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Abstract  

Purpose: The purpose was to identify the combined influence of dehydration, muscle damage, 

and exertional hyperthermia on biological markers of acute kidney injury and renal function.  We 

also investigated the effects of performing muscle damaging exercise during mild hypohydration 

on muscle damage biomarkers and muscular strength recovery. Methods: Eighteen 

recreationally-active males (age 24 ± 5 y, body fat 17.3 ± 6.2%) completed a familiarization visit 

and two experimental trials separated by ≥28 days. The two experimental conditions consisted of 

either euhydration (EU; maintaining hydration, -1.2 ± 0.8%) or hypohydration (HY; restricting 

fluid consumption for 24 hours prior to and during the trial, -4.4 ± 1.9%).  Participants completed 

a unilateral eccentric knee flexion muscle damaging protocol, 60-minute treadmill exercise in the 

heat, 30-minute passive recovery, and a rehydrated 24-h follow-up visit, respectively.  Results: 

Strength was reduced across time independent of trial for isometric strength at 70° (P<0.001), 

isometric strength at 90° (P=0.001), and isokinetic strength at 60°·sec-1 (P=0.001).  Serum 

creatine kinase increased regardless of trial (P<0.001), with the 24-h follow-up greater (grand 

mean; 58.7 ± 25.1 U/L) than at baseline (grand mean; 35.7 ± 23.1 U/L, P<0.001) and post-

exercise (grand mean; 51.6 ± 23.2 U/L, P=0.009). Percent change in plasma neutrophil 

gelatinous associated lipocalin was greater in the HY trial post-exercise (EU 28.0 ± 15.2%, HY 

41.8 ± 17.5%, P<0.001), but not at 24-h follow-up (P=0.39).  Serum creatinine was increased in 

the HY trial regardless of time (EU 0.97 ± 0.14, HY 1.04 ± 0.15, mg/dL, P=0.025).  Urine 

NGAL and urine creatinine were also elevated in the HY trial pre-exercise and post-exercise (all, 

P<0.05) but were returned to EU levels by 24-h follow-up (all, P>0.05). Conclusions: We 

demonstrated no significant impact of hydration status when performing muscle damaging 

exercise, followed by exercise in the heat, on indices of muscle damage recovery.  Exercise in 



 
 

the heat with muscle damage increased physiological and renal strain when HY, but the 

rehydration protocol ameliorated differences between trials by the 24-h follow-up. These 

findings highlight the importance of proper fluid intake following exercise to mitigate renal 

stress.
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I.  Introduction 

 Exposure to heat stress yields a spectrum of responses ranging from positive 

cardiovascular adaptations (e.g. plasma volume expansion, improved vascular function) to the 

potential life-threatening risk of heat illness (e.g. exertional heat stroke) (Casa et al., 2015a; 

Epstein & Roberts, 2011; Laukkanen, Khan, Zaccardi, & Laukkanen, 2015; Lorenzo, Halliwill, 

Sawka, & Minson, 2010; Lorenzo & Minson, 2010; Nadel, Pandolf, Roberts, & Stolwijk, 1974; 

Patterson, Stocks, & Taylor, 2004; Xiang, Hansen, Pisaniello, & Bi, 2015).  When exposed to 

heat stress, increases in skin blood flow and sweating occur to maintain thermoregulatory 

homeostasis, leading to reductions in splanchnic and renal blood flow (Hohimer, Hales, Rowell, 

& Smith, 1983; Rowell, 1974; Sawka, Leon, Montain, & Sonna, 2011).  The reductions in blood 

flow to vital organs at rest and during exercise in the heat are often transient attenuations in 

perfusion, resulting in minor functional alterations as evidenced by a return to baseline function 

shortly after exposure (e.g. within hours) (Junglee et al., 2013; Melin et al., 1997; Radigan & 

Robinson, 1949).  However, heat stress is often experienced in combination with other 

physiological challenges, such as dehydration and muscle damage.  Hypohydration, muscle 

damage, and environmental heat stress are commonly experienced in athletic, military, and 

occupational settings (Armstrong et al., 2010; Godek, Bartolozzi, Burkholder, Sugarman, & 

Dorshimer, 2006; Johnson et al., 2016; Knochel, Dotin, & Hamburger, 1974; Meade, Lauzon, 

Poirier, Flouris, & Kenny, 2015; Poirier et al., 2015; Schlader et al., 2017; Schrier et al., 1970; 

Smoot, Cavanaugh, Amendola, West, & Herwaldt, 2014; Yeargin et al., 2010).  The combined 

effects of these stressors may compromise renal function and increase acute kidney injury risk, 

however, long term consequences remain unknown (Johnson et al., 2016; Junglee et al., 2013; 

Schrier et al., 1970; Smith, Robinson, & Pearcy, 1952).   
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Adequate perfusion of the renal vasculature is vital for maintaining optimal kidney 

function (e.g. fluid homeostasis and filtration of waste products from the blood).  Reductions in 

renal blood flow may occur in response to a variety of physiological and thermoregulatory 

challenges, such as exercise (Tidgren, Hjemdahl, Theodorsson, & Nussberger, 1991), heat stress 

(Minson, Wladkowski, Cardell, Pawelczyk, & Kenney, 1998), or hypohydration (Melin et al., 

1997).  Schlader et al. (2017) recently found greater increases in biomarkers of renal stress with 

longer duration treadmill exercise in the heat.  Preliminary field work from our laboratory 

(unpublished) has investigated the renal responses to a 100 mile or 100 km cycling event in the 

heat (22 – 34°C) in recreational riders (age 52 ± 9 y) completing the race in ~5.7 hours.  We 

demonstrated significant elevations in the acute kidney injury biomarker neutrophil gelatinase 

associated lipocalin (NGAL), as well as increases in the renal function biomarker, serum 

creatinine, immediately following the ride.  Bongers et al. (2017) also showed elevations in 

urinary markers of renal stress after one and three days of long distance walking, however, these 

increases were relatively low and likely not indicative of serious complications.  The exercise in 

this study was walking, therefore the intensity (average heart rate = 112 bpm) may not have been 

severe enough to induce reductions in renal perfusion and subsequent kidney stress.  Studies of 

marathon (McCullough et al., 2011) and ultramarathon runners (Hoffman & Weiss, 2016; Lippi 

et al., 2012; Skenderi, Kavouras, Anastasiou, Yiannakouris, & Matalas, 2006) have also revealed 

significant elevations in biomarkers of muscle damage and acute kidney injury immediately post-

race.  Interestingly, McCullough et al. (2011) demonstrated that 24 hours post-race, NGAL and 

creatinine had returned to near-baseline levels.  Hoffman and Weiss (2016) reported similar renal 

stress responses during a subsequent ultramarathon, importantly noting that these individuals did 

not appear to experience lasting effects from the first ultramarathon.  Thus, stress induced during 
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the marathon may only transiently alter renal function.  These findings suggest mild acute kidney 

injury and reduced renal function may also be related to the duration of the exposure to 

exertional hyperthermia.   

