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ABSTRACT
The fate of small regions of vorticity in a barotropic model of the protoplanetary nebula is investi-

gated over thousands of years using a Ðnite di†erence model. It is found that the coherence time for a
small island of vorticity depends on its size, strength, orientation, and radial location in the nebula. Anti-
cyclonic vorticity retains its coherence for longer times than cyclonic vorticity due to favorable inter-
actions with the Keplerian shear Ñow. Rossby waves are generated as a result of mean vorticity gradients
across the disk. The two-dimensional nebula evolves from discrete vortices into an axisymmetric Ñow
consisting of small-amplitude vortex sheets at the radial locations of the initial vorticity. These vortex
sheets induce an additional small, potential Ñow velocity superimposed on the Keplerian rotation curve.
Subject headings : accretion, accretion disks È hydrodynamics È waves

1. INTRODUCTION

Thin, rotating sheets of Ñuid are long-standing models for
meteorological and oceanographic phenomena. Recently,
increasing interest is being placed on these concepts for
application to planetary formation and evolution. The
rotating protoplanetary nebula is a thin disk that shares
many physical features with the atmosphere of the rotating
Earth ; but there are important di†erences. These factors
were recently investigated by Sheehan et al. (1999). Of
course, the astronomical nebula theory was advanced by
Laplace in 1796 and ampliÐed by many investigators over
the following two centuries, and the role of turbulence was
forcefully advocated by von in the 1940sWeizsa� cker
(Safronov 1972). However, new insights from the atmo-
spheric sciences in understanding large-scale turbulence
and wave motions may have important applications to
modeling the origin and early evolution of coherent struc-
tures in primitive solar systems. In particular, even the sim-
plest barotropic models help to identify fundamental
processes underlying the physical nature of the earthÏs
atmosphere, its instabilities, and the formation of large-
scale vortex motions (Haltiner & Martin 1957 ; Pedlosky
1979 ; Holton 1992). These phenomena may also play an
important role in understanding extraterrestrial pheno-
mena. The strong synergy between geophysical and astro-
physical problems was recognized decades ago and a strong
case was made then for even more interactions (Lebovitz
1983). Adams & Watkins (1995) discuss in detail the role
of meteorological-type vortices in circumstellar disks.
Although their local approximation does not explicitly
include global shear Ñow e†ects, they clearly describe the
important role of vortices in the nebula. They address the
important issue of baroclinic e†ects on generating such
vortices and speculate on the role of vortices in forming
the giant planets. Barge & Sommeria (1995) investigate
von hypothesis that long-lived vorticesWeizsa� ckerÏs
in the protoplanetary nebula play an important role in
planet formation and show how an idealized vortex

can capture and concentrate interplanetary dust particles.
Strongly sheared Ñows quickly dissipate coherent vortex

structures. This fact is interesting since long-lived vortices
could be a major aspect of the planet formation process.
Another feature of sheared rotating Ñuids is that they
support a type of propagating vorticity called the Rossby
wave (Rossby 1945 ; Dickinson 1978), and these waves may
also play an important role in the protoplanetary nebula.

A number of recent investigations consider the e†ect of
shear and waves in the protoplanetary nebula and report
some interesting and suggestive results. Balbus & Hawley
(1998) review turbulence and angular momentum transport
in accretion disks and discuss the locally acting Cartesian
““ shearing box ÏÏ approach. However, they point out the still
unfulÐlled need to understand the e†ect of global disk
geometry. In recent papers (Bracco, Chavanis, & Prov-
enzale 1998a ; Bracco et al. 1998b), transport properties of
vortices in barotropic Ñuids are investigated with direct
application to protoplanetary disks. In particular, they use
a spectral-based numerical method on a Cartesian grid to
study the tendency of turbulent disks to favor anticyclonic
coherent vortices in decaying two-dimensional turbulence.
(Anticyclonic vortices actually dominate the gas giant plan-
etary atmospheres by a ratio of 9 :1.) They show that these
coherent vortices last long enough to form ““ lumpy
structures ÏÏ that may concentrate solid objects and acceler-
ate planetesimal formation. These papers also describe the
close analogy between shallow water theory and physical
processes in the protoplanetary disk. This and similar work
on barotropic turbulence is reviewed and related to particle
aggregation and the origin of planets by Provenzale (1999).
Recently, Godon & Livio (1999) extended the work to a
viscous compressible nebula by simulating discrete vortices
in accretion disks using related pseudospectral numerical
techniques. They conÐrm the longer survival rate for anticy-
clonic vortices and show that the general behavior remains
similar in a compressible Ñow environment.

