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Abstract

1. A combined empirical and modelling approach was used to investigate the value of a

Pacific oyster reef to feeding shorebirds and to observe and predict the impact of reef

clearance on bird populations in the Colne Estuary, a protected area in south‐east

England. Macro‐invertebrate biomass and numbers of feeding birds were measured on

a Pacific oyster reef, an adjacent uncolonized mudflat, and an area of mudflat that had

been cleared of oysters 6 months previously. These data were used to parameterize an

individual‐basedmodel (MORPH) to predict the impact of clearance of the reef onwinter

bird survival. Feeding success and intake rates of Eurasian oystercatcher, Eurasian cur-

lew, and Eurasian common redshank were also recorded during the course of a winter.

2. Themacro‐invertebrate diversity and biomasswithin both the oyster reef and the cleared

area were significantly greater than the adjacent uncolonized mudflat. The density and

biomass of large invertebrate prey in the mudflat were low, yet the Pacific oyster reef

hadmuch higher densities and biomass of large prey, especially annelids and shore crabs.

3. The winter assemblage of feeding birds differed significantly between each of the

areas. The mean total number of feeding birds was significantly greater on the

uncolonized mudflat; however, mean peak counts, feeding success rate and prey

intake rate of Eurasian oystercatcher were greater on the reef. Significantly greater

intake rates and feeding success rates were also observed on the reef for Eurasian

curlew, a species of conservation concern.

4. Field data and model predictions show that Pacific oyster reefs can provide valu-

able supplementary feeding areas for some shorebirds, yet other species avoided

the reef. However, as estuaries vary in available feeding resources, it is important

that the value of reefs and their management is determined regionally.
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1 | INTRODUCTION

The impact of non‐native species upon ecosystems is one of the most

serious issues facing the conservation of biodiversity (IUCN, 2000).

Along coasts of many temperate regions, the Pacific oyster, Magallana

(Crassostrea) gigas, has been introduced and cultivated outside its

native range (FAO, 2016a, 2016b; Humphreys, Herbert, Roberts, &

Fletcher, 2014; Ruesink et al., 2005). In some areas, wild settlement

of oysters is now occurring that can result in the formation of exten-

sive reefs on intertidal mudflats (Lejart & Hily, 2005, 2011; Reise,

1998; Smaal, Kater, & Wijsman, 2009; Troost, 2010). Reef formation

on soft‐sediment habitats commences when two or more oysters that

have settled in proximity come into contact to form a “clump.” These

clumps may merge with other clumps and form a larger patch. When

oyster densities become so high that little space exists for new settle-

ment on the substrate surface other than upon the oysters them-

selves, then a reef is formed. On soft sediments, these areas may

have in excess of 200 live oysters per square metre, which are usually

mixed with dead shell. Oyster densities over 700 m−2, which have

created a hard substratum, have been reported in the Wadden Sea

(Markert, Wehrmann, & Kröncke, 2010; Walles et al., 2015). The area,

height, and thickness of the reef vary and are likely to be dependent

on larval supply and settlement success in different parts of the site,

which may depend on local variation in substrate. Most Pacific oyster

reefs are patchy and may include areas of bare substrate and pools

(Herbert et al., 2016; Troost, 2010).

Pacific oysters are ecosystem engineers (Padilla, 2010), and reef

formation can transform benthic invertebrate assemblages (Herbert

et al., 2016; Lejart & Hily, 2011), yet the potential impact of these oys-

ter reefs on coastal bird populations is largely unknown. In the UK and

elsewhere in Europe, soft‐sediment intertidal habitats are key feeding

areas for overwintering migratory birds on the East Atlantic flyway

(Goss‐Custard, West, et al., 2006; Stroud et al., 2004), and many areas

are protected. Winter survival and fitness determine the number of

birds able to return to breeding grounds and reproduce successfully

(Goss‐Custard, Burton, et al., 2006). Most overwintering wading birds

(Charadrii) rely on benthic invertebrates in intertidal areas, and terres-

trial resources, such as earthworms in surrounding fields, may be

exploited by some species (Zwarts & Wanink, 1993). Yet the forma-

tion of dense reefs of M. gigas could pose a threat to winter survival

and fitness of the birds as they may be unable to reach food due to

the size and shell thickness of the oysters (Nehring, Reise, Dankers,

& Kristensen, 2009). In the Wadden Sea, European herring gull (Larus

argentatus) and European oystercatcher (Haematopus ostralegus) are

currently the only birds that feed directly on M. gigas (Cadée, 2008a,

2008b; Nehring et al., 2009; Troost, 2010). As waders use visual, tac-

tile, and sweeping strategies to locate prey (Thomas, Szekely, Powells,

& Cuthills, 2006) it is uncertain to what extent M. gigas settlement will

affect the birds' abilities to feed efficiently.

Although there have been attempts to remove wild Pacific oysters

from rocky habitats where density has been low (Guy & Roberts,

2010; Herbert et al., 2016; McKnight & Chudleigh, 2015), mechanical

dredging of oysters would appear to be the only practical solution to

reef removal on soft‐sediment habitats. However, mobile gears can

cause significant disturbance to intertidal benthic habitats and both
target and non‐target species (Clarke, Hughes, Herbert, Esteves, &

Stillman, 2017; Ferns, Rostron, & Sima, 2000; Piersma et al., 2001;

Spencer, Kaiser, & Edwards, 1998). In the Wadden Sea, where wild

settlement is extensive, total eradication of Pacific oysters through

dredging has not occurred owing to concerns that it would harm the

ecosystem (Reise, Wegener, Sea, & List, 2010). Elsewhere, however,

it could be feasible to remove smaller reefs using mechanical methods

if they threaten particularly sensitive habitats, or amenities such as

navigation and recreation (Herbert et al., 2016). Yet, as many of these

habitats are within protected areas, an assessment of the impact and

potential benefits of these measures needs to be carefully established.

An integrated approach utilizing field observations to inform predic-

tive modelling tools can be beneficial to evaluate such interventions

(Wonham & Lewis, 2009).

