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Abstract
In order to predict the amount of secondary organic aerosol formed by heterogeneous processing of
methylglyoxal, uptake coefficients (γ) and estimates of uptake reversibility are needed. Here, uptake
coefficients are extracted from chamber studies involving ammonium sulfate and glycine seed aerosol at high
relative humidity (RH ≥ 72%). Methylglyoxal uptake coefficients on prereacted glycine aerosol particles had a
strong dependence on RH, increasing from γ = 0.4 × 10–3 to 5.7 × 10–3 between 72 and 99% RH.
Continuous methylglyoxal losses were also observed in the presence of aqueous ammonium sulfate at 95%
RH (γAS,wet = 3.7 ± 0.8 × 10–3). Methylglyoxal uptake coefficients measured at ≥95% RH are larger than
those reported for glyoxal on nonacidified, aqueous aerosol surfaces at 90% RH. Slight curvature in first-order
uptake plots suggests that methylglyoxal uptake onto aqueous aerosol surfaces is not entirely irreversible after
20 min. Methylglyoxal uptake by cloud droplets was rapid and largely reversible, approaching equilibrium
within the 1 min mixing time of the chamber. PTR-MS measurements showed that each cloud event extracted
3 to 8% of aerosol-phase methylglyoxal and returned it to the gas phase, likely by an oligomer hydrolysis
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ABSTRACT:  In order to predict the amount of secondary organic aerosol formed by 13	

heterogeneous processing of methylglyoxal, uptake coefficients (g) and estimates of uptake 14	

reversibility are needed.  Here, uptake coefficients are extracted from chamber studies involving 15	

ammonium sulfate and glycine seed aerosol at high relative humidity (RH ³72%).  16	

Methylglyoxal uptake coefficients on pre-reacted glycine aerosol particles had a strong 17	

dependence on RH, increasing from g = 0.4 ×10-3 to 5.7 ×10-3 between 72 and 99% RH.  18	

Continuous methylglyoxal losses were also observed in the presence of aqueous ammonium 19	

sulfate at 95% RH (γAS,wet = 3.7 ± 0.8 ×10-3).  Methylglyoxal uptake coefficients measured at 20	

³95% RH are larger than those reported for glyoxal on non-acidified, aqueous aerosol surfaces at 21	

90% RH.  Slight curvature in 1st-order uptake plots suggests that methylglyoxal uptake onto 22	

aqueous aerosol surfaces is not entirely irreversible after 20 min.  Methylglyoxal uptake by cloud 23	

droplets was rapid and largely reversible, approaching equilibrium within the 1 min mixing time 24	

of the chamber.  PTR-MS measurements showed that each cloud event extracted 3 to 8% of 25	

aerosol-phase methylglyoxal and returned it to the gas phase, likely by an oligomer hydrolysis 26	

mechanism.    27	
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1.  Introduction 28	

Several studies have estimated the global amount of secondary organic aerosol formed from 29	

glyoxal and methylglyoxal via aqueous phase processes.  These estimates range from 3 – 13 30	

TgC/year for glyoxal1-3 and 1.5 – 8 TgC/year for methylglyoxal.2-4 Because the surface area and 31	

water content of clouds is much larger than that of aqueous aerosol particles, SOA production 32	

from dicarbonyls is assumed to take place predominantly in clouds.3  These estimates of SOA 33	

production represent significant fractions of total SOA loading in some urban areas,5 and have 34	

stimulated intense interest in the aqueous chemistry responsible for converting volatile carbonyl 35	

species into hydrate, oligomer, and acid products that can remain in the condensed phase after 36	

the cloud droplet evaporates.  In addition, gas-phase reactions with water vapor or water clusters 37	

can convert aldehydes to diols,6-9 blue-shifting their absorbance spectra,9 lowering their vapor 38	

pressure, and making transfer to clouds and aerosol more likely. 39	

Unfortunately, aqueous SOA production estimates for aldehydes are quite uncertain, given 40	

questions about the reversibility of uptake, the mechanism of uptake (dependent on surface area 41	

or ion catalysis),10 and the magnitude of the uptake coefficient (g) itself.  Glyoxal uptake 42	

coefficients measurements have ranged from g = 1 ×10-3 on aqueous droplets11 to a 43	

photochemically enhanced uptake of g = 16 ×10-3 on non-hygroscopic ammonium sulfate / fulvic 44	

acid aerosol.10, 12  Glyoxal uptake coefficients have been found to depend on aerosol acidity,13 45	

relative humidity,13-14 and ionic strength.15  While the value of Liggio et al.13 (g = 2.9 ×10-3 on 46	

non-acidified aerosol) is most commonly used in modeling studies,3, 16-17 high-end values (g = 16 47	