Papaloizou & Pringle (1985) implicitly considered the
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role of Rossby waves in rotating cosmological Ñuids as low-
wavenumber instability. In a recent paper Lovelace et al.
(1999) investigate the general stability of nonbarotropic
disks and derive dispersion relations for Rossby wave phe-
nomena. They consider the more complex baroclinic Ñow
when vorticity is not conserved. Sheehan et al. (1999)
discuss the analogy between meteorological and cosmo-
logical wave motions in some detail, emphasizing the funda-
mental role of Rossby waves in the former case, and argue
that Rossby waves probably play a role in the protoplane-
tary nebula. In this paper, Rossby waves are revisited and
found to appear as a natural outcome of the Ñow in a
perturbed rotating Ñow.

RayleighÏs stability criterion states that an axisymmetric
rotating Ñow with radially increasing angular momentum is
stable and small perturbations should quickly dissipate.
The rotation curve derived from KeplerÏs law (velocityD 1/
r1@2) is extremely stable based on the Rayleigh criterion.
One remaining outstanding issue regards the stability of
nonaxisymmetric coherent structures in such a highly
sheared Ñow. The recent investigations cited above showed
that both large-scale coherent structures and symmetry-
breaking wave motions may indeed occur in the protopla-
netary nebula. The present work shows that longer time
evolution of these coherent structures can lead to large-
scale radially variable perturbations to the baseline
Keplerian rotation curve, thus potentially contributing to
global rearrangement of the nebular structure. Another
related issue is the underlying mechanism forming such
large-scale structures. The tendency of disks with an initial
random vorticity Ðeld to evolve into coherent vortices is
one way (Bracco et al. 1998a). Another possibility is that
discrete events such as massive clumpy infall from the sur-
rounding cloud will strongly a†ect the otherwise quiescent
disk. In either case, a local vortex structure will form, and
questions arise regarding the fate of such vortices.

Bracco et al.Ïs (1998b) simulations motivate the current
work. Their paper modeled a nebula using a periodic Carte-
sian grid with imposed larger scale vorticity and investi-
gated the e†ect of vortex merging. Here we consider smaller
scale discrete vortices and their role in generating long-
range Rossby waves. This smaller scale vorticity is con-
trolled by the local shear rate as far as vortex stretching is
concerned and by the vorticity gradient as far as Rossby
wave generation is concerned. In contrast with Bracco et
al.Ïs large vortices, the physical e†ects are more apparent
with a vortex that is typical of the size and rotation rate of
the outer planets.

In this paper we consider the evolution of a compact
region of coherent vorticity, and the associated Rossby
wave, in the protoplanetary nebula from a global point of
view. The fate of a test vortex in a sheared Keplerian rotat-
ing disk is simulated using the inviscid barotropic equations
of motion on a polar coordinate system. A low-dispersion
Ðnite di†erence algorithm based on that used in acoustic
wave problems (Davis 1991) tracks the vorticity Ðeld on a
model nebula extending from 3 to 10 AU and timescales to
1500 yr, corresponding to 300 and 50 revolutions at r \ 3
and 10 AU, respectively. The equations possess no explicit
dissipation, so the vorticity Ðeld will not decay by the action
of molecular or turbulent viscosity. The vorticity (and its
associated velocity) distribution in spacetime is constrained
only by the global conservation laws relating to kinetic
energy and vorticity (Holton 1992, p. 972).

Bracco et al. (1998b) and Godon & Livio (1999) explicitly
include viscous damping in their simulations. For example,
the latter paper showed that the vortex strength decreased
exponentially (about 25% after 10 orbits) for an incom-
pressible Ñow model. Our simulations show that the total
kinetic energy of the Ñow changed only by about 2% after
300 revolutions of the inner boundary. The Ðnal steady
state conÐguration for this Ñow was not a simple vortex-free
Keplerian Ñow but an axisymmetric vortex sheet with a
small discontinuity superimposed on the Keplerian Ñow.
Similar inviscid Ðnal state vortex sheets in simple shear
Ñows were discussed by Sommeria, Staquet, & Robert
(1991) in the context of two-dimensional shear layers. Of
course, such Ðnal steady state Ñows are not actual physical
entities, but the critical Ñow transients are tracked and
illustrate the essentially inviscid Ñuid mechanics of the
phenomenon.

Solutions obtained with a Keplerian rotation curve are
contrasted with one based on a vorticity-free rotation curve.
This comparison clearly shows that Rossby waves are only
supported by baseline Ñows with nonvanishing vorticity
gradients. The longer term (thousands of years) e†ect of
rotation and shear is to redistribute the initially concen-
trated vorticity into meridional zones of vortex sheets with
a small vortex-induced potential Ñow velocity extending
over the entire disk. If the rotation curve possesses a vor-
ticity gradient, Rossby waves redistribute a small portion of
the initial concentrated vorticity over the entire nebula.
Rossby waves are an essentially inviscid phenomenon, and
the current simulations allow them to be captured over the
entire disk area.