Here, the impact of a small area of Pacific oyster reef that has

become established on an estuary mudflat on the distribution and

feeding behaviour of coastal birds is investigated.

The study aims to answer the following questions:

1. Is the Pacific oyster reef a beneficial feeding area for all species of

birds?

2. What impact does M. gigas reef removal have on the number of

birds and bird feeding behaviour?

3. What effect does reef clearance have on the predicted survival of

birds?

Field observations of bird distribution and feeding behaviour and

macro‐invertebrate resources were used to parameterize an individ-

ual‐based model (IBM) to predict species fitness and winter survival

of birds on the cleared and uncleared areas of Pacific oyster reef

and natural mudflat habitats.
2 | METHODS

2.1 | Study site

The field study was carried out within Brightlingsea Creek on the

Colne Estuary in south‐east England (Figure 1) between September

2013 and March 2014. The Colne Estuary is a Marine Conservation

Zone, Special Protection Area (SPA), and Ramsar site. The estuary

includes extensive saltmarshes, is surrounded by farmland, and sup-

ports over 20 000 overwintering waterfowl, including nationally and

internationally important populations. Pacific oysters have been intro-

duced to the region at various times since 1926 (Utting & Spencer,

1992) and are now both cultivated and create valuable fisheries. Wild

settlement has been observed over several decades, usually following

warm summers; however, since the mid‐2000s this had become more

frequent and has resulted in localized reef formation (Herbert,

Roberts, Humphreys, & Fletcher, 2012). On a mudflat in proximity to

a boat slipway at Brightlingsea, an area of reef, which had developed

between 2008 and 2012 and attained a live oysters density of

200 m−2, had become a public safety concern due to injuries sustained

from sharp oyster shells. To safeguard the public and amenity, the

harbour authority and local fishermen agreed to clear a small area



FIGURE 1 Study site at Brightlingsea Creek (Essex) indicating the three study areas from which benthic invertebrate samples were taken and
counts and observations of feeding behaviour of birds were obtained

FIGURE 2 Removal of Magallana gigas reef at Brightlingsea, Essex. (a) Area C in foreground prior to clearance in February 2013 viewing west
from slipway. Area B is just visible near the orange buoy. (b) Site C in foreground following clearance. The mudflat (area A) is visible to the
right of creek
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(~6000 m2) of this reef using an oyster dredge deployed from a boat

(Figures 1, 2). This was carried out as part of regular fishing operations

between February and April 2013. At low tide, fishermen also

accessed the site on foot and collected remaining clumps of oysters

by hand‐picking down to the extreme low water spring tide mark.

Once cleared, no further dredging was undertaken. No patches of oys-

ters could be identified on the site during a visual inspection and in

aerial imagery obtained in autumn 2013 (Channel Coastal Observa-

tory, http://www.channelcoast.org). A few small clumps, containing a

mix of 5–10 live and dead oysters, were seen at the extreme low

water spring tide mark; however, these were mainly loose and may

have originated from other areas.

The study site, for which samples and field observations were

made, comprised equal areas of intertidal habitat (Figure 1): site A,

mudflat; site B, M. gigas reef; and site C, an area where M. gigas reef
had been cleared. Each area is separated by a small creek and is of

similar tidal elevation between mean tide level and mean low water

(2.5–3.0 m above chart datum).
2.2 | Species abundance

To analyse habitat use by birds in the three areas, low‐tide counts

were carried out on 19 days from a viewpoint on the sea wall during

the main overwintering season (October 2013–March 2014). Within

each area (A, B, C), all birds were identified and abundances recorded

at intervals of 30 min for the duration of reef exposure, which was

2.5 h either side of low water. Birds were observed by using a tele-

scope (Swarovski Optik ATS 80 HD, 25–50× wide angle), and the peak

abundance of each feeding species was determined over each low‐

tide period.

http://www.channelcoast.org
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2.3 | Behaviour

Measuring the quantity and size of available prey is important for

predicting survival of birds (Bowgen, Stillman, & Herbert, 2015). The

study focused on five target species: (i) Eurasian oystercatcher

(H. ostralegus); (ii) Eurasian curlew (Numenius arquata); (iii) black‐tailed

godwit (Limosa limosa); (iv) bar‐tailed godwit (Limosa lapponica); and

(v) redshank (Tringa totanus). All target species are carnivorous feeders

that forage on benthic and epibenthic invertebrates. Populations of

curlew, black‐tailed godwit, and redshank are of international or

national importance in the Colne Estuary (JNCC, 2017). Foraging

behaviour was recorded using a video camera (Pentax K30 DSLR)

mounted on the telescope, and random individual birds were observed

and recorded for 2–3 min in each area. Analysis of videos (Supporting

Information Table S1) was carried out on a PC using Windows Media

Player. The species “pecking rate” on potential prey and feeding

“success” rate were measured over the duration of each video, which

was confirmed if the prey was visibly removed and swallowed. The

size of prey items was initially measured as a proportion of the lengths

of the bird's beak, and then allocated an actual length category based

on bird bill lengths. The prey size was then converted to ash‐free dry

mass (AFDM) using regression lines from Thomas et al. (2004).

2.4 | Prey availability

Samples of benthic fauna were obtained in September 2013, which

represents the commencement of the winter feeding period for many

migratory bird species. In each of the three areas A, B, and C, a

predefined sampling grid of approximately 20 m × 40 m was

established within which 15 sampling points were located approxi-

mately 10 m apart. At low tide, sampling of the Pacific oyster reef (site

B) was carried out in two stages. At each sampling point, oysters were

removed within a 25 cm × 25 cm quadrat (0.0625 m2) and oysters

together with any trapped sediment were placed into plastic bags.

Upon removal of the oysters, three cores (10 cm diameter, 15 cm

depth) of the underlying sediment were taken using a metal corer.

