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ABSTRACT 

DIAMOND TURNING OF CONTACT LENS POLYMERS 

Liman, M.M 

M.Eng., Mechatronics Engineering 

Supervisor: Prof Khaled Abou-El-Hossein 

Faculty of Engineering, the Built Environment and Information Technology 

P.O. Box 77000, Nelson Mandela Metropolitan University, 

Port Elizabeth, South Africa 

April, 2017 

Contact lens production requires high accuracy and good surface integrity. Surface roughness is 

generally used to measure the index quality of a turning process. It has been an important response 

because it has direct influence toward the part performance and the production cost. Hence, 

choosing optimal cutting parameters will not only improve the quality measure but also the 

productivity. In this study, an ONSI-56 (Onsifocon A) contact lens buttons were used to investigate 

the triboelectric phenomena and the effects of turning parameters on surface finish of the lens 

materials. ONSI-56 specimens are machined by Precitech Nanoform Ultra-grind 250 precision 

machine and the roughness values of the diamond turned surfaces are measured by Taylor Hopson 

PGI Profilometer. Electrostatics values were measured using electrostatic voltmeter. 

An artificial neural network (ANN) and response surface (RS) model were developed to predict 

surface roughness and electrostatic discharge (ESD) on the turned ONSI-56. In the development 

of predictive models, turning parameters of cutting speed, feed rate and depth of cut were 

considered as model variables. The required data for predictive models were obtained by 

conducting a series of turning test and measuring the surface roughness and ESD data. Good 

agreement is observed between the predictive models results and the experimental measurements. 

The ANN and RSM models for ONSI-56 are compared with each other using mean absolute 

percentage error (MAPE) for accuracy and computational cost. 

Keywords: Artificial Neural Network, Electrostatic discharge, Monocrystalline Diamond Tool, 

ONSI-56, Response surface methodology, Single Point Diamond Turning, Surface Roughness.  
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F           feed rate 

S           cutting speed 

D                   depth of cut 
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n                    the total number of measurements 

i                     the estimated measurement for a specific run 
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GLOSSARY OF TERMS 

A 

Aspheric - property of a surface or lens deviating slightly from a specific spherical shape and 

relatively free from aberrations. 

Astigmatism - A defect in the eye or in a lens caused by a deviation from spherical curvature, 

which results in distorted images, as light rays are prevented from meeting at a common focus. 

B 

Biocompatible – the capability of coexistence with living tissues or organisms without causing 

harm. 

Brittle - the tendency of a material to fracture without first undergoing significant plastic 

deformation. 

C 

Cornea – the transparent anterior part of the external coat of the eye covering the iris and the pupil 

and continuous with the sclera 

Crystalline - of or like a crystal, clear, transparent. 

D 

Ductile - ability of a material to be able to undergo change without breaking. 

F 

Freeform – a form of lens surface not organized in a planned conventional way; without 

restrictions or preconceptions. 
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H 

Hydrogel – a form of lens type which liquid constituent composition is water 

Hydrophilic – a form of lens which holds high affinity for water. 

Hydrophobic – a form of lens or substance having little affinity for water or tending not to dissolve 

in, mix or be wetted by water. 

M 

Monomers – a molecule of low molecular weight capable or reacting with identical or different 

molecules of low molecular weight to form a polymer. 

Moulding – the act of creating a particular shape or form from a material. 

Myopia – a condition in the eye in which parallel rays are focused in front of the retina objects 

being seen distinctly only when near to the eye. 

N 

Nanometric – a term to describe measurements in the scale of study equal to one billionth of a 

meter and also equal to 10 Angstroms. 

O 

Optics – lenses or instruments pertaining to the eye or sight. 

P 

Polymers – a substance of high molecular weight derived by either the addition of many smaller 

molecules, or by the condensation of smaller molecules with the elimination of water. 

Precision – In mechanical study, it is the state of scientific exactness ir accuracy. 
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R 

Roughness – the property of a lens having a coarse or uneven surface, as from projection, 

irregularities or breaks. A state of been not smooth. 

T 

Topography – the detailed mapping or charting of the features of a relatively small are, district, 

or locality. 

Tribo-chemical – a form of wear mechanism affecting the properties of the surface of a material 

by the chemical action from other elements. 

Tribo-electric – a form of wear linked with negative surface effects on a material caused by static 

build-up. 

Tribo-thermal – A condition on the surface of a material influence its makeup by the action of an 

external heating source on its surface. 

W 

Wear – a condition of a surface which infers causing deterioration or degradation of that surface. 

(Adapted from [1]) 
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CHAPTER ONE 

1 INTRODUCTION 

1.1 Background and Significance 

In the years since polymers introduction, contact lens technology has been expanding at a rapid 

rate. There have been improvements in the manufacturing techniques, as well as an increase in the 

type of polymer used in lens manufacturing industries. Today, contact lenses can be manufactured 

through spin casting, cast moulding or lathe techniques. A commonly used ultra-high precision 

machining (UHPM) process in contact lens manufacture is single-point diamond turning (SPDT) 

[2]. 

Single-point diamond turning is an ultra-precision machining (UPM) process for producing high 

quality optical surfaces on metals, polymers, and crystals. At the present-day, the UPM process of 

single-point diamond cutting is regarded as an effective process for the generation of high-quality 

functional surfaces. It produces surfaces with minimal defects in the superficial surface layer from 

various materials, especially thermoplastic amorphous polymers and their composition for optical, 

photonic and bioengineering applications [3]. 

SPDT has always been an important machining process throughout the history. In 1901, Carl Zeiss 

Company used SPDT to produce aspheric surfaces but the quality was not good enough to be used 

in camera lenses [4, 5]. However, in 1929, lenses having high accuracy level surface finish could 

be manufactured by Bausch [6]. Later, Taylor and Robson [7] developed a polar coordinate 

aspheric generation machine to produce high-quality camera lenses. 

In spite of advances in ultra-precision turning, it is not always easy to achieve a high-quality 

surface finish. Lots of parameters such as machine tools, cutting tools, workpiece material and 

machining process affect surface quality during turning. Too many investigations have been made 

to optimize parameters to have a better surface finish [8]. 

Since polymeric materials were introduced for optical applications, diamond turning of plastics 

have been studied intensely. The use of contact lenses for vision correction stresses high precision 

and surface integrity in the nanometric ranges for functionality. Moreover, optical aberrations on 

these lenses caused by geometrical deviations, surface roughness and sub-surface defects resulting 
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from the fabrication process could greatly influence their functionality. Consequently, Heinrich in 

his study stressed that the design, manufacture and metrology of contact lenses is a field severely 

dependent on the existence and advancement of precision engineering [9]. 

Several researches have been made about cutting behavior of polymeric materials. Notably, Smith 

[10] investigated the relationship between the glass transition temperature of the polymer and the 

surface roughness and claimed that ductile chip is formed due to adiabatic heating with the 

increasing cutting speed. Then, Gubbels [11], investigated the hypothesis after turning polymers 

(PS, PMMA and PC) with different cutting conditions. He found that glass transition temperature 

is not reached in diamond turning of polymers investigated. He showed that there can be little 

temperature increase in primary shear zone when cutting speed increases but it is not enough to 

reach glass transition temperature in PC. This research contradicts the study of Smith. Gubbels 

also studied about the wear mechanisms during turning plastics and he found that both tribo-

electric and tribo-chemical wear significantly affect tool wear during turning polymers. 

Saini et al. [12] made a research about determining optimum parameters for a better surface finish 

during turning PC. They changed several parameters to achieve high surface quality. They 

suggested that 0.5 μm/rev feed rate, 2 μm depth of cut and 3000 rpm gives best results during 

turning and 25.4 nm average surface roughness is achieved with an old diamond tool. Furthermore, 

Carr and Feger [13] made a study about the material removal mechanisms during diamond turning 

of polymers and revealed that material and visco-elastic properties play an important role to 

achieve a better surface quality. They also stated that every specific material need to be analysed 

to have a better understanding about diamond turning of polymers. 

1.2 Research Motivation 

In the global optical industries, the segment of contact lenses has witnessed a sweeping 

transformation from being once considered lifestyle products to common eye accessories sought 

as a convenient and fashionable replacement to glasses. 

“Transparency Market Research estimates that the global contact lens market will expand at a 

7.6% compound annual growth rate (CAGR) over the period between 2016 and 2024. Expanding 

at this pace, the market, which had a valuation of US$9.74 billion in 2015 in terms of revenue, is 
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projected to rise to US$18.70 billion by 2024. In terms of volume, the market is expected to rise 

to 2,135.0 mn units by 2024” [14]. 

Due to huge global contact lens market revenue and the growing need for high quality optical lens, 

an increase in the performance of the ultra-high precision of polymeric contact lens material would 

pioneer South Africa to lead to most promising growth opportunities. 

1.3 Problem Statement 

In spite of advances in UHPM of polymers, it is not always easy to achieve a high-quality surface 

finish. Contact lens manufacture requires high accuracy and surface integrity. Surface roughness 

is generally used to measure the index quality of a turning process. It has been an important 

response due to its direct influence toward the part performance and the production cost. Therefore, 

developing a predictive model based on ANN and RSM to evaluating the effects of cutting 

parameters on surface roughness and choosing optimal cutting parameters will not only improve 

the quality measure but also the productivity. 

In contempt of high accuracy produced in UHPM of polymers, tool wear by electrostatic discharge 

is another phenomenon during polymer machining. Contrary to common belief, diamond tool wear 

during polymer machining can have hazardous effect on final quality of polymer parts. 

Electrostatic charging between diamond tool and polymer causes luminescence effect on the tool 

surface and the cutting tool edge gets damaged. For this reason, Olufayo and Abou-El-Hossein 

[15] made a study about the tribological wear in SPDT of contact lens polymers. They identified 

that the adhesion of the tool chip around the tool dictates the presence of an electrostatic force field 

known as tribo-electric charging, which is responsible for tool wear and poor surface finish. 

To the best knowledge of the researcher, there is limited amount of research work in polymer 

machining, thus, the need to examine the commercially available contact lens materials for their 

electrostatic charging and discharging behaviors and if these have any effect on surface roughness. 

Furthermore, developing a predictive model based on ANN and RSM to find the optimum 

relationship between cutting parameters and electrostatic discharge will reduce manufacturing cost 

and increase production rates in the machining of contact lens polymers. 
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1.4  Aim and Objectives of the Research 

In this research study, the overall aim is to machine ONSI-56 contact lens polymers to optical 

quality and analyze the surface roughness and electrostatic discharge for saving cost and time for 

high production rates. 

In order to achieve the above aim, five main research objectives are set as follows: 

 To review the existing literature to gain an understanding of the Ultra-precision diamond 

turning of contact lens polymers and identify any advantages and shortcomings of the 

technique. 

 To measure electrostatic discharge (ESD) and surface roughness for varying cutting 

parameters (cutting speed, feed rate and depth of cut). 

 To investigate the effects of cutting parameters on the ESD and surface roughness. 

 To Develop an independent predictive model for ESD and surface roughness using 

Response surface methodology (RSM) and Artificial neural network (ANN). 

 To compare the performance of RSM and ANN Models using mean absolute percentage 

error (MAPE). 

1.5 Hypothesis 

Null hypothesis:  

 An artificial neural network (ANN) and response surface (RS) model cannot be developed 

to predict surface roughness and electrostatic discharge (ESD) on the turned ONSI-56.  

Alternative hypothesis: 

 An artificial neural network (ANN) and response surface (RS) model can be developed to 

predict surface roughness and electrostatic discharge (ESD) on the turned ONSI-56.  
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1.6 Structure of The Thesis 

The thesis consists of five chapters. The comprehensive details of the thesis are illustrated as in 

figure 1.1, which also illustrate the underlying philosophy of the chapters and their logical flow. 

Chapter 1.  Presents the background and the significances of the research project, SPDT of contact 

lens polymers, explains the motivation, Problem Statement, Aim and objectives of the research 

work and structure of the thesis. 

Chapter 2. Review polymeric materials, contact lens manufacturing methods, critically reviews 

the Ultra-precision diamond turning, Surface roughness and diamond tool wear of polymeric 

materials. 

Chapter 3. Experimental Design and Procedure. Chapter 3 provides a detailed description of the 

experimental setup and system process flow. It exposes the implementation methodology and 

equipment used during the experiments. 

Chapter 4. Result and Discussion, Chapter 4 presents the various results observed and discusses 

the observations. This chapter also includes the development of a response surface model, and 

neural network scheme for predicting the surface roughness values and electrostatic discharge. 

Chapter 5. Conclusion and Recommendation, Chapter 5 concludes the findings in the research and 

highlights suggested recommendations for future improvement on the research. 
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Figure 1.1:The Logical flow structure of the thesis 
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.1  Introduction 

In this chapter, a detailed review of polymeric contact lens materials, contact lens manufacturing 

techniques and ultra-high precision diamond turning using monocrystalline diamond tools are 

given together with the factors affecting surface roughness in diamond turning. In the following 

sections, the current research progress and the technical challenges regarding the study of diamond 

tool wear in polymer machining are introduced. 

2.2 Polymeric materials 

2.2.1 Polymer Fundamentals 

All modern contact lens materials, since the introduction of polymethylmethacrylate (PMMA) 

have been based on polymer technology. In attempting to understand the optical performance of 

contact lenses, it is important to understand the properties these materials possess and how this is 

influenced by manufacturing conditions. A basic knowledge of polymer science is therefore 

necessary in order to allow an understanding of the bulk and surface characteristics of these 

materials. 

Polymer is a word originated from the traditional Greek language poly which connotes “many” 

and meres meaning “parts.”. Therefore, a polymer can be defined as a long-chain molecule that 

consist of a large number of repeating units of undistinguishable structure. Polymers can be found 

in nature such as proteins, cellulose, and silk, while many other polymers can be synthetically 

formed, examples of such are: polystyrene, polyethylene, and nylon. In some cases, naturally 

occurring polymers can also be produced synthetically. An important example is natural (Hevea) 

rubber, known as polyisoprene in its synthetic form [16]. 

Polymers can also be grouped as plastics (thermos & thermosetting), elastomers (rubber), fibre 

and hydrogels. This material has a unique property that emerged from the ability of certain atoms 

to link together to form stable bonds. Carbon has the ability to link together with four other atoms, 

such as hydrogen, oxygen, nitrogen, Sulphur, chlorine or itself. The origin of organic chemistry 

came as a result of the ability of carbon to act along this process. 
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A polymer is formed when many smaller units, called monomers, link together to form a long 

chain [17]. In Figure 2.1, the chemical reaction shown represents the conversion of monomer units 

to form a polymer chains. The fundamental requirement of a small molecule to be suitable as a 

monomer is the possession of two or more bonding sites, through which they can be linked together 

to form a polymer chain. Hence, functionality can be regarded as the number of bonding sites. 

Structural and functional groups (X and Y in Figure 2.1) are present along the polymer chain. This 

represent the way these functional groups connect with each other and their surrounding 

environment that influences the interaction of polymer chains and the resultant polymer properties. 

Polymers are regularly very long when compare with their cross sectional diameter. This gives this 

material another exceptional features, such as toughness or elasticity. Furthermore, these polymer 

chains are frequently arranged arbitrarily and are intertwined with other polymer chains. The level 

of interaction and entanglement gives stand out properties on the polymer, which can bring about 

a material transformation from that of a hard glassy material to that of an elastomeric material. A 

polymer can be given more elastomeric behavior with the incorporation of plasticizer. A plasticizer 

is a liquid (usually organic) with a high boiling point, which acts as an internal lubricant allowing 

polymer chains to move more freely. 

 

Figure 2.1 Schematic representation of monomer conversion to polymer (X and Y represent 

structural and functional groups) 

2.2.2 Types of polymers 

There are different types of polymers that are possible with a few examples shown in Figure 2.2. 

The simplest and most common type of polymer is one where all monomers are connected to form 

a long linear chain of n-monomers. For example, at certain points along the main chain, shorter 

chains can branch off. Or long chains could all be attached to a central monomer, forming a star 

pattern [18]. Meanwhile, the possible permutations do not stop here. Branches can be connected 

to other branches, which are linked to other branches all the way up in a very complex 

configuration. While it may seem like a simple thought experiment, all these possible 
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Figure 2.2:  Examples of different types of polymers 

branching shapes are not just the issue of theoretical interest. For a long time, Chemists have been 

synthesizing polymers with manageable designs, and some applications rest on the exclusive 

properties provided by the branching [18, 19]. 

2.2.3 Classification of polymers 

There are two main classifications of polymers used for biomedical applications. They are, 

Homopolymers and copolymers. A homopolymer is a type of polymer in which all the monomer 

units are chemically and stereochemically identical, with the exception of the terminal units. 

Homopolymers can be linear (all monomers arranged in a linear sequence) or branched (non-

linear) (Figure 2.3). Although chemically similar, linear and branched Homopolymers often have 

very different properties (e.g. high and low-density polyethylene). A copolymer is a type of 

polymer in which more than one type of monomer is present. For linear copolymers the monomers 

can be arranged in an alternating, block or random patterns, and can also form branched and graft 

structures (Figure 2.4). Complex three-dimensional structures can develop with a more extensive 

distribution of branched points, leading to highly ramified structures. 
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2.2.4 Principles of polymerization 

There are two main types of polymerization reactions; step-growth (or condensation) and chain-

growth (or addition) processes. In step-growth reaction, polymers are produced by the reaction of 

monomer units with each other, with the elimination of a small molecule such as water (Figure 

2.5). Hydrogels are not typically formed through this method of polymerization but through chain-

growth polymerization [17]. Chain-growth polymers are formed by the reaction of monomer units 

with each other, without the elimination of by-product molecules. Each monomer typically has at 

least one double bond and is described as unsaturated. The polymerization process is triggered 

with the production of free radicals (Figure 2.6(a)). These free radicals combine with the monomer, 

resulting in a free radical of the monomer (Figure 2.6(b)). The radical monomers combine with 

other monomers to form a radical compound (Figure 2.6(c)). Radical compounds can continue to 

propagate, resulting in a polymer chain thousands of monomers long. Polymerization does not 

 

:  

 

Figure 2.3: Schematic representation of linear and branched homopolymer 

Figure 2.4: Schematic representation of alternating, block, random and graft copolymers 
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usually continue until all the monomers have been polymerized, as the highly reactive free radicals 

inevitably lose their reactivity. Termination usually occurs either by recombination (where two 

propagating polymer chains, each containing free radicals, meet and share the unpaired electron 

(Figure 2.6(d))) or disproportionation (when two radicals interact via hydrogen abstraction, leading 

to the formation of two reaction products, one of which is saturated and the other unsaturated 

(Figure 2.6(e))). Due to the reactivity of the free radicals other reactions can occur, including chain 

transfer and free radical combination with retarders or inhibitors [20]. 