A key Ðnding from this investigation is that the size,
strength, vector orientation, and location of the vortex are
all Ðrst-order determinants of its ultimate fate. A small Ðnite
vortex will quickly be sheared away by the mean velocity
gradient. On the other hand, a large, strong anticyclonic
vortex can induce enough velocity to just balance the local
shear and can theoretically last forever. (Note that the anti-
cyclonic Great Red Spot on Jupiter is many hundreds of
years old.) Plausible assumptions are made regarding the
size and strength of realistic nebular vortices lying between
these extremes.

The plan of the paper is to Ðrst describe the Ðnite di†er-
ence algorithm used to solve the barotropic vorticity equa-
tions. Next, the e†ects of velocity shear and vortex
characteristics (size, strength, orientation, and location) are
investigated in the midradial region of a Keplerian shear
Ñow. Transient Rossby waves are detected and contrasted
with a shear Ñow having no vorticity gradients. The Ðnal
steady state conÐguration is then illustrated by computing
the fate of one of the test vortices to longer times.

2. NUMERICAL METHOD

Starting from the inviscid Euler equations, it is a straight-
forward procedure to derive the nonlinear vorticity trans-
port equation for the horizontal, frictionless Ñow of an
incompressible Ñuid :

Lm
Lt

] V Æ $m \ 0 , (1)

where m is the component of the total vorticity in the direc-
tion normal to the Ñow plane and V is the vector velocity.
This apparently simple, but highly nonlinear, equation pro-
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vides a general description for this class of two-dimensional
Ñows (Choudhuri 1998). The equation is usually resolved
into orthogonal components in a local Cartesian frame.
Here we will consider cylindrical coordinates deÐned by
unit vectors in the conventional (r, h, z) notation.(e

r
, eh, e

z
)

The vorticity is deÐned in the usual way by the curl of the
vector velocity Furthermore,m \ LVh/Lr] Vh/r [ LV

r
/rLh.

we deÐne a stream function t by V \$ Â te
z
\ V

r
e
rfrom which m \ [+2t.] Vh eh \ Lt/rLhe

r
[ Lt/LrehEquation (1) expressed in terms of t is a complicated third-

order partial di†erential equation that is the conventional
starting point for numerical solutions of the barotropic vor-
ticity equation (Holton 1992, p. 437). Rather than solving
equation (1) directly, we use a two-step procedure. If the
vorticity Ðeld at time step n is denoted by m(n), a stream
function is Ðrst computed from the polar Poisson equation

+2t\ L2t
Lr2 ] Lt

rLr
] L2t

r2Lh2\ [m(n) . (2)

The velocity Ðeld from the stream function calcu-(V
r
, Vh)lation is used as coefficients in equation (1) to solve the

Ðrst-order vorticity conservation equation which is the
second step in the process :

Lm(n`1)
Lt

] V
r
Lm(n`1)

Lr
] V’

Lm(n`1)
rLh

\ 0 . (3)

In this manner the global e†ect of the vorticity as a forcing
function for t is converted into a lagged velocity Ðeld that
transports the vorticity to the next time step. The velocity
can be an externally applied Ñow (the linearized equations
from dynamic meteorology), a self-induced motion (vortex-
vortex interaction), or a combination of the two (as in this
implementation). Such time-lagged methods have been used
with success in computing vortex-dominated Ñows in a
variety of Ñuid mechanics applications (Iwatsu et al. 1989 ;
Davis 1989).

Boundary conditions are always critical issues for elliptic
equations with Neumann (derivative) boundary conditions.
The Poisson problem is especially difficult since solutions
are subject to special compatibility conditions. Numerical
solutions are exacerbated by this restraint, and solutions
tend to slowly drift as time evolves. In this paper, solutions
to equation (2) are obtained from a library routine
(FISHPACK v3.1 distributed by NCAR) that solves
PoissonÏs equation in polar coordinates. The boundary
conditions are alternated between given velocities (normal
derivatives of t) and Dirichlet conditions (values of t
obtained by integrating along the boundary). ThisV

rapproach seems to eliminate the solution creep that appears
with straightforward Neumann conditions and is consistent

with the small but nonvanishing changes in the boundary
stream function induced by the vortex motion.