Melin et al. (1997) demonstrated significant reductions in creatinine clearance (a marker 

of renal function) with dehydration compared to a euhydrated control during treadmill walking in 

the heat.  Reductions in plasma volume with hypohydration lead to blood volume attenuations, 

which can increase cardiovascular strain and compromise thermoregulation (González-Alonso, 

Mora-Rodríguez, & Coyle, 2000).  Hypohydration with concomitant exercise in the heat 

challenges thermoregulation and performance due to the competition for blood flow between 

active skeletal muscle and the skin for heat dissipation (Casa et al., 2010; González-Alonso, 

Calbet, & Nielsen, 1998; González-Alonso et al., 1999).  Thus, to compensate for increased 

demand for blood flow in the cutaneous vasculature, blood flow is further reduced to inactive 

tissues (i.e. splanchnic and renal vasculature), potentially compromising function in these areas.   

 Heat stress, hypohydration, and muscle damage are factors commonly found in preseason 

athletic practices, such as in American football (Yeargin et al., 2010).  Smoot et al. (Smoot et al., 

2014) demonstrated elevated serum creatine kinase, a marker of muscle damage, throughout 

preseason football practices in NCAA Division I football players.  These findings have been 

further confirmed in several observational studies of offseason, pre-season, and in-season play as 

well (Ehlers, Ball, & Liston, 2002; J. R. Hoffman, Kang, Ratamess, & Faigenbaum, 2005; 

Kraemer et al., 2013; Kraemer et al., 2009; Smoot et al., 2013).  Severe skeletal muscle damage 

(i.e. exertional rhabdomyolysis) may lead to acute kidney injury due to the nephrotoxic effects of 

intracellular contents (i.e. myoglobin) entering the circulation from skeletal muscle cell 

breakdown.  However, in settings of optimal hydration and thermoneutral environmental 
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temperatures, muscle damage does not appear to alter renal function.  Therefore, the implications 

for sustained mild muscle damage throughout preseason practices are not yet known.   

Athletes also often report to activities in a water conserving state (i.e. sub-optimally 

hydrated) as evidenced by urinary markers (Godek, Godek, & Bartolozzi, 2005; Phillips, Sykes, 

& Gibson, 2014; Yeargin et al., 2010), potentially increasing physiological strain and decreasing 

performance during exercise (Bardis, Kavouras, Arnaoutis, Panagiotakos, & Sidossis, 2013; 

Casa et al., 2010).  Furthermore, football players were found to progressively dehydrate 

throughout preseason practices (Godek et al., 2006; Godek et al., 2005; Stover, Zachwieja, 

Stofan, Murray, & Horswill, 2006; Yeargin et al., 2010).  Concomitant muscle damage and 

dehydration may only be exacerbated by the high ambient temperatures often experienced during 

preseason American football practices.  Junglee et al. (2013) revealed elevations in biomarkers 

of acute kidney injury with muscle damage during exercise in the heat. Another study (Fortes et 

al., 2013), also demonstrated muscle damage to elicit elevations in thermal strain during 

subsequent exercise in the heat.  However, both studies maintained hydration state to a similar 

degree in all trials, thus the impact of hypohydration compared to euhydration is unknown.  

Furthermore, the renal responses among many other sporting activities (e.g. American football, 

soccer, rugby) have received little investigation.  Thus, sports that require individuals to exercise 

regularly (i.e. several times per week) in high ambient temperatures and humidity, when muscle 

damage and dehydration are present, may provide a unique stress to renal function, of which the 

consequences remain unknown.  Elucidating the role of adequate hydration may be pivotal to 

improving the overall safety of athletics, especially since factors such as muscle damage (often 

induced by strength training) and heat stress are not easily avoidable and inherent in typical 

conditioning regimens.    



5 
 

 In working populations, it has been suggested that the regular exposure to heat stress with 

concomitant dehydration and mild muscle damage may increase the risk of chronic kidney 

disease (García-Trabanino et al., 2015; Johnson et al., 2016; Moyce, Joseph, Tancredi, Mitchell, 

& Schenker, 2016; Roncal-Jimenez et al., 2016).  The recent rise in chronic kidney disease in 

Mesoamerican sugar cane workers has been related to physiological responses to environmental 

working conditions (Bodin et al., 2016; Crowe, Nilsson, Kjellstrom, & Wesseling, 2015; García-

Trabanino et al., 2015; Laws et al., 2015, 2016; Roncal-Jimenez et al., 2016).  As glomerular 

filtration rate, a marker of kidney function, has been shown to decrease throughout the work day, 

the increased prevalence of chronic kidney disease may be due to the additive effects of 

repetitive kidney stress from the concomitant environmental and physiological strain experienced 

by these workers (Bodin et al., 2016; Crowe et al., 2015; García-Trabanino et al., 2015; Laws et 

al., 2015, 2016; Roncal-Jimenez et al., 2016).  Furthermore, these workers also experience 

progressive dehydration throughout the workday through elevated urine specific gravity and 

decreased glomerular filtration rates (García-Trabanino et al., 2015; Roncal-Jimenez et al., 2016; 

Wesseling et al., 2016). The combination of heat stress with strenuous exercise and gradual 

dehydration throughout the workday places a high demand on the kidneys to retain fluid while 

clearing excess waste from potential muscle damage.  These characteristics may apply to many 

other occupations as well, such as firefighters, military, agricultural and industrial settings.   

Specific Aims 

 

Aim #1: Identify the combined influence of dehydration, exercise in the heat, and muscle 

damage on biomarkers of acute kidney injury and renal function. 

Research Hypothesis #1: The thermoregulatory strain associated with dehydration during 

exercise in the heat would augment renal biomarker elevations immediately post-exercise as 
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compared to the euhydrated trial, however, these differences would be transient with returns to 

baseline 24 hours post.   

Aim #2: Identify the effects of performing muscle damaging exercise during mild hypohydration 

on muscle damage biomarkers (creatine kinase) and muscular strength recovery indices (i.e. 

isometric and isokinetic strength).   