×10-3) have been successfully used to model PM2.5 levels in Mexico City.5   48	

For methylglyoxal, the situation is even more uncertain.  To our knowledge, methylglyoxal 49	

uptake coefficient has been reported only on 55-85% H2SO4 solutions.18  Modeling studies have 50	
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adopted glyoxal uptake coefficients for methylglyoxal based on chemical similarity,3, 5, 16-17 even 51	

though the two molecules are very different in important aspects such as surface activities,19-21 52	

hydration equilibrium constants,22-23 Henry’s law coefficients,22-26 and oligomerization 53	

processes.27-28  There is a clear need for measurements of methylglyoxal uptake coefficients onto 54	

aerosol and droplet surfaces that have atmospheric relevance.  In this study, we extract 55	

methylglyoxal uptake coefficients from a series of chamber experiments performed on 56	

atmospherically relevant inorganic and organic seed aerosol at high relative humidity levels.   57	

 58	
2.  Materials and Methods 59	

Experimental methods have been described earlier,29 and will be only briefly described here.  60	

The CESAM 4.2 m3 temperature-controlled chamber30-31 uses input flows of humidified or dry 61	

purified air to offset sample flows and maintain constant pressure just above ambient levels.  The 62	

stirred chamber, whose walls are uncoated 304L stainless steel, is pumped down to a few mTorr 63	

between each experiment, and cleaned with pure ethanol (VWR, 99%) and ultrapure water (18.2 64	

MΩ, ELGA Maxima) between each set of experiments to remove contaminants.  Chamber RH, 65	

measured to ± 2% (Vaisala HMP234 HUMICAP), was increased in discrete steps up to 66	

supersaturation by additions of high purity water vapor from a steel boiler.   67	

Methylglyoxal solution samples (Alfa-Aesar) were pumped and stirred periodically to remove 68	

as much water as possible.  The resulting brown viscous liquid was heated to produce green 69	

methylglyoxal gas (and a small, variable amount of water vapor) in a glass bulb at known 70	

pressure.  Bulb contents were then transferred into the chamber using dry N2.  Ammonium 71	

sulfate (AS) and glycine seed aerosol particles were used as model particles for inorganic and 72	

organic aerosol, respectively, since AS is a common aerosol salt species and glycine is the most 73	

abundant amino acid in atmospheric aerosol. 32-33  Both species are reactive towards 74	
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methylglyoxal.21, 34  Seed aerosol were produced by atomizing aqueous solutions of 1 – 2 mM 75	

AS or 10 mM glycine.  AS droplets were diffusion-dried before being sent into a dry chamber.  76	

For glycine aerosol (Expt. 4), in order to generate a complex, atmospherically relevant surface 77	

containing oligomers and more functional groups than just carboxylic acids and amines, 78	

deliquesced glycine aerosol were “pre-reacted” with 1.0 ppm methylglyoxal and 0.68 ppm 79	

methylamine at 72% RH for 90 minutes before methylglyoxal concentrations was increased to 80	

6.9 ppm and its uptake measured.  Aerosol and cloud droplet size distributions were respectively 81	

monitored by SMPS (TSI 3080/3772, 20-900 nm, sampling via Nafion drying tube) and droplet 82	

scattering spectrometer (Welas, Palas Particle Tech., 0.25 to 15 m m, corrected for inlet losses35).  83	

Methylglyoxal gas concentrations in the chamber were calibrated using long-path FTIR (Bruker 84	

Tensor, calibration Figure S1, integrated methylglyoxal band intensity = 6.3 ´ 10-18 cm2 85	

molecule-1 from 2720 to 2940 cm-1)36 and monitored by PTR-MS (KORE Tech. Series II) 86	

through a 60 °C sampling line.  Fast PTR-MS response to methylglyoxal additions (£ 1 min. 87	

chamber mixing time) indicated no significant partitioning of methylglyoxal to the sampling line. 88	

The uptake coefficient g is the fraction of collisions of a gas molecule with a surface that lead 89	

to reactive uptake.  The observed uptake coefficient, gobs, is calculated using eq. 1,  90	

