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Abstract 

 Fuel cells have the potential to be a pollution-free, low-cost, and 

energy efficient alternative to the internal combustion engine for 

transportation and small-scale stationary power applications. The current 

state of fuel cell technology has already achieved two of these three lofty 

goals. The remaining barrier to wide-scale deployment is the high cost, which 

is primarily caused by dependence on large amounts of platinum to catalyze 

the energy conversion reactions. To overcome this barrier and facilitate the 

integration of fuel cells into mainstream applications, research into a new 

class of catalyst materials that do not require platinum is needed.  
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 There has been a significant amount of research effort directed toward 

the development of platinum-group metal free (PGM-free) catalysts, yet 

there is a lack of consensus on both the engineering parameters necessary to 

improve the technology and the fundamental science that would facilitate 

rational design. I have engaged in research on PGM-free catalysts based on 

inexpensive and abundant reagents, specifically: nicarbazin and iron. 

Catalysts made from these precursors have previously proven to be among 

the best PGM-free catalysts, but their continued advancement suffered from 

the same lack of understanding that besets all catalysts in this class. The 

work I have performed address both engineering concerns and fundamental 

underlying principles. I present results demonstrating correlations between 

physical structure, chemical speciation, and synthesis parameters, as well as 

addressing active site chemistry and likely locations.  

 My research presented herein introduces new morphology analysis 

techniques and elucidates several key structure-to-property characteristics of 

catalysts derived from iron and nicarbazin. I discuss the development and 

application of a new length-scale specific surface analysis technique that 

allows for analysis of well-defined size ranges from a few nm to several 

microns. The existing technique of focused ion beam tomography is modified 

and optimized for platinum-group metal free catalyst layers, facilitating direct 

observation of catalyst integration into catalyst layers. I present evidence 

supporting the hypothesis that atomically dispersed iron coordinated with 

nitrogen are the dominant active sites in these catalysts. Further, that the 

concentration of surface oxides in the carbon structure, which can be directly 
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influenced by synthesis parameters, correlates with both the concentration of 

active sites in the material and with fuel cell performance. Catalyst 

performance is hindered by the addition of carbon nanotubes and by the 

presence of metallic iron. Evidence consistent with the catalytic active sites 

residing in the graphitic plane is also presented.  
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Chapter 1 – Introduction 

1.1 – Motivation 

 The need for research into new energy sources and storage 

technologies is driven by environmental, political, and economic concerns. In 

the U.S., and worldwide, the energy landscape is dominated by fossil fuels.1 

The use of fossil fuels has several drawbacks that make the search for 

alternative energy solutions critical. Geopolitical tensions are created or 

exacerbated by the increasing need for petroleum. The environmental impact 

caused by burning of fossil fuels is clearly evident and, in spite of current 

efforts, damage is still being caused at an accelerating rate.2, 3 Further, as 

our need for new fossil fuel sources increases, the environmental impact of 

their extraction is becoming a more apparent threat.4, 5 Addressing these 

issues requires development of energy technologies that facilitate either 

extraction of additional useful work from fossil fuels through increased 

efficiency, or energy sources that function entirely without fossil fuels. 

 The major components of energy use are industrial, transportation, 

and residential needs.6 Herein, I focus on small to medium scale energy 

technologies that primarily encompass transportation, with some overlap 

with residential and small industry. The vast majority of our transportation is 

powered by fossil fuels.6 Similarly, the primary source of emergency power 

generation for critical industrial applications (hospitals, data centers, 

government operations, etc.) are fossil fuel driven generators.  

Alternatives to fossil fuels for transportation include combustion of non-

petroleum products, such as hydrogen, and electric vehicles. In electric 
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vehicles, the two primary technologies for energy storage in the vehicle are 

batteries, which store energy generated at a central power station supplied 

through the grid, and fuel cells, which carry energy in the form of fuel and 

convert the chemical energy directly to electrical power directly onboard the 

vehicle. Batteries are a highly efficient energy storage mechanism. They 

produce no emissions and their charge/discharge cycle has a high energy 

efficiency. However, batteries are expensive, recharging times are on the 

order of hours, and they have relatively low energy densities thereby limiting 

their range. Fuel cells are also expensive, but refueling times are on the 

order of minutes (similar to refueling a gasoline vehicle), and they have a 

much higher energy density than batteries allowing greater range on a single 

refueling. Though batteries currently cost less than fuel cell technology, and 

battery costs will continue to decrease with ongoing research, batteries are 

not projected to approach fuel cells in the areas of recharging/refueling times 

or energy densities. These concerns make fuel cells an attractive option as a 

final solution for transportation power sources.7-9 The rest of this text focuses 

on fuel cells and how these challenges may be overcome. 

 

1.2 – Introduction to fuel cells 

 A fuel cell is similar to a battery in many ways. They both convert 

chemical energy directly to electrical energy without the need for a 

mechanical intermediate. The fundamental difference is that a battery is a 

closed system while a fuel cell is an open system. Batteries carry substances 

that are reversibly changeable from fuel when charged, to products when 
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discharged. When the fuel is exhausted the products can be converted back 

into fuel by charging with an external electrical power source. In the case of 

a disposable battery, once the fuel is used up, the battery must be recycled 

to recover the materials for future use. In either case, fuel cannot be added 

and products do not leave the battery. Adding energy requires recharging, 

which is a slow process. A fuel cell is fed fuel from an outside reservoir, 

converts the fuel to electrical power, and discharges products. Fuel cells can 

operate continuously as long as there is fuel available, so their run time is 

limited by the amount of fuel able to be carried in the external tank. Adding 

energy is accomplished by refilling the fuel tank, which is a faster process. 

 There are multiple types of fuel cells that consume different fuels and 

operate at different temperatures, each with their own advantages and 

disadvantages. High temperature fuel cells operate between 200-1000 °C. 

They are generally the most efficient and are suited for continuous operation. 

Long startup times and the fact that they operate at high temperatures make 

this class of fuel cell unsuitable for use in transportation applications. Low 

temperature fuel cells operate under 100 °C and have short startup times. 

They include proton exchange membrane (PEM) fuel cells, anion exchange 

fuel cells, and direct methanol fuel cells. Methanol fuel cells are attractive 

because they use liquid fuel for which distribution infrastructure exists. 

However, as methanol is a hydrocarbon, they release CO2 as a product. 

Anion exchange and PEM fuel cells use hydrogen as a fuel and exhaust only 

water. Anion exchange fuel cells perform extremely well at the cathode but 

have slow reactions at the anode. Further, they are a newer technology and 
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the ion conducting materials are not well developed. PEM fuel cells perform 

extremely well at the anode but have slow reactions at the cathode. 

Research into ionomers for proton conduction have been under development 

for several decades and are well understood and inexpensive.  

 Figure 1-1 shows a diagram of a fuel cell and Equations 1-3 show the 

reactions that take place inside a PEM fuel cell.10  

 Anode:                          2H2  4e- + 4H+ (1) 

 Cathode:      O2 + 4e- + 4H+  2H2O (2) 

 Overall:                 2H2 + O2  2H2O (3) 

 

At the anode H2 is oxidized to form protons and electrons. The protons travel 

through the ionomer in the catalyst layer and membrane to the cathode. The 

electrons cannot pass through the ionomer. They are conducted through an 

external circuit where they 

produce usable electric power. At 

the cathode, the protons and 

electrons come together with O2 to 

form water. The reactions at both 

the anode and cathode require 

catalysts to progress. The better 

the catalyst, the faster the 

reactions, and the more power the 

fuel cell can generate. 

 

  

 

Figure 1-1. Diagram of a PEM fuel cell.10 
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1.3 – Need for research 

 Fuel cells are an attractive power source for transportation and small 

stationary applications. It is currently possible to construct fuel cells that 

provide the necessary power and longevity to replace the internal 

combustion engine in transportation applications. The reason this is not 

currently done is that fuel cells require large amounts of Pt to function. There 

are two issues with the use of high levels of Pt that make current fuel cell 

technology undeployable on a large scale. The cost of Pt is high and has been 

unstable. At current prices, about 40% of the total cost of a mass produced 

fuel cell would be due to Pt, making them too expensive to compete with 

existing technologies.11 There is also a geopolitical issue in that 

approximately 80% of the known Pt deposits exist in one geographic region – 

South Africa.12 Heavy international reliance on a natural resource that exists 

in one location has historically been problematic and is desirable to avoid.  

 To address these issues with fuel cells, there are two paths forward. 

One is ultra-low Pt loading fuel cells. These fuel cells would use a fraction of 

the Pt that current fuel cell technologies use. There is considerable research 

in this direction and, though progress has been made, the best Pt fuel cells 

are either far away from the desired loading, or far away from the desired 

performance.7, 8 The other path is development of a new class of catalyst that 

does not rely on precious metals to function. Such a class of catalysts was 

initially discovered in 1964 in phthalocyanines and has since been developed 

into engineered catalysts of a carbon-nitrogen matrix with embedded 

transition metals.7, 9, 13-16 This new class of catalysts is referred to by several 
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names: metal-nitrogen-carbon (MNC), non-precious metal, non-platinum 

group metal (non-PGM), or platinum-group metal free (PGM-free) catalysts.  

 In the last few years, there have been several reviews on the state of 

PGM-free catalysts. Reviews from the last five years alone have surveyed 

nearly 1000 publications on the subject.9, 13, 14, 16-21 The conclusions from 

these reviews can be summed up in short order.  

• While considerable progress has been made in performance of PGM-

free catalysts, they are still not competitive with catalysts based on 

precious metals such as Pt. 

• Though much research has been devoted to understanding the 

fundamental structure of the active site(s) in these catalysts, there is 

no consensus.  

• Though there are multiple variations on synthetic routes and 

precursors used for these catalysts, at their core, the vast majority of 

the syntheses are quite similar. Carbon and nitrogen precursors are 

pyrolyzed, usually in the presence of a transition metal such as iron or 

cobalt, to form carbon-nitrogen heterostructures with incorporated 

transition metals. 

In the following section I review the literature that defines the state-of-the-

art for PGM-free catalysts and illustrates these issues in detail.  
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Chapter 2 – Background and Previous Work 

 There has been a significant amount of effort directed toward the 

development of better PGM-free catalysts and understanding of their 

structure and fundamental properties.7-9, 13, 16-24 At present, the research 

mechanism has largely been a trial-and-error search for synthesis methods 

that produce better catalysts followed by multiple characterization methods 

to try and understand the new material. Though these characterizations have 

yielded some consistent information, the results are often ambiguous or not 

easily reconciled with each other. In this section, I will address the results of 

some of these analyses and give a brief description of techniques. The three 

primary foci are catalyst performance, material morphology, and chemical 

structure (including potential active site chemistries).  

 

2.1 – Performance analysis 

 Primary measures of catalyst performance are catalytic performance, 

generally measured by rotating disk electrode (RDE) or rotating ring disk 

electrode (RRDE), and fuel cell performance as measured in a membrane 

electrode assembly (MEA). RDE analysis is a quick screen method that can be 

easily used to assess the activity of many catalysts in a shorter period of 

time, but it is not always a good indicator of fuel cell performance. RRDE 

adds the ability to measure H2O2 generation, which gives insight into the 

reaction pathway. Further, H2O2 quickly degrades fuel cell components, so it 

is an important product to monitor. It is possible to have a catalyst with 

excellent performance in RDE testing that exhibits very poor performance in 
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an actual fuel cell. However, since RDE measures catalytic activity, it is not 

the case that a material with very poor RDE performance could have good 

fuel cell performance.  

 In RDE analysis, a catalyst is coated onto a glassy carbon electrode, 

immersed in electrolyte with reactants, and rotated to force the electrolyte 

across the catalyst surface.26 This rotation ensures that there is fresh 

electrolyte with reactants at the electrode surface, thereby eliminating bulk 

diffusion limitations for the reaction. A diagram of an RRDE is shown in 

Figure 2-2 with the Levich 

equation which predicts the 

current generated at the disk. As 

the electrode is rotated, the 

potential is varied and the current 

between the electrode and a 

counter electrode is measured. 

This produces a cyclic 

voltammogram (CV) that gives 

varying information depending on 

the reactants present in the 

electrolyte, speed at which the potential is varied, rotation speed, and 

potentials used. For oxygen reduction reaction (ORR) performance 

measurements, the electrolyte is saturated with oxygen that is reduced to 

water or hydrogen peroxide at the catalyst surface. The current generated by 

these reactions, and the potential at which they occur, are indicators of 

 

Figure 2-2. Diagram of RRDE with the Levich 

equation. Levich equation: D - diffusion 
coefficient of O2; ν - viscosity; n - number of 
electrons passed during O2 reduction; F - 

Faraday constant; A - surface area of the 
electrode; ω - rotational frequency of the 
rotating electrode; C - concentration of O2.25 
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catalyst performance. The diffusion term in the Levich equation represents 

the diffusivity of O2 in electrolyte. This equation assumes a perfectly smooth 

surface. As PGM-free catalysts are 

typically deposited to a high 

catalyst loading to ensure good 

coverage, the assumption of a 

smooth surface is not accurate. 

Because there is no way to 

account for diffusion within the 

catalyst layer, and peroxide can 

be both created and consumed 

within the catalyst layer, 

application of the Levich equation to PGM-free catalysts requires careful 

consideration as to its applicability. 

 The cathodic sweep of several catalysts is shown in Figure 2-3.14 The 

best performing catalyst on this plot is the Pt catalyst, found furthest to the 

right. It is the best performing because it begins generating current at the 

highest potential, the magnitude of the current increases very quickly as the 

potential drops, and it reaches its maximum current quickly. This 

performance curve is the goal everyone working on PGM-free catalysts is 

trying to approach. The PGM-free catalysts shown on this plot are state of 

the art catalysts from multiple laboratories. These RDE studies highlight the 

first hurdle PGM-free catalysts need to overcome: they are not nearly as 

active as Pt. While one strategy to compensate for a lack of activity is to use 

 

Figure 2-3. Example RDE performance of 
multiple PGM-free catalysts compared to state-

of-the-art Pt catalyst (a) and DOE PGM-free 
target (b). These catalysts were part of a 
cross-laboratory study.14 
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more of the catalyst, this creates other performance issues when they are 

operated in a fuel cell.  

 The most representative measure of catalyst performance is by 

integrating it into a functioning fuel cell. As these catalysts are being 

developed for use in the cathode of fuel cells, the anode is typically 

constructed using Pt as the catalyst. A representative fuel cell performance 

curve is shown in Figure 2-4.9 In 

these plots, a better catalyst has a 

higher current at low voltage 

(starts higher on the left side of 

the plot), and has the most 

horizontal possible tail yielding the 

highest current at low voltages. 

Each region of the performance 

curve is influenced by different 

physical characteristics of the fuel cell. The low current region is greatly 

influenced by the chemical kinetics of the catalyst. It represents the catalytic 

activity without regard to mass or charge transport limitations in the fuel cell. 

The region of intermediate current, in this plot from about 200-600 mA cm-2, 

is the ohmic region. This portion of performance is dominated by electronic 

resistance losses from both electron and proton transport limitations. The 

region of high current is dominated by mass transport limitations. PGM-free 

catalysts are at a disadvantage in all three regions. As noted above, PGM-

free catalysts are not as active as Pt catalysts, so their kinetics are slower, 

 

 

Figure 2-4. Example of fuel cell performance 
for multiple PGM-free catalysts compared to 

state-of-the-art Pt catalyst (gray circles) and 

DOE PGM-free target (dotted line). These 
catalysts were part of a cross-laboratory 
study.9  
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resulting in a lower starting potential. To compensate for this lower activity, 

PGM-free catalyst layers are much thicker than layers with Pt. This thickness 

causes additional performance losses in both the ohmic and transport 

regimes.  

 I have referenced the performance difference between Pt and PGM-

free catalysts above, but have not yet quantified this difference. For current 

commercially available Pt/C catalysts, current at 0.8 V is about 1500 

mA cm-2, as seen in Figure 2-4. At the same voltage, PGM-free catalysts 

produce 50-300 mA cm-2.14 Because PGM-free catalysts have less activity, 

they cannot be operated at the same voltage as a Pt based fuel cell. PGM-

free catalyst performance is frequently measured at 0.5 or 0.6 V and still 

produce less than 1000 mA cm-2.7, 9 It should be noted that these values 

were obtained using oxygen at the cathode where in real-world applications, 

they would be using air, which lowers the performance significantly more for 

PGM-free than it does for Pt.  

 Mechanisms to improve performance of PGM-free catalysts are to 

increase the activity and improve transport characteristics. Improvement of 

transport characteristics requires understanding and control of catalyst 

morphology. Increasing catalyst activity requires either increasing the 

number of active sites, or improving the quality of the active sites.  

 

2.2 – Morphology analysis 

 Measurement of catalyst morphology includes understanding of the 

internal and external physical structure of the individual catalyst particles as 
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well as how they interact with each other and the ionomer in a fuel cell 

catalyst layer. Existing methods to analyze the internal structure of catalysts 

are well developed. Analysis of nitrogen isotherms are commonly used to 

determine the total internal surface area and distribution of pore sizes within 

the material.7, 14, 27 Analysis of the total surface area is commonly performed 

using theory first presented in 1939 by Brunauer, Emmett, and Teller, 

commonly referred to as BET theory.28 Pore size distributions (PSD) are 

estimated either by a classical theory developed by Barrett, Joyner, and 

Halenda, commonly called BJH, or by density functional theory (DFT) that 

was optimized for activated carbons by Ustinov.29, 30 The primary advantage 

of using BET is that surface areas can be quickly measured, generally in 

under an hour, and the instrument is simple to use. But BET does not give 

any information on the sizes of pores. Further, with standard degassing 

techniques used for BET, the micropores may not be completely emptied, so 

the measured surface area can miss area contained in micropores. BJH 

theory is well suited to measuring pore sizes greater than ~2 nm, and is 

based on the assumption that the surface area of a pore increases as the 

square of its diameter. This is a valid assumption with pores that are 

spherical or nearly any polyhedral shape, but is fundamentally inaccurate for 

pores that exist as the space between two planes. BJH also fails to properly 

address micropores because it does not take into account intermolecular 

forces that occur in the adsorptive as the size of the pore approaches the size 

of the adsorptive molecules.31 This technique is well suited for many classes 

of materials, and can be performed in about 24 hours, but is not well suited 
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to pore size analysis of high surface area carbons. DFT, while the best suited 

for accurate analysis of carbon based carbon materials, takes about three 

days to measure one sample. This increased analysis time results from the 

necessity to achieve extremely low pressures, about 10-6 P/P0 (where P is the 

measurement pressure and P0 saturation pressure of nitrogen). As developed 

by Ustinov, DFT models 

micropores as slits between 

carbon sheets. It also takes into 

account the physical dimension of 

the nitrogen molecules, their  

intermolecular forces in a small 

pore, and their interactions with 

the opposite wall in very narrow 

pores. It yields the most accurate 

total surface area and pore sizes 

for PGM-free catalysts. This is 

especially important since 

micropores compose a high percent of the total surface area of the most 

active catalysts, and there is evidence that the active sites are most 

abundant in micropores.7, 14, 27, 32 Figure 2-5 shows isotherms of several 

catalysts and the pore size distributions calculated using DFT.14 Figure 2-6 

gives a comparison of catalyst RDE performance with micropore surface area. 

In the materials tested, there is a clear correlation between micropore total 

surface area and catalyst performance. Similar observations have been made 

 

 

Figure 2-5. Example N2 isotherms and PSD for 
multiple PGM-free catalysts. These catalysts 

were part of a cross-laboratory study.14  
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in other papers and correspond to results from ab initio quantum 

calculations.27, 32 

 Analysis techniques for 

surface morphology are not as 

well developed as those for pore 

sizes. Imaging of catalyst surfaces 

is frequently done using scanning 

electron microscopy (SEM). 

However, the quantitative 

information contained in SEM 

images is largely underutilized. 

The dominant approach to SEM 

images is qualitative analysis by means of visual inspection.33-37 Digital 

Image Processing (DIP) is used on SEM images to find objective 

representations of the intensity distribution in an image to convert these 2-D 

images into 1-D image descriptors (values) that can be utilized for 

quantitative morphology representation and description.38, 39 However, 

relevant length scales for different transport and packing phenomena occur 

from a few to a few hundred nanometers. Useful analysis of catalyst surfaces 

requires the ability to quantitatively distinguish surface features at different 

length scales, much the same way that pore size distributions distinguish 

between different size pores.  

 Traditionally, surface morphology has been separated into two length-

scales called roughness for short scales and waviness for long scales.40 There 

 

Figure 2-6. Comparison of activity vs. 

micropore area for multiple PGM-free catalysts. 
There is a trend toward increased activity with 
increased microporous area. These catalysts 

were part of a cross-laboratory study.14  
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is not a precise definition for what constitutes long and short scales within a 

surface or image. The use of Gaussian low-high-filtering for separating 

different scales of roughness is the conventional routine established for 

surface profilometry for all length-scales.40 Prior work has successfully 

extended this methodology to SEM images, in which high-pass and low-pass 

filters were employed to separate images into roughness and waviness image 

components, respectively.38, 39, 41 This approach allows the separation of 

morphological information into two different scales for analysis. However, the 

high-low filtering approach only provides differentiation between ill-defined 

“large” and “small” features for a particular image scale. Further, correlation 

of these categories to specific physical sizes has been imprecise. Useful 

analysis of catalyst surfaces requires new techniques to accurately separate 

length-scales of surface features. 

