30,dsilexp30)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt40,dsilexp40)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt50,dsilexp50)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt60,dsilexp60)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt70,dsilexp70)
tbl
chisq.test(tbl)
fisher.test(tbl)
```

tbl<-table(dt80,dsilexp80)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt90,dsilexp90)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt100,dsilexp100)
tbl
chisq.test(tbl)
fisher.test(tbl)
/*plot every 10th iteration of simulation against the null expectations*/

```
plot(t,dsilexp1,type="l",col="red", xlab="Age at Death",ylab="Death Counts",
xlim=c(0,55),ylim=c(0,40))
lines(t,dsilexp10,type="1",col="red")
lines(t,dsilexp20,type="l",col="red")
lines(t,dsilexp30,type="l",col="red")
lines(t,dsilexp40,type="1",col="red")
lines(t,dsilexp50,type="1",col="red")
lines(t,dsilexp60,type="1",col="red")
lines(t,dsilexp70,type="1",col="red")
lines(t,dsilexp80,type="1",col="red")
lines(t,dsilexp90,type="l",col="red")
lines(t,dsilexp100,type="l",col="red")
lines(t,dt1,type="l",col="blue")
lines(t,dt10,type="l",col="blue")
lines(t,dt20,type="l",col="blue")
lines(t,dt30,type="l",col="blue")
lines(t,dt40,type="l",col="blue")
lines(t,dt50,type="l",col="blue")
lines(t,dt60,type="l",col="blue")
lines(t,dt70,type="l",col="blue")
lines(t,dt80,type="l",col="blue")
lines(t,dt90,type="l",col="blue")
lines(t,dt100,type="l",col="blue")
```


APPENDIX D R CODE FOR MONTE CARLO RESAMPLING

/*Fit Siler Model Life Table Mortality Model Using horticulture Average from Gurven and Kaplan 2007*/
a1<-0.418
b1<-1.657
a3<-0.012
b3<-0.074
t<-matrix(c($1,5,10,15,20,25,30,35,40,45,50,55))$
St<-exp((-a1/b1*(1-exp(-b1*t)))*exp(a3/b3*(1-exp(b3*t))))
s1<-St[1,]
s2<-St[2,]
s3<-St[3,]
s4<-St[4,]
s5<-St[5,]
s6<-St[6,]
s7<-St[7,]
s8<-St[8,]
s9<-St[9,]
s10<-St[10,]
s11<-St[11,]
s12<-St[12,]
10<-1
11<-10-(1-s1)
12<-10-(1-(s1*s2))
13<-10-(1-(s1*s2*s3))
$14<-10-(1-(\mathrm{s} 1 * \mathrm{~s} 2 * \mathrm{~s} 3 * \mathrm{~s} 4))$
$15<-10-(1-(\mathrm{s} 1 * \mathrm{~s} 2 * \mathrm{~s} 3 * \mathrm{~s} 4 * \mathrm{~s} 5))$
16<-10-(1-(s1*s2*s3*s4*s5*s6))
17<-10-(1-(s1*s2*s3*s4*s5*s6*s7))
18<-10-(1-(s1*s2*s3*s4*s5*s6*s7*s8))
$19<-10-\left(1-\left(\mathrm{s} 1 *_{\mathrm{s}} 2 *_{\mathrm{s}} 3 *_{\mathrm{s}} 4 *_{\mathrm{s} 5} *_{\mathrm{s} 6} 6{ }^{\mathrm{s}} 7{ }^{2} \mathrm{~s} 8 * \mathrm{~s} 9\right)\right)$
$110<-10-(1-(\mathrm{s} 1 * \mathrm{~s} 2 * \mathrm{~s} 3 * \mathrm{~s} 4 * \mathrm{~s} 5 * \mathrm{~s} 6 * \mathrm{~s} 7 * \mathrm{~s} 8 * \mathrm{~s} 9 * \mathrm{~s} 10))$
$111<-10-(1-(\mathrm{s} 1 * \mathrm{~s} 2 * \mathrm{~s} 3 * \mathrm{~s} 4 * \mathrm{~s} 5 * \mathrm{~s} 6 * \mathrm{~s} 7 * \mathrm{~s} 8 * \mathrm{~s} 9 * \mathrm{~s} 10 * \mathrm{~s} 11))$
$112<-10-(1-(\mathrm{s} 1 * \mathrm{~s} 2 * \mathrm{~s} 3 * \mathrm{~s} 4 * \mathrm{~s} 5 * \mathrm{~s} 6 * \mathrm{~s} 7 * \mathrm{~s} 8 * \mathrm{~s} 9 * \mathrm{~s} 10 * \mathrm{~s} 11 * \mathrm{~s} 12))$
Lt<-matrix(c(10,11,12,13,14,15,16,17,18,19,110,111,112))
t2<-matrix $(c(0, \mathrm{t}))$
plot(t2,Lt,type="l",col="red")
/*create "observed" dx function from model LT*/

```
mtcobs<-read.table(file="C:/Users/Kieffer/Documents/MTC.csv",sep=",")
mtc<-as.matrix(mtcobs)
mtctot<-colSums(mtcobs)
d1<-mtctot*(1-s1)
d2<-(mtctot-d1)*(1-s2)
d3<-(mtctot-(d1+d2))*(1-s3)
d4<-(mtctot-(d1+d2+d3))*(1-s4)
d5<-(mtctot-(d1+d2+d3+d4))*(1-s5)
d6<-(mtctot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(mtctot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(mtctot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(mtctot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(mtctot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(mtctot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(mtctot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
Dt<-as.integer(matrix(c(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12)))
plot(t,Dt,type="l",col="red")
lines(t,mtc,col="green")
diff<-(Dt-mtc)
plot(t,diff,type="l",col="red")
tbl<-table(Dt,mtc)
tbl
chisq.test(tbl)
fisher.test(tbl)
/*simulated corrections of death counts based on observability*/
o01m<-. }8
o01s<-.05
o14m<-.55
o14s<-.066
o59m<-. 35
059s<-.033
o1014m<-.15
o1014s<-.033
o1519m<-. 10
o1519s<-.033
o2024m<-. }1
o2024s<-.033
o2529m<-. }1
o2529s<-.033
```

o3034m<-. 10
o3034s<-. 033
o3539m<-. 15
o3539s<-. 033
o $4044 \mathrm{~m}<-.25$
o4044s<-. 033
o4549m<-. 35
o4549s<-. 066
o5054m<-. 45
05054s<-. 066
/*execute calibrated monte-carlo resampling with thinning*/
obs01sim<-replicate(10000,matrix(c(rnorm(10000,o01m,o01s)),nrow=10000,ncol=1)) t01<-obs01sim[seq(100,10000,100),1:1,100]
obs14sim<-replicate(10000,matrix(c(rnorm(10000,o14m,o14s)),nrow=10000,ncol=1)) t14<-obs14sim[seq(100,10000,100),1:1,100]
obs59sim<-replicate(10000,matrix(c(rnorm(10000,o59m,o59s)),nrow=10000,ncol=1))
t59<-obs59sim[seq(100,10000,100),1:1,100]
obs1014sim<-
replicate (10000,matrix(c(rnorm(10000,o1014m,o1014s)),nrow=10000,ncol=1)) t1014<-obs1014sim[seq(100,10000,100),1:1,100]
obs1519sim<-
replicate (10000,matrix(c(rnorm(10000,o1519m,o1519s)),nrow=10000,ncol=1)) t1519<-obs1519sim[seq(100,10000,100),1:1,100]
obs2024sim<-
replicate(10000,matrix(c(rnorm(10000,o2024m,o2024s)),nrow=10000,ncol=1)) t2024<-obs2024sim[seq(100,10000,100),1:1,100]
obs2529sim<-
replicate(10000,matrix(c(rnorm(10000,o2529m,o2529s)),nrow=10000,ncol=1)) t2529<-obs2529sim[seq(100,10000,100),1:1,100]
obs3034sim<-
replicate(10000,matrix(c(rnorm(10000,o3034m,o3034s)),nrow=10000,ncol=1))
t3034<-obs3034sim[seq(100,10000,100),1:1,100]
obs3539sim<-
replicate(10000,matrix(c(rnorm(10000,o3539m,o3539s)),nrow=10000,ncol=1))
t3539<-obs3539sim[seq(100,10000,100),1:1,100]
obs4044sim<-
replicate(10000,matrix(c(rnorm(10000,o4044m,o4044s)),nrow=10000,ncol=1)) t4044<-obs4044sim[seq(100,10000,100),1:1,100]
obs4549sim<-
replicate(10000,matrix(c(rnorm(10000,o4549m,o4549s)),nrow=10000,ncol=1))
t4549<-obs4549sim[seq(100,10000,100),1:1,100]
obs5054sim<-
replicate (10000,matrix(c(rnorm(10000,05054m,o5054s)), nrow=10000,ncol=1))
t5054<-obs5054sim[seq(100,10000,100),1:1,100]
/*Compute Observability Raising Factors*/

```
ht01<-t(1/(1-t01))
ht14<-t(1/(1-t14))
ht59<-t(1/(1-t59))
ht1014<-t(1/(1-t1014))
ht1519<-t(1/(1-t1519))
ht2024<-t(1/(1-t2024))
ht2529<-t(1/(1-t2529))
ht3034<-t(1/(1-t3034))
ht3539<-t(1/(1-t3539))
ht4044<-t(1/(1-t4044))
ht4549<-t(1/(1-t4549))
ht5054<-t(1/(1-t5054))
```

ht<-rbind(ht01,ht14,ht59,ht1014,ht1519,ht2024,ht2529,ht3034,ht3539,ht4044, ht4549,ht5054)
h1<-as.matrix(ht[,1])
h2<-as.matrix (ht[,2])
h3<-as.matrix (ht[,3])
h4<-as.matrix (ht[,4])
h5<-as.matrix(ht[,5])
h6<-as.matrix (ht[,6])
h7<-as.matrix(ht[,7])
h8<-as.matrix(ht[,8])
h9<-as.matrix (ht[,9])
h10<-as.matrix(ht[,10])
h11<-as.matrix(ht[,11])
h12<-as.matrix(ht[,12])
h13<-as.matrix(ht[,13])
h14<-as.matrix(ht[,14])
h15<-as.matrix(ht[,15])
h16<-as.matrix(ht[,16])
h17<-as.matrix(ht[,17])
h18<-as.matrix(ht[,18])
h19<-as.matrix (ht[,19])
h20<-as.matrix (ht[,20])
h21<-as.matrix(ht[,21])
h22<-as.matrix (ht[,22])
h23<-as.matrix(ht[,23])
h24<-as.matrix (ht[,24])
h25<-as.matrix (ht[,25])
h26<-as.matrix(ht[,26])
h27<-as.matrix(ht[,27])
h28<-as.matrix(ht[,28])
h29<-as.matrix(ht[,29])
h30<-as.matrix(ht[,30])
h31<-as.matrix(ht[,31])
h32<-as.matrix(ht[,32])
h33<-as.matrix(ht[,33])
h34<-as.matrix (ht[,34])
h35<-as.matrix(ht[,35])
h36<-as.matrix(ht[,36])
h37<-as.matrix(ht[,37])
h38<-as.matrix (ht[,38])
h39<-as.matrix(ht[,39])
h40<-as.matrix (ht[,40])
h41<-as.matrix(ht[,41])
h42<-as.matrix(ht[,42])
h43<-as.matrix (ht[,43])
h44<-as.matrix(ht[,44])
h45<-as.matrix(ht[,45])
h46<-as.matrix (ht[,46])
h47<-as.matrix (ht[,47])
h48<-as.matrix (ht[,48])
h49<-as.matrix(ht[,49])
h50<-as.matrix(ht[,50])
h51<-as.matrix (ht[,51])
h52<-as.matrix (ht[,52])
h53<-as.matrix(ht[,53])
h54<-as.matrix(ht[,54])
h55<-as.matrix (ht[,55])
h56<-as.matrix (ht[,56])
h57<-as.matrix (ht[,57])
h58<-as.matrix(ht[,58])
h59<-as.matrix (ht[,59])
h60<-as.matrix(ht[,60])
h61<-as.matrix(ht[,61])
h62<-as.matrix(ht[,62])
h63<-as.matrix(ht[,63])
h64<-as.matrix(ht[,64])
h65<-as.matrix(ht[,65])
h66<-as.matrix (ht[,66])
h67<-as.matrix(ht[,67])
h68<-as.matrix(ht[,68])
h69<-as.matrix(ht[,69])
h70<-as.matrix(ht[,70])
h71<-as.matrix (ht[,71])
h72<-as.matrix(ht[,72])
h73<-as.matrix(ht[,73])
h74<-as.matrix(ht[,74])
h75<-as.matrix(ht[,75])
h76<-as.matrix(ht[,76])
h77<-as.matrix(ht[,77])
h78<-as.matrix(ht[,78])
h79<-as.matrix(ht[,79])
h80<-as.matrix(ht[,80])
h81<-as.matrix(ht[,81])
h82<-as.matrix(ht[,82])
h83<-as.matrix(ht[,83])
h84<-as.matrix(ht[,84])
h85<-as.matrix(ht[,85])
h86<-as.matrix(ht[,86])
h87<-as.matrix(ht[,87])
h88<-as.matrix(ht[,88])
h89<-as.matrix(ht[,89])
h90<-as.matrix(ht[,90])
h91<-as.matrix(ht[,91])
h92<-as.matrix(ht[,92])
h93<-as.matrix(ht[,93])
h94<-as.matrix(ht[,94])
h95<-as.matrix(ht[,95])
h96<-as.matrix(ht[,96])
h97<-as.matrix(ht[,97])
h98<-as.matrix(ht[,98])
h99<-as.matrix(ht[,99])
h100<-as.matrix(ht[,100])
/*death count estimates upweighted by observability parameters--100 iterations*/
$\mathrm{dt} 1<-\mathrm{as}$. matrix(as.integer(mtc*h1))
d1tot<-colSums(dt1)
d1<-d1tot*(1-s1)
d2<-(d1tot-d1)*(1-s2)
d3<-(d1tot-(d1+d2))*(1-s3)

```
d4<-(d1tot-(d1+d2+d3))*(1-s4)
d5<-(d1tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d1tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d1 tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d1tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d1tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d1tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d1tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d1tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp1<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt2<-as.matrix(as.integer(mtc*h2))
d2tot<-colSums(dt2)
d1<-d2tot*(1-s1)
d2<-(d2tot-d1)*(1-s2)
d3<-(d2tot-(d1+d2))*(1-s3)
d4<-(d2tot-(d1+d2+d3))*(1-s4)
d5 <-(d2tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d2tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d2tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d2tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 2$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d2tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d2tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d2tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp2<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt3<-as.matrix(as.integer(mtc*h3))
d3tot<-colSums(dt3)
d1<-d3tot*(1-s1)
d2<-(d3tot-d1)*(1-s2)
d3<-(d3tot-(d1+d2))*(1-s3)
d4<-(d3tot-(d1+d2+d3))*(1-s4)
d5<-(d3tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d3tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d3tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d3tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d3tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d3tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d $11<-(\mathrm{d} 3 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
d12<-(d3tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp3<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt4<-as.matrix(as.integer(mtc*h4))
d4tot<-colSums(dt4)
d1<-d4tot*(1-s1)
d2<-(d4tot-d1)*(1-s2)
d3<-(d4tot-(d1+d2))*(1-s3)
d4<-(d4tot-(d1+d2+d3))*(1-s4)
d5<-(d4tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d4tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d4tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d4tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d4tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d4tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d4tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d4tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp4<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt5<-as.matrix(as.integer(mtc*h5))
d5tot<-colSums(dt5)
d1<-d5tot*(1-s1)
d2<-(d5tot-d1)*(1-s2)
d3<-(d5tot-(d1+d2))*(1-s3)
d4<-(d5tot-(d1+d2+d3))*(1-s4)
d5<-(d5tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d5tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d5tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d5tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d5tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d5tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d5tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d5tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp5<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt6<-as.matrix(as.integer(mtc*h6))
d6tot<-colSums(dt6)
d1<-d6tot*(1-s1)
d2<-(d6tot-d1)*(1-s2)
d3<-(d6tot-(d1+d2))*(1-s3)
d4<-(d6tot-(d1+d2+d3))*(1-s4)
d5<-(d6tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d6tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d6tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d6tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d6tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d6tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)

```
d11<-(d6tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d6tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp6<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt7<-as.matrix(as.integer(mtc*h7))
d7tot<-colSums(dt7)
d1<-d7tot*(1-s1)
d2<-(d7tot-d1)*(1-s2)
d3<-(d7tot-(d1+d2))*(1-s3)
d4<-(d7tot-(d1+d2+d3))*(1-s4)
d5<-(d7tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d7tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d7tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d7tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d7tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d7tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d7tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d7tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp7<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt8<-as.matrix(as.integer(mtc*h8))
d8tot<-colSums(dt8)
d1<-d8tot*(1-s1)
d2<-(d8tot-d1)*(1-s2)
d3<-(d8tot-(d1+d2))*(1-s3)
d4<-(d8tot-(d1+d2+d3))*(1-s4)
d5<-(d8tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d8tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d8tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d8tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d8tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d8tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d8tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d8tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dt9<-as.matrix(as.integer(mtc*h9))
d9tot<-colSums(dt9)
d1<-d9tot*(1-s1)
d2<-(d9tot-d1)*(1-s2)
d3<-(d9tot-(d1+d2))*(1-s3)
d4<-(d9tot-(d1+d2+d3))*(1-s4)
d5<-(d9tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d9tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d9tot-(d1+d2+d3+d4+d5+d6))*(1-s7)

```
d8<-(d9tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d9tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d9tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d9tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d9tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp9<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dsilexp8<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt10<-as.matrix(as.integer(mtc*h10))
d10tot<-colSums(dt10)
d1<-d10tot*(1-s1)
d2<-(d10tot-d1)*(1-s2)
d3<-(d10tot-(d1+d2))*(1-s3)
d4<-(d10tot-(d1+d2+d3))*(1-s4)
d5<-(d10tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d10tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d10tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d10tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 10$ tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d10tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d10tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 10 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp10<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt11<-as.matrix(as.integer(mtc*h11))
d11tot<-colSums(dt11)
d1<-d11tot*(1-s1)
d2<-(d11tot-d1)*(1-s2)
d3<-(d11tot-(d1+d2))*(1-s3)
d4<-(d11tot-(d1+d2+d3))*(1-s4)
d5<-(d11 tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d11tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d11 tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
$\mathrm{d} 8<-(\mathrm{d} 11 \text { tot- }(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7))^{*}(1-\mathrm{s} 8)$
d9<-(d11tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d11 tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9)$)*(1-s10)
d11<-(d11tot- $(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8+d 9+d 10)) *(1-s 11)$
$\mathrm{d} 12<-(\mathrm{d} 11 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp11<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt12<-as.matrix(as.integer(mtc*h12))

```
d12tot<-colSums(dt12)
d1<-d12tot*(1-s1)
d2<-(d12tot-d1)*(1-s2)
d3<-(d12tot-(d1+d2))*(1-s3)
d4<-(d12tot-(d1+d2+d3))*(1-s4)
d5<-(d12tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d12tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d12tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d12tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d12tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d12tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d12tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d12tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp12<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt13<-as.matrix(as.integer(mtc*h13))
d13tot<-colSums(dt13)
d1<-d13tot*(1-s1)
d2<-(d13tot-d1)*(1-s2)
d3<-(d13tot-(d1+d2))*(1-s3)
d4<-(d13tot-(d1+d2+d3))*(1-s4)
d5<-(d13tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d13tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d13tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d13tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d13tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d13tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d13tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d13tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp13<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt14<-as.matrix(as.integer(mtc*h14))
d14tot<-colSums(dt14)
d1<-d14tot*(1-s1)
d2<-(d14tot-d1)*(1-s2)
d3<-(d14tot-(d1+d2))*(1-s3)
d4<-(d14tot-(d1+d2+d3))*(1-s4)
d5<-(d14tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d14tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d14tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d14tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 14$ tot-(d1+d2+d3+d4+d5+d6+d7+d8) $) *(1-s 9)$
d10<-(d14tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d14tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)

```
d12<-(d14tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp14<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt15<-as.matrix(as.integer(mtc*h15))
d15tot<-colSums(dt15)
d1<-d15tot*(1-s1)
d2<-(d15tot-d1)*(1-s2)
d3<-(d15tot-(d1+d2))*(1-s3)
d4<-(d15tot-(d1+d2+d3))*(1-s4)
d5<-(d15tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d15tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d15tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
$\mathrm{d} 8<-(\mathrm{d} 15 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7))^{*}(1-\mathrm{s} 8)$
d9<-(d15tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d15tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d15tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 15 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp15<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt16<-as.matrix(as.integer(mtc*h16))
d16tot<-colSums(dt16)
d1<-d16tot*(1-s1)
d2<-(d16tot-d1)*(1-s2)
d3<-(d16tot-(d1+d2))*(1-s3)
d4<-(d16tot-(d1+d2+d3))*(1-s4)
d5<-(d16tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d16tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d16tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d16tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d16tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d16tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d16tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d16tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp16<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt17<-as.matrix(as.integer(mtc*h17))
d17tot<-colSums(dt17)
d1<-d17tot*(1-s1)
d2<-(d17tot-d1)*(1-s2)
d3<-(d17tot-(d1+d2))*(1-s3)
d4<-(d17tot-(d1+d2+d3))*(1-s4)
d5<-(d17tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d17tot- $(d 1+d 2+d 3+d 4+d 5))^{*}(1-\mathrm{s} 6)$

```
d7<-(d17tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d17tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d17ttot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d17tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d17tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d17tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp17<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt18<-as.matrix(as.integer(mtc*h18))
d18tot<-colSums(dt18)
d1<-d18tot*(1-s1)
d2<-(d18tot-d1)*(1-s2)
d3<-(d18tot-(d1+d2))*(1-s3)
d4<-(d18tot-(d1+d2+d3))*(1-s4)
d5<-(d18tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d18tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d18tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
$\mathrm{d} 8<-(\mathrm{d} 18 \text { tot- }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7))^{*}(1-\mathrm{s} 8)$
d9<-(d18tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d18tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d18tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 18 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp18<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt19<-as.matrix(as.integer(mtc*h19))
d19tot<-colSums(dt19)
d1<-d19tot*(1-s1)
d2<-(d19tot-d1)*(1-s2)
d3<-(d19tot-(d1+d2))*(1-s3)
d4<-(d19tot-(d1+d2+d3))*(1-s4)
d5<-(d19tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d19tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d19tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d19tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d19tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d19tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d19tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d19tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp19<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt20<-as.matrix(as.integer(mtc*h20))
d20tot<-colSums(dt20)
d1<-d20tot*(1-s1)