The second step is to solve the Ðrst-order vorticity con-
vection equation. Conventional methods using simple Ðnite
di†erence formulas su†er from severe dispersion errors.
These numerical artifacts can destroy the precise phase rela-
tions that need to be preserved during coherent wave
motion. Davis (1991) demonstrated these deleterious e†ects
for acoustic waves. In this paper, a higher order (fourth
order in spacetime) method is used to advance the vorticity
to the next time step. Each coordinate direction is treated
separately in this spatially split scheme. Although stability
and accuracy conditions for wave motion will allow a
Courant number (speed] time step/grid size) close to
unity, the global compatibility constraint from the Poisson
equation required a much smaller time step.

Using this Ðnite di†erence algorithm, solutions are
obtained for as many as 105 time steps. The computational
domain is an annular disk from 3 to 10 AU with 113 equally
spaced radial and 61 azimuthal mesh points. Test vortices
of various sizes are placed at 3.5 and 7 AU, somewhat
within and beyond the orbit of Jupiter. This choice simu-
lates the local Keplerian shear and vorticity in the vicinity
of the giant gas planets.

3. COMPUTATIONAL RESULTS AND DISCUSSION

Two parameters that determine the fate of a small island
of vorticity in a large-scale shear Ñow are its size and its
strength. A combined measure of size and strength is the
circulation. A given circulation can support small vorticity
over a large area or large vorticity over a small area. First,
consider a baseline Keplerian shear Ñow. Some relevant
properties, including nondimensional velocity and vorticity
gradients, are shown in Table 1 at selected radii. The quan-
tities are deÐned in the table and expressed in terms of the
orbital velocity of the earth, AU s~1,Vh \ Vref \ 2 ] 10~7
and its distance from the Sun, AU. (Starred quan-rref \ 1
tities in Table 1 denote physical quantities.) The Keplerian
circulation is included as a baseline value along with the
local vorticity, velocity, and their gradients. The time
measure is years. Note that on a Keplerian disk the circula-
tion increases with radius, the vorticity gradient decays very
rapidly, and the gradient of azimuthal velocity is the nega-
tive of the vorticity.

First consider a small, circular vortical region inserted
into the baseline Keplerian Ñow at the point Withr0, h0.respect to a locally deÐned polar coordinate system (r@, h@),
the vortex decays exponentially with peak vorticity ampli-
tude a and length scale l with the functional form
a exp ([r@2/l2). The vortex induces a symmetric velocity
Ðeld given by the expression : al2[1[ exp ([r@2/l2)]/2r@. Its

TABLE 1

PROPERTIES OF THE BASELINE KEPLERIAN NEBULA

t
r U m ! dU/dr dm/dr (yr)

1.0 . . . . . . 1. 0.5 6.28 [0.5 [0.75 1.
3.5 . . . . . . 0.5345 0.0763 11.75 [0.0763 [0.03272 6.55
7.0 . . . . . . 0.3780 0.0270 16.62 [0.0270 [0.005785 18.52

NOTES.Èr \ R*/rref ; U \ V */Vref \ 1/Jr ; m \ (m*rref)/Vref \ 0.5/r1.5 ; !\
U, V \ mean azimuthal velocity ;!*/(Vref rref)\ 2nJr ; t \ (1/2n)[(t*Vref)/rref] ;

m \ mean vorticity, !\ circulation ; the subscript ““ ref ÏÏ refers to conditions at the
radius of EarthÏs orbit ; ““ * ÏÏ refers to physical quantities.
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maximum value and location (with respect to its local core)
depend on (a, l ). As a speciÐc example, consider a vortex
whose circulation is the average of that of Jupiter and
Saturn. JupiterÏs period, 2n/), is 10 hr, and its radius is
70,000 km. Using the formula !\ 2n)r@2, the circulation is
about 2.5] 10~10 AU2 s~1. The corresponding value for
Saturn is 1.6 ] 10~10 AU2 s~1. (Here we are disregarding
any caveats regarding particulars of planetary formation,
e.g., runaway accretion, and all the planetÏs rotation is
assumed captured from the surrounding vortex cloud.) A
typical nondimensional value of the average circulation is

A circula-!*/Uref rref \ 2 ] 10~10/[(2] 10v7)(1)]D 10~3.
tion of 10~3 for the small, circular vortex will be used as the
baseline value.

Parameters relating to two possible vortices with this
circulation are shown in Table 2, and these values will be
the focus of the rest of this study. One is highly concen-
trated, and the other is more di†use. The basic length scale l
is chosen to be consistent with the disk thickness, assumed
to be 1/10È1/100 times the disk radius. Note that the di†use
vortex is about 3 times as big but only 1/9 times the ampli-
tude of the intense vortex.