Research Hypothesis #2: There would be no differences in muscle damage biomarkers with 

hypohydration, however, muscle strength recovery would be modestly impaired as compared to a 

euhydrated state.    
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II. Literature Review 

Renal Function & Biomarkers  

  

The homeostatic role of the renal system in maintaining fluid balance, waste elimination, 

acid-base balance, and blood pressure, is vital to the preservation of normal health and function 

(Poortmans & Vanderstraeten, 1994).  As such, physiological and environmental challenges may 

provide stress to the kidneys to maintain optimal function.  Reports of renal compromise in 

athletics primarily focus on renal trauma, unless the individual has experienced exertional 

rhabdomyolysis or heat illness (Bosch, Poch, & Grau, 2009; Brophy et al., 2008; Gerstenbluth, 

Spirnak, & Elder, 2002; Grinsell, Butz, Gurka, Gurka, & Norwood, 2012).  It was found that of 

the 52 kidney injuries reported in the National Football League from 1984 to 2004, only two 

were caused by dysfunction, with trauma (contusion or laceration) being most common (Brophy 

et al., 2008).  In contrast, 30-80% of ultra-marathon runners are suspected to develop transient 

acute kidney injury (AKI) following a race (M. D. Hoffman & Weiss, 2016). Renal function and 

acute renal failure have received much investigation in clinical populations, however, the renal 

responses during and following exercise with environmental stress and muscle damage has 

received considerably less attention.   

  The role of the kidneys in fluid balance is necessary for maintaining optimal hydration, 

both during resting and exercise conditions.  Losses in total body water (i.e. dehydration) can be 

detrimental to physiological and psychological performance (Bardis et al., 2013; Casa et al., 

2015a; Casa et al., 2010; Cheuvront & Kenefick, 2014; Cheuvront, Kenefick, Montain, & 

Sawka, 2010; Distefano et al., 2013; Judelson et al., 2007; Lopez et al., 2011; McDermott, Casa, 

Lee, Yamamoto, Beasley, Emmanuel, Pescatello, et al., 2013; Yamamoto et al., 2008).  Further, 

operating in a state of low body water (i.e. hypohydration) for chronic periods of time has been 

linked to several negative health consequences (Clark et al., 2016; Clark et al., 2014; García-
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Trabanino et al., 2015; Glaser et al., 2016; Johnson et al., 2016; Rosinger, Lawman, Akinbami, 

& Ogden, 2016).    

 Fluid homeostasis is maintained through an intricate balance between behavioral (e.g. 

water-seeking, removal from challenging thermal environments) and hormonal mechanisms.  

When fluids are inadequately consumed (i.e. drinking or food intake), water retention is 

dependent on hormonal release.  A hormone vital to the process of fluid maintenance is arginine 

vasopressin (AVP), also known as antidiuretic hormone.  AVP is produced in the paraventricular 

nucleus and supraoptic nucleus of the hypothalamus and secreted by the posterior pituitary gland.  

The primary drivers of AVP release are osmoreceptor and baroreceptor feedback in response to 

osmolality and blood pressure changes, respectively (Bankir, 2013; Baylis & Robertson, 1980; 

Koshimizu et al., 2012; Robertson, 1984; Robertson & Athar, 1976; Robertson, Shelton, & 

Athar, 1976; Share, 1996).  AVP release typically occurs at a plasma osmolality of ~280 

mOsm/kg (Robertson, 1984; Robertson et al., 1976).  Bayliss and Robertson (1980) also 

demonstrated a similar release threshold and further showed that every 1% increase in plasma 

osmolality induced a 1.8 pg/mL increase in AVP.  Therefore, when fluid losses are greater than 

gains (i.e. dehydration), plasma osmolality increases and subsequently AVP is released.  

Similarly, blood volume decreases, causing reductions in blood pressure, also stimulates AVP 

release.   However, greater blood volume reductions (10-20%) are typically necessary for the 

stimulation of AVP as compared to osmotic regulation (Share, 1996).  The action of AVP is 

widespread, however, arguably the most important is water conservation at the kidney.  AVP 

acts on V2 receptors in the renal tubules and collecting duct, which, stimulates the action of 

aquaporin channels to reabsorb water into the vasculature, producing a concentrated urine 

(Johnson et al., 2016; Koshimizu et al., 2012).  The action of AVP on V1a receptors located in 
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the walls of the vasculature also causing increases in blood pressure, subsequently increasing 

cardiovascular stability (Koshimizu et al., 2012).  AVP also stimulates water-seeking behaviors 

through thirst, therefore, once blood volume and osmolality are increased, individuals will drink 

fluids causing a decrease in osmolality and AVP secretion.  AVP has many other non-fluid 

regulatory actions (e.g. stimulating release of ACTH through V1b receptor in anterior pituitary), 

thus it has also been termed a survival hormone (Johnson et al., 2016; Koshimizu et al., 2012).  

As such, chronically elevated levels of AVP due to improper hydration strategies have been 

suggested to have significant health consequences (Bankir, 2013; Bouby, Bachmann, Bichet, & 

Bankir, 1990; Bouby, Hassler, & Bankir, 1999; Clark et al., 2016; Clark et al., 2014; Johnson et 

al., 2016; Kuwabara et al., 2017; Roussel et al., 2014; Share, 1996). 

 Others hormones are also responsible for fluid balance as urine concentration and fluid 

conservation has been shown to occur in the absence of AVP (Gellai, Edwards, & Valtin, 1979).  

As renal perfusion is reduced, the juxtaglomerular apparatus detects these changes, and releases 

renin (Sparks, Crowley, Gurley, Mirotsou, & Coffman, 2014).  Renin then acts to convert 

angiotensinogen to angiotensin I, a biologically inert hormone (Sparks et al., 2014).  Angiotensin 

I is converted to angiotensin II through angiotensin converting enzyme, which directly induces 

blood pressure increases through actions on the smooth muscle of the vasculature (Sparks et al., 

2014).  Angiotensin II also stimulates the release of aldosterone from the adrenal glomerulosa 

and thirst centers in the brain (Sparks et al., 2014; Thornton, 2010).  Aldosterone increases blood 

pressure through actions in the vasculature, however, is also known for stimulating the 

reabsorption of sodium from the kidney.  This is an important mechanism to aid in fluid 

preservation, as the increased sodium retention allows for greater water movement into the 

vasculature as a result of increased osmolality (Thornton, 2010).  Further, the actions of the 
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renin-angiotensin-aldosterone system play a vital role in the maintenance of fluid balance 

through thirst stimulation to increase water seeking behaviors, which are essential to proper 

hydration (Thornton, 2010).  Evidence is continually increasing to support the role of proper 

water consumption to mitigate reliance on hormonal fluid regulation and prevent renal 

dysfunction and disease (Clark et al., 2016; Wang, Grantham, & Wetmore, 2013).   