 

 

 

 

Figure 2.5: Schematic representation of a condensation reaction 
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Figure 2.6 :Schematic diagram of the initiation, propagation and termination stages of 

polymerization (adopted from [17]) 

2.2.5 Polymers in medicine 

To understand why current polymeric materials are used in medicine and to appreciate the 

advantageous properties they possess, it is logical to follow the evolution of polymer-based contact 

lens materials. Among other fields, polymers have a great influence in the medical field for 

purposes such as heart pacemakers, artificial valves, biodegradable sutures and biomedical contact 
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lenses. There are many types of polymers used for biomedical purposes. They are: Polymethyl 

methacrylate (PMMA), Poly (2-hydroxyethyl methacrylate) poly (HEMA), Polypropylene (PP) 

Poly (dimethyl siloxane) (PDMS), and Polyethylene (PE). 

2.2.5.1 POLY (METHYL METHACRYLATE) (PMMA)  

PMMA was the first polymer used in the manufacture of contact lenses, when it began replacing 

glass as the material of choice during the 1940s. PMMA is a hydrophobic, linear chain molecule 

that is glassy at room temperature. PMMA lenses are hard, rigid and is in many ways an excellent 

material for contact lens manufacture due to its toughness, dimensional stability, optical properties, 

ease of manufacture and physiological inactivity [17]. However, a known disadvantage of early 

PMMA lenses is that they did not allow oxygen to pass through to the cornea, which caused a 

damaging to the eye. Furthermore, the PMMA surface has relatively poor wetting properties and 

almost negligible permeability to oxygen, resulting in corneal hypoxia. Based on the need for 

biocompatible polymers, 2-hydroxyethyl-metacrylate (HEMA) soft lens hydrogel contact lens was 

then introduced leading to the evolution the more versatile contact lens industry with new 

biocompatible polymers. Soft lens hydrogels, known as water-loving polymers are hydrophilic in 

nature and possessed gas permeability. 

2.2.5.2 POLY (2-HYDROXYETHYL METHACRYLATE) (HEMA) 

A key development came in 1960 when Otto Wichterle and Drahoslav Lim based at Institute of 

Macromolecular Research in Czechoslovakia engineered a monomer similar to PMMA but with 

the addition of a hydroxyl group [21]. Due to initial problems with the cast moulding method of 

manufacture, a spin-casting method of production was developed, with the first soft contact lens 

manufactured in 1961. This new material was 2-hydroxyethyl methacrylate (HEMA). HEMA can 

be polymerized to make pHEMA due to its two double carbon bonds in much the same way as 

MMA is polymerized to make PMMA (Figure 2.7). As HEMA has this addition hydroxyl group, 

in the presence of water, hydrogen bonding occurs between the hydroxyl group and water 

molecules. The material is therefore much more hydrophilic and causes water to be drawn into the 

polymer matrix. 
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Figure 2.7: A Schematic diagram of MMA and HEMA Monomer [17] 

2.3 Contact lenses 

A contact lens (CL) is a prescription medical device manufactured from high-grade plastic 

polymers [22]. CL can be worn by people with eye disorders as an alternative to glasses. Contact 

lenses are considered medical device and can be worn for ocular rectification, aesthetic or 

therapeutic reasons. They provide a safe and effective way to visual conditions such as myopia, 

hyper myopia, presbyopia, and astigmatism. Contact lenses could be classified by their primary 

functions or material composition (Figure 2.8) [23]. Research into new types of polymers has now 

provided three types of material that can be used to make different kinds of contact lenses. These 

are called hard (created in the early 1960s), soft (created in the early 1970s) and gas-permeable 

(created in the late 1970s) lenses [22]. 
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A brief view of historical facts of the contact lens over the years is shown below [24]: 

 1508 Leonardo da Vinci illustrates the concept of contact lenses 

 1888 First contact lens manufactured from glass, by Adolph Eugene Fick 

 1936 Rohm and Haas create first contact lenses made from plastic 

 1948 Plastic contact lenses designed to cover only the eye's cornea 

 1965 Silicon elastomer lenses 

 1972 Introduction of soft contact lenses 

 1974 Introduction of RGP contact lenses 

 1988 Introduction of disposable soft contact lenses 

 1994 Introduction of one-day disposable soft lenses 

 1998 Silicone-hydrogel contact lenses first marketed 

 2010 Custom-manufactured silicone-hydrogel lenses become available 
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2.3.1 Contact lens classification 

There are two general classification systems for contact lens materials which are the US Food and 

Drug Administration (FDA) classification system and the International organization for 

standardization (ISO) system for contact lens material classification. 

2.3.1.1 FDA CLASSIFICATION SYSTEM 

According to Leonard  [17], In the United States all contact lens materials are issued with a USAN 

(United States Adopted Name) identity by the FDA (e.g. Onsifocon A) which is specific to the 

composition of the material. The material will also fall into one of the four groups for the USA 

Food and Drug Administration (FDA) classification scheme (Table 2.1), which offers a simple but 

effective subdivision of lens materials on the basis of water content and ionic character [25]. The 

main drawback of the FDA system is that materials composed of very different chemistry can be 

classified within the same material group. 

Table 2.1: FDA Categorization of hydrogels contact lens materials. 

FDA 

Categorisation 

Group I Group II Group III Group IV 

Water content 

Charge 

Low 

Non-ionic 

High 

Non-ionic 

Low 

Ionic 

High 

Ionic 

 Low = ≤ 

50% water 

High ≥ 50% 

water 

Ionic = charge Non-ionic = No 

charge 

 

2.3.1.2 ISO SYSTEM OF CONTACT LENS CLASSIFICATION 

European standards have set out the ISO system for contact lens material classification (Table 2.2). 

Each contact lens material is classified by a six-part code: Prefix, stem, series suffix, group suffix, 

Dk range and surface modification code. 
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Table 2.2: The ISO system of contact lens material classification. 

Prefix This is one of two parts of the code administered by USAN. Use of the 

prefix is optional outside of the USA. For example, Etafilcon A has the 

USAN code 'Eta'. 

Stem Filcon for soft lenses (hydrogel-containing lenses having at least 10% water 

content by mass) 

Series suffix Also administered by USAN, a capital letter added to the stem to indicate the 

revision level of the chemical formula: A is the original (first) 

formulation, B the second and so on. Can be omitted if there is only one 

formulation. 

Group suffix 

I 

 

II 

 

 

III 

IV 

 

 

< 50% water content, non-ionic 

 

≥ 50% water content, non-ionic 

 

 

˂ 50% water content, ionic 

≥ 50% water content, ionic 

Dk range A numeric code which identifies the permeability in ranges which are 

considered significant in contact lens wear. 0:<1Dk, 1:1-15 Dk, 2:16-30 Dk, 

3:31-60 Dk, 4:61-100 Dk, 5:101-150 Dk, 6:151-200 Dk. 

Modification 

code 

A lower case m, which denotes that the surface of the lens is modified, 

having different chemical characteristics from the bulk material. 

 

2.3.2 Manufacturing of contact lenses 

Contact lens manufacturing requires high accuracy and surface integrity. The manufacture of a 

conventional lens begins with a glass blank manufacturing and proceeds to the generation of the 

optical surface by various diamond shaping techniques such as polishing and grinding. Contact 
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lens manufacturing techniques moved from the lenses being handmade, grinding and polished, to 

modern day lathes where the lenses are cut with lasers to computer precision.  There have been 

improvements in the contact lens manufacturing techniques, as well as an increase in the type of 

polymer used in the lens industries. There are three main methods of contact lens manufacture. 

They are: 

 cast moulding, 

 spin casting and 

 lathe lens manufacture. 

2.3.2.1 CAST-MOULDED LENS MANUFACTURE 

Lens manufacture by Cast-moulding involves the formation of a lens from the monomer mixture 

placed between two casts (Figure 2.9). The monomer is in liquid form and is introduced into a 

concave (female) mould, which defines the front shape of the lens. A male mould is then mated to 

the female mould which define the back surface of the lens. The mould is then either irradiated 

with ultraviolet (UV) light or placed in an oven, which initiates polymerization, resulting in the 

formation of a contact lens. The moulds are then disassembled and discarded and the lens is 

hydrated in saline, inspected, packaged and sterilized. Cast moulding method produces high 

quality lenses as it is the most economically viable for mass manufacture. 
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Figure 2.9:  A schematic diagram of manufacture of contact lenses by a cast moulding process 

[17] 

2.3.2.2 SPIN-CAST LENS MANUFACTURE 

The spin-cast lens manufacturing method involves placing a liquid monomer in to a mold, the 

mold is then rotated at a computer-controlled speed, into which the mixture of monomers is 

injected. The monomer is then polymerized inside the rotating mold. The shape of the mould 

controls the front surface of the lens and the back surface is dependent on gravity, and the amount 

of liquid monomer in the cast. Spin-cast manufacturing is good because the lens optics can be 

varied by simply varying the speed of rotation or the shape of the mold. 

2.3.2.3 LATHED LENS MANUFACTURE 

In lens manufacture, lenses are formed from solid buttons of dehydrated polymeric material. The 

buttons are mounted in a lathe where the back surface is cut using a diamond tool. This newly 
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formed back surface is subsequently polished and a solvent then used to remove the polish. The 

back surface is attached to a chuck by means of melted wax and the front surface is then lathe cut 

and polished. Following lathing the lenses are hydrated and packaged in individual glass vials or 

blisters (disposable packaging). The lathing process is not well suited to mass production and is 

favoured for low-volume custom lenses. 

At the present time, the ultra-precision machining process of single point diamond turning is 

regarded as an effective process for the generation of high quality functional surfaces [23]. It 

produces surface with minimal defects in the superficial surface layer from various materials such 

as thermoplastics amorphous polymers and their composition for optical, photonic and 

bioengineering applications [3]. 

2.4 Ultra-precision Single Point Diamond Machining 

According to Li, in the field of precision engineering for the past several decades Ultra-precision 

single point diamond turning (SPDT) is one of the most important and effective technologies [26]. 

This is not only because the SPDT integrates many state-of-the art technologies of precision 

engineering, such as ultraprecision machine tool design, high speed and ultraprecision air spindle, 

high stiffness and ultraprecision hydrostatic slide ways, multi axis servo computer numerical 

control (CNC), fine polished monocrystalline diamond cutting tool, precision metrology, just to 

name a few, it was discovered that the SPDT technology has already been useful in a wide range 

of fields ranging from advanced science and technology for defense, energy, electronics 

applications to commercial and consumer products [26]. Ultraprecision SPDT is a skill that uses 

monocrystalline diamond tools and ultraprecision machine tools to manufacture mechanisms with 

sub micrometer form accuracy and less than a few tens of nanometers surface roughness [27]. 

In Davies et al work [28], they have recited Fortune’s [29] statement that “Ultra precision 

manufacturing is doing for light what integrated circuits did for electronics” stress the importance 

of the precision of material removal possible using lasers. Hitherto, quite a lot of researchers have 

sought to define ultra-precision machining [30], a selection of which follows: 

Taniguchi (1983) [31] : “Ultra-precision machining is the process by which the highest possible 

dimensional accuracy is achieved at a given point of time” 
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McKeown (1987) [32], “The role of ultra-precision machining in the manufacturing sector is to 

research, design, develop and commercialize processes, sensors, instruments, machines, control 

systems and materials in order to achieve further advances in technology, science and wealth 

creation”. 

Corbett et al. (2000) [30] : Nano-machining is “the study, development and processing of 

materials, devices and systems in which structure of a dimension of less than 100 nm is essential 

to obtain the required functional performance”. In the 1980s, Taniguchi [31, 33] established a 

predictive map of development in precision machining, figure 2.10, which is still being practiced 

as we move towards 2020. 

 

Figure 2.10 :Evolution of machining accuracy - Taniguchi’s prediction’s [31] updated beyond 

2000 to include state-of-the-art manufacturing processes (shown in red box) 

The initial work of diamond turning can be traced back to as early as the beginning of 20th century 

and later in World War II by Frank Cooke of Cooke Optical and several others companies [28, 
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34]. The development of diamond turning 1960s’was very crucial because of an increasing demand 

for high accuracy parts used for energy, computer, electronics and defense application [27, 34, 35]. 

The work was mainly completed by Y-12 (Union Carbide Nuclear Division, Oak Ridge, 

Tennessee) and Lawrence Livermore National Laboratory (L.L.N.L.) and these studies have 

become the foundation of the ultraprecision single point diamond turning technology of today. 

From 1960's to 1970's, the ultraprecision SPDT was mostly technologically advanced in national 

laboratories and a few companies and the products were used for advanced science and technology 

such as the optical components for NASA grazing-incidence x-ray space telescopes [26]. During 

this time, the main technology had been used in the diamond turning machine tool included air 

spindle, laser interferometer position feedback, capacitance gage, numerical control, three-axis or 

two-axis machining, brushless DC motor, pneumatic vibration isolators, and temperature control 

[36]. 

In the 1980's, diamond turning machine tool became commercialized and available because more 

and more sophisticated technology had been inculcated in diamond turning, the SPDT technology 

began to be widely used in industrial and commercial products. The new technologies used 

included hydrostatic slide ways and second rotary axis [26]. With additional demand for non-

rotationally symmetric parts, such as toric lenses, a special device, which was later called fast tool 

servo (FTS), that was capable of small and high frequency synchronized movement with the main 

spindle was developed. Though the theoretical design of this device first appeared in 1976 [37], 

the first report of the realization of this device was in 1983 by Douglass [38] and later the device 

was also built by Patterson that was used on a diamond turning machine [39]. In this age the well-

known products fabricated by SPDT included computer memory disk, scanner parts in photo 

copying machines, as well as many other early complex components. 

In the last two decades ago, the SPDT technology has been rapidly advanced. The associated 

technologies have experienced momentous face-lifts with features such as high resolution glass 

scales, high speed CNC controls, high speed spindle, DC linear motor, and high precision on-

machine measurement technique. The SPDT technology was quickly adopted in both industry and 

academia. The SPDT was an expensive process at the beginning of its appearance and was suitable 

for single piece or small volume production. When combining with mass production process such 

as injection molding and compression molding, the SPDT became appropriate for high quality low 
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cost consumer products and quickly popularized among related industries. To extend the ability of 

SPDT, many different technologies have also been added to the diamond turning machine, i.e. 

ultrasonic vibration turning [40], micro milling, raster fly cutting and grinding. 

Presently, the complex multi-axis control system provides SPDT the ability to machining freeform 

device rather than just spherical and aspherical surfaces, both of which are axisymmetric. SPDT 

process has been expanded to single point diamond machining (SPDM) process, which includes 

several related processes as well as the more conventional single point diamond turning. The other 

related processes are fly cutting, fast tool servo, slow tool servo (STS)/ slow slide servo, and 

broaching. 

2.5 Surface Roughness in Diamond Turning 

Surface quality is one of the most identified customer requirements of machined parts, which is 

expressed as surface roughness. Surface roughness is one of the most important factors used in 

evaluating the quality of a lens. Thus, continuous perfection in precision machining has enabled 

the application of ultra-precision cutting [41], achieving high accuracy and good surface 

roughness. In other words, surface quality of machined components is one of the most important 

criteria for the assessment of turning processes. 

Ultra-precision diamond turning technique is widely used in manufacturing high-precision optical 

lenses with a surface roughness within few nanometers range [27, 35]. The surface roughness 

obtained by diamond turning is determined by the type of cutting tool, the cutting conditions, the 

machine characteristics, machining environment and the work piece material [42]. 

SPDT, as an UPM process for producing high quality optical surfaces on metals, polymers and 

crystals [8] allows high precision aspheric optics to be produced rapidly and efficiently. However, 

the process is hindered by some types of errors that may occur on the machined surface – form, 

figure and finish or roughness (Figure 2.11). But it is difficult to say, at what point does finish 

error becomes figure error. Therefore, it is recommended to separate finish, figure and form error 

according to their causes, as this associates to the performance factors. Roughness arise due to the 

abnormalities, which are intrinsic in the production process (e.g. cutting tool, and feed rates). It 

also depends on the material’s configuration and heat treatment. Figure error or waviness may 
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result from vibrations, chatter or workpiece deflections and strains in the material while form error 

is regarded as the general deviation of the surface from the intended shape, disregarding deviations 

due to roughness and figure error. 

 

Figure 2.11: Three types of error arising from turning operation. Form, figure and finish [43] 

Additionally, form error can be categorized into 3 types: eccentricity, higher order synchronous 

motion and asynchronous error motions in diamond turning [44]. Synchronous error motion is 

when a disturbance frequency is harmonic or multiple of the rotating spindle frequency. But when 

the disturbance frequency is independent, it is termed as asynchronous error motion. Reducing 

eccentricity can be addressed by proper bearing alignment and spindle balancing. Reducing 

synchronous and asynchronous errors requires attention to the airflow and geometry of the 

aerostatic bearing. Whereas, one way of reducing asynchronous error is to guarantee that the 

incoming air supply is free from pressure pulses and contaminants [8]. 

2.5.1 Effect of Material Characteristics on Surface Roughness 

Previous researches indicate that the quality of a diamond turned surface is determined by both the 

process factors, which include feed rate, spindle speed, depth of cut in addition to relative tool-

workpiece vibration due to machine vibration and material factors such as material anisotropy, 

swelling and crystallographic orientation of work materials [45]. Diverse features of materials may 

significantly affect the cutting process also. Tensile strength, degree of crystallization and 

molecular weight are also effective properties, which may govern the accuracy level of machining 

process [46]. 
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Lee et al. [47] noted that the variation of the crystallographic orientation of the workpiece material 

can influence such a vibration that can lead to change in the surface modulation frequency formed 

in machined surface. Then, Carr and Feger [13] studied the effect of molecular weight on surface 

roughness. They showed that increasing molecular weight causes greater surface roughness for 

different PMMA grades and based on that, they inferred that cutting of polymers occurs in the 

thermal flow regime. 

Gubbels [11], indicated that crosslink density is not a unique parameter for the determination of 

surface roughness, contrary to what Carr and Feger [13] mentioned that crosslinked materials 

cannot be turned to a high optical quality because of their brittle behaviour. Gubbels experimented 

different PMMA grades with changing crosslink densities and reported that PMMA grades with 

higher cross linked density still have optical quality and low Ra value [11]. Similarly, Zhang and 

Xiao [48] mentioned that viscous deformation of a polymer plays a vital role in obtaining superior 

surface quality. They also revealed that glass transition temperature, fracture toughness and 

molecular mobility are the most essential polymer properties for an optimal machining condition. 

2.5.2 Effect of Temperature on Surface Roughness 

Although, based on the knowledge of the researcher, there have been few studies about the 

relationship between cutting temperature and surface roughness, temperature rise during diamond 

turning may play an essential role in determining the final surface quality of a machined 

component. This is because temperature rise in the cutting zone may result in considerable tool 

wear and the change in deformation characteristics of materials, which will be diamond turned 

[48]. 