```
d2<-(d20tot-d1)*(1-s2)
d3<-(d20tot-(d1+d2))*(1-s3)
d4<-(d20tot-(d1+d2+d3))*(1-s4)
d5<-(d20tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d20tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d20tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d20tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d20tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d20tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d20tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d20tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp20<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt21<-as.matrix(as.integer(mtc*h21))
d21tot<-colSums(dt21)
d1<-d21tot*(1-s1)
d2<-(d21tot-d1)*(1-s2)
d3<-(d21tot-(d1+d2))*(1-s3)
d4<-(d21tot-(d1+d2+d3))*(1-s4)
d5<-(d21tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d21tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d21tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d21tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d21tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d21tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d21tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 21 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp21<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt22<-as.matrix(as.integer(mtc*h22))
d22tot<-colSums(dt22)
d1<-d22tot*(1-s1)
d2<-(d22tot-d1)*(1-s2)
d3<-(d22tot-(d1+d2))*(1-s3)
d4<-(d22tot-(d1+d2+d3))*(1-s4)
d5<-(d22tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d22tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d22tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d22tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d22tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d22tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d22tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d22tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp22<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt23<-as.matrix(as.integer(mtc*h23))
d23tot<-colSums(dt23)
d1<-d23tot*(1-s1)
d2<-(d23tot-d1)*(1-s2)
d3<-(d23tot-(d1+d2))*(1-s3)
d4<-(d23tot-(d1+d2+d3))*(1-s4)
d5<-(d23tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d23tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d23tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d23tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d23tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d23tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d23tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d23tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp23<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt24<-as.matrix(as.integer(mtc*h24))
```

d24tot<-colSums(dt24)
d1<-d24tot*(1-s1)
d2<-(d24tot-d1)*(1-s2)
d3<-(d24tot-(d1+d2))*(1-s3)
d4<-(d24tot-(d1+d2+d3))*(1-s4)
d5<-(d24tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d24tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d24tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d24tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d24tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d24tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d24tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 24 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp24<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt25<-as.matrix(as.integer(mtc*h25))
d25tot<-colSums(dt25)
d1<-d25tot*(1-s1)
d2<-(d25tot-d1)*(1-s2)
d3<-(d25tot-(d1+d2))*(1-s3)
d4<-(d25tot-(d1+d2+d3))*(1-s4)
d5<-(d25tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d25tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d25tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d25tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7))^{*}(1-\mathrm{s} 8)$

```
d9<-(d25tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d25tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d25tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d25tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp25<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt26<-as.matrix(as.integer(mtc*h26))
d26tot<-colSums(dt26)
d1<-d26tot*(1-s1)
d2<-(d26tot-d1)*(1-s2)
d3<-(d26tot-(d1+d2))*(1-s3)
d4<-(d26tot-(d1+d2+d3))*(1-s4)
d5<-(d26tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d26tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d26tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d26tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d26tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d26tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d26tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d26tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp26<-as.matrix(as.integer(rbind(d1,d2,d3,d4, d5, d6, d7,d8,d9,10,d11,d12)))
dt27<-as.matrix(as.integer(mtc*h27))
d27tot<-colSums(dt27)
d1<-d27tot*(1-s1)
d2<-(d27tot-d1)*(1-s2)
d3<-(d27tot-(d1+d2))*(1-s3)
d4<-(d27tot-(d1+d2+d3))*(1-s4)
d5<-(d27tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d27tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d27tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d27tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d27tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d27tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d27tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 27 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp27<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt28<-as.matrix(as.integer(mtc*h28))
d28tot<-colSums(dt28)
d1<-d28tot*(1-s1)
d2<-(d28tot-d1)*(1-s2)
d3<-(d28tot-(d1+d2))*(1-s3)

```
d4<-(d28tot-(d1+d2+d3))*(1-s4)
d5<-(d28tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d28tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d28tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d28tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d28tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d28tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d28tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d28tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp28<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt29<-as.matrix(as.integer(mtc*h29))
d29tot<-colSums(dt29)
d1<-d29tot*(1-s1)
d2<-(d29tot-d1)*(1-s2)
d3<-(d29tot-(d1+d2))*(1-s3)
d4<-(d29tot-(d1+d2+d3))*(1-s4)
d5<-(d29tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d29tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d29tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d29tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 29$ tot-(d $1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8))^{*}(1-\mathrm{s} 9)$
d10<-(d29tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d29tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d29tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp29<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt30<-as.matrix(as.integer(mtc*h30))
d30tot<-colSums(dt30)
d1<-d30tot*(1-s1)
d2<-(d30tot-d1)*(1-s2)
d3<-(d30tot-(d1+d2))*(1-s3)
d4<-(d30tot-(d1+d2+d3))*(1-s4)
d5<-(d30tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d30tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d30tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d30tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d30tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d30tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d30tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 30 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp30<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt31<-as.matrix(as.integer(mtc*h31))
d31tot<-colSums(dt31)
d1<-d31tot*(1-s1)
d2<-(d31tot-d1)*(1-s2)
d3<-(d31tot-(d1+d2))*(1-s3)
d4<-(d31tot-(d1+d2+d3))*(1-s4)
d5<-(d31tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d31tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d31tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d31tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d31tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d31tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d31tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d31tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp31<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt32<-as.matrix(as.integer(mtc*h32))
d32tot<-colSums(dt32)
d1<-d32tot*(1-s1)
d2<-(d32tot-d1)*(1-s2)
d3<-(d32tot-(d1+d2))*(1-s3)
d4<-(d32tot-(d1+d2+d3))*(1-s4)
d5<-(d32tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d32tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d32tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d32tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 32$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d32tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d32tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d32tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp32<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt33<-as.matrix(as.integer(mtc*h33))
d33tot<-colSums(dt33)
d1<-d33tot*(1-s1)
d2<-(d33tot-d1)*(1-s2)
d3<-(d33tot-(d1+d2))*(1-s3)
d4<-(d33tot-(d1+d2+d3))*(1-s4)
d5<-(d33tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d33tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d33tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d33tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d33tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d33tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)

```
d11<-(d33tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d33tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp33<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt34<-as.matrix(as.integer(mtc*h34))
d34tot<-colSums(dt34)
d1<-d34tot*(1-s1)
d2<-(d34tot-d1)*(1-s2)
d3<-(d34tot-(d1+d2))*(1-s3)
d4<-(d34tot-(d1+d2+d3))*(1-s4)
d5<-(d34tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d34tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d34tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d34tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d34tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d34tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d34tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d34tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp34<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt35<-as.matrix(as.integer(mtc*h35))
d35tot<-colSums(dt35)
d1<-d35tot*(1-s1)
d2<-(d35tot-d1)*(1-s2)
d3<-(d35tot-(d1+d2) $)^{*}(1-s 3)$
d4<-(d35tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3))^{*}(1-\mathrm{s} 4)$
d5<-(d35tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d35tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d35tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d35tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7))^{*}(1-\mathrm{s} 8)$
d $9<-(d 35 \text { tot- }(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8))^{*}(1-\mathrm{s} 9)$
d10<-(d35tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9)) *(1-\mathrm{s} 10)$
d11<-(d35tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 35 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp35<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5, d6, d7,d8,d9,10,d11,d12)))
dt36<-as.matrix(as.integer(mtc*h36))
d36tot<-colSums(dt36)
d1<-d36tot*(1-s1)
d2<-(d36tot-d1)*(1-s2)
d3<-(d36tot-(d1+d2))*(1-s3)
d4<-(d36tot-(d1+d2+d3))*(1-s4)
d5<-(d36tot-(d1+d2+d3+d4))*(1-s5)

```
d6<-(d36tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d36tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d36tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d36tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d36tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d36tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d36tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp36<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt37<-as.matrix(as.integer(mtc*h37))
d37tot<-colSums(dt37)
d1<-d37tot*(1-s1)
d2<-(d37tot-d1)*(1-s2)
d3<-(d37tot-(d1+d2))*(1-s3)
d4<-(d37tot-(d1+d2+d3))*(1-s4)
d5<-(d37tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d37tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d37tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d37tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d37tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d37tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d37tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 37 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp37<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt38<-as.matrix(as.integer(mtc*h38))
d38tot<-colSums(dt38)
d1<-d38tot*(1-s1)
d2<-(d38tot-d1)*(1-s2)
d3<-(d38tot-(d1+d2))*(1-s3)
d4<-(d38tot-(d1+d2+d3))*(1-s4)
d5<-(d38tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d38tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d38tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d38tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 38$ tot- $(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d38tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9)$)*(1-s10)
d11<-(d38tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d38tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp38<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt39<-as.matrix(as.integer(mtc*h39))
d39tot<-colSums(dt39)

```
d1<-d39tot*(1-s1)
d2<-(d39tot-d1)*(1-s2)
d3<-(d39tot-(d1+d2))*(1-s3)
d4<-(d39tot-(d1+d2+d3))*(1-s4)
d5<-(d39tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d39tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d39tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d39tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d39tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d39tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d39tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d39tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp39<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt40<-as.matrix(as.integer(mtc*h40))
d40tot<-colSums(dt40)
d1<-d40tot*(1-s1)
d2<-(d40tot-d1)*(1-s2)
d3<-(d40tot-(d1+d2))*(1-s3)
d4<-(d40tot-(d1+d2+d3))*(1-s4)
d5<-(d40tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d40tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d40tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d40tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d40tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d40tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
$\mathrm{d} 11<-(\mathrm{d} 40 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 40 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp40<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt41<-as.matrix(as.integer(mtc*h41))
d41tot<-colSums(dt41)
d1<-d41tot*(1-s1)
d2<-(d41tot-d1)*(1-s2)
d3<-(d41tot-(d1+d2))*(1-s3)
d4<-(d41tot-(d1+d2+d3))*(1-s4)
d5<-(d41tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d41tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d41tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d41 tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 41$ tot- $(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d41tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d41tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 41 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp41<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt42<-as.matrix(as.integer(mtc*h42))
d42tot<-colSums(dt42)
d1<-d42tot*(1-s1)
d2<-(d42tot-d1)*(1-s2)
d3<-(d42tot-(d1+d2))*(1-s3)
d4<-(d42tot-(d1+d2+d3))*(1-s4)
d5<-(d42tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d42tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d42tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d42tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d42tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d42tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d42tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d42tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp42<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt43<-as.matrix(as.integer(mtc*h43))
d43tot<-colSums(dt43)
d1<-d43tot*(1-s1)
d2<-(d43tot-d1)*(1-s2)
d3<-(d43tot-(d1+d2))*(1-s3)
d4<-(d43tot-(d1+d2+d3))*(1-s4)
d5<-(d43tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d43tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d43tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d43tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 43$ tot-(d1 + d2+d3+d4+d5+d6+d7+d8) $) *(1-s 9)$
d10<-(d43tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9))^{*}(1-\mathrm{s} 10)$
$\mathrm{d} 11<-(\mathrm{d} 43 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 43 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp43<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt44<-as.matrix(as.integer(mtc*h44))
d44tot<-colSums(dt44)
d1<-d44tot*(1-s1)
d2<-(d44tot-d1)*(1-s2)
d3<-(d44tot-(d1+d2))*(1-s3)
d4<-(d44tot-(d1+d2+d3))*(1-s4)
d5<-(d44tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d44tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d44tot-(d1+d2+d3+d4+d5+d6))*(1-s7)

```
d8<-(d44tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d44tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d44tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d44tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d44tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp44<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt45<-as.matrix(as.integer(mtc*h45))
d45tot<-colSums(dt45)
d1<-d45tot*(1-s1)
d2<-(d45tot-d1)*(1-s2)
d3<-(d45tot-(d1+d2))*(1-s3)
d4<-(d45tot-(d1+d2+d3))*(1-s4)
d5<-(d45tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d45tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d45tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d45tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 45$ tot- $(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d45tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d45tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 45 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp45<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt46<-as.matrix(as.integer(mtc*h46))
d46tot<-colSums(dt46)
d1<-d46tot*(1-s1)
d2<-(d46tot-d1)*(1-s2)
d3<-(d46tot-(d1+d2))*(1-s3)
d4<-(d46tot-(d1+d2+d3))*(1-s4)
d5<-(d46tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d46tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d46tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d46tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 46$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d46tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
$\mathrm{d} 11<-(\mathrm{d} 46 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 46 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp46<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt47<-as.matrix(as.integer(mtc*h47))
d47tot<-colSums(dt47)
d1<-d47tot*(1-s1)
d2<-(d47tot-d1)*(1-s2)

```
d3<-(d47tot-(d1+d2))*(1-s3)
d4<-(d47tot-(d1+d2+d3))*(1-s4)
d5<-(d47tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d47tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d47tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d47tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d47tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d47tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d47tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d47tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp47<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt48<-as.matrix(as.integer(mtc*h48))
d48tot<-colSums(dt48)
d1<-d48tot*(1-s1)
d2<-(d48tot-d1)*(1-s2)
d3<-(d48tot-(d1+d2))*(1-s3)
d4<-(d48tot-(d1+d2+d3))*(1-s4)
d5<-(d48tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d48tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d48tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d48tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 48$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d48tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d48tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 48 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp48<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt49<-as.matrix(as.integer(mtc*h49))
d49tot<-colSums(dt49)
d1<-d49tot*(1-s1)
d2<-(d49tot-d1)*(1-s2)
d3<-(d49tot-(d1+d2))*(1-s3)
d4<-(d49tot-(d1+d2+d3))*(1-s4)
d5<-(d49tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d49tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d49tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d49tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d49tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d49tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d49tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 49 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp49<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5, d6, d7,d8,d9,10,d11,d12)))

```
dt50<-as.matrix(as.integer(mtc*h50))
d50tot<-colSums(dt50)
d1<-d50tot*(1-s1)
d2<-(d50tot-d1)*(1-s2)
d3<-(d50tot-(d1+d2))*(1-s3)
d4<-(d50tot-(d1+d2+d3))*(1-s4)
d5<-(d50tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d50tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d50tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d50tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d50tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d50tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d50tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d50tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp50<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt51<-as.matrix(as.integer(mtc*h51))
d51tot<-colSums(dt51)
d1<-d51tot*(1-s1)
d2<-(d51tot-d1)*(1-s2)
d3<-(d51tot-(d1+d2))*(1-s3)
d4<-(d51tot-(d1+d2+d3))*(1-s4)
d5<-(d51tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d51tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d51tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d51tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d51tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d51tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d51tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 51 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp51<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt52<-as.matrix(as.integer(mtc*h52))
d52tot<-colSums(dt52)
d1<-d52tot*(1-s1)
d2<-(d52tot-d1)*(1-s2)
d3<-(d52tot-(d1+d2))*(1-s3)
d4<-(d52tot-(d1+d2+d3))*(1-s4)
d5<-(d52tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d52tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d52tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d52tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d52tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
```

```
d10<-(d52tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d52tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d52tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp52<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt53<-as.matrix(as.integer(mtc*h53))
d53tot<-colSums(dt53)
d1<-d53tot*(1-s1)
d2<-(d53tot-d1)*(1-s2)
d3<-(d53tot-(d1+d2))*(1-s3)
d4<-(d53tot-(d1+d2+d3))*(1-s4)
d5<-(d53tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d53tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d53tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d53tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 53$ tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d53tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d53tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 53 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp53<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt54<-as.matrix(as.integer(mtc*h54))
d54tot<-colSums(dt54)
d1<-d54tot*(1-s1)
d2<-(d54tot-d1)*(1-s2)
d3<-(d54tot-(d1+d2))*(1-s3)
d4<-(d54tot-(d1+d2+d3))*(1-s4)
d5<-(d54tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d54tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d54tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d54tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 54$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d54tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d54tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 54 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp54<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt55<-as.matrix(as.integer(mtc*h55))
d55tot<-colSums(dt55)
d1<-d55tot*(1-s1)
d2<-(d55tot-d1)*(1-s2)
d3<-(d55tot-(d1+d2))*(1-s3)
d4<-(d55tot-(d1+d2+d3))*(1-s4)

```
d5<-(d55tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d55tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d55tot-(d1+d2+d3+d4+d5+d6)**(1-s7)
d8<-(d55tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d55tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d55tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d55tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d55tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp55<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt56<-as.matrix(as.integer(mtc*h56))
d56tot<-colSums(dt56)
d1<-d56tot*(1-s1)
d2<-(d56tot-d1)*(1-s2)
d3<-(d56tot-(d1+d2))*(1-s3)
d4<-(d56tot-(d1+d2+d3))*(1-s4)
d5<-(d56tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d56tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d56tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d56tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d56tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d56tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d56tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 56 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp56<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt57<-as.matrix(as.integer(mtc*h57))
d57tot<-colSums(dt57)
d1<-d57tot*(1-s1)
d2<-(d57tot-d1)*(1-s2)
d3<-(d57tot-(d1+d2))*(1-s3)
d4<-(d57tot-(d1+d2+d3))*(1-s4)
d5<-(d57tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d57tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d57tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d57tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 57$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d57tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d57tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 57 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp57<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5, d6, d7,d8, d9,10,d11,d12)))
dt58<-as.matrix(as.integer(mtc*h58))

```
d58tot<-colSums(dt58)
d1<-d58tot*(1-s1)
d2<-(d58tot-d1)*(1-s2)
d3<-(d58tot-(d1+d2))*(1-s3)
d4<-(d58tot-(d1+d2+d3))*(1-s4)
d5<-(d58tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d58tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d58tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d58tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d58tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d58tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d58tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d58tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp58<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5, d6, d7,d8,d9,10,d11,d12)))

```
dt59<-as.matrix(as.integer(mtc*h59))
d59tot<-colSums(dt59)
d1<-d59tot*(1-s1)
d2<-(d59tot-d1)*(1-s2)
d3<-(d59tot-(d1+d2))*(1-s3)
d4<-(d59tot-(d1+d2+d3))*(1-s4)
d5<-(d59tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d59tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d59tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d59tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d59tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d59tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d59tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d59tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp59<-as.matrix(as.integer(rbind(d1,d2,d3,d4, d5, d6, d7,d8, d9,10,d11,d12)))
dt60<-as.matrix(as.integer(mtc*h60))
d60tot<-colSums(dt60)
d1<-d60tot*(1-s1)
d2<-(d60tot-d1)*(1-s2)
d3<-(d60tot-(d1+d2))*(1-s3)
d4<-(d60tot-(d1+d2+d3))*(1-s4)
d5<-(d60tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d60tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d60tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d60tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d60tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d60tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
$\mathrm{d} 11<-(\mathrm{d} 60 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$

```
d12<-(d60tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp60<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt61<-as.matrix(as.integer(mtc*h61))
d61tot<-colSums(dt61)
d1<-d61tot*(1-s1)
d2<-(d61tot-d1)*(1-s2)
d3<-(d61tot-(d1+d2))*(1-s3)
d4<-(d61tot-(d1+d2+d3))*(1-s4)
d5<-(d61tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d61tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d61tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d61 tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d61tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d61tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d61tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d61tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp61<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt62<-as.matrix(as.integer(mtc*h62))
d62tot<-colSums(dt62)
d1<-d62tot*(1-s1)
d2<-(d62tot-d1)*(1-s2)
d3<-(d62tot-(d1+d2))*(1-s3)
d4<-(d62tot-(d1+d2+d3))*(1-s4)
d5<-(d62tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d62tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d62tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d62tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d62tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d62tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d62tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d62tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp62<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt63<-as.matrix(as.integer(mtc*h63))
d63tot<-colSums(dt63)
d1<-d63tot*(1-s1)
d2<-(d63tot-d1)*(1-s2)
d3<-(d63tot-(d1+d2))*(1-s3)
d4<-(d63tot-(d1+d2+d3))*(1-s4)
d5<-(d63tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d63tot-(d1+d2+d3+d4+d5))*(1-s6)

```
d7<-(d63tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d63tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d63tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d63tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d63tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d63tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp63<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt64<-as.matrix(as.integer(mtc*h64))
d64tot<-colSums(dt64)
d1<-d64tot*(1-s1)
d2<-(d64tot-d1)*(1-s2)
d3<-(d64tot-(d1+d2))*(1-s3)
d4<-(d64tot-(d1+d2+d3))*(1-s4)
d5<-(d64tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d64tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d64tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d64tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d64tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d64tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d64tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 64 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp64<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt65<-as.matrix(as.integer(mtc*h65))
d65tot<-colSums(dt65)
d1<-d65tot*(1-s1)
d2<-(d65tot-d1)*(1-s2)
d3<-(d65tot-(d1+d2))*(1-s3)
d4<-(d65tot-(d1+d2+d3))*(1-s4)
d5<-(d65tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d65tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d65tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d65tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d65tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d65tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d65tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d65tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp65<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt66<-as.matrix(as.integer(mtc*h66))
d66tot<-colSums(dt66)
d1<-d66tot*(1-s1)

```
d2<-(d66tot-d1)*(1-s2)
d3<-(d66tot-(d1+d2))*(1-s3)
d4<-(d66tot-(d1+d2+d3))*(1-s4)
d5<-(d66tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d66tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d66tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d66tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d66tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d66tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d66tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d66tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp66<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt67<-as.matrix(as.integer(mtc*h67))
d67tot<-colSums(dt67)
d1<-d67tot*(1-s1)
d2<-(d67tot-d1)*(1-s2)
d3<-(d67tot-(d1+d2))*(1-s3)
d4<-(d67tot-(d1+d2+d3))*(1-s4)
d5<-(d67tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d67tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d67tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
$\mathrm{d} 8<-(\mathrm{d} 67 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7))^{*}(1-\mathrm{s} 8)$
d9<-(d67tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d67tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d67tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 67 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp67<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt68<-as.matrix(as.integer(mtc*h68))
d68tot<-colSums(dt68)
d1<-d68tot*(1-s1)
d2<-(d68tot-d1)*(1-s2)
d3<-(d68tot-(d1+d2))*(1-s3)
d4<-(d68tot-(d1+d2+d3))*(1-s4)
d5<-(d68tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d68tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d68tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d68tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 68 \text { tot- }(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8))^{*}(1-\mathrm{s} 9)$
$\mathrm{d} 10<-(\mathrm{d} 68 \text { tot- }(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9))^{*}(1-\mathrm{s} 10)$
d11<-(d68tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d68tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp68<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt69<-as.matrix(as.integer(mtc*h69))
d69tot<-colSums(dt69)
d1<-d69tot*(1-s1)
d2<-(d69tot-d1)*(1-s2)
d3<-(d69tot-(d1+d2))*(1-s3)
d4<-(d69tot-(d1+d2+d3))*(1-s4)
d5<-(d69tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d69tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d69tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d69tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d69tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d69tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d69tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d69tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp69<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt70<-as.matrix(as.integer(mtc*h70))
d70tot<-colSums(dt70)
d1<-d70tot*(1-s1)
d2<-(d70tot-d1)*(1-s2)
d3<-(d70tot-(d1+d2))*(1-s3)
d4<-(d70tot-(d1+d2+d3))*(1-s4)
d5<-(d70tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d70tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d70tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d70tot- $(d 1+d 2+d 3+d 4+d 5+d 6+d 7)) *(1-s 8)$
d $9<-(d 70$ tot-(d1 + d2 $2+d 3+d 4+d 5+d 6+d 7+d 8))^{*}(1-s 9)$
d10<-(d70tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d70tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 70 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp70<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt71<-as.matrix(as.integer(mtc*h71))
d71tot<-colSums(dt71)
d1<-d71tot*(1-s1)
d2<-(d71tot-d1)*(1-s2)
d3<-(d71tot-(d1+d2))*(1-s3)
d4<-(d71tot-(d1+d2+d3))*(1-s4)
d5<-(d71tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d71tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d71tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d71 tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
```

```
d9<-(d71tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d71tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d71tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d71 tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp71<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt72<-as.matrix(as.integer(mtc*h72))
d72tot<-colSums(dt72)
d1<-d72tot*(1-s1)
d2<-(d72tot-d1)*(1-s2)
d3<-(d72tot-(d1+d2))*(1-s3)
d4<-(d72tot-(d1+d2+d3))*(1-s4)
d5<-(d72tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d72tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d72tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d72tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d72tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d72tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d72tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d72tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp72<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt73<-as.matrix(as.integer(mtc*h73))
d73tot<-colSums(dt73)
d1<-d73tot*(1-s1)
d2<-(d73tot-d1)*(1-s2)
d3<-(d73tot-(d1+d2))*(1-s3)
d4<-(d73tot-(d1+d2+d3))*(1-s4)
d5<-(d73tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d73tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d73tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d73tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 73$ tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d73tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d73tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 73 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp73<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt74<-as.matrix(as.integer(mtc*h74))
d74tot<-colSums(dt74)
d1<-d74tot*(1-s1)
d2<-(d74tot-d1)*(1-s2)
d3<-(d74tot-(d1+d2))*(1-s3)