 Identifying renal dysfunction may be vital to improving safety in athletic, military, and 

working populations alike.  Furthermore, elucidating the effects of exertion, with or without 

environmental and physiological stressors (i.e. heat stress, dehydration, and muscle damage), 

may also provide implications for the development of acute kidney injury (AKI) or chronic 

kidney disease (CKD).  The classic clinical definition for AKI involves the decrease in 

glomerular filtration rate (GFR) over a period of hours to days leading to the buildup of 

creatinine and blood urea nitrogen (Basile, Anderson, & Sutton, 2012).  However, the 

mechanism eliciting these elevations may drastically alter clinical treatment and the definition of 

this injury.  Prerenal AKI occurs as a consequence of renal perfusion alterations, leading to 

changes in filtration through the glomeruli (Basile et al., 2012).  In contrast, impedances to 

normal urinary tract flow may induce postrenal AKI.  Lastly, renal AKI encompasses etiologies 

that compromise tissue structure, such as tubular or glomerular damage (Basile et al., 2012).  

Renal compromise by any mechanism is of serious clinical concern as the development of AKI is 

associated with morbidity and mortality rates of 40-60% (Schiffl & Lang, 2012).   

 A primary focus in the literature regarding AKI is patients in hospital settings with 

serious illness or injury.  Therefore, it should be noted that the term AKI discussed in this review 

with respect to exercise, may be misleading given the severity and duration of the renal 

compromise.  In certain clinical situations associated with exercise (e.g. exertional 
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rhabdomyolysis), the risk of AKI may place the individual at an increased potential for negative 

outcomes.  Accordingly, hospitalizations due to rhabdomyolysis have been reported to develop 

AKI in 13 to 50% of cases (Bosch et al., 2009). However, the use of AKI to describe renal 

responses to exercise and environmental stress in otherwise healthy individuals may be 

inappropriate.  This is not to infer that the renal function alterations described in this review do 

not provide the potential for development of CKD, but rather the epidemiological data is absent 

and therefore cannot be exclusively stated at this time.  Regardless, the depth of literature on this 

topic is relatively lacking, thus comparison to clinical standards for AKI are commonly used 

throughout the exercise renal physiology literature and will be used in this review.   

 Assessment of short and long-term detriments to renal function and health are essential in 

identifying AKI and CKD.  The risk for CKD increases with AKI occurrences in clinical 

settings, however, the risk of CKD following elevations in AKI markers induced by exercise or 

environmental stress remains relatively unstudied.  Mesoamerican nephropathy may perhaps be 

the closest human model to athletics to represent the impact of recurrent AKI induced via 

physiological and environmental stress, however, this is still limited due to several confounding 

variables not often present in organized sport.  Nonetheless, this population is experiencing CKD 

at alarming rates, hypothesized to be driven by recurrent dehydration with concomitant 

subclinical rhabdomyolysis and heat stress (García-Trabanino et al., 2015; Johnson et al., 2016; 

Roncal-Jimenez et al., 2016).  The mechanisms for acute renal stress leading to CKD in this 

population will be further detailed later in this literature review.  While the long-term health 

complications associated with acute renal stress remain unknown, it is well demonstrated that 

acute renal failure occurs on a spectrum, and if improperly managed, may result in sequela and 

potential fatality.   
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 Distinguishing between appropriate biological markers in both urine and blood samples is 

essential to proper diagnosis of AKI and establishing practical treatment or prevention strategies.  

The use of different biomarkers also allows for the specific identification of renal injury or 

dysfunction location, as well as provide clarity for the functional significance in these elevations.  

While all biomarkers have pitfalls and benefits, understanding the mechanism of action for each 

is pertinent for identifying details regarding the location of renal dysfunction (Vanmassenhove, 

Vanholder, Nagler, & Van Biesen, 2013). This is of importance in cases of sub-clinical AKI 

often shown with exercise, as the impact of transient renal dysfunction in this instance is not well 

understood.   

 The assessment of kidney function via glomerular filtration rate (GFR) is a primary 

assessment in renal health, as failure to properly filter the plasma through the glomerulus or 

reabsorb molecules in the tubules will alter the excretion of substances.  Glomerular filtration has 

been assessed with a variety of markers, both exogenous and endogenous (Beierwaltes, Harrison-

Bernard, Sullivan, & Mattson, 2013).  The gold standard assessment of GFR is performed 

through inulin injection into the circulation combined with collection in the urine.  Because 

inulin is readily filtered by the glomerulus, with no reabsorption, anything collected in the urine 

can be compared to what is left in the plasma to identify excretion rates (Beierwaltes et al., 

2013).  The use of inulin however, requires time and expenses that may not be available in 

clinical or field settings.  Hence, the use of an endogenously produced marker may be favored in 

clinical practice.   

Creatinine is commonly used to assess GFR as it is endogenously produced and can be 

measured in the blood and urine (Beierwaltes et al., 2013).  Further, creatinine is freely filtered 

by the glomerulus, and when excretion rates are high, minimal reabsorption occurs with only 
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slight secretion by the proximal tubule (Beierwaltes et al., 2013).  Similar to inulin, the 

assessment of GFR with creatinine uses collection in the blood and urine over a period of time to 

identify excretion rates.  Typical values for blood creatinine range from (0.8-1.4 ml/dL) while 

urine values provide a much greater range (Beierwaltes et al., 2013).  Because creatinine is 

produced as a byproduct of the reaction between phosphocreatine and ADP, there is a large 

release by skeletal muscle and can be dependent on muscle mass (Beierwaltes et al., 2013).  This 

also creates an issue regarding the steady state values of creatinine in the blood.  If rises in 

creatinine are found in the blood, it is difficult to ascertain whether the increases occurred due to 

decreases in GFR or increased production by other tissues.           

Serum creatinine (SCr) can also be utilized to estimate GFR, independent of the urinary 

collection (Beierwaltes et al., 2013; Poortmans, Gulbis, De Bruyn, Baudry, & Carpentier, 2013).  

Poortmans et al. (2013) demonstrated a lower estimated GFR from SCr alone compared to GFR 

measured using both urine and serum creatinine.  Further, when creatinine clearance via urine 

and serum samples returned to baseline values, the estimated GFR via SCr was still reduced 

below baseline by ~10% (Poortmans et al., 2013).  The assumption that GFR is altered when it 

has returned to normal may impact clinical decision-making, however, the use of this marker in 

research may still be implicated in instances when urine creatinine assessment is unavailable.    