Smith [10] stated that more thermal softening arise as a result of an increase in cutting speed and 

better surface quality is probable when the polymer attained a thermal softening point. However, 

with regards to Gubbels’ [11] thermal model, argued that increase in cutting speed is not that 

effective for a significant temperature rise in the primary shear zone. Besides, in his study revealed 

that with increased cutting speed, most of the heat generated during the cutting action is conveyed 

to the chips through heat conduction and material transport. 
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Lubricants also determine the efficiency of machining operations due to their lubrication and 

cooling properties. Kamruzzaman et al. [49] declared that the use of high-pressure coolant caused 

substantial decrease in tool wear, surface roughness and cutting forces as well as significant 

increase in tool life by means of temperature reduction and the change in tool-work and tool-chip 

interactions. Wang et al. [8] also stated that oil-air lubrication is more effective in reducing cutting 

temperature than wet and dry cutting and also helps eluding environmental pollution and reducing 

running and maintenance costs. 

Herbert [50] experimented chip-tool interface temperature change under different cutting 

conditions by using a tool-work thermocouple system. He analyzed the temperature increase with 

the varying cutting speeds and diverse cutting fluids and revealed that temperatures increase with 

the increasing speed from 0.1 m/s to 1 m/s. When the results of dry cutting, cutting with oil 

lubricant and cutting using just water as the cutting fluid are compared, cutting with water yield 

the best result because water is the best heat conductor among the others. Nonetheless, water 

causes some severe problems such as corrosion on the machine tool and workpiece and insufficient 

lubrication. 

2.5.3 Effect of Vibration on Surface Roughness 

Vibration is a crucial phenomenon that significantly affect surface roughness generation in UPM 

[51, 52] as relative tool-workpiece vibration accounts for the form error in the resulting part [44]. 

Researches are available in offline and in-process metrology to develop new technologies in order 

to compensate for these errors. Tool-workpiece vibration in SPDT is usually apparent even in 

special machines incorporated with vibration isolation systems. Vibration in ultra-precision 

machine centers can lead to various form and surface errors thereby influencing the form of the 

resulting part. The reason of machine vibration can be attributed to a combination of the machine 

spindle and linear drives as well as other external impacts such as disturbances in the compressed 

air supply or disturbances transmitted through the ground. In a typical production environment, it 

is seldom not technically or economically feasible to completely isolate the machine tool from 

outside disturbances. 

In manufacturing industry, vibration is an important parameter that affects the cutting process. 

Machining vibration is influenced by different sources such as structure of machine, type of tool, 
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work material, etc. Forced and self-excited vibrations are the known main types of the machining 

vibration. Unbalanced machine tool components, misalignment, bad gear drives are the main 

motives for forced vibration. Whereas, self-excited vibration is produced from the interaction of 

the chip removal method and the machine tool structure, which worsens surface quality of the 

machined part [53, 54]. 

Asiltürk [55] examined the effect of depth of cut, feed rate, nose radius, cutting speed and vibration 

on the surface roughness of AISI 1040 steel. He developed an ANFIS predictive model based on 

vibration monitoring using only the general mean vibration amplitude. Then, Sohn et al. [56] 

claimed that vibration is the second most important factor after feed rate, supposing good tool edge 

quality and proper material selection. They specified that gradual reduction of feed rate is not a 

practical means of getting good surface roughness since environmental and material effects control 

the machining operation and lower feed rates than 2 μm using a 0.5 mm radius tool do not enhance 

the surface quality either. On the other hand, Abuthakeer et al. [57] studied the self-excited 

vibration analysis of the spindle bearing. They investigated the natural frequency and vibration 

response of the system with the varying machining parameters – feed rate, depth of cut and cutting 

speed. Accelerometers were used for sensing vibration due to their versatility and ability to 

measure deformations and forced vibrations compared to microphones. 

Similarly, Lee et al. [58] underlined the material induced vibrations because depth of cut is in 

micrometer in diamond turning and that is smaller than the grain size, which makes cutting process 

perform in a single grain. Therefore, the quality of the machined surface is greatly affected by the 

change of material microstructure. Chen and Chiang [53] used the rubber-layered laminates to 

reduce the vibration amplitude in tool-tip in diamond turning of Al6061-T6 aluminum alloy. They 

experimented styrene and butadiene rubber (SBR) and silicone rubber (SI) as rubber materials. 

They found 5.77% and 13.22% better surface roughness values by using SBR and SI respectively. 

The best surface roughness achieved was 0.13μm. 

2.5.4 Optimization of Parameters Affecting Surface Roughness 

Increasing demand for better surface quality and dimensional accuracy has necessitated the need 

for optimal use of cutting parameters, measuring techniques and experimental design methods in 

machining process. Final surface quality of a workpiece in an ultra-precision machining process 
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can change depending on tool parameters (nose radius, rake angle, clearance angle), cutting 

parameters (feed rate, depth of cut, cutting speed) and all other process parameters such as coolant, 

tool-workpiece interaction, machine vibration. However, achieving optimum parameters in 

manufacturing process is not an easy task due to nonlinear structure of the machining process. 

There are so many variables which can significantly affect the process. Nevertheless, the main 

purpose is to obtain a low surface roughness and less tool wear at a maximum production rate, 

minimal operational cost and high product quality [12]. 

To achieve that, experimental design methods, statistical methods and mathematical models have 

been used to analyze the experimental results. Thus, empirical relations have been found to relate 

surface roughness with the cutting variables. In literature, many studies have been conducted to 

optimize surface roughness by varying machining parameters and by implementing different 

experimental methods. For instance, Özel and Karpat [59] investigated the effect of depth of cut, 

feed rate and insert radius on surface roughness in turning of AISI 1030 steel bars by using Taguchi 

method. Çalı [8] studied the effect of cutting parameters and rake angle during single point 

diamond turning of silicon by using 23 factorial design method to optimize parameters achieving 

best average surface roughness of 1 nm. In the study of Aslan et al. [60], an orthogonal array and 

analysis of variance method were used to optimize the cutting parameters such as cutting speed, 

feed rate and depth of cut and final surface roughness of turned AISI4140 steel and flank wear of 

Al2O3 ceramic tool coated with TiCN were examined as quality objectives. Al-Ahmari [61] used 

response surface methodology and neural networks to compare and evaluate the relationship 

between cutting parameters and surface roughness by developing empirical models on turning of 

austenitic AISI 302. 

Moreover, Kopac et al. [62] studied the effect of cutting speed and feed rate variations on  recorded 

noise amplitude and found that cutting speed do not have much effect on sound vibration compared 

to feed rate. Huang and Chen [63] developed a multiple regression model to predict the in-process 

surface roughness of Aluminum 6061T2 in a turning operation by using feed rate, depth of cut and 

spindle speed and vibration as independent variables (input), obtained via an accelerometer on tool 

holder as predictors. Greater prediction accuracy level of 1.55% was obtained by using the 

vibration information than that of the model, which has no vibration information. Equally, Xu et 

al. [64] conducted another experimental study on the diamond turning of silicon, germanium and 
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aluminum alloy (Al 6061). Moore Nanotech 250UPL lathe and New view 7300 interferometers 

were used for that experiment. A tool of 0° rake angle has been chosen for aluminum and -25° for 

germanium and silicon due to different machining characteristics of the materials. The best average 

and rms surface roughness values measured for aluminum were 1.6 nm and 1.2 nm respectively. 

For silicon, the best values were 0.46 nm rms and 0.37 nm average surface roughness. As for 

germanium, 0.58 nm rms and 0.42 nm average surface roughness values were found to be the best. 

Meanwhile, Khatri et al. [65] studied the effect of machining parameters on surface roughness 

during diamond turning of polycarbonates. They also tried to find out the profile error to optimize 

tool path. During experiments, the best achieved average surface roughness value was around 50 

nm. Goel et al. [66] also observed the surface roughness and waviness during machining of 

polycarbonate. They concluded that surface roughness and waviness are increasing with 

machining time. Surface roughness value of 9 nm was the best achieved from the tests. Gubbels 

[11] also investigated different polymeric materials and machined polymers in different cutting 

conditions. However, the optical quality of polycarbonate could not go under the accuracy level of 

10 nm average surface roughness. 

2.6 Diamond tool wear in polymer machining 

Diamond has many outstanding properties, such as high hardness, great toughness, high capability 

up to a nanometric tool cutting edge, high thermal conductivity, low friction, and high wear 

resistance. Accordingly, it is employed as an efficient tool in ultra-precision machining (UPM). 

However, diamond tool wear (DTW) in UPM is an inevitable physical phenomenon and even a 

little DTW will produce a direct impact on nanometric surface roughness [67]. In contempt of high 

accuracy produced in UHPM of polymers, diamond tool wear is an inevitable physical 

phenomenon and even a little diamond tool wear will produce a direct impact on nanometric 

surface roughness. Gubbels [11] in his research on diamond turning of glassy polymers (PC and 

PMMA) identifies two dominant wear mechanisms, namely: Tribo-chemical wear and Tribo-

electric wear. 

2.6.1 Tribo-chemical wear in polymer machining 

Chain scission of monomers which procedures some highly reactive radicals can be used to explain 

the phenomenon of Tribo-chemical wear in diamond turning. This chemical reaction could be 
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observed by a “chipped” effect on the diamond surface. In their research Gubbels et al. accounts 

wear patterns observed on PC and PMMA to chemical causes [68]. 

At room temperature, diamond is inert. It will not react chemically with other elements such as 

oxygen and Fe and not be etched by acids. However, under a high temperature, it is activated. At 

a temperature in the range 800–1100K, molten potassium nitrate is a commonly used as etchant 

for diamond. Over 900 K, diamond will have a reaction with oxygen to form CO or CO2 [67]. 

In 1949, Pauling [69] presented the theory of d-electron band responsible for physical and chemical 

properties. Paul et al. [70] attributed chemical wear of diamond tools to unpaired d-electrons of 

metals. Carbon atoms are drawn from diamond lattices and then diffuse into the workpiece, 

graphitize, or react with workpiece to form carbides or with oxygen to form CO or CO2. In cutting 

steel or iron, diamond graphitizes and diffuses [71, 72] or maybe forms iron carbide (Fe3C) [73] 

Furthermore, Gubbels et al. [68] also stated that the chain scission results in highly reactive 

radicals, additional to form chemical wear in diamond turning of polymers. In the monomer shown 

below in Figure 2.12, the ester bond in methyl methacrylate break off to combine with carbon 

atoms of the diamond tool under extreme temperatures resulting into a gradual degradation of the 

diamond tool tip (Figure 2.13). 
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Figure 2.12: Methyl methacrylate (MMA) ester bond [23] 

 

Figure 2.13: Chemical wear on a diamond tool 

2.6.2 Tribo-electric wear in polymer machining 

Ultra-high precision diamond turning is known to be an acceptable and suitable manufacturing 

method with the capability to produce freeform optics of various conventional surface profiles by 
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various researchers [28, 74]. However, during polymers machining, Olufayo and Abou-El-Hossein 

have identified that the adhesion of the tool chip around the tool dictates the presence of an 

electrostatic force field (Figure 2.14). This phenomenon known as tribo-electric charging is 

responsible for tool wear and poor surface finish [15]. 

 

 

 

 

 

 

Figure 2.14: Basic cycle chart of static during SPDT of CL polymers and diamond chip build up 

[15] 

The process of a charge being build up between two insulating materials due to contact or rubbing 

can be regarded as contact electrification tribo-charging [15]. This process can lead to surface 

charge accumulation resulting in an electric discharge which can be troublesome in industrial 

production, laboratory research and civil working activities [75, 76]. 

According to Zhang et al [67], Static electricity is a common phenomenon in nature. In cutting the 

electric insulating materials, static electricity may be takes place. The electric field can generate 

electrostatic discharge between two surfaces or induce lightning, plasma, and luminescence. It 

causes or facilitates DTW, namely triboelectric wear [11]. In industrial applications of UPM of 

contact lens, tribo-electric wear might occur and may become a key problem. Brezoczky and Seki 

[77] experimentally tested an electrostatic attractive force in diamond rubbing on hard amorphous 

carbon films, which creates tribo-electricity at a nanometric distance and leads to tribo-electric 

wear. Gubbels et al [11, 68]. measured electrostatic voltage between diamond tool and polymers 

(PC and PMMA) during machining and observed light emission induced by electrostatic discharge, 

as shown in Figure 2.15. Figure 2.16 presents tribo-electric wear of diamond tools when cutting 
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polymers. It was established that triboelectric wear is one DTW mechanism but does not dominate 

in diamond turning of polymers[70] . During wet cutting of PC, the wear is less without 

luminescence, but the wear pattern is the same as observed during dry cutting and cutting PMMA. 

The assertion that tribo-chemical wear is performed is in contrast to the work of Paul et al. [70], 

since PMMA and PC do not have unpaired d-electrons. Therefore, further research needs to be 

conducted for clarification. 

 

 

Figure 2.15: Light emission when diamond turning of PC [68] 

 

Figure 2.16: Tribo-electric wear of diamond tools when cutting polymers [11] 
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In 2008, McCarty and Whitesides [78] in their work, they projected that contact electrification in 

polymers is largely due to the partition of the hydroxyl ions from water adsorbed between the two 

contacting surfaces. This was challenged by Liu and Bard [79] after some times by presenting an  

evidence of PTFE undergoing tribo-electric charging by free electrons during contact 

electrification with PMMA. 

Another renowned but rarely understood part of contact electrification is the effect of the 

environmental conditions such as humidity or atmospheric pressure. Hogue et al. [80] explored 

the influence of atmospheric pressure on contact charging between two insulators and put forward 

an established model to describe this phenomenon. 

Several experiments that were conducted to investigate contact charging in higher humidity 

showed that water is capable of influencing the electrostatic charging behavior of polymers. In the 

case of Polymers, in the presence of high humidity polymers react differently, with some polymer 

surfaces swelling while others experienced the formation of an adsorption layer of water. A few 

of the polymers with swollen surfaces experienced an additional ion transfer from or into the bulk 

phase [81]. Therefore, it is recommended that further research needs to be carried out for 

clarification relating to the electrostatic charging and discharging characteristics for a wide variety 

of contact lens polymers. 

2.7 Conclusion 

In ultra-precision diamond machining (UPDM), diamond tool wear is a key factor directly and 

indirectly influencing surface quality of polymeric contact lens materials. In industrial applications 

of UPDM of lens, tribo-electric wear might occur and may become a key problem. Due to limited 

amount of research in this field of polymeric contact lens materials, hence, further research needs 

to be conducted. However, in this study, an ONSI-56 (Onsifocon A) contact lens buttons will be 

used to investigate the triboelectric phenomenon and the effects of turning parameters on surface 

finish of the lens materials. 
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CHAPTER THREE 

3 EXPERIMENTAL DESIGN AND PROCEDURE 

3.1 Introduction 

In this chapter, major components used for diamond turning of ONSI-56 contact lens polymer will 

be explained. Firstly, experimental design methods will be introduced to find a correlation between 

surface roughness and process parameters. Response surface methodology (RSM) based on Box-

Behnken design and Artificial neural network (ANN) will also be introduced. Comparisons among 

these methods will be figured out. Then, a brief description of single point diamond turning of 

ONSI-56 setup will be made. Later, main characteristics of diamond tool setup and system will be 

introduced. Lastly, the preparation of workpiece setup, electrostatic sensor setup, LabVIEW data 

acquisition will be mentioned and surface roughness and electrostatic discharge measurement 

methods will be explained. 

3.2 Design of experiment 

Design of experiments (DoE) is a mathematical methodology used to determine the most relevant 

factors in a process and provide interpretation of the results and also predict the possible results 

for high accuracy. It gives very producible results by minimizing the number of runs with the 

minimum cost [82]. DoE is also a method of systematically obtaining and organizing knowledge 

so that it can be used to improve operations in the most efficient manner possible and to meet 

specified objectives. The method has been used widely in the industry and research field for 

process optimization [83]. Its objective is to provide an efficient means of experimental method 

and analysis of experimental results [84]. 

The DoE techniques enable designers to determine simultaneously the individual and interactive 

effects of many factors that could affect the output results in any design and also provides a full 

insight of interaction between design elements. Experimental design is an effective tool for 

maximizing the amount of information gained from a study while minimizing the amount of data 

to be collected and is applicable to both physical processes and computer simulation models [85]. 

Designing experiments is centered on factors, responses, a model and runs. Design of Experiment 

helps designers to determine if and how a factor affects a response [86]. In machining processes, 
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DoE is used to generate the necessary combination of the machining parameters or conditions as 

inputs (independent variables) and the corresponding surface roughness as output (dependent 

variable).  Separate set of tests are for each set of combination of machining conditions (speed, 

feed rate, and depth of cut) are required in order to establish an adequate functional relationship 

between the independent and the corresponding dependent variables. The combination matrix of 

these three parameters is of critical importance in determining the outcome of the machining 

process. 

Determination of optimum parameters lies in the proper selection and introduction of suitable 

design of experiments (DoE’s) at the earliest stage of the process and product development cycles. 

DoE is extremely helpful in discovering the key variables influencing the quality characteristics 

of interest in the process. A designed experiment is a test or sequence of tests in which purposeful 

changes are made to the input variables of a process so that we may observe and identify 

corresponding changes in the output response. 

3.2.1 Common design techniques 

There exist numerous DoE techniques that have been used for different experiment 

purposes. The following list gives the commonly used design types [87]: 

1. For comparison: 

 One factor design 

2. For variable screening: 

 2 level factorial design 

 Taguchi orthogonal array 

 Plackett-Burman design 

3. Response surface methodology (For transfer function identification and optimization): 

 Central composite design 

 Box-Behnken design 

4. For system robustness: 

 Taguchi robust design 

 



37 

The designs used for transfer function identification and optimization are called Response Surface 

Method (RSM) designs. In this study, the experiments were planned and conducted according to 

a Box-Behnken type response surface design using Design Expert software by considering three 

turning parameters (cutting speed, feed rates and depth of cuts). 

3.3 Response Surface Methodology 

Response surface methodology (RSM) is a collection of statistical and mathematical technique 

that can be used to model and analyze engineering problems in which several independent 

variables influence a dependent variable or response and the goal is to optimize the response [88]. 

RSM can be used for a variety of purposes such as analyzing of experimental, ordinal, or 

categorical data. Thus, it can be considered to be helpful in predicting the surface roughness and 

electrostatic discharge [89]. Box- Behnken Design (BBD) is one of the most popular RSM and 

DoE techniques used for optimization. With the combination of parameters in diamond turning of 

polymers, RSM Box-Behnken can be applied to polymer machining concept in response areas 

such as surface generation and tribological wear determination. 

Box–Behnken design, is often preferred, since interaction parameter estimates are not completely 

confounded and in many cases, these designs are considerably smaller than 3p−s fractional factorial 

designs [90]. Box-Behnken designs are formed by combining 2𝑘 factorials with incomplete block 

designs. Figure 3.1 shows the three variable Box – Behnken design. It can be noticed that the Box-

Behnken design is a spherical design with all points lying on a sphere of radius √2. Also the BBD 

does not contain any point at the vertices of the cubic region created by the upper and lower limits 

for each variable [91]. 