Three cores were also obtained at each sampling point from site C

using a similar procedure. At the mudflat (site A), three full cores were

obtained at each sampling point by boat at high tide using a metal

cylindrical suction corer (10 cm diameter, 15 cm depth). All core sam-

ples and samples of oysters were washed through a 0.5 mm mesh

sieve and fixed with 4% formal saline. In the laboratory, samples were

washed through with clean water and all invertebrates were “picked”

and placed into 70% ethanol (industrial methylated spirits). All speci-

mens were identified to species level, enumerated, and measured with

calipers to the nearest millimetre except for worms <10 mm, which

were grouped into this size category. The AFDM of each individual

prey item was determined from linear regression equations of size

and AFDM in Thomas et al. (2004).

To establish the size‐frequency of the Pacific oyster population,

the maximum shell length of live Pacific oysters collected from quad-

rats was measured to the nearest millimetre. To determine AFDM

per square metre of the Pacific oysters, samples of different sizes

were collected (n = 113), the shell length was measured, and the con-

tents extracted and placed in a muffle furnace at 550°C. Upon

removal from the furnace, each oyster was weighed and the
relationship between shell length and AFDM was calculated by regres-

sion. From data obtained on the size and density of live oysters on the

reef the AFDM per square metre of the different size classes of oys-

ters was calculated.

At each sampling point, an additional core was taken for analysis

of sediment organic content and particle size distribution. The core

samples from the oyster reef were obtained from beneath the oysters;

that is, oysters were removed from the surface prior to obtaining the

cores. Sediment samples were initially frozen (−5°C) within 24 h and

then defrosted and mixed thoroughly prior to analysis. Samples were

dried at 80°C and then placed in a muffle furnace at 560°C for 48 h.

The percentage organic content of each sample from areas A, B, and

C were determined from loss on ignition. Samples were then passed

through a 2 mm mesh sieve and all particles >2 mm were retained

and weighed. The remainder of particles were passed through a laser

diffraction particle analyser (Mastersizer 3000, Malvern, UK) and the

proportion of each size class determined.
2.5 | Statistical analysis

Statistical analysis was carried out using SPSS and PRIMER‐e version 6

(Clarke & Gorley, 2006). The mean benthic prey biomass, bird abun-

dances, intake rates, and species richness of the bird feeding assem-

blage at the three sites were compared using a one‐way analysis of

variance (ANOVA) followed by Tukey post‐hoc tests. Where statistical

assumptions could not be met and data could not be transformed,

then analysis was conducted using a nonparametric Kruskall–Wallace

test. Ordination using nonmetric multidimensional scaling (nMDS)

was used to produce a graphical representation of the bird feeding

assemblages based on Bray–Curtis similarity measures calculated

using square‐root‐transformed data in PRIMER. Analysis of similarity

(ANOSIM) was used to test for statistical differences in the bird feed-

ing assemblage in each area.
2.6 | Individual‐based modelling

To predict the impact of reef clearance on the winter survival of birds,

the individual‐based model MORPH (Stillman, 2008; Stillman & Goss‐

Custard, 2010; Stillman, Railsback, Giske, Berger, & Grimm, 2015) was

parameterized for the areas of mudflat, oyster reef, and cleared oyster.

Full details of MORPH's assumptions and how it was parameterized

are given in the Supporting Information, and so just brief details are

given here. MORPH follows the individual decisions of each animal

within a population as it attempts to meet its daily energy require-

ments by feeding in the different locations and on the prey that max-

imize its rate of energy consumption. MORPH predicts the tidal

changes in the distribution of animals, the percentage of time spent

feeding to meet energy requirements, changes in body mass, and

end‐of‐winter survival. The model was parameterized for common

birds within the feeding assemblages observed in the study areas:

dunlin (Calidris alpine), ringed plover (Charadrius hiaticula), redshank,

turnstone (Arenaria interpres), bar‐tailed godwit, black‐tailed godwit,

Eurasian oystercatcher, and Eurasian curlew. The model comprised

the three intertidal patches observed during the field study: mudflat,

oyster reef, and cleared oyster reef. Three other notional patches



FIGURE 3 Length frequency of live oysters (n = 189) on the reef
(area B) sampled within 25 cm × 25 cm quadrats (n = 15) located on a
5 m × 3 m grid in May 2013. Mean density of live oysters was 202 m−2
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were included: a roost to which birds moved when they were not

feeding during a time step, a terrestrial patch (fields), and alternative

mudflat on which some species fed to supplement their food

consumption. Intertidal habitats were available to the birds while

they were exposed by the tide, the roost was always available, and

the fields were available during the hours of daylight. The following

prey types were included in the model: marine worms (e.g. ragworm

Hediste diversicolor), cockles (Cerastoderma edule), winkles (Littorina

sp.), mud snails (Peringia sp.), mussels (Mytilus edulis), Pacific oysters

(M. gigas), crustacean's, including crabs (Carcinus maenas), other

bivalves, and earthworms (Lumbricus sp.). Size ranges of prey con-

sumed by shorebirds are shown in Supporting Information Table

S2. The model included the tidal exposure of each of the intertidal

areas and prey species abundance and size distribution as measured

from the core sampling (Supporting Information Table S3). Bird

species population sizes and body masses used in the model are in

Supporting Information Table S4. Parameters used to calculate the

energy expenditure by birds are in Supporting Information Table

S5. Simulations were run with the present‐day oyster reef area and

with future changes in reef area resulting from clearance or

new settlement.
3 | RESULTS

3.1 | Sediment analysis

Sediment samples from each area were dominated by fine clay and silt

fractions (Supporting Information Figure S1), and particle size fre-

quency in the three areas showed no statistically significant differ-

ences Larger particles (>2 mm) from the cleared area (C) mainly

consisted of shell fragments, yet the percentage dry masses of larger

particles were comparable between the three areas (23–31%) and

were not significantly different. However, there was significantly less

(p < 0.001) percentage organic content of the mud in the cleared area

(4.3%) compared with the other sites (A, 7.2%; B, 8.8%).
3.2 | Benthic invertebrate prey

The reef largely consists of oysters more than 70 mm length (Figure 3)

which is usually attained in 1–2 years (Fey, Dankers, Steenbergen, &

Goudswaard, 2010). Smaller oysters, which are most likely to be

preyed upon by shorebirds, occurred at relatively low density.