```
d4<-(d74tot-(d1+d2+d3))*(1-s4)
d5<-(d74tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d74tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d74tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d74tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d74tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d74tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d74tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d74tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp74<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt75<-as.matrix(as.integer(mtc*h75))
d75tot<-colSums(dt75)
d1<-d75tot*(1-s1)
d2<-(d75tot-d1)*(1-s2)
d3<-(d75tot-(d1+d2))*(1-s3)
d4<-(d75tot-(d1+d2+d3))*(1-s4)
d5<-(d75tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d75tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d75tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d75tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 75 \text { tot- }(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8))^{*}(1-\mathrm{s} 9)$
d10<-(d75tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d75tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d75tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp75<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt76<-as.matrix(as.integer(mtc*h76))
d76tot<-colSums(dt76)
d1<-d76tot*(1-s1)
d2<-(d76tot-d1)*(1-s2)
d3<-(d76tot-(d1+d2))*(1-s3)
d4<-(d76tot-(d1+d2+d3))*(1-s4)
d5<-(d76tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d76tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d76tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d76tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d76tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d76tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d76tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 76 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp76<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt77<-as.matrix(as.integer(mtc*h77))
d77tot<-colSums(dt77)
d1<-d77tot*(1-s1)
d2<-(d77tot-d1)*(1-s2)
d3<-(d77tot-(d1+d2))*(1-s3)
d4<-(d77tot-(d1+d2+d3))*(1-s4)
d5<-(d77tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d77tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d77tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d77tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d77tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d77tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d77tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d77tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp77<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt78<-as.matrix(as.integer(mtc*h78))
d78tot<-colSums(dt78)
d1<-d78tot*(1-s1)
d2<-(d78tot-d1)*(1-s2)
d3<-(d78tot-(d1+d2))*(1-s3)
d4<-(d78tot-(d1+d2+d3))*(1-s4)
d5<-(d78tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d78tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d78tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d78tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d78tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d78tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d78tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d78tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp78<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt79<-as.matrix(as.integer(mtc*h79))
d79tot<-colSums(dt79)
d1<-d79tot*(1-s1)
d2<-(d79tot-d1)*(1-s2)
d3<-(d79tot-(d1+d2))*(1-s3)
d4<-(d79tot-(d1+d2+d3))*(1-s4)
d5<-(d79tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d79tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d79tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d79tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d79tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d79tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)

```
d11<-(d79tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d79tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp79<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt80<-as.matrix(as.integer(mtc*h80))
```

d80tot<-colSums(dt80)
d1<-d80tot*(1-s1)
d2<-(d80tot-d1)*(1-s2)
d3<-(d80tot-(d1+d2))*(1-s3)
d4<-(d80tot-(d1+d2+d3))*(1-s4)
d5<-(d80tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d80tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d80tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d80tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7))^{*}(1-\mathrm{s} 8)$
d $9<-(d 80$ tot-(d1+d2+d3+d4+d5+d6+d7+d8) $) *(1-s 9)$
d10<-(d80tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d80tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10)) *(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 80 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp80<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt81<-as.matrix(as.integer(mtc*h81))
d81tot<-colSums(dt81)
d1<-d81tot*(1-s1)
d2<-(d81tot-d1)*(1-s2)
d3<-(d81tot-(d1+d2))*(1-s3)
d4<-(d81tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3))^{*}(1-\mathrm{s} 4)$
d5<-(d81tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d81tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d81tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d81tot- $(d 1+d 2+d 3+d 4+d 5+d 6+d 7)) *(1-s 8)$
d $9<-(\mathrm{d} 81 \text { tot- }(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8))^{*}(1-\mathrm{s} 9)$
$\mathrm{d} 10<-(\mathrm{d} 81$ tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9)) *(1-\mathrm{s} 10)$
d11<-(d81tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10)$)*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 81 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp81<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt82<-as.matrix(as.integer(mtc*h82))
d82tot<-colSums(dt82)
d1<-d82tot*(1-s1)
d2<-(d82tot-d1)*(1-s2)
d3<-(d82tot-(d1+d2))*(1-s3)
d4<-(d82tot-(d1+d2+d3))*(1-s4)
d5<-(d82tot-(d1+d2+d3+d4))*(1-s5)

```
d6<-(d82tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d82tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d82tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d82tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d82tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d82tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d82tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp82<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt83<-as.matrix(as.integer(mtc*h83))
```

d83tot<-colSums(dt83)
d1<-d83tot*(1-s1)
d2<-(d83tot-d1)*(1-s2)
d3<-(d83tot-(d1+d2))*(1-s3)
d4<-(d83tot-(d1+d2+d3))*(1-s4)
d5<-(d83tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d83tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d83tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d83tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d83tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d83tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d83tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 83 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp83<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt84<-as.matrix(as.integer(mtc*h84))
d84tot<-colSums(dt84)
d1<-d84tot*(1-s1)
d2<-(d84tot-d1)*(1-s2)
d3<-(d84tot-(d1+d2))*(1-s3)
d4<-(d84tot-(d1+d2+d3))*(1-s4)
d5<-(d84tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d84tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d84tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d84tot- $(d 1+d 2+d 3+d 4+d 5+d 6+d 7)) *(1-s 8)$
d $9<-(d 84$ tot- $(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d84tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d84tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10)$)*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 84 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp84<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt85<-as.matrix(as.integer(mtc*h85))
d85tot<-colSums(dt85)

```
d1<-d85tot*(1-s1)
d2<-(d85tot-d1)*(1-s2)
d3<-(d85tot-(d1+d2))*(1-s3)
d4<-(d85tot-(d1+d2+d3))*(1-s4)
d5<-(d85tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d85tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d85tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d85tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d85tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d85tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d85tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d85tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp85<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt86<-as.matrix(as.integer(mtc*h86))
d86tot<-colSums(dt86)
d1<-d86tot*(1-s1)
d2<-(d86tot-d1)*(1-s2)
d3<-(d86tot-(d1+d2))*(1-s3)
d4<-(d86tot-(d1+d2+d3))*(1-s4)
d5<-(d86tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d86tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d86tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d86tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d86tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d86tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
$\mathrm{d} 11<-(\mathrm{d} 86 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 86 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp86<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt87<-as.matrix(as.integer(mtc*h87))
d87tot<-colSums(dt87)
d1<-d87tot*(1-s1)
d2<-(d87tot-d1)*(1-s2)
d3<-(d87tot-(d1+d2))*(1-s3)
d4<-(d87tot-(d1+d2+d3))*(1-s4)
d5<-(d87tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d87tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d87tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d87tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 87$ tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8)$)*(1-s9)
d10<-(d87tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d87tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 87 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp87<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt88<-as.matrix(as.integer(mtc*h88))
d88tot<-colSums(dt88)
d1<-d88tot*(1-s1)
d2<-(d88tot-d1)*(1-s2)
d3<-(d88tot-(d1+d2))*(1-s3)
d4<-(d88tot-(d1+d2+d3))*(1-s4)
d5<-(d88tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d88tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d88tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d88tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d88tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d88tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d88tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d88tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp88<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt89<-as.matrix(as.integer(mtc*h89))
d89tot<-colSums(dt89)
d1<-d89tot*(1-s1)
d2<-(d89tot-d1)*(1-s2)
d3<-(d89tot-(d1+d2))*(1-s3)
d4<-(d89tot-(d1+d2+d3))*(1-s4)
d5<-(d89tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d89tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d89tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d89tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 89$ tot-(d1 + d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d89tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9)$)*(1-s10)
$\mathrm{d} 11<-(\mathrm{d} 89 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10))^{*}(1-\mathrm{s} 11)$
$\mathrm{d} 12<-(\mathrm{d} 89 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp89<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt90<-as.matrix(as.integer(mtc*h90))
d90tot<-colSums(dt90)
d1<-d90tot*(1-s1)
d2<-(d90tot-d1)*(1-s2)
d3<-(d90tot-(d1+d2))*(1-s3)
d4<-(d90tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)) *(1-\mathrm{s} 4)$
d5<-(d90tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d90tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d90tot-(d1+d2+d3+d4+d5+d6))*(1-s7)

```
d8<-(d90tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d90tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d90tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d90tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d90tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp90<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt91<-as.matrix(as.integer(mtc*h91))
d91tot<-colSums(dt91)
d1<-d91tot*(1-s1)
d2<-(d91tot-d1)*(1-s2)
d3<-(d91tot-(d1+d2))*(1-s3)
d4<-(d91tot-(d1+d2+d3))*(1-s4)
d5<-(d91tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d91tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d91tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d91tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d91tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d91tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d91tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d91tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp91<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt92<-as.matrix(as.integer(mtc*h92))
d92tot<-colSums(dt92)
d1<-d92tot*(1-s1)
d2<-(d92tot-d1)*(1-s2)
d3<-(d92tot-(d1+d2))*(1-s3)
d4<-(d92tot-(d1+d2+d3))*(1-s4)
d5<-(d92tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d92tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d92tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d92tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 92$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d92tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d92tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
$\mathrm{d} 12<-(\mathrm{d} 92 \text { tot }-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp92<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt93<-as.matrix(as.integer(mtc*h93))
d93tot<-colSums(dt93)
d1<-d93tot*(1-s1)
d2<-(d93tot-d1)*(1-s2)

```
d3<-(d93tot-(d1+d2))*(1-s3)
d4<-(d93tot-(d1+d2+d3))*(1-s4)
d5<-(d93tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d93tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d93tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d93tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d93tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d93tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d93tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d93tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp93<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt94<-as.matrix(as.integer(mtc*h94))
d94tot<-colSums(dt94)
d1<-d94tot*(1-s1)
d2<-(d94tot-d1)*(1-s2)
d3<-(d94tot-(d1+d2))*(1-s3)
d4<-(d94tot-(d1+d2+d3))*(1-s4)
d5<-(d94tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d94tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d94tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d94tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d $9<-(d 94$ tot $-(d 1+d 2+d 3+d 4+d 5+d 6+d 7+d 8)) *(1-s 9)$
d10<-(d94tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d94tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d94tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp94<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt95<-as.matrix(as.integer(mtc*h95))
d95tot<-colSums(dt95)
d1<-d95tot*(1-s1)
d2<-(d95tot-d1)*(1-s2)
d3<-(d95tot-(d1+d2))*(1-s3)
d4<-(d95tot-(d1+d2+d3))*(1-s4)
d5<-(d95tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d95tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d95tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d95tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d95tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d95tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d95tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d95tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp95<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt96<-as.matrix(as.integer(mtc*h96))
d96tot<-colSums(dt96)
d1<-d96tot*(1-s1)
d2<-(d96tot-d1)*(1-s2)
d3<-(d96tot-(d1+d2))*(1-s3)
d4<-(d96tot-(d1+d2+d3))*(1-s4)
d5<-(d96tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d96tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d96tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d96tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d96tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d96tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d96tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d96tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp96<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt97<-as.matrix(as.integer(mtc*h97))
d97tot<-colSums(dt97)
d1<-d97tot*(1-s1)
d2<-(d97tot-d1)*(1-s2)
d3<-(d97tot-(d1+d2))*(1-s3)
d4<-(d97tot-(d1+d2+d3))*(1-s4)
d5<-(d97tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d97tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d97tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d97tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d97tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d97tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d97tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d97tot- $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4+\mathrm{d} 5+\mathrm{d} 6+\mathrm{d} 7+\mathrm{d} 8+\mathrm{d} 9+\mathrm{d} 10+\mathrm{d} 11))^{*}(1-\mathrm{s} 12)$
dsilexp97<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt98<-as.matrix(as.integer(mtc*h98))
d98tot<-colSums(dt98)
d1<-d98tot*(1-s1)
d2<-(d98tot-d1)*(1-s2)
d3<-(d98tot-(d1+d2))*(1-s3)
d4<-(d98tot-(d1+d2+d3))*(1-s4)
d5<-(d98tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d98tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d98tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d98tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d98tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
```

```
d10<-(d98tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d98tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d98tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp98<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))

```
dt99<-as.matrix(as.integer(mtc*h99))
d99tot<-colSums(dt99)
d1<-d99tot*(1-s1)
d2<-(d99tot-d1)*(1-s2)
d3<-(d99tot-(d1+d2))*(1-s3)
d4<-(d99tot-(d1+d2+d3))*(1-s4)
d5<-(d99tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d99tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d99tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d99tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d99tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d99tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d99tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d99tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
```

dsilexp99<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
dt100<-as.matrix(as.integer(mtc*h100))
d100tot<-colSums(dt100)
d1<-d100tot*(1-s1)
d2<-(d100tot-d1)*(1-s2)
d3<-(d100tot-(d1+d2))*(1-s3)
d4<-(d100tot-(d1+d2+d3))*(1-s4)
d5<-(d100tot-(d1+d2+d3+d4))*(1-s5)
d6<-(d100tot-(d1+d2+d3+d4+d5))*(1-s6)
d7<-(d100tot-(d1+d2+d3+d4+d5+d6))*(1-s7)
d8<-(d100tot-(d1+d2+d3+d4+d5+d6+d7))*(1-s8)
d9<-(d100tot-(d1+d2+d3+d4+d5+d6+d7+d8))*(1-s9)
d10<-(d100tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9))*(1-s10)
d11<-(d100tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10))*(1-s11)
d12<-(d100tot-(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+d11))*(1-s12)
dsilexp100<-as.matrix(as.integer(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,10,d11,d12)))
/*compute chi-squared and Fisher's Exact Tests for diffs between remediated differences and
null expectation under Siler model*/

```
tbl<-table(dt1,dsilexp1)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt2,dsilexp2)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt3,dsilexp3)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt4,dsilexp4)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt5,dsilexp5)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt6,dsilexp6)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt7,dsilexp7)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt8,dsilexp8)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt9,dsilexp9)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt10,dsilexp10)
tbl
```

```
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt11,dsilexp11)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt12,dsilexp12)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt13,dsilexp13)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt14,dsilexp14)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt15,dsilexp15)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt16,dsilexp16)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt17,dsilexp17)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt18,dsilexp18)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt19,dsilexp19)
tbl
chisq.test(tbl)
```

fisher.test(tbl)

```
tbl<-table(dt20,dsilexp20)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt21,dsilexp21)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt22,dsilexp22)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt23,dsilexp23)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt24,dsilexp24)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt25,dsilexp25)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt26,dsilexp26)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt27,dsilexp27)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt28,dsilexp28)
tbl
chisq.test(tbl)
fisher.test(tbl)
```

```
tbl<-table(dt29,dsilexp29)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt30,dsilexp30)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt31,dsilexp31)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt32,dsilexp32)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt33,dsilexp33)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt34,dsilexp34)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt35,dsilexp35)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt36,dsilexp36)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt37,dsilexp37)
tbl
chisq.test(tbl)
fisher.test(tbl)
```

```
tbl<-table(dt38,dsilexp38)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt39,dsilexp39)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt40,dsilexp40)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt41,dsilexp41)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt42,dsilexp42)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt43,dsilexp43)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt44,dsilexp44)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt45,dsilexp45)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt46,dsilexp46)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt47,dsilexp47)
```

tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt48,dsilexp48)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt49,dsilexp49)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt50,dsilexp50)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt51,dsilexp51)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt52,dsilexp52)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt53,dsilexp53)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt54,dsilexp54)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt55,dsilexp55)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt56,dsilexp56)
tbl

```
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt57,dsilexp57)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt58,dsilexp58)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt59,dsilexp59)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt60,dsilexp60)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt61,dsilexp61)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt62,dsilexp62)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt63,dsilexp63)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt64,dsilexp64)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt65,dsilexp65)
tbl
chisq.test(tbl)
```

```
fisher.test(tbl)
```

```
tbl<-table(dt66,dsilexp66)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt67,dsilexp67)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt68,dsilexp68)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt69,dsilexp69)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt70,dsilexp70)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt71,dsilexp71)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt72,dsilexp72)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt73,dsilexp73)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt74,dsilexp74)
tbl
chisq.test(tbl)
fisher.test(tbl)
```

```
tbl<-table(dt75,dsilexp75)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt76,dsilexp76)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt77,dsilexp77)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt78,dsilexp78)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt79,dsilexp79)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt80,dsilexp80)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt81,dsilexp81)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt82,dsilexp82)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt83,dsilexp83)
tbl
chisq.test(tbl)
fisher.test(tbl)
```

```
tbl<-table(dt84,dsilexp84)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt85,dsilexp85)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt86,dsilexp86)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt87,dsilexp87)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt88,dsilexp88)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt89,dsilexp89)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt90,dsilexp90)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt91,dsilexp91)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt92,dsilexp92)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt93,dsilexp93)
```

```
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt94,dsilexp94)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt95,dsilexp95)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt96,dsilexp96)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt97,dsilexp97)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt98,dsilexp98)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt99,dsilexp99)
tbl
chisq.test(tbl)
fisher.test(tbl)
tbl<-table(dt100,dsilexp100)
tbl
chisq.test(tbl)
fisher.test(tbl)
```

/*plot every 10th iteration of simulation against the null expectations*/
plot(t,dsilexp1,type="l",col="red", xlab="Age at Death",ylab="Death Counts",
xlim=c(0,55), ylim=c(0,40$)$)
lines(t,dsilexp10,type="l",col="red")
lines(t,dsilexp20,type="l",col="red")