TABLE 2

LOCAL PROPERTIES OF THE TEST VORTEX

Panel r0 a l !

a . . . . . . 3.5 ^0.1835 0.0417 0.001
b . . . . . . 3.5 ^0.0204 0.1250 0.001
c . . . . . . 7.0 ^0.1835 0.0417 0.001
d . . . . . . 7.0 ^0.0204 0.1250 0.001

3.1. Vortex Distortion in a Keplerian Nebula
To a Ðrst approximation, a small vortex is convected by

the mean Ñow, with vortices close to the central gravitator
circulating faster. A better approximation is that predicted
by barotropic vorticity convection and includes both shear
Ñow distortion and self-induced velocity. There is a com-
petition between these e†ects that strongly inÑuences the
subsequent evolution of the vortex.

This competition can be appreciated from Figure 1. The
Ðgure compares the initial velocity induced by the vorticity
distributions in Table 2 with the baseline shear. This back-
ground shear is shown as lines of constant (negative) slope
in the Ðgure. The shear ÑowÈinduced velocities are shown
relative to the mean velocities at r \ 3.5 (Figs. 1a and 1b)
and r \ 7 (Figs. 1c and 1d), the slopes of each line being
given by the value of the velocity gradients from Table 1. A
qualitative analysis of the fate of each shear ÑowÈvortex
interaction can be inferred from the Ðgure. An anticyclonic
vortex (a \ 0) is shown for illustration ; that is, the vortex-
induced velocities augment the mean shear. A cyclonic
vortex will have exactly the reverse e†ect at the initial
instant. Figure 1a, for example, shows that the initial
maximum self-induced velocity from a smaller, stronger
vortex adds signiÐcantly to the Keplerian shear. Figures 1b
and 1d show that the shear velocities overwhelm the initial
self-induced velocities from the weaker, more di†use vor-
ticity at both radial locations. Since these initial self-
induced velocities represent upper bounds and can be
expected to decay rapidly as the Ñow unfolds, the expecta-
tion is that mean shear Ñow distortion will dominate and
the vortices will soon be stretched into streaky structures.
Figure 1c is the only case where the self-induced velocity is

FIG. 1.ÈVortex velocities compared to local Keplerian velocity gradients. (a) Strong, local vortex at r \ 3.5. (b) Weaker, di†use vortex at r \ 3.5. (c)
Strong, local vortex at r \ 7.0. (d ) Weaker, di†use vortex at r \ 7.0.
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greater than the local shear-induced velocity. This is when
the vorticity is concentrated in a smaller area and is located
farther out radially. Finally, consider the limit case when
the shear Ñow vanishes (horizontal line) and the self-
induced velocities are all that remain. This is the classical
case of nonlinear self-induced vortex motion relative to a
uniform (or quiescent) mean Ñow. The other extreme is
when the mean shear is almost vertical indicating an
extremely large relative shear Ñow. Here the mean shear
Ñow dominates the vorticity transport equation, the equa-
tion can be linearized, and vortices are considered point
singularities. The vortex singularities just swim along with
the mean current. Unlike the case of no vorticity shear (a
uniformly rotating disk or a potential vortex), Keplerian
shear rate curves seem capable of accommodating a wide
range of shear ÑowÈvortex interactions.

The global evolution of vorticity for cases aÈd is shown in
Figure 2 from numerical solutions of the barotropic vor-
ticity transport equations. Snapshots of vortex convection
and distortion are shown at discrete time intervals. The
horizontal axis represents the periodic polar coordinate and
the vertical axis the radial location from 3 to 10 AU. Each
panel shows the single contour (or where0.25mmax 0.25mmin),m is the extreme value of the disturbance vorticity at the
indicated time. In all cases the initial test vortices were

placed at h \ n/5 rad and 3.5 and 7 AU as shown in the Ðrst
panel. As the Ñow evolves, vorticity decreases and the area
supporting the vorticity increases while conserving vorticity
and kinetic energy. The 25% contour is representative of the
vortex distortion and orientation but does not encompass
the entire region of convective vorticity. Figure 2a shows a
cyclonic case where the vorticity-induced motion aids the
shearing e†ect. The vortices quickly become elongated (the
inner vorticity moving much faster) and form streaky struc-
tures after about 200 yr. Note that a harmonic analysis of
the vorticity Ðeld in the azimuthal direction would show an
evolution toward lower wavenumbers (e.g., larger
wavelengths) that is consistent with an energy redistri-
bution toward lower wavenumbers. Longer time simula-
tions show an evolution of cyclonic vorticity into elongated
and overlapping streaky structures concentrated at 3.5 and
7 AU.