 𝛾"#$ =
&'
(	*+

 (1) 91	

where k is the 1st-order rate constant (s-1) extracted from the decay of gas-phase methylglyoxal 92	

signals after RH-dependent wall losses were subtracted, SA is the SMPS-measured surface area 93	

of aerosol (m2 surface / m3 air) or other surface, and c-bar is the mean speed of methylglyoxal 94	

molecules in m/s, 95	

 𝑐 = -./
01

 (2) 96	
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where R = 8.3145 J mol-1K-1, T is temperature (Kelvin), and M is the molecular mass of 97	

methylglyoxal (0.072 kg/mol).  Stated uncertainties in uptake coefficients include experimental 98	

uncertainties in wall loss rates, aerosol surface areas, and 1st-order fits.  The observed uptake 99	

coefficient can be limited by gas-phase diffusion, mass accommodation, and/or reactivity and 100	

diffusion in the condensed phase.37  In this study, gas-phase diffusion was not the primary 101	

limitation on observed uptake coefficients at RH ≤ 98%.  At 99% RH, gas-phase diffusion 102	

limitations likely suppressed the observed uptake coefficient by ~50%.   103	

3.  Results 104	

Methylglyoxal concentrations measured by PTR-MS as a function of time in the chamber are 105	

shown in Figure 1.  Extracted first-order decay rate constants, aerosol or cloud surface areas, and 106	

uptake coefficients are summarized in Table 1.  107	
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 108	

Figure 1:  Methylglyoxal loss rates measured by PTR-MS, corrected for RH-dependent zero-109	
order wall losses and sampling dilution in the constant-pressure CESAM chamber. Open 110	
symbols:  dry chamber containing crystalline AS aerosol particles (black, Expt. 1; red, Expt. 2; 111	
blue, Expt. 3).  Blue filled triangles (Expt. 3):  chamber at 95 ±2% RH containing deliquesced 112	
AS aerosol.  Green circles, diamonds, triangles (Expt. 4):  chamber at 72, 89, and 98 ± 2% RH, 113	
respectively, containing deliquesced, pre-reacted glycine aerosol (exposed to 1.0 ppm 114	
methylglyoxal and 0.68 ppm methylamine at 72% RH for 90 min. before methylgyoxal 115	
concentration was increased to 6.9 ppm for uptake measurements at 72% RH).  Expts. 4A, 4B, 116	
and 4C were performed sequentially.  Green open triangles show three brief drops 117	
corresponding to three cloud events with RH > 100%; fit omits these data points.  Expt 4C data 118	
is subdivided into labeled sections 4D (cloud 1) and 4E-4G (post-cloud 1-3, respectively). 119	

  120	
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Table 1:  Measured Methylglyoxal Uptake Rate Constants and Uptake Coefficients 121	

expt. surface % RH 
(± 2%) 

ksurface 
(10-4 s-1)a 

surface area 
(10-3 m2/m3) 

gsurface 
(10-3) 

1 AS < 5 < 2.3 ± 0.3 0.6 b < 4.6 ± 0.6 

2 AS < 5 < 2.8 ± 0.2 0.7 b < 4.7 ± 0.3 

3A AS < 5 < 3.0 ± 0.4 1.0 b < 3.5 ± 0.4 

3B AS 95 4.3 ± 0.8 1.6 b 3.7 ± 0.8 

4A glycine 72 0.62 ± 0.08 2.3 c 0.37 ± 0.06 

4B glycine 89 4.2 ± 1.1 2.5 c 2.3 ± 0.6 

4C glycine 98 8.6 ± 0.9 4.2 c 2.8 ± 0.4 

4D cloud droplet > 100 > 17 80 – 500 c d 

4E cloud-processed glycine ~99 11.0 ± 1.1 2.3 c 6.6 ± 1.0 

4F cloud-reprocessed glycine ~99 6.9 ± 0.8 1.7 c 5.7 ± 0.9 

4G cloud-reprocessed glycine ~99 4.5 ± 0.8 1.3 c 4.8 ± 1.0 

a: Data corrected using measured RH-dependent zero-order wall losses:  0.018 ±0.007 ppb s-1  122	
at < 5% RH, 0.09 ±0.03 ppb s-1 at 72% RH, and 0 ppb s-1 above 85% RH, where no net wall 123	
losses were observed due to equilibrium.  b:  SMPS aerosol particle surface area.  c: WELAS 124	
aerosol particle surface area.  d: Uptake not measurable because equilibrium achieved in <1 min.  125	