```
lines(t,dsilexp30,type="l",col="red")
lines(t,dsilexp40,type="l",col="red")
lines(t,dsilexp50,type="l",col="red")
lines(t,dsilexp60,type="1",col="red")
lines(t,dsilexp70,type="l",col="red")
lines(t,dsilexp80,type="l",col="red")
lines(t,dsilexp90,type="l",col="red")
lines(t,dsilexp100,type="l",col="red")
lines(t,dt1,type="l",col="blue")
lines(t,dt10,type="l",col="blue")
lines(t,dt20,type="l",col="blue")
lines(t,dt30,type="l",col="blue")
lines(t,dt40,type="l",col="blue")
lines(t,dt50,type="l",col="blue")
lines(t,dt60,type="l",col="blue")
lines(t,dt70,type="l",col="blue")
lines(t,dt80,type="l",col="blue")
lines(t,dt90,type="l",col="blue")
lines(t,dt100,type="l",col="blue")
```


REFERENCES

Abbink J.
2000. Preface: violation and violence as cultural phenomena. In Meanings of Violence: A Cross Cultural Perspective, G Aijmer, J Abbink (eds.). Berg: Oxford, xi-xvii.

Adams RW.
1990. Archaeological research at the lowland Maya city of Rio Azul. Latin American Antiquity 1(1): 23-41.
1986. Rio Azul: lost city of the Maya. National Geographic 169: 420-451.
1973. The Collapse of Maya Civilization: A Review of Previous Theories. In The Classic Maya Collapse, TP Culbert (ed.). Albuquerque: University of New Mexico Press, 21-34.

Aimers JJ.
2007. What Maya Collapse? Terminal Classic variation in the Maya Lowlands. Journal of Archaeological Research 15(4):329-377.

Andres CR, Helmke C.
2013. Discovery and interpretation of Tipan Monument 1, Tipan Chen Uitz. In The

Central Belize Archaeological Survey Project: A Report of the 2011 Field Season, GD Wrobel, SG Morton, CR Andres (eds.). East Lansing. MI:Belize
Archaeological Research and Education Foundation Occasional Report \#3, 105118.

Andres C, Helmke CBG, Morton SG, Wrobel GD, González JJ.
2014. Contextualizing the glyphic texts of Tipan Chen Uitz, Cayo District, Belize. Latin American Antiquity 25(1): 46-64.

Andres CR, Morton SG, González JJ, Wrobel GD.
2011. Causeways and sociopolitical integration in the Caves Branch Region. In The Caves Branch Archaeological Survey Project: A Report of the 2010 Field Season, CR Andres, GD Wrobel (eds.). Oxford, MS: Belize Archaeological Research and Education Foundation Occasional Report \#2, 127-147.

Andres CR, Wrobel GD, Morton SG.
2010. Tipan Chen Uitz ("Fortress Mountain Well"): a major "new" Maya center in the Cayo District, Belize. Mexicon 32, 88-94.

Andrews IV EW.
1961. Excavations at the Gruta de Balankanche, 1959. Appendix to: Preliminary Report to the 1959-60 Field Season, National Geographic Society-Tulane University Dzibilchultun Program. Tulane University Middle American Research Institute, Miscellaneous Series, No. 11: 28-40. New Orleans.

1965a. Explorations in the Gruta de Chac. Middle American Research Institute Publication 31:1-21. New Orleans.
1965b. Archaeology and prehistory in the northern Maya lowlands: an introduction. in Handbook of Middle American Indians, Vol. 2, GR Willey (ed.). Austin: University of Texas Press, 288-330.
1970. Balankanche, Throne of the Tiger Priest. Middle American Research Institute Publication 32. New Orleans.
1971. Balankanche - Throne of the Tiger Priest. Explorers Journal 49 (4):254-262.

Angel JL.
1969 The bases of paleodemography. American Journal of Physical Anthropology 30, 427-437.

Aranyosi EF.
1999. Wasteful advertising and variance reduction: Darwinian models for the significance of nonutilitarian architecture. Journal of Anthropological Archaeology 18(3):356-375.

Arnold C, Frost FJT.
1909. American Egypt: A Record of Travel in Yucatán. London: Hutchingson and Row.

Atran S.
2002. In Gods We Trust: The Evolutionary Landscape of Religion. Oxford: Oxford University Press.

Atran S, Ginges J.
2012. Religious and sacred imperatives in human conflict. Science 336:855-857.

Aufderheide AC, Rodriguz-Martin C.
1998. The Cambridge Encyclopedia of Human Paleopathology. Cambridge: Cambridge University Press.

Awe JJ.
1994. Las funciones de cuevas en la antigua cultura Maya. Investigadores de la Cultura Maya 2:187-204.

Awe JJ, Griffith C, Gibbs S.
2005. Cave Stelae and Megalithic Monuments in Western Belize. In In the Maw of the Earth Monster: Mesoamerican Ritual Cave Use, JE Brady KM. Prufer (eds.). Austin: University of Texas Press, 223-248.

Baker B, Dupras TL, Tocheri MW.
2005. The Osteology of Infants and Children. College Station: Texas A\&M University Press.

Barnes E.
1994. Developmental Defects of the Axial Skeleton in Paleopathology. Boulder: University Press of Colorado.

Barrera Vásquez A.
1970. The Ceremony Tsikul T'an Ti' Yuntsiloob at Balankanche: description of the ceremony. In Balankanche: Throne of the Tiger Priest, EW Andrews IV (ed.). New Orleans: Middle American Research Institute, Tulane University, 72-78.

Bass B.
1995. Human Osteology: A Laboratory and Field Manual. $4^{\text {th }}$ edition. Missouri Archaeological Society.

Barrett JW, Scherer AK.
2005. Stones, Bones, and Crowded Plazas: evidence for Terminal Classic Maya warfare at Colha, Belize. Ancient Mesoamerica 16:101-118.

Bassie-Sweet K.
1991. From the Mouth of the Dark Cave: Commemorative Sculpture of the Late Classic Maya. Norman: University of Oklahoma Press.
1996. At the Edge of the World: Caves and Late Classic Maya World View. Norman: University of Oklahoma Press.

Baudez CF, Mathews P.
1979. Capture and sacrifice at Palenque. In Tercera Mesa Redonda de Palenque, MG Robertson, DC Jeffers (eds.). Monterey, California: Pre-Columbian Art Research Center, Herald Printers.

Brault S, H. Caswell.
1993. Pod-specific demography of killer whales (Orcinus orca). Ecology 74: 1444-1454.

Baville MH.
1897. A primitive Maya musical instrument. American Anthropologist 10: 272.

Beattie JHM.
1980. On understanding sacrifice. In Sacrifice, MFC Bourdillon, M Fortes (eds.). London: Academic Press.

Becker MJ.
1973. Archaeological evidence for occupational specialization among the Classic Period Maya at Tikal, Guatemala. American Antiquity 38:396-406.

Beekman C, Christensen A.
2003. Controlling for doubt and uncertainty through multiple lines of evidence: a new look at the Mesoamerican Nahua migration, Journal of Archaeological Method and Theory 10(2): 111-164.

Bell C.
1997. Ritual Perspectives and Dimensions. Oxford: Oxford University Press.
1992. Ritual Theory, Ritual Practice. Oxford: Oxford University Press.

Belmar F.
1901. Lenguas del Estado de Oaxaca: Estudio del huave.

Berryman CA.
2007. Captive sacrifice and trophy taking among the ancient Maya: an evaluation of the bioarchaeological evidence and its sociopolitical implications. In The Taking and Displaying of Human Body Parts as Trophies by Amerindians. RJ Chacon, DH Dye (Eds.). New York: Springer, 377-399.

Beuchat H.
1818. Manual de Arqueología Americana. Daniel Jorro.

Blackiston AH.
1910. Recent discoveries in Honduras. American Anthropologist 12:536-541.

Bloch M, Parry J.
1982. Death and the Regeneration of Life. Cambridge: Cambridge University Press.

Blok A.
2000. The enigma of violence. In Meanings of Violence: A Cross Cultural Perspective, G Aijmer, J Abbink (eds.). Oxford: Berg, 23-38

Blom F.
1954. Ossuaries, cremation and secondary burials among the Maya of Chiapas, Mexico. Journal de la Société des Américanistes 43:123-135.

Bocquet-Appel JP, Masset C.
1982. A farewell to paleodemography. Journal of Human Evolution 11:32-333.

Bonor Villarejo JL.
1987a. Exploraciones en las Grutas de Calcehtok y Oxkintok, Yucatán, México. Mayab 3:24-31.
1987b. Aproximación al estudio de las fuentes de agua en la antigua ciudad Maya de Oxkintok. Boletín de la Escuela de Ciencias Antropológicas de la Universidad de Yucatán No. 87:32-40.
1988. Cuevas Mayas en Yucatán. Historia 16(151): 152-160.

1989b. Los Cuevas Maya: Simbolismo y Ritual. Madrid: Universidad Complutense de Madrid, Instituto de Cooperación Iberoamerica.
1995. Excavación de salvamento en "Caves Branch Rock Shelter", Cayo District, Belize. IV Encuento Internacional Investigadores de la Cultura Maya 1:46-70.

Bonor JL, Martínez Klemm C.
1995. Trabajos recientes en la región de Caves Branch, Distrito de el Cayo, Belice. V Encuento Internacional Investigadores de la Cultura Maya 4:250-267.

Boone JL.
2000. Status signaling, social power, and lineage survival. In Hierarchies in Action: Qui Bono? M. Diehl (ed.). pp. Carbondale: Center for Archaeological Studies, 84-110.

Borhegyi SF.
1965. Archaeological synthesis of the Guatemalan Highlands. In Handbook of Middle American Indians, Vol. 2: Archaeology of Southern Mesoamerica, Part 1, GR Willey (ed.). Austin: University of Texas Press, 3-58.

Bower B.
1990. Death and rebirth at Copan. Science News 137(4):56-58.

Boyer RS, Rodin EA, Grey TC, Connolly RC.
2003. The skull and cervical spine radiographs of Tutankhamen: a critical appraisal. American Journal of Neuroradiology 24(6): 1142-7.

Brady JE.
1988. The sexual connotation of caves in Mesoamerican ideology. Mexicon 10 (3): 5155.
1989. An Investigation of Maya Ritual Cave Use with Special Reference to Naj Tunich, Peten, Guatemala. Ph.D. dissertation, Interdisciplinary Archaeology Program, University of California, Los Angeles.
1991. The Petexbatun Regional Cave Survey: Ritual and Sacred Geography. Paper presented at the $47^{\text {th }}$ International Congress of Americanists, New Orleans.
1996. Sources for the Study of Mesoamerican Ritual Cave Use. Studies in Mesoamerican Cave Use, Publication 1. Washington, D.C.: George Washington University.
1997a. A History of Mesoamerican Cave Archaeology. Paper presented at the 62nd Annual Meeting of the Society for American Archaeology, Nashville.
1997b. Settlement configuration and cosmology: The Role of Caves at Dos Pilas. American Anthropologist 99(3): 602-618.
2004. Constructed landscapes: exploring the neaning and significance of recent discoveries of artificial caves. Ketzalcalli 1:2-17.
2005a. Foreword. In The Hill-Caves of Yucatan by Henry C. Mercer. Austin: Association for Mexican Cave Studies, f-1-f-23
2005b. The Impact of Ritual on Ancient Maya Economy. In Stone Houses and Earth Lords: Maya Religion in the Cave Context. KM. Prufer, JE. Brady (eds.). Boulder: University Press of Colorado, 115-134.
2007. The Mesoamerican Paradigm in the Southwest. Paper presented at the $72^{\text {nd }}$ Annual Meeting of the Society for American Archaeology, Austin.
2009a. A Preliminary Archaeological Assessment of Midnight Terror Cave, Belize. Paper presented at the $74^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Atlanta, April 22-26.

2009b. Exploring Highland Maya Ritual Cave Use: Archaeology \& Ethnography in Huehuetenango, Guatemala, Bulletin 20. JE. Brady (ed.). Austin: Association for Mexican Cave Studies.
2011. Preliminary Observations on the Investigation of Midnight Terror Cave, Belize. Paper presented at the $76^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Sacramento.

Brady JE, Ashmore W.
1999. Mountains, caves, water: ideational landscapes of the ancient Maya. In Archaeologies of Landscapes: Contemporary Perspectives. W Ashmore, AB Knapp (eds.). Oxford: Blackwell Publishers, 124-145.

Brady JE, Cobb A, Kieffer CL, Palit L, Arburn D, Saldana M, Giron M, Okilo I, Chavez E, Martinez J, Scott A.
2009. Midnight Terror Cave Report: 2008 Field Season. On file at the Institute of Archaeology in Belmopan, Belize.

Brady JE, Colas PR.
2005. Nikte' Mo' scattered fire in the cave of K'ab Chante': epigraphic and archaeological evidence for cave desecration in ancient Maya warfare. In Stone Houses and Earth Lords: Maya Religion in the Cave Context. KM Prufer, JE Brady (eds.). Boulder: University of Colorado Press, 149-166.

Brady JE, Coltman J.
2011. ¿Hemos aprendido algo desde Seler? Un replanteamiento crítico del significado de los murciélagos en la iconografía maya Clásica. Paper presented at the III Congreso Internacional de Cultura Maya, en Yucatán, Merida.

Brady JE, Delgado A.
2009. The Chicomoztoc and modern Jalkatek ethnography. In Exploring Highland Maya Ritual Cave Use: Archaeology \& Ethnography in Huehuetenango, Guatemala. Bulletin 20. JE Brady (ed.). Austin: Association for Mexican Cave Studies, 67-71.

Brady JE, Kieffer CL.
2012. Preliminary observations on the investigation of Midnight Terror Cave, Belize, Research Reports in Belizean Archaeology 9, 245-254.
2011. Preliminary Assessment of the Three Year Archaeological Survey of Midnight Terror Cave, Belize. Paper Presented at the Belize Archaeological Symposium, San Ignacio, Belize, June 29 - July1.

Brady JE, Peterson PA.
2008. Re-envisioning ancient Maya ritual assemblages. In Religion, Archaeology, and the Material World. L Fogelin (ed.). Occasional Paper No. 36. Carbondale: Southern Illinois University, Center for Archaeological Investigations, 78-96.

Brady JE, Prufer KM .

2005a. In the Maw of the Earth Monster: Mesoamerican Ritual Cave Use. Austin: University of Texas Press.
2005b. Introduction: a history of Mesoamerican cave interpretation. In In the Maw of the Earth Monster: Mesoamerican Ritual Cave Use. JE Brady, KM Prufer (eds.). Austin: University of Texas Press, 1-17
2005c. Maya cave archaeology: a new look at religion and cosmology. In Stone Houses and Earth Lords: Maya Religion in the Cave Context. KM Prufer, JE. Brady. Boulder: University Press of Colorado, 365-379.
1999. Caves and crystalmancy: evidence for the use of crystals in ancient Maya religion. Journal of Anthropological Research 55: 129-144.

Brady JE, Scott A.
1997. Excavations in buried cave deposits: implications for interpretation. Journal of Cave and Karst Studies 59(1): 15-21.

Brady JE, Scott A, Cobb A, Rodas I, Fogarty J, Urquizú M.
1997. Glimpses of the dark side of the Petexbatun Regional Archaeological Project: The Petexbatun Regional Cave Survey, Ancient Mesoamerica 8 (2): 353-364.

Brady JE, and Stone A.
1986. Naj Tunich: entrance to the Maya underworld. Archaeology 39(6): 18-25.

Brady JE, Veni G.
1992. Man-made and pseudo-karst caves: the implications of subsurface geologic features within Maya centers. Geoarchaeology 7, 149-167.

Brady JE, Veni G, Stone A, Cobb AB.
1992. Explorations in the new branch of Naj Tunich: implications for interpretations. Mexicon 16(4):74-81.

Brass W.
1960. The graduation of fertility distributions by polynomial functions. Population Studies.

Brooks ST.
1955. Skeletal age at death: reliability of cranial and pubic age indicators. American Journal of Physical Anthropology 13:567-597.

Brooks S, Suchey JM.
1990. Skeletal age determination based on the os pubis: a comparison of the AcsadiNemeskeri and Suchey-Brooks methods. Human Evolution 5:227-238.

Brown, LA.
2002. The Structure of Ritual Practice: An Ethnoarchaeological Exploration of Activity Areas at Rural Community Shrines in the Maya Highlands, Doctoral Dissertation, University of Colorado, UMI Dissertation Services, Ann Arbor, MI.
2004. Dangerous places and wild spaces: creating meaning with materials and space at contemporary Maya shrines on El Duende Mountain. Journal of Archaeological Method and Theory 11(1):31-58.
2005. Planting the bones: hunting ceremonialism at contemporary and nineteenth-century shrines in the Guatemalan Highlands. Latin American Antiquity 16(2):131-146.

Brown LA, Emery KF.
2008. Negotiations with the animate forest: hunting shrines in the Guatemalan Highlands. Journal of Archaeological Method and Theory 15(4):300-337.

Brown MK, Garber JF.
2003. Evidence of conflict during the Middle Formative in the Maya Lowlands: A view from Blackman Eddy, Belize. In Ancient Mesoamerican Warfare. MK Brown, TW Stanton (eds.). Walnut Creek: Alta Mira Press, 91-108.

Brunborg H, Lyngstad TH, Urdal H.
2003. Accounting for genocide: how many were killed in Srebrenica? European Journal of Population 19: 229-248.

Buikstra JE.
2007. The bioarchaeology of Maya sacrifice. In New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society, V Tiesler, A Cucina (eds.). New York: Springer, 293-307.

Buikstra J, Ubelaker DH.
1994. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History. Research Series, no. 44. Arkansas Archaeological Survey, Fayetteville.

Bunzel R.
1952. Chichicastenango: A Maya Village. New York: J.J. Augustine, Locust Valley.

Burgoa, FF.
1934 [1670] Palestra historical. Publicaciones del Archivo General de la Nación No. 24. Mexico City: Talleres Gráficos de la Nación.

Burrell G, Morgan G.
1979. Sociological Paradigms and Organizational Analysis. London: Heinemann.

Butler, M.
1934 A note on Maya cave burials. American Anthropologist 36(2):223-225.
Buttles PJ, Valdez Jr. F.
2016. Social-political manifestations of the Terminal Classic: Colha, Northern Belize, as a case study. In Ritual Violence, and the Fall of the Classic Maya Kings.G

Iannone, BA Houk, SA Schwake (eds.). Gainesville: University Press of Florida, 187-202.

Carlson JB.
1981. A geomantic model for the interpretation of Mesoamerican sites: an essay in crosscultural comparison. In Mesoamerican Sites and World-Views. EP Benson (ed.). Washington, D.C.: Dumbarton Oaks Research Library and Collection, 143-211.

Casares D.
1907. A notice of Yucatan with some remarks on its water supply. In Proceedings of the American Antiquarian Society, 207-30.

Casaverde J.
1974. Jacaltec Social and Political Structure. Doctoral dissertation. University of Rochester.

Chamberlain AT.
2006. Demography in Archaeology. Cambridge: Cambridge University Press.

Chamberlain CP, Blum JD, Holmes RT, Feng X, Sherry TW, Graves GR.
1997. The use of isotope tracers for identifying populations of migratory birds. Oecologia 109: 132-141.

Charcón-Camacho O, Camarillo-Blancarte L, Pelaez-González H, Mendiola J, Zenteno JC.
2012. Klippel-Feil syndrome associated with Situs Inversus: Description of a new case and exclusion of GDF1, GDF3, and GDF6 as causal genes. European Journal of Medical Genetics 55: 414-417.

Chase DZ.
1991. Lifeline to the Maya Gods: Ritual Bloodletting at Santa Rita Corozal. 6th Palenque Round Table, 1986. MG Robertson, M Greene, VM Fields (eds.). Norman:
University of Oklahoma Press, 89-96.
Chase AF, Chase DZ.
1989. The investigation of Classic period Maya warfare at Caracol, Belize. Mayab 5: 518.

Chavez E.
2009. Speleothems as Ritual Space. Paper presented at the $74^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Atlanta.

Chavez E, Landeros J.
2010. Cave Utilization among Highland Zapotecs of Oaxaca. Paper presented at the $75^{\text {th }}$ Annual Meeting of the Society for American Archaeology, St Louis.

Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA.
2012. The Oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite, Rapid Communications in Mass Spectrometry 26: 309-19.

Christensen CM, Kaufmann HH.
1969. Grain Storage, the Role of Fungi in Quality Loss. Minneapolis: University of Minnesota Press.

Christenson AJ.
2008. Places of emergence: sacred mountains and Cofradía ceremonies. In PreColumbian Landscapes of Creation and Origin. JE Staller (ed.). New York: Springer, 95-122.

Chiang CL.
1964. Standard Error for the age-adjusted death rate. In: Vital Statistics, Speical Reports. USDHEW Report 47. Washington, DC: US Government Printing Office, 271285.
1984. The Life Table and Its Applications. Malbar: Krieger.

Christensen R.
1997. Log-linear Models and Logistic Regression. New York: Springer.

Clark I, Fritz P.
1997. Environmental Isotopes in Hydrology. New York: Lewis Publishers.

Clark RA, Catalan G, Diwan AD, Kearsley JH.
1998. Heterogeneity in Klippel-Feil syndrome: a new classification. Pediatric Radiology 28: 967-974.

Clarke RA, Kearsley JH, Walsh DA.
1996. Patterned expression in familial Klippel-Feil syndrome. Teratology 53: 152-157.

Coale AJ.
1972. The Growth and Structure of Human Populations: A Mathematical Investigation. Princeton, NJ: Princeton University Press.

Coale A, Demeny P.
1966. Regional Model Life Tables and Stable Populations. New York: Academic.

Coale AJ, Trussell J.
1974. Model fertility schedules: Variations in the age structure of childbearing in human populations. Population Index 40(2): 185-258.

Cobb A, Brady JE.
2011. The Implications of Ritual Pathways in Midnight Terror Cave Belize. Paper
presented at the $76^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Sacramento.
2009. An Assessment of Cultural Modifications in Midnight Terror Cave. Paper presented at the $74^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Atlanta.

Codding BF, Jones TL.
2007. Man the showoff? Or the ascendance of a just-so-story: a comment on recent applications of costly signaling theory in American archaeology. American Antiquity 72(2):349-357.

Coe WR.
1959. Piedras Negras Archaeology: Artifacts, Caches, and Burials. Philadelphia: University Museum, University of Pennsylvania.

Colby SM.
1989. Restos oseos de sin cabezas. In Investigaciones Arqueológicas en la Costa Sur de Guatemala. DS Whitley, MP Beaudry (eds.). Berkeley: Institute of Archaeology, Monography 31. University of California.

Cole LL.
1910. Caverns and peoples of Northern Yucatan. American Geographic Society Bulletin 42:321-326.

Cook G.
1986. Quichean folk theology and Southern Maya supernaturalism. In Symbol and Meaning Beyond the Closed Community: Essays in Mesoamerican Ideas. GH Gossen (ed.). Albany: Institute of Mesoamerican Studies, State University of New York, 139-153.

Cordova H.

2011. Jades and Items of Personal Adornment at Midnight Terror Cave: A Critical Assessment. Paper presented at the $76^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Sacramento.