 X-ray diffraction (XRD) is a technique frequently used for analysis of 

metal-rich catalysts, but the XRD features generated by carbon are either 

qualitatively addressed or overlooked as background around the metal 

pattern of interest. There exists a, now rarely used, curve fitting algorithm 

capable of extracting information on the carbon crystalline structure including 

crystallite size and number of graphitic layers.42 From both engineering and 

fundamental science perspectives, understanding the locations of active sites 

within the graphitic structure is of central importance. From an engineering 

standpoint, this knowledge would provide concrete materials engineering 

targets. From a fundamental science perspective, it provides much needed 
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modeling input allowing for calculation of potential active site structures and 

reaction pathways. 

 

2.3 – Chemical analysis 

 There are many chemical characterization techniques that have the 

potential to be used on PGM-free catalysts, but the most common are x-ray 

absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS). 

Less commonly used but frequently cited because it provides information 

otherwise unavailable is a gamma radiation technique called Mössbauer 

spectroscopy. Additionally, for this work I will use transmission electron 

microscope energy dispersive spectroscopy (TEM/EDS). Related to, but 

separate from these analysis techniques, are modeling techniques using ab 

initio quantum calculations (also called DFT, but distinct from analysis of pore 

sizes). These chemical simulations are not analyses of existing materials, but 

the models take into account data from chemical measurements and attempt 

to predict structures and reaction pathways.  

 The two x-ray analysis methods give complementary information. XAS 

is a bulk technique that particularly well suited to yield information on metal 

in the catalyst. Catalysts containing fractions of a percent of Fe are well 

within the detection capability of XAS. Also, since XAS is a transmissive 

technique, it is possible to analyze these catalysts in operando, allowing for 

examination of transitions in the Fe spectrum with changes in potential. 

There are two analysis techniques for XAS data. X-ray absorption near edge 

structure (XANES) gives information on the oxidation state and coordination 
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of Fe. Extended x-ray absorption fine structure (EXAFS) gives information on 

the nearest neighbors and bond distances for atoms in the vicinity of Fe 

atoms. The combination of these techniques allows for analysis of Fe in PGM-

free catalysts and its immediate environment. The majority of XAS 

experiments indicate that the most active catalysts have Fe coordinated to N 

and little or no Fe coordinated with Fe.21, 43, 44 Though, there are publications 

that report good performance with little or no Fe-N coordination.45  

 XPS is a surface analysis technique giving information on the top few 

nm of a sample. Many of the catalysts have iron concentrations of less than 

1%. XPS with detection limits on the order of parts per thousand is not well 

suited to give detailed information on iron content. But XPS is particularly 

well suited to give detailed information on the concentration and chemical 

environment of carbon, oxygen, and nitrogen in these materials. From XPS 

analysis, it is seen that though the catalysts are typically 80-95% carbon, 

increases in specific nitrogen species correlates with better performance. It is 

observed that pyridinic nitrogen and nitrogen bound to iron are present in 

higher concentrations in catalysts with the best performance while pyrrolic 

nitrogen is more prevalent in catalysts with poor performance.11, 14, 20-22, 27, 44-

55 Relevant N species are shown in Figure 2-7.  

 Fundamentally different from x-ray analyses that examine the electron 

shells of materials, Mössbauer spectroscopy probes the nucleus of the 

element of interest, in this case Fe. It gives information on the energy state 

of the nucleus which is affected by the coordination and bonding of Fe.56 In 

Fe containing catalysts, data from Mössbauer spectroscopy is consistent with 
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observations from XAS. Catalysts with the greatest activity exhibit Fe 

coordinated with nitrogen.7, 14, 24, 43, 56 

 TEM/EDS analysis uses x-rays emitted during TEM analysis to measure 

elemental composition at the sub-nanometer scale. The overlay of images of 

C, N, and Fe concentrations has 

the potential to yield important 

insight into the N and Fe 

distribution of samples to 

understand how position-

dependent elemental distribution 

and length-scale specific 

heterogeneity affect catalyst 

performance.  

 Combining results from all of these analyses methods gives insight into 

possible structures for the active site(s) responsible for the ORR in these 

catalysts. The primary schools of thought are that the metal is coordinated 

with nitrogen atoms incorporated in the carbon matrix, that the metal is not 

part of the active site but may help promote development of the N-C active 

sites, or that Fe-rich phases (metallic Fe, carbide, or oxide) modify graphitic 

structures in the vicinity making the graphite itself active. These insights 

allow modelers to calculate possible structures and examine their activity 

using ab initio calculations. These calculations indicate several possible 

structures, shown in Figures 2-8 & 2-9.32, 58 They are iron coordinated with 2, 

3, or 4 nitrogen atoms Fe-N2, Fe-N3, and Fe-N4, respectively. Another 

 

Figure 2-7. Nitrogen species present in PGM-
free catalysts including possible metal 

coordinations.57   
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configuration is an iron atom 

coordinated with nitrogen atoms on 

different graphitic sheets, Fe-N2+2. 

Each of the potential active sites 

could also function without the iron 

atom, which would be the case in a 

metal-free catalyst.  

 While there are still papers 

being published claiming high 

activity from metal free catalysts, 

their viability has been addressed 

and, I believe, successfully 

refuted.7, 59 There are truly metal-

free catalysts that have been 

carefully synthesized with no 

metal anywhere in the synthesis 

procedure. All of these catalysts 

have had low activity and 

primarily generated peroxide as 

opposed to completing the reaction to water. The majority of claimed metal-

free catalysts, and all that have reported favorable activity, were prepared 

with metal containing precursors, then leached in an effort to remove all of 

the metal. These materials are then characterized with XPS which does not 

detect any iron (or other transition metal), so they are claimed to be metal 

 

Figure 2-8. Potential configurations for Fe 
containing active sites on the edge of graphitic 
planes (a & b), and in-plane (c).32    

 

Figure 2-9. Potential N defect configurations. 

All but (a) could also be coordinated with 
metal.58    
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free. XPS has a detection limit of parts per thousand, while metals present at 

the ppm level have been shown to significantly improve catalyst 

performance. Further, it has been shown that no amount of leaching with 

acid can remove all metal from this type of material. As such, I believe that 

metal-free catalysts are not viable materials for the ORR in fuel cells and I 

will not include them in further discussion or analysis in this work.  

 The question then is which iron-containing active site(s) is responsible 

for the activity in well performing catalysts, and what structures are 

associated with their presence. Fundamental to this question is whether 

these active sites are present in the graphitic plane or at the edges of planes. 

Answering this question will provide insight into both the fundamental 

question of the actual structure of the active site, as well as the engineering 

concern of how to design materials that maximize the number of active sites 

present in a catalyst.  
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Chapter 3 – Research Objectives 

3.1 – Discussion of research need 

 In the previous section, I addressed the research methods and results 

that comprise the state-of-the-art for PGM-free catalysts. Here I present a 

summary of the underlying challenges, highlighting the need for this research 

and how my work has advanced knowledge and capability in the field. 

 While considerable progress has been made in PGM-free catalyst 

performance, they are still not competitive with catalysts based on precious 

metals such as Pt. In the broadest sense, performance is defined as the 

ability of these catalysts to be incorporated into a fuel cell stack and supply a 

vehicle (or other application) with adequate power for a reasonable lifespan. 

As compared to Pt, PGM-free catalysts fall far short on both measures. These 

shortcomings can be traced to two known causes: activity and durability. The 

activity of a catalyst is a measure of how quickly it allows the desired 

reaction to progress. In this case, this is the oxygen reduction reaction. Pt is 

much more effective at catalyzing the ORR reaction than PGM-free catalysts. 

To compensate for this lack of activity, PGM-free catalyst layers in fuel cells 

are 10-20 times thicker than Pt based layers.7 This increased catalyst layer 

thickness causes transport limitations that further hinder the performance of 

the fuel cell. Durability is simply how long a catalyst layer maintains a 

minimum acceptable performance. Though both Pt and PGM-free catalysts 

suffer from performance loss over time, the performance drop-off is steeper 

for PGM-free catalysts. Since PGM-free catalysts are starting from a 

performance deficit, addressing the durability issue is doubly critical to make 
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them a viable alternative.7, 8 Attempts have been made to address both of 

these issues, but there has been an interesting trend. The most active PGM-

free catalysts lose much of their activity in a matter of minutes or hours. 

Catalysts that exhibit stability over dozens or hundreds of hours have more 

modest initial performance than the catalysts with highly publicized initial 

performance.7 In fact, catalysts that have the highest initial performance 

degrade so quickly that their performance falls below that of more durable 

catalysts in only a few hours.  

 Activity can be measured on a per-mass or per-area basis. Regardless 

of the normalization being used, activity is simply the product of how quickly 

a single reaction site can catalyze a reaction (turn-over frequency) and the 

number of reaction sites (site density). These phenomena are well 

understood for Pt catalysts. For PGM-free catalysts, where the nature of the 

active site is still a matter of debate and no reliable method to measure 

active site density exists, this is a much more nebulous concept. In principle, 

the ways to increase activity are to increase the number of these elusive 

active sites, or to increase the activity of the active sites themselves. Adding 

to the complexity is the fact that there are likely multiple active sites 

participating in the ORR reaction, both singly and in concert.57 Ultimately, the 

goal is to increase both the active site density and turnover rate, which 

requires understanding the chemistries and morphologies that promote the 

formation of the most efficient active sites, and the synthesis parameters 

that yield these structures and chemistries.  
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 The durability question is also more complex for PGM-free catalysts 

than for Pt. Again, the degradation mechanisms in Pt catalysts are well 

understood but largely don’t apply to PGM-free catalysts. Pt nanoparticles 

undergo particle detachment, agglomeration, and growth.7, 8 Since there are 

no similar catalyst particles in PGM-free catalysts, these concepts do not 

transfer. However, catalyst flooding and carbon corrosion are processes that 

degrade performance in both classes of catalysts. Carbon corrosion that 

occurs as an electrochemical process appears to have similar mechanisms in 

both catalysts and can be largely mitigated by preventing potential 

excursions above 1.2 volts.7, 18 Though care needs to be taken in catalyst 

design to not exacerbate the problem, this is more of a system engineering 

concern than a material science issue. The other common failure mechanism 

is flooding. Though it is the same basic issue in both Pt and PGM-free 

catalysts, addressing flooding has different challenges for these classes of 

materials. Since PGM-free catalyst layers are an order of magnitude thicker, 

flooding is inherently more likely as there is more volume in which water can 

become trapped and a longer distance for it to flow out. Further, the carbon 

supports that are used for Pt can be tuned to address their hydrophobic 

properties. This is not an easily accessible knob for PGM-free catalysts. The 

synthesis techniques for PGM-free catalysts necessarily include introduction 

of hydrophilic groups into the carbon structure. Even though there is no 

consensus on the exact structure of the active site(s), nearly every proposed 

active site structure is hydrophilic.7, 13, 14, 24, 52, 55-57, 59, 60 Add to this the facts 

that active sites may be present inside micropores and that hydrophilic 
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micropores are the easiest structures to fill with water, and the complexity of 

the PGM-free flooding issue increases.27, 29, 30, 32 Addressing this challenge 

requires understanding of the active site locations, control of the transport 

properties of the catalyst structure, and understanding of chemical species 

present to facilitate work on modulation of catalyst hydrophilicity and 

durability.  

 Though much research has been devoted to understanding the 

fundamental structure of the active site(s) in PGM-free catalysts, there is no 

consensus. There are two primary schools of thought on the nature of the 

active sites. One believes that transition metal coordinated with nitrogen in 

the carbon matrix is the primary active site for the ORR. The other believes 

that iron-rich phases such as metallic iron, iron oxides, or iron carbides, are 

either the active species, or that these phases modify the carbon structure in 

their vicinity such that the modified graphitic structure becomes active 

toward the ORR.45, 61 Within the group that believes that transition metal 

coordinated with nitrogen is the primary active site, there is no consensus on 

the specific structure of that site. Though these sites are generally believed 

to be part of the graphitic structure, the location of these sites, i.e. in the 

graphitic plane or at the graphitic edge, is unknown.27, 29, 30, 32, 45, 62 

Knowledge of the location of the most active of these sites is necessary for 

both understanding of their structure and the rational design of catalysts with 

improved performance. 

 Though there are multiple variations on synthetic routes and 

precursors used for these catalysts, at their core, the vast majority of the 
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syntheses are quite similar. Carbon and nitrogen precursors are pyrolyzed, 

usually in the presence of a transition metal such as iron or cobalt, to form 

carbon-nitrogen heterostructures with incorporated transition metals. The 

precursors include macrocycles such as phthalocyanines and porphyrins, 

polymers such as polyaniline poly-ethyleneimine, small carbon molecules 

such as aminoantipyrine, and metal-organic frameworks.15, 47, 48, 51, 63 

Depending on the carbon precursor, a separate nitrogen-containing precursor 

may be added. In most cases, a metal salt is also added. With tuning of the 

pyrolysis procedure for each individual recipe, not only can active catalysts 

be made from all of these precursors, but the final chemistries are very 

similar. So, while the choice of precursors is an important factor in the final 

product, the processing is at least as influential as the starting material. 

Further, since the final products are very similar in chemical composition and 

structure at the nanoscale, detailed analysis of chemistry and morphology 

variations brought on by differing synthesis procedures on a single precursor 

yields insight into fundamental aspects of the final catalysts that apply to 

syntheses utilizing differing precursors. 

 

3.2 – Research goals 

 My work has focused on correlations between performance, 

morphology, and synthesis parameters in PGM-free catalysts for the ORR in 

PEM fuel cells. All of the catalysts I have studied were synthesized using the 

sacrificial support method (SSM), and my focus has been on catalysts 

synthesized with iron salts and nicarbazin precursor (Fe-NCB). My 
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overarching goal was to understand: the surface and internal 

morphologies across multiple length scales that promote improved fuel cell 

performance, the chemistries correlated with electrochemical performance, 

the active site type and location, and the synthesis parameters that affect 

these properties in Fe-NCB catalysts. I have achieved these goals by: 

1) Development of new techniques for length-scale specific analysis of 

catalyst surface and electrode morphology. 

a) The catalyst surface analysis is based on analysis of SEM and AFM 

micrographs using the discrete wavelet transform (DWT). This novel 

technique allows for separation of surface features into well-defined 

length scales so that the morphology responsible for different 

phenomena (bulk transport, Knudsen diffusion, active site promoting 

structures) can be objectively quantified. 

b) The electrode analysis technique employs tomographic reconstruction 

from image stacks acquired on a dual-beam focused ion 

beam/scanning electron microscope (FIB/SEM) instrument. This 

technique has been modified from existing methodology for Pt catalyst 

layers and optimized for PGM-free catalyst layer analysis. This 

technique allows for direct observation of catalyst integration into the 

fuel cell electrode assembly. 

2) Synthesis of Fe-NCB catalysts with varied synthesis parameters, chemical 

analysis at the micro-, meso-, and macroscale, electrochemical 

characterization, and performance testing.  
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a) Varied synthesis parameters include silica templating agents, carbon 

nanotubes (CNT) additives, etching procedures, and pyrolysis 

parameters. 

b) Electrochemical characterization was performed by RDE, providing 

information on catalytic activity. 

c) Performance testing carried out in an operational fuel cell providing 

information on activity, transport phenomena, and potential real-world 

performance. 

d) Chemical analysis by XPS yielding information on the surface 

chemistry of these catalysts, giving insight into the moieties that 

promote catalytic activity. Correlations with morphology and 

performance data provide new understanding of relationships between 

structure, chemistry, and performance. 

e) TEM/EDS analysis shows nanoscale distributions of composition and 

complements XPS data to give a more complete picture of catalyst 

chemistry and length-scale specific heterogeneity. 

3) Morphological analysis of catalysts and correlation of performance to 

structure. 

a) The DWT and FIB/SEM analyses have been applied to the catalyst set 

synthesized with varying parameters to characterize the length-scale 

specific surface morphology of these catalysts and evaluate how they 

integrate into fuel cell electrode layers.  
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b) Pore size distribution analysis by nitrogen isotherm analysis using BJH 

and DFT provides insight on internal catalyst morphology at the 

nanoscale. 

c) Carbon crystalline structure by XRD gives information on the graphitic 

structures (size, stacking, and disorder) in the catalyst materials. This 

analysis has provided insight into potential locations of active sites 

within the graphitic framework. 

d) Correlation of the surface and internal morphologies with chemistry 

and performance to develop a thorough picture of catalyst structure – 

chemistry – performance relationships. 

 

 The following chapters present the details and results of my research. 

Chapter 4 addresses the first research goal, detailing development and 

application of the DWT for length-scale specific surface analysis. This work 

was published in Langmuir in 2015,64 and supported the publication of 

another manuscript in 2017.65 Chapter 5 addresses the first and third 

research goals. It presents the detailed method for application of FIB/SEM 

tomography to PGM-free catalyst layers. This has not been published as a 

stand-alone manuscript, but the results of these analyses have provided 

supporting work for two publications in 2016.66, 67 Chapter 6 details work for 

the second research goal, addressing catalyst synthesis, chemical analysis by 

XPS and TEM/EDS, and correlations between synthesis parameters, chemical 

moieties, and performance. This work has been published in the Journal of 

Power Sources in 2017.68 Chapter 7 addresses the rest of the second and 
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third goals, extending the work in Chapter 6 to include morphology 

characterization with XRD, isotherm analysis, and application of the DWT to 

the Fe-NCB catalyst set. Utilizing the information gained from pursuing these 

research goals, I have synthesized new catalysts that show significantly 

improved performance. Chapter 8 discusses the rationale for the synthesis 

parameters, chemical characterization, and performance characteristics of 

these materials.  
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Chapter 4 –DWT Analysis Theory and Application 

 The following chapter is presented as it was originally published in 

Langmuir in 2015.64 The SI is in Appendix A. I gratefully acknowledge the 

work of my co-authors: Alexey Serov, Barr Halevi, Plamen Atanassov, and 

Kateryna Artyushkova. My contribution to this work included: Acquisition and 

analysis of SEM images, acquisition and analysis of AFM images, 

development of SEM imaging parameters, application of DWT theory, catalyst 

synthesis, data processing, correlation analysis, and interpretation of results. 

 

Workman, M. J.; Serov, A.; Halevi, B.; Atanassov, P.; Artyushkova, K. 

“Application of the Discrete Wavelet Transform to SEM and AFM Micrographs 

for Quantitative Analysis of Complex Surfaces.” Langmuir 2015, 31, 4924-33. 

 

4.1 – Abstract 

 The discrete wavelet transform (DWT) has found significant utility in 

process monitoring, filtering, and feature isolation of SEM, AFM, and optical 

images. Current use of the DWT for surface analysis assumes initial 

knowledge of the sizes of the features of interest in order to effectively 

isolate and analyze surface components. Current methods do not adequately 

address complex, heterogeneous surfaces in which features across multiple 

size ranges are of interest. Further, in situations where structure-to-property 

relationships are desired, the identification of features relevant for the 

function of the material is necessary.  
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 In this work, the DWT is examined as a tool for quantitative, length-

scale specific surface metrology without prior knowledge of relevant features 

or length-scales. A new method is explored for determination of the best 

wavelet basis to minimize variation in roughness and skewness 

measurements with respect to change in position and orientation of surface 

features. It is discovered that the size of the wavelet does not directly 

correlate with the size of features on the surface, and a method to measure 

the true length-scale specific roughness of the surface is presented. This 

method is applied to SEM and AFM images of non-precious metal catalysts, 

yielding new length-scale specific structure-to-property relationships for 

chemical speciation and fuel cell performance. The relationship between SEM 

and AFM length-scale specific roughness is also explored. Evidence is 

presented that roughness distributions of SEM images, as measured by the 

DWT, is representative of the true surface roughness distribution obtained 

from AFM. 

 

4.2 – Introduction 

 Surface morphology is a critical factor affecting functional performance 

of many materials. In this study, the surfaces of non-platinum group metal 

(non-PGM) catalysts were examined. The length-scales of features in these 

materials is of particular importance for several reasons. Transport behavior 

of fluids within the catalyst layer, accessibility of reactants to the active sites, 

and conductivity are affected by the morphology of the catalyst and 

support.69 Roughness affects the mass transport behavior of reactants and 
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products in the catalyst layer.70 Penetration of gases and ions into the pores 

is closely related to feature size and feature shape distributions.8, 71 In 

addition to standard size-dependent transport limitations, flooding of the 

catalyst layer is an issue that is strongly dependent on both internal and 

surface morphology.8, 72 Further, non-PGM catalysts are not well understood 

at a fundamental level, so development of length-scale specific structure-to-

property relationships will make targeted design of better catalysts possible. 