 126	

3.1 Wall losses.  Because the chamber has a surface area to volume ratio of ~4.3 m2/m3,30 127	

while aerosol in the chamber have < 0.003 m2/m3 total surface area, it is critical that the uptake 128	

of methylglyoxal onto the steel chamber walls be well-characterized so that wall and aerosol 129	

surface processes can be distinguished.  Fourteen methylglyoxal wall loss experiments were 130	

therefore conducted at various concentrations (35 ppb to 2.5 ppm) and RH levels (0 to 87%).  131	

Measured 1st-order wall loss rate constants are shown in Figure S2.  Measured 1st order wall loss 132	

rate constants varied by a factor of 300 and showed a large, negative dependence on 133	

methylglyoxal concentrations.  In other words, steel chamber walls appear to take up 134	

methylglyoxal at a nearly constant rate that is independent of methylglyoxal concentrations, 135	
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suggesting that under our experimental conditions methylglyoxal losses on the steel chamber 136	

surfaces are limited by available surface uptake sites.  In fact, we estimate that ~6 ´ 1019 137	

methylglyoxal molecules, equivalent to 0.6 ppm in the CESAM chamber, would create a 138	

monolayer if adsorbed on the steel chamber walls.  This is near the concentration median of our 139	

wall loss experiments, suggesting that competition for wall surface uptake sites could contribute 140	

to the lower uptake rate constants observed in higher concentration runs. 141	

The near-constant wall losses observed are better expressed as zero-order loss rates, shown as 142	

a function of RH in Figure S3.  Nine measurements at RH <15% were within a factor of 2 of 143	

each other, with an average methylglyoxal loss rate of 0.018 ±0.007 ppb s-1.  Five loss rate 144	

measurements on two other days were higher by factors of 8.4 ±0.5 and 33 (not shown in Figure 145	

S3).  In the latter case, chamber walls were known to be contaminated with ammonium sulfate 146	

aerosol from earlier experiments.  Thus, we take 0.018 ±0.007 ppb s-1 as the loss rate of 147	

methylglyoxal on clean and dry steel surfaces. 148	

As relative humidity increases, the gas-phase reaction between methylglyoxal and water vapor 149	

converts more methylglyoxal to its hydrated diol form.7, 9  Because the diol form of 150	

methylglyoxal is less volatile, losses of methylglyoxal to surfaces are expected to increase, and 151	

this is observed for wall losses in Figure S3 between 15 and 50% RH.  However, at high RH, 152	

enhanced uptake rates are offset by hydrolysis of wall-deposited methylglyoxal oligomers,29 153	

rapidly establishing a gas/surface equilibrium similar to that observed in glyoxal chamber 154	

experiments.13, 15  For example, when the relative humidity was increased from 0 to 87 ± 2% in a 155	

chamber experiment without seed particles, the gas-phase concentration of methylglyoxal 156	

increased by a factor of 2.6 and reached equilibrium within 2 min, twice the chamber mixing 157	

time.  After this, methylglyoxal signals were quite stable over the next hour as the RH declined 158	
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from 87 to 82 ± 2%, rising an additional ~8% (perhaps due to the contribution of a slow dimer 159	

hydrolysis process).38  Similar observations were made when the chamber contained wall-160	

deposited aerosol.  We thus conclude that at RH ≥ 85%, methylglyoxal rapidly equilibrates with 161	

the steel chamber walls, because no net wall uptake is observed beyond 2 min.  Thus, no 162	

correction for wall loss is made in methylglyoxal experiments at RH ≥ 85%, while between 15 163	

and 85% RH (i.e., for Expt. 4A only), we estimate wall loss corrections using a 3rd-order 164	

polynomial fit to the wall loss measurements plotted vs. RH (Figure S3). 165	

3.2 Dry AS aerosol (Expts 1 – 3A).  Figure 1 shows loss rates measured by PTR-MS in 3 166	

experiments after methylglyoxal was added to the dry chamber containing AS aerosol particles 167	

(open symbols).  After correcting the data for wall losses on clean and dry steel (0.018 ±0.007 168	

ppb s-1), 1st order loss rate constants were calculated, and were found to increase with AS surface 169	

areas, as expected (Table 1). The experiments show good consistency, with calculated uptake 170	

coefficients gAS,dry averaging (4.3 ±0.) ×10-3.  This is an upper limit, however, because all 3 171	

experiments were conducted with AS aerosol from previous experiments deposited on the walls, 172	

and total observed loss rates were similar to maximum wall loss rates measured with wall-173	

deposited AS aerosol).  Thus, wall-deposited AS aerosol may have contributed significantly to 174	

observed methylglyoxal losses. 175	

3.3  Deliquesced AS aerosol (Expt. 3B).  Figure 1 also shows methylglyoxal uptake recorded 176	

in the presence of AS aerosol immediately after the chamber RH increased from 79 to 95 ±2% 177	