Cross M.

2007. Accessing the inaccessible: disability and archaeology. In The Archaeology of Identities: A Reader. Insoll T (ed.). Routledge: New York; 179-194.

Cucina A, Tiesler V.
2003. Dental caries and antemortem tooth loss in the Northern Peten area, Mexico: a biocultural perspective on social status differences among the Classic Maya. American Journal of Physical Anthropology 122:1-10

Culbert TP.
1977. Maya development and collapse: An economic perspective. In Social Process in Maya Prehistory. N Hammond (ed.). New York: Academic Press, 510-531.

Culbert TP, Rice DS.
1990. Precolumbian Population History in the Maya Lowlands. Albuquerque: University of NewMexico Press.

Da Silva EO.
1982. Autosomal recessive Klippel-Feil syndrome. Journal of Medical Genetics 19: 130134.

Dahlgren de Jordán B.
1966. La Mixteca: Su Cultura e Historia Prehispanicas. Mexico: Universidad Nacional Autonoma de Mexico.

Dahlin BH.
2000 The Barricade and Abandonment of Chunchucmil: Implications for Northern Maya Warfare. Latin American Antiquity 11(3):283-298.

Danforth ME, Cook DC, Knick III SG.
1994. The human remains from Carter Ranch Pueblo, Arizona: health in isolation. American Antiquity 59(1): 88-101.

Danforth ME, Worbel GD, Armstrong CW, Swanson D.
2009. Juvenile age estimation using diaphyseal long bone lengths among ancient Maya populations. Latin American Antiquity 20(1):3-13.

Dansgaard W.
1964. Stable isotopes in precipitation. Tellus 16: 36-68.

Daux V, Lecuyet C, Heran M, Amiot R, Simon L, Fourel F, Martineau F, Lynnerup N, Reychler H, Escarguel G.
2008. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55: 1138-1147.

De Anda G, Tielser V, Zabala P.
2004. Cenotes, espacios sagrados y la practica del sacrificio humano en Yucatán. Los Investigadores de la Cultura Maya 12, Tomo 2. Campeche: Universidad Autónoma de Campeche.

De Anda Alanís G.
2007. Sacrifice and ritual body mutilation in Postclassical Maya society: taphonomy of the human remains from Chichen Itza's Cenote Sagrado. In New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society. V Tiesler A Cucina (eds.). New York: Springer, 190-208.

De Cogolludo, DL.
2010 [1688]. Historia De Yucatan/History of Yucatan. Linkgua digital.
Deal M.
2003. Disabled people's attitudes toward other impairment groups: a hierarchy of impairments. Disability \& Society 18(7): 897-910.

Demerest AA.
1993. The violent saga of the Maya kingdom. National Geographic Magazine 183(2):94111.

Demarest AA., Houston SD.
1990. Proyecto Arqueologico Regional Petexbatun. Informe Preliminar \#2. Segunda Temporada, Nashville,TN: Vanderbilt University.
1989. Proyecto Arqueologico Regional Petexbatun. Informe Preliminar \#1. Primera Temporada, Nashville,TN: Vanderbilt University.

Demarest AA, O'Mansky M, Wolley C, Van Tuerenhout D, Inomata T, Palka J, Escobedo H.
1997. Classic Maya defensive systems in the Petexbatun Region: archaeological evidence and interpretations. Ancient Mesoamerica 8, 229-253.

Demarest AA, Inomata T, Escobedo H, Palka J.
1992 Proyecto Arqueologico Regional Petexbatun. Informe Preliminar \#4. Cuarta Temporada. Nashville,TN: Vanderbilt University.
1991. Proyecto Arqueologico Regional Petexbatun. Informe Preliminar \#3. Tercera Temporada. Nashville,TN: Vanderbilt University.

Demarest AA, O’Mansky M, Wolley C, Van Tuerenhout D, Inomata T, Palka J, Escobedo H.
1997. Classic Maya defensive systems and warfare in the Petexbatun region: archaeological evidence and interpretations. Ancient Mesoamerica 8(2): 229-253.

Demarest AA, Quintanilla C, Suasnavar JS.
2016. The collapse in the west and the violent ritual termination of the Classic Maya capital center of Cancuen. In Ritual Violence, and the Fall of the Classic Maya Kings. G Iannone, BA Houk, SA Schwake (eds.). Gainesville: University Press of Florida, 159-186.

DeNiro MJ.
1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317(31): 806-809.

Dixon B, Hasemann G, Brady J, Gomez P, Beaudry-Corbett M.
1998. Multi-ethnicity or multiple enigma: archaeological survey in the Rio Talgua Drainage, Department of Olancho, Honduras. Ancient Mesoamerica 9: 327-340.

Duby G, Bloom F.
1969. The Lacandon. In Handbook of Middle American Indians. Vol 7: Ethnology. E Vogt (ed.). Austin: University of Texas Press, 276-297.

Duncan WN.
2014. Mortuary Sealing Among the Ancient Maya. In The Bioarchaeology of Space and Place: Ideology, Power, and Meaning in Maya Mortuary Contexts, G Wrobel (ed.). New York: Springer, 255-276.
2011. Bioarchaeological analysis of sacrificial victims from a Post Classic Maya Temple from Ixlu, El Peten, Guatemala. Latin American Antiquity 22(4):549-572.

Dunnell RC.
1999. The concept of waste in evolutionary archaeology. Journal of Anthropological Archaeology 250: 243-250.

Durán D.
1971. Book of the Gods and Rites and the Ancient Calendar. (translated and edited by Fernando Horcasitas and Doris Heyden) Norman: University of Oklahoma Press.

Eisenhart MA.
1991. Conceptual frameworks for research circa 1991: ideas from a cultural anthropologist; implications for mathematics education researchers. In Proceedings of the 13th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Vol. 1. RG. Underhill (ed.). Blacksburg: Virginia Polytechnic Institute and State University, 202-219.

Eliade M.
1959. The Sacred and the Profane: The Nature of Religion. (translated by William R. Trask) New York: Hardcourt, Brace.

Elster AD.
1984. Quadriplegia after minor trauma in Klippel-Feil syndrome. The Journal of Bone and Joint Surgery 66: 1473-1474.

Estrada-Belli F, Tokovinine A, Foley JM, Hurst H, Ware GA, Stuart D, Grube N. 2009. A Maya palace at Holmul, Peten, Guatemala and the Teotihuacan "entrada": evidence from Murals 7 and 9. Latin American Antiquity 20(1), 229-259.

Estrada-Belli F.
2001. Maya kingship at Holmul, Guatemala. Antiquity 75(290):685-686.

Farmer P, Nizeye B, Stulac S, Ksehavjee S.
2006. Structural violence and clinical medicine. PLoS Medicine 3:1686-1691.

Fash W.
1989. The sculptural façade of structure 9N-82: content, form, and significance. In The House of the Bacabs, Copán, Honduras. D Webster (ed.). Washington, D.C.: Dumbarton Oaks, 41-72.

Fay I.
2006. Text, space and the evidence of human remains in English Late Medieval and Tudor disease culture: some problems and possibilities. In Social Archaeology of Funerary Remains, R Gowland R, C Knüsel (eds.). Oxbow Books: Oxford; 190208.

Feeley-Harnik G.
1985. Issues in divine kingship. Annual Review of Anthropology 14:273-313.

Feil A.
1919. L'absence et la diminuation des vertebres cervicales (etude cliniqueet pathogenique); le syndrome dereduction numerique cervicales. Theses de Paris.

Fernandes T, Costa C.
2007. Klippel-Feil syndrome with other associated anomalies in a Medieval Portuguese skeleton ($13^{\text {th }}-15^{\text {th }}$ Century). Journal of Anatomy 211(5): 681-685.

Fowler Jr. WR.
1984. Late Preclassic mortuary patterns and evidence for human sacrifice at Chalchuapa, El Salvador. American Antiquity 49:603-618.

Freidel DA.
1986. Maya warfare: an example of peer polity interaction. In Peer Polity Interaction and Socio-Political Change. C. Renfrew, JF Cherry (eds.). Cambridge: Cambridge University Press, 93-108.
1992. Children of first father's skull: Terminal Classic warfare in the Northern Maya Lowlands and the transformation of kingship and elite hierarchies. In Mesoamerican Elites: An Archaeological Assessment. DZ Chase AF Chase (eds.). Norman: University of Oklahoma Press, 99-117.

Freidel DA, MacLeod B, Schuler CK
2003. Early Maya conquest in words and deeds. In Ancient Mesoamerican Warfare. MK Brown and TW Stanton (eds.). Walnut Creek: Alta Mira Press, 91-108.

Freidwald C.
2011. Maya Migration Networks: Reconstructing Population Movement in the Belize River Valley During the Late and Terminal Classic. Ph.D. Dissertation University of Wisconsin, Madison.

Freidwald C. Yaeger J, Awe J, Piehl J.
2014. Isotopic insights into mortuary treatment and origin at Xunantunich, Belize. In Wrobel, G. (Eds.), The Bioarchaeology of Space and Place: Ideology, Power, and Meaning in Maya Mortuary Contexts. Springer, New York, pp. 107-139.

Fukashima K.
1988. On lesions of bones of Yayoi people in southwest Japan. Fukuoka Acta Medica 79: 227-248

Fuentes y Guzmán FA.
1932. Recordación Florida: Discurso Historical y Demostración Natural, Material, Militar y Politica del Reyno de Goathemala. Biblioteca Goathemala Vol.6-8. Guatemala.

Gage TB.
1988. Mathematical hazard models of mortality: An alternative to model life tables.

American Journal of Physical Anthropology. 76:429-441.
Gage TB, Dyke B.
1986. Parameterizing abridged mortality tables: the Siler three-component hazard model. Human Biology 58: 275-291.

Gage TB, Mode CJ.
1993. Some laws of mortality: How well do they fit? Human Biology 65: 445-461.

Galindo DJ

1833. Description of the River Usumasinta, in Guatemala. Journal of the Royal Geographical Society of London 3:59-64.

Galtung J
1969. Violence, peace and peace research. Journal of Peace Research 6:167-191.
1993. Kultuerlle Gewalt. Der Burger im Staat 43:106-112.

Gann TWF
1894-95. On exploration of two mounds in British Honduras. Proceedings of the Society of Antiquaries of London, n.s., 15:430-434.
1896-97. On the contents of some ancient mounds in Central America. Proceedings of the Society of Antiquaries of London, n.s., 16:308-317.
1918 The Maya Indians of Southern Yucatan and Northern British Honduras. Govt. print. Off., Washington.
1918. The Maya Indians of Southern Yucatan and Northern British Honduras. Bureau of American Ethnology, Bulletin 64.
1924. In an Unknown Land. London: Duckworth and Co.
1926. Ancient Cities and Modern Tribes: Exploration and Adventure in Maya Lands. London: Camelot Press Limited.
1927. Maya Cities: A Record of Exploration and Adventure in Middle America. London: Duckworth.

Garza S.
2003. An Ethnoarchaeological Approach to Maya Caves. Paper presented at the $68^{\text {th }}$ Annual Meeting of the Society for American Archaeology.
2009. The cosmological and social significance of Quen Santo in contemporary Maya society. In Exploring Highland Maya Ritual Cave Use: Archaeology and Ethnography in Huehuetenango, Guatemala. Bulletin 20. JE Brady (ed.). Austin: Association for Mexican Cave Studies, 49-54.

Garza S, Brady JE, Christensen C.
2001. Balam Na Cave 4: implications for understanding Preclassic cave mortuary practices. California Anthropologist 28(1): 15-21.

Gat JR.
1971. Comments on the stable isotope method in regional groundwater investigations. Water Resources Research 7: 980-993.

Geertz C.
1973. The Interpretation of Cultures. New York: Basic Books.

Gerry JP.
1993. Diet and Status Among the Classic Maya: An Isotopic Perspective. Ph.D.

Dissertation Harvard University, Cambridge MA.
1997. Bone isotope ratios and their bearing on elite privilege among the Classic Maya.

Geoarchaeology: An International Journal 12(1):10041-29.
Gibbs SA
1997. Those laid to rest: skeletal remains from Actun Tunichil Muknal, Belize. In Belize Valley Archaeological Reconnaissance Progress Report of the 1996 Field Season. JJ Awe, J Conlon (eds.). Peterborough, Ontario: Department of Anthropology, Trent University, 105-114.
1998. Human skeletal remains From Actun Tunichil Muknal and Actun Uayazba Kab, Cayo District, Belize. In The Western Belize Regional Cave Project: A Report of the 1997 Field Season. JJ Awe (ed.). Durham: Department of Anthropology, Occasional Paper No.1, University of New Hampshire, 71-92.
2000. An Interpretation of the Significance of Human Remains from the Caves of the Southern Maya Lowlands. Master's Thesis, Trent University, Peterborough, Ontario.

Gill RB

2000. The Great Maya Droughts: Water Life and Death. Albuquerque: University of New Mexico Press.

Gill RB, Mayewski P, Nyberg J, Haug GH, Peterson LC.
2007. Draught and the Maya Collapse. Ancient Mesoamerica 18(2):283-302.

Girard R.
1979. Violence and the Sacred. Baltimore: Johns Hopkins University Press.

Giron M.

2009. A Behavioral Interpretation of High Density Ceramic Sherd Concentrations at Midnight Terror Cave. Paper presented at the $74^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Atlanta.

Giron-Ábrego M, Brady JE
2014. A behavioral interpretation of high density ceramic sherd concentrations at Midnight Terror Cave, Belize. California Anthropologist 29(2):27-33.

Glassman DM, Bonor Villarejo JL.
2005. Mortuary practices of the prehistoric Maya from Caves Branch Rock Shelter, Belize. In Stone Houses and Earth Lords: Maya Religion in the Cave Context, KM Prufer, JE Brady (eds.). University Press of Colorado: Boulder, 285-296.

Gluckman M.

1963. Order and Rebellion in Tribal Africa. New York: Free Press.

Gonfiantini R, Roche MA, Olivry JC, Fontes JC, Zuppi GM.
2001. The altitude effect on the isotopic composition of tropical rains. Chemical Geology 181: 147-167.

Golden C, Scherer AK, Kingsley M, Houston SD, Escobedo H.
2016. The life and afterlife of the Classic Period Piedras Negras Kingdom. In Ritual Violence, and the Fall of the Classic Maya Kings. G Iannone, BA Houk, SA Schwake (eds.). Gainesville: University Press of Florida, 108-133.

Gomez NC
1974. Ceremonia de "U Wahil Ch’een" (pan de pozo). Buletín de la Escuela de Ciencias Antropológicas de Yucatán 1(5):7-10.

Gompertz B

1825. On the nature and function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London (Series A) 115: 513-585.

Gonfiantini R, Olivry MA, Fontes JC, Zuppi GM.
2001. The altitude effect on the isotopic composition of tropical rains. Chemical Geology 181: 147-167.

Gonzalez-Darder JM, Feliu-Tatay R, Pesudo-Martinez JV, VeraRoman JM.
2002. Klippel-Feil syndrome associated with posterior fossa dermoid cyst. Case Report. Neurological Research 24: 501-504.

Gonzalez-Reimers E, Mas-Pascual A, Arnay-de-la-Rosa M, Vázquez J, Jiménez-Gómez
MC.
2001. Klippel-Feil syndrome in the prehispanic population of El Hierro (Canary Islands). Annals of the Rheumatic Diseases 60: 147.

Gordon CC, Buikstra JE.
1981. Soil pH, bone preservation, and sampling bias at mortuary sites. American Antiquity 46: 566-571.

Gordon GB
1898. Caverns of Copan, Honduras. Peabody Museum of Archaeology and Ethnology Memoirs 1:137-148.

Gorlin RJ, Pindborg JJ, Cohen MM.
1976. Syndromes of the Head and Neck. New York: McGraw Hill.

Graham C, Talay D.
2013. Stochastic Simulation and Monte Carlo Methods. New York: Springer.

Graham I.
1997. Discovery of a Maya ritual cave in Peten, Guatemala. Symbols 28-31.

Graham E, McNatt L, Gutchen MA.
1980. Excavations in Footprint Cave, Caves Branch, Belize. Journal of Field Archaeology 7(2):153-172.

Gray SW, Romaine CB, Skandalakis JE.
1964. Congenital fusion of the cervical vertebrae. Surgery, Gynecology, \& Obstetrics 118: 373-84.

Green MA.
1999. Human sacrifice in Iron Age Europe. Discovering Archaeology 1(2):56-65.

Gruning EL
1930. Report on the British Museum Expedition to British Honduras, 1930. Journal of the Royal Anthropological Institute 60:477-483.

Gunderson CH, Greenspan RH, Glaser GH, and Lubs HA.
1967. The Klippel-Feil syndrome: genetic and clinical reevaluation of cervical fusion. Medicine 46: 491-512.

Gurnee RH.
1965. Seamay Cave (Caves of the Grand Staircase) Senahu, Alta Verapaz, Guatemala, C.A. National Speleological Society News 23(8):114-117.

Gurnee RH, Randol W, Smith AR, Gould R, Nicholas BG, Mohr CE, Land H, Limeres J. 1968. Maya Cave Discoveries. Explorers Journal 46:146-186.

Gurven M, Kaplan H.

2007. Longevity among hunter-gatherers: A cross cultural examination. Population and Development Review 33: 321-365.

Gurven M, Hill K, Kaplan H, Hurtado A, Lyles R
2000. Food transfers among Hiwi Foragers of Venezuela: tests of reciprocity. Human Ecology 28:171-218.

Haglund WD, Sorg MH.
1997. Forensic Taphonomy: the Postmortem Fate of Human Remains. Boca Raton: GRG Press.

Haglund WD, Sorg MH.
2002. Advances in Forensic Taphonomy: Method, Theory and Archaeological Perspectives. Boca Raton: GRG Press.

Haller AV.
1745. Icones Anatomicae. A. Vandenhoeck: Gottingae.

Hamblin RL, Pitcher B.
1980. The Classic Maya Collapse: testing class conflict Hhypotheses. American Antiquity 45(2):246-267.

Halperin CT, Garza S, Prufer K, Brady JE.
2003. Caves and ancient Maya ritual use of Jute. Latin American Antiquity 14(2):207219.

Hammond N.
1977. Sir Eric Thompson, 1898-1975. American Antiquity 42:180-190.
1981. Settlement patterns in Belize. In Lowland Maya Settlement Patterns. W Ashmore (ed.). Albuquerque: University of New Mexico Press, pp. 157-186.
1982. Ancient Maya Civilization. New Brunswick. Rutgers University Press.

Hammond N, Clarke A, Robin C.
1991. Middle Preclassic buildings and burials at Cuello, Belize: 1990 investigations. Latin American Antiquity 2(4):352-363.

Hammond N, Pretty K, Saul F.
1975. A Classic Maya family tomb. World Archaeology 7(1):57-78.

Harrison PD, Messenger PE.
1980. Dennis Edward Puleston, 1940-1978. American Antiquity 45:272-276.

Harrison-Buck E.
2012. Rituals of death and disempowerment among the Maya. In Power and Identity in Archaeological Theory and Practice: Case Studies from Ancient Mesoamerica. E Harrison-Buck (ed.). Salt Lake City: University of Utah Press, pp. 103-115.

Harrison-Buck E, McAnany PA, Murata S.
2008. Purposeful desecration of a ruling elite residence? Recent excavations at the Hershey Site, Sibun Valley, Belize. Research Reports in Belizean Archaeology 5:63-78.

Haug GH, Günther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B. 2003. Climate and the collapse of Maya civilization. Science 299: 1731-1735.

Haviland WA.
1971. Entombment, authority, and descent at Altar de Sacrificios, Guatemala. American Antiquity 36(1):102-105.

Hayden B, Cannon A.
1984. The Structure of Material Systems: Ethnoarchaeology in the Maya Highlands. Society for American Archaeology Occasional Papers No. 3. Washington, D.C.: Society for American Archaeology.

Headrick A.
1991. The Chicomoztoc of Chichen Itza. M.A. Thesis. Austin: University of Texas,

Healy PF.
2007. The anthropology of Mesoamerican caves. Reviews in Anthropology 36: 245-278.

Healy PF, Awe JJ, Helmuth H.
1998. An ancient Maya multiple burial at Caledonia, Cayo District Belize. Journal of Field Archaeology 25(3):261-274.

Healy PF, Prikker NA.
1989. Ancient Maya warfare: chronicles of manifest superiority. In Cultures in Conflict: Current Archaeological Perspectives. DC Tkaczuk, BC Vivian (eds.). Calgary: Archaeological Association of the University of Calgary, 44-60.

Heesterman JC.
1985. The Inner Conflict of Tradition: Essays in Ancient Indian Ritual. Chicago: University of Chicago Press.

Helmke CGB.
2009. Ancient Maya cave Usage as Attested in the Glyphic Corpus of the Maya Lowlands and the Caves of the Roaring Creek Valley, Belize. Ph.D. dissertation, University of London.

Helmke C, Brady JE.
2009. Epigraphic and archaeological evidence for cave desecration in Ancient Maya warfare. Paper presented at: Maya Culture: Identity, Language and History: A Celebration of the Life and Work of Pierre Robert Colas, Vanderbilt University, Nashville. (Available at: http://www.vanderbilt.edu/cas/sitemason/colas/Colas_Symposium_Paper5.pdf)

Helmke C, Brady JE.
2014. Epigraphic and archaeological evidence for cave desecration in Ancient Maya warfare. In A Celebration of the Life and Work of Pierre Robert Colas. C Helmke F Sachse (eds.). Munich: Verlag Anton Saurwein, , 195-227.

Helmi C, Pruzansky S.
1980. Craniofacial and extracranial malformations in the Klippel-Feil syndrome. Cleft Palate Journal 17: 65-88.

Henrich J.
2006. Cooperation, punishment, and the evolution of human institutions. Science 312:6061.
2009. The evolution of costly displays, cooperation and religion: credibility enhancing displays and their implications for cultural evolution. Evolution and Human Behavior 30:244-260.

Hensinger RN, Lang JE, MCEwen GD.
1974. Klippel Feil syndrome. Journal of Bone \& Joint Surgery 56: 1246-53.

Hester TR.
1985. The Classic - Early Postclassic Archaeological Investigations at Colha, Belize. San Antonio: Center for Archaeological Research of the University of Texas at San Antonio.

Heyden D.
1973. ¿Un Chicomostoc en Teotihuacan? La cueva bajo la Pirámide del Sol. Boletín del Instituto Nacional de Antropología e Historia, Época II 6:3-18.
1975. Interpretation of the cave underneath the Pyramid of the Sun in Teotihuacan, Mexico. American Antiquity 40:131-147.
1976. Los ritos de paso en las cuevas. Boletin del Instituto Nacional de Anthropología e Historia, Época 2(19):17-26.
1981. Caves, gods, and myths: world-view and planning in Teotihuacan. In Mesoamerican Sites and World-Views, EP Benson (ed.). Washington, D.C.: Dumbarton Oaks Research Library and Collection, 1-39.
1987a. Caves. In The Encyclopedia of Religion, M Eliade (ed.). New York: Macmillan, 3:127-133.
1987b. "Uno Venado" y la creación del cosmos en las crónicas y los Códices de Oaxaca. In Mitos Cosmogónicos del México Indígena, J Monjarás-Ruiz (ed.). Mexico City: Instituto Nacional de Anthropología e Historia, 87-124.
1991. La Matriz de la Tierra. In Arqueoastronomía y Etnoastronomía en Mesoamérica, J Broda, S Iwaniszewski, L Maupomé (eds.). Mexico: Universidad Nacional Autónoma de México, 501-515.

Hildebrandt WR, McGuire KR.
2002. The ascendance of hunting during the California Middle Archaic: an evolutionary perspective. American Antiquity 67:231-256.