A BBD also requires only three-levels and is a more efficient alternative to the full three-level 

factorial. The study employs three levels (+1, 0 and -1 as high, medium and low levels 

respectively) and three factors, viz: cutting speed, feed rate, and depth of cut, were considered due 

to their combined and or individual effects on the surface roughness or on the ESD of the machined 

ONSI-56 contact lens. In this case, referred to as independent variables. 
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Figure 3.1:  A three dimensional representation in X1, X2, X3 space of a 3 Level, 3 Factor BBD 

[91] 

In this research study, the overall main objective is to machine ONSI-56 contact lens polymer to 

optical quality and predict the surface roughness and electrostatic discharge for saving cost and 

time for high production rates. Therefore, most important factors in this machining process need 

to be highlighted. Different experimental methods such as multiple regression techniques, artificial 

neural network, full factorial designs and RSM Box-Behnken have been used to analyze the effect 

of machining parameters and predict the surface roughness during cutting process. Box-Behnken 

and Artificial Neural Network have some advantages over other methods. Box-Behnken designs 

can reduce the number of runs significantly and provide useful information about the process 

parameters. The advantages of the Box-Behnken design over other designs are such that it employs 

fewer design points hence it less expensive. With respect to ANN, artificial neural network is very 

effective if there are too much parameters to control. Complex relationships between input and 

output parameters can be modeled accurately and reliable and robust models can be obtained. Due 

to their advantages, Box-Behnken design and Artificial neural network approach will be used in 

this experimental study. 

Finally, the relation between surface roughness of machined ONSI-56 contact lens button and 

cutting parameters like cutting speed, depth of cut and feed rate will be determined by using 

mathematical models which is obtained from DoE methods. Lastly, an analysis of variance 

(ANOVA) will be performed using Design Expert software to explore the significance level of 

parameters on surface roughness and ESD of ONSI-56 contact lens polymer. All results from 

experimental methods and all data collected from ANOVA studies will be given in Chapter 4. 
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3.4 Artificial Neural Network Approach 

An Artificial Neural Network (ANN) is a mathematical model that tries to simulate the structure 

and functionalities of biological neural networks [92]. The main element of ANN is artificial 

neuron whose shape and size can change according to its function. A typical Artificial neural 

networks architecture basically consists of the input layer neurons, hidden layer neurons, the 

outputs and the connection weights. Basic building block of every artificial neural network is 

artificial neuron, that is, a simple mathematical model (function). Such a model has three simple 

sets of rules: multiplication, summation and activation. At the entrance of artificial neuron, the 

inputs are weighted that means, every input value is multiplied with individual weight. In the 

middle section of artificial neuron is sum function that sums all weighted inputs and bias. At the 

exit of artificial neuron, the sum of previously weighted inputs and bias is passing through 

activation function that is also called transfer function (Figure 3.2) 

 

 

Figure 3.2: Working principle of an artificial neuron [93] 

The most powerful feature of ANNs is their ability to learn [94]. the ANN uses learning algorithms 

that change its connection weights and cause the network to learn the solution to a problem. The 

connection strength between the neurons is stored as a weight-value for the specific connection. 

The system learns new knowledge by adjusting these connection weights. The learning ability of 

a neural network is always determined by its architecture and by the algorithmic method chosen 

for training. There are formally two types of learning in artificial neural networks. The supervised 

and unsupervised learning. 
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3.4.1 Supervised learning, as the name implies, refers to learning with a supervisor or teacher. 

The teacher represents the ANNs input-output pairs, providing the network with a desired response 

to the training inputs. The network will learn by adjusting its weight until the desired output known 

by the teacher is reached. In this way, the difference between the actual response of the network 

and the desired response known to the teacher is iteratively calculated. The most popular algorithm 

of this kind of network is the Back Propagation Network. This algorithm iteratively minimizes the 

network error by filtering back in the opposite direction information about the error through the 

system. In this way, the connection weights between the layers are adjusted, thus improving the 

performance of the network. 

Back propagation neural network is the most popular algorithm that has been used in most research 

and many industrial applications, especially in control applications. The technology is used for 

decision making, diagnosis, control and predictions [94]. 

3.4.2 Unsupervised learning: In this method, there is no external teacher who manipulates the 

network weights from outside the network, in contrast to supervised learning. The training set of 

unsupervised learning consists of input training patterns only. The network learns to adapt the 

inputs based on the experiences collected through the previous training patterns. Subsequently, the 

network forms its classification and organization from the input pattern. The Self-Organizing Maps 

(SOM) or Kohonen network is the most popular algorithm for this particular type of learning. 

In this study, neural network toolbox from Matlab (8.1.6) software with a 3-layer feed-forward 

Back propagation network with sigmoid hidden neurons and linear output neurons will be used to 

predict surface roughness and electrostatic discharge. The same data set which is prepared for Box-

Behnken design will be used as input data set of the ANN. Thus, feed rate, depth of cut, and cutting 

speed are used as input layer parameters. The surface roughness will be used as output layer of the 

ANN. A single hidden layer of different number of neurons will be implemented. The behaviors 

of networks with varying number of neurons would be tabulated in Chapter 4. The prediction 

values for testing data which has never been trained before, would also be tabulated and compared 

in Chapter 4. 
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3.5 Ultra-High Precision Diamond Turning of Contact Lens Polymers 

Ultra-high precision machining (UHPM) of polymers is an aspect of polymer machining still at its 

early stages since polymeric materials were started to use in optical applications such as contact 

lenses, diamond turning of plastics have been intensely used. At present, diamond turning can be 

readily applied to a wide range of metallic alloys, polymeric materials, and precious crystals. A 

commonly used ultra-high precision machining process in contact lens manufacture is Single point 

diamond turning (SPDT) [2]. 

Single Point Diamond Turning is an ultra-precision machining process for producing high-quality 

optical surfaces on metal, polymers, and crystals. At the present day, the ultra-precision machining 

process of single point diamond cutting is regarded as an effective process for the generation of 

high quality functional surfaces. It produces surfaces with minimal defects in the superficial 

surface layer from various materials especially from the thermoplastic amorphous polymers and 

their composition for optical, photonic and bioengineering applications [3]. In diamond turning, 

work piece is pulled onto a vacuum chuck, whose surface quality is within a few fringes, the 

spindle rotates with high precision with the help of air bearings, the tool is numerically controlled 

and a laser interferometer monitors its movements. A submicron level dimensional accuracy and 

nanometer level surface roughness can be achieved by diamond turning with a single point cutting 

tool. 

In this research, Precitech Nanoform® 250 ultra-grind four-axis diamond turning machine is used 

as shown on Figure 3.4 and the specifications of the machine are given on Appendix A. This 

precision machine is equipped with 4-axis capability, vacuum chuck, ultra-high precision air-

bearing spindle, granite base, oil hydrostatic slides and optimally located air isolation mounts. 

Therefore, the research experimental tests were carried out on Precitech Nanoform® 250 ultra-

grind machine. The machine is sufficient for machining of flat, spherical, aspheric or diffractive 

optical surfaces. 
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Figure 3.3: Nanoform® 250 ultra-grind Precision Diamond Turning Lath at Precision 

Engineering Laboratory, Nelson Mandela Metropolitan University 

3.5.1 Mono-crystalline Diamond Tool Setup 

Diamond is a nearly ideal tool material for ultraprecision machining of polymers due to its high 

hardness, strength, thermal conductivity, and its ability to be honed to a very sharp edge and retain 

this edge while machining. Table 3.1 summarizes the properties of diamond. Its only shortcoming 

is that diamond has chemical affinities with certain materials like iron and the fact that it breaks 

down under high temperatures [44]. 

In Ultra-high precision Diamond turning, the selection of cutting tool is very important. Final 

surface quality is affected by several error sources such as tool setting, tool waviness, fixturing, 

and environmental conditions [8]. However, proper selection of tools can decrease such kind of 

errors and production costs can also be decreased by choosing appropriate turning parameters. As 

mentioned in the literature, tool parameters can also affect the final surface roughness of machined 
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parts. Therefore, suitable tool parameters were chosen according to experiments reported in the 

literature, manufacturer’s suggestions, and wealthy experience of my supervisor to ensure that the 

turning parameters chosen do not damage the tool. 

Table 3.1: Properties of Diamond [95] 

Symbol C 

Atomic Number 6 

Atomic Weight 12.011 

Hardness 7000 Knoop Hardness (WC=2100 Knoop Hardness) 
 

Density 3.51 g/cm3 

Most Common Valence +4 

Electron Configuration 1s22s22p2 

Melting Point >3550 0C 

Bonding Type and Energy Covalent; 713 kJ/mol 

Mechanical Properties E= 1035 GPa 

Electrical Conductivity 10-14 [(Ώ-m)-1] 

Thermal Conductivity 2000-2500 W/m-K 
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Figure 3.4: Mono-crystalline diamond tool mounted on a tool holder for ONSI-56 Machining 

In this study, mono-crystalline diamond tool was used to machine ONSI-56 specimens with 0.5mm 

nose radius. In manufacturer’s catalog, the suggested rake angle is 0, hence, this tool rake was used 

throughout the experiment. The monocrystalline diamond tool is mounted on a tool holder (Figure 

3.5) by means of M5 screws. The sample tool number on the tool is shown in Figure 3.5. 

3.5.2 Work-piece 

Before implementing this experiment, first of all a hydrophilic rigid gas permeable contact lens 

buttons called ONSI-56 (Onsifocon A) 12.70 mm x 4.40 mm was purchased from Lagado’s 

flagship Corporation Company (Figure 3.6). Experimental tests were conducted using ONSI-56 

commercially available contact lens buttons. The ONSI-56 (Onsifocon A), is a contact lens 

polymer of trifluoroethyl methacrylate polymer with tris (trimethylsiloxy) methacryloxypropylsi 

lane 3-trimethoxysilylpropylmethacrylate methacrylic acid 1,3-bis (3-methacryloxypropyl) tetra 

Diamond insert 
Tool holder 
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kis (trimethylsiloxy) disiloxane ethylene glycol dimethacrylate 2-hydroxyethylmetbacrylate N-

vinylpyrrolidone [96]. “ONSI-56 has increasingly become the material of first choice as both a 

problem solver in overcoming lens comfort issues and as a problem preventer by offering patients 

excellent oxygen delivery and a superior hydrophilic surface” [96]. Table 3.2 shows the physical 

properties of ONSI-56 contact lens polymers. 

 

Figure 3.5: The ONSI-56 (Onsifocon A) Contact lens bonnets used for this experiment 
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Table 3.2: The physical properties of ONSI-56 (Onsifocon-A)  [96] 

Typical Property Test Value 

Hardness D/86 (Shore Hardness Units) 

Water content <1.0% 

Wetting Angle 7.25' ± 1.55 (sessile drop method) 

Oxygen Permeability 56.2 ANSI units 

Dimensional Stability Stable 

Refractive Index 1.452 

Specific gravity 1.206 

Flexural strength 3952 psi 

 

3.5.3 Data Acquisition System 

The electrostatic discharges encountered by a cutting tool wen diamond turning of contact lens 

polymers are important as they reflect the quality and condition of the tool, machine, fixture, and 

the finished surface. The use of an electrostatic sensor is critical and allows for easy monitoring 

electrostatic effects and the cutting process. The data acquisition system (DAQ) used for this study 

is NI myDAQ (Figure 3.7). NI myDAQ is a low-cost portable data acquisition (DAQ) device that 

uses NI LabVIEW-based software instruments, and is used to measure electrostatic signals in this 

experiments. A PC using ‘National Instruments’ (NI) LabVIEW software is used to collect the 

electrostatic discharge data. The NI LabVIEW allows the manipulation of the incoming signal to 

provide a graphical overview of the changes in the statics of the contact lens material. Figure 3.8 

shows the experimental process flow diagram. 
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Figure 3.6: NI myDAQ, at the Precision Engineering Laboratory, Nelson Mandela Metropolitan 

University 

 

 

 

Figure 3.7: Experimental process flow diagram 

3.5.4 Data Acquisition Software: NI LabVIEW 2015 

The National Instruments LabVIEW is an acronym for Laboratory Virtual Instrument Engineering 

Workbench. It is a visual programming language used in this study for electrostatic data acquisition 

and monitoring. The NI LabVIEW consist of a front panel for viewing the ESD signal output in 

real time and a block diagram section for developing the G-code programming for the data 

acquisition (Figure 3.9). The programs created by LabVIEW are called VI, or virtual instruments. 

  

Diamond tool   

Vacuum chuck   

ONSI-56 Lens 

button   

Electrost atic sensor    

Power supply   

NI myDAQ   

NI LabVIEW   

Electrostatic monitor    
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For data acquisition, the NI myDAQ Assistant was used to match the physical channels from the 

USB or PCI data acquisition system to input channels in the VI. For reading the saved 

measurements from the data acquisition program, the same program is used by replacing the NI 

myDAQ Assistant VI with the Read LVM File VI. 

 

Figure 3.8: NI LabVIEW programme (front panel) for ONSI-56 Machining 

3.5.5 Electrostatic Sensor Setup 

Electrostatic sensor consists of the sensor head and sensor amplifier (Figure 3.10). The relation 

between the output voltage of the electrostatic sensor and detected charged electricity depends on 

the distance between the sensor head and measured object. Table 3.4 shows the relation between 

the output voltage of the electrostatic sensor and detected charged potential based on installed 

distance. The ESDs on the polymeric contact lens material were measured using an SMC IZD10 

electrostatic sensor and ESD monitor configuration. The IZD10 sensor has a measuring range of 

+/-20Kv. The electrostatic sensor is connected to an electrostatic monitor which provides an output 

scaled using Equation (3.1) and ranges between 0V and 5kV. This output is connected to a 

computer running NI LabVIEW software through NI myDAQ. The sensor and the NI myDAQ are 
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powered by an S-100-24 supply. The input of the power supply was set at 220V with the output 

voltage stepped down to 24V with reference to ground. 

 

 

 

Figure 3.9: Electrostatic sensor head, sensor amplifier and ESD Monitor [97] 

Table 3.3: Sensor installation distance and detection range 

Installation distance (mm) Detection range (mm) 

10 45 

20 85 

25 100 

30 120 

40 150 

50 200 
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The output measurement varies according to the installation distance as shown in Figure 3.11. In 

this study, the electrostatic sensor and the monitor were calibrated with the aid of the manufacturers 

separation manual (Appendix C), based on the detection range of 100 mm, an installation distance 

of 25 mm was selected as it can provide accurate representation of charge potential on the material 

surface considering 12.70 mm diameter contact lens buttons used. Figure 3.5 shows how the output 

of the electrostatic sensor varies with the actual charged potential observed on the material surface 

at installation distance of 25 mm during the calibration of the sensor. 

 

Figure 3.10: Relationship between sensor output and charge potential on installation distance 

[97] 

 

Figure 3.11: Electrostatic sensor Output versus actual charged potential 
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Figure 3-11 Shows how the output of the electrostatic sensor varies with the actual charged 

potential observed on the material surface. From Figure 3.11, the y-intercept is 3V while the 

gradient is 0.136. 

𝑦0 =  0.136𝑦𝑎 + 3                                                                (3.1) 

Where 𝑦0 represents the electrostatic sensor output and 𝑦𝑎 represents the actual ESDs observed by 

the electrostatic sensor. Equation (3.1) is manipulated such that 𝑦𝑎 is the subject of the formula. 

𝑦𝑎 = 7.353𝑦0 − 22.059                                                         (3.2) 

Equation (3.2) is used in LabVIEW to scale the sensory output and provide the actual ESDs. 

In this experiments, oscilloscope was used to check the continuity of voltage signals between the 

NI myDAQ and the sensor over time. During the sensor calibration, an oscilloscope measuring 

device provide graph of signals voltage over time. The Y-axis of the oscilloscope represents the 

voltage while the x-axis represents the time. The oscilloscope was adjusted so that the repetitive 

signals was observed as continuous waveform on the screen. 

3.5.6 Cutting Parameters in the UHPM of Contact Lens Polymers 

In this study, the turning parameters (cutting speed, feed rates and depth of cuts) were chosen based 

on [8, 11, 15]. As mentioned in the literature, tool parameters can also affect the final surface 

roughness of machined parts. Therefore, suitable tool parameters are chosen according to 

experiments in literature, manufacturer’s suggestions, and wealthy experience of my supervisor to 

ensure that the turning parameters chosen do not damage the tool. 

These turning parameters were chosen to encompass the research material and provide results with 

reasonable readings of electrostatic discharge. Parameters that were known, from previous 

research, to provide unfeasible data were ignored hence forming the ranges provided in table 3.5 

below. The turning parameters were imported to Design of experiments software and process the 

runs combination using Box-Behnken Response surface methodology. 



52 

Table 3.4: Turning Parameters used for the experiments 

Turning Parameters Low High 

Cutting Speed (rpm) 200 4000 

Feed rate (mm/min) 2 12 

Depth of cut (µm) 10 40 

During tests, turning parameters shown in table 3.5 were used. Very low cutting parameters within 

close ranges were utilized to suit parameters needed in high end optics. This was a balance obtained 

between surface integrity and tribo-electric effects in polymer cutting. 

3.6 Measurement of Surface Roughness 

3.6.1 Contact lens surface topography 

Surface topography is a property which describes the shape and features of the polymer surface. It 

is known to be an important property for contact lens materials, particularly with respect to optical 

quality, adhesion and biocompatibility [17]. Surface topography can be characterized directly 

using an instrument such as an Atomic force microscopy (AFM) or indirect by imaging using an 

instrument such as scanning electron microscope (SEM). Very few materials possess a surface 

which is atomically fat, with the majority of materials exhibiting surface features such as steep 

gradients, pores and imperfections. These features constitute the topography of the surface and can 

have a considerable impact on a material's performance [98]. Soft matter when relaxed will form 

surface undulations, known as capillary waves, as a result of the inherent entropy of the system 

balancing the increased energy of the greater surface area  [99]. This effect is particularly important 

in soft hydrogel materials as they have a compliant nature and relatively low surface energy. For 

polymeric materials such as ONSI-56, the molecular size [100] and the presence of two or more 

phases at or near the polymer surface can also influence the topography of the surface [98]. Other 

factors such as material processing (e.g. the transfer of a defect from the mould to the surface 

profile of the moulded item) or rheological effects during manufacture [101] can also influence 

surface topography. The surface topography of a biomaterial has been shown to influence several 

key factors. Figure 3.13 shows the main components of the surface topography. 
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Adhesion 

The adhesion between one surface and another depends on factors such as the degree of chemical 

interaction between the two components, the proximity and the area of contact. The last two factors 

are dependent on the topography of the two surfaces to be joined [98]. 

Optical finish 

The optical finish of the contact lens is directly linked to its surface topography [102]. 