The interplay between chemistry and morphology, manifested as 

macroscopic surface area captured by BET and microscopic porosity, has 

been shown to be a critical factor for both activity and stability of non-PGM 

electrocatalysts.46, 47, 49, 73 The relevant length-scales for these phenomena 

are from a few to a few hundred nanometers.  

 

4.2.1 – Digital image processing as an analytical tool 

 Scanning electron microscopy (SEM) is suitable to access the above-

stated lateral dimensions and to provide sets of images representative of 

morphology for statistically relevant structure-to-property correlations.38 

Though SEM is used extensively for characterization of surfaces, including 

electrocatalysts, the quantitative information contained in SEM images is 

being largely underutilized; currently, qualitative analysis by means of visual 

inspection of images is the dominant approach.33-37 The goal of Digital Image 

Processing (DIP) is to find an objective representation of the intensity 

distribution in images and to convert these 2-D images into 1-D image 

descriptors (values) that can be utilized for quantitative morphology 
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representation and description.38, 39 Ultimately, these values should correlate 

to macroscopic properties of interest. Common descriptors used both in DIP 

and traditional profilometry are roughness and skewness.38, 40 The root mean 

square (RMS) roughness (Rq) is the RMS deviation of the surface from the 

mean surface height or, in the case of a digital micrograph, departure of the 

intensity from the mean grayscale value. Skewness (Rsk) is a measure of how 

strongly a profile is biased above or below the mean value. The formal 

definitions are given in Equations 1 and 2, where 𝑦𝑖 is the deviation from the 

mean of the 𝑖𝑡ℎ point in the micrograph or profile measurement containing 𝑛 

points. 

 𝑅𝑞 = √
1

𝑛
∑ 𝑦𝑖

2

𝑛

𝑖=1

    ,    𝑅𝑠𝑘 =
1

𝑛𝑅𝑞
3 ∑ 𝑦𝑖

3

𝑛

𝑖=1

 (1, 2) 

A higher value of roughness indicates a surface with more deviation from the 

norm, which is an intuitive interpretation. A positive value of skewness 

indicates the tail on the right side of the histogram of height measurements 

is longer or fatter than the tail on the left. This represents a higher 

concentration of surface features above the average than below. Similarly, a 

negative skewness represents a larger concentration of valleys/pores in the 

surface. 

 Morphological data from surface measurements contain information on 

a wide range of scales, from the smallest detectable by the instrument used 

to the largest features that fit in the measurement field of view. A major 

challenge in surface analysis of complex structures lies in quantifying 

features at different length-scales to understand scale-dependent effects 
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such as transport, packing, and interaction of the surface with other 

materials. This difficulty is exacerbated when the size and shape of the 

features that contribute to these phenomena are not known in advance.  

 Traditionally, surface morphology has been separated into two length-

scales called roughness for short scales and waviness for long scales.40 There 

is not a precise definition for what constitutes long and short scales within a 

surface or image. The use of Gaussian low-high-filtering for separating 

different scales of roughness is the conventional routine established for 

surface profilometry for all length-scales.40 Prior work has successfully 

extended this methodology to SEM images, in which high-pass and low-pass 

filters were employed to separate images into roughness and waviness image 

components, respectively.38, 39, 41 This approach allowed the separation of 

morphological information into two different scales for analysis. This 

technique has yielded insight into chemical and performance correlations with 

size-dependent morphology. However, the high-low filtering approach only 

allows for differentiation between ill-defined “large” and “small” features for a 

particular image scale. Further, correlation of these categories to specific 

physical sizes has been imprecise. 

 

4.2.2 – Previous work with wavelets 

 Wavelet analysis is a mathematical technique similar to Fourier 

analysis. Unlike the Fourier transform, which is based on an infinite periodic 

structure, wavelets are discrete. Where Fourier analysis gives detailed 

information about the spacing of discrete features, wavelet analysis gives 
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information about the size of discrete features. Wavelets have been 

previously applied in various ways for surface analysis. In process 

monitoring, the discrete wavelet transform (DWT) is used to find 

discontinuities, edges, and manufacturing flaws in topographic and optical 

images.37, 74, 75 For these process monitoring applications, the wavelet 

coefficients or reconstructions are inspected for a good process vs. a bad 

process, and the approximation or detail level of interest is determined. The 

DWT has also been used on microscope images for surface analysis of a 

variety of features including thin films, micelles, and edge detection.36, 76, 77 

In these cases, the DWT was used for filtering or analysis of a known feature 

of interest. All of this previous work assumes that the feature of interest is 

known a priori, and the DWT is used to isolate and analyze that feature. 

These prior works also determine the best wavelet basis for a particular 

image based on its ability to isolate the known feature.  

 In this work, the use of detail reconstructions of the DWT for surface 

analysis is empirically examined. Methods are developed to measure surface 

roughness quantitatively at well-defined lateral length scales without initial 

knowledge of the sizes of feature(s) of interest. A new method is explored to 

identify the best wavelet for analysis of a variety of images and feature sizes. 

These techniques allow for analysis of complex, heterogeneous surfaces to 

quantitatively measure their length-specific morphology. Employing these 

methods, the DWT is applied to SEM images in order to analyze surface 

morphology and extract statistical information for well-defined length scales 

without initial knowledge of the features of interest. This allows for length-
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scale specific structure-to-property analysis of these materials. The 

relationship between length-scale specific roughness of SEM and AFM images 

is also explored.  

 

4.3 – Materials and Methods 

4.3.1 – Materials 

 SEM imaging was performed on two instruments. The primary SEM 

was the Hitachi S-5200 UHR FE-SEM at 2 kV in SE mode. It has a reported 

resolution of 0.5 nm at 30 kV and 1.8 nm at 1kV.78 For the Pajarito Powder 

catalyst set, the SEM used was a Quanta 3D FEG at 2 kV in SE mode. It has 

a reported resolution of 1.2 nm at 30 kV and 2.9 nm at 1 kV.79 AFM 

profilometry was done on two instruments: an Asylum MFP-3D-BIO AFM and 

a WITec alpha 300R with AFM attachment. Both instruments were operated 

in intermittent contact mode with a super-sharp Si tip with a nominal radius 

of 5 nm. Surface chemical speciation was analyzed using XPS. Spectra were 

acquired on a Kratos Axis Ultra X-ray photoelectron spectrometer using a 

monochromatic Al Ka source operating at 300 W, and data analysis and 

quantification were performed using CasaXPS software. Fuel cell performance 

was measured in 5 cm2 gas diffusion electrode based membrane electrode 

assemblies, in H2/air at 100% relative humidity. Catalyst inks were made of 

45 wt% Nafion mixed with a catalyst. The MEA was constructed using a 

Sigract 25BC GDL, and pressed with 211 Nafion Membrane. Wavelet 

decompositions and analysis calculations were performed using Matlab with 

the Image Processing toolbox, Wavelet toolbox, Optimization toolbox, and 
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routines written in-house.1 Size correlation imaging was performed using 

NIST Au nanoparticles certified to be 54.9 ± 0.4 nm as measured by SEM.80 

Catalysts analyzed are all of the Fe-N-C type or their metal-less analogues, 

synthesized using the Sacrificial Support Method (SSM) developed in our 

group.46, 47, 73 

 

4.3.2 – Theory and Method 

 One fundamental issue with statistical analysis of size-separated 

surface features is that, typically, features of larger lateral size have higher 

amplitudes and dominate the parameter. Unless synthesis techniques are 

used to intentionally create high aspect ratio structures, the vertical 

dimension of the feature will be of a similar scale to its lateral dimensions. 

This is the case with the catalysts and catalyst supports of pyrolyzed carbon. 

So, if the roughness of features ranging from 10 to 200 nm is analyzed, the 

roughness of features near 200 nm will dominate the output. If there are any 

phenomena that correlate with roughness smaller than 50 nm, they will be 

overlooked using this method. For functional characterization and analysis of 

structure-to-property relationships, it is of vital importance that the method 

of length-scale separation and analysis to be is able to discern as many 

multi-scalar topographical features over the surface as possible. It is also 

necessary that the true lateral sizes represented by the length-scale 

separation be known. The DWT is a powerful tool for the analysis of multi-

                                       
1 Code available online: http://goo.gl/iH4dRc 
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scale features of surfaces due to its properties of good length-scale 

approximation.81 

 Excellent descriptions of the continuous and discrete wavelet 

transforms can be found in Reference 77 and the Matlab Wavelet Toolbox 

user guide.82 Here, a brief qualitative introduction to wavelets and their 

application to surface morphology is presented. A more detailed description 

of the mathematical structure of the discrete wavelet transform is available 

in the Supporting Information. The wavelets used in this study are the 54 

orthogonal, compactly supported wavelets in the Matlab Toolbox, and this 

description is limited to this class of orthonormal wavelet basis sets. The 

complete formalism of this and other classes of wavelets is thoroughly 

addressed in Reference 81.  

 Wavelet analysis divides the overall signal into different wavelength 

components and represents each component at a resolution that matches 

this scale. Similar to how a Fourier transform represents a signal as a sum of 

frequencies (commonly thought of as time to frequency conversion), a 

wavelet transform represents a signal as a sum of spatial wavelength sub-

bands (time to scale conversion).81 When the wavelet transform is applied to 

topographic data, two new sets of data are created – a smoother version of 

original data called the first level approximation (A1) and a data set that 

represents the residual between the original and the smoother data called 

the first level details (D1). The wavelet transform is then applied to A1, and 

two new data sets are created, A2 and D2. This process is repeated as many 

times as desired. The first two levels of decomposition are shown in  
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Figure 4-1. This process creates multiple 

detail levels, each representing a 

different length-scale. The sum of all 

smaller detail levels with an 

approximation returns the original signal 

without loss.  

 Each row and column in an image 

can be subjected to this decomposition. 

Then each of the details can then be 

reconstructed to give an image of 

features at that size scale. An example 

of an 8 level reconstruction is shown in 

Figure S1. The individual detail images 

can then be analyzed to characterize 

texture on the corresponding length-

scales.83 In this work, detail 

reconstructions were used instead of the 

wavelet coefficients. This allows for the 

calculation of skewness of the surface at 

various length-scales by summing detail 

reconstructions at multiple levels. 

Skewness is zero for an individual detail 

reconstruction. It is also worth noting that the reconstructed images used 

were averages of the horizontal and vertical 1-D reconstructions and not 

 

Figure 4-1. Intensity distribution and 

first two DWT levels of the line in an 
SEM image of an Fe-Aminoantipyrine 
based non-PGM catalyst. 
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from the 2-D reconstruction. These 1-D decompositions allowed for direct 

calculation of the wavelet size at each detail level for comparison to the 

physical features they were modeling. Because the materials being measured 

have no preferential orientation, averaging of 1-D decompositions is 

representative of the surface. As such, this technique applies best to surfaces 

with isotropic features or a large number of randomly oriented features. 

 

4.3.3 – Analysis method 

 Prior to analysis, the mean intensity value was subtracted from each 

image. Then, the ten level DWT was performed using the Haar wavelet 

(choice of wavelet discussed below). All statistical image calculations were 

performed on images and detail reconstructions with a mean value of zero. 

Image reconstructions presented for viewing have had the original image 

mean intensity added back in after all processing. The SEM images used have 

an intensity range of 0 for black to 1 for white, so roughness values are 

based on this scale. For AFM images, calculations were done using values in 

nm, which were then converted to grayscale images.  

 

4.4 – Results and Discussion 

 The first consideration in performing wavelet analysis is the choice of 

wavelet shape. There are 54 wavelet shapes defined in the Matlab wavelet 

toolbox (4 are identical, so 51 unique bases), and it is possible to design 

custom shape wavelets. For this study, the 54 existing wavelets in Matlab 

were examined. The most common method for selection of a wavelet shape 
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is to measure the entropy of wavelets when applied to the signal to be 

analyzed. Using this method, the entropy of each basis set is measured at 

each approximation and detail level. This technique is effective for 

determining the best wavelet basis set to analyze a single feature type or a 

single size of interest. However, to analyze the roughness of each detail level 

of the image, or where there are multiple size-ranges of interest, entropy of 

the wavelets does not provide a useful metric. For disordered systems with 

multiple length-scales to be analyzed, a different method of basis selection 

must be employed. For quantitative analysis of detail reconstructions, the 

goal is that samples with similar length-scale specific roughness and 

skewness yield similar values for roughness skewness at each detail level, 

independent of feature position or orientation.  

 Here, a different method was developed to determine the best wavelet 

for analysis of detail reconstructions of these images. Four images, shown in 

Figure S2, were each analyzed 100 times with different sections cropped off. 

This was accomplished by cropping 99 columns off of the original 1280 

column images such that, for n being the sub-image number from 1 to 100, 

n-1 columns were cropped from the left side of the original image and 100-n 

columns were cropped from the right side of the original image. The variance 

of the roughness and skewness at each detail level for each sub-image 

across the 100 decompositions was measured. The wavelet with the 

minimum variance was found to be the Haar wavelet. Another advantage of 

the Haar wavelet is its simple shape and well defined size. This allows for 

direct calculation of how many pixels each detail level should model and 



42 
 

comparison of this theoretical value to measured values in real images. For 

structure-to-property relationships where the relevant feature size is not 

known in advance, this knowledge of the physical size of each level of 

reconstruction is critical. 

 Another consideration is the number of levels to be decomposed. Since 

each level of decomposition downsamples the original data by a factor of 2, 

the theoretical maximum number of levels is log2(n), where n is the number 

of pixels in a line of the image.81 In practice, decompositions near this 

theoretical maximum are not useful. The images analyzed in this study were 

890x1280 pixels and decompositions were performed with 10 levels. Size 

correlations, discussed below, were found to break down above detail level 7.  

 Wavelet sizes were correlated with physical size by imaging of a 

material with well-characterized physical size. Monodisperse gold 

nanoparticles from NIST were imaged in the Hitachi SEM at zoom levels 

ranging from 10k to 200k, which correspond to 0.1 pixels/nm to 2.0 

pixels/nm, respectively. The DWT operates on pixels in an image. Varying 

zoom levels caused the nanospheres to occupy a different number of pixels, 

thus appearing larger at higher zoom levels. Each image was decomposed 

using the DWT, then images were produced from the averages of horizontal 

and vertical detail reconstructions. The roughness of each reconstructed 

image was plotted as in the inset in Figure 4-2. A smooth curve was fitted to 

these roughness plots so the effective detail level with the maximum 

roughness could be found. This imaging and analysis process was repeated 

on four image sets from different locations of the Au sample to eliminate 
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effects of local variation in nanosphere size and dispersion. Brightness and 

contrast were also varied between the image sets and were found to have no 

effect on the lateral size correlations.  

 The parameter used to determine the intensity of the details was the 

RMS roughness (Rq). The assumption used is that the maximum roughness 

corresponds to the average lateral size of the nanospheres in the image. The 

nanospheres are 54.9 nm in diameter, so the average lateral size is 
𝜋

4
∗ 𝑑 =

43.1 𝑛𝑚. The zoom levels of the images were plotted against these roughness 

maxima, yielding an exponential trend (square points in Figure 4-2), as 

would be expected. As the zoom level was measured in pixels per 

nanometer, multiplying by the size of the nanospheres yields a relationship 

 

Figure 4-2. The inlay shows the roughness at levels D1 to D8 of images at 13k and 50k 
magnification. The curves fitted to the roughness values used a 3 term Fourier fit. The 
maxima of these curves are plotted as Maximum Detail Intensity on the x-axis, against the 

Zoom Levels on the y-axis of the large plot. Each point on the plot represents the maximum 
roughness at one zoom level. The square points are maxima for the roughness of the 
reconstructions. The circular points are the maxima for the fitted roughness using the new 

method. The dotted line represents the true size of the Au nanospheres at each detail level; 
it is the predicted trend, not a curve fitted to the data. 
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between the wavelet detail level and the pixel size of the object being 

imaged. Because the Haar wavelet has a well-defined size, the theoretical 

curve can be similarly calculated (dashed line in Figure 4-2). It was observed 

that, though the measured roughness maxima trend with the right shape, 

they do not correspond to the theoretical values. 

 

4.4.1 – Examination of roughness distribution 

 To understand this discrepancy, closer examination of the DWT is 

required. As stated earlier, the wavelet transform measures feature size as 

opposed to spacing. Though feature spacing is not considered, feature 

position is preserved. This is an advantage in many signal processing 

applications but is an artifact when using wavelets to measure surface 

roughness, where the total roughness is the metric of interest. In 

applications where the feature of interest is known, a mismatch between the 

wavelet size and the feature size is not an issue. However, when the 

roughness at each detail level is the metric of interest, and structure-to-

property relationships are to be based on of the roughness and feature size, 

these lateral size correlations must be known a priori. 

 The DWT measures the fit of the wavelet with the signal at each of the 

detail levels. As the detail level increases, the scaling factor of the wavelet 

increases. As stated in the theory section above, the fit is only measured at 

positions corresponding to the scaling factor at each detail level, i.e. detail 

level 1 is examined at every pixel, detail level two is every 2nd pixel, detail 

level three is every 4th pixel, etc. As seen in Figure 4-3, the position of a 
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feature affects which detail levels model it. The example in Figure 4-3 is the 

simplest possible case in which the signal is a square wave, the wavelet basis 

used is a square wave, and the feature in the signal is the same size as the 

Haar D3 wavelet. As with a change in position, a small change in size of a 

feature significantly changes the distribution of details that model it. The 

result of this is that even the simplest signal or image, containing features of 

only one size, will exhibit the roughness across multiple detail levels.  

 To examine the distribution of roughness, images were generated in 

Matlab using sine waves, square waves, sawtooth waves, and triangle waves 

of various sizes and orientations. In regards to distribution of roughness 

across detail levels, it was observed that the continuous signals (sine and 

triangle waves) behaved nearly identically and were distinct from the signals 

 

 

Figure 4-3. Examples of a square wave and detail reconstructions using the Haar wavelet. 
The square wave is shifted by one pixel between plots. The original signal is reproduced 
without loss in each case by the first 3 detail levels, but which detail levels are used, and in 

what proportion, depends on the position of the signal. For all of these signals, A4 and 

above is a flat line at 0.5. 
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with discontinuities (square and sawtooth). Because the images being 

examined are SEM and AFM micrographs, which do not contain significant 

discontinuities, the continuous signals were used for roughness distribution 

modeling.  

 One-dimensional signals with continuously varying sizes were analyzed 

and compared to the average of multiple signals with one size each. The 

distribution of roughness was found to be the same whether the feature sizes 

varied within a single line or were averaged between multiple lines. For 

further calculations, lines of a single size were used, then averaged to get 

distributions of roughness over multiple sizes.  

 Two-dimensional images of these signals were created for integer sizes 

of 1-5 pixels, then in sizes of 22.5 to 28.4 pixels in increments of 20.1 pixels. 

Each line in the image was offset from the previous line by one pixel, so all 

possible positions are represented. These sizes were chosen because the 

wavelet transform operates on a dyadic scale. This allowed for the 

distribution of feature sizes equally spaced according to the scale modeled at 

each detail level. Whole number sizes were used below 22.5 because fractional 

sizes of small features become poorly defined below 4 pixels, creating large 

artifacts in feature shapes. Each image was decomposed, and the roughness 

of each detail level reconstruction was measured. These roughness 

distributions represent the average roughness at each detail level for 

features of a given size across all possible positions. 
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 The roughnesses of feature sizes centered at each detail level were 

averaged. The sizes used for each detail level are summarized in Table 4-1. 

It was found that for D4 to D9, the 

distribution of roughness was the same. 

D3 was slightly off of the average of D4 

to D9, likely because the small feature 

size caused shape artifacts in the 

generated images for fractional sizes. D1 

and D2 are necessarily different from the 

rest because there are no fractional 

feature sizes between 1 and 2 pixels. 

The measured roughness for each size range is shown in Table S1.  

 Plotting a curve of the average roughness across detail levels yields a 

characteristic shape that represents the roughness distribution for 

continuously variable sizes centered at each detail level as shown in Figure 

4-4. This characteristic roughness distribution can be used as a fitting curve 

to fit a measured roughness distribution in much the same way that 

spectroscopic data are commonly fit with sums Gaussian or Lorentzian 

functions. Since the detail levels are discrete values, the fitting problem 

Table 4-1. Feature sizes used to model each detail level. Values in parentheses are 

approximate values for the dyadic scale used. 