The contrasting case of anticyclonic vortices is shown in
Figure 2b. Here the self-induced vorticity opposes the
shearing e†ect of the mean Keplerian Ñow. This nonlinear
interaction has a Ðrst-order impact on the rate of vortex
distortion. The contour lines at 66 yr indicate a radial
broadening and a strong reduction in the vortex shearing
compared to Figure 2a. The e†ect is more dramatic at 7 AU
since, from Figure 1c, the initial self-induced velocity is even

FIG. 2.È(a) Concentrated cyclonic vortex evolution on a thin Keplerian disk ; a \ 0.1835, l\ 0.0417. Contours shown at max(s)/4. (b) Concentrated
anticyclonic vortex evolution on a thin Keplerian disk ; a \ [0.1835, l\ 0.0417. Contours shown at min(s)/4. (c) Di†use cyclonic vortex evolution on a thin
Keplerian disk ; a \ 0.0204, l\ 0.1250. Contours shown at max(s)/4. (d ) Di†use anticyclonic vortex evolution on a thin Keplerian disk ; a \ [0.0204,
l\ 0.1250. Contours shown at min(s)/4.
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stronger than the mean shear e†ect. Note especially the
vortex remains coherent at 266 yr compared with Figure 2a.
The radially decreasing mean Keplerian shear rate farther
out in the solar nebula is a major factor in sustaining this
coherence.

Cases where the vorticity strength is severely weakened,
but the core size increased to keep the circulation constant,
is shown in Figures 2c and 2d. The vortex strength is about
1/9 that of the previous case, but the circulation remains
constant. The e†ect of vorticity orientation (cyclonic or
anticyclonic) is not as important as radial location. It seems
that the evolution of these weaker amplitude vortices is
dominated by the mean shear. This dominance is most
apparent at 3.5 AU where the mean shear quickly over-
whelms the vortex-induced velocities and forms continuous
streaky structures at 600 yr. This Ñow pattern is consistent
with the inviscid Ðnal states suggested by Sommeria et al.
(1991).

These e†ects are summarized in Figure 3 depicting the
approximate angular extent of the vortex as it distorts.
Once the distorted shape reaches 2n, the discrete nature of
the vortex is eliminated in favor of a continuous azimuthal
band. The time required to reach this value is a measure of
the persistence of the vortex. The values were measured
from contours similar to those in Figure 2. From Figures 2c
and 2d, the small-amplitude, large-area vortex is over-
whelmed by the local Keplerian shear at both radial loca-

tions. The base Ñow quickly smoothes the vortex, and
nonlinear self-induction plays a minor role. Figures 3b and
3d bear this out showing small di†erences between cyclonic
and anticyclonic vortices. The included angle reaches 2n
fastest at r \ 3.5 since the shear is greater at this station. In
Figure 3b the discrete vortexÈinduced asymmetry is elimi-
nated in about 10 local revolutions (60 yr) and in Fig. 3d in
about 16 local revolutions (300 yr) when the data is extrapo-
lated to 2n.

The large-amplitude, smaller area vortex has a more
complex evolutionary behavior pattern. Figure 3a indicates
similar growth rates up to about 400 yr, although it was
difficult to measure the exact extent of the vortex stretching
from the contours. The most interesting case is at r \ 7 (Fig.
3c), where the self-induction is most active. When the sense
of the vortex opposes the direction of the mean shear, the
cyclonic vortex rapidly shears away. The vorticity is most
intense when the vortex augments the mean shear. The anti-
cyclonic vortex persists for about 37 local revolutions (700
yr). The anticyclonic vortex also appears to have a signiÐ-
cant lapse in growth rate between 40 and 120 yr (see also
Fig. 2b). Also shown in Figures 3a and 3c are solid lines
representing an increased angular resolution from 71 to 113
nodes. From the good agreement between the two angular
resolutions, we believe that the mesh-induced numerical vis-
cosity is extremely small and does not a†ect the coherence
time for these vortices.
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FIG. 3.ÈAzimuthal stretching of cyclonic and anticyclonic vorticity in the Keplerian disk. Cyclonic vortices shown as lighter circles. (a) Strong, local
vortex at r \ 3.5. (b) Weaker, di†use vortex at r \ 3.5. (c) Strong, local vortex at r \ 7.0. (d ) Weaker, di†use vortex at r \ 7.0.

These calculations indicate that physical location,
strength, and size are interrelated factors that can all a†ect
the persistence of vortices in the Keplerian Ñow. The exam-
ples shown here are only representative of a wide class of
possible Ñow states. It is always possible to impose a vortex
of sufficient size and strength to counterbalance the back-
ground shear and have it convect with minimal distortion
for arbitrarily long times. However, vortex-induced veloci-
ties will reach moderate to high supersonic speeds, and
more complex models must be considered. Initial vorticity
can be induced by internal instabilities, by the cascade of
turbulent energy to larger scales, or by catastrophic
external events and should be the subject of additional
investigations.