Biocompatibility 

The surface topography has been shown to strongly influence its interaction with biological 

components [103]. In the context of contact lens materials, surface topography has been shown to 

influence factors such as optical performance [104], bacterial adhesion [105] and tear film 

deposition [106]. Several types of instrumentation are available for analysis of surface topography. 

These can be split into contact and non-contact techniques. 

 

 

 

 

 

 

 

 

Figure 3.12: Surface characteristics and Terminology (adapted from [107]) 
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During machining, it is inevitable to have some defects and the impurities on the surface of the 

machined parts. Workpiece material properties, machine vibrations, surface damage due to chip 

formation and inaccuracy of spindle and tool holder can cause such defects on the surface and the 

surface roughness is the results of all these irregularities [108]. 

In this study, Taylor Hobson PGI Dimension XL surface Profilometer shown in Figure 3.14 is 

used to measure the surface roughness of the finish-turned ONSI-56 contact lens buttons. 

The Taylor Hobson PGI Dimension XL features [109]: 

 300 mm diameter capability 

 Fast stylus trace speed of 100 mm/s 

 Automated 3D measurement 

 Automated centre and level 

 Class leading accuracy and repeatability 

 Enhanced roughness measurements of up to 0.2 nm resolution 

 Steep slope surfaces of up to 85 degrees 

 Taylmap advanced analysis with excellent report building tools. 
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Figure 3.13: Taylor Hobson PGI Dimension XL Surface Profilometer at the Precision 

Engineering Laboratory, Nelson Mandela Metropolitan University 
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3.7 Experimental Setup 

Experimental tests were carried out on the Precitech® Nanoform Ultragrind 250 ultra-high 

precision lathe. The tests were performed in dry operation as the polymer materials were soluble. 

The electrostatic sensor was mounted on a magnetic clamp at a distance of 25mm from the 

machining area. 

Experimental tests were conducted using commercially available ONSI-56® Onsifocon-A contact 

lens buttons. The lens button dimensions are of 12.70 mm diameter and 4.40 mm thickness. This 

buttons were block-mounted unto a copper arbour for machining using low temperature optical 

wax. Figure 3.15 shows the blocking equipment and a contact lens button sitting on a copper 

arbour. 

The blocking process was implemented by: 

 Heating a strip of wax into a molten state. 

 A copper arbour was warmed (to allow the wax to hold) 

 The copper arbour was then dipped into the molten wax and the lens button was placed 

onto the wax 

 The arbour was then placed onto the blocking machine which was used to centre the lens 

button onto the arbour. 
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Figure 3.14: ONSI-56 contact lens button and wax 

 

Figure 3.15: Blocking equipment 

Before the start of the machining, tool setup such as tool centring (Figure 3.16) and spindle balance 

(Figure 3.17) experiments were performed to ensure the tool edge was centred and the vacuum 
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chuck was correctly positioned to prevent unwanted oscillations that would result in noise and less 

than optimal cutting results. 

 

Figure 3.16: Tool centring for ONSI-56 experiment 

 

 

Figure 3.17: Spindle balancing platform DIFFSYS 
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3.7.1 Experimental Procedure 

Figure 3.18 shows the experimental setup; the experiments began in the following steps: 

 Step 1: The Copper arbour holding the contact lens button was mounted onto the machine 

spindle. Prior to experimental runs, contact lens buttons were lapped several times to flatten 

the surface area for measurement. Following lapping operation, the UHPM machine was 

wiped using anti-static foam cleanser and lenses were cleaned with a wet optical cloth to 

remove residual static charge generated during lapping. 

 Step 2: The program was loaded onto the single point diamond turning machine interface 

with the updated parameter values for speed, feed and depth of cut. 

 Step 3: The LabVIEW program (Figure 3.19) was initialized with continuous sample 

measurement and 1000 samples to read at a rate of 10 kHz to adequately monitor and 

capture the ESP data which was saved as a text file in Microsoft excel. During each cutting, 

Electrostatic data were acquired using NI myDAQ. 

 Step 4: Additional experimental passes were run to ensure repeatability. After each 

experiment, the contact lens button was removed from the single point diamond turning 

machine and transferred to the Profilometer for surface profile measurements (Figure 3.20). 
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Figure 3.18: Setup for Diamond turning of ONSI-56 contact lens polymer 

 

Figure 3.19: NI LabVIEW programme (front panel) showing electrostatic discharge during 

ONSI-56 Machining 

ONSI-56 

ESD Sensor Cutting tool 
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Figure 3.20: Surface roughness measurement of ONSI-56 lens button with Taylor Hopson 

optical profiler 

3.8 Conclusion 

In this research, the overall aim is to machine ONSI-56 contact lens polymers to optical quality 

and analyze the surface roughness and electrostatic discharge for saving cost and time for high 

production rates. The next chapter is aimed at investigating the surface roughness and ESD in the 

UHPM of contact lenses, and evaluating the effects of cutting parameters such as feed rate, cutting 

speed and depth of cut. Chapter 4 details the result and analysis. 

 

 

 

ONSI-56 PGI Matrix (Stylus) 
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CHAPTER FOUR 

4 RESULTS AND DISCUSION 

4.1 Introduction 

The first section of this chapter details the surface roughness experiments, and the response surface 

methodology (RSM). The RSM model was used for predicting the surface roughness values and 

to investigate the influence of cutting parameters on the developed model and finally, artificial 

neural network (ANN) approach was employed for prediction of surface roughness. The second 

section explained the electrostatic discharge (ESD) experiments, RSM model for predicting the 

ESD data acquired during the study. ANN predictions, training and testing of feedforward back 

propagation neural network for predicting the ESD values are discussed. The analysis in this 

chapter was made possible using Design Expert 7, Matlab, and LabVIEW 2015 softwares. 

4.2 Surface Roughness Experiments 

Contact lens manufacture requires high accuracy and surface integrity. Surface roughness is 

generally used to measure the index quality of a turning process. It has been an important response 

because it has direct influence toward the part performance and the production cost. Hence, 

choosing optimal cutting parameters will not only improve the quality measure but also the 

productivity. This research work is therefore aimed at developing a predictive surface roughness 

model and investigate a finish cutting conditions of ONSI-56 contact lens polymer with a 

monocrystalline diamond cutting tool. Artificial neural network and Response surface methods 

were used to model the surface roughness of ONSI-56 contact lens polymer. 

4.3 Response Surface Modelling 

4.3.1 Response Surface Methodology Approach for Prediction of Surface Roughness 

Response surface methodology (RSM) is a collection of statistical and mathematical technique 

that can be used to model and analyze engineering problems in which several independent 

variables influence a dependent variable or response and the goal is to optimize the response [88]. 

Box–Behnken design (BBD), the effective RSM with the lowest number of experiment was used 

to plan the experiment using Design Expert 7 software. Thus, RSM can be used for a variety of 



63 

purposes such as analyzing of experimental, ordinal or categorical data.  therefore, it can be 

considered to be helpful in predicting the surface roughness [89]. 

Box-Behnken design of experiment used in this research contains three-level three input factors 

with full replication as shown in table 4.1. The experimental data consist of 15 experimental runs. 

Box-Behnken experimental design method is performed to obtain a mathematical model and find 

the relationship between cutting parameters and surface roughness. During machining, the highest, 

middle and the lowest values of machining parameters are used. Feed rate, depth of cut and spindle 

speed are selected to define a relationship between surface roughness and machining parameters. 

The experiments were implemented based on the setup discussed in chapter 3.  

Table 4.1: Box-Behnken Experimental Results 

Run Order Cutting Speed (rpm) Feed Rate (mm/min) Depth of Cut (µm) 

1 2100 2 10 

2 2100 7 25 

3 200 2 25 

4 4000 7 40 

5 2100 2 40 

6 2100 7 25 

7 200 7 40 

8 200 7 10 

9 4000 2 25 

10 2100 7 25 

11 4000 7 10 

12 2100 12 40 

13 2100 12 10 

14 200 12 25 

15 4000 12 25 

Runs 6 and 10 are repeat of run 2 
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After each experimental run, the surface roughness values for ONSI-56 was measured using Taylor 

Hobson PGI Dimension XL Surface Profilometer. The measurement results for all runs are 

tabulated in Table 4.2 below. Figure 4.1 shows the series plots of the measured surface roughness. 

The best and the poor surface roughness profile chart from the Surface Profilometer for ONSI-56 

Contact lens buttons are given in figure 4.2 and figure 4.3 

Table 4.2: Surface Roughness Experimental Results 

Run Order Cutting Speed 

(rpm) 

Feed Rate 

(mm/min) 

Depth of Cut 

(µm) 

Surface 

Roughness Ra 

(nm) 

1 2100 2 10 18.8 

2 2100 7 25 6 

3 200 2 25 46 

4 4000 7 40 21.1 

5 2100 2 40 20.2 

6 2100 7 25 15 

7 200 7 40 447.6 

8 200 7 10 370.5 

9 4000 2 25 18.2 

10 2100 7 25 23.9 

11 4000 7 10 28.3 

12 2100 12 40 20.6 

13 2100 12 10 28.1 

14 200 12 25 1184.1 

15 4000 12 25 36.6 
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Figure 4.1: Series plots of Experimental surface roughness 

 

 

Figure 4.2: Surface profile chart for Ra 6 nm 
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Figure 4.3: Surface profile chart for Ra 1184.1 nm 

4.3.2 Determination of Appropriate Polynomial Equation to Represent RSM Model 

According to the literature from Section 2.5.4, various modeling techniques have been investigated 

and applied to predict surface roughness and the influence of cutting parameters on surface 

roughness. Prediction model allows the machinist to determine the values of the cutting 

performance before machining and thus allows the machining process to become more productive, 

competitive, minimize machine error and technical specification satisfaction [110]. The 

procedures for developing the surface finish models in this study have been well comprehensive 

by Alao [111]. According to Alao and Konneh [112], the development of RS models includes 

checking the response data for any transformation need, fitting of the input and output variables to 

know whether the relationship between them is linear, linear and two-factor interaction (2FI), 

second-order or higher-order function and investigating the p-values. Design Expert software 

(7.1.6) version was used for analyzing the output data for ONSI-56 contact lens polymer. To obtain 

an adequate model equation, response transformation check is necessary. This transformation is 

carried out using Box–Cox plotting technique available in Design Expert software. 
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4.3.3 Response Transformation Check 

Based on the experimental results in table 4.2, the response surface roughness ranges from 6 nm 

to 1184.1 nm. The ratio of maximum to minimum is: 

1184.1

6
= 197.35                                                                                                       (4.1) 

A ratio greater than 10 usually indicates a transformation is required [113]. Therefore, a 

transformation is required for a ratio of 197.35. For this analysis, Box-Cox plotting technique is 

used for the selection of the transformed scale model as shown in figure 4-4. 

 

Figure 4.4: Box-Cox plot for transformed scale Ra model 

Based on the Box-Cox plot (Figure 4-4), natural log transformation was recommended, which 

produced a model of the form:  

𝑦ʹ = Ln (y +  k)                                                      (4.2) 

Generally, natural log transformations is used for three purposes [114]: stabilizing the response 

variance, making the distribution of the response variable closer to the normal distribution, and 

improving the fit of the model to the data. This last objective could include model simplification, 
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say by eliminating interaction, or higher-order polynomial terms. Sometimes a transformation will 

be reasonably effective in simultaneously accomplishing more than one of these objectives. 

In this research, a natural log transformation is used to determine a suitable polynomial equation 

to represent the relationships between the input parameters (cutting peed, feed rate and depth of 

cut) and the surface roughness (output response) by carrying out sum of squares sequential model 

and lack of fit test shown in table 4.3 and 4.4. The result from the sequential model indicate linear 

vs mean and quadratic vs 2FI approach, However, the lack of fit test suggests a linear and quadratic 

equation approach. 

Table 4.3: Sequential Model Sum of Squares for surface roughness 

Source Sum of 

squares 

df Mean 

Square 

F Value p-Value 

Prob>F 

Remark 

Mean vs 

Total 

207.52 1 207.52    

Linear vs 

Mean 

14.98 3 4.99 3.69 0.0465 suggested 

2FI vs Mean 1.72 3 0.57 0.35 0.7915  

Quadratic vs 

2FI 

10.43 3 3.48 6.36 0.0369 suggested 

Cubic vs 

Quadratic 

1.74 3 0.58 1.17 0.4905 Aliased 

Residual 0.99 2 0.49    

Total 237.37 15 15.82    
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Table 4.4: Lack of Fit Tests for surface roughness 

Source Sum of 

squares 

df Mean 

Square 

F Value p-Value 

prob>F 

Remark 

Linear 13.89 9 1.54 3.12 0.2662 Suggested 

2FI 12.17 6 2.03 4.10 0.2089  

Quadratic 1.74 3 0.58 1.17 0.4905 Suggested 

Cubic 0.000 0    Aliased 

Pure 

Error 

0.99 2 0.49    

 

4.3.4 Surface Roughness (Ra) Model Determination 

Table 4.5 shows the statistical summary for each transformed scale model that was output by 

Design Expert Software. A linear and quadratic model were suggested, even though a linear model 

has lower R2 and adjusted-R2 (Adj-R2) values than a quadratic and cubic models. This is because 

the cubic model is aliased, which means that the effects of each variable that caused different 

signals become indistinguishable. For a linear relationship, the R2 and Adj-R2 values are 0.5016 

and 0.3657, respectively. It is clear that the 2FI model is not adequate for the experimental data. 

The transformed scale quadratic model, with the R2 and Adj-R2 values are 0.90850 and 0.7438 

respectively which were therefore selected to fit the experimental data. 

Table 4.5: Statistical summary for each model 

 Source Std. 

Dev 

R-

Squared 

Adjusted 

R-

Squared 

Predicted 

R-

Squared 

PRESS Suggestion 

Linear 1.16 0.5016 0.3657 0.1003 26.86 Suggested 

2FI 1.28 0.5592 0.2287 -0.6425 49.04 Not adequate 

Quadratic 0.74 0.90850 0.7438 -0.0084 30.11 Suggested 

Cubic 0.70 0.9669 0.7681  + Aliased 
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4.4 Analysis of Variance (ANOVA) for the Acquired Model 

ANOVA of experimental data is always done to analyze statistically the relative significance of 

the models and its terms on the response. ANOVA is an analytical technique that is used to identify 

the importance of a model and its parameters, using Fisher’s F-test and Student’s t-test [115]. 

Student’s t-test was used to determine the significance of the regression coefficients using a p-

value standard. Table 4.6 shows the ANOVA results for the acquired transformed scale quadratic 

model. As can be seen, the model is significant as is evident from its F-value (FModel = 5.52) and 

low probability value (p = 0.0373). A p-value lower than 0.05 indicates that the model is 

statistically significant, whereas a value higher than 0.1000 indicates that the model is not 

significant [116]. The Model F-value of 5.52 implies the model is significant. There is only a 

3.73% chance that a “Model F-Value” this large could occur due to noise. 

Table 4.6: ANOVA results for the acquired quadratic model 
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In this case A, and A2 are significant whereas all other model terms are insignificant. Therefore, 

due to many insignificant model terms, the model can be improved by eliminating the terms that 

are not very significant even though table 4.7 shows high coefficient of determination R2 value of 

0.9085 and Adj-R2 value of 0.7438 

Table 4.7: Summary of regression coefficient (R2) 

 

 

4.4.1  Surface Roughness (Ra) Model Modification 

After the significance of the parameters has been evaluated, the model was improved by 

eliminating the terms that are not very significant. The ANOVA results for the modified model 

describing the relationship between the surface roughness and cutting parameters is shown in table 

4.8 

Table 4.8: ANOVA results for the modified model (only the significant terms) 

Source Sum of 

squares 

Degrees of 

Freedom 

Mean 

Square 

F- Value p-Value 

Prob˃F 

Characteristics 

Model 26.43 4 6.61 19.29 0.0001 Significant 

A-Speed 12.58 1 12.58 36.71 0.0001  

B-Feed 2.39 1 2.39 6.96 0.0248  

AB 1.62 1 1.62 4.74 0.0544  

A2 9.84 1 9.84 28.73 0.0003  

Residuals 3.43 10 0.34    

Lack of Fit 2.44 8 0.30 0.62 0.7440 Not significant 

Pure Error 0.99 2 0.49    

Corr. Total 29.86 14     
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The ANOVA have been performed to check whether the modified model is adequate as well as to 

check the significance of the individual model coefficients. The Model F-value of 19.29 in table 

4.8 implies the model is significant. There is only a 0.01% chance that a "Model F-Value" this 

large could occur due to noise. Values of “Prob>F” less than 0.05 indicate the model terms are 

significant. From the modified ANOVA table 4.8, it is clear that the p values for the cutting speed 

(A), feed rate (B) and the square of speed (A2) are less than 0.05, indicating that these model terms 

are the most significant factors that influence the surface roughness. This implies that these factors 

have very large effects on surface roughness. However, the p value for the interaction between 

speed and feed (AB) is slightly greater than 0.05 indicating its partial or low significance on the 

Ra modified model. However, equation 4.2 and 4.3 reveals the interaction effects of cutting speed 

and feed rates. While the depth of cut has no significant effect on the surface roughness. The "Lack 

of Fit F-value" of 0.62 implies the Lack of Fit is not significant relative to the pure error.  There is 

a 74.40% chance that a "Lack of Fit F-value" this large could occur due to noise.  Non-significant 

lack of fit is good -- we want the model to fit. The lack of fit test of F value of 0.62 is not significant, 

indicating that all the data fit the model adequately. 

In order to predict the surface roughness, the second-order regression equation can be expressed 

as: 

𝑦 =  𝛽𝑜 +  ∑ 𝛽𝑖𝑥𝑖
3
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖

23
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑗=1 + ԑ 𝑖                                  (4.3) 

The dependent variable, y, is the response and the independent variable, x, is the factor. β is the 

coefficient estimated from RSM analysis. After determining the significant coefficients (at 95% 

confidence level), the final model was developed using these coefficients and the final 

mathematical model to estimate surface roughness is given in equation 4.4 and 4.5 

𝑙𝑛𝑅𝑎 = 4.47216 − 0.002085𝑆 + 0.25009𝐹 + (4.4979×10−7)𝑆2 − (6.70913×10−5)𝑆𝐹              (4.4) 

The equation can be rewritten as 

𝑅𝑎 = 𝑒[4.47216−0.002085𝑆+0.25009𝐹+(4.4979×10−7)𝑆2−(6.70913×10−5)𝑆𝐹]                       (4.5) 

Where: Ra = Surface roughness, F = Feed rate and S = Cutting speed 
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As can be seen from table 4.9. The "Pred R-Squared" of 0.6438 is in reasonable agreement with 

the "Adj R-Squared" of 0.8394. For models to be adequate and accurate, it is suggested that Adj-

R2 should be greater or equal to 0.70 [117]. Thus, Adj-R2 of 0.8394 indicate that the model is very 

significant. Then, “Adeq Precision" measures the signal to noise ratio where a ratio greater than 4 

is desirable.  Hence, the ratio of 13.634 indicates an adequate signal.  At the same time a relatively 

lower value of the coefficient of variation (CV=15.74) indicates improved precision and reliability 

of the conducted experiments. This model can therefore be used to navigate the design space 

(surface roughness) for ONSI-56 contact lens polymers. 