RH (filled blue triangles).  This RH increase reached and exceeded the deliquescence point of the 178	

previously dried AS aerosol, 80.6% RH,39 forming aqueous droplets.  The loss rate of 179	

methylglyoxal observed over the next 12 min by PTR-MS corresponds to a 1st-order rate 180	

constant k = (4.3 ± 0.8) ×10-4 s-1.  This loss rate could be due to increased methylglyoxal uptake 181	
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by the deliquesced aerosol particles or by the chamber walls at higher RH.  However, 25 min 182	

earlier, when the relative humidity of the seeded chamber was first increased to 79 ± 2%, the 183	

gas-phase methylglyoxal PTR-MS signals responded just as they did in the seed-free chamber:  184	

methylglyoxal signals stabilized within 3 min after a fast initial rise, with only a slight 185	

subsequent increase as RH levels dropped a few percent.  This suggests that methyglyoxal 186	

rapidly reached equilibrium with the humid walls long before the second RH increase from 79 to 187	

95 ± 2%.  While the methylglyoxal wall equilibrium may have been perturbed by the second RH 188	

increase, unless this wall equilibrium takes much longer to establish itself at 95 ± 2% RH than at 189	

79 or 87 ± 2% RH, it cannot explain the continuous 12-min decline observed in gas-phase 190	

methylglyoxal signals.  Methylglyoxal uptake onto newly deliquesced seed particles is a more 191	

likely explanation of this signal decline.  192	

The uptake coefficient from this methylglyoxal loss can be estimated given the uptake surface 193	

areas.  The AS aerosol size distribution in the 95 ± 2% RH chamber was measured after drying 194	

to 62 ± 4%  RH in the sampling line, due to a 7°C temperature differential between the cooled 195	

chamber and the room temperature SMPS.  This RH change should cause deliquesced AS 196	

particles to shrink in diameter by a factor of 1.64 due to water loss.40  The measured SMPS size 197	

distribution at 62% RH was therefore multiplied by a growth factor of 1.64, resulting in an 198	

estimated chamber aerosol surface area at 95 ± 2% RH of 1.58 × 10-3 m2/m3.  The methylglyoxal 199	

uptake coefficient onto deliquesced AS aerosol is then γ = (3.7 ± 0.8) ×10-3.   200	

3.4 Deliquesced glycine aerosol (Expt. 4A - C).  After deliquesced glycine aerosol, 0.68 ppm 201	

methylamine, and 1.0 ppm methylglyoxal equilibrated in the chamber for 90 min. at 72 ± 2% 202	

RH, additional methylglyoxal was injected into the chamber to reach 6.9 ppm.  Starting 10 min 203	

later when PTR-MS data collection commenced, constant methylglyoxal losses were observed 204	
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for 40 min (Figure 1, Expt. 4A).  The RH-dependent wall loss function shown in Figure S3 was 205	

used to estimate the methylglyoxal wall loss rate at 72 ± 2% RH to be 0.09 ± 0.03 ppb s-1, which 206	

was 5× lower than the observed total methylglyoxal loss rate, and resulted in a calculated first 207	

order loss constant k of (6.2 ± 0.8) ´ 10-5 s-1.  The aerosol size distribution could be measured in 208	

this experiment by both SMPS (dried) and droplet scattering spectrometer (wet).  After these two 209	

datasets were corrected for changes in RH during sampling and droplet losses in the inlet, 210	

respectively, the surface areas measured by the two techniques agreed to within 16%.  The 211	

uptake coefficient is then γ = (0.37 ± 0.06) ´ 10-3.  We attribute this lower uptake to the fact that 212	

the deliquesced glycine aerosol particles had already reacted with ≥1.0 ppm methylglyoxal and 213	