SCr can also be used to classify levels of AKI.  Many foundations have guidelines 

regarding stages of AKI and CKD, however two commonly used in clinical and exercise settings 

are the RIFLE criteria (Risk, Injury, Failure, Loss, End-stage kidney disease) and AKIN (acute 

kidney injury network) (Mehta et al., 2007; Vaidya, Ferguson, & Bonventre, 2008).  According 

to the AKIN classifications, there are three stages of AKI, including stage one, which occurs 

with an increase in SCr ≥0.3 mg/dl or 150-200% increase from baseline.  Stage two requires a 
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200-300% increase from baseline and stage three necessitates >300% increase from baseline or 

>4.0 mg/dl with an acute 0.5 mg/dl increase (Mehta et al., 2007; Vaidya et al., 2008).  These 

stages can also use urine output of <0.5 ml/kg per six hours, <0.5ml/kg per 12 hours, and 

<0.3ml/kg per 24 hours or anuria for 12 hours, for stages one, two and three respectively (Mehta 

et al., 2007; Vaidya et al., 2008).  Stages one through three also correspond to the first three 

stages according to the RIFLE criteria (i.e. risk, injury, failure).  The RIFLE criteria also includes 

a Loss stage (stage four) which indicates a complete loss of function greater than four weeks and 

an end stage renal disease stage (stage five), which is a greater than three month loss of kidney 

function (Vaidya et al., 2008).  The RIFLE criteria also includes reductions in GFR, allowing for 

use with different biomarkers (Mehta et al., 2007; Ricci, Cruz, & Ronco, 2011).  A concern with 

the AKIN and RIFLE criteria, however, is the mandate for a baseline sample of SCr, which, 

clinically, may be very challenging.  Further, reductions in renal perfusion with exercise induce 

elevations in SCr that may be misinterpreted as AKI, when they are instead transient alterations 

in GFR, potentially with minimal negative outcomes.  

Interestingly, certain disease states and illnesses also induce hyperfiltration (i.e. increased 

GFR), which may result in renal injury and GFR impairments long term (Palatini, 2012).  It has 

been suggested that glomerular hyperfiltration may even be a risk factor in pre-diabetes or pre-

hypertension, due to the potential development of microalbuminuria (Palatini, 2012).  Oxidative 

stress and inflammation are also suggested with hyperfiltration, leading to potential nephropathy 

(Palatini, 2012).  These conditions are often associated with underlying etiologies, but are 

thought to arise from endothelial dysfunction or altered tubuloglomerular feedback, causing 

vasodilation of the afferent arteriole and increased permeability through the glomerulus.  Thus, 
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high GFR in patients is also detrimental to renal health, and as such, requires immediate medical 

attention.   

 The use of creatinine to assess renal function has received much criticism due to the 

delayed response time and lack of sensitivity, thus the use of novel biomarkers has received 

much attention (Ferguson, Vaidya, & Bonventre, 2008).  Cystatin C (CyC) is a 13 kD protein 

that has been suggested for use instead of creatinine for assessment of GFR, due to a greater 

ability to detect acute renal failure (Charlton, Portilla, & Okusa, 2014; Colombini et al., 2012; 

Herget-Rosenthal, Metzger, Albalat, Bitsika, & Mischak, 2012).  CyC is produced by all 

nucleated cells, and similar to creatinine, is freely filtered by the glomerulus (Charlton et al., 

2014).  However, CyC is reabsorbed at the proximal tubule, therefore, excretion of CyC in the 

urine is indicative of tubular damage (Charlton et al., 2014).  It is because of this mechanism that 

CyC is suggested to be a better marker in the detection of AKI than creatinine.  Also, in contrast 

to creatinine, CyC estimates of GFR are affected by obesity, whereas creatinine is affected by 

muscle mass (Chew-Harris, Florkowski, George, Elmslie, & Endre, 2013).   

Interestingly, the use of serum CyC demonstrated underestimation of GFR compared to 

creatinine clearance measured in the urine and serum (Poortmans et al., 2013).  Further, CyC was 

also ~10% below baseline values when GFR returned to baseline (Poortmans et al., 2013).   

Mingels et al. (2009) found CyC to produce lower elevations compared to SCr immediately 

following a marathon and returned to baseline values by one day post-race, which SCr did not.  

These findings suggest that CyC may be better for the evaluation of GFR as it is less affected by 

confounding factors, such as muscle mass or breakdown.  These findings have also been 

mirrored in rugby populations, where muscle mass may considerably impact creatinine 

assessment by underestimating GFR as compared to actual creatinine clearance (Banfi, Del 
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Fabbro, d'Eril, & Melegati, 2009; Banfi et al., 2012).  Further, CyC estimated GFR was less 

correlated with creatine kinase (a marker of muscle breakdown) during a 3-week endurance 

cycling event than GFR estimated by creatinine (Colombini et al., 2012).  This also lends to the 

argument that creatinine may be altered by muscle mass.   

 GFR only provides assessment of the functional status of the glomerulus and is largely 

altered by differences in renal perfusion.  However, renal health assessment should also analyze 

the renal tissue, which includes cells of the renal tubules where reabsorption and excretion are 

regulated.  Stress to the tubular cells provides an alternative view of the effects of different 

stresses and recovery status.  With this, several different biological markers (i.e. biomarkers) 

have been assessed for validity and usefulness in the evaluation of the state of the tubules.  While 

there have been many biomarkers suggested for use in clinical settings of AKI (e.g. IL-18, 

FABP, NAG), this review will focus on those also being utilized in the renal responses to 

exercise literature.      

 Neutrophil-gelatinase associated lipocalin (NGAL), a 25 kD protein measured in both 

urine and plasma has been found to be a reliable and accurate predictor of AKI in clinical 

settings (Alge & Arthur, 2015; Charlton et al., 2014; Ferguson et al., 2008; Mårtensson, 

Martling, & Bell, 2012).  NGAL is produced in many tissues (e.g. bone marrow, epithelial cells) 

throughout the body in response to inflammation, however, it is also readily expressed in the 

proximal tubule cells (Ferguson et al., 2008; Mishra et al., 2003; Mårtensson et al., 2012).  