Table 4.9: Summary of regression analysis results 

Std.Dev. 0.59 R2 0.8853 

Mean 3.72 Adj-R2 0.8394 

C.V. % 15.74 Pred-R2 0.6438 

PRESS 10.64 Adeq-Precision 13.634 

The coefficient of determination (R2) is defined as the ratio of the explained variation to the total 

variation, and is a measure of the degree of fit [118]. Consequently, Joglekar [119] suggested that 

a good model fit should yield an R2 of at least 0.80. This means that the modified response model 

evaluated in this study can explain the reaction very well, with an R2 of 0.8853 and an Adj-R2 of 

0.8394 at a confidence level of 95% as shown in table 4.9. In addition, the model is very significant 

as is evident from its F-value (FModel = 19.29) and very low probability value (p = 0.0001) from 

table 4-8. A p-value lower than 0.05 indicates that the model is statistically significant, whereas a 

value higher than 0.1000 indicates that the model is not significant [116]. 

4.4.2 Model Accuracy Check 

To obtain an adequate model, an accuracy check is necessary. The RS model accuracy was checked 

by comparing the predicted and experimental surface roughness. Table 4.10 shows the prediction 

accuracy for RS model. The RSM results demonstrate that the proposed model in this study is 

suitable for predicting the surface roughness with an R2 of 0.8853. Figure 4.5 shows the 

performance of RS model. 
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Table 4.10: Comparison of measured and predicted Ra of RSM values 

Run order Measured Ra 

(nm) 

RSM Predicted Ra 

(nm) 

Residual 

(nm) 

Error 

(%) 

1 18.8 27.39 -8.59 45.69 

2 6 17.29 -11.29 188.17 

3 46 94.63 -48.63 105.72 

4 21.1 25.03 -3.93 18.63 

5 20.2 10.07 10.13 50.15 

6 15 17.29 -2.29 15.27 

7 447.6 307.97 139.63 31.19 

8 370.5 307.97 62.53 16.88 

9 18.2 27.39 -9.19 50.49 

10 23.9 17.29 6.61 27.66 

11 28.3 25.03 3.27 11.55 

12 20.6 29.96 -9.36 45.44 

13 28.1 29.96 -1.86 6.62 

14 1184.1 1002.25 181.85 15.36 

15 36.6 22.87 13.73 37.51 
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Figure 4.5: Comparison of measured and predicted surface roughness of RS model 

In addition, a normal plot of residuals between the normal probability (%) and the internally 

studentized residuals and the plot of residuals versus the predicted response was also obtained. In 

this way, the residuals can be checked to determine how well the model satisfies the assumptions 

of ANOVA, and the internally studentized residuals can be used to measure the standard deviations 

separating the experimental and predicted values [120]. Figure 4.6 shows the relationship between 

the normal probability (%) and the internally studentized residuals. The straight line means that 

there was no apparent problem with normality. The normal probability plot of the residuals for the 

surface roughness shown in Figure 4.6 reveals that the residuals are falling on the straight line, 

which means the errors are distributed normally [121]. Figure 4.7 shows a plot of residuals versus 

predicted in surface roughness modelling. This indicates that the model possesses adequate 

normality of residuals and no constant error. 
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Figure 4.6: Normal Probability plot of residuals in Surface Roughness modelling 

 

 

Figure 4.7: Probability plot of residuals vs. Predicted in Surface Roughness modelling 
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4.5 Influence of Cutting Parameters on Surface Roughness 

In determining the cutting parameters influential to the surface roughness, the results from the 

modified ANOVA table (Section 4.4.1) were studied. By checking the p values and F values from 

ANOVA, it is clearly seen that all the model terms are significant with cutting speed having the 

highest degree of significance followed by the square of the cutting speed and the feed rate. 

However, interaction between cutting speed and feed rate has the lowest degree of significance on 

the surface roughness (Ra). 

4.5.1 Effect of Cutting Speed 

The effect of cutting speed on the transformed scale of Ra is depicted in figure. 4.8. It can be 

observed that the transformed scale of Ra decreases quadratically with an increase in cutting speed 

up to 3500 rpm and then slightly increases quadratically as cutting speed changes from 3500 to 

4000 rpm at high feed and high depth. This implies that moderate spindle speed improves the Ra.  

 

Figure 4.8: Variation of Ra with cutting speed 

It can also be seen that the roughness improves with increase in cutting speed. The results are, 

however, in agreement with the results of Gubbels [11] concerning the increase of surface quality 

with increasing cutting speed. From the experimental results, the best surface roughness is obtained 

at the feed rate of 7 µm/rev, cutting speed of 2100 rpm and depth of cut of 25 µm. 
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4.5.2 Interaction Effects 

There exists an interactive effect between cutting speed and feed rate in equation 4.4 and equation 

4.5 (Section 4.2.5).  The authentication of this interaction is shown in figure 4.9. As can be seen 

from the figure, there is an interaction between the cutting speed and feed rate and these two 

parameters combined together to influence Ra.  

 

Figure 4.9: The interaction between feed rate and cutting speed 

Also, figure 4.10 shows the 3D view of the interaction between cutting speed and feed rate while 

figure 4.11 shows the contour plot for the combined influence of cutting speed and feed rate at 25 

µm depth of cut on Ra. From this figures, it can be observed that moderate cutting speed and feed 

rate improves the surface roughness Ra while depth of cut has no influence on the transformed 

scale of Ra. Adj- R2 for Ra model is 83.9%, indicating the model terms in table 4.9 (Section 4.4.1) 

can contribute about 83.9% in the variability observed in the reduction of Ra model. 
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Figure 4.10: The 3D surface model of surface roughness with respect to speed and feed 

 

 

Figure 4.11: Contour effect of feed and speed for surface roughness 

4.5.3 Effect of Feed Rate 

ANOVA in table 4-8 (Section 4.4.1) indicated the influence of feed in diamond turning of ONSI-

56 contact lens polymer. In literature, it is also indicated that feed rate is a significant cutting 

parameter in different cutting conditions. Cutting material changes, process variables change, 



80 

environmental conditions change but the effect of feed rate is always prominent [8]. Figure 4.12 

shows the distribution of surface roughness with varying feed rate from 2 µm/rev to 12 µm/rev. 

This plots show that small feed rate gives better surface roughness and increasing feed rate 

diminishes the quality of the surface. 

 

Figure 4.12: Variation of Ra with feed rate 
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4.6 Artificial Neural Network Model for Prediction of Surface Roughness 

Artificial network networks are widely used in many applications such as control, forecasting, 

medicine, speech, data compression, pattern recognition, and power systems [122]. Neural 

network models provide an alternative approach to analyze the data, as they can reason patterns in 

the data. Artificial intelligence methods could have been used in the stages of optical lens 

manufacturing. Single point diamond turning is one of the basic manufacturing techniques used in 

the optical industry. Contact lens manufacturers must minimize cost and process time, and 

additionally, the product must comply with the required dimensions and high quality criteria for a 

better competition [122]. 

In this study, ANNs structure, 3-1-1, 3-2-1, 3-3-1 and 3-4-1 were tested for modeling and 

predicting surface roughness in SPDT. This means 1 node output layer, 1,2,3 and 4 node hidden 

layer, and 3 node input layer for input variables. This fully connected hierarchical network 

structure has an input layer, a hidden layer, and an output layer. The back-propagation learning 

algorithms Levenberg–Marquardt (LM) was used to update the parameters in feed forward single 

hidden layers. Neurons in the input layer correspond to cutting speed, depth of cut and feed rate. 

The output layer corresponds to surface roughness. Some parameters (i.e. the number of training 

and testing data, learning rate, number of hidden layers, and processing function used) affect the 

accuracy, reliability, and effectiveness of the neural network. The data are divided into two 

categories: training data and testing data. The training data are a random set of ten input samples 

from a total of 15 experimental findings. The testing data are the remaining five experimental 

findings, which does not intersect with the training data. Table 4.11 shows the input and target 

data set for the ANN modelling. 
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Table 4.11: Input and target data set for ANN modelling 

Run order 

Cutting speed 

(rpm) 

Feed rate 

(mm/min) 

Depth of cut 

(µm) Ra (nm) 

1 2100 2 10 18.8 

2 2100 7 25 6 

3 200 2 25 46 

4 4000 7 40 21.1 

5 2100 2 40 20.2 

6 2100 7 25 15 

7 200 7 40 447.6 

8 200 7 10 370.5 

9 4000 2 25 18.2 

10 2100 7 25 23.9 

11 4000 7 10 28.3 

12 2100 12 40 20.6 

13 2100 12 10 28.1 

14 200 12 25 1184.1 

15 4000 12 25 36.6 

 

The inputs and output were normalized before training the network since the parameters were in 

different ranges, these parameters were normalized within 0–1 ranges in order to prevent the 

simulated neurons from being driven too far into saturation. 

4.6.1 Normalization of Data 

The inputs and the output were normalized between 0 and 1 using equation 4.6. The 0 and 1 

correspond to the lowest and highest value in the subset respectively (Table 4.12). The 

normalization was done to achieve standardization of the data and reduce redundancy before 

feeding them into the network for training. 

𝑌𝑡 =
(𝑌0−𝑌𝑚𝑖𝑛)

(𝑌𝑚𝑎𝑥− 𝑌𝑚𝑖𝑛 )
                                                                      (4.6) 
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Where  𝑌𝑡= Normalized value of 𝑌0, 𝑌0- observed value, 𝑌𝑚𝑖𝑛- minimum observed value in the 

subset and 𝑌𝑚𝑎𝑥- maximum observed value in the subset. 

Table 4.12: Normalized input and target data set for ANN Modeling 

Run order Cutting speed 

(rpm) 

Feed rate 

(mm/min) 

Depth of cut 

(µm) Ra (nm) 

1 0.50 0.00 0.00 0.01 

2 0.50 0.50 0.50 0.00 

3 0.00 0.00 0.50 0.03 

4 1.00 0.50 1.00 0.01 

5 0.50 0.00 1.00 0.01 

6 0.50 0.50 0.50 0.01 

7 0.00 0.50 1.00 0.37 

8 0.00 0.50 0.00 0.31 

9 1.00 0.00 0.50 0.01 

10 0.50 0.50 0.50 0.02 

11 1.00 0.50 0.00 0.02 

12 0.50 1.00 1.00 0.01 

13 0.50 1.00 0.00 0.02 

14 0.00 1.00 0.50 1.00 

15 1.00 1.00 0.50 0.03 

 

The ANN model is designed depending on the normalized values above. The back-propagation 

based weight tuning was applied to model and predict the surface roughness. The network is 

trained by using Matlab (8.1.6) neural network toolbox. The training parameters used in the neural 

network are presented in table 4.13. Consequently, Liu et al. [123] proved that the sigmoidal 

function is easy to converge and provides fast learning speed using ANN model. Therefore, 

sigmoidal function is selected for the ANN model (equation 4.7). 

f =
1

1+ e−x                                                                                                           (4.7) 
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The error during the learning referred to as mean squared error (MSE) is calculated as follows: 

MSE =  ( 
1

N
∑ |ti − oi|

2
i )                                                                       (4.8) 

Where: N = number of samples, t = target value and o = output value 

Table 4.13: Training parameters used 

The number of layers 3 

The number of neurons on the layers Input: 3, Hidden: 1,2,3 and 4, Output: 1 

Learning rule Levenburg-Marquatt 

Activation function Log-sigmoid 

Mu 0.001 

Error goal 5.0002x10-5 

The normalization of data 0-1 

The number of iteration 10,000 

 

The back-propagation algorithm is used to adjust the weights of the hidden layer neurons. In this 

study, number of hidden layer neurons is varied from 1 to 4. Table 4.14 shows the MSE for 

different number of hidden neurons. The performances of these networks which have different 

number of neurons in hidden layers are shown in figure 4.13. As depicted by this figure, the best 

test results are obtained from the network which has 4 hidden neurons in the hidden layer. 

Therefore, single hidden layer with 4 neurons was selected for the prediction of surface roughness. 

Table 4.14 shows single hidden layer structure with 4 nodes produced the least MSE. 

Table 4.14: Mean square error using different number of hidden neurons 

Number of Hidden Neurons Mean square error (MSE) 

1 6.0698x10-5 

2 6.9635x10-5 

3 12.0436x10-5 

4 5.0002x10-5 
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Figure 4.13: Performance of ANNs with different hidden layer neurons 

The MSE of training of the selected ANN was about 5.0002x10-5 and its training took almost 7 

epochs to complete. The MSE of all the three groups when the early stopping technique was 

applied during the training of the neural network are presented in figure 4.14. 
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Figure 4.14: Results of the neural network training 

From the figure it is evident that validation and testing group MSEs are higher than that of the 

training group, as expected. Moreover, they have similar values which indicates that the proposed 

neural network possesses good generalization ability, thus being able to model the surface 

roughness. 

To compare the results clearly, a post-process operation is performed by using ‘postreg’ command 

of MATLAB. Postreg command post-processes the network training set by performing a linear 

regression between each element of the network response and the corresponding target. Where R 

is the regression value (R = 1 means perfect correlation) [124]. The post-regression results of 4 
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hidden neurons in the hidden layer is illustrated in the figure 4.15. The post-regression results show 

that the R values for training, validation and testing shows better prediction of surface roughness 

(R = 1). 

 

Figure 4.15: Post-regression results of 4 hidden neurons in single hidden layer 

Training of the neural network model was performed using 10 experimental data out of 15 data as 

explained in Section 4.4. The trained network model was tested using five experimental data points 

(experiment 11-15), which were not used in the training process. The results predicted from the 

ANN model are compared with those obtained by experimental test in table 4.15 for 5 experimental 

test sets. It can be seen from table 4.15 that ANN prediction is in good agreement with the 

experimental results.  
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Table 4.15: Comparison of ANN results with experimental findings (Experiment 11-15) 

Run Measured Ra (nm) ANN Predicted Ra 

(nm) 

Error (%) 

11 28.3 30.99 9.51 

12 20.6 10.34 49.81 

13 28.1 29.34 4.41 

14 1184.1 990.37 16.36 

15 36.6 32.46 11.31 

Then, Figure 4.16 compares the neural network surface roughness prediction with experimental 

test results for experiment 11-15 data sets. 

 

Figure 4.16: Comparison of the measured surface roughness and predicted surface roughness of 

ANN model 

It is found that the developed ANN model has good interpolation capability and can be used as an 

efficient predictive tool for surface roughness. Increasing the number of nodes increases the 

computational cost and decreases the error [110]. In this study, ANN structure shown in Figure 

4.17 is used for modeling and predicting surface roughness in turning operations. This fully 

connected hierarchical network structure has an input layer, a hidden layer, and an output layer. 
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Figure 4.17: ANN Structure 
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4.7 Comparison of ANN and RS Models for Surface Roughness 

In this section, the comparison between RSM and ANN modeling will be carried out. Both 

methods have been performed for the diamond turning of ONSI-56 polymer and prediction models 

have been obtained. In order to compare the modeling results of RSM and ANN with the 

experimental results. Five random factors (experiment 11-15) ware used. The performance criteria 

considered is the mean absolute percentage error (MAPE) 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑ |

𝑅𝑎,𝑖−𝑅𝑃
𝑎,𝑖

𝑅𝑎,𝑖
|𝑛

𝑖=1 ×100)                                              (4.9) 

Where 

MAPE = mean absolute percentage error, 𝑛 = the total number of measurements, 𝑖 = the estimated 

measurement for a specific run, 𝑅𝑎,𝑖 = the measured surface roughness for a specific run, 𝑅𝑎,𝑖
𝑝

= the 

predicted surface roughness for a specific run 

Table 4.16 shows the comparison results according to accuracy values of RS model and neural 

network model. Equation 4.7 is used to calculate the MAPE for each model. 

Table 4.16: Comparison of RSM and ANN with experimental results (experiment 11-15) 

Run order Experimental Ra (nm) RSM Predicted 

Ra (nm) 

ANN Predicted Ra 

(nm) 

11 28.3 25.03 30.99 

12 20.6 29.96 10.34 

13 28.1 29.96 29.34 

14 1184.1 1002.25 990.37 

15 36.6 22.87 32.46 

MAPE  23.29 18.28 

The prediction error of the ANN model for the surface roughness is 18.28%. The error rate has 

been calculated as 23.29% by RS model. Therefore, RS model has also made reasonable 

predictions of surface roughness. The results of the ANN model indicate it is much more robust 
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and accurate in estimating the values of surface roughness when compared with the response 

surface model. 

 

Figure 4.18: Comparison of experimental Ra, RSM and ANN Modeling 

It is clearly seen (Figure 4.18) that the proposed models are capable of predicting the surface 

roughness. Nevertheless, the ANN model estimates the surface roughness with high accuracy 

compared to the RS model. So, the proposed models can be used effectively to predict the surface 

roughness in diamond turning of ONSI-56 contact lens polymers. 
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4.8 Experimental Investigation of Triboelectric Wear in ONSI-56 Contact Lens Polymer 

4.8.1 Electrostatic Discharge (ESD) Experiment 

According to Gubbels [11], tribo-electric wear can occur due to significant electrostatic discharge 

and the occurrence of electric fields on polymer surfaces. This results in so-called Lichtenberg 

figures. Lichtenberg figures originate when a dielectric is irradiated with electrons. These electrons 

get trapped inside the material and accumulate. Research in the ultra-high precision of glassy 

polymers, identifies Lichtenberg wear patterns on the tool as yields resulting from significant static 

charging and discharging [125]. A Lichtenberg figure that damaged a diamond cutting tool during 

polymer turning is shown in figure 4.19. 

Nevertheless, during polymers machining, it has been established that the adhesion of the tool chip 

around the tool dictates the presence of an electrostatic force field [15]. This phenomenon known 

as tribo-electric charging is responsible for tool wear and poor surface finish. 

 

Figure 4.19: Lichtenberg figure on a diamond tool [11] originates from electric discharge 

This section will present measurements for determining the electrostatic discharge in diamond 

turning of ONSI-56 contact lens polymer. It can be expected that turning parameters, such as 

cutting speed, feed rate and depth of cut, will directly influence the statics during turning. Besides 

these turning parameters, the environmental effect of relative humidity and workpiece properties 

may also influence the amount of charging [11]. In this study, only the influence of cutting 

parameters on ESDs are considered. This study will present measurements that were performed to 

describe the tribo-electric tool wear in diamond turning of ONSI-56 contact lens polymers. This 

experimental study is aimed at investigating the tribo-electric charging in the UHPM of ONSI-56 
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contact lens, and evaluating the effects of cutting parameters such as feed rate, cutting speed and 

depth of cut. The electrostatic sensor and monitor were implemented to provide online 

measurements of the ESDs. The experiments were conducted based on the setup discussed in 

chapter 3. 