Detail Level Sizes  of features (pixels) Detail Level Sizes  of features (pixels) 

1 1 6 24.5 - 25.4 (22.6 - 42.2) 

2 2 7 25.5 - 26.4 (45.3 - 84.4) 

3 3, 4, 5 8 26.5 - 27.4 (90.5 - 169) 

4 22.5 - 23.4 (5.7 - 10.6) 9 27.5 - 28.4 (181 - 338) 

5 23.5 - 24.4 (11.3 - 21.1)   

 

Figure 4-4. Distribution of roughness 
around a feature size. This shows the 

distribution of roughness at detail 
levels below and above the size of the 
feature centered at zero with a total 
roughness of 1. 
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reduces to a simple matrix based least-squares regression, as shown in 

Equation 3. 

 min‖𝐶 ⋅ 𝑥 − 𝑑‖2 (3) 

Where 𝐶 is the matrix defining the detail distribution at each level, 𝑑 is the 

detail roughness curve to be fit, and 𝑥 is the coefficient matrix that 

represents the amount of each size present in the measured roughness 

curve. The 𝐶 matrix is listed in Table S2, 

and the calculation method used is 

available in Reference 84.84 

 When this fitting is applied to an 

image generated with known feature 

sizes, as in Figure 4-5, the roughness is 

more accurately attributed to features 

that exist in the image and roughness 

due to the distribution of feature 

positions is reduced. When this fitting 

procedure is applied to the Au 

nanospheres as above, and the zoom 

level is plotted against the maxima of 

the fits (not absolute roughness as 

before), the circular points shown in 

Figure 4-2 are obtained. The locations of 

these maxima agree well with the 

predicted curve based on the known 

 

 

Figure 4-5. Image containing sizes of 

3, 4, and 5 pixels to represent D3 and 
22.5-24.4 pixels to represent D5. The 
reconstructions show significant 

roughness from D1 to D5, even though 
there are no features at D1, D2, or D4. 
The fitted roughness (𝑥 from Equation 

3) shows the majority of the roughness 

at D3 and D5 with little roughness 
outside of those sizes. The fitted 
roughness does not exactly match the 
predicted value because of the 

discontinuities in the image in the 

vertical direction. 
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sizes of the nanospheres and Haar wavelet. This fitting method allows for 

measurement of roughness for well-defined ranges of lateral dimensions in a 

2-D topography array or SEM image. 

 The curve used for fitting was generated with features occupying all 

possible positions and all sizes within a given range. These assumptions 

make this technique best suited for application to heterogeneous, disordered 

surfaces. If there are few features in a given size range or the features are 

ordered such that they preferentially occur in certain locations in the image, 

the fitting curves may not be representative because of positional bias. If the 

features have a narrowly distributed size range, there may be a mismatch 

between the true roughness and the fitted roughness due to the assumption 

that all feature sizes within a range are represented.  

 

4.4.2 – Application of wavelet decomposition to catalyst surfaces 

 The utility of this method is investigated by application to real catalyst 

systems. Since the ultimate utility of a microscopic analysis method is in 

correlation to macroscopic properties of interest, these fitted roughness 

values are examined with an eye toward chemical speciation and 

performance of these catalysts.  

 Two sets of catalysts were examined. One catalyst group was 

synthesized in-house using the sacrificial support method and multiple 

precursors.46, 47, 73 The other group was synthesized at Pajarito Powder, LLC, 

all using the same precursors but different pyrolysis parameters. All catalysts 

are Fe-N-C type or their metal-less analogues. The in-house group was 



50 
 

imaged on the Hitachi SEM with a spot size of ~2 nm, while the Pajarito 

group was imaged on the FEI SEM with a spot size of ~10 nm (published size 

of 2.9 nm was never achieved on this instrument). Because different 

instruments were used, the two sets cannot be compared to each other. Each 

set was imaged with the same 

brightness and contrast settings on their 

respective instruments, allowing for 

comparison of catalysts within sets.  

 Each catalyst was imaged at a 

zoom level of 0.50 pixel/nm. This 

corresponds to wavelet and fitted sizes 

listed in Table S3. Due to the higher 

resolution available, the in-house 

synthesized set was also imaged at a 

zoom level of 2.0 pixel/nm. Chemical 

speciation used for correlations was from 

the analysis of XPS spectra. Fuel cell 

performance data was provided by 

Pajarito Powder. Because the samples 

are heterogeneous, there is significant variability in surface morphology. To 

get an overall picture of the total surface morphology, five images per 

sample were acquired at 0.5 pixel/nm and ten images per sample were 

acquired at 2.0 pixel/nm. The roughness and fit roughness used for 

 

Figure 4-6. Top: SEM image of Fe-
Carbendazim showing the ~8 nm pore 

walls. The SEM brightness of these 
structures was found to be negatively 
correlated with pyridinic nitrogen 
content. Bottom: Plot of % of nitrogen 

in pyridinic structure vs. fitted 
roughness at 8 nm. 
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performance and chemical correlations were the average of these values 

from each of the five or ten images per sample.  

 It was observed that as fit roughness increased for the D3 

reconstruction at 0.5 pixel/nm and the D5 reconstruction at 2.0 pixel/nm, 

both of which correspond to a wavelet size of 8 nm and a fit roughness of 6-

10 nm, the pyridinic nitrogen concentration decreased. This feature size of 6-

10 nm corresponds to the wall thickness between voids in the catalyst as 

shown in Figure 4-6. It is unclear at this time if this increased roughness is 

due to the pore walls protruding further with less pyridinic nitrogen, or if it is 

a chemical effect causing the pore walls to have increased SEM brightness 

with less pyridinic nitrogen; future work will be performed to attempt to 

elucidate this. But, in either case, the roughness fitting method detects this 

difference in intensity and quantitatively assigns it to the size range occupied 

 

Figure 4-7. The left plot shows the fitted roughness of the 4 Pajarito catalyst samples 

synthesized from the same precursor. The fitted roughness value at D7 was observed to be 
negatively correlated with the fuel cell current in the far transport region (low potential) at 
multiple pressures as seen in the right plots. The SEM images are for Sample #3 (top) and 

Sample #5 (bottom). The crosshairs indicate the size of the D7 wavelet. 
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by the pore walls, allowing for correlation of morphology in a narrow length-

scale range to chemical speciation.  

 The D7 fit roughness was found to correlate with current in the far 

transport region of the fuel cell polarization curves as shown in Figure 4-7. 

Here, as the intensity of features in the 90 to 180 nm range increased, the 

current in the transport regime decreased. This range may be related to the 

particle size of the catalyst, though it is difficult to discern if these are 

separate particles or agglomerates. Future work will include independent 

measurement of the particle sizes of these catalysts for comparison. As this 

feature size is the largest that can be measured by the wavelet 

reconstructions at this zoom level, future work will also include imaging at a 

lower zoom level to better examine features at this, and larger, length 

scales. 

 

4.4.3 – Examination of the relationship between SEM and AFM images 

 At low voltages, the secondary electron signal from SEM images is 

known to contain surface information.78 However, this surface information is 

not necessarily topographic. The SEM signal contains information on chemical 

heterogeneities and is influenced by feature shape as well as orientation with 

respect to the detector. Examination of the roughness of the wavelet 

reconstructions in both SEM and AFM of the same materials yields some 

insight into the relationship between roughnesses measured with these two 

imaging methods.  
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 Four materials were imaged on both SEM and AFM, all with an effective 

zoom level of 0.5 pixel/nm (Figure 4-8). When a scatter plot of roughness at 

each detail level from D2 to D6 for SEM and AFM is created, a consistent 

shape is generated across all four materials as shown in Figure 4-9. By 

inspection, this shape appeared to be a cube root function, so the cube of 

SEM roughness was plotted against the AFM roughness. These scatter plots 

appear nearly linear across these four samples. The underlying cause for a 

possible cubic relationship between length-scale specific roughness in SEM 

and AFM has not been explored. Further, the slopes are different, indicating 

that there is not a fixed relationship between absolute roughness in the SEM 

and AFM across different samples. However, the appearance of this nearly 

linear trend for these scatter plots is evidence that, in this class of 

nanostructured carbon materials, the information obtained from SEM images 

is largely topographic. As a result, it is reasonable to treat DWT roughness 

 

Figure 4-8. AFM (top) and SEM (bottom) images of the same materials (not the same 
locations). Values given are the z-scale of the AFM images. Note that they differ by an order 

of magnitude between the roughest and smoothest samples. 
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distributions from SEM images as representative of the true roughness 

distribution of these surfaces. 

 

4.5 – Conclusion 

 Wavelets have been previously used for surface and image filtering 

where the approximate size of the feature(s) of interest was known in 

advance. In the cases of structure-to-property analysis and measurement of 

complex, heterogeneous surfaces, there is no advance knowledge of the 

feature size of interest and/or quantification of all size ranges is desirable. 

Here, the DWT was examined as a means of quantitative surface analysis 

across multiple length scales without advance knowledge of the features of 

 

Figure 4-9. Scatter plots of the roughness at D2 to D6 for SEM images plotted vs. the ‘true’ 
values for AFM images of the same materials. They all have similar shapes despite the wide 
difference in true roughness values. The cube of SEM roughness at each detail level against 
the AFM roughness yields a linear trend for these materials.  
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interest. It is observed that, though the size of the wavelet is known, it does 

not directly correlate to the physical size of the features being measured. To 

address this issue, the distribution of roughness in wavelet reconstructions 

was examined and found to be consistent above D3. This roughness 

distribution was used as a fitting basis for measured roughness curves and 

was found to be in good agreement with the known physical size of features 

in SEM images.  

 The DWT and fit roughness was applied to SEM and AFM images of 

non-PGM catalysts. Analysis with this method yields relationships not 

previously seen. SEM intensity of pore walls in the 6-10 nm range is seen to 

correlate with pyridinic nitrogen concentration, and SEM roughness in the 90-

168 nm range correlated with transport-limited performance in a fuel cell. 

Previous surface analyses of these complex, heterogeneous materials had not 

discerned these relationships. 

 Application of the DWT to SEM and AFM of the same materials yielded 

some relationships that bear further investigation. The plots of SEM 

roughness vs. the AFM roughness at each detail level produced a trend that 

was observed for all samples examined. It is observed, though not 

understood, that the cube of the SEM roughness at each detail level has a 

nearly linear relationship with the AFM roughness. Though the relationship is 

not understood, this provides some evidence that the information in the SEM 

images of these materials is topographic, and that the measured roughness 

at component detail levels correlates to the true length-scale specific 

roughness. 
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Chapter 5 – FIB/SEM Tomography Method 

5.1 – Introduction 

 This chapter focuses on the cross-sectioning and imaging techniques, 

instrument parameters, and areas of concern for utilization of FIB 

tomography. Post-processing of the image stacks is an area of ongoing 

research that is not addressed in detail here.85, 86 My optimization of FIB 

tomography for PGM-free materials has not been published as a stand-alone 

project, but it has contributed to publication of manuscripts by Serov, et al. 

and Stariha, et al., both in the Journal of Power Sources in 2016.66, 67  

 

5.2 – Background 

 The performance of any catalyst in real-world application is influenced 

by the intrinsic activity of the catalyst itself, the transport properties of the 

catalyst particles, and how the catalyst particles integrate with ionomer in 

the electrode layer. The structure of the catalyst layer determines the 

properties of bulk mass transport, electron transport, proton transport, and 

water management. Knowledge of the structure of the final catalyst layer is 

critical for both understanding the performance of the fuel cell and for 

rational design of catalysts that interact favorably with ionomer. 

Understanding catalyst layer morphology requires 3-D analysis of the internal 

structure of the catalyst layer.  

 Imaging catalyst layer volumes can be achieved through a few 

different methods. One of the most frequently used is nano-CT (x-ray 

computerized tomography). This method can produce voxel sizes small as 
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16 nm and allows for differentiation between some solid phases as well as 

the identification of pores.87 Nano-CT is computationally intensive, the 

modeling and post-processing are complicated and prone to significant error, 

and it requires specialized equipment (either a dedicated instrument with a 

low x-ray power or a beamline). Neutron imaging is another powerful tool for 

imaging electrode structure. It is especially good at imaging water inside of 

the catalyst layer, but it has a much coarser spatial resolution of several 

microns.88, 89 Further, neutron imaging can be performed only on a few 

specially equipped neutron sources. FIB tomography has spatial resolution 

very similar to nano-CT and uses a dual-beam FIB/SEM that is relatively 

common in analysis laboratories.67, 90 This method allows for direct 

reconstruction of the solid and pore phases without the need for complex 

modeling or resource-intensive calculations. While FIB tomography does not 

allow for differentiation of solid phases, the higher availability of analysis 

instrumentation and the simplicity of reconstruction make FIB tomography an 

attractive alternative that is gaining in popularity.  

 FIB tomography has been in development since the early 1990s and 

was applied to analysis of fuel cell catalyst layers by Thiele and Zeigler in 

2011.90-93 The initial application of this technique allowed for reconstruction 

of catalyst layers of Pt suspended on carbon. These catalyst layers are 

generally about 5 µm thick, have pores smaller than 1 µm, and have high e-

beam contrast due to the high Pt content. Extension of this technique to 

PGM-free catalyst layers required adapting the technique to layers that are 
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on the order of 100 µm thick, have pores of several microns, and contain less 

than 1% metal.  

 

5.3 – Materials 

 The instrument used for electrode sectioning and imaging was an FEI 

Quanta 3D Dual beam scanning electron microscope equipped with a field 

emission gun. The gallium liquid metal ion source was operated with an 

accelerating voltage of 30 kV and images were collected in secondary 

electron mode. All imaging and milling parameters presented are specific to 

this instrument. Image analysis was performed using ImageJ with the 

StackReg plugin and Matlab routines written in-house.  

 

5.4 – Experimental method 

 Fundamentally, the process for creating a series of images in the 

FIB/SEM dual-beam instrument is to cut a cross-section with the ion beam, 

image with the e-beam, then repeat until the desired number of images have 

been acquired. The orientation of the beams and the sample being imaged 

are illustrated in Figure 5-1. Analysis time is dependent on the desired size of 

the analysis volume, imaging time as determined by the image resolution, 

and slice thickness (resolution in the z-direction). Acquisition of 100 images 

through a surface of 3 µm x 2 µm can be completed in ~3 hours, while 180 

images through a surface of 20 µm x 10 µm takes ~6 hours.  
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 Before sectioning is initiated, the surface of the electrode must be 

protected with a Pt (or other metal) cap. This protective cap serves two 

purposes. First, it protects the electrode from stray ions. This is necessary 

because, although the ion beam is well focused, it still has a distribution of 

intensity and there are always stray ions outside of the intended beam line 

that will damage anything they interact with. The second reason is to allow 

for clean cutting without curtaining. Curtaining occurs when there is a 

variable thickness or hardness in the target material. Where the material is 

thicker/harder, the cutting is less efficient and leaves a vertical line (Figure 

5-2). The collection of these vertical lines can resemble hung draperies, 

hence the name. The deposited Pt has a smooth surface as compared to the 

electrode. Further, Pt is more resistant to ion sputtering than the carbon 

electrode. As a result, a higher intensity ion beam is necessary to cut 

through the Pt. Once the ion beam has broken through the Pt, it quickly cuts 

through the electrode without any stray ions cutting into the carbon.  

 

 
Figure 5-1. Diagram showing the orientation of dual-beam sectioning and imaging.94  
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 After Pt deposition, trenches must be milled around the analysis area. 

These trenches allow for a line-of-sight from the e-beam to the cross-section 

surface as well as providing space for the secondary electrons ejected from 

the cross-section to escape and be drawn to the detector. These trenches are 

illustrated in Figures 5-1 & 5-3. 

 
Figure 5-2. FIB sections illustrating the curtaining effect and Pt cap protection. The section 
on the left was from the setup phase and cutting had not yet reached the Pt cap. One of the 

results of cutting directly into the electrode are the vertical lines, known as curtaining. 
These are not imaging artifacts; they are vertical grooves in the cross-section surface. The 
image on the right is the same electrode cut through the Pt cap.  

 
Figure 5-3. SEM images showing an analysis area. The left image shows the area after 
milling the initial trenches. The absence of pores is due to the high ion beam current used to 

create the trenches. High ion beam current damages the electrode and destroys pores. The 
right image shows the same analysis area after low current cutting. 
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 With the analysis area protected with a Pt cap and exposed by 

trenches, imaging and cutting can commence. The parameters of both the 

ion beam and e-beam are critical. If the ion beam current is too high, it will 

damage the sample and the analysis will not be representative of the 

electrode structure. If too low, it will either not cut deep enough to give a 

complete section, or will take so long that imaging of the volume cannot be  

completed in one session. The e-beam current must be high enough to 

provide adequate contrast, but not so high that it damages the ionomer 

during imaging. The e-beam voltage determines the imaging depth, and can 

also cause damage to the ionomer if it is either too high or too low. Beam 

parameters for different electrodes and analysis volumes are listed in Table 

5-1. The thickness of the Pt layer depends on the surface area to be covered 

and the roughness of the electrode surface. The Ga+ current for Pt deposition 

should be set such that it takes no fewer than 5 minutes for every µm of 

thickness (e.g. 4 µm thick deposition should take no less than 20 minutes). 

The imaging parameters depend on the ionomer used in the electrode. For 

Nafion used in PEM electrodes, 5 kV provides good resolution and surface-

specific images without damaging the ionomer. For AS-4 ionomer used in 

Table 5-1. Beam parameters used for PGM-free FIB/SEM cross-sectional imaging. 

 

Parameter 
3 µm x 2 µm 

PEM 
20 µm x 10 µm PEM 

20 µm x 10 µm 

alkaline 

Pt thickness 1 μm 4 μm 4 μm 

Pt dep. current 30 pA 1 nA 1 nA 

Ga+ current 

cutting 
0.5 nA 3 nA 3 nA 

e- current 6.7 pA 6.7 pA 13 pA 

e- voltage 5 kV 5 kV 15 kV 
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alkaline fuel cells, the 5 kV accelerating voltage caused nearly instant 

ionomer degradation at all currents. Increasing the e-beam current to 15 kV 

reduced this damage such that no damage was observed through the entire 

120 image set. Increasing the accelerating voltage increases the e-beam 

penetration depth, allowing the energy to be dispersed through a greater 

volume of material. In the alkaline ionomer, this increased dissipation 

volume was the dominating parameter, whereas with Nafion, higher 

accelerating voltage caused greater damage.  

 Image stacks of 100-200 images can be acquired in a session of 3-8 

hours, depending on the volume. The resolution in the z-direction depends 

on the cutting current (thickness of each cut) and whether images are 

acquired for every ion beam cross section. For the 3 µm x 2 µm analysis 

volumes, about 100 images were acquired by imaging every 2nd cross 

section. This yields a resolution in the z-direction of about 20 nm. Collecting 

an image for every cross section would yield a resolution of about 10 nm, but 

would effectively double the analysis time. The 20 µm x 10 µm analysis 

volumes typically yield about 180 images for a resolution in the z-direction of 

55 nm. The number of images to be acquired, volume to be analyzed, and 

resolution of each image all must be determined to fit within the time 

available for analysis. On this instrument, the maximum size cross section 

achieved was a single section 150 µm wide. For this analysis, the trenching 

and polishing took 8 hours to obtain the single cross section. As this sample 

was a titanium-based electrode, the cutting time was slightly longer than for 

carbon electrodes. However, for titanium or carbon-based electrodes, at this 
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scale creating additional cuts to achieve a stack and volume reconstruction 

would not be possible in a single session.  

 The results of analyses on PGM-free electrodes can be seen in the 

published works listed at the beginning of this chapter.66, 67 The downloadable 

supplementary information contains a representative image stack, and the 

detailed operation procedure created by this writer and Sarah Stariha is in 

Appendix B.  
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Chapter 6 – Synthesis to Chemistry and Performance Relationships 

 The following chapter is presented as it was originally published in the 

Journal of Power Sources in 2017.68 I gratefully acknowledge the work of my 

co-authors: Michael Dzara, Chilan Ngo, Svitlana Pylypenko, Alexey Serov, 

Sam McKinney, Jonathan Gordon, Plamen Atanassov, and Kateryna 

Artyushkova. My contribution to this work included: Catalyst synthesis, RDE 

data acquisition and analysis, MEA data acquisition and analysis, data 

processing, correlation analysis, and interpretation of results. 

 

Workman, M. J.; Dzara, M.; Ngo, C.; Pylypenko, S.; Serov, A.; McKinney, 

S.; Gordon, J.; Atanassov, P.; Artyushkova, K. “Platinum Group Metal-Free 

Electrocatalysts: Effects of Synthesis on Structure and Performance in 

Proton-Exchange Membrane Fuel Cell Cathodes” J Power Sources (2017), 

348, 30-39.68 

 

6.1 – Abstract  

 Development of platinum group metal free catalysts for the oxygen 

reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) 

requires understanding of the interactions between surface chemistry and 

performance, both of which are strongly dependent on synthesis conditions. 

To elucidate these complex relationships, a set of Fe-N-C catalysts derived 

from the same set of precursor materials is fabricated by varying several key 

synthetic parameters under controlled conditions. The results of 

physicochemical characterization are presented and compared with the 
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results of rotating disk electrode (RDE) analysis and fuel cell testing. We find 

that electrochemical performance is strongly correlated with three key 

properties related to catalyst composition: concentrations of 1) atomically 

dispersed Fe species, 2) species in which N is bound to Fe, and 3) surface 

oxides. Not only are these factors related to performance, the chemistries 

are shown to correlate with each other. This study provides evidence 

supporting the role of iron coordinated with nitrogen as an active species for 

the ORR, and offers synthetic pathways to increase the density of atomically 

dispersed iron species and surface oxides for optimum performance.  