Amongst the live oysters were empty oysters and dead shells of varied

size. Collectively, the core samples from the cleared area had the

greatest macro‐invertebrate species richness (22 species), followed

by samples beneath the oyster reef (13 species) and mudflat (nine spe-

cies), yet the oyster washings revealed a total of 37 species. The mud-

flat was characterized by a high density of small oligochaete worms

(Tubificoides spp.) and low densities of polychaete worms and the

bivalve Limecola balthica (Table 1). Larger polychaetes (Nereididae,

Nephtyidae, and Cirriformia tentaculata) were found in both cores

and oyster washings from the oyster reef and cleared reef. Mussels

(M. edulis) and the Manila clam (Ruditapes philippinarum) were present

amongst the oysters, albeit at low density. A broader range of molluscs

were found in the cleared area, including Peringia ulvae, Abra tenuis,
and Cerastoderma edule. Crustacea, particularly the shore crab C.

maenas, were most prominent on the reef. Excluding Pacific oysters,

mean values of benthic prey biomass (g AFDM m−2) between the

three areas (Figure 4) were significantly different (p < 0.001), with

pairwise tests indicating significant differences between the mudflat

and the other two areas (A vs B, p < 0.001; B vs C, p = 0.66; A vs C,

p = 0.002).
3.3 | Field observations of birds

Seventeen species of birds were observed across the three study

areas during the 19 surveys between October 2013 and March

2014. All species except lapwing (Vanellus vanellus) and mute swan

(Cygnus olor) were observed feeding in one or more study areas.

Black‐tailed godwits were more prevalent in the early and later

winter periods, and there was a significant increase in numbers of

shellduck and lapwing between January and March. On the ebbing

tide, most of the birds “arrived” from field roosts or other mudflat

feeding areas at the time the oyster reef was exposed, as opposed

to following the water edge from upper levels of the adjacent

mudflat. Apart from occasional boat‐wash, there were no visible or

audible disturbances to birds in any of the feeding areas during the

study. There was hardly any use of the sailing club slipway during

the winter period, and when it did occur there was no visible impact

on bird numbers or foraging behaviour. The mudflat (site A) was

used extensively by black‐tailed godwits and bar‐tailed godwits,

although they did not appear to consume large prey; redshanks were

observed foraging in small groups or singly. Curlew were seen fre-

quently and occasionally observed to consume large polychaete

worms (>100 mm). It was unclear what shellduck (Tadorna tadorna)

were feeding upon as populations of their preferred food, the

mud snail Peringia ulvae, were low. Oystercatchers were only seen

occasionally on the mudflat, and when observed they were

consuming worms.

On the Pacific oyster reef (site B), a large variety of bird species

were observed, including oystercatcher, curlew, turnstone, dunlin,

redshank, and ringed plover; however, very few black‐tailed and



TABLE 1 Mean density of the large and most common benthic invertebrate fauna found in samples that comprise important bird prey

Mean density (m−2)

Oyster reef (area B)

Taxon Mudflat (area A) Cores Washings Cleared area (area C)

Annelida

Alitta succinea 0 0 1 0

Alitta virens 0 0 3 0

Cirriformia tentaculata 0 93 35 43

Eunereis longissima 0 9 13 0

Hediste diversicolor 9 0 5 280

Neoamphitrite figulus 0 9 1 0

Nephtys hombergii 26 0 1 17

Tubificoides benedii 3074 323 939 314

Crustacea

Carcinus maenas 0 9 60 9

Corophium volutator 0 68 50 0

Cyathura carinata 0 0 0 17

Gammarus locusta 0 9 16 0

Melita palmata 0 0 65 9

Mollusca

Abra tenuis 0 0 0 17

Cerastoderma edule 0 0 0 9

Limecola balthica 60 0 0 17

Mytilus edulis 0 0 5 0

Peringia ulvae 17 0 0 43

Ruditapes philippinarum 0 0 1 0

FIGURE 4 Mean benthic invertebrate biomass (excluding Pacific

oysters) within the three study areas. Error bars show plus/minus SE.
The proportion of biomass in the oyster reef obtained from the
washings and cores is shown above and below the horizontal bar
respectively. Significant differences are denoted as follows:
*** p < 0.001; ** p < 0.01; * p < 0.05
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bar‐tailed godwits were seen. Black‐headed gulls (Chroicocephalus

ridibundus) were recorded in large numbers, though mainly roosting.

Oystercatcher and curlew were frequently observed feeding on large

polychaete worms (>100 mm) and shore crabs (C. maenas). Herring

gull and black‐headed gull would occasionally follow curlew and oys-

tercatcher to steal prey. Herring gulls were also observed dropping

Manila clams (Ruditapes phillipinarum), cockles (C. edule), and Pacific
oysters on the reef to crack shells. Brent geese (Branta bernicula)

were seen feeding over the reef when it was partially submerged;

it is possible that they were grazing on algae (Ulva spp. and Fucus

spp.), which had colonized the reef extensively. Lapwings were

observed roosting but not feeding on the reef. This was particularly

evident during high winds, where they may have benefited from

shelter provided by the large oysters. No species favoured the

cleared area (site C) specifically. Birds observed feeding included

oystercatcher, curlew, redshank, turnstone, ringed plover, and grey

plover (Pluvialis squatarola) Oystercatchers and curlew were

observed primarily on the perimeter of this site, feeding on worms

and crabs associated with small clumps of M. gigas that had either

remained following clearance or had broken off parts of the reef.
3.4 | Comparison of bird abundance and diversity

To determine whether the overall feeding assemblage of birds was dif-

ferent between the three areas, a one‐way ANOSIM was conducted

using the peak counts of all feeding species across the 19 surveys.

Birds that were observed roosting were excluded from the analysis.