NGAL secretion is increased following ischemia or nephrotoxic injury, with urine value 

increases in as little as three hours post-insult (Alge & Arthur, 2015; Mishra et al., 2003).  In a 

study of intensive care unit patients, NGAL diagnosed AKI in less than six hours with an area 

under the curve of 0.82 in patients with estimated GFR values of 90-120 ml/min (i.e. normal) 
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(Endre et al., 2011).  However, when patients had low estimated GFR (<60 ml/min), NGAL only 

predicted AKI in less than six hours with an area under the curve of 0.45 (Endre et al., 2011).  As 

ischemia is a driver for NGAL production, the use of this biomarker to evaluate the renal 

response to exercise may be beneficial due to the reductions in renal blood flow that are 

commonly associated with exertion.  ICU patients with prerenal etiologies of AKI (e.g. 

perfusion) demonstrated elevations in urinary NGAL (Nejat et al., 2012), which may provide 

some extrapolation to exercise due to reduced blood flow as a potential prerenal cause.  As such, 

many investigations have evaluated urinary and blood NGAL responses following exercise 

(Junglee et al., 2013; Junglee et al., 2012; Lippi et al., 2012; Mansour et al., 2017; McCullough 

et al., 2011; Schlader et al., 2017).  Further, NGAL has been shown to have a relationship to the 

development of acute mountain sickness and the negative response to altitude (Mellor et al., 

2013).  NGAL is also involved in the repair process from renal injuries such as ischemia-

reperfusion (Alge & Arthur, 2015).  The differentiation of progenitor cells in the renal tubules is 

thought to be caused by NGAL (Mårtensson et al., 2012).  Therefore, the elevation of NGAL 

following ischemic injury may indicate a repair mechanism rather than continued damage.  

Using NGAL elevations post-insult may be beneficial in understanding long-term renal tissue 

responses to potential ischemic activities such as exercise.   

 Kidney Injury Molecule 1 (KIM-1) is another marker that has shown promise in clinical 

and exercise settings to evaluate AKI (Alge & Arthur, 2015; Nejat et al., 2012).  Expressed in the 

epithelial cells of the proximal tubules of the kidney in response to ischemic injury, KIM-1 is a 

38.7 kD protein that provides implications for injury when measured in the urine (Alge & 

Arthur, 2015; Charlton et al., 2014).  KIM-1 has been found to elicit phagocytic activities to aid 

in the removal of cellular debris following AKI.  KIM-1 is primarily used as a urinary target with 
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peak values usually occurring at ~48 hours post injury (Alge & Arthur, 2015; Nejat et al., 2012).  

KIM-1 identified AKI with an area under the curve of 0.85 in six to 12 hours in intensive care 

unit patients with normal estimated GFR (90-120 ml/min) (Endre et al., 2011).  Urinary KIM-1 

also increased in ICU patients with pre-renal causes of AKI.  While use of KIM-1 in clinical 

practice is somewhat controversial, it may have benefit in the recognition of kidney stress with 

exertion or thermal challenges (Ferguson et al., 2008; McCullough et al., 2011; Vaidya et al., 

2008; Vaidya et al., 2010).  As with NGAL, KIM-1 provides information regarding the recovery 

state of the renal tissue, which following exertion driven renal ischemia, may alert clinicians to 

potential negative health outcomes.   

Renal Function During Exercise 

 Exercise poses a transient challenge to renal function (e.g. GFR), driven by renal 

perfusion decreases during exertion. However, upon cessation of activity, kidney blood flow and 

subsequent function returns to normal. Therefore, renal blood flow is a pivotal driver in 

mediating functional response with exercise.   

At the onset of exercise, the increase in sympathetic nervous system activity mandates a 

redirection of blood flow to the active tissue (Hohimer & Smith, 1979).  Vasoconstriction of the 

renal and splanchnic vasculature greatly reduce blood flow to these organs in direct relation to 

exercise intensity (Grimby, 1965; Rowell, 1974).  Grimby (1965) assessed renal clearance of 

inulin and para-aminohippuric acid during exercise intensities from 150 to 900 kpm/min, noting 

greater reductions in clearance at higher workloads.  It was further determined that the fraction of 

cardiac output directed toward the renal vasculature was reduced from ~17% at rest to <5% at 

oxygen uptakes of 2.0 to 2.5 L/min.   Baboons conducting dynamic leg exercise also 

demonstrated decreases in renal blood flow of ~19% (Hohimer & Smith, 1979).  Further, one 
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kidney in the baboons was denervated, which exhibited increased blood flow during exercise, 

confirming that the vasoconstriction of the renal vasculature with exercise is neurally mediated 

(Hohimer & Smith, 1979).  Renal vascular conductance also decreases during moderate intensity 

dynamic exercise (Pricher, Holowatz, Williams, Lockwood, & Halliwill, 2004).  Exercise 

induced renal blood flow reductions are suggested to be attenuated following endurance training 

(McAllister, 1998).  The mechanism for this is not well described, however, it is likely the result 

of alterations in sympathetically mediated vasoconstriction (McAllister, 1998).          

 Renal function during exercise may also exhibit a mode dependent effect.  Many of the 

aforementioned studies have consisted of dynamic, aerobic endurance exercise, however, static 

exercise also mediates kidney function.  Both passive stretch and static contraction of the triceps 

surae in rats induced renal sympathetic nervous system increases, subsequently reducing renal 

cortical vascular conductance and renal cortical blood flow (Koba, Yoshida, & Hayashi, 2006).  

The control of renal blood flow due to electrically stimulated contractions suggests that the 

exercise pressor reflex may mediate the renal response to an exercise stimulus (Koba et al., 

2006).  Static handgrip exercise performed by healthy controls and kidney transplant patients, 

elicited much greater reductions in renal blood flow velocity assessed by Doppler ultrasound in 

the healthy controls compared to the renal transplant group (Momen et al., 2005).  These support 

the vital role of sympathetic neural mediated mechanisms in altering renal blood flow during 

exercise rather than autoregulatory mechanisms (Momen et al., 2005).  Interestingly, neither 

gender nor muscle mass engaged (i.e. leg vs arm) impacted the renal vascular resistance 

increases or renal blood flow reductions during static exercise (Momen, Handly, Kunselman, 

Leuenberger, & Sinoway, 2006).  Further, baroreceptor unloading via orthostatic stress did not 

significantly alter the renal vascular response to handgrip exercise, again supporting that the 
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primary regulation of renal vasoconstrictor tone with exercise occurs via central command and 

the exercise pressor reflex (Momen, Thomas, et al., 2006).  It should be noted that orthostatic 

stress induced using lower body negative pressure increased renal vascular resistance in the 

absence of exercise (Momen, Thomas, et al., 2006).    