 
 
6.1 – Introduction/Background  

 Many studies focus on replacing platinum group metal (PGM) catalysts 

for the oxygen reduction reaction (ORR) at the cathode of proton exchange 

membrane fuel cells. The family of transition metal-nitrogen-carbon (MNC) 

electrocatalysts has been investigated extensively over the years 46, 49, 56, 73, 

95-116 as a PGM-free alternative, with several recent reports demonstrating 

dramatic improvement in ORR activity and durability in fuel cell operation.66, 

104, 117 To further these advances and understand the underlying mechanisms, 

continued focus is required to link structural composition with ORR activity 

and durability.95, 103, 111, 114  

 In order to provide insight for rational design of optimized catalyst 

materials, it is necessary to elucidate the roles various chemistries play in 

the activity and durability of PGM-free catalysts. The effect of different metal 

species, contributions of various N moieties, and impact of the C support 
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network are of central importance. Among the various available transition 

metal precursors, Fe is the most frequently studied due to the high activity 

and stability of the resulting catalysts.118 In these materials, Fe is primarily 

manifested in two forms: Fe-rich phases such as metallic particles and 

carbides,45, 61, 119-121 or atomically dispersed Fe coordinated to N in a variety 

of configurations.103, 122, 123 Nitrogen functionalities identified in MNCs include 

– but are not limited to – pyridinic, graphitic 124, hydrogenated as pyrrolic or 

hydrogenated pyridinic 125, cationic as quaternary or protonated, and the N 

coordinated with atomically dispersed Fe species (N-Fe). Multiple detailed 

structure-to-property and theoretical studies show that Fe coordinated to N 

(FeNx) forms active sites that catalyze the complete reduction of oxygen to 

water, while other N types such as hydrogenated and graphitic facilitate the 

partial reduction of oxygen to hydrogen peroxide.95, 103, 114, 126 In this work, 

“N-Fe” is used when discussing measured concentrations of N bound to Fe 

and “FeNx” is used when discussing the idealized active sites. This distinction 

is significant because N could be bound to Fe in nonactive configurations and 

the potential presence of single atom Fe particles cannot be discounted. 

Surface oxides present in the C network are important (indirect) indicators of 

defects which influence the formation of active FeNx sites.95, 127 An important 

aspect of the C network is its contribution to hydrophilic/hydrophobic 

properties that are critical for the integration of catalyst powders into fuel cell 

catalyst layers. Length-scale specific morphology of the catalyst also plays a 

very important role, particularly at the point integrating the catalyst into 

catalyst layers.64, 107 The distribution and accessibility of active sites as well 
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as the mass transport and water management properties of catalyst layers 

depend on the chemical composition, surface energy, and morphology of the 

catalysts themselves. 

 The pyrolytic routes typically employed in the synthesis of MNC 

catalysts result in very heterogeneous materials with a multitude of C, metal, 

and N moieties, as well as varying physical structure. Development of PGM-

free catalysts with improved activity and durability requires elucidation of the 

interplay between synthesis methodologies and catalyst composition, 

morphology, and both electrochemical and fuel cell performance 

characteristics. RDE testing is important for pre-screening catalyst activity 

and stability, as well as for mechanistic studies.118 Beyond RDE, it is crucial 

to determine correlations between catalyst synthesis, physicochemical 

properties, and performance in membrane electrode assembly (MEA) tests; 

these experiments evaluate materials upon integration into the catalyst 

layer, which in turn affects mass, electron, and proton transport.107, 128  

 We have previously shown that electrocatalysts synthesized from Fe 

and nicarbazin precursors using the sacrificial support method (SSM) 

demonstrate excellent activity and durability.66, 104 The SSM involves using 

templates to create free-standing, highly porous materials with tunable pore 

size distributions. These materials are formed from pyrolytic treatment of C, 

N, and metal sources.46, 49, 66, 104, 107, 127 After pyrolysis, the materials are 

leached in order to remove the template and undesired residual metal-rich 

phases. A second heat treatment improves catalyst activity and durability. 

Type and size of the template, mixing method, etching conditions, and 
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pyrolysis conditions (temperature, gas, duration) all affect catalyst chemistry 

and morphology and its subsequent performance in both RDE testing and 

MEA operation. Because the type of template used affects the resultant 

catalyst structure and porosity, it also affects catalyst-ionomer interactions in 

the catalyst layer.129 The ratio of ionomer to catalyst, as well as the method 

of the catalyst layer fabrication, also play critical roles in MEA 

performance.130 Optimized procedures for ink preparation and MEA 

fabrication have previously been reported for this class of materials.66, 67 

  The goals of this study are to elucidate: 1) chemistry-structure-

performance relationships in nicarbazin-derived PGM-free catalysts, and 

2) the effects of various synthetic parameters on catalyst composition, 

structure, and performance. A series of electrocatalysts with the same 

carbon/nitrogen precursor and Fe loading are fabricated under different 

synthetic conditions and tested for electrochemical performance in both RDE 

and MEA. The materials are characterized by x-ray photoelectron 

spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS) on a 

transmission electron microscope (TEM) to build correlations between 

synthetic parameters, performance, and surface and bulk composition of 

these catalysts, with focus on their heterogeneity at multiple length scales. 

Additional studies into the effects of catalyst and electrode morphology on 

performance are ongoing. 

  We observe that performance is strongly correlated with the 

concentration of N species coordinated with Fe, as well as the amount of 

surface oxides present. Catalyst performance is hindered by Fe-rich phases, 
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even in the presence of the ideal, atomically dispersed Fe species. Specific 

synthetic parameters that affect these chemistries and can be used for tuning 

catalyst performance are laid out. Finally, we show that these materials are 

fairly chemically homogenous at scales of over ~ 100 nm, but are highly 

heterogeneous at the few-nanometer scale. Therefore, caution should be 

exercised in drawing structural or chemical conclusions based on high-

resolution observations. 

 

6.2 – Experimental  

6.2.1 – Synthesis  

 Iron-Nicarbazin (Fe-NCB) electrocatalysts were prepared as follows: 

First, a calculated amount of silica (Stöber spheres synthesized in-house with 

a diameter of 370 nm, plus Cab-O-Sil® LM-150 and OX-50) was combined 

with multi-wall carbon nanotubes (Cheaptubes® 30-50 nm x 10-20 µm), iron 

nitrate (Fe(NO3)3*9H2O, Sigma-Aldrich) and nicarbazin (1,3-bis(4-

nitrophenyl)urea; 4,6-dimethyl-1H-pyrimidin-2-one, Sigma-Aldrich). The 

reagents were mixed with sufficient water to wet the powder and form a 

viscous gel, which was then dried with continuous stirring at 45 °C, then 

heated at 85 °C overnight. The resulting solid material was ground to a 

coarse powder in an agate mortar, then to a fine powder in an agate ball 

mill. This powder was then subjected to heat treatment (HT) in a controlled 

atmosphere of 7% H2/93% N2 (flow rate 120 cc min-1). HT 1 consisted of 

insertion into a furnace at 525 °C then immediately setting the furnace 

temperature to 900 °C. Once the furnace reached 900 °C, the temperature 



71 
 

was increased to 975 °C at a rate of 10 °C min-1. The temperature was held 

at 975 °C for 45 minutes, then the catalyst was quenched by removing the  

tube from the furnace. After HT 1, the sample was ground in an agate ball 

mill then leached with a 2:1 mixture of 25% HF:35% HNO3 for 3 days. The  

catalysts were then washed with DI water until neutral pH was reached and 

dried at 85 °C overnight. A second HT was performed at 950 °C for 30 

minutes in reactive (7% NH3/93% N2) atmospheres. The final product was 

ground in an agate ball mill for 1 hour. The varied synthetic parameters are 

shown in Table 6-1. 

 

6.2.2 – Rotating disk electrode 

 RDE measurements were performed with a glassy carbon working 

electrode and a graphite counter electrode. Ink composition was 5 mg of 

catalyst in 850 µL 4:1 water:isopropanol and 150 µL 0.5 wt.% Nafion 

solution deposited to a catalyst loading of 600 µg cm-2.  The electrolyte was 

O2 saturated 0.5 M H2SO4 at room temperature. A scan rate of 5 mV s-1 was 

used with a rotation speed of 1600 RPM. Data was recorded vs. a saturated 

Table 6-1. Table of varied synthesis parameters. Amounts of Stöber glass and CNT are in 

grams. All samples used 12.5 g nicarbazin and 1.2 g iron nitrate nonahydrate. 
 

Sample Stöber CNT Etch Prep Etch HT2 method HT2 gas 

2 1.0 1.0 
Mortar & 

Pestle 
HF/HNO3 950 0C 30 min, quench NH3/N2 

8 1.0 1.0 Ball mill HF/HNO3 950 0C 30 min, quench NH3/N2 

9 5.0 1.0 Ball mill HF/HNO3 950 0C 30 min, quench NH3/N2 

10 1.0 - Ball mill HF/HNO3 950 0C 30 min, quench NH3/N2 

13 1.0 1.0 Ball mill HF/HNO3 950 0C 45 min, quench H2/N2 

14 1.0 1.0 Ball mill HF 950 0C 30 min, quench NH3/N2 

15 1.0 1.0 Ball mill HF/HNO3 950 0C 45 min, quench NH3/N2 
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Ag/AgCl reference electrode, then converted to reversible hydrogen electrode 

potentials by addition of 215 mV. The half-wave potential was determined by 

calculating the second derivative of the sigmoid.  

 

6.2.3 – Fuel cell testing 

 Fuel cell testing was performed by Pajarito Powder, LLC. MEAs with an 

area of 5 cm2 were prepared from gas diffusion electrodes (GDEs) pressed 

with XL Nafion® membrane using PTFE-impregnated glass-fiber sub-gaskets 

at 131 °C for 10 minutes at 450 psi, then cooled under 1 psi pressure. Sub-

gasket thickness for the anode was 150 µm and 250 µm for the cathode. The 

GDE was sprayed using a Sono-Tek Exacta-Coat automated spray system 

delivering 1 ml min-1 ink through a 25 kHz ultrasonic nozzle onto SGL 29BC 

Gas Diffusion Layer preheated to 65 °C. The ink was deposited at a rate of 

40 µg cm-2 per deposition pass, for a total of 3 mgcatalyst cm-2 and ~75 µm 

thick electrode. The inks were composed of 2:1 isopropyl alcohol:deionized 

water (v:v), catalyst, and D2021 Nafion® (measured to a final loading of 45 

wt%) dispersion mixed to a ratio of 3.5wt% total solids. A 50 mL vessel 

containing the ink ingredients was placed in a water-cooled bath and mixed 

for 30 min using an IKA T-18 high shear mixer with the S18-19G dispersing 

element at 18,000 RPM. 

 The MEAs were loaded into the cell testing assembly (Fuel Cell 

Technologies Inc.) using single serpentine pattern graphite flow plates and 

the cell hardware was assembled using 40 inch-lbs torque. Testing 

parameters were 80 °C, 100% RH, 250 sccm H2/200 sccm air at the anode 
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and cathode, respectively, at an absolute pressure of 1.65 atm. The MEA was 

preconditioned with a potentiostatic hold at 0.3 V for 10 minutes. Data was 

then collected potentiostatically with 60 seconds potential holds and the 

current at the end of the hold reported. Data is reported without correction. 

 

6.2.4 – XPS  

 XPS spectra were acquired on a Kratos Axis Ultra X-ray photoelectron 

spectrometer using a monochromatic Al Kα source operating at 300 W, and 

data analysis and quantification were performed using CasaXPS software. 

Three regions per samples were analyzed. Survey spectra were acquired at 

80 eV pass energy. High resolution O 1s, C 1s, N 1s, and Fe 2p spectra were 

acquired at 20 eV pass energy. No charge neutralization was necessary. High 

resolution C 1s and N 1s spectra were fitted with a 70% Gaussian/30% 

Lorentzian line shape with fixed full width half max of 1.0-1.2 eV for C and of 

1.3-1.5 eV for N. 

 

6.2.5 – TEM/EDS 

 Scanning transmission electron microscope (STEM) imaging and 

energy dispersive x-ray spectroscopy (EDS) measurements were conducted 

using an FEI Talos F200X operated at 200 kV. Compositional EDS maps were 

acquired for up to 60 min per area (typically ~10 min), and data was 

processed using Bruker ESPIRIT software. 
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6.3 – Results 

6.3.1 – Rotating Disk Electrode 

 Electrochemical activity was measured using the half-wave potential 

(E1/2) from RDE measurement (Figure 6-1), with E1/2 values ranging from 695 

to 750 mV. The lowest E1/2 corresponds with Sample 2, which contained 

excess Fe particles, perhaps due to incomplete leaching. The highest E1/2 was 

generated by Sample 10 (synthesized without CNT). All other samples have 

similar E1/2. 

 

 

 

  

 
Figure 6-1. ORR polarization curves of Fe-NCB catalysts. RDE tests were performed in 0.5 M 

H2SO4 at 5 mV s-1. Inset shows half-wave potentials in mV for all catalysts. 
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6.3.2 – Fuel Cell 

 Fuel cell performance was tested in a single cell MEA (Figure 6-2), 

results presented without iR correction. All operation regions show significant 

spread in performance. Kinetic performance, characterized by current 

densities at 0.8 V, was highest for Sample 10, which also exhibited the best 

E1/2. This is likely due to higher density of active sites in the sample without 

CNTs since CNTs do not host active sites themselves and their addition 

decreases the amount of material available for active site formation. The 

lowest kinetic performance was observed in Samples 2, 13, and 9. Sample 2 

suffered from incomplete leaching that resulted in a significant amount of 

excess Fe in the final product. PGM-free catalysts containing excess Fe have 

previously been reported to exhibit poor performance.56 Sample 9 was 

 

 
Figure 6-2. MEA polarization curves. Cell was run at 1.65 atm(absolute) with H2/Air. 
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synthesized with five times the amount of silica spheres as the other samples 

and was an outlier in all regimes of fuel cell testing. Although this additional 

silica did not significantly change the chemical composition, as will be 

presented below, it clearly had a profound effect on integration of the 

catalyst into the catalyst layer. Cross-sectional imaging on a subset of 

catalyst layers was performed using FIB-SEM (Figure SI 1). It is observed 

that Sample 9 has a much greater overall pore volume and larger sizes of 

pores than the other samples imaged. We suggest that the poor MEA 

performance of Sample 9 is due to one of two mechanisms: either poor solid 

phase connectivity hindering electron or proton transport, or a thicker 

catalyst layer increasing limitations for mass transport.  

 In the transition and transport-limited regions, Samples 2 and 9 

continued to perform poorly, Sample 10 had mediocre performance, and 

Samples 14 and 8 exhibited the best performance. For the best two samples 

in this regime, the synthesis differs only in the type of leaching acid: 

HF/HNO3 (Sample 8) vs. HF (Sample 14).  

 

6.3.3 – XPS  

 Catalyst surface composition was investigated using high-resolution 

XPS. Elemental composition as well as C and N speciation was determined for 

seven catalysts (Table 6-2). High resolution C 1s and N 1s spectra for two 

selected samples are presented in Figure 6-3 to illustrate differences in 

chemical composition. The catalysts consist of 88-92 at.% C, 4-9 at.% O, 

2.8-4.0 at.% N and 0.1-0.2 at.% Fe, which are typical compositions for this 
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class of materials.95, 104, 114 Samples 8 and 14 have both the highest amounts 

of O and smallest amounts of N detected. The highest concentration of Fe is 

observed for Sample 2 – an important confirmation that without proper 

milling prior to leaching, the material lacks morphology that facilitates 

efficient leaching of Fe-rich particles. 

 Figure 6-3 a) and b) show high resolution N 1s spectra fitted with 

multiple peaks of fixed width and shape as described in experimental section. 

The positions of peaks and corresponding chemical species that contribute to 

them have been discussed in thorough detail.95, 125 In summary, pyridinic N 

appears at 398.4 eV, N coordinated to Fe at 399.8 eV, pyrrolic or 

hydrogenated N at 401.4 eV, graphitic and cationic N at 402 and 403 eV and 

NOx species at a highest binding energy between 405 and 407 eV. The 

Table 6-2. XPS elemental composition, C 1s and N 1s speciation of catalyst powders.  

  
catalyst elemental composition, 

at.% 

 

 

C O N Fe      

s.2 91.4 4.5 4.0 0.22      

s.8 87.8 9.3 2.8 0.11      

s.9 90.3 5.9 3.8 0.09      

s.10 89.5 6.4 4.0 0.12      

s.13 92.4 4.2 3.3 0.11      

s.14 88.3 8.8 2.9 0.12      

s.15 91.6 4.5 3.9 0.11      

 
         

 catalyst C speciation, rel. % catalyst N speciation, rel. % 

 C gr C-N CxOy  N 

pyrid 

Nx-

Fe 
N hydrogenated 

N gr/ 

N+ 
NOx 

s.2 38.0 15.2 40.4  24.9 13.0 21.8 17.5 22.5 

s.8 8.2 27.9 60.7  22.9 18.8 18.8 18.3 20.4 

s.9 27.5 17.5 49.3  23.2 16.5 21.6 17.6 20.8 

s.10 9.5 15.2 69.3  24.5 19.8 22.5 15.5 17.7 

s.13 35.4 16.1 42.6  18.0 13.9 25.9 19.4 22.7 

s.14 22.2 25.5 49.1  22.2 17.4 24.6 18.0 17.9 

s.15 27.2 16.4 50.7  22.3 17.5 22.7 16.7 20.8 
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biggest difference in N composition is in relative amounts of pyridinic N, N 

coordinated with Fe, and pyrrolic/hydrogenated N species. Because the at.% 

of N depends on the amounts of other elements, and C, O, N, and Fe 

represent signal from different sampling depths, our analysis focuses on how 

the relative distribution of individual N types contribute to overall activity.95  

As clearly seen in Figure 6-3, Sample 10 has a larger contribution from peaks 

due to pyridinic N (24.5%) and Nx-Fe (19.8%) than Sample 13 with 18% and 

13.9%, respectively. These species of N have been previously discussed by 

many as active sites for the ORR. Pyrrolic or hydrogenated N moieties, which 

have been reported to promote the partial reduction of oxygen to hydrogen 

peroxide, are largest for Samples 13 and 14.95, 131 For the same two samples, 

 

Figure 6-3. High resolution a) and b) N 1s and c) and d) C 1s spectra for Samples 10 and 

13. Similar analysis was performed on all samples. 
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high resolution C 1s spectra fitted with multiple peaks representing different 

types of C chemical environments are illustrated in Figure 6-3 c) & d). 

Graphitic sp2 C has been curve fitted by an asymmetrical peak at 284.4 eV 

due to excitation of low-energy electron–hole pairs, which then contribute to 

higher binding energy values. The peak at 285 eV has contribution from 

aliphatic C and from secondary carbons that are bonded to O groups – as 

discussed below. Nitrogen defects in the C network contribute to the peak at 

286.2 eV. A series of peaks due to different C-O species (e.g. C-OH/C-OC, 

C=O, COOH) appears between 287 and 290 eV. The peak at 286.2 can also 

have a contribution from secondary carbons as above. Finally, between 291 

and 293 eV two peaks due to π–π* transition caused by the excitement of 

aromatic ring by exiting photoelectrons that contribute to shake-up peaks. 

We have combined peaks due to all surface oxides (peaks between 287 and 

290 eV and peak at 285 eV) into one component CxOy (Table 6-2). The major 

C chemistries are the graphitic sp2 network, C-Nx defects, and surface oxides 

CxOy. Previously, we have shown the importance of CxOy as a metric for the 

number of defects in the C network, which is correlated with formation of 

active sites and consequently with electrochemical activity.127 From Table 6-2 

it is seen that Samples 8 and 10 have the smallest relative amounts of 

graphitic C and largest concentrations of CxOy groups. Samples 8 and 14 

have the highest amounts of C-Nx defects in C. 
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6.3.4 – TEM/EDS 

 STEM imaging and EDS mapping were used to determine elemental 

distribution across the materials, with a specific focus on N and Fe. Elemental 

maps of C, N, Fe, and O were generated for all samples, with representative 

maps displayed for Sample 10 (Figure 6-4). Each sample has a 

heterogeneous distribution of Fe, suggesting the presence of two types of Fe: 

Fe-rich nanoparticles (Fe-np) and atomically-dispersed Fe (Feat-dsp). High 

contrast particles that appear in high angle annular dark field (HAADF) 

imaging correspond to areas with high Fe concentration and do not correlate 

with any other elements (Figure SI 2). The more homogenously distributed 

 
 

Figure 6-4. STEM mode HAADF image and EDS mapping shows the typical distribution of C, 

O, N, and Fe within Sample 10. Similar analysis was performed on all samples. 
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Feat-dsp does correlate with C, O, and N. Composite maps of N and Fe show 

good correspondence between N and dispersed Fe in the material. 