The nMDS plot (Figure 5) and pairwise comparison tests indicate that

the species assemblages between each of the three areas are signifi-

cantly different from each other (Table 2), with variation in dispersion

also evident. The individual bird species contributing to the separation

between the communities were analysed using the similarity percent-

ages routine (SIMPER) in PRIMER (Table 3). Species contributing most

to the mean dissimilarity between the mudflat and oyster reef were



FIGURE 5 An nMDS plot showing different feeding bird
assemblages across the three sites (A, mudflat; B, Pacific oyster reef;
C, cleared reef). Data based on mean count of each species per survey
(n = 19). Each point represents a survey on one of the three areas.
One‐way ANOSIM showed significant separation between the
assemblages (global R = 0.41, p = 0.001, 999 permutations). See
Table 2 for pairwise comparisons

TABLE 2 Pairwise tests on sample data from one‐way ANOSIM
performed on bird assemblage. Data based on mean count of each
species per survey (n = 19). A – mudflat; B – oyster reef; C – cleared
reef. Each pairwise test between each of the different areas showed
significant differences in assemblages

Groups R p

A vs B 0.51 0.001

A vs C 0.58 0.001

B vs C 0.12 0.003

TABLE 3 Bird species contributing most to the dissimilarity of pairs of e
mudflat and oyster reef; (ii) mudflat and cleared reef; and (iii) oyster reef an
are square‐root transformed

Species Mean abundance

Dissimi

Mean

(i) Mudflat (area A) and oyster reef (area B)

Area A Area B

Shellduck 1.56 0.00 18.65

Black‐tailed godwit 1.12 0.13 12.04

Redshank 0.87 0.85 9.24

Oystercatcher 0.08 0.65 7.82

(ii) Mudflat (area A) and cleared reef (area C)

Area A Area C

Shellduck 1.56 0.00 19.22

Black‐tailed godwit 1.12 0.06 12.41

Herring gull 0.34 1.04 10.12

Redshank 0.87 0.49 8.96

(iii) Oyster reef (area B) and cleared reef (area C)

Area B Area C

Herring gull 0.46 1.04 11.58

Redshank 0.85 0.49 9.59

Oystercatcher 0.65 0.56 6.56

Turnstone 0.27 0.29 5.79
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shellduck and black‐tailed godwit, which were mostly on the mudflat.

Between the cleared reef and oyster reef, the greatest mean dissim-

ilarity was the abundance of herring gulls, which favoured the cleared

area, whereas oystercatcher and redshank were most abundant on

the reef. Compared with the mudflat, oystercatchers were signifi-

cantly more abundant on both the oyster reef and cleared area

(Figure 6). The highest abundance of redshank was recorded on the

mudflat, where mean numbers were significantly greater than on

the cleared area (Tukey pairwise test following one‐way ANOVA,

p = 0.029), but not significantly different to the oyster reef. Curlew

was recorded independently foraging on all sites, and no statistically

significant difference in abundance was found between areas. Mean

numbers of black‐tailed godwit were significantly higher on the mud-

flat than on the reef (Tukey pairwise test following ANOVA,

p = 0.012), where they were often observed feeding in large groups

(maximum 32), and also significantly higher than on the cleared area

(Tukey pairwise test, p = 0.01). There was no significant difference

in the abundances of bar‐tailed godwit between sites, and numbers

were generally low. Overall, there was no significant difference in

species richness between the three areas (Kruskall–Wallace one‐

way ANOVA, H = 4.96, df = 2, p = 0.084). However, owing to the

larger flocks of black‐tailed and bar‐tailed godwits and shellduck,

the mean peak counts of all feeding bird species were significantly

higher on the mudflat than on the other two areas (Figure 6).
3.5 | Feeding success rates

From the video analysis, the oystercatcher, redshank, and curlew

were seen to feed within each of the three areas; however, for red-

shank it was difficult to confirm whether the food had been
ach of the three habitats using the SIMPER routine in PRIMER: (i)
d cleared reef. Only top four feeding species shown. Abundance data

larity

SD Contribution (%) Cumulative (%)

1.11 24.66 24.66

0.97 15.92 40.58

1.22 12.21 52.79

1.45 10.34 63.13

1.12 25.04 25.04

0.98 16.17 41.21

1.30 13.18 54.39

1.25 11.67 66.06

1.39 21.53 21.53

1.31 17.83 39.36

1.08 12.20 51.55

1.03 10.76 62.32



FIGURE 6 Mean of “peak” low‐tide counts (n = 19) for selected species feeding across each of the study sites between September 2013 and
March 2014. Counts made on spring tides. Each study site is approximately 6000 m2. Error bars show plus/minus SE. Significant differences
are denoted as follows: *** p < 0.001; ** p < 0.01; * p < 0.05
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swallowed and ingested. Pairwise tests following one‐way ANOVA

of the mean number of prey captures (visible swallowing per minute)

observed showed that success rates of both curlew and oyster-

catcher were significantly greater on the reef than on the other

two areas (Figure 7). For redshank, there were no statistically signif-

icant differences in feeding success between areas (p = 0.91),

although the number of videos examined was relatively small. There

were too few observations of both black‐tailed and bar‐tailed god-

wits feeding on the reef or cleared area for any meaningful compar-

ison of feeding success rates.

From the videos it was only possible to determine the type of prey

caught across each of the three study areas for oystercatcher and cur-

lew, as redshank prey is smaller, was quickly swallowed, and the birds

were often hidden behind oysters. Both birds are visual feeders, and

they predated primarily on polychaetes in each of the three areas

(Figure 8), although oystercatchers were seldom observed feeding on

the mudflats. Only oystercatchers were observed prising open and

feeding on the Pacific oysters; however, the number of birds was small
(n = 3). These included birds feeding on the “cleared” reef; some clumps

of oysters persisted at lower tidal levels, where access to hand‐gath-

erers is more limited. Both curlew and oystercatcher were observed

to target the bottom of oyster clumps, where worms could be found

quickly and extracted relatively easily. Although not quantified, the

edges of the reef, rather than the top, appeared to be favoured most,

where densities of oysters are less. The second most favoured prey

of both species was shore crabs (C. maenas) that were found in high

numbers on the oyster reef, with large individuals (>40 mm across car-

apace) taken together with smaller sizes. Occasionally, larger crabs

taken by oystercatchers were stolen by herring gull, although not all

the crab appeared to be eaten. Curlew obtained proportionally more

crabs than oystercatchers, and this was occasionally supplemented by

shrimps obtained in pools that formed on the reef and in channels

around the edges of the reef. On the mudflat, large worms in excess

of 100 mm length were occasionally taken by curlew.