0.68 ppm methylamine in the chamber for a total of 100 min. before the methylglyoxal uptake 214	

rate was measured.  At 72 ± 2% RH, the mole fraction of water in non-effloresced glycine 215	

aerosol particles is 41%,41 and the water mass fraction is therefore only 14%.  These meta-stable, 216	

non-crystalline glycine seed particles may be quite viscous, such that surface “aging” is possible 217	

and an aged surface may persist for hours. 218	

When the RH was increased to 89 ± 2%, water content in the glycine seed aerosol should 219	

increase to 22% by mass,41 reducing particle viscosity.  This RH increase caused methylglyoxal 220	

loss rates to increase more than 5-fold to k = (4.2 ± 1.1) ´ 10-4 s-1 (Figure 1, Expt. 4B).  No 221	

change was observed in the methylamine gas concentration measured by PTR-MS or the surface 222	

area of the fully dried aerosol measured by SMPS.  Since methylamine concentrations did not 223	

change, it is unlikely that methylglyoxal + methylamine reactions are the cause of the increased 224	

methylglyoxal losses.  The increase in methylglyoxal uptake rate is more likely due to increased 225	

glycine aerosol surface area at higher RH.  Surface area was estimated to be (2.5 ± 0.1) ´ 10-3 226	

m2/m3 using both hygroscopic growth corrected SMPS data and droplet spectrometer data 227	
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corrected for inlet losses (agreement to within 5%).   The measured methylglyoxal uptake 228	

corresponds to an uptake coefficient of g = (2.3 ± 0.6) ×10-3 for aqueous glycine aerosol at 89 229	

±2% RH.   230	

When the RH was increased to near saturation (98 ± 2% RH, Expt. 4C), the rate of 231	

methylglyoxal losses more than doubled again to k = (8.6 ± 0.9) ´ 10-4 s-1.  The effect of 3 232	

intervening cloud events is discussed below, and cloud data points are omitted in the present 233	

analysis. Near H2O saturation, correcting SMPS measurements of dried aerosol with hygroscopic 234	

growth factors introduces large uncertainties, so droplet spectrometer measurements of wet 235	

particle surface area are more accurate. The addition of water vapor to increase RH from 89 to 98 236	

± 2% caused an increase in wet aerosol surface area to (4.2 ± 0.4) × 10-3 m2/m3, resulting in a 237	

methylglyoxal uptake coefficient on aqueous glycine aerosol surfaces of g = (2.8 ± 0.4) ×10-3.  238	

The similarity of this value to the uptake coefficient on aqueous AS aerosol at 95 ± 2% RH (γ = 239	

(3.7 ± 0.8 ×10-3) increases confidence in the analysis. 240	

Figure 1 shows that the fit to methylglyoxal concentration data with cloud data points removed 241	

is also a reasonable fit for the pre-cloud data (glycine aerosol at 98 ± 2% RH).  In fact, if only the 242	

four pre-cloud data points are used to calculate a methylglyoxal uptake coefficient, the result is 243	

within 11% of the previously calculated uptake coefficient.  However, it is also apparent from 244	

Figure 1 that methylglyoxal loss rates decline after each cloud event.  Fitting each of these slopes 245	

separately and using the droplet spectrometer surface areas measured after each cloud event 246	

allows estimates to be made of methylglyoxal uptake by “cloud-processed” glycine aerosol just 247	

below the saturation point (99 ± 1% RH).  These estimates (Table 1, Expts. 4E – G) show that 248	

methylglyoxal uptake rates decline with decreasing aerosol surface area, resulting in an average 249	

uptake coefficient of g = (5.7 ± 1.0) ×10-3 for cloud-processed glycine at 99 ± 1% RH.   250	
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3.5  Cloud droplets (Expt. 4D).  Figure 2 shows methylglyoxal PTR-MS signals and droplet 251	

spectrometer size distributions and total droplet counts recorded during three cloud events in 252	

Expt. 4.  Each cloud event caused gas-phase methyglyoxal signals to decline initially, and then to 253	

recover after a few minutes as the cloud dissipated, evidence of reversible uptake of 254	

methylglyoxal by cloud droplets.  These brief excursions in the methylglyoxal signals, which 255	

occur at the rate of chamber mixing (~1 min), are superimposed on a longer-term loss trend that 256	

we attribute to uptake on aqueous glycine aerosol particles and have already analyzed above.  257	

The size of the brief decline caused by each cloud event is proportional to the peak cloud droplet 258	

counts (Figure S4).  Furthermore, because cloud droplet size distributions are initially similar, 259	

methylglyoxal declines are also roughly proportional to peak cloud droplet surface areas.  While 260	

the 1-min time resolution of the data is clearly inadequate to follow this fast and reversible 261	

process in detail, the first cloud event caused a 760 ppb drop in methylglyoxal concentrations 262	

within 1 min, which would produce an in-cloud methylglyoxal concentration of 54 mM given the 263	

maximum total cloud droplet volume of 2.5 mL for this cloud event.  Since the gas phase 264	

concentration after this uptake is 3.0 ppm, this corresponds to an effective Henry’s law 265	

coefficient of 1.8 × 104 M atm-1 at 27 °C, significantly above previously reported values (3710 ± 266	