 Higher magnification HAADF images and Fe elemental maps of 

particle-free areas (Figure SI 3) were preferentially selected for quantitative 

analysis to compare two important parameters from EDS: the content of Feat-

dsp, and the ratio of total N to Feat-dsp. Elemental composition for each sample 

was quantified in multiple areas (as shown for Sample 10, Figure SI 4). The 

amount of Feat-dsp and the ratios of N/Feat-dsp were averaged across all areas 

for a given sample (Table SI 1). In mesomeric FeN4 centers, portrayed by 

many as an ORR active site, the N/Fe ratio should be ~ 4. Other types of 

disordered FeNx centers may be present, which would result in a lower 

number of N per Fe, and thus smaller N/Fe ratios.56, 123 However, as indicated 

by XPS analysis, not all of the N present is coordinated to Fe. The EDS 

analysis yields N/Fe ratios significantly greater than 4, which is consistent 

with the XPS analysis results showing only a fraction of the total N is 

coordinated to Fe. The N/Fe ratio gives a measure of the amount of excess N 

in the material which can be viewed either as a measure of the efficiency of 

integrating N into active structures or, as discussed in the Analysis and 

Results section, a measure excess N affecting integration of the catalyst 

material with ionomer in electrodes. 
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 The most general trend between the two EDS parameters is that the 

N/Feat-dsp ratio decreases as Feat-dsp increases, which is expected as the two 

parameters are interconnected.  

 

Figure 6-5. STEM mode HAADF images and EDS mapping showing the typical distribution of 
Fe in each sample. Fe is present in both nanoparticle form (Fe-np), and as atomically-

dispersed Fe (Feat-dsp). Images are presented with increasing kinetic performance from 
MEAs. 
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6.4 – Analysis and Discussion 

 The presence of Fe-nps in the catalyst correlates with poor 

performance. Further, the presence of these particles does not necessarily 

indicate a higher total Fe content. Many Fe-nps were observed by STEM in 

Samples 13 and 15, but no increase in Fe content was measured by XPS and 

EDS. Consequently, samples with Fe-rich particles exhibited a lower 

concentration of dispersed Fe. It is clear that the materials with more 

uniform distributions of Fe show better electrochemical performance (Figure 

6-5). The synthesis parameters that promote formation of these Fe-nps (and 

hinder formation of Feat-dsp) include incomplete leaching due to poor milling 

before acid treatment, and additional reduction during the second pyrolysis. 

This additional reduction results from either increased second pyrolysis time 

or use of a stronger reducing agent, i.e. H2 as opposed to NH3.  

 Electrochemical performance, as measured by E1/2 and MEA current at 

0.8 V, correlates with the concentrations of N-Fe and CxOy measured by XPS, 

as well as with Feat-dsp measured by EDS (Figure 6-6) – consistent with prior 

work.49, 95, 118 Correlation between N-Fe and Feat-dsp (Figure 6-6 d) provides 

evidence that the quantitative information on the amount of N coordinated to 

Fe extracted from curve-fitting of high resolution N 1s XPS spectra, and the 

bulk material composition measured with EDS, are good representations of 

the material composition. Furthermore, the correlation of N-Fe and Feat-dsp 

with performance is consistent with the hypothesis that the active species in 

these catalysts involve FeNx sites.  
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Figure 6-6. Scatter plots of performance and chemical correlations. Plot a) shows 
electrochemical performance vs. concentration of Nx-Fe measured by XPS. Plot b) shows 

electrochemical performance vs. amount of surface oxides measured by XPS. Plot c) shows 
electrochemical performance vs. atomically dispersed Fe content measured by EDS. Plot d) 

shows atomically dispersed Fe content by EDS vs. Nx-Fe by XPS. Plot e) shows surface oxide 

concentration vs. Nx-Fe by XPS. 
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 Prior work reports that pyridinic N correlates with performance.95, 126 

Here, it is observed that amount of N-Fe – rather than pyridinic N – is the 

better indicator of electrochemical performance in MEA and E1/2. The linear 

trend between N-Fe and CxOy (Figure 6-6 e) indicates that increased active 

site concentrations correlate to an increased concentration of defects in 

graphitic structures, which commonly contain oxygen species. Synthesis 

parameters that influenced the amount of graphitic defects, and 

consequently surface oxide concentration, were the gas used during the 

second pyrolysis (H2 reduced oxides), the acid used for leaching (HNO3 

promoted oxides), and incomplete leaching of Fe following the first pyrolysis 

reduced oxides. Surface oxides and hence defected graphitic structures can 

be directly influenced by altering synthesis parameters. Their strong 

correlation with N-Fe and activity provides a potential knob to influence the 

activity of these catalysts. Also, since reductive treatments following the first 

HT significantly affect both performance and the concentrations of CxOy and 

N-Fe, it appears that the active species are easily destroyed following the 

first pyrolysis and/or are largely formed during the second pyrolysis. 

 Performance in the transport region is best correlated with the N/Feat-

dsp ratio (Figure 6-7). While catalysts with a high amount of Feat-dsp show the 

highest kinetic current, materials with a low N/Feat-dsp ratio have the highest 

transport current. This relationship is also present when considering the 

intermediate current range, but is less pronounced in the kinetic region. 

Lower N/Feat-dsp ratios suggest more coordination between Fe and N relative 



86 
 

to the total amount of N species and therefore a greater density of active 

sites – thus explaining the improved electrochemical performance.  

 Several samples deviate from these trends due to other compositional 

differences. Although Sample 10 shows the best performance in the kinetic 

region, it is expected to have an even higher kinetic current based on the 

amount of Feat-dsp. Despite having the highest amount of Feat-dsp (that could 

be coordinated to N), the N-Fe percentage is lower and the N/Feat-dsp ratio is 

higher than expected. This is likely due to the fact that Sample 10 was 

synthesized without CNTs, suggesting that N preferentially integrates with 

the pyrolyzed C matrix over CNTs. Sample 9 follows the chemical correlation 

trends well, but is an outlier in all MEA performance characteristics due to 

poor integration in the catalyst layer as discussed in the supplementary 

information. 

   

   

Figure 6-7. Correlations between two material properties: Feat-dsp (a) and N/Feat-dsp ratio (b), 
and three performance metrics: I at 0.8 V (1), I at 0.6 V (2), and I at 0.4 V (3) are shown. 
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6.5 – Conclusion  

 A set of PGM-free ORR electrocatalysts has been synthesized using the 

same precursor and with varying synthetic conditions. The materials were 

tested for catalytic performance in RDE and full MEA fuel cell operation, and 

characterized by XPS, STEM, and EDS. Analysis of the performance testing 

and physicochemical results yields several important correlations between 

synthesis, chemical composition, and performance. In this class of catalysts, 

the presence of Fe-nps is correlated with reduced Feat-dsp in the material, 

leading to a decrease in electrochemical performance. Incomplete leaching 

and more aggressive reduction in the second pyrolysis both reduce Feat-dsp 

and increase the occurrence of Fe-rich phases.  

 Electrochemical performance as measured by both RDE and MEA is 

strongly positively correlated with Feat-dsp, N-Fe, and CxOy. Furthermore, 

these chemical characteristics are related to each other, so direct synthetic 

control over any one of these parameters provides a means to tune catalyst 

performance. The number of defects in the C matrix, which promote 

formation of active sites and are manifested as higher amounts of CxOy, can 

be influenced during catalyst synthesis by minimizing the reductive 

conditions during the second pyrolysis, adding nitric acid during leaching, and 

ensuring complete leaching of excess Fe. The significant influence of 

treatments following the first pyrolysis indicates that the active sites are 

either fragile and easily destroyed before the second pyrolysis, or are 

primarily created during the second pyrolysis. 
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 This work provides insight into synthetic methods that affect catalyst 

composition and performance. These insights can be used to improve PGM-

free catalyst performance synthesized by a variety of techniques. 

Additionally, the strong correlations observed between Feat-dsp and N-Fe 

species with ORR performance provide evidence that Fe coordinated with N 

function as active sites. 
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Chapter 7 – Morphology, Chemistry, and Performance 

7.1 – Introduction 

 Catalyst performance is dependent on both chemistry and morphology. 

In fact, chemistry and morphology are themselves interrelated. Traditional 

methods for analysis of catalyst morphology were discussed in Chapter 2, 

and new techniques for analysis of the catalyst surface and electrode internal 

morphology were presented in Chapters 4 & 5. In this section, additional 

characterization methods are utilized and correlations between morphology, 

chemistry, and performance are explored. The results presented in this 

chapter have not yet been published (except the subset included in Chapter 

6). Portions of the work in this chapter will be submitted for publication. The 

coauthors for that publication will likely include Kateryna Artyushkova, 

Plamen Atanassov, Alexey Serov, Sam McKinney, Alex Mirabal, and Scott 

Calabrese-Barton. My contribution to this work included: Catalyst synthesis, 

RDE data acquisition and analysis, SEM data acquisition and analysis, MEA 

data acquisition and analysis, DWT analysis, BET acquisition and analysis, 

XRD analysis, data processing, correlation analysis, and interpretation of 

results. 

 

7.2 – Experimental 

 The catalysts discussed in this chapter were prepared as described in 

Chapter 6. The catalysts used for the study in Chapter 6 include Samples 2, 

8, 9, 10, 13, 14, and 15 from the full set discussed here. The synthesis 
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parameters of the full catalyst set are listed in Table 7-1. The methods for 

RDE, XPS, and MEA testing are the same as presented in Chapter 6. 

 Catalyst surface area and pore size distributions were calculated by 

analysis of nitrogen adsorption isotherms. All samples were analyzed for 

surface area using Brunauer, Emmet, and Teller (BET) theory.28 Samples 

were degassed at 120 °C for a minimum of 12 hours under flowing N. 

Isotherms were acquired on a Micrometrics Gemini system, and the surface 

area was calculated with multipoint BET. A subset of samples was also 

analyzed using a Micromeritics ASAP 2020 Nitrogen adsorption analyzer. 

Table 7-1. Varied synthetic parameters. Parameters altered from the base process (Sample 
8) are highlighted. All samples prepared as outlined in Chapter 6 except Sample 3, which 

was placed in a 900 °C oven for HT 1, and Sample 4, which was cooled at 25 °C min-1 after 
HT 1 instead of being quenched. Samples 11 & 12 used LM-150D instead of LM-150. 

The columns are: LM-150 – amount (g) of LM-150 | Stöber – amount (g) of 370 nm silica 

spheres | CNT – amount (g) of CNT | Fe(NO3)3 – amount of iron nitrate nonahydrate (g) | 
Ball mill – ball mill used before etching | Etch acid – which acid(s) used to etch silica and 
excess Fe | Etch time – length of time sample was left in acid | HT2 time – length of the 2nd 

pyrolysis | HT2 gas – gas(es) used for the 2nd pyrolysis (NH3 = 10%:90% NH3:N2, H2 = 
7%:93% H2:N2, gas for Sample 16 was changed half-way through HT2). 

Sample 

LM-

150 Stöber CNT Fe(NO3)3 

Ball 

mill 

Etch 

acid 

Etch 

time 

HT2 

time HT2 gas 

2 2.5 1.0 1.0 1.2 X HF/HNO3 ? 30 min NH3 

3 2.5 1.0 1.0 1.2 X HF/HNO3 ? 30 min NH3 

4 2.5 1.0 1.0 1.2 X HF/HNO3 ? 30 min NH3 

5 2.5 1.0 X 12.7 Yes HF 5 days 45 min H2 

6 2.5 5.0 X 1.2 Yes HF 5 days 45 min H2 

7 2.5 10.0 1.0 1.2 Yes HF 5 days 45 min H2 

8 2.5 1.0 1.0 1.2 Yes HF/HNO3 4 days 30 min NH3 

9 2.5 5.0 1.0 1.2 Yes HF/HNO3 4 days 30 min NH3 

10 2.5 1.0 X 1.2 Yes HF/HNO3 4 days 30 min NH3 

11 2.5 D 1.0 1.0 1.2 Yes HF 4 days 30 min NH3 

12 2.5 D 1.0 1.0 1.2 Yes HF/HNO3 4 days 45 min NH3 

13 2.5 1.0 1.0 1.2 Yes HF/HNO3 4 days 45 min H2 

14 2.5 1.0 1.0 1.2 Yes HF 4 days 30 min NH3 

15 2.5 1.0 1.0 1.2 Yes HF/HNO3 4 days 45 min NH3 

16 2.5 1.0 X 1.2 Yes HF 4 days 30 min NH3  Ar 

17 2.5 1.0 X 1.2 Yes HF 4 days 30 min NH3 
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These samples were degassed at 200 °C for 12 hours under vacuum. The 

surface area was measured using the BET methodology. Pore size 

distributions were obtained from the isotherms using the Barrett-Joyner-

Halenda (BJH)132 and Nonlocal Density Functional Theory (DFT)30, 133 

approaches. BJH calculations were performed using the desorption branch of 

the isotherm, while DFT used the adsorption branch. Data smoothing was 

performed by the ASAP 2020 software for BJH and DFT analysis. 

 The crystalline structure of the catalysts was examined using x-ray 

diffraction (XRD). The diffraction patterns were acquired on a Rigaku 

SmartLab diffractometer equipped with a sealed-tube Cu source and a 

position-sensitive D/teX detector with a Ni filter to remove the Cu Kβ 

radiation component. Processing of the spectra was accomplished with the 

structure refinement program written by Shi, Reimers, and Dahn,42 which 

was updated to function on modern computer hardware by Lok-kun Tsui.134  

 Catalyst surface analysis was accomplished by analysis of SEM images 

using texture analytics as described in work by Artyushkova, et al.135 and the 

DWT as described in Chapter 4 with some modification.64 Images were not 

acquired with identical brightness and contrast settings. To compensate for 

varying brightness, contrast, and intrinsic variations in how materials interact 

with the e- beam, the roughness at each detail level and all roughness fits 

were normalized to the total roughness of the image. This normalization 

yields the relative fraction of roughness that occurs in each size range, 

independent of overall image contrast. 
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7.3 – Results and discussion 

7.3.1 – Synthesis 

 The design parameters varied in the catalyst set are summarized in 

Table 7-1. Sample 1 was lost to a runaway exothermic reaction upon addition 

of HF. It should be noted that Samples 2-7 were handled by multiple people 

during the synthesis process. The acid etching, washing, and HT 1 were 

completed by different group members on different samples, so variations in 

performance, chemistry, and structure of these catalysts cannot necessarily 

be attributed to specific 

synthetic parameters. 

Samples 8-17 were handled 

exclusively by me from 

beginning to end and all 

synthetic and process 

parameters were carefully 

controlled and documented.  

 Following the 

synthesis, the presence of 

residual metallic Fe was 

qualitatively screened for by 

use of a neodymium 

magnet (access to a Curie 

balance could not be 

secured). This was 

 

Figure 7-1. Images of magnet tests. Catalyst powder 
was placed on paper and a neodymium magnet was 

dragged from left to right in contact with the bottom of 
the paper. 
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accomplished by placing a small amount of catalyst powder on paper and 

dragging a neodymium magnet in contact with the bottom surface of the 

paper past the powder. The results of this test are shown in Figure 7-1. The 

behavior of the catalysts in the presence of the magnet can be divided into 

three categories: majority of powder interacting with magnet (high metallic 

Fe content), minority of powder interacting with magnet (medium metallic Fe 

content), and little/no interaction with magnet (low metallic Fe content). 

Samples 2-5 and 7 exhibited high magnetic interaction, Samples 6 and 13-15 

medium interaction, and Samples 8-12 little interaction.  

 Sample 5 was synthesized with 10x the Fe as the rest of the samples. 

It is observed to be the worst performing catalyst in all performance testing 

metrics. As discussed in the introduction, there are two schools of thought on 

the active sites in PGM-free catalysts. Though specific values are not always 

present in the literature, it appears that those who believe Fe-rich phases (or 

graphitic structures modified by underlying Fe-rich particles) are the active 

species synthesize their catalysts using 10-50 wt.% Fe. Those who 

purposefully design catalysts to maximize Fe-N-C sites synthesize catalysts 

with ~1 wt.% Fe (as is the case with the materials in this study). As 

discussed in the introduction and supported in previous chapters, I believe 

the primary active species in MNC catalysts to be Fe coordinated with N in 

the C matrix. I also believe these are the active species present in the Fe-rich 

catalysts referenced by groups touting Fe-rich particles as the active species. 

In that class of materials, it appears those researchers have optimized the 

synthesis parameters to create Fe-N-C sites in addition to the Fe-rich phases. 
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However, since those materials have a predominance of Fe-rich phases over 

atomically dispersed Fe, measurement of the Fe-N-C active species becomes 

difficult/impossible as any signal from these moieties are drowned out by the 

Fe-rich phases. I address this here because I believe that Sample 5 is 

ostensibly an un-optimized version of an Fe-rich catalyst. As such, it exhibits 

significantly different composition and morphology and exists in a different 

structure-to-property space than the rest of the catalysts in this study. 

 

7.3.2 – Isotherm analysis 

 Surface area for all samples was calculated using 

the BET method. The surface area of all samples is shown 

in Table 7-2. The surface areas fall into two categories: 

those without CNTs in the range of 500-600 m2 g-1, and 

those with CNTs with area over 700 m2 g-1. This is likely 

because the CNT account for approximately 1/3 of the 

mass of the final catalyst and they have a surface area 

<100 m2 g-1. 

 A subset of the catalysts was selected for PSD 

analysis. Both BJH and DFT were applied and are 

applicable in different size ranges. The DFT analysis is 

useful for analysis of micropores, but is less accurate for mesopores. For 

these materials, BJH is expected to yield good results for mesopores.31 Figure 

7-2 shows the BJH pore size distributions for all samples. It is observed that 

the mesopores distributions are similar for all samples with Sample 10 being 

Table 7-2. Surface 

area measured 
using multipoint 
BET (m2 g-1) 

Sample 
Surface 

area 

2 637 

3 621 

4 554 

5 715 

6 741 

7 565 

8 605 

9 650 

10 769 

11 504 

12 660 

13 570 

14 575 

15 620 
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an outlier. Sample 10 was 

synthesized without CNTs and has 

the highest surface area of this 

subset, however, the increased 

area is due primarily to an 

increase in micropores, not 

mesopores. I believe the increased 

mesopore volume can also be 

attributed to the lack of CNTs. 

Pores in this range are formed by the silica templates, OX50 and LM-150, 

which have primary particle sizes of 80-120 nm. During the impregnation 

phase of synthesis, the nicarbazin powder and dissolved iron nitrate are able 

to be in close contact with the silica templates. The CNTs are not able to 

tightly bend around templating agents of this size, so do not participate in 

formation of pores on this scale. Since, as mentioned above, the CNTs 

account for a significant mass percent of the final product, the mass-specific 

pore distribution will have a lower concentration of pores on this scale in the 

presence of CNTs. 

 Figures 7-3 a) and b) show comparisons of PSD by DFT and BJH for 

two samples in the mesopore region. They show similar mesopore volume, 

though the peak pore size is slightly shifted. The DFT model exhibits a flat 

region from 2-6 Å for Sample 10. This feature is present in 4 of the 6 

samples analyzed. This blind-spot is common in DFT analysis and can result 

from mismatch between modeling parameters and the material properties, in  

 

Figure 7-2. Differential volume of mesopores 
calculated by BJH. Sample 10, synthesized 
without CNTs exhibits the greatest 

concentration of pores corresponding to the 
size of the silica template. 
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this case, likely heterogeneities in the material.136, 137 Figure 7-3 c) shows a 

comparison of the microporous region of two 

catalysts. Here it can be seen that Sample 10, 

synthesized without CNTs, has a significantly 

greater volume of micropores, contributing to 

its greater total surface area. The average 

pore width and micropore volumes are listed 

in Table 7-3. 

 

  

Table 7-3. Results of pore size 

distribution analysis. Micropore 
volume calculated by DFT 
(cm3 g-1). Average pore width 

calculated with BJH theory (Å). 

Sample 
Micropore 

volume 

Average 
pore 

width 

2 0.159 120 

9 0.172 153 

10 0.206 124 

13 0.131 121 

14 0.154 122 

15 0.143 124 

a) 

 

b) 

 
c) 

 

 

 
 
Figure 7-3. Plots a) and b) show 

comparisons between DFT and BJH 
modeling of pore size distributions. The 
different methods show similar results in 
the above 6 nm, but vary significantly 

below that. Plot c) shows micropore 
distribution for the same two samples. In 
both regions the sample made without 

CNTs shows increased porosity. 
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Figure 7-4. ORR polarization curves of Fe-NCB catalysts. RDE tests were performed in 0.5 M 
H2SO4 at 5 mV s-1. 
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7.3.3 – Rotating disk electrode 

 Electrochemical activity was measured using the half-wave potential 

(E1/2) from RDE data (Figure 7-4). The E1/2 values range 

from 565 to 735 mV vs. RHE and are listed in Table 7-4. 

The sample with the highest E1/2 is Sample 10, which was 

synthesized without CNTs. The worst performing sample 

was Sample 5, which was synthesized with 10x the 

standard amount of Fe. The second lowest E1/2 is Sample 

3 at 685 mV. 