2003. Large-game hunting, gender-differentiated work organization, and the role of evolutionary ecology in California and Great Basin prehistory: a reply to Broughton and Bayham. American Antiquity 6 8:790-792.

Hill K, Hurtado AM.
1996. Ache Life History: The Ecology and Demography of a Foraging People. New York: Aldine de Gruyter.

Hillson S.
1996. Dental Anthropology. Cambridge: Cambridge University Press.

Hodell DA, Brenner M, Curtis JH, Guilderson T.
2001. Solar forcing of drought frequency in the Maya Lowlands. Science 292:1367-1370.

Hodell DA, Curtis JH, Brenner M.
1995 Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391-394

Hodell DA, Quinn RL, Brenner M, Kamnov G.
2004. Spatial variation of strontium isotopes $\left({ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}\right)$ in the Maya region: a tool for tracking ancient human migration. Journal of Archaeological Science 31(5):585601.

Hooton EA.
1940. Skeletons from the Cenote of Sacrifice at Chichen Itza. In The Maya and their Neighbors: Essays on Middle American Anthropology and Archaeology, edited by CL Hay, RL Linton, SK Lothrop, HL Shapiro, GC Vaillant (eds.). New York: D. Appleton-Century, 272-280.

Horvitz D, Thompson DJ.
1952. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47: 663-685.

Howell N.
1976. Demography of the Dobe Kung. New York: Sinauer.

Hubert H, Mauss M.
1964 (1898). Sacrifice: Its Nature and Function. London: Cohen \& West.

Iannacone LR.
1992. Sacrifice and stigma: reducing free-riding in cults, communes, and other collectives. The Journal of Political Economy 100(2):271-291.

Iannone G.
2016. Cross-cultural perspectives on the scapegoat king: the anatomy of a model. In Ritual Violence, and the Fall of the Classic Maya Kings, G Iannone, BA Houk, SA Schwake (eds.). Gainesville: University Press of Florida, 23-60.

Iannone G, Houk BA, Schwake SA.
2016. Introduction. In Ritual Violence, and the Fall of the Classic Maya Kings, G Iannone, BA Houk, SA Schwake (eds.). Gainesville: University Press of Florida, 1-22.

Inomata T .
2008. Warfare and the fall of a fortified center: Archaeological investigations at Aguateca (Vol. 3). Nashville: Vanderbilt University Press.
2006a. Plazas, performers, and spectators: political theatres of the Classic Maya. Current Anthropology 47(5): 805-842.
2006b. Politics and theatricality in Mayan society. In Archaeology of Performance, T Inomata, LS Coben (eds.). New York: Altamira Press, 187-222.
1997. The last day of a fortified Classic Maya center: archaeological investigations at Aguateca, Guatemala. Ancient Mesoamerica 8(2):337-351.
1995. Archaeological Investigations at the Fortified Center of Aguateca, El Peten, Guatemala: Implications for the Study of the Classic Maya Collapse, Unpublished Ph.D. dissertation. Nashville, TN: Vanderbilt University.

Inomata T, Stiver LR

1998. Floor assemblages from burned structures at Aguateca, Guatemala: a study of Classic Maya households. Journal of Field Archaeology 25(4): 431-452.

Irons W.
2001. Religion as a hard-to-fake sign of commitment. In Evolution and the Capacity for Commitment, R Nesse (ed.). New York: Russell Sage Foundation, 292-309.

Ishihara R.
2007. Bridging the Chasm Between Religion and Politics: Archaeological Investigations of the Grietas at the Late Classic Maya Site of Aguateca, Peten, Guatemala. Ph.D. Dissertation. Riverside: University of California.

Ishihara-Brito R, Awe JJ, Chase AF.
2011. Ancient Maya cave use at Caracol, Belize. Mexicon 33(6):151-158.

Jacobi KP, Danforth ME.
2002. Analysis of interobserver scoring patterns in porotic hyperostosis and cribra orbitalia. International Journal of Osteoarchaeology 12: 248-258.

Jarcho S.
1965. Anomaly of the vertebral column (Klippel-Feil Syndrome) in American Aborigines. Journal of the American Medical Association 193: 843-844.

Jay M.
2009. Breastfeeding and weaning behaviors in archaeological populations: evidence from the isotopic analysis of skeletal materials. Childhood in the Past 2(1): 163-178.

Johansson SR, Horowitz S.
1986 Estimating mortality in skeletal populations: Influence of the growth rate on the interpretation of levels and trends during the transition to agriculture. American Journal of Physical Anthropology 71:233-250.

Johnson D.
2008. Gods of war: the adaptive logic of religious conflict. In The Evolution of Religion: Studies, Theories, and Critiques, J Bulbulia, R Sosis, E Harris, R Genet, C Genet, K Wyman (eds.). Santa Margarita: Collins Family Foundation Press.

Jones ET, Mayer P.
2000. Disturbios regionais do sistema muscoloesqueletico - regiao cervical. In Orthopedia de Turek-Principios e Sua Aplicacao. SL Weinstein, JA Buckwater (eds.). Manole Editora: S. Paulo, 345-363.

Joyce AA.
2000. The founding of Monte Alban: sacred propositions and social practices. In Agency in Archaeology, MA Dobres, J Robb (eds.). New York: Routledge, 72-91.

Joyce AA, Bustamante LA, Levine MN.
2001. Commoner power: a case study from the Classic Period Collapse on the Oaxaca Coast. Journal of Archaeological Method and Theory 8(4):343-385.

Joyce TA.
1929. Report on the British Museum Expedition to British Honduras, 1929. Journal of the Royal Anthropological Institute 59: 439-459.

Joyce TA, Gann T, Gruning EL, Long RCE
1928. Report on the British Museum Expedition to British Honduras, 1928. Journal of the Royal Anthropological Society 58: 323-349.

Kearney M.
1996. Post-melting-pot realism. American Anthropologist 98(4): 867-869.

Keckler C.
1997. Catastrophic mortality in simulations of forager age at death: where did all the humans go? In Integrating Archaeological Demography: Multidisciplinary

Approaches to Prehistoric Population. R. R. Paine (ed.). Carbondale: Center for Archaeological Investigations, 118

Kennett DJ, Breithenbach SFM, Aquino VV, Asmerom Y, Awe J, Baldini JUL, Bartlein P, Cullerton BJ, Ebert C, Jazwa C, Macro MJ, Marwan N, Polyak V, Prufer KM. Ridley HE, Sodemann H, Winterhalder B, Haug GH,
2012. Development and Disintegration of Maya Political Systems in Response to Climate Change. Science 338:788-791.

Kieffer CL.
2009 New cave discoveries at Quen Santo, Huehuetenango, Guatemala. In Exploring Highland Maya Ritual Cave Use: Archaeology \& Ethnography in Huehuetenango, Guatemala, JE Brady (ed.). Austin: Association for Mexican Cave Studies, 41-47.
2010. Determining status of ancient Maya from looted and sacrificial contexts. The University of New Mexico Best Student Essays 22(11):33-41.
2011. One Cave, Many Contexts: The Skeletal Deposits from Midnight Terror Cave, Belize. Paper presented at the $76^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Sacramento.
2013. Depictions of Sacrifice: A Study of Images from the Maya Vase Database. Poster presented at the University of New Mexico's Second Annual Anthropology Graduate Student Union Conference in Anthropology, Albuquerque.
2014. Tombs, burials, cemeteries, and sacrifice: a historical perspective on the changing interpretations of human remains in the karstic Maya landscape. Paper presented at the $79^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Austin.
2016. A Rebuttal to Comments on 'Sacrifice of the Social Outsider' International Journal of Osteoarchaeology 26(6) 1099-1100. DOI: 10.1002/oa.2486.
2017. Sacrifice of the social outcast: Two cases of Kilppel-Feil Syndrome at Midnight Terror Cave, Belize. International Journal of Osteoarchaeology 27(1):45-55. DOI:10.1002/oa. 2456

Kieffer CL, Baker J.
2017. Statistically Comparing Demographic Distributions of Mortuary Assemblages. Poster presented at the 82nd Annual Meeting of the Society for American Archaeology, Vancouver.

Kieffer CL, Scott A.
2012. The Mesoamerican cave paradigm. In Heart of Earth: Studies in Maya Ritual Cave Use, JE Brady (ed.). Austin: Association for Mexican Cave Studies, 17-28.

Kim Y, Schoen R.
1993. On the intrinsic force of convergence to stability. Mathematical Population Studies 4(2):89-102.

King EM, Brady JE, Shaw LC, Cobb AB, Kieffer CL, Brennan ML, Harris CL,
2012. Small caves and sacred geography: a case study from the prehispanic Maya site of Maax Na, Belize, Latin American Antiquity 23(4), 611-628.

Klaus HD.
2012. The bioarchaeology of structural violence: a theoretical model and case study. In The Bioarchaeology of Violence, DL Martin, R Harrod, VR Pérez (eds.), Gainsville: University Press of Florida, 29-62.

Klippel M, Feil A.
1912. Un cas d'absence des vertebres cervicales. Avec cage thoracique remontant jusqu'a la base du crane (cage thoracique cervicale). Nouv Iconog Salpetiere 25: 223-50.

Knab TJ.
1995. A War of Witches: A Journey into the Underworld of the Contemporary Aztecs. SanFrancisco: Harper.

Knudson KJ.
2009. Oxygen isotope analysis in a land of environmental extremes: the complexities of isotopic work in the Andes. International Journal of Osteoarchaeology 19: 171191.

Köhler U.
1995. Chonbilal Ch'ulelal-Alma Vendida: Elementos Fundamentales de la Cosmología y Religión Mesoamericanas en una Oración en Maya-Tzotzil. Mexico: Universidad Nacional Autónoma de México.

Komar DA, Buikstra JE.
2008. Forensic Anthropology: Contemporary Theory and Practice. Oxford: Oxford University Press.

Koontz R, Reese-Taylor K, Headrick A.
2001. Landscape and Power in Ancient Mesoamerica. Boulder: Westview.

Krasnic K, Kieffer CL.
2011. Determining status in looted and sacrificial contexts at Midnight Terror Cave. Paper presented at the 76th Annual Meeting of the Society for American Archaeology, Sacramento.

Kruse RJ.
2003. Narrating intersections of gender and dwarfism in everyday spaces. The Canadian Geographer 47 (4): 494-508.

Kubler G.
1985. Pre-Columbian pilgrimages in Mesoamerica. In Fourth Palenque Round Table, 1980, Vol. VI, EP Bensen (ed.). San Francisco: Pre-Columbian Art Research Institute, 313-316.

Kuhn TS.

1962. The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
1963. The Structure of Scientific Revolutions. Chicago: University of Chicago Press. 3rd Edition.

Kunen JL, Galindo MJ, Chase E.
2002. Pits and bones: identifying Maya ritual behavior in the archaeological record. Ancient Mesoamerica 13:197-211.

Lachniet MS, Patterson WP.
2009. Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth and Planetary Science Letters 284: 435-446.
2006. Use of correlation and multiple stepwise regression to evaluate the climatic controls on the stable isotope values of Panamanian surface waters. Journal of Hydrology 324: 115-140.
2002. Stable isotope values of Costa Rican surface waters. Journal of Hydrology 260: 135-150.

LaFarge O.
1947. Santa Eulalia. The Religion of a Cuchumatán Indian Town. Chicago: The University of Chicago Press.

Laffoon JE, Rojas V, Hoffman CL.
2013. Oxygen and carbon isotope analysis of human dental enamel from the Caribbean: implications for investigating individual origins: Archaeometry 55(4): 742-765.

Laporte JP, Fialko WC.
1990. New perspectives on old problems: dynastic references for the Early Classic at Tikal. In Vision and Revision in Maya Studies, FS Clancy, PD Harrison (eds.). Albuquerque: University of New Mexico Press, , pp. 33-66.

Larson ARU, Josephson KD, Pauli RM, Opitz JM, Williams MS.
2001. Klippel-Feil anomaly, omovertebral bone, thumb abnormalities, and flexion-crease changes: novel association or syndrome? American Journal of Medical Genetics 101: 158-162.

Laughlin RM.
1975. The Great Tzotzil Dictionary of San Lorenzo Zinacantan. Smithsonian Contributions to Anthropology, No. 19. Washington, D.C.: Smithsonian Institution Press,

Lightfoot E, O'Connell TC.
2016. On the use of biomineral oxygen isotope data to identify human migrants in the archaeological record: Intra-sample variation, statistical methods and
geographical considerations. PLOS One 11(4): e0153850. doi:
10.1371/journal.pone. 0153850 .

Lefroy H.
1884. On some pottery, flint weapons, and other objects from British Hunduras. The Archaeological Journal 41:47-53.

LeMieux C.
2009. Monte Carlo and Quasi Monte Carlo Sampling. New York: Springer.

Linstrom J, Reeve R, Salvidio S.

2011. Bayesian salamanders: Analyzing the demography of an underground population of European plethodontid Speleomante strinattii with state-space modeling. BMC Ecology 10:4-13.

Lohse JC.
2010. Archaic origins of the Lowland Maya. Latin American Antiquity 21(3):312-352.

Lohse JC, Awe J, Griffith C, Rosenswig RM, Valdez F.
2006. Preceramic occupations in Belize: Updating the Paleoindian and Archaic Record. Latin American Antiquity 17(2):209-226.

Longford N .
2005. Missing Data and Small-Area Estimation: Modern Tools for the Survey Statistician. New York: Springer.

Lorenz S, Marks N, Brady J.
2016. Geographic Origins of Child Sacrifices: Radiogenic Strontium Isotope Analyses from Midnight Terror Cave, Belize. Paper presented at the Society for American Archaeology meeting, Orlando, Florida April 6-10.

Lotem A, Fishman MA, Stone L.
2002. From reciprocity to unconditional altruism through signaling benefits. Proceedings of The Royal Society of London 270:199-205.

Lothrop SK.
1924. Tulum: An Archaeological Study of the East Coast of Yucatan. Publication No. 335. Washington, D.C.: Carnegie Institution of Washington.

Lovejoy CO, Meindl RS, Pryzbeck, TR, Mensforth RP. 1985. Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age-at-death. American Journal of Physical Anthropology 68:15-28.

Lucero LJ.
1999. Water control and Maya politics in the southern Maya lowlands. Archeological Papers of the American Anthropological Association 9(1): 35-49.

Lucero LJ, Gibbs SA.
2007. The creation and sacrifice of witches in Classic Maya society. In New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society, V Tiesler, A Cucina (eds.). Springer, New York, 45-73.

Lundell CL.
1934. Ruins of Polol and Other Archaeological Discoveries in the Department of Peten, Guatemala. Contributions to American Archaeology, No. 8. Washington, D.C.: Carnegie Institution of Washington,

MacCurdy GG.
1923. Human skeletal remains from Highland Peru. American Journal of Physical Anthropology 6: 217-330.

MacLeod B, Puleston DE.
1979. Pathways into Darkness: The Search for the Road to Xibalbá. In Tercera Mesa Redonda de Palenque, Vol. 4, MG Robertson, DC Jeffers (eds.). Monterey: Hearld Peters, , 71-77.

Madsen M, Lipo C, Cannon M.
1999 Fitness and reproductive trade-offs in uncertain environments: explaining the evolution of cultural elaboration. Journal of Anthropological Archaeology 18:251-281.

Makeham WM.
1860. On the law of mortality. Journal of the Institute of Accuracies 13: 325-358.

Maler T.
1901. Researches in the Central Portion of the Usumatsintla Valley. Memoirs of the Peabody Museum of American Archaeology and Ethnology 2(1): 1-75.
1903. Researches in the Central Portion of the Usumatsintla Valley. Memoirs of the Peabody Museum of American Archaeology and Ethnology 2(2):77-216.

Malinowski B.
1954. Magic, Science and Religion and Other Essays. Garden City, NY.: Doubleday.

Manca MC.
1995. De las cuevas hasta el cielo pasando por los colores de las enfermedades. Anuario IEI 5:223-259.

Marcus J.
1978. Archaeology and religion: a comparison of the Zapotec and Maya. World Archaeology 10(2): 172-191.

Marcus RJ.
1974. The iconography of power among the Classic Maya. World Archaeology 6, 83-94.

Marcus RJ, Flannery K.
1996. Zapotec Civilization. London: Thames and Hudson.

Márquez de González L, Benavides Castillo A, Schmidt PJ.
1982. Exploración en la Gruta de Xcan. Merida: Yucatán. Instituto National de Antropología e Historia.

Marsteller SJ, Torres-Rouff C, Knudson KJ.
2011. Pre-Columbian Andean sickness ideology and the social experience of leishmaniasis: a contextualized analysis of bioarchaeological and paleopathological data from San Pedro de Atacama, Chile. International Journal of Paleopathology 1(1):24-34.

Martin DL.
1997. Violence against women in the La Plata River Valley (A.D. 1000-1300). In Troubled Times: Violence and Warfare in the Past, DL Martin, DW Frayer (ed.). Amsterdam: Gordon and Breach Publishers, 45-76.

Martin G.
2000. The "tradition of violence" in Columbia: material and symbolic aspects. In Meanings of Violence, G Aijmer, J Abbink (ed.). New York: Oxford, 161-192.

Martin PS.
1971. The revolution in archaeology. American Antiquity 36(1):1-8.

Mason G
1928. Pottery and other artifacts from caves in British Honduras and Guatemala. New York: Museum of the American Indian, Hyde Foundation.
1927. Silver Cities of Yucatan. New York: G. P. Putnam and Sons.
1940. South of Yesterday. New York: Henry Holt \& Co.

Masset C.
1989. Age Estimation on the Basis of Cranial Sutures. In Age Markers in the Human Skeleton, MY Iscan (ed.). Springfield: Charles C. Thomas, 71-103.

Massey VK.
1989. The Human Skeletal Remains from a Terminal Classic Skull Pit at Colha, Belize. Papers of the Colha Project, vol. 3. College Station: Texas Archaeological Research Laboratory, The University of Texas at Austin, and Department of Anthropology, Texas A\&M University.

McAnany PA.
2010. Ancestral Maya Economies in Archaeological Perspective. New York: Cambridge University Press.

McAnany PA, Storey R, Lockard A.
1999. Formative Maya village of K'axob: mortuary ritual and family politics at Formative and Early Classic K'axob, Belize. Ancient Mesoamerica 10(1):129-146

McCaa R.
2002. Paleodemography of the Americas: from ancient times to colonialism and beyond. In The Backbone of History: Health and Nutrition in the Western Hemisphere, R Steckel, J Rose (eds.). Cambridge: Cambridge University Press, 94-129

McGanghran JM, Oates A, Donnai D, Read AP, Tassabehji M.
2003. Mutations in Pax 1 may be associated with Klippel-Feil Syndrome. European Journal of Human Genetics 11(6): 468-474.

McGuire KR, Hildebrandt WR.
2005 Re-thinking Great Basin foragers: prestige hunting and costly signaling during the Middle Archaic Period. American Antiquity 70:695-712.

McGuire KR, Hilderbrant WR, Carpenter KL.
2007 Costly signaling and the ascendance of no-can-do archaeology: a reply to Codding and Jones. American Antiquity 72(2):358-365.

McLay K, Maran AGD.
1969. Deafness and the Klippel-Feil Syndrome. Journal of Laryngology 83: 175-184.

McNatt L.
1996. Cave archaeology of Belize. Journal of Cave and Karst Studies 58(2):81-99.

Medina-Elizalde M, Rohling EJ.
2012. Collapse of Classic Maya civilization related to modest reduction in precipitation. Science 335: 956.

Medina-Elizalde M, Burns SJ, Lea DW, Aserom Y, von Gunten L, Polyak V, Vuille M, Karmalkar A.
2010. High resolution stalagmite climate record from the Yucatán Peninsula spanning the Maya Terminal Classic period. Earth and Planetary Science Letters 298:255-262.

Merbs CF, Euler RC.
1985. Alanto-occipital fusion and spondylolisthesis in an Anasazi skeleton from Bright Angel Ruin, Grand Canyon National Park, Arizona. American Journal of Physical Anthropology 67: 381-392

Mercer HC.
1895. Jasper and Stalagmite Quarried by Indians in the Wyandotte Cave. Proceedings of the American Philosophical Society 34(149): 396-400.
1896. The Hill-Caves of Yucatan. New York: J. B. Lippincott.

Merrifield R.
1987 The Archaeology of Ritual and Magic. London: B. T. Batford Ltd.
Michie L, Clark M.
1968. Neurological syndromes associated with cervical and craniocervical anomalies. Archives of Neurology 18: 241-247.

Miles JS.
1975. Orthopedic Problems of the Wetherill Mesa Populations. Publications in Archaeology No. 7. Washington D.C.: G. Wetherill Mesa Studies, National Park Services.

Miles SW.
1965. Summary of Preconquest Ethnology of the Guatemala-Chiapas Highlands and Pacific Slope. In Handbook of Middle American Indians, Volume 2: Archaeology of Southern Mesoamerica, Part 1, GR Willey (ed.). Austin: University of Texas Press, 276-287.

Miller M, Samayoa M.
1998. Where maize may grow: jade, Chacmools, and the maize god. RES: Anthropology and Aesthetics 33:54-72.

Milner GR, Humpf DA, Harpending HC.
1989. Pattern matching of age-at-death distributions in paleodemographic analysis. American Journal of Physical Anthropology 80:49-58.

Minjares Jr., A.
2003. Human Skeletal Remains of the Ancient Maya in the Caves of Dos Pilas, Guatemala. M.A. Thesis. University of Texas A\&M University.

Mirro MJ.
2007. The Political Appropriation of Caves in the Upper Belize Valley. M.A. thesis, California State University, Los Angeles.

Mirro V, Scott AM.
2012. Secrets from the Ancestors: Understanding Maya Human Remains in the Cave Context. Paper presented at the 77th Annual Meeting of the Society for American Archaeology, Memphis, Tennessee.

Monaghan JD.
1995. The Covenant with Earth and Rain: Exchange, Sacrifice, and Revelation in Mixtec Sociality. Norman: University of Oklahoma.
2000. Theology and history in the study of Mesoamerican religions In Ethnology Handbook of Middle American Indians, Supplement 6, JD Monaghan, BW Edmonson (eds.). Austin: University of Texas Press, 24-49.

Moore MH, Prothrow-Stith D, Guyer D, Spivak H.
1994. Violence and intentional injuries: criminal justice and public health perspectives on an urgent national problem. In Understanding and Preventing Violence. Volume 4 Consequences and Control, AJ Reiss, JA Roth (eds.). Washington, D.C.: National Academy Press, 167-216.

Moore-Jansen P, Ousley SD, Jantz RL.
1994. Data Collection Procedures for Forensic Skeletal Material. Report of Investigations No. 48. Knoxville: University of Tennessee, Department of Anthropology.