320 M atm-1 at 25 °C).24  This suggests that in these cloud events, the long-term declining trend 267	

obscures the magnitude of the cloud effect, and that some of the observed methylglyoxal uptake 268	

during cloud events is likely to the walls.)  It appears that gas / cloud droplet equilibrium is 269	

reached in < 1 min. for methylglyoxal, and uptake coefficients onto cloud surfaces can therefore 270	

not be resolved by this experiment due to the slower (~1 min.) chamber mixing times.  271	

 272	
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273	
Figure 2: Glycine aerosol activation and reversible uptake of methylglyoxal by 3 clouds (Expt. 274	
4).  Blue color scale: cloud droplet spectra (30 s averaging, counts at each diameter size bin (left 275	
axis) vs. time).  Red line:  total droplet counts, corrected for inlet losses35 (right axis).  Open 276	
diamonds: PTR-MS methylglyoxal concentrations in ppb measured by PTR-MS (black 277	
diamonds, right axis).   278	

4.  Discussion 279	

Figure 3 compares glyoxal uptake measurements on non-acidified (AS and sodium nitrate) 280	

aerosol surfaces reported by Liggio et al.13 with our methylglyoxal uptake measurements on 281	

aqueous AS and pre-reacted glycine seeds as a function of relative humidity.  While glyoxal 282	

uptake to non-acidifed aerosol does not appear to depend on RH, methylglyoxal uptake to pre-283	

reacted glycine is strongly RH dependent, increasing by a factor of 15 between 72 and 99% RH.  284	

If we assume that glyoxal uptake coefficients are constant above 90% RH, in this range 285	

methylglyoxal uptake by aqueous aerosol surfaces is more efficient than glyoxal uptake.  This is 286	

unexpected, since glyoxal has a higher effective Henry’s law coefficient, especially in the 287	

presence of AS.  The measured methylglyoxal uptake coefficient on cloud-processed glycine at 288	
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99% RH is also a factor of 2 larger than the gglyoxal = 2.9 ×10-3 value used for methylglyoxal 289	

uptake to cloud droplets in some recent modeling studies.3, 17   290	

 291	
Figure 3: Comparison of measured uptake coefficients on non-acidified aerosol measured for 292	
methylglyoxal (blue filled triangle, AS; blue open triangles, pre-reacted glycine aerosol) and 293	
glyoxal (black open circles, AS and sodium nitrate aerosol, from ref 13) 294	

The observation from Figure 2 that uptake of methylglyoxal into cloud droplets is largely 295	

reversible is consistent with droplet evaporation measurements, which showed that ~80% of the 296	

methylglyoxal in a droplet consistently evaporated along with the water, even when ammonium 297	

salts were present.4  Thus, treating methylglyoxal uptake to clouds as an irreversible process will 298	

overestimate organic aerosol production by methylglyoxal in clouds by a factor of 5. 299	

It is also important to note that the methyglyoxal PTRMS signals in Figure 2 recorded after 300	

each cloud event are higher than would be predicted from extrapolation of the pre-cloud signals 301	
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in each case.  This is especially obvious after the second cloud event at 4:25 pm.  These post-302	

cloud increases in methylglyoxal gas concentrations indicate that cloud droplets do more than 303	

take up methylglyoxal reversibly.  The cloud droplets also appear to return to the gas phase a 304	

fraction of the methylglyoxal that had previously been taken up by the aqueous glycine aerosol 305	

particle that nucleated the droplet.  The addition of abundant water to the aerosol particle upon 306	

cloud nucleation likely hydrolyzes some methyglyoxal oligomers, adding to the monomer pool, 307	

some of which dehydrate and return to the gas phase in order to reestablish equilibrium.  This 308	

hydrolytic loss of particle-phase methylglyoxal can evidently outpace hydration and deposition 309	

of gas-phase methylglyoxal, even though the latter process is enhanced at high RH.7, 9   310	