The biomass intake rate of oystercatcher and curlew was calcu-

lated from the size and type of prey observed in the videos analysis



FIGURE 7 Mean feeding success rate for oystercatcher, curlew, and redshank across the three areas. Error bars show plus/minus SE.
Significance levels are denoted as follows: *** p < 0.001; ** p < 0.01; * p < 0.05

FIGURE 8 Percentage composition of prey types observed in
feeding oystercatcher and curlew determined from video analysis
(A – mudflat; B – Pacific oyster reef; C – cleared reef). See Supporting
Information Table 1 for number of videos analysed in each area
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(Figure 9). For both bird species, the intake rate was greatest on the

oyster reef, although significant differences in intake rate across the

three areas were found for curlew only (Kruskal–Wallace one‐way
ANOVA, H = 6.856, df = 2, p = 0.032), with pairwise tests showing

differences between the mudflat and the reef (p = 0.05).
3.6 | Predictions of the present‐day model

The food resources in the model were not able to support bar‐tailed

godwit and black‐tailed godwit throughout winter in all simulations

(Table 4). For these species, other prey and habitats not included in

the model must be available in the real system to allow these birds

to survive throughout winter. Additionally, species were included in

the model throughout the course of winter, whereas godwits in partic-

ular were not present throughout in the real system. Only dunlin,

ringed plover, turnstone, oystercatcher, curlew, and redshank were

supported over the winter.

With the exception of oystercatcher, most species were predicted

to need to spend about 50% of the time feeding in order to meet their

energy requirements. This included the time that the birds needed to

roost; for example, when no feeding habitats were available. Oyster-

catcher spent about 30% of the time feeding, implying that this spe-

cies was able to meet its energy requirements by feeding for less

time. In model simulations, marine worms, crustacea, and earthworms

comprised the main prey items in the diets of all species except oys-

tercatcher. Oystercatchers have a wider range of prey species than

other shorebirds, and in the model also consumed mussels, winkles,



FIGURE 9 Prey biomass intake rate of oystercatcher and curlew
across each habitat at Brightlingsea during winter 2013–2014. Data
obtained from video analysis of feeding behavior and observed prey.
Error bars show plus/minus SE. Significance levels are denoted as
follows: *** p < 0.001; ** p < 0.01; * p < 0.05
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and oysters. The larger range of prey consumed by oystercatcher

meant that relatively more food was available to this species, and

competition for food resources was less than the remaining birds.

The oyster reef, alternative mudflat, and fields were the only

feeding patches exploited by birds in the model. The mudflat was not

exploited because the alternative mudflat was available at the same

time and provided a higher biomass of prey. The cleared reef was avail-

able at the same time as the oyster reef but was not exploited as it had a

lower biomass of preywithin the size ranges consumed by each species.

In the real system, birds tended to exploit the cleared reef, whereas they

did not in the model. This implies that some prey exploited by birds on

the cleared reef may have been underestimated in the field survey; for

example, small‐scale patches of high prey abundance, such as clumps

of oysters that had not been cleared. Alternatively, it is possible that

the real birds were less selective than the model birds

(i.e. the model birds always occupied the patch on which their energy

assimilation rate was greatest, but real birds may have occupied any

patch in which energy assimilation rate was above a threshold level).
3.7 | Predicted effect of changes in reef area

In simulations that decreased reef area it was assumed that reef was

replaced by the cleared reef habitat and the same prey abundance.
In simulations that increased the reef area it was assumed that the

cleared reef habitat was replaced by reef, in effect simulating the sit-

uation before the reef was cleared from this area. The model predicted

the effect of changes in reef area on the maximum number of birds of

each species that could be supported (found by increasing the number

of birds in simulations until no individuals of a species are able to sur-

vive). Results (Table 5) are presented for dunlin, ringed plover, turn-

stone, redshank, oystercatcher, and curlew, as the remaining species

were not supported throughout the course of winter.

The model predicted that up to twice the observed number of

ringed plover and turnstone, four times the number of dunlin, and five

times the number of redshank, curlew, and oystercatcher could be

supported. Removing the reef reduced the number of redshank, oys-

tercatcher, and curlew that could be supported, but it did not change

the number of dunlin, ringed plover, and turnstone that could be sup-

ported. This implies that a greater amount of redshank, oystercatcher,

and curlew prey was found in the reef than in the cleared reef.

Increasing the reef area (by removing the cleared area and “replacing”

it with reef) increased the number of oystercatcher and turnstone that

could be supported, also implying that a greater amount of prey was

found in the reef than in the cleared reef. The key prey of turnstone,

redshank, oystercatcher,and/or curlew that were more abundant in

the reef were marine worms, oysters and mussels (oystercatcher prey

only), and crustacea.
4 | DISCUSSION

Although the study was limited to a single site, field observations

showed that the presence of a Pacific oyster reef can affect the distri-

bution and feeding behaviour of coastal birds. Results from the model

also indicated that the reef can provide valuable supplementary feed-

ing areas for some species, such as curlew and oystercatcher, and yet

was avoided by others, notably the godwits. Densities of birds were

generally comparable to other estuaries (Goss‐Custard et al., 1991);