 Renal blood flow and renal vascular conductance following moderate intensity dynamic 

exercise has been shown to return to baseline levels within 20 minutes of exercise completion 

(Pricher et al., 2004). This is particularly interesting given the exercise induced systemic 

hypotension that can last at least two hours following exercise (Pricher et al., 2004).  As muscle 

blood flow is still elevated due to a reduced sympathetic activity post exercise, it would be 

expected that vasoconstriction of the splanchnic and renal vasculature would occur to prevent 

marked reductions in mean arterial pressure (Pricher et al., 2004).  However, because there is a 

lack in sympathetic activity to induce vasoconstriction, the renal vascular conductance returns to 

resting levels (Pricher et al., 2004).   

In contrast, renal function remains reduced immediately following exhausting exercise.  

Suzuki et al. (Suzuki et al., 1996) utilized a radioactive tracer (technetium 99m phytate) to 

identify changes in renal blood flow up to 60 minutes after a graded maximal cycling test.  Renal 

blood flow immediately post-exercise was determined to be 53% reduced compared to a resting 

baseline (Suzuki et al., 1996). Further, at 30 and 60 minutes, renal blood flow was still reduced 

17.5% and 21.1%, respectively.  The reductions in renal blood flow were mirrored by reductions 

in creatinine clearance of similar magnitudes from immediately after exercise through 60 

minutes (Suzuki et al., 1996).  Given that the exercise performed only lasted an average of 11.4 

minutes in this protocol, the delayed return to normal clearance may be of impact when 
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exhaustive exercise lasts longer or additional stressors are present (e.g. heat stress, dehydration, 

muscle damage).   

Dr. Poortmans and colleagues have conducted a multitude of studies investigating the 

effects of exercise on renal function, particularly the consequences of protein in the urine 

(Poortmans, 1977, 1984, 1985, 1995; Poortmans, Auquier, et al., 1997; Poortmans, Blommaert, 

Baptista, De Broe, & Nouwen, 1997; Poortmans et al., 1988; Poortmans et al., 2013; Poortmans 

& Haralambie, 1979; Poortmans, Jeannaud, Baudry, & Carpentier, 2015; Poortmans & Labilloy, 

1988; Poortmans, Mathieu, & De Plaen, 1996; Poortmans, Rampaer, & Wolfs, 1989; Poortmans 

& Vancalck, 1978; Poortmans & Vanderstraeten, 1994).  Protein found in the urine (i.e. 

proteinuria) has been well documented following exercise and is implicated as a marker of renal 

function alterations (Junglee et al., 2012; Poortmans, 1984, 1985; Poortmans, Blommaert, et al., 

1997; Poortmans et al., 1988; Poortmans & Haralambie, 1979; Poortmans et al., 2015; 

Poortmans & Labilloy, 1988; Poortmans et al., 1989; Poortmans & Vancalck, 1978; Poortmans 

& Vanderstraeten, 1994; Schrier et al., 1970).  The presence of proteinuria can indicate increased 

glomerular permeability, tubular dysfunction, or both.  Recently, proteinuria has been linked to 

mTOR-mediated autophagy impairments in the proximal tubule of mice, potentially leading to 

tubular injury and the progression of disease (Nolin et al., 2016).  However, this model did not 

involve exercise, limiting the extrapolation to exercising humans.   

Male participants running distances from 100 meters to 3000 meters at maximal effort 

displayed increases in total protein excreted for all events, however, the greatest increases were 

found with 400 and 800 meter events (Poortmans et al., 1996).  This pattern was also shown with 

individual proteins assessed (e.g. albumin, β2-microglobulin, retinol-binding protein) and plasma 

lactate values.  Furthermore, there was a direct relationship (R2 = 0.996) between protein 
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excretion and plasma lactate.  These findings demonstrate that supramaximal intensity races (400 

and 800 meter) produce the greatest protein clearance, indicating increased glomerular 

permeability, as well as tubular reabsorption limitations with increases in exercise intensity.  The 

increased excretion of protein may have also contributed to the greater reductions in plasma 

volume with these events due to reductions in oncotic forces.  Interestingly, excretion of 

creatinine was not altered with shorter and middle distance events, but the 1500 and 3000 meter 

runs both demonstrated reductions in urine creatinine, in a dose-dependent manner (Poortmans et 

al., 1996).  These races also exhibited the greatest increases in plasma creatinine.   It is likely that 

the reductions in creatinine clearance (i.e. glomerular filtration) occurred in the longer duration 

activities due to the length of time reductions in renal perfusion were present.  While there were 

likely marked renal blood flow reductions with the 400 and 800-meter events, these races were 

short enough in duration that the glomerular filtration rate was not affected, but rather 

permeability increases (as evidenced by greater protein excretion) were possibly driven by higher 

blood pressures with these events (not measured).  The findings of increased protein excretion 

without creatinine clearance alterations have also been demonstrated in women conducting one 

minute interval sprints (Poortmans & Vancalck, 1978). Regardless, increased protein excretion at 

higher intensities merely indicates the tubular cells of the kidneys were not able to meet the 

demands for reabsorption.  However, the findings from 1500 and 3000 meter races provide 

greater evaluation of changes in renal function, as glomerular filtration was decreased with 

concomitant permeability increases and tubular reabsorption saturation for protein (Poortmans et 

al., 1996).  These events only lasted between 5 and 12 minutes as well, which could provide 

greater challenges with longer events.   
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In addition to protein excretion and creatinine clearance, other markers of renal tissue 

stress have been investigated during exercise.  During 400 and 3000-meter maximal effort 

running exercise, N-acetyl-β-D-glucosaminidase (NAG) and tissue-nonspecific alkaline 

phosphatase (TNAP) were significantly elevated above resting levels, with greater increases in 

the 400-meter run.  Increases in these markers indicate changes to the proximal tubule cells, 

however, the extent the alteration in these related to kidney function is not well understood 

(Poortmans, Blommaert, et al., 1997).  When evaluating increased expression of renal tubular 

enzymes, glomerular permeability should also be considered.  Augmented glomerular 

permeability evidenced by increased total protein excretion also challenges the tubular 

reabsorption. Plasma proteins of high molecular weight, such as albumin, may saturate the renal 

tubular ability for reabsorption (Poortmans, Blommaert, et al., 1997).  This may subsequently 

stress the cells of the proximal tubule, therefore eliciting the release of these tubular markers. 

