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INfroduction Methods

Understanding the effect of electric fields on the thermal stability and phase transitions of We simulate the TIP4P/ICE' water model using GROMACS, The CNT expressions for the critical cluster size (N.) and

water could have potential applications in the food industry, cryopreservation, and in the NpT ensemble, at P =1 bar. We compute T,, by the nucleationrate (J) are: " :':w::z“zg“w:w,
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environmental science. In this work, we investigate the effect of a static electric field on the means of direct coexistence simulations. 3 n s at g gty Py Syt
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melting temperature (T,) ice nucleation and ice growth rate of two phases of ice, Nc — YR s S aa
hexagonal ice (Ih) and ferroelectric cubic ice (Icf), for the TIP4P/ICE water model. By means 3p§ |Au|3 , xgw:w:
of direct coexistence simulations, we establish that T, of Ice Ih is shifted toward lower Rean e ettt s ety
values, whereas T . of Ice Icf grows, becoming the most stable ice phase for sufficiently large |A | *"'*“; :ng::gww
values of the applied electric field. We also investigate ice nucleation for both ice phases ] = U f+,0 exp e %@:u“
under an external electric field and find that, for a given supercooling with respect to T, A oA b g g L oo SRS S O SRR 67'[kBTNC f
while the field slows down the nucleation rate of ice |h significantly, it barely affects that of z° > X N
ice Icf, due fo the enhanced ability of water molecules to orient favorably along the For the calculation of the ice-water interfacial free

direction of the field in the latter phase. In terms of absolute temperature, overall ice In order to calculate the nucleation rate, we employ the energy (y) at coexistence, we use the Mold Integration
formation is promoted by the electric field because it increases the melting point of ice Icf. seeding technique?? that combines Classical Nucleation method*, by which we compute the reversible work AG =
Finally, we show how the electric field slows down the crystal growth of Ice Ih and increases Theory (CNT) and numerical calculations to establish the 24y needed to induce the formation of a crystal slab
that of Ice Icf by a factor of about two. temperature at which a crystalline cluster is critical. embedded in liquid water.

Results Conclusions
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