however, compared with the uncolonized mudflats, there was a higher

frequency and abundance of oystercatchers and herring gulls on the

oyster reef and cleared area, and fewer black‐tailed and bar‐tailed

godwits. For oystercatcher, these differences can be attributed to

the greater amount of benthic prey available on the oyster reef and

cleared areas. Both oystercatcher and curlew were observed to target

the undersides of oyster clumps searching for food, and they had

greater success and biomass intake rates on the oyster reef and

cleared reef than on the mudflat. Polychaetes dominate the prey of

both species, although curlew were also seen foraging on mobile fauna

within small pools and creeks on the reef. These features, which may

add important diversity to the foraging potential of the reef, were

prevalent and yet were not accounted for in the model. However,

should there be higher oyster settlement, these features may eventu-

ally become colonized and lost. It was observed that some very large

worms taken by curlew and oystercatcher were not sampled within

sediment cores, and variance between observed and simulated feed-

ing behavior could suggest that benthic food resources of the reef

may have been underestimated. It is recommended that longer

(30 cm) cores are utilized or that larger areas are dug out below the



TABLE 4 Predictions of the present‐day model

Species
Mean no. individuals
on each patch

Mean no. individuals
consuming each diet

Mean proportion
of time spent feeding

All individuals supported
throughout winter?

Dunlin AM = 0.54 MW = 0.54 0.53 Yes

F = 0.05 EW = 0.05

R = 0.41

Ringed plover AM = 0.54 MW = 0.54 0.52 Yes

R = 0.46

Turnstone OR = 0.73 MW = 0.35 0.50 Yes

AM = 0.35 CR = 0.73

R = 0.92

Redshank AM = 4.33 MW = 4.33 0.42 Yes

R = 3.67

Black‐tailed godwit AM = 4.24 MW = 4.24 0.70 No

F = 3.12 EW = 3.12

R = 2.63

Bar‐tailed godwit AM = 2.67 MW = 2.67 0.54 No

R = 2.31

Oystercatcher OR = 1.30 MW = 0.19 0.30 Yes

AM = 0.19 M = 0.05

R = 1.51 O = 0.95

W = 0.28

CR = 0.02

Curlew OR = 0.30 MW = 1.32 0.58 Yes

AM = 1.32 CR = 0.30

F = 0.29 EW = 0.29

R = 1.09

Patch name codes: MF – mudflat; AM – alternative mudflat; OR – oyster reef; CR – cleared reef; F – field; R – roost.

Diet codes: MW – marine worms; M – mussels; C – cockles; O – oysters; W – winkles; OM – other molluscs; CR – crustacea; P – Peringia; EW – earthworm.

TABLE 5 Predicted effect of clearance of the oyster reef to the maximum number of individuals of each species that can be supported. The
present‐day simulations included the presence of both the reef and cleared area. The values represent the increase in population size from
baseline (i.e., 31 individuals across all species) at which all individuals of a species are supported. Predictions are only presented for dunlin, ringed
plover, turnstone, redshank, oystercatcher, and curlew as other species were not supported throughout winter even with the present‐day
observed population size

Clearing current oyster reef
(12 000 m2 cleared reef)

Present day (6000 m2 cleared
reef and 6000 m2 oyster reef)

Reef not removed
(12 000 m2 oyster reef)

Dunlin ×4.0 ×4.0 ×4.0

Ringed plover ×2.0 ×2.0 ×2.0

Turnstone ×2.0 ×2.0 ×2.5

Redshank ×4.5 ×5.0 ×5.0

Oystercatcher ×4.0 ×5.0 ×6.5

Curlew ×4.5 ×5.0 ×5.0
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oysters to establish more accurately the extent of larger worms that

occupy deeper levels. Some oysters that had remained on the

“cleared” area or had been dislodged from other reefs were targeted

by oystercatcher and curlew when foraging for worms and crabs. In

Argentina, Escapa et al. (2004) found that epifaunal species were

greater within Pacific oyster reefs and had a positive effect on the

abundance of certain foraging birds; for example, American oyster-

catcher (Haematopus palliatus) and lesser yellowlegs (Tringa flavipes).

However, no difference was observed in the feeding efficiency of

these species between colonized and uncolonized areas.
There was very little evidence of birds feeding directly on M.

gigas, even by oystercatchers. Studies in the Wadden Sea have indi-

cated that the only birds to feed directly on M. gigas are herring gulls

and oystercatchers (Fey et al., 2010; Markert et al., 2010; Markert,

Esser, Frank, Wehrmann, & Exo, 2013), although predation on M. gigas

by birds is generally low (Troost, 2010). Oystercatchers were observed

prising open smaller M. gigas on the oyster reef at Brightlingsea, which

is possibly the first reported observation of its kind on wild M. gigas in

the UK. Yet oystercatchers have learned to feed on M. gigas in the

Wadden Sea (Cadée, 2008b; Scheiffarth, Ens, & Schmidt, 2007) and
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Oosterschelde Estuary (Baptist, 2005). Markert et al. (2013) found

that colonization of mussel beds by M. gigas had a positive impact

on the feeding rates of oystercatcher and curlew and concluded that

successful oyster recruitment will enhance the suitability of the

feeding ground. Optimal foraging and feeding were observed in the

“carpet reefs,” where densities of live M. gigas are 680 m−2 (>25 mm

shell length) as opposed to “dense reefs” characterized by a live oys-

ters density of 884 m−2. Densities of live oysters on the reef at

Brightlingsea are considerably lower (200 m−2), and most are too large

for feeding oystercatchers, which prefer shell lengths between 20 and

60 mm (Markert et al., 2013). It is possible that because densities of

Pacific oysters are relatively low and require more handling time, most

oystercatchers at Brightlingsea continue to feed on larger polychaete

worms and crabs, which are more abundant amongst the oysters.

Both black‐tailed and bar‐tailed godwits appeared to avoid feed-

ing on both the oyster reef and cleared reef. Unlike oystercatchers

and curlew, both species forage by “touch and smell” and, therefore,

keep their bills in the mud for longer periods in search of prey.