Morehart CT, Butler N.
2010. Ritual exchange and the fourth obligation: ancient Maya food offering and the flexible materiality of ritual. Journal of the Royal Anthropological Institute (N.S.) 16: 588-608.

Morgani GB.
1746. Delle sedi e columna vertebral. Cirugia del Aparato Locomotor 8: 113.

Moser CL.
1975. Cueva de Ejutla: una cueva funeraria Postclasica? Boletin del Instituto Nacional de Anthropologia e Historia 15:25-36.

Moyes H.
2006. The Sacred Landscape as a Political Resource: A Case Study of Ancient Maya Cave Use at Chechem Ha Cave, Belize, Central America. Ph.D. dissertation, State University of New York at Buffalo, Buffalo.

Moyes H, Awe JJ, Brook GA, Webster JW.
2009. The ancient Maya drought cult: Late Classic cave use in Belize. Latin American Antiquity 20:175-206.

Moyes H, Gibbs S.
2000. Sacrifice in The Underworld: The Human Remains from Actun Tunichil Muknal, An Ancient Maya Cave Site in Western Belize. Paper presented at the 99th Annual Meeting of the American Anthropological Association, San Francisco.

Munyi CW.
2012. Past and present perceptions towards disability: a historical perspective. Disability Studies Quarterly 32(2) http://dsq-sds.org/article/view/3197/3068.

Nash J.
1967. Death as a way of life: the increasing resort to homicide in a Maya Indian community. American Anthropologist 69(5): 455-470.
1970. In the Eyes of the Ancestors: Belief and Behavior in a Maya Community. New Haven: Yale University Press.

Navarrete C.
1966. The Chiapanc History and Culture. Papers of the New World Archaeological Foundation Reports, No. 7.
1971. Prohibición de la Danza del Tigre en Tamuté, Tabasco in 1631. Tlalocan 6:374376.
1974. La Religión de los Antiguos Chiapanecas, Mexico. Instituto de Investigaciones Anthropologias, Anales de Anthropologia 11:19-52. Universidad Nacional Autóoma de México, México.

Navarro-Farr OC.
2016. Dynamic traditions at El Perú Waka': Late Terminal Classic ritual repurposing of a monumental shrine. In Ritual Violence, and the Fall of the Classic Maya Kings, G Iannone, BA Houk, SA Schwake (eds.). Gainesville: University Press of Florida, 243-269.

Neiman FD.
1997. Conspicuous consumption as wasteful advertising: a Darwinian perspective on spatial patterns in Classic Maya Terminal monument dates. Archaeological Papers of the American Anthropological Association 7(1):267-290.

Nicolay S.
2007. Water from a Stone: A Reexamination of the Feather Cave Archaeological Complex in Lincon County, New Mexico. Paper presented at the 72nd Annual Meeting of the Society for American Archaeology, Austin.

Norman BM.
2009 [1842]. Rambles in the Yucatan: Notes of Travel Through the Peninsula Including a Visit to the Remarkable Ruins of Chic-Chen, Kabah, Zayi, and Uxmal. Ohio: Lake Publishing, Concord Twp.

Oliver M.
1990. The politics of Disablement. Basinstoke: MacMillan.

Ortner DJ, Putschar WGJ.
1981. Identification of Pathological Conditions in Human Skeletal Remains. Smithsonian Contributions to Anthropology, Number 28. Washington D.C.: Smithsonian Institute Press.

Owen VA.
2002. An Investigation of Classic Maya Cave Mortuary Practices at Barton Creek Cave, Belize. Masters Thesis. Fort Collins, Colorado: Colorado State University.
2005. A question of sacrifice: Classic Maya cave mortuary practices at Barton Creek Cave, Belize. In Stone Houses and Earth Lords: Maya Religion in the Cave Context, KM Prufer, JE Brady (eds.). Boulder: University Press of Colorado, 91112.

Oxenham F, Tilley L, Matsumura H, Nguyen LC, Gnuyen KT, Nguyen KD, Domett K, Huffer D.
2009. Paralysis and sever disability requiring intensive care in Neolithic Asia. Anthropological Science 117(2): 107-112.

Pagliaro JB, Garber JF, Stanton TW.
2003. Evaluating the archaeological signatures of Maya ritual and conflict. . In Ancient Mesoamerican Warfare, K Brown, TW Stanton (eds.). Walnut Creek: Alta Mira Press, 75-90.

Paine RR, Harpending HC.
1998 Effects of sampling bias on paleodemographic fertility estimates. American Journal of Physical Anthropology 105: 231-240.

Paine RR, Harpending HC.
1996. The reliability of paleodemographic fertility estimators. American Journal of Physical Anthropology 101: 151-160.

Paine RR.
1989. Model Life Tables as a Measure of Bias in the Grasshopper Pueblo Skeletal Series. American Antiquity 54(4):820-824.

Palka JW.
2001. Ancient Maya defensive barricades, warfare, and site abandonment. Latin American Antiquity 12(4):427-430.
1998. Lacandon Maya culture change and survival in the Lowland frontier of the expanding Guatemalan and Mexican Republics. In Studies in Culture Contact: Interaction, Culture Change, and Archaeology, JG Cusick (ed.). Occasional Paper No. 25. Carbondale: Center for Archaeological Investigations, Southern Illinois University, 457-475.
1997. Reconstructing Classic Maya socioeconomic differentiation and the Collapse at Dos Pilas, Peten, Guatemala. Ancient Mesoamerica 8:293-306
1995. Classic Maya Social Inequality and the Collapse at Dos Pilas, Peten, Guatemala. Unpublished Ph.D. dissertation. Nashville, Tennessee: Department of Anthropology, Vanderbilt University.

Palmer AN.
2007. Cave Geology. Dayton: Cave Books.

Pany D, Teschler-Nocola M.
2007. Klippel-Feil Syndrome in an Early Hungarian Period juvenile skeleton from Austria. International Journal of Ostoarchaeology 17: 403-415.

Papathanasiou A.
2005. Health status of the Neolithic population of Alepotrypa Cave, Greece. American Journal of Physical Anthropology 126: 377-390.

Pavón MV, Cucina A, Tiesler V.
2010. New formulas to estimate age at death in Maya populations using histomorphological changes in the fourth human rib. Journal of Forensic Sciences 55(2):473-477.

Pearson MP.
1999. The Archaeology of Death and Burial. College Station: Texas A\&M University Press.

Pendergast DM.
1962. Breve reconocimento arqueológico en Honduras Britanica. Estudios de Cultura Maya 2: 197-203.
1964. Excavaciones en la Cueva Eduardo Quiroz, Distrito Cayo, Honduras Britanica. Estudios de Cultura Maya 4:119-139.
1966. The Actun Balam Vase. Archaeology 19(3):154-161.
1969. The Prehistory of Actun Balam, British Honduras. Art and Archaeology Occasional Paper No. 16. Toronto: Royal Ontario Museum.
1970. A. H. Anderson's Excavations at Rio Frio Cave E, British Honduras (Belize). Art and Archaeology Occasional Paper No. 20. Toronto: Royal Ontario Museum,
1971. Excavations at Eduardo Quiroz Cave, British Honduras (Belize). Art and Archaeology Occasional Paper No. 21. Toronto: Royal Ontario Museum.
1974. Excavations at Actun Polbilche, Belize. Royal Ontario Museum Monograph 1. Toronto.

Pendergast DM, Bartley MH, Armelagos GJ.
1968. A Maya tooth offering from Yakalche, British Honduras. Man 3(4):635-643.

Pérez VR.
2012. The politicization of the dead: violence as performance, politics as usual. In The Bioarchaeology of Violence, DL Martin, R Harrod, VR Perez, p. Gainsville: University Press of Florida, 13-28.

Peters JJ.
1962. Two cases of Klippel-Feil syndrome associated with severe mental subnormality. Radiography 28: 316-9.

Peterson PA.
2006. Ancient Maya Ritual Cave Use in the Sibun Valley, Belize. AMCS Bulletin 16. Austin: Association for Mexican Cave Studies.

Poage MA, Chamberlain CP.
2001. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: consideration for studies of paleoelevation change. American Journal of Science 301: 1-15.

Pohl M.
1981. Ritual Continuity and Transformation in Mesoamerica: Reconstructing the Ancient Maya Cuch Ritual. American Antiquity 46:513-529.
1983. Maya ritual faunas: vertebrate remains from burials, caches, caves, and cenotes in the Maya Lowlands. Civilization in the Ancient Americas 55-103.

Pohl M, Pohl J.
1983. Ancient Maya cave ritual. Archaeology 36(3):28-51.

Pollard AM, Pellegrini M, Lee-Thorp JA.
2011. Technical Note: Some observations on the conversion of dental enamel $\delta^{18} \mathrm{O}_{\mathrm{p}}$ vales to $\delta^{18} \mathrm{O}_{\mathrm{c}}$ to determine human mobility. American Journal of Physical Anthropology 145, 499-504.

Preston S, McDanieal A, and Grushka C.
1994. New model life tables for high mortality populations. Historical Methods. 26(4):149-160.

Price BJ.
1974. The burden of the cargo: ethnographic models and archaeological inference. In Mesoamerican Archaeology: New Approaches. N Hammond (ed.). Austin: University of Texas Press, 445-465.

Price ME.
2003. Pro-community altruism and social status in a Shuar Village. Human Nature 14(2):191-208.

Price TD, Burton JH, Sharer RJ, Buikstra JE, Wright LE, Traxler LP, Miller KA.
2010. Kings and commoners at Copan: isotopic evidence for origins and movement in the Classic Maya period. Journal of Anthropological Archaeology 29:15-32.

Price TD, Nakamura S, Suzuki S, Burton JH, Tiesler V.
2014. New isotope data on Maya mobility and enclaves at Classic Copan, Honduras.

Journal of Anthropological Archaeology 36: 32-47.
Prout MG.
2015. Subadult Human Sacrifices in Midnight Terror Cave. Poster presented at the 80th Annual Meeting of the Society for American Archaeology, San Francisco.
2016a. Subadult Human Sacrifices in Midnight Terror Cave. Poster presented at the Annual Society for American Archaeology Meeting, April 6-10, 2016, Orlando.

2016b. Subadult Human Sacrifices in Midnight Terror Cave. Poster presented at the American Association of Physical Anthropologists Meeting, April 17-23, Atlanta.
2016c. A Correction and Comment on 'Sacrifice of the Social Outcast.' International Journal of Osteoarchaeology 26(6):1101-1102. DOI: 10.1002/oa.2487.

Prufer KM.
2002. Communities, Caves, and Ritual Specialists: A Study of Sacred Space in the Maya Mountains of Southern Belize. Ph.D. dissertation, Southern Illinois University.

Prufer KM, Brady JE.
2005a. Stone Houses and Earth Lords: Maya Religion in the Cave Context. Boulder: University Press of Colorado.
2005b. Introduction: religion and the role of cave archaeology in Maya studies. In Stone Houses and Earth Lords: Maya Religion in the Cave Context, KM Prufer, JE Brady (eds.). Boulder: University Press of Colorado, 1-22.

Puleston DE.
1971. An experimental approach to the function of Classic Maya chultuns. American Antiquity 36:322-335.

Quigley D.
2005. Introduction: the character of kingship. In The Character of Kingship, D Quigley (ed.). New York: Berg, 1-23.

Radlauer D.
2002. An engineered tragedy: statistical analysis of casualties in the Palestinian-Israeli conflict, September 2000 - September 2002. Resource Document. http://www.ict.org.il/articles/articledet.cfm?articleid=439.

Ramsey J, Blizmak J.
1971. Klippel-Feil Syndrome with renal agenesis and other abnormalities. American Journal of Roentgenology 113: 460-463.

Rappaport RA.
1999. Ritual and Religion in the Making of Humanity. Cambridge: Cabridge University Press.

Rathje, W. L.
1970. Socio-political implications of Lowland Maya burials: methodology and tentative hypotheses. World Archaeology 1: 359-374.

Redfield, Robert
1941 The Folk Culture of Yucatan. Chicago: University of Chicago Press.
Redfield R, Villa Rojas A

1934 Chan Kom: A Maya Village. Washington D.C.: Carnegie Institute of Washington.
Reed DM
1994. Ancient Maya diet at Copan, Honduras, as determined through the analysis of stable carbon and nitrogen isotopes. In Paleonutrition: The Diet and Health of Prehistoric Americans, KD Sobolik (ed.). Carbondale: Occasional Papers Series, Center for Archaeological Investigations, Southern Illinois University, 210-221.

Reents-Budet D, MacLeod B.
1986. The Archaeology of Petroglyph Cave, Belize. Unpublished Manuscript.

Ricaut X.
2008. Human remains from a Middle Bronze Age population from Tell Tweini: Preliminary results of the anthropological study. In In Search of Gibala: An Archaeological and Historical Study Based on Eight Seasons of Excavation at Tell Tweomo (Syroa) in the A and C fields (1999-2007). Breschneider J, Van Lerberghe K (eds.). Editorial AUSA: Sabadell (Barcelona), Spain; 87-101.

Ricketson O.
1925. Burials in the Maya area. American Anthropologist 27:381-401.

Rissolo DA.
2003. Ancient Maya Cave Use in the Yalahau Region, Northern Quintana Roo, Mexico. Bulletin 12. Austin: Association for Mexican Cave Studies.

Roberts OW.
1827. Roberts' Narrative. Vol. 17. Constable \& Company.

Rougé-Maillart C, Jousset N, Vielle B, Gaudin A, Telmon N.
2007. Contribution of the study of the acetabulum for age estimation in adult subjects. Forensic Science International 171: 103-110.

Romero J.
1958. Mutilaciones Dentarias Prehispánicas en México y América en General. Serie Investigaciones 3. Mexico City: Instituto Nacional de Antropología e Historia.

Rosti RO.
2013. Of mice, men, and King Tut: Autosomal recessive Klippel-Feil Syndrome is caused by mutations in MEOX1. Clinical Genetics 84(1): 19.

Roys RL.
1943. The Indian background of Colonial Yucatan. Publication 548. Washington: Carnegie Institute of Washington.

Rozanski K, Araguás-Araguás L, Gonfiantini R.
1993. Isotopic patterns in modern global precipitation. In Geophysical Monograph. Climate Change in Continental Isotopic. PK Swart, KC Lohmann, JA McKenzie, S Savin (Eds.), Washington D.C.: Records, American Geophysical Union, 1-36.

Ruz Lhuillier A.
1965. Tombs and funerary practices in the Maya Lowlands. In Handbook of Middle American Indians Vol. 2, R Wauchope, GR Willey (eds.). Austin: University of Texas Press, 441-461.
1968. Costumbres Funerarias de los Antiguos Mayas. Universidad Nacional Autónoma de México, Mexico.

Sabloff JA.
1973. Major themes in past hypotheses of Maya Collapse. In The Classic Maya Collapse, TP Culbert (ed.). Albuquerque: University of New Mexico Press, 35-40.

Saldana M.
2011. Tools at Midnight Terror Cave: A Search for Function and Meaning. Paper presented at the $76^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Sacramento.

Saldana M.
2012. Spatial Variation in Ritual Activity at Midnight Terror Cave. Paper presented at the $77^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Memphis.

Saldana M, Kieffer CL.
2009. The Use of Space in Operation V and Its Implications for the Interpretation of Human Bone in Midnight Terror Cave. Paper presented at the $74^{\text {th }}$ Annual Meeting of the Society for American Archaeology.

Samartzis D, Herman J, Lubicky JP.
2006. Classification of congenitally fused cervical patterns in Klippel-Feil patients: Epidemiology and role in the development of cervical spine-related symptoms. Spine 31(21): 798-804.

Samartzis D, Herman J, Lubicky J, Shen FH.
2007. Sprengle's Deformity in Klippel-Feil Syndrome. Spine 32(8): E512-E516.

Sánchez de Aguilar P.
1937 [ca. 1613]. Informe contra idolorum cultores del obispado de Yucatan. $3^{\text {d }}$ ed. Merida: Imprenta Triay e Hijos.

Sanders WT.
1955. An Archaeological Reconnaissance of Northern Quintana Roo. Current Report No. 24. Washington, D.C.: Carnegie Institution of Washington.

Sandstrom AR.
1991. Corn is Our Blood: Culture and Ethnic Identity in Contemporary Aztec Indian Village. Civilization of the American Indian Series, Vol. 206. Norman: University of Oklahoma Press.
2005. The cave-pyramid complex among the contemporary Nahua of Northern Veracruz. In In The Maw of the Earth Monster: Mesoamerican Ritual Cave Use, JE Brady, KM Prufer (ed.). Austin: University of Texas Press, , 35-68.

Sanmiguel, I.
1994. A ceremony in the 'cave of idolatry': an eighteenth-century document from the Diocesan Historic Archive, Chiapas, Mexico. In Sacred Sites, Sacred Places, DL Carmichael, J Hubert, B Reeves, A Schanche (eds.). London: Routledge, 163-171.

Sardó, J.
1810. Relacion historica y moral de la portentosa imagen de N. Sr. Jesucristo crucificado aparecida en una de las cuevas de S. Miguel de Chalma: hoy real convento y santuario de este nombre... Con los compendios de las vidas de los dos venerables religiosos legos y primeros anacoretas de este santo desierto, F. Bartolome de Jesus Maria, y F. Juan de San Josef. Impresa en casa de Arizpe.

Sattenspiel L, Harpending HC.
1983. Stable populations and skeletal age. American Antiquity 48:489-498.

Satterthwaite Jr. L.
1958. The Problem of Abnormal Stela Placement at Tikal and Elsewhere. Tikal Report No. 2. Philadelphia: University Museum.

Saul FP.
1982. Appendix II: The human skeletal remains from Tancah, Mexico. In On the Edge of the Sea: Mural Painting at Tancah-Tulum. Quintana Roo, Mexico, Miller AG (ed.). Washington, D.C.: Dumbarton Oaks, Trustees for Harvard University, 115128.

Saul JM, Prufer KM, Saul FP
2005. Nearer to the gods: rockshelter burials from the Ek Xux Valley, Belize. In Stone Houses and Earth Lords: Maya Religion in the Cave Context, KM Prufer, JE Brady (eds.). Boulder: University Press of Colorado, 297-322.

Saunders S, Herring A, Sawchuk L, Boyce G, Hoppa R, Klepp S.
2002. The health of the middle class: the St. Thomas Anglican Church cemetery project. In The Backbone of History: Health and Nutrition in the Western Hemisphere, R Steckel, J Rose (Eds.). Cambridge: Cambridge University Press, 130-161.

Saunders S, Fitzgerlad C, Rogers T, Dudar C, McKillop H.
1992. A test of several methods of skeletal age estimation using a doucmented archaeological sample. Canadian Societey of Forensic Sciences Journal 25:97118.

Saville MH.
1899. Exploration of Zapotecan Tombs in Southern Mexico. American Anthropologist 1:350.

Schafer M, Black S, Scheuer L.
2008. Juvenile Osteology: A Laboratory and Field Manual. Burlington, MA: Academic Press.

Schechner R.
2006. Performance Studies. New York: Routledge.

Schele L.
1984. Human sacrifice among the Classic Maya. In Ritual Human Sacrifice in Mesoamerica, EH Boone (ed.). Washington, D.C.: Dumbarton Oaks, 7-48.

Schele L, Freidel DA.
1990 A Forest of Kings: The Untold Story of the Ancient Maya. New York: William Morrow.

Schele L, Miller ME.
1986. The Blood of Kings: Dynasty and Ritual in Mayan Art. New York: George Brazilier.

Scherer AK, Carteret A, Newman S.
2015. Local water resource variability and oxygen isotope reconstructions of mobility: A case study from the Maya area. Journal of Archaeological Science: Reports 2:666-676.

Schmelkin LP.
1984. Hierarchy of preferences towards disabled groups: A reanalysis. Perceptual and Motor Skills 59: 151-157.

Schmeling A, Reisinger W, Loreck D, Vendura K, Markus W, Geserick G.
1999. Effects of ethnicity of skeletal maturation: consequences for forensic estimations. International Journal of Legal Medicine 113:253-258.

Schoen R.
2010. Dynamic Population Models. New York: Springer.

Scholes FV, Adams EB.
1938. Diego Quijada, Alcalde Mayor de Yucatán 1561-1565. México: Editorial Porrua.

Scholes FV, Roys R
1968. The Maya Chontal Indians of Acalan-Tixchel: A Contribution to the History and Ethnography of the Yucatan Peninsula. Norman: University of Oklahoma Press.

Scott AM
2004. The Historical Context of the Founding of Maya Cave Archaeology. Paper Presented in the Biennial Gordon Willey Symposium on the History of Archaeology at the 69th Annual Meeting of the Society for American Archaeology, Montreal, Quebec, Canada.
2007. The Role of the Nashville Cave Session in the Development of a Self-Conscious Subdiscipline. Paper presented at the 72nd Annual Meeting of the Society for American Archaeology, Austin.
2009. Communicatinf with the Sacred Earthscape: An Ethnoarchaeological Investigation of Kaqchikel Maya Ceremonies in Highland Guatemala. Ph.D. Dissertation. Austin: University of Texas.
2011. Some preliminary observations on the Midnight Terror Cave ceramic assemblage. Paper presented at the 76th Annual Meeting of the Society for American Archaeology, Sacramento.
2012. The historical context of the founding of Maya cave archaeology. In Heart of Earth: Studies in Maya Ritual Cave Use, JE Brady (ed.). Austin: Association for Mexican Cave Studies, 9-16.
2016. Providing Cultural Context for 'Sacrifice of the Social Outcasts' International Journal of Osteoarchaeology. 26(6): 1103-1105. DOI: 10.1002/oa.2514.

Scott AM, Brady JE.
2005. Human remains in Lowland caves: problems of interpretation. In Stone Houses and Earth Lords: Maya Religion in the Cave Context, KM Prufer, JE Brady (eds.). Boulder: University Press of Colorado, 263-284.

Scott A, Maxwell JM.
2008. Guardians and Spirit-owners in Caves and Mountains: Defining the Sacred Landscape of the Kaqchikel Maya. Paper presented at the $74^{\text {th }}$ Annual Meeting of the Society for American Archaeology, Atlanta.

Scrimshaw SCM.
1984. Infanticide in human populations: societal and individual concerns. In Infanticide: Comparative and Evolutionary Perspectives, G Hausfater, SB Hrdy (Eds.). New York: Aldine, 439-462.

Seler E.
1901 Die Alten Ansiedlungen von Chaculá, im Distrikte Nentón des Departments Huehuetenango der Republik Guatemala. Berlin: Dietrich Reiner Verlag.
1904 Antiquities of Guatemala. In Mexican and Central American Antiquities, calendar systems and history, CP Bowditch (ed.). Bureau of American Ethnology, Bulletin 28: 77-121.

Sharp Z.
2007. Principles of Stable Isotope Geochemisty. Upper Saddle River, New Jersey: Prentice Hall.

Shaw JM.
2003 Climate change and deforestation: implications for the Maya Collapse. Ancient Mesoamerica 14(1):157-167.

Shears LM, Jensema CJ.
1969. Social acceptability of anomalous persons. Exceptional Children 36: 91-96.

Sheets P.
2004. Apocalypse Then: Social Science Approaches to Volcanism, People and Cultures in the Zapotitán Valley, El Salvador. In Natural Hazards in El Salvador, WI Rose, JJ Bommer , DL López, MJ Carr, JJ Major (Eds.). Boulder: Geological Society of America Special Paper, 109-120.