Fitting the methylglyoxal data before each cloud event and extrapolating to the first three after-311	

cloud measurements, we estimated the increase in methylglyoxal gas produced by each cloud 312	

relative to the expectation from the previous trend, and compared these increases to the total 313	

methylglyoxal taken up previously by aqueous glycine aerosol.  The result is that cloud events 1 314	

and 2 each returned 7.9 ± 1.2 % and cloud event 3 returned 3.4 ± 0.3 % of previously absorbed 315	

aerosol-phase methylglyoxal back to the gas phase.  In other words, approximately 20% of the 316	

total aqueous methylglyoxal SOA produced in this experiment was hydrolyzed during cloud 317	

processing back into methylglyoxal gas.  Thus, even if methylglyoxal uptake appeared to be fully 318	

irreversible based on an aerosol experiment, subsequent cloud processing can retroactively 319	

change this conclusion.  320	

Some reversibility in uptake of methylglyoxal to aqueous aerosol is also implied by the slight 321	

curvature beyond the first-order fits that can be seen in Figure 1.  While methylglyoxal uptake 322	

onto glycine aerosol particles at 72 ± 2% RH shows no visible curvature over 40 min, all data 323	

collected with AS or glycine aerosol at RH ≥ 89% show some curvature.  This may indicate that 324	
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methylglyoxal is being released from more diluted aqueous aerosol particles at rates that are 325	

detectably increasing during the 15 – 25 min duration of these measurements.   326	

5.  Conclusion 327	

Uptake coefficients of methylglyoxal onto aqueous glycine and AS aerosol particles were 328	

found to be similar in magnitude, increasing with RH up to (5.7 ± 0.9) ×10-3 at 99 ± 1% RH.  329	

This maximum uptake coefficient is a factor of 2 larger than the one (borrowed from glyoxal 330	

measurements) most commonly used in modeling studies of methylglyoxal uptake to clouds and 331	

aqueous aerosol.  In this work, methylglyoxal uptake during cloud events was rapid and 332	

reversible, reaching equilibrium within the 1 min. mixing time of the chamber, and so precluding 333	

calculation of uptake coefficients onto cloud droplets.  Gas phase methyglyoxal concentrations 334	

after cloud events were higher than predicted based on pre-cloud trends, indicating that each 335	

cloud event caused the volatilization of 3 to 8% of aerosol phase methylglyoxal, likely via 336	

oligomer hydrolysis.  Finally, curvature in 1st-order plots of methylglyoxal losses to aqueous 337	

aerosol particles at RH ≥ 89% suggests that some methylglyoxal is being released from aqueous 338	

aerosol to the gas phase.  While equilibrium is not approached within 20 min., methylglyoxal 339	

uptake to aqueous aerosol is at least partially reversible at RH ≥ 89%. 340	
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Figure S1:  Calibration curve for water-corrected PTR-MS methylglyoxal signals vs 

concentrations in ppb based on FTIR absorbance bands. 
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Figure S2:  First order wall loss rates for methylglyoxal (s-1) measured in dry (RH £ 15%), 

aerosol-free CESAM chamber as a function of methylglyoxal concentrations (ppm).  First order 

wall loss rates varied by a factor of 300 and showed a dependence on [MeGly].  Red triangle 

denotes run where methylglyoxal wall uptake was measured in chamber that had been used for 

ammonium sulfate aerosol experiments for the previous week, such that wall uptake was likely 

enhanced by previously deposited AS aerosol.  Other wall loss measurement runs (blue triangles) 

did not have significant quantities of aerosol particles deposited on the chamber walls. 
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Figure S3:  Zero order wall loss rates for methylglyoxal (in ppm s-1) measured in aerosol-free 

CESAM chamber as a function of relative humidity.  Different symbols denote data measured on 

different days.  No data from experiments with wall-deposited aerosol is included. 
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Figure S4:  Methylglyoxal losses (in ppb) recorded by PTR-MS over 1 minute time step during 

three cloud events, graphed as a function of peak droplet counts recorded by droplet 

spectrometer.  Pre-reacted glycine seed aerosol served as cloud condensation nuclei.   

	

y"="0.1547x"
R²"="0.98568"

0"

100"

200"

300"

400"

500"

600"

700"

800"

900"

0" 1000" 2000" 3000" 4000" 5000" 6000"

M
et
hy
lg
ly
ox
al
+L
os
s+(
pp

b+
in
+1
+m

in
)+

Peak+droplet+counts+(cm<3)+


	University of San Diego
	Digital USD
	5-9-2018

	Methylglyoxal Uptake Coefficients on Aqueous Aerosol Surfaces
	David O. De Haan
	Natalie G. Jimenez
	Alexia de Loera
	Mathieu Cazaunau
	Aline Gratien
	See next page for additional authors
	Digital USD Citation

	Methylglyoxal Uptake Coefficients on Aqueous Aerosol Surfaces
	Abstract
	Disciplines
	Authors


	Microsoft Word - MeGlyUptakeCoefficient180403b.docx