Although polychaetes of suitable size for godwits were found within

the oyster reef and cleared reef, clumps of oysters may present signif-

icant obstacles to their mode of feeding and birds may risk damage to

bills, which are relatively slender. It was not possible to survey benthic

assemblages or bird feeding behavior prior to the formation of the

oyster reef, so preferences for one area compared with another must

be considered with caution. Interspecific interactions between birds

may also have an influence on distribution, and this was taken into

account in the model. Yet more specific interactions, such as that

observed by gulls that appeared to associate with curlew and oyster-

catcher and steal larger prey such as crabs and clams, were not

included in the model.

The control of non‐native species in open marine systems is one

of the most challenging aspects of environmental management (Bax

et al., 2001). However, as some birds avoided the reef, it might be pos-

sible in some situations to clear areas in an attempt to encourage a

wider range of species, depending on the conservation objectives of

the site. Recovery of benthic invertebrate assemblages from dredging

disturbances varies according to local environmental conditions, gear

type, and substrate (Ferns et al., 2000; Hall & Harding, 1997) and

the feeding quality of cleared areas is likely to change over time. Fol-

lowing mechanical dredging on intertidal mudflats, a significant recov-

ery of non‐target species abundance is highly variable and could be up

to 500 days, and a significant recovery of species biomass could

exceed this time period (Clarke et al., 2017). After 6 months, the

higher benthic macroinvertebrate biomass measured in the cleared

area in comparison with the undisturbed mudflats could suggest that

the removal of the oysters did not significantly disturb the benthos

that had become established beneath. Alternatively, oyster clearance

could have stimulated species settlement and growth in this area, or

that the biomass prior to oyster settlement in this region was greater

than other parts of the mudflat. This particular clearance scenario

might simulate disturbance from recurrent interventions should it be

appropriate to remove Pacific oyster reefs from mudflat areas if wild

settlement increases. Clearly, a longer period of observations in each

area to monitor changes throughout the recovery phase would be very

beneficial. If some clearance was considered desirable by management
authorities—for example, if wild settlement increased—then it may be

practical to rotate clearances depending on the location of reefs and

usage by birds. Once cleared by dredge, it may be possible to partially

contain settlement by hand‐picking to minimize disturbance to the

benthos.

Currently, the area of Pacific oyster reef in the Colne Estuary is

relatively small, albeit significantly different to proximate intertidal

areas that have been designated for protection. However, with rising

temperatures, spawning and settlement of Pacific oysters is predicted

to increase, and it is possible that more reefs will become established

in the region. The impact of such a small area of oyster reef on shore-

birds is difficult to establish; however, it appears it could represent a

valuable supplementary feeding area compared with adjacent, less

productive mudflats. Simulations of feeding behaviour using the com-

puter model MORPH showed the reef was utilized by a variety of

bird species over the winter, demonstrating preference for this area

over other adjacent habitats, including the adjacent mudflat, which

had relatively low amounts of prey. As regional impacts of Pacific

oyster reefs are still unknown (Herbert et al., 2016), it would be use-

ful to increase the scale of the model and investigate the effects of

changing the initial quality of the habitats, which should include a

better characterization of the value of other nearby feeding areas,

including terrestrial sources. Modeling the impacts of larger scale

dredging on benthic prey resources and bird survival would help to

understand the likely benefits of these measures on species of con-

servation concern.

As wild Pacific oysters are regarded by policy‐makers as an inva-

sive species, the value of reefs as supplementary feeding areas for

some shorebirds of conservation concern creates a management

conundrum. The macrobenthic diversity was much greater on the reef

than in nearby mudflats, yet the assemblage included several other

non‐native species, including the invasive crab Hemigrapsus takanoi

(Wood et al., 2015). Had a native mussel reef (M. edulis) become

established instead of Pacific oysters, then both curlew and particu-

larly oystercatcher might also have benefited, and possibly other bird

species (Goss‐Custard, 1996; Goss‐Custard et al., 2006; Scheiffarth

et al., 2007). However, it is important to consider the environmental

context, as there is considerable regional variation in the abundance

of food in estuary mudflats. In comparison to Poole Harbour and the

Exe Estuary on the south coast of England (Caldow et al., 2005), the

density and diversity of larger macroinvertebrates in the mudflats of

the Colne Estuary at Brightlingsea are low. In terms of available bio-

mass, that measured for the mudflat of Colne is ~2 g AFDM m−2

(Figure 4), whereas the mean intertidal biomass for the Severn Estuary

is 3.45 g AFDM m−2, for Poole Harbour it is ~16 g AFDM m−2, and for

the Exe Estuary it is over 63 g AFDM m−2 (Bowgen, 2016). Yet in rel-

ative terms, the locally available biomass within the Pacific oyster reef

is significantly greater than in the surrounding mudflats. Therefore, the

use and conservation value of Pacific oyster reefs as supplementary

feeding areas for different birds could be variable and dependent on

the local availability of food resources. Additionally, the usage of the

reefs might also be affected by the proximity of other disturbances,

such as intertidal fisheries and recreation. Clearly, the study would

benefit from replication in a wider range of contexts within and

between systems.
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5 | CONCLUSIONS

The combined field and modelling approach helped to understand the

impact and value of non‐native Pacific oyster reefs as supplementary

feeding areas on intertidal mudflats. In this context, the biomass of

food in surrounding mudflats was relatively low, and the oyster reefs

provided valuable food resources to some species, including curlew

and oystercatcher. However, as other birds appeared to avoid the oys-

ter reefs, it may be desirable to make some clearances to ensure a

mosaic of habitats is available to a greater variety of birds. In any case,

the trade‐off between the disturbance caused by dredging or hand‐

harvesting and the value of an oyster reef needs to be established.

Any apparent beneficial use of non‐native species can create a conun-

drum for environmental agencies, and those species' management

needs to be considered carefully amongst a broad range of stake-

holder groups, which might include fisheries and harbour authorities.

Should wild settlement of Pacific oysters increase as predicted, then

decisions concerning the maintenance of reefs as supplementary feed-

ing areas in estuaries would benefit from local and regional observa-

tions of their use and bird feeding behaviour.
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