So far these results show that the disturbance is more or
less conÐned to the radius where the anomalous vorticity
appeared. Radial momentum and energy transfer do not
play a signiÐcant role, and the main e†ect is to spread the
disturbance by direct shearing. In the next section some
longtime e†ects are considered showing possible radial vor-
ticity transfer mechanisms and a longer term tendency
toward zonal Ñows.

3.2. Vorticity Waves in a Keplerian Rotation Field
The coherence time of a local vortex was shown to

depend on its associated velocity gradient. A mean vorticity
gradient (not necessarily the same as the velocity gradient)
is necessary to transport vorticity in the radial direction.
This e†ect is well understood in geophysical Ñows where
Rossby waves are described as low-frequency latitudinal
excursions supported by local vorticity gradients. We
expect an analogous behavior in the Keplerian rotation
Ðeld. The basic mechanism is easily deduced from the baro-
tropic vorticity transport equation. A perturbation series
consisting of a mean vorticity and velocityZ0(r) U0(r),

along with disturbances m@(r, h, t), u@(r, h, t), and v@(r, h, t) are
substituted in the nonlinear convection equation, equation
(3). The vorticity transport equation for the perturbation is

Lm@(r, h, t)
Lt

] U0(r)
Lm@(r, h, t)

rLh
] v@(r, h, t)

LZ0(r)
Lr

\ 0 , (4)

where and v@ are mean (azimuthal) and perturbationU0(radial) velocities, respectively.
This equation is well known in dynamic meteorology

(Pedlosky 1979) as a prototype equation governing disper-
sive Rossby waves : a wave driven by the perturbed radial
(latitudinal) velocity acting on a mean vorticity gradient.
The general nature of Rossby waves and their relation to
wavelike solutions of linear equations is reviewed in detail
by Dickinson (1978). Dickinson emphases their role as theo-
retical building blocks in a variety of geophysical applica-
tions. A transient type of nebular wave generated by this
Rossby mechanism is now discussed and contrasted with
the response of a vorticity-free baseline rotation curve.

First, a surface plot of the initial vorticity (taken as the
weaker, di†use vortex) is shown in Figure 4a with the back-
ground mean vorticity removed. The base Keplerian rota-
tion curve is that shown in Table 1, and the vorticity is
representative of Table 2, cases b and d. As discussed pre-
viously, both initial vorticity distributions are at the same
angular positions. As time evolves, the vorticity convects
and stretches in the azimuthal direction. The vorticity at
33.3 yr is shown in Figure 4b. Aside from the main distor-
ting vortex, a widely spaced spiral wave (marked RW in the
Ðgure) is shown in the nebular region. This Rossby wave,
supported by the Keplerian vorticity gradient (increasing
inward) and the induced radial velocity v@, spirals around
the nebula with increasing pitch. The evolution of the
Rossby wave for larger times is shown in the density dia-
grams of Figure 5. The wave spirals many times and the
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FIG. 4a
FIG. 4b

FIG. 4.È(a) Initial disturbance vorticity on a Keplerian disk. Each island of vorticity has a symmetric, exponential distribution. (b) Evolution of
disturbance vorticity after 33.3 yr. Note faster convection and greater decay of inner vortex and presence of spiral Rossby waves.

Ñow reaches a quasi steady conÐguration after about 250 yr.
The Rossby wave amplitude is just a small fraction of the
stretched vorticity amplitudes at r \ 3.5 and 7 AU (note
scale on Fig. 5 is an order of magnitude less than that of Fig.
4b). Its amplitude is so small that numerical e†ects dissipate
its trailing wake, and the global e†ect at long times is
minimal. Even so, a small portion of the conserved total
vortex energy is displaced radially by the Rossby wave. The
initial local vortex at 3.5 and 7 AU ultimately evolves into a
fully symmetric Ñow at larger times, and the relation

between vorticity and velocity reduces to the simple axisym-
metric deÐnition of vorticity m \ LU/Lr ] U/r.

Returning to the earlier time behavior, Figure 6 shows a
surface plot (similar to Fig. 4b) of the vorticity convection
distortion in a vorticity-free mean Ñow. The rotation law is
now and the mean vorticity vanishes.U0(r) \ 1/r, Z0(r)Notice the absence of any spiral wave motion indicating
that the Rossby wave generation mechanism (the last term
in eq. [4]) is not activated. This term is the main driver (the
so-called b-plane e†ect) behind the waves Ðrst described by

FIG. 5.ÈGray-scale density plots of disturbance vorticity evolution showing increased spiraling and decay of transient nebular Rossby waves. Note
decreasing amplitude as waves propagate into outer regions of nebula.
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FIG. 6.ÈDisturbance vorticity after 33.3 yr on a disk with a potential
Ñow background velocity rotation curve (vorticity-free Ñow).