4.8.2 Response Surface Modeling 

Box–Behnken Design (BBD), the effective response surface method (RSM) with the lowest 

number of experiment was used to plan the experiment using Design Expert 7 software. RSM can 

be used for many of purposes such as analyzing of experimental data or response prediction, RSM 

can be considered to be helpful in predicting the statics value. The experimental setup is depicted 

in figure 4.20. While table 4.17 shows the experimental results for the empirical relationship 

between the response parameter (ESDs) and the cutting parameters (speed, feed, and depth of cut) 

used in this study.  

 

Figure 4.20: ONSI-56 Electrostatic discharge setup 

ESD Sensor 

C 

Diamond cutting tool ONSI-56 
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Table 4.17: Experimental results 

Run Order Cutting Speed 

(rpm) 

Feed Rate 

(mm/min) 

Depth of Cut 

(µm) 

Electrostatic 

Discharge (kV) 

1 2100 2 10 0.4107 

2 2100 7 25 0.571 

3 200 2 25 1.859 

4 4000 7 40 1.323 

5 2100 2 40 1.553 

6 2100 7 25 0.741 

7 200 7 40 14.296 

8 200 7 10 0.468 

9 4000 2 25 0.339 

10 2100 7 25 1.632 

11 4000 7 10 0.929 

12 2100 12 40 3.524 

13 2100 12 10 1.433 

14 200 12 25 4.619 

15 4000 12 25 1.363 

 

Also, figure 4.21 shows the series plots of the measured ESD. During the machining tests at speed 

of 200 rpm and 40 µm depth, tool–chip build-up was observed at the surface of the tool from 

experimental run 7 (ESD 14.296 kV). This was accounted to be as a result of continuous chip 

formation, which tangle around the workpiece and tool. 
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Figure 4.21: Series plots for ESD values 

4.8.3 Determination of Appropriate Polynomial Equation to Represent RSM Model 

The procedures for developing the electrostatics discharge models in this study have been well 

detailed by Alao [111]. According to Alao and Konneh [112], the development of RS models 

includes checking the response data for any transformation need, fitting of the input and output 

variables to know whether the relationship between them is linear, linear and two-factor interaction 

(2FI), second-order or higher-order function and investigating the p values. Design Expert 

software (7.1.6) version was used for analyzing the output data. To obtain an adequate model 

equation, response transformation check is necessary. This transformation is carried out using 

Box–Cox plotting technique available in Design Expert software. 

4.8.4 Response Transformation Check 

Based on the experimental results in table 4.17, the electrostatic discharge response ranges from 

0.339 kV to 14.296 kV. The ratio of maximum to minimum is: 
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However, a ratio greater than 10 usually indicates a transformation is required [113]. Therefore, a 

transformation is required for a ratio of 42.171. For this analysis, Box-Cox plotting technique is 

used for the selection of the transformed scale model. 

 

Figure 4.22: Box-Cox plot for transformed scale ESD 

Based on the Box-Cox plot (Figure 4.22), natural log transformation was selected, which produced 

a model of the form 

𝑦ʹ = Ln (y +  k)                 (4.11) 

In this research, a natural log transformation was used to determine a suitable polynomial equation 

to represent the relationships between the input parameters (cutting peed, feed rate and depth of 

cut) and the electrostatic discharge (output response) by carrying out sum of squares sequential 

model and lack of fit test shown in tables 4.18 and 4.19 respectively. The result from the sequential 

model indicate linear vs mean and 2FI vs linear approach, however the lack of fit test suggests a 

linear and 2FI approach. 
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Table 4.18: Sequential Model Sum of Squares for ESD 

Source Sum of 

squares 

df Mean 

Square 

F Value p-Value 

Prob>F 

Remark 

Mean vs 

Total 

1.23 1 1.23    

Linear vs 

Mean 

9.56 3 3.19 8.17 0.0038 suggested 

2FI vs 

Linear 

2.45 3 0.82 3.56 0.0670 suggested 

Quadratic vs 

2FI 

0.76 3 0.25 1.16 0.4106  

Cubic vs 

Quadratic 

0.48 3 0.16 0.54 0.7010 Aliased 

Residual 0.60 2 0.30    

Total 15.08 15 1.01    

 

Table 4.19: Lack of Fit Tests for ESD 

Source Sum of 

squares 

df Mean 

Square 

F Value p-Value 

prob>F 

Remark 

Linear 3.69 9 0.41 1.37 0.4913 Suggested 

2FI 1.24 6 0.21 0.69 0.6933 Suggested 

Quadratic 0.48 3 0.16 0.54 0.7010  

Cubic 0.000 0    Aliased 

Pure 

Error 

0.60 2 0.30    
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4.8.5 Electrostatic Discharge Model Determination 

Table 4.20 shows the statistical summary for each model that was output by Design Expert 

Software. A Linear and 2FI model were suggested, even though a linear model has lower R2 and 

adjusted-R2 (Adj-R2) values than a quadratic and cubic models. This is because the cubic model is 

aliased, which means that the effects of each variable that caused different signals become 

indistinguishable. For a linear relationship, the R2 and Adj-R2 values are 0.6902 and 0.6058, 

respectively. It is clear that the quadratic model is not adequate for the experimental data. The 2FI 

model was therefore selected to fit the experimental data. 

Table 4.20: Statistical summary for each model 

Source Std. 

Dev 

R-

Squared 

Adjusted 

R-

Squared 

Predicted 

R-

Squared 

PRESS Suggestion 

Linear 0.62 0.6902 0.6058 0.4158 8.09 Suggested 

2FI 0.48 0.8673 0.7679 6266 5.17 Suggested 

Quadratic 0.47 0.9219 0.7812 3438 9.09 Not adequate 

Cubic 0.55 0.9568 0.6976  + Aliased 

 

4.8.6 Analysis of Variance (ANOVA) for the Acquired ESD Model 

ANOVA of experimental data is always done to analyze statistically the relative significance of 

the models and its terms on the response. The ANOVA have been performed to check whether the 

model is adequate as well as to check the significance of the individual model coefficients. The 

Model F-value of 8.72 in table 4.21 implies the model is significant. There is only a 0.37% chance 

that a "Model F-Value" this large could occur due to noise. A p-value lower than 0.05 indicates 

that the model is statistically significant, whereas a value higher than 0.1000 indicates that the 

model is not significant [116]. 
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Table 4.21: ANOVA results for the acquired model 

 

In this case A, B, C and AC are significant model terms whereas AB and BC are insignificant 

model terms. However, the model can be improved by eliminating the terms that are not very 

significant even though table 4.22 shows high coefficient of determination R2 value of 0.8673 and 

Adj-R2 value of 0.7679. 

Table 4.22: Regression coefficient analysis 

 

 



100 

4.8.7 Electrostatic Discharge Model Modification 

After the significance of the parameters has been evaluated, the model was improved by 

eliminating the terms that are not very significant. The ANOVA results for the modified model 

describing the relationship between the statics and cutting parameters is shown in table 4.23 

Table 4.23: ANOVA results for acquired ESD model (only the significant terms) 

Source Sum of 

squares 

Degrees of 

Freedom 

Mean 

Square 

F- Value p-Value 

Prob˃F 

Characteristics 

Model 11.92 4 2.98 15.35 0.0003 Significant 

A-Speed 2.66 1 2.66 13.72 0.0041  

B-Feed 2.40 1 2.40 12.38 0.0056  

C-Depth 4.50 1 4.50 23.20 0.0007  

AC 2.35 1 2.35 12.12 0.0059  

Residuals 1.94 10 0.19    

Lack of Fit 1.34 8 0.17 0.56 0.7714 Not significant 

Pure Error 0.60 2 0.30    

Corr. Total 13.86 14     

 

ANOVA have been performed to check whether the modified model is adequate as well as to 

check the significance of the individual model coefficients. The Model F-value of 15.35 in table 

4.23 implies the modified model is significant. There is only a 0.03% chance that a "Model F-

Value" this large could occur due to noise. Values of “Prob>F” less than 0.05 indicate the model 

terms are significant. From the modified ANOVA table, it is clear that (based on p-value) the 

cutting speed (A), feed rate (B), depth of cut (C) and the interaction between speed and depth are 

the most sensitive factors that influence the electrostatics discharge. This implies that these factors 

have very large effects on ESD. The "Lack of Fit F-value" of 0.56 implies the Lack of Fit is not 

significant relative to the pure error.  There is a 77.14% chance that a "Lack of Fit F-value" this 

large could occur due to noise.  Non-significant lack of fit is good -- we want the model to fit. The 

lack of fit test of Fit value of 0.56 is not significant, indicating that all the data fit the model 
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adequately for this study. After determining the significant coefficients (at 95% confidence level), 

the final modified model was developed using only these coefficients and the final mathematical 

transformed scale 2FI model to estimate ESD is given by equation 4.12 and 4.13 below 

ln(𝐸𝑆𝐷) = −2.50654 + 3.69073×10−4𝑆 + 0.10958𝐹 + 0.10651𝐷 − (2.69050×10−5)𝑆𝐷          (4.12) 

The equation can be rewritten as 

(𝐸𝑆𝐷) = 𝑒[−2.50654 + 3.69073×10−4S + 0.10958F+0.10651D − (2.69050×10−5)SD]                                               (4.13)           

     

Where: ESD = Electrostatic discharge, D = Depth of cut, F = Feed rate and S = Cutting speed 

As can be seen from regression coefficient results (Table 4.24). The "Pred R-Squared" of 0.6706 

is in reasonable agreement with the "Adj R-Squared" of 0.8040. For models to be adequate and 

accurate, it is suggested that Adj-R2 should be greater or equal to 0.70 [117]. Adj-R2 of 0.8040 

indicate that the modified model is very significant. 

Table 4.24: Summary of regression analysis results 

Std.Dev. 0.44 R2 0.8600 

Mean 0.29 Adj-R2 0.8040 

C.V. % 154.12 Pred-R2 0.6706 

PRESS 4.56 Adeq-Precision 13.337 

 

"Adeq Precision" measures the signal to noise ratio.  A ratio greater than 4 is desirable.  The ratio 

of 13.337 indicates an adequate signal.  At the same time a relatively low value of the coefficient 

of variation (CV=154.12) indicates improved precision and reliability of the conducted 

experiments. Therefore, the modified model can be used to navigate the design space (ESD) for 

ONSI-56 contact lens polymers. 

The coefficient of determination (R2) is defined as the ratio of the explained variation to the total 

variation, and is a measure of the degree of fit [118]. Hence, Joglekar [119] suggested that a good 
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model fit should yield an R2 of at least 0.80. This means that the modified response model 

evaluated in this study can explain the reaction very well, with an R2 of 0.8600 and an Adj-R2 of 

0.8040 at a confidence level of 95% as shown in table 4.24. In addition, the model is very 

significant as is evident from its F-value (FModel = 15.35) and very low probability value (p = 

0.0003). A p-value lower than 0.05 indicates that the model is statistically significant, whereas a 

value higher than 0.1000 indicates that the model is not significant [116]. 

4.8.8 ESD Model Accuracy Check 

To obtain an adequate model, an accuracy check is necessary. The RS model accuracy was checked 

by comparing the predicted and experimental electrostatic discharge (ESDs). Table 4.25 shows the 

prediction accuracy for RS model. The RSM results demonstrate that the proposed model in this 

study is suitable for predicting the ESDs with an R2 of 0.8600. 
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Table 4.25: Comparison of measured and predicted ESD RS modelling 

Run Measured ESD 

(kV) 

RSM Predicted 

ESD (kV) 

Residuals (kV) Error (%) 

1 0.4107 0.364 0.0467 11.37 

2 0.571 1.336 -0.765 133.98 

3 1.859 1.363 0.496 26.68 

4 1.323 0.733 0.59 44.59 

5 1.553 1.632 -0.079 5.09 

6 0.741 1.336 -0.595 80.29 

7 14.296 10.805 3.491 24.42 

8 0.468 0.522 -0.054 11.54 

9 0.339 0.432 0.093 27.43 

10 1.632 1.336 0.296 18.14 

11 0.929 0.763 0.166 17.87 

12 3.524 4.855 -1.331 37.77 

13 1.433 1.088 0.345 24.08 

14 4.619 4.096 0.523 11.32 

15 1.363 1.297 0.066 4.84 

 Figure 4-23 shows the performance of RS model. 
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Figure 4.23: Comparison of measured and predicted ESD values for RS Model 

In addition, a normal plot of residuals between the normal probability (%) and the internally 

studentized residuals and the plot of residuals versus the predicted response was also obtained. In 

this way, the residuals can be checked to determine how well the modified model satisfies the 

assumptions of ANOVA, and the internally studentized residuals can be used to measure the 

standard deviations separating the experimental and predicted values [120]. The normal 

probability plot of the residuals for ESD shown in figure 4.24 reveals that the residuals are falling 

on the straight line, which means the errors are distributed normally [121].  
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Figure 4.24: Normal Probability plot of residuals in ESD RS modelling 

Figure 4-25 shows a plot of residuals versus predicted in ESD modelling. This indicates that the 

model possesses adequate normality of residuals and no constant error. 

 

Figure 4.25: Probability plot of residuals vs Predicted in ESD RS modelling 
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4.9 Determination of Significant Factors Influencing the Electrostatics Discharge 

In determining the cutting parameters influential to the ESD, the results from the modified 

ANOVA table 4.23 (Section 4.6.5) were studied. By checking the p values and F values in table 

4.23, it is clearly seen that all the model terms are significant with depth of cut having the highest 

degree of significance followed by the cutting speed and the interaction between depth of cut and 

cutting speed. However, feed rate has the lowest degree of significance on the electrostatics 

discharge. 

4.9.1 Effect of Depth of Cut 

The influence of depth of cut in diamond turning of ONSI-56 contact lens is illustrated in figure 

4.26. It can be clearly seen that the ESD values increases with an increase in depth of cut. This 

shows that ESD is directly proportional to depth of cut. It can be concluded that there is a simple 

linear relationship between ESD and depth of cut because an increase in depth of cut generates 

high ESD values. 

At low cutting speed and low feed rate (Figure 4.26), the increase in depth of cut generates high 

ESD values range from 𝑒−0.654 = 0.519 kV to 𝑒2.379 = 10.794 kV 

 

Figure 4.26: Variation of ESD with Depth of cut at low feed and low speed 
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Figure 4.27 Shows the variation of ESD and depth of cut at high cutting speed and high feed rate. 

In this case, an increase in depth of cut results in decrease of ESD values range from 𝑒0.274 = 1.315 

kV to 𝑒0.240 = 1.271 kV 

 

Figure 4.27:  Variation of ESD with depth of cut high feed and high speed 

During the experiment, an increase in the depth of cut, with constant cutting speed and feed rate, 

produces a thicker chip. The experiments that yielded the highest ESD values are shown below 

with a picture of the chips enclosed. During investigations, it was observed that some experiments 

resulted in accumulation of cut chips at the tool surface as shown in figure 4.28. These chips 

bundled up and formed a larger surface area of contact between the tool and polymer surface 

resulting in high ESD measurements. 
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Figure 4.28: High chips build up from experimental run 7 (ESD of 14.296 kV) 

 

 

Figure 4.29: ESD signals for experimental run 7 

During the machining tests at speed of 200 rpm and 40 µm depth, tool–chip build-up was observed 

at the surface of the tool (Experimental run 7). The results are, however, in agreement with the 

High chips 
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results of Olufayo and Abou-El-Hossein [7]. This was accounted to be as a result of continuous 

chip formation, which tangle around the workpiece and tool. Figure 4.29 shows the progression of 

an acquired ESDs. It can be seen that this results agree with those found by Gubbels [68]. 

4.9.2 Effect of Cutting Speed 

The effect of cutting speed is also analyzed during the experiments. According to modified 

ANOVA (Section 4.6.5), cutting speed is the second important parameter for ESD. One factor plot 

also shows that ESD values get bigger with decreasing cutting speed. Figure 4.30 illustrates that 

ESD values decrease from 𝑒2.927 = 18.6715 kV to 𝑒0.240 = 1.2712 kV with an increase in cutting 

speed. 

 

Figure 4.30: Variation of ESD with cutting speed at high feed and high depth 

4.9.3 Effects of Feed Rate 

Feed rate was another controlled parameter during this study. Depending on the effect test results, 

feed rate turned out to be the least important parameter when compared to depth of cut and cutting 

speed.  Figure 4.31 shows the change of transformed scale ESD with feed rate for constant cutting 

speed and depth of cut. Increase in feed rate generates high ESD values range from 𝑒−0.856 = 

0.4249 kV to 𝑒0.240 = 1.2712 kV 
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Figure 4.31: Variation of ESD with Feed rate at high speed and depth 

4.9.4 Interaction Effect 

There exists an interactive effect between cutting speed and depth of cut from modified ANOVA 

table (Section 4.6.5). The authentication of this interaction is shown in figure 4.32. As can be seen 

in figure. 4.32, at low depth of cut, increase in cutting speed, a negligible amount of static charges 

increased. However, at higher levels of depth of cut an opposite reaction was seen with a decrease 

in static generation. This shows there is an interaction between the cutting speed and depth of cut 

and these two parameters combine together to influence the generation of electrostatic charge. 

Figure 4.33 shows the 3D view of the interaction between cutting speed and depth of cut. Figure 

4.34 shows the contour plot for the combined influence of cutting speed and depth at 7 mm/min 

feed rate on ESD. 
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Figure 4.32: Behavior of ESD to interaction between depth and speed 

 

Figure 4.33: 3D view of the interaction between depth of cut and cutting speed 
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Figure 4.34: Contour plot for the combined influence of depth and cutting speed 
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4.10 Artificial Neural Network Model for Prediction of Electrostatic Discharge 

The cutting parameters are the inputs and the electrostatic discharge is the output. The data are 

divided into two categories: training data and testing data. The training data are a random set of 

ten input samples from a total of 15 experimental findings. The testing data are the remaining five 

experimental findings, which does not intersect with the training data. The inputs and output were 

normalized before training the network since the parameters were in different ranges, these 

parameters were normalized within 0–1 ranges in order to prevent the simulated neurons from 

being driven too far into saturation. Table 4.26 shows the normalized ESD input and target data 

set for ANN modelling of ESD. The network is trained by using the Levenberg-Marquardt (LM) 

training function. Liu et al. [123] has proved that the sigmoidal function is easy to converge and 

provides fast learning speed using ANN model. Therefore, sigmoidal function is selected for the 

ANN model (equation 4.14).  Table 4.27 Shows the training parameters used in the Neural 

network. 

f =
1

1+ e−x
                                                           (4.14) 
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Table 4.26: Normalized Input and Target Data for ANN Model 

Run 

order 

Cutting speed 

(rpm) 

Feed rate 

(mm/min) 

Depth of cut 

(µm) ESD (kV) 

 

1 0.50 0.00 0.00 0.01  

2 0.50 0.50 0.50 0.02  

3 0.00 0.00 0.50 0.11  

4 1.00 0.50 1.00 0.07  

5 0.50 0.00 1.00 0.09  

6 0.50 0.50 0.50 0.03  

7 0.00 0.50 1.00 1.00  

8 0.00 0.50 0.00 0.01  

9 1.00 0.00 0.50 0.00  

10 0.50 0.50 0.50 0.09  

11 1.00 0.50 0.00 0.04  

12 0.50 1.00 1.00 0.23  

13 0.50 1.00 0.00 0.08  

14 0.00 1.00 0.50 0.31  

15 1.00 1.00 0.50 0.07  

 

Table 4.27: Training parameters used 

The number of layers 3 

The number of neurons on the layers Input: 3, Hidden:1,2,3 and 4, Output: 1 

Learning rule Levenburg-Marquatt 

Activation function Log-sigmoid 

Mu 0.001 

Error goal 2.779x10-5 

The normalization of data 0-1 

The number of iteration 1000 
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The back-propagation algorithm is used to adjust the weights of the hidden layer neurons. In this 

study, the number of hidden layer neurons is varied from 1 to 4. Table 4.28 shows single hidden 

layer structure with 4 nodes produced the least MSE.  