 The worst performing samples by RDE all exhibited 

high magnetic interaction. As discussed in Chapter 6, 

catalysts with high metallic Fe content perform worse 

than samples with little/no metallic Fe. This trend is 

consistent through the full catalyst set.  

 

7.3.4 – Membrane electrode assembly 

 Fuel cell performance was tested in a single cell MEA (Figure 7-5). 

There is a significant spread of performance in all operation regimes. Current 

values representative of the kinetic regime (0.8 V), transition region (0.6 V), 

and transport regime (0.4 V) as well as open-circuit voltage (OCV) are 

presented in Table 7-5. In general, samples with higher E1/2 performed better 

in the kinetic region during fuel cell testing as seen in Figure 7-6.  

Table 7-4. Half-

wave potentials 
measured by RDE 
(mV vs. RHE).  

Sample E1/2 

2 690 

3 685 

4 690 

5 565 

6 720 

7 700 

8 730 

9 715 

10 735 

11 720 

12 720 

13 720 

14 730 

15 730 
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Figure 7-5. MEA polarization curves. Cell operated at 1.65 atmabs with H2/Air.  
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 The samples exhibiting the 

best kinetic performance (Samples 

6 and 10) were synthesized without 

CNTs. As discussed in Chapter 6, 

this is likely a result of active sites 

not forming on the CNTs. Aside 

from the two best performing 

samples being made without CNTs, 

and therefore having the highest 

surface area, there is no observed 

correlation between either total 

surface area or micropore 

volume with performance.  

 

7.3.5 – X-ray diffraction 

 X-ray diffraction 

patterns were acquired for 

all samples. The spectra are 

shown in Figure 7-7. No Fe 

peaks are detectable in any 

of the patterns. This could 

be due to the low 

concentration of metallic Fe and/or the small particle size. The samples 

synthesized without CNTs tend to have less pronounced diffraction peaks, 

Table 7-5. MEA OCV (V) and current densities 

(mA cm-2) at 0.8 V, 0.6 V, and 0.4 V. Testing 
performed at 12 psi back pressure (1.65 
atmabsolute) in H2/Air.  

Sample OCV 0.8 V 0.6 V 0.4 V 

2 0.84 4.7 162 433 

3 0.83 4.4 157 486 

4 0.81 0.1 86 270 

5 0.87 5.4 35 103 

6 0.91 38.8 355 633 

7 0.84 1.2 146 449 

8 0.92 22.4 316 687 

9 0.84 1.4 47 154 

10 0.93 25.9 269 592 

11 0.90 15.8 256 583 

12 0.92 13.9 178 416 

13 0.87 4.5 205 547 

14 0.92 19.0 340 749 

15 0.92 15.0 265 607 

 

 

Figure 7-6. Scatter plot of MEA kinetic current vs. half-
wave potential. Sample 5 is not shown (565 mV, 5 

mA). Legend identifies qualitative level of magnet 
response. 
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which is reasonable as the CNTs significantly affect the diffraction patterns. 

The exception to this is Sample 5, which shows the most defined carbon 

peaks of any sample. Fe is known to facilitate graphitization, and it appears 

that the metallic Fe in Sample 5 created a significant amount of graphitized 

carbon.  

 Examination of the C crystalline structure was performed using 

CarbonXS, a structure refinement for disordered carbon structures. The full 

details of the modeling theory can be seen in the original paper by Shi, et 

al.42 and the dissertation from which that manuscript was developed.138 In 

summary, this refinement program fits XRD patterns based on 3-D modeling 

to account for the in-plane cell constant, interlayer spacing, crystallite  

 

Figure 7-7. XRD patterns collected on a quartz holder. Holder background has been 

subtracted from these diffraction patterns. Expected positions of carbon peaks are shown. 
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scattering coherence 

length, average number of 

layers, in-plane strain, 

through-plane strain, 

probability of random 

stacking, probability of 3R 

stacking, preferred 

orientation factor, and the 

Debye-Waller temperature 

factor. Of these modeling 

parameters, only the lateral 

coherence length, in-plane 

strain, and interlayer 

spacing were found to vary 

significantly between 

samples. This can be 

attributed to the similarity 

of the materials and/or 

limitations of the modeling 

program and the quality of 

the data. The calculated 

values for coherence 

length, in-plane strain, and number of layers are presented in Table 7-6. For 

all samples, the unit cell was 2.47 Å (except Sample 5) and the layer spacing 

Table 7-6. Number of graphitic layers, 

in-plane strain (A.U.), and lateral 
coherence length (Å) measured by XRD.  

Sample 

# of 

Layers Strain 

Lateral 

size 

2 21 0.033 123 

3 21 0.034 124 

4 19 0.027 166 

5 34 0.030 96 

6 18 0.035 222 

7 24 0.028 170 

8 19 0.025 83 

9 25 0.049 239 

10 18 0.048 248 

11 20 0.027 107 

12 20 0.034 119 

13 20 0.030 110 

14 20 0.031 124 

15 21 0.029 82 

 
 

 

Figure 7-8. Scatter plot of kinetic current vs. number 
of graphitic layers. Sample 5 is not shown (34 layers, 

5 mA). Legend identifies qualitative level of magnet 
response. 
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was 3.42 Å. The literature value for the unit cell in graphite is 2.46 Å. Sample 

5 has a unit cell of 2.46 Å, supporting the conclusion that it has a higher level 

of graphitization. 

 The number of graphitic layers was found to correlate well with 

performance as shown in Figure 7-8. No correlation was observed with either 

the lateral size or in-plane strain. The presence of a strong correlation 

between the number of graphitic layers and performance, coupled with a lack 

of similar correlation with lateral crystallite size, gives some insight into the 

likely location of active sites in the graphitic structures. If the active sites 

were predominantly edge defects, I would expect a correlation between 

lateral crystallite size and performance. For active sites existing primarily as 

in-plane defects, materials with fewer graphitic layers will have increased 

exposed graphitic planes and thus increased performance. As the latter is 

observed, I believe it is likely that the primary active sites in this class of 

PGM-free catalysts consist of in-plane defects. 

 

7.3.6 – X-ray photoelectron spectroscopy 

 The XPS methodology and results for Samples 2, 8, 9, 10, 13, 14, and 

15 have been discussed in detail in Chapter 6. Here that discussion will be 

extended to the full catalyst set and additional insights explored. XPS results 

are shown in Table 7-7. As above, Samples 8 and 14 have among the highest 

amounts of O and smallest amounts of N. In the full set, Sample 7 has the 

highest amount of O and Samples 7 and 5 have the lowest N content, both 

extrema significantly outside the range of the subset.  
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 Correlations explored in Chapter 6 included relationships between 

kinetic MEA current, N-Fe, and CxOy. Plots of these relationships for the full 

set are shown in Figure 7-9. The same general trends are observed: kinetic 

performance increases with increasing N-Fe concentration, kinetic 

performance increases with increasing CxOy, and concentrations of N-Fe and 

Table 7-7. XPS elemental composition, C 1s and N 1s speciation of catalyst powders.  

 
Catalyst elemental 
composition, at.% 

 

 
C  O  N   Fe      

s.2 91.4 4.5 4.0 0.22      

s.3 91.6 3.8 4.5 0.18      

s.4 90.5 5.6 3.8 0.23      

s.5 92.2 6.2 1.5 0.10      

s.6 90.2 6.7 3.0 0.07      

s.7 87.5 10.9 1.6 0.09      

s.8 87.8 9.3 2.8 0.11      

s.9 90.3 5.9 3.8 0.09 
     

s.10 89.5 6.4 4.0 0.12      

s.11 88.5 8.2 3.3 0.14      

s.12 88.7 8.4 2.9 0.11      

s.13 92.4 4.2 3.3 0.11      

s.14 88.3 8.8 2.9 0.12      

s.15 91.6 4.5 3.9 0.11      

          
 

catalyst C speciation, rel. % catalyst N speciation, rel. % 
 

C gr  C-N  CxOy  
 

N 
pyrid  

Nx-
Fe  

N 
hydrogenated  

N gr/ 
N+  

NOx 

s.2 38.0 15.2 40.4 
 

24.9 13.0 21.8 17.5 22.5 

s.3 16.3 12.9 64.2 
 

24.6 18.0 20.7 16.9 20.0 

s.4 12.7 14.2 66.1 
 

23.3 17.1 25.8 14.0 19.9 

s.5 17.4 19.5 59.2 
 

12.6 11.7 32.6 21.2 29.4 

s.6 6.6 20.0 69.5 
 

17.1 14.8 33.7 16.5 23.7 

s.7 12.5 21.7 63.5 
 

16.1 11.3 26.8 22.2 21.6 

s.8 8.2 27.9 60.7 
 

22.9 18.8 18.8 18.3 20.4 

s.9 27.5 17.5 49.3  23.2 16.5 21.6 17.6 20.8 

s.10 9.5 15.2 69.3  24.5 19.8 22.5 15.5 17.7 

s.11 11.8 21.4 62.8  23.3 19.8 21.9 16.1 18.9 

s.12 11.2 21.0 63.8  23.3 18.4 24.0 14.9 19.3 

s.13 35.4 16.1 42.6  18.0 13.9 25.9 19.4 22.7 

s.14 22.2 25.5 49.1  22.2 17.4 24.6 18.0 17.9 

s.15 27.2 16.4 50.7  22.3 17.5 22.7 16.7 20.8 
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CxOy are positively correlated. These relationships hold for samples with low 

or moderate magnetic response but tend to break down for samples with 

high metallic Fe content. This is consistent with prior observations that 

metallic Fe hinders catalyst performance and supports the hypothesis that 

high-Fe content catalysts are a different class of materials that exist in a 

different structure-to-property space.  

 

  

a)

 

b)

 
c)

 

Figure 7-9. Scatter plots of a) kinetic 
current vs. N-Fe, b) kinetic current vs. 

surface oxides, and c) N-Fe vs. surface 
oxides. Legend identifies qualitative level of 
magnetic response. Correlation trends hold 

for samples with low or moderate magnetic 
response, but tend to break down for 
samples with high metallic Fe. Trendlines 
exclude high metallic Fe samples. 
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7.3.7 – Scanning electron microscopy surface analysis 

 Catalyst surface was imaged by SEM and analyzed using a variety of 

metrics.38, 64, 135 Texture parameters were calculated including: 

• Average run length – the average consecutive number of pixels in either 

the solid phase or pores. This is a measure of the average size of the 

solid phase and pores at the catalyst surface.  

• Euler number – a measure of the connectivity of either the solid phase 

or pores. A lower Euler number represents a more connected phase.  

• Correlation – a measure of the linear dependency of neighboring pixels. 

Repeating patterns increase correlation.  

• Entropy – a measure of randomness in an image. Complex textures and 

highly heterogeneous images have high entropy. 

• Uniformity – a measure of homogeneity or orderliness of an image. 

Frequently repeated patterns or highly random features decrease 

uniformity while large contiguous domains increase uniformity. 

 These texture parameters do not require imaging with the same 

brightness and contrast settings as they are not influenced by these factors. 

However, it is necessary that the images be acquired on the same instrument 

as the way the micrographs are rendered can have a significant effect on the 

values. All samples were imaged on the same instrument, however, the SEM 

was moved from one location to another, recalibrated, and had hardware 

replaced after imaging of Sample 8 but before imaging of the rest of the 

samples. As a result, the texture parameters for Sample 8 are quite different 
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from the rest of the catalyst set. The length-scale specific parameters based 

on the normalized DWT were not similarly affected. 

 Analysis of the texture parameters yields several correlations. As the 

average pore and solid domain sizes in SEM images increase, the relative 

amount of pyrrolic N also increases (Figure 7-10). Conversely, relative 

concentrations of N-Fe and pyridinic N decrease (Figure 7-11 a & b). So, 

beneficial chemical species correlate with smaller pore and solid domains. 

The Euler number is also positively correlated with N-Fe and pyridinic N 

(Figure 7-11 c & d). As the Euler number decreases, phases are more 

connected, indicating that smaller, less connected solid and pore surface 

phases correlate with beneficial chemistries. Both grayscale correlation (the 

measure of repeated patterns), and uniformity are negatively correlated with 

N-Fe and pyridinic N (Figure 7-11 e & f). This means that materials with 

smaller, less connected phases, that exhibit higher degrees of heterogeneity 

are correlated with positive chemistries. Extending these image analyses to  

a) 

 

b) 

 
Figure 7-10. Scatter plots of a) average surface solid phase size, and b) average surface 

pore size vs. pyrrolic N concentration. Larger surface phase sizes correlate with increased 
pyrrolic N. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 7-11. Scatter plots of relationships between catalyst composition and surface 
analysis parameters. Left plots show relationships between N-Fe and a) average surface 
pore size, c) Euler number (connectivity), and e) uniformity. Right plots show relationships 

between pyridinic N and b) average surface pore size, d) Euler number, and f) grayscale 
correlation. Sample 8 is not shown. Its values are: a) (18.8, 9.7) – b) (22.9, 9.7) – c) 
(18.8, 30887) – d) (22.9, 30887) – e) (18.8, 0.151) – f) (22.9, 0.87)  
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performance characteristics, it is observed that the image uniformity is 

negatively correlated with OCV while image entropy is positively correlated 

(Figure 7-12). Further, N-Fe and pyridinic N are correlated with performance 

(Figures 6-6 & 7-9).  

 Size-specific analysis of surface features was performed using the 

DWT. The fraction of surface roughness from 2-21 nm is seen to negatively 

correlate with pyrrolic N content (Figure 7-13 a), which is consistent with the 

surface domain size analysis presented above. However, no correlation is 

observed between pyridinic N and roughness from 2-21 nm, as illustrated in 

Figure 7-13 b). It is seen that correlations between pyridinic N and N-Fe are 

specifically confined to the 8 nm size range (Figure 7-13 c & d), which is 

consistent with my previous DWT analysis of these chemistries (Chapter 4 

and work by Rojas-Carbonell, et al.).64, 65 Catalyst kinetic performance also 

positively correlates with roughness from 2-21 nm (Figure 7-13 e). 

 

  

a) 

 

b) 

 
Figure 7-12. Scatter plots of a) SEM uniformity vs. OCV, and b) entropy vs. OCV. OCV 

performance increases with increasing surface heterogeneity.  
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 
 

 
Figure 7-13. Scatter plots showing 

correlations of length-scale specific surface 
roughness with chemistry and performance. 
Plot a) shows correlation between pyridinic N 

and roughness between 2-21 nm. Plot b) 
illustrates the lack of correlation between 
pyridinic N and this broad size range 
analysis. Plot c & d) illustrate the correlation 

between N-Fe and pyridinic N are limited to 
the 8 nm length-scale. Plot e) shows the 
correlation between small-feature roughness 

and kinetic performance. 
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7.4 – Conclusion 

 Chapter 6 examined relationships between synthesis, chemistry, 

nanostructure, and performance on a subset of catalysts. Here the full 

catalyst set is examined and relationships between morphology, chemistry, 

and performance are explored. The analysis techniques include chemical 

analysis by XPS, qualitative testing for metallic Fe by magnetic attraction, 

morphology characterization by XRD and isotherm analysis, surface 

characterization by analysis of SEM images, and performance testing by RDE 

and MEA. 

 Several structure – chemistry – performance relationships are 

elucidated. Catalysts exhibiting high magnetic affinity due to the presence of 

metallic Fe have the lowest performance, even in the presence of 

traditionally beneficial chemistries such as pyridinic N and surface oxides. 

The presence of CNTs decreases the micropore, mesopore, and total surface 

area. They also reduce the available material in which active sites can form, 

limiting kinetic performance in RDE and MEA. Beneficial chemistries and 

catalyst performance are positively correlated with small, heterogeneous 

surface phases. A greater density of small surface features correlates with 

performance, and a greater density of surface features around 8 nm 

correlates with pyridinic N and N-Fe. Finally, catalyst performance improves 

with fewer graphitic layers. As no similar correlation is observed between 

performance and lateral crystallite size, this provides evidence that the active 

species in this class of catalysts may exist predominantly within the graphitic 

plane as opposed to edge defects.  
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Chapter 8 – Application of Structure to Property Predictions 

8.1 – Introduction 

 In the previous chapters, I have discussed analysis of catalyst 

structure, chemistry, and performance. The goal of structure-to-property 

analysis is ultimately property prediction and improved rational design of 

catalysts. In this chapter, I discuss synthesis of new catalysts based on the 

results of my prior work. Their performance is reported and consistency with 

prior structure-to-property relationships is explored.  

 

8.2 – Experimental 

 The synthesis parameters for Samples 16 & 17 are shown in Table 7-1. 

They were synthesized as discussed in Chapter 6. One batch of double the 

standard amount was prepared and split in half before the 2nd pyrolysis. As 

this was a single batch from precursor mixing through etching, variation 

between the samples results only from the 2nd pyrolysis. 

 Catalysts were characterized by XRD, XPS, RDE, and MEA as described 

previously. The parameters of MEA testing are the same as previously 

discussed, but a different cell and test station were used. Samples 2-15 

underwent MEA testing at Pajarito Powder, LLC. Though the Pajarito Powder 

and UNM test cells are both 5 cm2 with single serpentine pattern graphite 

flow plates, performance results for identically prepared MEAs yield different 

results, especially in the transport region. This is possibly due to differences 

in the width/depth of the flow channels. For accurate comparison, Samples 
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16 & 17 are compared with results for Samples 8, 10, & 14 that were tested 

on the UNM station and cell. 

 

8.3 – Results and discussion 

8.3.1 – Synthesis 

 The design parameters for Samples 16 & 17 were chosen based on 

results of previous analyses: 

• No CNTs – Samples without CNTs exhibited better kinetic performance 

as CNTs do not host active sites. 

• Ball mill for 60 minutes before etching – Samples without ball milling 

before etching had higher metallic Fe. Ball mill time increased from 10 

to 60 minutes to promote most efficient etching. 

• Etch in HF – Sample 14, which differed from Sample 8 only in etching 

acid, exhibited the best transport characteristics. 

• HT 2 in NH3 – Samples pyrolyzed in H2 exhibited reduced performance 

from reduced oxides and increased metallic Fe. 

• Change gas from NH3 to Ar half-way through HT 2 (Sample 16 only) – 

Surface oxides correlate with active site formation and 2nd pyrolysis 

had a significant effect on surface oxides. 

 

8.3.2 – Rotating disk electrode 

 Electrochemical characterization by RDE was performed. Polarization 

curves are shown in Figure 8-1. Curves for Sample 8 (baseline recipe) 

Sample 10 (best kinetic performance), and Sample 14 (best transport 
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performance) are included for comparison. Samples 16 & 17 both have E1/2 of 

765 mV vs. RHE, which is 30 mV better than the next best catalyst in this 

set.  

 

8.3.3 – Membrane electrode assembly 

 Fuel cell performance was tested in a single cell MEA (Figure 8-2). Of 

the 3 MEAs tested (one for Sample 16, two for Sample 17), two showed 

significant lamination issues. These polarization curves, labeled 16* and 17*, 

had unexpected dips in current with decreasing potential during the 12 psig 

(1.65 atmabs) runs. The baseline high-frequency resistance for these MEAs 

was ~20% higher than the other MEAs and at some points spiked to 2x 

higher. Operation at 30 psig (2.87 atmabs) did not exhibit these issues.  

 

 
Figure 8-1. ORR polarization curves of Fe-NCB catalysts. RDE tests were performed in 0.5 M 
H2SO4 at 5 mV s-1. 
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a) 

 
b) 

 
Figure 8-2. MEA polarization curves with H2/Air. For plot a) Cell operated at 1.65 atmabs. 

Plot b) cell operated at 2.87 atmabs. MEAs labeled as 16* and 17* exhibited performance 

irregularities at 1.65 atmabs due to lamination issues. 
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Polarization curves at both operating pressures are shown to allow for direct 

comparison of catalyst performance. The curve labeled as Sample 17 in 

Figure 8-2 a) was tested without the potential hold at 0.3 V.  

 MEA performance is summarized in Table 8-1. At 30 psig, Samples 16* 

& 17* can be directly compared with previous samples as they do not suffer 

from 

performance 

loss due to poor 

lamination. Of 

the original 

samples, 

Sample 10 has 

the best kinetic 

performance 

and Sample 14 

has the best 

transport performance.  

 Sample 16* demonstrates significantly improved kinetic performance 

with OCV and current above 0.8 V outperforming Sample 10. However, its 

transport performance is slightly worse than Sample 10, making it the worst 

performer below 0.5 V. Sample 17* has the best kinetic performance with an 

OCV 50 mV higher than Sample 10. This enhanced performance is present in 

all operation regimes with Sample 17 outperforming Sample 14 by 117 mA at 

0.4 V.  

Table 8-1. MEA performance results. OCV in V, current at selected 

voltages in mA cm-2. Samples 16* and 17* exhibited lamination 
issues with MEAs. 