2007. People and volcanoes in Zapotitan Valley, El Salvador. In Under the Shadow: Cultural Impacts of Volcanic Eruptions, R Torrence, J Grattan (eds.). Walnut Creek: Living Left Coast Press, 67-89.
2012. Responses to explosive volcanic eruptions by small to complex societies in ancient Mexico and Central America. In Surviving Sudden Environmental Change: Understanding Hazards, Mitigating Impacts, Avoiding Disasters, J Cooper, P. Sheets (eds.). Boulder: University Press of Colorado, 43-63.

Shook E.
1954. The Temple of Kukulean at Mayapan. Current Reports, No 20:89-108. Cambridge: Carnegie Institution of Washington, Department of Archaeology.

Siler W.
1979. A competing-risk model for animal mortality. Ecology 60: 750-757.

Siler W.
1983. Parameters of mortality in human populations with widely varying life spans. Statistics in Medicine 2: 373-380.

Smith AL.
1950. Uaxactun, Guatemala: Excavations of 1931-1937. Carnegie Institution of Washington, Publication 588.
1970. Dental decoration. In Excavations at Altar de Sacrifcios: Architecture,Settlement, Burials and Caches, AL Smith (ed.). Papers of the Peabody Museum of Archaeology and Ethnology Vol. 62 No. 2. Cambridge: Harvard University, 222229.

Smith BK.
1998. Reflections on Resemblance, Ritual and Religion. New York: Oxford University Press.

Smith ME, Schreiber KJ.
2006. New world states and empires: politics, religion, and urbanism. Journal of Archaeological Research 14 (1):1-52.

Smith RE.
1953. Cenote X-Coton at Mayapan. Department of Archaeology, Current Report 5: 6781. Washington, D.C.: Carnegie Institution of Washington.
1954. Cenote Exploration at Mayapan and Telchaquillo. Department of Archaeology, Current Report 12: 222-233. Washington, D.C.: Carnegie Institution of Washington.

Sommerville AD, Fauvelle M, Froehle AW.
2013. Applying new approaches to modeling diet and status: Isotopic evidence for commoner resiliencey and elite variability in the Classic Maya lowlands. Journal of Archaeological Science 40: 1539-1553.

Sosis R.
2004. The adaptive value of religious ritual. American Scientist, 92:166-172.

Sosis R, Alcorta CS.
2008. Militants and martyrs: evolutionary perspectives on religion and terrorism, In Natural Security: A Darwinian Approach to a Dangerous World, R Sagarin, T Taylor (eds.). Berkeley: University of California Press, 105-24.

Sosis R, Bressler E.
2003. Cooperation and commune longevity: a test of the costly signaling theory of religion. Cross-Cultural Research 37:211-239.

Sosis R, Kress HC, Boster JS.
2007. Scars for war: evaluating alternative signaling explanations for cross-cultural variance in ritual costs. Evolution and Human Behavior 28:234-247.

Sosis R, Phillips EJ, Alcorta CS.
2012. Sacrifice and sacred values: evolutionary perspectives on religious terrorism. In Oxford Handbook of Evolutionary Perspectives on Violence, Homicide, and War, T Shackelford, V Weekes-Shackelford (eds.). New York: Oxford University Press.

Spenard J.
2006. The Gift in the Cave for the Gift of the World: An Economic Approach to Ancient Maya Cave Ritual in the San Francisco Hill-Caves, Cancuen Region, Guatemala. M.A. Thesis, Florida State University.
2014. Underground Identity, Memory, and Political Spaces: A Study of the Classic Period Maya Ceremonial Karstscape in the Pacbitun Region, Cayo District, Belize. Ph.D. Dissertation. Riverside: University of California.

Spence MW, White CD, Longstaffe FJ, Law KR
2004. Victims of the victims: human trophies worn by sacrificed soldiers from the Feathered Serpent Pyramid, Teotihuacan. Ancient Mesoamerica 15:1-15.

Spotl C, Vennemann TW.
2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications In Mass Spectrometry 17(9):1004-1006.

Stantley RS, Killion TW, Lycett MT. 1986. On the Maya collapse. Journal of Anthropological Research 42:123-159.

Starr F.
1908. In Indian Mexico. Chicago: Forbes and Co.

Stephens JL.
1841. Incidents of Travel in Central America, Chiapas and Yucatan. London: John Murray.
1843. Incidents of Travel in Yucatan. New York: Harper Brothers.

Stone A.
1995. Images from the Underworld: Naj Tunich and the Tradition of Maya Cave Painting. Austin: University of Texas Press.
2002. Heart of Creation: The Mesoamerican World and the Legacy of Linda Schele. Tuscaloosa: University of Alabama Press.

Storey R.
1992. Life and Death in the Ancient City of Teotihuacan: A Modern Paleodemographic Synthesis. University of Alabama Press, Tuscaloosa.
2007. An elusive paleodemography? A comparison of two methods for estimating the adult age distribution of deaths at Late Classic Copan, Honduras. American Journal of Physical Anthropology 122:40-47.

Strómsvik G.
1956. Exploration of the Cave of Dzab-Na, Tecoh, Yucatan. Department of Archaeology, Current Reports 35:463-470. Washington, D.C.: Carnegie Institution of Washington.

Stuart GE.
1981. Maya art treasures discovered in cave. National Geographic 160(2):220-235.

Suga K, Motoyama K, Hara A, Kume N, Matsunaga N, Kametani R, Matsuzaki M. 1999. Respiratory failure and pulmonary hypertension associated with Klippel-Feil Syndrome. Annals of Nuclear Medicine 13(6): 441-446.

Suhler C, Freidel D.
1998. Life and death in aMaya war zone. Archaeology 51(3): 28-34.

Tainter JA.
1988. The Collapse of Complex Societies. New York: Cambridge University Press.

Taube K.
1989. The maize tamale in Classic Maya diet, epigraphy, and art. American Antiquity 54: 31-51.

Taylor H, Karlin S.
2001. An Introduction to Stochastic Modeling. 3rd ed. New York: Academic Press

Thomsen MN, Schneider U, Weber M, Johannisson R, Niethard F.
1997. Scoliosis and congenital anomalies associated with Klippel-Feil Syndrome Types I-III. Spine 22(4): 396-401.

Thomsen MN, Schneider U, Weber M, Johannisson R, Niethard FU.
1997. Scoliosis and congenital anomalies associated with Klippel-Feil Syndrome types IIII. Spine 22(4): 396-401.

Thompson EH.
1897. Cave of Loltun. Memoirs of the Peabody Museum of American Archaeology and Ethnology, Harvard University, 1(1):52-72.
1897. The Chultunes of Labna : report of explorations by the Museum, 1888-89 and 1890-91. Memoirs of the Peabody Museum of American Archaeology and Ethnology, Harvard University, 1(3):1-20.
1938. The High Priest's Grave, Chichen Itza, Yucatan, Mexico. Prepared for publication, with notes and introduction by J. Eric Thompson. Field Museum of Natural History, Anthropology Series 27, No.1.
1965 [1932]. The People of the Serpant. New York: Capricorn Books.
Thompson JE.
1975. Introduction to the Reprint Edition. In The Hill-Caves of Yucatan, by Henry C. Mercer. Norman: University of Oklahoma Press, vii-xliv.
1970. Maya History and Religion. University of Oklahoma Press, Norman.
1959. The role of caves in Maya culture. Mitteilungen aus dem Museum für Völkerkunde im Hamburg 25:122-129.
1954. The Civilization of the Mayas. $5^{\text {th }}$ edition. Chicago: Field Museum of Natural History.
1927. The Civilization of the Mayas. $3^{\text {rd }}$ edition. Chicago: Field Museum of Natural History.

Tiesler V.
2007. Funerary or nonfunerary? New references in identifying ancient Maya sacrificial and postsacrificial behaviors from human assemblages. In New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society, V Tiesler, A Cucina (Eds.). New York: Springer, 14-44.
2005. What can bones really tell us? The study of human skeletal remains from cenotes. In Stone Houses and Earth Lords: Maya Religion in the Cave Context, KM Prufer, JE Brady (eds.). Boulder: University Press of Colorado, 341-363.
1999. Head Shaping and Dental Decoration Among the Ancient Maya: Archaeological and Cultural Aspects. Paper presented at the 64th Meeting of the Society of American Archeology, Chicago.

Tiesler V, Cucina A.
2006. Procedures in human heart extraction and ritual meaning: a taphonomic assessment of anthropgenic marks in Classic Maya skeletons. Latin American Antiquity 17(4):493-510.

Tiesler V, Cucina A, Manahan TK, Price TD, Ardren T, Burton JH.
2010. A taphonomic approach to Late Classic Maya mortuary practices at Xuenkal, Yucatán, Mexico. Journal of Field Archaeology 35(4):365-379.

Tilley L.
2012. The Bioarchaeology of Care. The SAA Record 12(3): 39-41.

Tozzer AM.
1957. Chich'en Itz'a and its Cenote of Sacrifice: A Comparative Study of the Contemporaneous Maya and Toltec (Memoirs of the Peabody Museum of Archaeology \& Ethnology Harvard University, 11 \& 12). Cambridge: Peabody Museum of Archaeology \& Ethnology, Harvard University.
1941. Landa's Relacion de las Casas de Yucatan. Papers of the Peabody Museum of American Archaeology and Ethnology, vol. 4, no. 3. Cambridge: Harvard University.

Tracy M, Dormans JP, Kusumi K.
2004. Klippel-Feil Syndrome: clinical features and current understanding of etiology. Clinical Orthopaedics and Related Research 424:183-190.

Trask WR, Wright L, Prufer K.
2012. Isotopic evidence for mobility in the southern Maya periphery: preliminary evidence from Uxbenká, Toldeo District, Belize. Research Reports in Belizian Archaeology 9: 61-74.

Trigger BG.
1990. A thermodynamic explanation of symbolic behaviour. World Archaeology 22(2), 119-132.

Tringo JL.
1970. The hierarchy of preference towards disabled groups. Journal of Special Education 4: 295-306.

Tsuda, T.
2011. Modern perspectives on ancient migrations. In Rethinking Anthropological Perspectives on Migration, GS Cabana, JJ Jeffery, J Clark (eds.). Gainesville: University Press of Florida, 331-338.

Turner VW.
1966. Ritual aspects of conflict control in African micropolitics. In Political Anthropology, M Swartz, V Turner, A Tuden (eds.), Chicago: Aldine, 239-246.
1969. The Ritual Process: Structure and Anti-Structure. London: Rouledge \& Kegan Paul.

Tylor EB
1871. Primitive Culture: Researches into the Development of Mythology, Philosophy, Religion, Art, and Custom. London: John Murray.

Ubelaker DH.
1989. Human Skeletal Remains. 2nd Edition. Washington, D. C.: Taraxacum Press.

Uke T.
1970. Cutting the hour. Westways 62 (5):30-33, 57.

Urunuela G, Alvarez R.
1994. A report of Klippel-Feil Syndrome in Prehispanic remains from Cholula, Puebla, Mexico. Journal of Paleopathology 6(2): 63-67.

Valdes JA, Foias A, Inomata T, Escobedo H, Demarest AA.
1993. Proyecto Arqueoldgico Regional Petexbatun. Informe Preliminar \#5. Quinta Temporada, Nashville, TN: Vanderbilt University.

Vail G, Hernández C.
2007. Human sacrifice in Late Postclassic Maya iconography and texts. In New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society, V. Tiesler, A Cucina (eds.). New York: Springer, pp. 120-164.

Valeri V.
1985. Kingship and Sacrifice: Ritual and Society in Ancient Hawaii. Chicago: The University of Chicago Press.

Van Gennep A.
1960 (1908). The Rites of Passage. Chicago: University of Chicago Press.
Veblen T.
1899. The Theory of the Leisure Class. New York, NY: Macmillan.

Verdugo C, Fehren-Schmitz L, Brady J.
2016. Sacrifice at Midnight Terror Cave, Belize, Paper presented at the 81st Annual Society for American Archaeology Meetings, Orlando.

Verdugo C, Kassadjikova K, Washburn K, Harkins K, Fehren-Schmitz L.
2016. Ancient DNA clarifies Osteological analyses of commingled remains from Midnight Terror Cave, Belize. International Journal of Osteoarchaeology 27(3): 95-499. DOI: 10.1002/oa.2550.

Verdugo C.
2015. Sinking Archaeological Teeth into the Dental Modification Issue: An Examination of Midnight Terror Cave. Paper presented at the Society for American Archaeology, San Francisco.

Villa Rojas A.
1969. The Tzeltal. In Handbook of Middle American Indians, Vol. 7: Ethnology, EZ Vogt (ed.). Austin: University of Texas Press, 195-225.

Vogt EZ.
1961. Some aspects of Zinacantan settlement patterns and ceremonial organization. Estudios de Cultura Maya 1: 131-145.
1964. Ancient Maya and contemporary Tzotzil cosmology: a comment on some methodological problems. American Antiquity 30:192-195.
1969. Zinacantan: A Maya Community in the Highlands of Chiapas. Cambridge: Belknap Press.
1977. On the symbolic meaning of percussion in Zinacanteco ritual. Journal of Anthropological Research 3(33): 231-244.
1981. Some aspects of sacred geography of Highland Chiapas. In Mesoamerican Sites and World-Views, EP Benson (ed.). Washington, D.C.:Dunbarton Oaks Research Library and Collection, 119-142.

Vogt EZ, Stuart D.
2005. Some notes on ritual caves among the ancient and modern Maya. In In the Maw of the Earth Monster: Mesoamerican Ritual Cave Use, JE Brady, K Prufer (eds.). Austin: University of Texas Press, 155-185.

Wauchope R.
1972. E. Wyllys Andrews, IV, 1916-1971. American Antiquity 37:394-403.

Wade WD.
1981. Klippel-Feil Syndrome in a prehistoric population of Northern Arizona. Mercury Series Paper 106:115-126. Ottawa: National Museum of Man, Archaeological Survey of Canada.

Walker D.
2012. Disease in London, $1^{\text {st }}-19^{\text {th }}$ Centuries: An Illustrated Guide to Diagnosis. Museum of London Archaeology, MOLA Monograph 56.

Webster DL.
1977. Warfare and the evolution of the Maya civilization. In The Origins of Maya Civilization, REW Adams (ed.). Albuquerque: School of American Research and University of New Mexico Press, 335-371.
2000. The not so peaceful civiliazation: a review of Maya war. Journal of World Prehistory 14: 65-119.
2001. Maya religion. In Archaeology of Ancient Mexico and Central America: An Encyclopedia, ST Evans, DL Webster (eds.). pp. New York: Garland, 448-451.

Webster JW, Brook GA, Railsback LB, Cheng H, Edwards RL, Alexander C, Reeder PP.
2007. Stalagmite evidence from Belize indicating significant droughts at the time of Preclassic abandonment, the Maya hiatus, and the Classic Maya collapse. Paleogeography, Palaeoclimatology, Palaeoecology 250:1-17.

Weiss KM.
1973. Demographic Models for Anthropology. Washington, D.C.: Memoirs of the Society for American Archaeology, no. 27.

Weiss-Krejci E.
2003. Victims of human sacrifice in multiple tombs of the ancient Maya: a critical review In Antropologia de la Eternidad: la Muerte en la Cultura Maya, AC Ruiz, MH Ruz Sosa, MJ Iglesias Ponce de Leon (eds.). Madrid, Sociedad Espanola de Estudios Mayas, 355-382.
2004. Mortuary representations of the nobel house: a cross-cultural comparison between collective tombs of the ancient Maya and dynastic Europe. Journal of Social Archaeology 4(3): 368-404.
2006. Identifying ethnic affiliation in the Maya mortuary record. In Maya Ethnicity: The Construction of Ethnic Identity from Preclassic to Modern Times: Proceedings of the 9th European Maya Conference, Bonn, December 10-12, 2004, Vol. 19. Verlag: Anton Saurwein, , 47-60.

WelshWBM.
1988. An Analysis of Classic Lowland Maya Burials. Oxford: BAR International Series no. 409. British Archaeological Reports.

Westbrook MT, Legge V, Pennay M.
1993. Attitudes towards disabilities in a multicultural society. Social Science \& Medicine 36(5): 615-623.

White CD.
1986. Paleodiet and Nutrition of the Ancient Maya at Lamanai, Belize: A Study of Trace Elements, Stable Isotopes, Nutritional and Dental Pathologies, M.A.thesis, Peterborough, ON Canada: Trent University.

White CD, Healy PF, Schwarcz HP.
1993. Intensive agriculture, social status, and Maya diet at Pacbitun, Belize. Journal of Anthropological Research 49(4):347-375.

White CD, Pendergast DM, Longstaffe FJ, Law KR.
2001. Social complexity and food systems at Altun Ha, Belize: the isotopic evidence. Latin American Antiquity 12(4):371-393.

White CD, Price TD, Longstaffe FJ.
2007. Residential histories of the human sacrifices at the Pyramid of the Moon, Teotihuacan. Ancient Mesoamerica 18:159-172.

White CD, Schwarcz HP.
1989. Ancient Maya Diet: as inferred from isotopic and elemental analysis of human bone. Journal of Archaeological Science 16:451-474.

White CD, Schwarcz HP.
1993. Intensive agriculture, social status, and Maya diet at Pacbitun, Belize. Journal of Anthropological Research 49(4):347-375.

White CD, Spence MW, Longstaffe FJ, Stuart-Williams H, Law KR.
2002. Geographic identities of the sacrificial victims from the Feathered Serpent Pyramid, Teotihuacan: implications for the nature of state power. Latin American Antiquity 13(2): 217-236.

White CD, Spence MW, Longstaffe FJ.
2004. Demography and ethnic continuity in the Tlailotlacan enclave of Teotihuacan: the evidence from stable oxygen isotopes. Journal of Anthropological Archaeology 23:385-403.

White CD, Spence MW, Longstaffe FJ, Law KR.
2000. Testing the nature of Teotihuacan imperialism at Kaminaljuyu using phosphate oxygen-isotope ratios. Journal of Anthropological Research 56:535-558.

White CD, Spence MW, Stuart-Williams HLQ, Schwarcz HP.
1998. Oxygen isotopes and the identification of geographical origins: the Valley of Oaxaca versus the Valley of Mexico. Journal of Archaeological Science 25(7):643-655.

White TD, Black MT, Folkens PA.
1999. Human Osteology. 2nd ed. Burlington, MA: Academic Press.

White TD, Black MT, Folkens PA.
2011. Human Osteology. 3nd ed. Burlington, MA: Academic Press.

Whittington SL, Reed DM.
1997. Commoner diet at Copán: insights from stable isotopes and porotic hyperostosis. In Bones of the Maya: Studies of Ancient Skeletons, SL Whittington, DM Reed (eds.). Tuscaloosa: The University of Alabama Press, 157-170.

Willard TA.
1926. The City of the Sacred Well. New York: The Century Co.

Williams JS, White CD.
2006. Dental modification in the Postclassic population from Lamanai, Belize. Ancient Mesoamerica 17:139-151.

Wilson R.
1995. Maya Resurgence in Guatemala: Q'eqchi' Experiences. Norman: University of Oklahoma Press.

Winter M, Markens R, Martínez López C, Alicia HMT.
2007. Shrines, offerings, and Postclassic continuity in Zapotec religion. In Commoner Ritual and Ideology in Ancient Mesoamerica, N Golin, JC Lohse. Boulder: University of Colorado Press, 185-212.

Winter RB, Moe JH, Lonstein JE.
1984. The incidence of Klippel-Feil Syndrome in patients with congenital scoliosis and kyphosis. Spine 9(4): 363-366.

Wood JW, Milner GR, Harpending HC, Weiss KM, Cohen MN, Eisenberg LE, Huchinson DL, Rimantas J, Česnys G, KatzenbergMA, Lukas JR, McGrath JW, Roth EA, Ubelaker DH, Wilkinson RG.
1992. The Osteological paradox: problems of inferring prehistoric health from skeletal samples. Current Anthropology 33(4):343-370.

Wood JW, Holman DJ, O'Connor KA, Ferrell RJ.
2002. Mortality models for paleodemography. In Paleodemography: Age distributions from skeletal samples, RD Hoppa, JW Vaupel (eds.). Cambridge: Cambridge University Press, 129-168.

Woodfill BKS.
2007. Shrines of the Pasion-Verapaz Region, Guatemala: Ritual and Exchange Along an Ancient Trade Route. Ph.D. dissertation, Department of Anthropology, Nashville: Vanderbilt University.

Wright LE.
1994. The Sacrifice of the Earth? Diet, Health, and Inequality in the Pasión Maya Lowlands. Ph.D. Dissertation, Chicago: University of Chicago.
1997 Biological perspectives on the collapse of the Pasion Maya. Ancient Mesoamerica 8:267-273.
2007. Ethnicity and Isotopes at Mayapán. Foundation for the Advancement of Mesoamerican Studies , Inc. Report. http://www.famsi.org/reports/05068/
2012. Immigration to Tikal, Guatemala: evidence from stable strontium and oxygen isotopes. Journal of Anthropological Archaeology 3:334-352.
2013. Eamining childhood diets at Kaminaljuyu, Guatemala, through stable isotope analysis of sequential enamel microsamples. Archaeometry 55(1):113-133.

Wright LE, Chew F.
1998. Porotic hyperostosis and paleoepidemiology: a forensic perspective on anemia among the ancient Maya. American Anthropologist 100(4):924-939.

Wright L., Healy PF, Schwarcz HP.
1993. Intensive agriculture, social status, and Maya diet at Pacbitun Belize. Journal of Anthropological Research 49(4):347-375.

Wright LE, Schwarcz HP.
1998. Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. American Journal of Physical Anthropology 106:1-18.

Wrobel GD, Andres CR, Morton SG.
2011. Ritual Landscapes of the Caves Branch River Valley. Paper presented at the Belize Archaeology Symposium. San Ignacio, Belize.
2012. Ritual landscapes of the Caves Branch River Valley. Research Reports in Belizean Archaeology 9: 233-244.

Wrobel GD, Helmke C, Freiwald C.
2014. A case study of funerary cave use from Je'reftheel, Central Belize. In The Bioarchaeology of Space and Place: Ideology, Power, and Meaning in Maya Mortuary Contexts, G Wrobel (ed.). New York: Springer, 77-106.

Wrobel GD, Michaels AR, Burbank J.
2014. Interpreting the Mortuary Use of Actun Kabul, Roaring Creek, Belize. Paper Presented at the Belize Archaeological \& Anthropological Symposium, San Ignacio, Belize.

Wynne-Davies R.
1975. Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. Journal of Medical Genetics 12: 280-288.

Zahavi A, Zahavi A.
1997. The Handicap Principle. New York, NY: Oxford University Press.

Zipf G K.
1949. Human Behaviour and the Principle of Least Effort: An Introduction to Human Ecology. Cambridge, MA: Addison-Wesley.

[^0]: ${ }^{1}$ This radiocarbon date was processed by Beta Analytic and paid for GRB Entertainment for an episode of a telievision show titled Bone Detectives (Season 1, Episode 3 "Cave of the Headless Corpse"), which aired on the Discovery Channel on January 21, 2008. Attempts were made to retrieve detailed assay information, but neither the production company or Beta Analytic would release the information.