Table 4.28: Mean square error using different number of hidden neurons 

Number of Hidden Neurons Mean square error (MSE) 

1 117x10-5 

2 7.686x10-5 

3 26.8x10-5 

4 2.779x10-5 

As shown in figure 4.35, the best test result is obtained from the network which has 4 hidden 

neurons in the hidden layer. Therefore, Single hidden layer with 4 neurons is used for prediction 

of electrostatic discharge. 
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Figure 4.35 Performance of ANN with different hidden layer neurons 

Training of the neural network model was performed using 10 experimental data out of 15 data as 

explained in Section 4.8. The trained network model was tested using five experimental data points 

(experiment 11-15), which were not used in the training process. The results predicted from the 

ANN model are compared with those obtained by experimental test in table 4.29 for 5 experimental 

test sets. It is seen from table 4.26 that ANN prediction is in good agreement with the experimental 

results.  
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Table 4.29: Comparison of ANN results with experimental findings (Experiment 11-15) 

Run Measured ESD 

(kV) 

ANN Predicted 

ESD (kV) 

Error (%) 

11 0.929 1.1384 22.54 

12 3.524 3.8059 7.99 

13 1.433 1.5968 11.43 

14 4.619 4.3726 5.33 

15 1.363 1.3076 4.06 

 

Then, figure 4.36 compares the neural network ESDs prediction with experimental test results for 

experiment 11-15 data sets. In this study, ANN structure shown in Figure 4.37 is used for modeling 

and predicting electrostatic discharge in turning operations. This fully connected hierarchical 

network structure has an input layer, a hidden layer, and an output layer. 
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Figure 4.36: Comparison of measured and predicted data of the electrostatic discharge 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5

E
S

D
 (

k
V

)

Run order

Measured ESD (kV) ANN Predicted ESD (kV)



119 

 

Figure 4.37: ANN Structure 
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4.10.1 Comparison of ANN and RSM Models for ESD 

In this section, the comparison between RSM and ANN modeling will be carried out. Both 

methods have been performed for the diamond turning of ONSI-56 polymer and prediction models 

have been obtained. To compare the modeling results of RSM and ANN with the experimental 

results, five random factors (experiment 11-15) are used. The performance criteria considered is 

the mean absolute percentage error (MAPE). Equation 4.15 is used to calculate the MAPE for the 

models. 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑ |

𝑅𝑎,𝑖−𝑅𝑃
𝑎,𝑖

𝑅𝑎,𝑖
|𝑛

𝑖=1 ×100)                        (4.15) 

Where: MAPE = mean absolute percentage error, 𝑛 = the total number of measurements, 𝑖 = the 

estimated measurement for a specific run, 𝑅𝑎,𝑖 = the measured electrostatic discharge for a specific 

run, 𝑅𝑎,𝑖
𝑝

= the predicted electrostatic discharge for a specific run 

Table 4.30 shows the ESDs comparison according to the accuracy values of RS model and neural 

network model. 

Table 4.30: Comparison of ESD experimental values with predicted RSM and ANN 

Run order Experimental ESD 

(kV) 

RSM Predicted 

ESD (kV) 

ANN Predicted ESD 

(kV) 

11 0.929 0.763 1.1384 

12 3.524 4.855 3.8059 

13 1.433 1.088 1.5968 

14 4.619 4.096 4.3726 

15 1.363 1.297 1.3076 

MAPE  19.18 10.27 

 

From table 4.30, the prediction error of the RSM model for the ESD is 19.18%. The error rate has 

been calculated as 10.27% by ANN prediction model. The results of the ANN model indicate it is 
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much more robust and accurate in estimating the values of ESD when compared with the response 

surface model. 

 

Figure 4.38: Comparison of experimental ESD, with RSM and ANN Models 

It is clearly seen (Figure 4.38) that the ANN model estimates the ESD with high accuracy 

compared to the RSM model. So, the proposed models can be used effectively to predict the 

electrostatic discharge in diamond turning of ONSI-56 contact lens polymers. 
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4.11 Summary of Results 

The objectives of this research work were aimed at machining ONSI-56 contact lens polymers to 

optical quality and analyze the surface roughness and electrostatic discharge for saving cost and 

time for high production rates. The effect of feed rate, depth of cut, and the spindle speed on surface 

roughness of machined ONSI-56 specimens were experimentally investigated. Cutting speed is 

found to be the most dominant factor during finish turning of ONSI-56. RSM and ANN models 

have been used to observe the influence of process parameters and predict the surface roughness.  

However, during electrostatics evaluation, a similar RSM and ANN models were also used to 

generate predictive models for ESDs with respect to the cutting speed, feed rate and depth of cut. 

Depth of cut is found as the most dominant factor.  Results of the ESD shows that increase in depth 

of cut generates high ESD values. 
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CHAPTER FIVE 

5 CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction   

In this research, the overall aim is to machine ONSI-56 contact lens polymers to optical quality 

and analyze the surface roughness and electrostatic discharge for saving cost and time for high 

production rates. This chapter concludes the findings in the research and highlights suggested 

recommendations for further improvements on the research. 

5.2 Conclusions 

In this dissertation, finish cutting conditions of ONSI-56 with a monocrystalline diamond tool 

were investigated. The effect of feed rate, depth of cut, and the spindle speed on surface roughness 

of machined ONSI-56 specimens were experimentally investigated. Cutting speed is found to be 

the most dominant factor during finish turning of ONSI-56; and the square of spindle speed, feed 

rate, and the interaction between feed and speed have followed, respectively. Box-Behnken RSM 

and ANN models have been used to observe the influence of process parameters and predict the 

surface roughness. The best average surface finish is achieved as 6 nm. The optimal conditions for 

the best Ra = 6 nm were found to be at the feed rate of 7 µm/rev, cutting speed of 2100 rpm and 

depth of cut of 25 µm. Whereas the poor Ra = 1184.1 nm was achieved at low speed of 200 rpm, 

high feed rate of 12 µm/rev and moderate depth of cut 25 µm.  Analysis of variance (ANOVA) 

showed that the transformed scale model effectively interpreted the experimental data with 

coefficients of determination of R2 = 0.89 and adjusted R2 = 0.84. the prediction error of the RSM 

model for the surface roughness is 23.29%. The error rate has been calculated as 18.28% by ANN 

prediction model. 

Whereas during electrostatics evaluation, a similar RSM and ANN models were also used to 

generate predictive models for ESDs with respect to the cutting speed, feed rate and depth of cut. 

Depth of cut is found as the most dominant factor followed by cutting speed, feed rate and the 

interaction between depth and speed.  Results of the ESD shows that increase in depth of cut 

generates high ESD values. Analysis of variance (ANOVA) showed that the transformed scale 

model effectively interpreted the experimental data with coefficients of determination of R2 = 0.86 
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and adjusted R2 = 0.80. the prediction error of the RSM model for the surface roughness is 19.18%. 

The error rate has been calculated as 10.27% by ANN prediction model. 

It is highly recommended that a feed rate less than 7 µm/rev, depth of cut less than 25 µm and a 

spindle speed less than 2100 rpm are to be chosen as cutting parameters in order to obtain high 

quality ONSI-56 surfaces having average surface roughness below 10 nm. 
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5.3 Recommendations 

In this study, monocrystalline diamond cutting tool was used. Alternative diamond tools (e.g. 

polycrystalline) can also be tried for finish cutting of ONSI-56 so that the cost of production can 

be minimized without sacrificing surface quality. Dry cutting conditions is used during all the 

experiments. Pressurized cutting fluid like kerosene can also be examined for finish turning of 

ONSI-56. Turning parameters such as cutting speed, feed rate and depth of cut directly influence 

statics values, besides these turning parameters, the environmental effect of relative humidity and 

workpiece properties may also influence the amount of charging. Relative humidity variation can 

also be used to see the effects on the statics values. During the experiments, tool parameters like 

rake angle and clearance angle were not varied, effects of these parameters can also be analyzed 

to obtain optimum surface quality. 
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APPENDIX A: TECHNICAL SPECIFICATIONS OF SINGLE POINT DIAMOND 

TURNING MACHINE 

Table A-1 Technical Specifications of Precitech Nanoform 250 Ultragrind [126] 
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APPENDIX B: TECHNICAL SPECIFICATIONS OF ELECTROSTATIC SENSOR AND 

ESD MONITOR SERIES IZE11 [97] 

 

 

Figure B.1 Electrostatic sensor 
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Figure B.2 Electrostatic discharge monitor 
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APPENDIX C: LABVIEW SOFTWARE DESIGN 
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APPENDIX D: SOME MATLAB CODES 

function createfigure(X1, YMatrix1, X2, Y1, X3, Y2, X4, Y3) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, X3, Y2, X4, Y3) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  X3:  vector of x data 

%  Y2:  vector of y data 

%  X4:  vector of x data 

%  Y3:  vector of y data 

 %  Auto-generated by MATLAB on 15-Nov-2016 17:08:02 

 % Create figure 

figure1 = figure('Tag','TRAINING_PLOTPERFORM','NumberTitle','off',... 

    'Name','Neural Network Training Performance (plotperform), Epoch 8, Minimum 

gradient reached.');  

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on'); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 8]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[9e-06 0.11]); 
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hold(axes1,'all'); 

 % Create multiple lines using matrix input to semilogy 

semilogy1 = semilogy(X1,YMatrix1,'Parent',axes1,'LineWidth',2); 

set(semilogy1(1),'Color',[0 0 1],'DisplayName','Train'); 

set(semilogy1(2),'Color',[0 0.8 0],'DisplayName','Validation'); 

set(semilogy1(3),'Color',[1 0 0],'DisplayName','Test')  

% Create semilogy 

semilogy(X2,Y1,'Parent',axes1,'LineStyle',':','Color',[0 0.48 0],... 

    'DisplayName','Best'); 

 % Create semilogy 

semilogy(X3,Y2,'Parent',axes1,'MarkerSize',16,'Marker','o','LineWidth',1.5,..

. 

    'LineStyle','none',... 

    'Color',[0 0.48 0]); 

% Create semilogy 

semilogy(X4,Y3,'Parent',axes1,'LineStyle',':','Color',[0 0 0]); 

 % Create title 

title('Best Validation Performance is 1.4933e-05 at epoch 5',... 

    'FontWeight','bold',... 

    'FontSize',12); 

 % Create ylabel 
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ylabel('Mean Squared Error  (mse)','FontWeight','bold','FontSize',12); 

 % Create xlabel 

xlabel('8 Epochs','FontWeight','bold','FontSize',12); 

 % uicontrol currently does not support code generation, enter 'doc uicontrol' 

for correct input syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' 

for more information 

% uicontrol(...); 

% Create legend 

legend(axes1,'show'); 

 function createfigure(X1, Y1, Y2, Y3) 

%CREATEFIGURE(X1, Y1, Y2, Y3) 

%  X1:  vector of x data 

%  Y1:  vector of y data 

%  Y2:  vector of y data 

%  Y3:  vector of y data 

 %  Auto-generated by MATLAB on 15-Nov-2016 17:09:49 

 % Create figure 

figure1 = figure('Tag','TRAINING_PLOTTRAINSTATE','NumberTitle','off',... 

    'Name','Neural Network Training Training State (plottrainstate), Epoch 8, 

Minimum gradient reached.'); 

 % uicontrol currently does not support code generation, enter 'doc uicontrol' 

for correct input syntax 
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% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' 

for more information 

 % uicontrol(...); 

 % Create subplot 

subplot1 = subplot(3,1,1,'Parent',figure1,'YScale','log','YMinorTick','on',... 

    'XTickLabel',''); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(subplot1,[0 8]); 

box(subplot1,'on'); 

hold(subplot1,'all'); 

 % Create semilogy 

semilogy(X1,Y1,'Parent',subplot1,'MarkerFaceColor',[1 0 0],'LineWidth',2);  

% Create ylabel 

ylabel('gradient');  

% Create title 

title('Gradient = 2.0054e-11, at epoch 8'); 

  

% Create subplot 

subplot2 = subplot(3,1,2,'Parent',figure1,'YScale','log','YMinorTick','on',... 

    'XTickLabel',''); 

%% Uncomment the following line to preserve the X-limits of the axes 
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% xlim(subplot2,[0 8]); 

box(subplot2,'on'); 

hold(subplot2,'all'); 

 % Create semilogy 

semilogy(X1,Y2,'Parent',subplot2,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

% Create ylabel 

ylabel('mu');  

% Create title 

title('Mu = 1e-10, at epoch 8');  

% Create subplot 

subplot3 = subplot(3,1,3,'Parent',figure1); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(subplot3,[0 8]); 

box(subplot3,'on'); 

hold(subplot3,'all');  

% Create plot 

plot(X1,Y3,'Parent',subplot3,'MarkerFaceColor',[1 0 0],'Marker','diamond',... 

    'LineWidth',1,... 

    'LineStyle','none');  

% Create ylabel 

ylabel('val fail');  
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% Create xlabel 

xlabel('8 Epochs');  

% Create title 

title('Validation Checks = 3, at epoch 8'); 

  

 

function createfigure(X1, YMatrix1, X2, Y1, X3, YMatrix2, X4, X5, YMatrix3, X6, 

X7, YMatrix4, X8) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, X3, YMATRIX2, X4, X5, YMATRIX3, X6, X7, 

YMATRIX4, X8) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  X3:  vector of x data 

%  YMATRIX2:  matrix of y data 

%  X4:  vector of x data 

%  X5:  vector of x data 

%  YMATRIX3:  matrix of y data 

%  X6:  vector of x data 

%  X7:  vector of x data 

%  YMATRIX4:  matrix of y data 
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%  X8:  vector of x data 

 %  Auto-generated by MATLAB on 15-Nov-2016 17:10:47 

 % Create figure 

figure1 = figure('Tag','TRAINING_PLOTREGRESSION','NumberTitle','off',... 

    'Name','Neural Network Training Regression (plotregression), Epoch 8, 

Minimum gradient reached.'); 

 % uicontrol currently does not support code generation, enter 'doc uicontrol' 

for correct input syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' 

for more information  

% uicontrol(...);  

% Create subplot 

subplot1 = subplot(2,2,1,'Parent',figure1,'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(subplot1,[0 0.31]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(subplot1,[0 0.31]); 

box(subplot1,'on'); 

hold(subplot1,'all');  

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 % Create ylabel 
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ylabel('Output ~= 0.96*Target + 0.0027','FontWeight','bold','FontSize',12); 

% Create title 

title('Training: R=0.99858','FontWeight','bold','FontSize',12); 

 % Create multiple lines using matrix input to plot 

plot1 = plot(X1,YMatrix1,'Parent',subplot1); 

set(plot1(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot1(2),'LineWidth',2,'DisplayName','Fit')  

% Create plot 

plot(X2,Y1,'Parent',subplot1,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

% Create legend 

legend1 = legend(subplot1,'show'); 

set(legend1,'Location','NorthWest'); 

% Create subplot 

subplot2 = subplot(2,2,2,'Parent',figure1,'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(subplot2,[0.00457411940378739 0.301184165438277]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(subplot2,[0.00457411940378739 0.301184165438277]); 

box(subplot2,'on'); 
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hold(subplot2,'all'); 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

% Create ylabel 

ylabel('Output ~= Inf*Target + -Inf','FontWeight','bold','FontSize',12); 

% Create title 

title('Validation: R=0','FontWeight','bold','FontSize',12); 

% Create multiple lines using matrix input to plot 

plot2 = plot(X3,YMatrix2,'Parent',subplot2); 

set(plot2(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot2(2),'LineWidth',2,'Color',[0 1 0],'DisplayName','Fit'); 

% Create plot 

plot(X4,Y1,'Parent',subplot2,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

% Create legend 

legend2 = legend(subplot2,'show'); 

set(legend2,'Location','NorthWest'); 

% Create subplot 

subplot3 = subplot(2,2,3,'Parent',figure1,'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 
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% xlim(subplot3,[0.00457411940378739 0.37]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(subplot3,[0.00457411940378739 0.37]); 

box(subplot3,'on'); 

hold(subplot3,'all'); 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

% Create ylabel 

ylabel('Output ~= 0.013*Target + 0.0061','FontWeight','bold','FontSize',12);  

% Create title 

title('Test: R=1','FontWeight','bold','FontSize',12); 

% Create multiple lines using matrix input to plot 

plot3 = plot(X5,YMatrix3,'Parent',subplot3); 

set(plot3(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot3(2),'LineWidth',2,'Color',[1 0 0],'DisplayName','Fit'); 

% Create plot 

plot(X6,Y1,'Parent',subplot3,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

% Create legend 

legend3 = legend(subplot3,'show'); 
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set(legend3,'Location','NorthWest') 

% Create subplot 

subplot4 = subplot(2,2,4,'Parent',figure1,'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(subplot4,[0 0.37]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(subplot4,[0 0.37]); 

box(subplot4,'on'); 

hold(subplot4,'all')  

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

% Create ylabel 

ylabel('Output ~= 0.38*Target + 0.011','FontWeight','bold','FontSize',12); 

% Create title 

title('All: R=0.58343','FontWeight','bold','FontSize',12);  

% Create multiple lines using matrix input to plot 

plot4 = plot(X7,YMatrix4,'Parent',subplot4); 

set(plot4(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot4(2),'LineWidth',2,'Color',[0.4 0.4 0.4],'DisplayName','Fit'); 

% Create plot 

plot(X8,Y1,'Parent',subplot4,'Marker','o','LineStyle','none',... 
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    'DisplayName','Data',... 

    'Color’, [0 0 0])  

% Create legend 

legend4 = legend(subplot4,'show'); 

set(legend4,'Location','NorthWest'); 

  

 

 

 