Rossby (1945). The vortices shown have not convected as
far as those in Figure 4b since the vorticity-free rotation
curve (D1/r) decreases more rapidly than the Keplerian
curve (D1/r1@2).

The Ðnal state for the Keplerian rotation curve is an
axisymmetric Ñow with discrete vortex sheets (velocity
jumps) at the radial location of the initial concentrated vor-
ticity. The evolution of the vorticity Ðeld is shown in cross
section in Figure 7a. An earlier time radial proÐle of vor-
ticity (133 yr, solid line) at h \ 0.81 rad is compared with
that at 1600 yr. (By about 1000 yr the Ñow is e†ectively
axisymmetric.) The Rossby waves are indicated by the
undulations in the nebula between the main vorticity spikes.

FIG. 7.È(a) Radial distribution of the disturbance vorticity Ðeld. At
t \ 1600 yr the vorticity is axisymmetric. (b) Radial distribution of the
disturbance velocity Ðeld at t \ 1600 yr. Curves of potential Ñow velocity,
U D 1/r, shown as dashed lines.

The e†ect of the Rossby wave becomes inconsequential, and
at longer times only the vorticity spikes are relevant.

The azimuthal velocity Ðeld can be computed from the
axisymmetric vorticity using the simple relation between
vorticity and azimuthal velocity given above. The Ðnal
velocity Ðeld induced by a pair of cyclonic vortices is shown
in Figure 7b. The velocity jumps are extremely small, about
0.01% and 0.014% of the local Keplerian rotation velocities
at 3.5 and 7 AU, respectively. These small values are consis-
tent with the small net circulation of the disturbance vor-
ticity compared with the much larger Keplerian vorticity.
The global e†ect of the vorticity is to produce an additional
vortex sheetÈinduced velocity. Lines of 1/r (potential Ñow of
an ideal Ñuid) are shown as dashed lines in the Ðgure to
conÐrm this long-reaching induced potential Ñow. The Ðnal
state of anticyclonic vortices are just the negative of that
shown in Figure 7b, but note that the initial transients
(source of vortex persistence) are quite di†erent in the two
cases.

What is termed ““ Ðnal state ÏÏ here will actually be modi-
Ðed by instabilities and three-dimensional e†ects. The
velocity jumps, although small, are unstable to Kelvin-
Helmholtz waves, and secondary instabilities will surely
form. This is a natural precursor to turbulent Ñow in the
nebula. Narrow vortex sheets are inconsistent with thin
sheet, two-dimensional assumptions, and smaller scale
structures will dominate in these regions. Local non-
barotropic (baroclinic) three-dimensional e†ects will be
important. However, the induced potential Ñow velocities
are long-range e†ects and are fully consistent with the
underlying assumptions.

4. CONCLUSIONS

A barotropic model of the protoplanetary nebula was
used to simulate the fate of discrete vortices in the region of
the gaseous planets. A Ðnite di†erence algorithm especially
conÐgured for wave propagation problems was used to
compute the evolving vorticity Ðeld for several hundred
orbits.

It was found that the fate of vortices depends on their
size, amplitude, orientation, and location in the nebula. The
competition between self-induced velocities and external
shear enables the Keplerian rotation curve to support a
wide variety of transient e†ects. The Ðnal state predicted by
the model consists of discrete vortex sheets separated by a
global potential Ñow superimposed on the base Keplerian
rotation curve. Additional observations and comparative
analysis of protoplanetary disks should determine appro-
priate scales for such coherent structures and their potential
role in planetesimal formation. Some features of the struc-
tures computed here are similar to large-scale vortex struc-
tures on the giant gas planet atmospheres (JupiterÏs Red
Spot as a vortex whose self-induced velocity could domi-
nate the Ñow pattern). Additional calculations showing par-
ticle capture over the transient lifetimes of these structures
(Bracco et al. 1998a) and investigations of the narrow vortex
sheet instabilities could shed light on the subsequent forma-
tion of protoplanetary bodies.

The Ðnite di†erence model could be extended to include
additional features. Future investigations will consider
density and temperature e†ects, both as possible instability
sources for vortex motions and as a way to model com-
pressibility phenomena in the disk. Particle-tracking fea-
tures similar to those described by Provenzale (1999) should
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be incorporated. The models described here lend themselves
to small-scale laboratory experiments using analogies with
shallow water theory, and this approach is under active
investigation. Finally, fully three-dimensional calculations
of the protoplanetary nebula using Ðnite di†erence tech-
niques are deÐnitely feasible and should be pursued.
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