 12 psig (1.65 atmabs) 

Sample OCV 0.9 V 0.85 V 0.8 V 0.6 V 0.4 V 

8 0.909 0 3 12 217 566 

10 0.937 1 5 12 187 542 

14 0.903 0 1 7 186 552 

16* 0.939 1 7 19 166 394 

17* 0.954 2 8 24 148 564 

17 0.948 3 15 50 400 689 

 30 psig (2.87 atmabs) 

8 0.903 0 4 20 291 685 

10 0.928 1 9 30 303 653 

14 0.887 0 3 15 266 688 

16* 0.962 3 13 36 305 608 

17* 0.979 4 17 48 442 805 
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 At 12 psig, Sample 17 was run without the 0.3 V preconditioning hold. 

The original purpose of this hold was to activate the MEA and provide a 

baseline for stable, repeatable performance. I examined the stability and 

repeatability of testing an MEA without this hold. The 1st and 4th polarization 

curves are shown in Figure 8-3. There is little change in the performance of 

Sample 17 after multiple runs. Comparison of Sample 17 with the other 

samples shows that it outperforms them all by a wide margin in all operation 

regimes.  

 Performance testing of Sample 17 was also carried out using the US 

DOE protocols of 1 bar partial pressure O2 and 2 bar partial pressure of air 

 

 

Figure 8-3. MEA polarization curves of the 1st and 4th runs of Sample 17 at 12 psig. Each 
run includes 3 minutes at or below 0.3 V, so by the 4th run, the MEA has experienced a 

similar amount of time in high current operation as the preconditioning procedure.  

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

V
o
lt
a
g
e
 (

V
)

Current density (A cm-2)

#17

#17 4th run



118 
 

(1.5 bar total O2 at 100% RH and 2.5 bar total air at 100% RH). Polarization 

curves are shown in Figure 8-4, and the performance metrics are listed in 

Table 8-2. The current DOE target is 44 mA cm-2 at 0.9 V in 1 bar O2. 

Sample 17 produces 9 mA cm-2 at 0.9 V and 44 mA cm-2 at 0.85 V. 

  

 

 

Figure 8-4. MEA polarization and power curves for Sample 17 in O2 and air. Tests were 
performed at partial pressures of 1 bar (O2) and 2 bar (air). Inset shows voltage vs. the log 
of current density. Data is presented without correction.   

Table 8-2. Performance metrics from MEA testing of Sample 17. Testing conditions were 
100% RH, 80 °C, 250/200 sccm at the anode/cathode respectively, 1.5 bar (H2/O2) and 2.5 

bar (H2/Air) total pressures. Values presented are uncorrected. 
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Current density  
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(mA cm-2) 

Current density 

@ 0.6 V 
(mA cm-2) 

Maximum 

power density 
(mW cm-2) 

1 bar O2 0.956 9 657 490 

2 bar Air 0.959 6 496 324 
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8.3.4 – X-ray diffraction 

 X-ray diffraction patterns were acquired and processed using the 

structure refinement program for disordered carbons.134 The results of that 

analysis are shown in Table 8-3. 

Samples 16 & 17 have fewer graphitic 

layers than any of the previous 

samples. This is consistent with the 

observed trend that samples with fewer 

layers exhibit increased electrochemical 

performance and further supports the 

hypothesis that the primary active sites exist in the graphitic plane. 

 

8.3.5 – X-ray photoelectron spectroscopy 

 Surface chemistry was analyzed by XPS. Elemental composition and 

speciation of C and N are presented in Table 8-4. Sample 17 has a total Fe 

content consistent with other well-performing samples. Sample 16 with 

0.16 at.% Fe is higher than any other sample that exhibited good 

performance. Sample 16 has a graphitic C content consistent with other well-

performing samples, whereas samples with high metallic Fe had increased 

graphitic C. Further, neither Sample 16 nor 17 exhibited high magnetic 

affinity, consistent with an absence of metallic Fe. Both samples have high 

concentrations of surface oxides, which have been correlated with good 

performance. However, their concentration of N-Fe, which correlates with 

both performance and surface oxides in other samples, are mediocre. The 

Table 8-3. Number of graphitic layers, 
in-plane strain (A.U.), and lateral 
coherence length (Å) measured by XRD.  

Sample 
# of 

Layers Strain 
Lateral 

size 

8 19 0.025 83 

10 18 0.048 248 

14 20 0.031 124 

16 17 0.042 242 

17 16 0.041 168 
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concentration of N-Fe being lower than other well performing catalysts bears 

further examination. Nanoscale elemental distribution analysis, as performed 

in Chapter 6, could provide additional insight.   

 Sample 16, having had the 2nd pyrolysis gas changed from NH3 to Ar 

half way through, was under reductive atmosphere for only half of its second 

heat treatment. Sample 17 was under reductive conditions for the entire 

second pyrolysis. As expected, Sample 16 has a higher concentration of 

surface oxides, though only by a small amount (71% vs. 69%). Also 

interesting is the fact that Sample 16 has a higher concentration of NOx 

(16% vs. 13%). This is representative of chemical changes that occur 

specifically during the second pyrolysis. The second heat treatment does 

more than just solidify the material structure; significant solid-state chemical 

reactions that affect the chemistry, structure, and performance of the final 

catalyst occur during the second pyrolysis. 

Table 8-4. XPS elemental composition, C 1s and N 1s speciation of catalyst powders.  

  
Catalyst elemental 

composition, at.% 

 

 
C  O  N   Fe      

s.8 87.8 9.3 2.8 0.11      

s.10 89.5 6.4 4.0 0.12      

s.14 88.3 8.8 2.9 0.12      

s.16 90.3 6.3 3.2 0.16      

s.17 91.8 4.6 3.5 0.12      

          

 catalyst C speciation, rel. % catalyst N speciation, rel. % 

 C gr  C-N  CxOy  
 

N 
pyrid  

Nx-
Fe  

N 
hydrogenated  

N gr/ 
N+  

NOx 

s.8 8.2 27.9 60.7  22.9 18.8 18.8 18.3 20.4 

s.10 9.5 15.2 69.3  24.5 19.8 22.5 15.5 17.7 

s.14 22.2 25.5 49.1  22.2 17.4 24.6 18.0 17.9 

s.16 11.2 14.2 70.6  25.0 15.0 21.7 22.6 15.7 

s.17 9.6 17.2 68.7  21.8 15.1 35.2 14.5 13.4 
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8.4 – Conclusion 

 I have synthesized new materials based on synthesis – structure – 

property relationships developed in the previous chapters. One of the new 

samples outperformed all previous samples in RDE testing and the kinetic 

region of MEA operation but exhibited poor MEA transport performance. The 

other new sample far outperformed all previous samples both RDE testing 

and all regimes of MEA operation.  

 In these new materials, though the positive correlation between 

surface oxides and performance is observed, the correlation between N-Fe 

and performance is absent. Samples 16 & 17 do have the fewest graphitic 

layers of all analyzed samples, which is consistent with the previously 

observed trend. This correlation is consistent with MNC catalyst active sites 

existing in the graphitic plane as opposed to on edge defects.  
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Chapter 9 – Conclusion and Significance 

 Detailed analysis of synthetic parameters, physicochemical properties, 

length-scale specific morphology, and performance characteristics elucidate 

several structure-to-property relationships in iron-nicarbazin derived 

catalysts for the oxygen reduction reaction in fuel cells:  

• Increased concentrations of atomically dispersed iron promote both 

electrochemical activity and fuel cell performance.  

• The presence of iron nanoparticles tends to reduce the concentration 

of atomically dispersed iron; however, even in cases where atomically 

dispersed iron remains abundant, iron nanoparticles reduce catalyst 

performance.  

• Atomically dispersed iron concentration trends as the concentration of 

nitrogen bound to iron, providing evidence that the active species in 

these catalysts are iron-nitrogen centers as opposed to iron-rich 

particles.  

• The concentration of surface oxides represent defects in the carbon 

structure where these active sites can form.  

• Concentrations of nitrogen bound to iron and pyridinic nitrogen are 

related to catalyst surface features in the size range of 8 nm. 

• Catalysts with fewer graphitic layers show increased activity, which is 

consistent with active sites residing in the graphitic plane as opposed 

to on edge defects. 
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 Synthetic parameters have been identified that affect these 

chemistries and can be used to synthesize materials with improved catalytic 

performance:  

• Thorough milling of the material after the 1st pyrolysis and before 

leaching promotes more complete leaching of iron-rich phases.  

• The addition of carbon nanotubes results in a reduced active site 

concentration and lower catalyst activity.  

• A more reductive atmosphere and increased time during the 2nd 

pyrolysis each decrease the concentration of surface oxides and active 

sites. 

• Much of the chemical modification necessary for catalyst activity 

occurs during the second pyrolysis, making it a powerful tool for fine-

tuning catalyst performance. 

 

 Utilizing the insights gained in this work, I have synthesized new 

catalyst materials with significantly improved performance in all performance 

regimes. The structure-to-property relationships and changes in synthetic 

techniques used to improve these iron-nicarbazin derived catalysts can be 

applied to platinum-group metal free catalysts of multiple precursors.  

 Integration of fuel cell technology into everyday life requires a 

significant reduction in the cost of materials, a cost that is currently 

dominated by the need for platinum as a catalyst. Development of low-cost 

platinum-group metal free catalysts requires understanding of both the 

fundamental structure-to-property relationships of these materials as well as 
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engineering parameters necessary to improve their performance in fuel cell 

operation. My research provides substantive new knowledge in both areas, 

advancing the state of the art and facilitating improved rational design of 

low-cost fuel cell catalysts. 
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Appendix A – SI for DWT Manuscript 

Application of the Discrete Wavelet Transform to SEM and AFM for 

Quantitative Analysis of Complex Surfaces 

Supporting Information 

 

Mathematical description of the Discrete Wavelet Transform (DWT) 

 The terms used in this description are: 

The original signal 𝑆, where 𝑆 = 𝑆(𝑥) for a continuous signal and 𝑆 = 𝑆(𝑛) for a 

discrete signal of 𝑛 points. 

The scaling (or dilation factor) 𝑎 at level 𝑗 such that 𝑎 = 2𝑗, where 𝑗 is a 

positive integer. 

The translation factor 𝑏 such that 𝑏 = 𝑘𝑎, where 𝑘 is an integer. 

The details at level 𝑗, 𝐷𝑗. 

The approximation at level 𝑗, 𝐴𝑗. 

The one-dimensional wavelet Ψ with the property that ∫ Ψ(𝑥)𝑑𝑥 = 0. 

The one-dimensional scaling function Φ with the property that ∫ Φ(𝑥)𝑑𝑥 = 1. 

The detail coefficients, 𝐶𝑗,𝑘.  

The approximation coefficients, 𝐵𝑗,𝑘. 

 The wavelet function is convoluted with the signal to get the detail 

coefficients at each level and position. 

 𝐶𝑗,𝑘 = ∑ 𝑆(𝑛)Ψ𝑗,𝑘(𝑛)

𝑛

 (S1) 
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These detail coefficients represent the amount of the wavelet function 

present in the original signal at each position and scale. These coefficients 

can be analyzed directly as they contain information about the signal energy 

(related to roughness), and retain the location of features in the signal. Note 

that the scaling factor operates on a dyadic scale and that the translation 

factor depends on the scaling factor. The results of this are that each detail 

level is twice the scale as the previous level and that the convolution is 

performed at discrete locations corresponding to the size of the wavelet. 

These details can then be reconstructed at each level by: 

 𝐷𝑗(𝑛) = ∑ 𝐶(𝑗, 𝑘)Ψ𝑗,𝑘(𝑛)

𝑘

 (S2) 

It is these detail reconstructions, not the coefficients, that are used for 

analysis in this work. 

 While the details contain the signal information from a narrow size 

range, the approximations contain all of the information of the signal larger 

than a given size. Approximations are particularly useful for filtering as they 

allow the removal of smaller features while retaining the overall shape. The 

approximation coefficients are given by: 

 𝐵𝑗,𝑘 = ∑ 𝑆(𝑛)Φ𝑗,𝑘(𝑛)

𝑛

 (S3) 

The approximations can be defined equivalently by the scaling function 

and by the details. For a specific level, 𝐽, the approximation is: 
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 𝐴𝐽(𝑛) = ∑ 𝐵𝐽,𝑘Φ𝐽,𝑘(𝑛)

𝑘

= ∑ 𝐷𝑗

𝑗>𝐽

(𝑛) (S4) 

This means that the approximation at any level is the sum of all of the details 

at every higher level.  

 From Equations S1 – S4, and the fact that these wavelets are a 

complete orthonormal basis, some important properties follow. Because the 

wavelets at different levels are orthogonal, information at one detail level is 

not repeated in any other detail level. Because it is a complete basis, the 

original signal is preserved between the transform and inverse transform. 

Further, the original signal can be recovered from an approximation and all of 

the detail levels below it, so: 

 𝑆(𝑛) = 𝐴𝐽 + 𝐷𝐽 + 𝐷𝐽−1 + 𝐷𝐽−2 + ⋯ + 𝐷1 (S5) 

Equation 7 leads to some important properties and applications. For 

traditional filtering, the small detail levels are discarded as noise and the 

approximation is kept as the useful part of the signal for analysis. This allows 

for removal of information of small features known to be noise without loss of 

information of large features of interest. As discussed earlier, wavelet 

analysis has previously been used to remove the small and large detail levels 

in order to isolate a known intermediate size range for analysis. However, 

Equation S5 also indicates that all of the information up to a maximum size 

of interest can be captured, without loss, in the details, and the 

approximation can be discarded as waviness/tilt of a surface. This is the 

approach taken here. 
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Figure S1. D1-D8 reconstructions for an SEM image of 55 nm Au 
nanospheres. Reconstructions created by averaging vertical and horizontal 

reconstructions. At this zoom level (0.45 pixel/nm), the average lateral size 

of the nanospheres is 19 pixels. The size of the wavelet at D5 is 16 pixels. 
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Figure S2. SEM images used for best wavelet selection. The top images are 
Au nanospheres at different zoom levels. From left to right, the bottom 

images are Fe-Aminoantipyrine and Fe-Carbendazim based non-PGM 

catalysts. All images are 1280 pixels horizontally and 890 pixels vertically 

(not including the SEM information bar). 

 

Table S1 

 
  Size of image features (pixels) 
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  2 3, 4, 5 22.5 - 23.4 23.5 - 24.4 24.5 - 25.4 25.5 - 26.4 26.5 - 27.4 27.5 - 28.4 

D1 0.707 0.328 0.165 0.083 0.041 0.021 0.010 0.005 

D2 0.707 0.559 0.313 0.161 0.081 0.041 0.021 0.010 

D3 0.000 0.488 0.548 0.309 0.160 0.081 0.041 0.021 

D4 0.019 0.088 0.474 0.542 0.307 0.160 0.081 0.041 

D5 0.015 0.072 0.075 0.472 0.542 0.307 0.160 0.081 

D6 0.011 0.027 0.066 0.070 0.471 0.542 0.310 0.160 

D7 0.008 0.020 0.030 0.064 0.069 0.470 0.539 0.309 

D8 0.000 0.006 0.013 0.026 0.060 0.066 0.444 0.513 

D9 0.007 0.012 0.010 0.019 0.035 0.062 0.137 0.453 

D10 0.006 0.011 0.008 0.009 0.020 0.032 0.089 0.098 

Table S1. Measured roughness at each detail level for the generated images. The 
values are in relative intensity for an image with a total roughness of 1. 
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Table S2 

1.0000 0.7071 0.3084 0.1601 0.0815 0.0410 0.0206 0.0103 0.0000 0.0000 

0.0000 0.7071 0.5355 0.3084 0.1601 0.0815 0.0410 0.0206 0.0103 0.0000 

0.0000 0.0000 0.4620 0.5355 0.3084 0.1601 0.0815 0.0410 0.0206 0.0103 

0.0000 0.0000 0.0881 0.4620 0.5355 0.3084 0.1601 0.0815 0.0410 0.0206 

0.0000 0.0000 0.0686 0.0881 0.4620 0.5355 0.3084 0.1601 0.0815 0.0410 

0.0000 0.0000 0.0309 0.0686 0.0881 0.4620 0.5355 0.3084 0.1601 0.0815 

0.0000 0.0000 0.0173 0.0309 0.0686 0.0881 0.4620 0.5355 0.3084 0.1601 

0.0000 0.0000 0.0000 0.0173 0.0309 0.0686 0.0881 0.4620 0.5355 0.3084 

0.0000 0.0000 0.0000 0.0000 0.0173 0.0309 0.0686 0.0881 0.4620 0.5355 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0173 0.0309 0.0686 0.0881 0.4620 

Table S2. This is the C matrix used for fitting of the roughness curves. The 

orientation of the rows and columns is the same as in Table S1. For the curve 
fitting, the 3rd column which corresponds to sizes at D3, the average values for 

sizes corresponding to D4-D9 were used. 

 

Table S3 

Detail 
Level 

Wavelet size (nm) 
at 0.5 pixel/nm 
zoom 

Fit Range (nm) at 
0.5 pixel/nm zoom 

Wavelet size (nm) 
at 2.0 pixel/nm 
zoom 

Fit Range (nm) at 
2.0 pixel/nm zoom 

2 4 4 1 1 

3 8 6-10 2 1.5-2.5 

4 16 11-21 4 3-5 

5 32 22-42 8 6-10 

6 64 45-84 16 11-21 

7 128 90-168 32 22-42 

Table S3. Wavelet and fit roughness size ranges at each detail level for each zoom 

level. 
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Appendix B – FIB tomography procedure 

For FEI Quanta 3D dual-beam FIB/SEM 

Sample Preparation 

• Vent chamber 
• SEM stub  carbon tape  small sample square 
• Screw in SEM stub into holder  set rotation to -160°  brace holder 
• Make sure BSE detector is removed 
• Pump chamber 
• ETD (BSE) detector  

Electron Beam / Ion Beam Start Up 
• Electron Beam  5.0 kV, 6.7 pA  

• Under Beam tab, SEM aperture, set to 30 μm 
• Click auto contrast 
• Roughly zoom on the corner of the sample 
• set z = 10  Click link z  set z = 10  link z 
• Ion Beam  30.0 kV, 3 nA 

• Make sure box turns yellow 
• May need to click auto contrast 
• Couple magnification   

First Electron Beam Optimization  

• Zero beam shift 
• Source tilt, crossover  make sure X is in center of the circle 
• Lens alignment  image should pulse in and out NOT UP AND DOWN 
• Optimization stigmation at 1 μm using small box  scan rate of 3 μs 

Set Snapshot Preferences 
• Beam  preferences  snap 5.0-10 μs (depending on available time, 

longer is better) 
• Dwell time: 5-10 μs, Resolution: 2048x1768, Acquisition: 16 bit, 

Save As tif.16 (18.4-60 seconds) 

Eucentric Ion Beam 

• Right click Pt dep (heater) 
• 20-30 μm zoom  find feature toward test area  focus (1 μm)  z link 

 set z = 10 
• Tilt 15°  adjust z knob on drawer so feature is on same level as yellow 

marker 
• Tilt back to 0°  re-center feature  focus  z link 
• Tilt 30°  adjust z knob on drawer so feature is on same level as yellow 

marker 
• Tilt back to 0°  re-center feature  focus  z link 
• Snapshot electron beam  tilt 52° 
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• Click on ion beam square, turn on beam  zero beam shift, may need to 

manually to match electron beam snapshot, may need to auto contrast  
• Optimize ion beam  BLANK ION BEAM  
• Tilt back to 0° 

Pt Deposition 

• Find analysis area 
• Zoom in to 5000x  focus  z link 
• Zoom back out  
• Tilt back to 52° 
• Go to ion beam square  Open small box for ion beam in corner  set 

to deposition current (1 nA for 20x10 μm)  optimize 
• Make rectangle 20x10x4 μm  Make sure application Pt dep 
• zoom until rectangle is most of screen 
• Insert needle  PLAY! (~27 min) 
• Withdraw needle  Uncouple magnification  snapshot ion beam  

look with electron beam 
• Pattern line  advances setting 45°, 1.0 μm deep, application Si 

Trenches 

• Back to ion beam  WITHOUT BEAM ON, zoom out, scroll Pt cap up 
• Set ion beam to 15 nA (can possibly go higher)  open up small box 

across bottom, AWAY FROM PT CAP  optimize beam in corner  

snapshot 
• Front trench  Cleaning cross section 35x30x5 μm ~7 μm away from Pt 

cap  PLAY! (~23min)  ion beam snapshot  check electron beam 
5000x magnification  

• Side Trenches  rectangle 10x20x4 μm (can do both at one time) 

Clean-Up Cuts 
• Drop current to 5 nA  open up small box across bottom, AWAY FROM 

PT CAP  optimize beam in corner  snapshot 
• Cut 4 μm right up to Pt cap, leave a little space on the sides from Pt cap 
• Snapshot ion beam  optimize electron beam  

Imaging Slices 

• Set contrast as high as possible, make sure image is bright enough to 

see everything 
• On ion screen make Pt cap most of screen and centered 
• Set cleaning cross section  3 nA, 3 μm deep, close to front, little extra 

on sides, past the back 
• Name first image section, set snapshot preferences to save 

Will need to shift y down (counter clock wise) to make sure reference 

line stays in view  
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