Junglee and colleagues (2012) also evaluated proteinuria inducing exercise (800-meter 

run) effects on NGAL production, demonstrating transient elevations in urinary NGAL, peaking 

at 25 minutes post-exercise and returning to baseline by two hours post-exercise.  Interestingly, 

plasma NGAL levels slightly decreased following exercise, providing conflicting evidence 

regarding the expression of NGAL in response to a high intensity bout of exercise.  However, all 

participants were well hydrated and performed the exercise bout only one time (Junglee et al., 

2012).  Therefore, it is difficult to ascertain whether elevations in urinary NGAL immediately 

post-exercise occurred due to plasma NGAL reductions (i.e. increased filtration and excretion of 

plasma NGAL) or increased expression of NGAL in the proximal tubule. 

Urea and uric acid clearance also decrease significantly during exercise (Poortmans, 

1984; Poortmans & Vanderstraeten, 1994).  This results in a greater reabsorption for urea and 
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uric acid in the tubule, causing plasma elevations (Poortmans & Vanderstraeten, 1994).  While 

likely unsubstantial, low urea may be linked to the formation of casts in renal tissue (Poortmans, 

1984).  Uric acid has also been implicated in the development of CKD with certain working 

populations (Johnson et al., 2016; Roncal-Jimenez et al., 2016). 

Marathon, ultramarathon, and triathlon races also provide a unique model for evaluation 

of renal function due to the long duration of exercise.  Protein excretion in the urine during 

marathon running has been shown to be elevated relative to pre-race values, however, total 

serum protein remained unchanged relative to pre-race values (Poortmans & Haralambie, 1979).  

The day following the race also revealed a decreased total serum protein compared to pre-race 

and race values, yet urinary protein was only slightly elevated above baseline (57 vs 50 µg/min).  

These findings indicate that marathon running only slightly increases glomerular permeability, 

however, filtration was not assessed.  Poortmans et al. (2015) also evaluated the renal response 

after each event of a half triathlon (swim, cycle, run).  Interestingly, the total protein excretion 

was the greatest (~10-fold increase above baseline) after the first event (i.e. swimming), with ~2-

3 fold elevations above baseline during the two subsequent events. In line with findings from 

previous work (Poortmans et al., 1996), the plasma lactate levels were also the greatest following 

the swim, indicating that the greatest excretion of protein occurred with the highest intensity 

activity.  Urine creatinine was decreased continuously throughout the triathlon with greatest 

reductions in the last event, however, there were no changes in plasma creatinine throughout the 

event (Poortmans et al., 2015).  Thus, the glomerular filtration may have been maintained, 

despite likely perfusion reductions.  It should be noted that the environmental conditions were 

cool ~16°C, therefore thermal stress and dehydration may have been minimal.   
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Findings from 2001 Boston Marathon runners demonstrated only minimal increases in 

SCr from prerace values (4 hours post-, 1.3 vs pre-race 1.0 mg/dL) (Kratz et al., 2002).  Further, 

total protein only increased by 0.3 g/dL four hours post-marathon and returned to baseline values 

within 24 hours (Kratz et al., 2002).  Therefore, renal function was stressed, yet only transiently 

by marathon running in cool weather conditions.  Clarkson (2007) suggested that acute renal 

failure in marathon runners generally requires a cumulative effect of several physiological and 

environmental factors (i.e. rhabdomyolysis, heat stress, dehydration) concomitant with prior 

illness or medication use (e.g. viral infection or non-steroidal anti-inflammatory drugs).   

In contrast, Mansour and colleagues (Mansour et al., 2017) recently assessed biomarkers 

of renal function and cellular stress immediately and 24-hours following the Hartford marathon 

(race temperature ~16°C).  Per AKIN criteria, 82% of runners developed stage one AKI, with 

one runner developing stage two AKI.  SCr, urinary albumin, and biomarkers of renal stress and 

inflammation (NGAL, IL-18, IL-6, TNF-α) were all significantly elevated immediately 

following the race, however, by 24-hours post-race, these markers had returned to baseline or 

near-baseline levels (Mansour et al., 2017).  Interestingly, KIM-1 remained significantly elevated 

24-hours post-race, potentially indicating a supporting role of this biomarker in cellular repair.  It 

should be noted that the elevations in KIM-1, even immediately post-race, were minor compared 

to reference ranges for AKI, thus the extent of the damage or stress expressed by this marker 

should be interpreted with caution.   

McCullough et al. (2011) mirrored the findings of transient elevations in biomarkers of 

AKI and renal function (i.e. NGAL, KIM-1, SCr, CyC) following a marathon in a cool climate 

(~1°C).  Approximately 40% of runners also met the criteria for stage one AKI per AKIN, 

however, no runners were identified for stages two or three (McCullough et al., 2011).  The 
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cooler climate in this investigation may explain the reduction in AKI occurrence compared to 

Mansour et al. (1°C vs 16°C).  In a slightly warmer (24-28°C) 100 km ultramarathon, 22 of the 

26 study participants demonstrated at least stage one AKI, with significant increases in SCr and 

NGAL.  However, by one day post-race, the SCr values had already returned to near baseline 

(Kao et al., 2015).  Lippi et al. (2012) also demonstrated acute elevations in NGAL and 

creatinine following an ultramarathon race completed in high humidity (54-87%) albeit cooler 

temperatures (6-8°C).   

The long term consequences of marathon and ultramarathon running are relatively 

unknown, though it has been suggested that completing ultramarathon running does not impact 

future renal responses (Hoffman & Weiss, 2016).  Hoffman et al. (2016) found renal responses 

following an ultramarathon race did not differ from those in subsequent races.  Interestingly, 

individuals who experienced marked elevations in SCr in the first race also experienced similar 

magnitude increases in the race the following year (Hoffman & Weiss, 2016).  A key finding, 

however, is that participation in ultramarathon running did not cause more severe renal responses 

during subsequent races.  Therefore, it is possible that the transient elevations in renal 

biomarkers merely reveal a stressed kidney, and, as such, indicate a natural recovery process.  

These findings are limited to ultramarathon runners as the physiological and cardiovascular 

fitness is much different than in other sports (e.g. soccer, American football).  Bongers et al. 

(Bongers et al., 2017) also showed elevations in urinary markers of renal stress after one and 

three days of long distance walking at a light intensity (average heart rate = 112 bpm).  Further, 

the intensity may have been light enough to minimize reductions in renal perfusion and 

subsequent kidney stress, as the biomarker increases were relatively low and likely not indicative 

of serious complications.   
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 Resistance exercise also impacts renal function, with SCr increases and estimated GFR 

decreases demonstrated up to 72 hours post-exercise (Machado et al., 2012).  A strong 

correlation (-0.92) was found between changes in estimated GFR and changes in serum creatine 

kinase (Machado et al., 2012).  This is in contrast to other work (Clarkson, Kearns, Rouzier, 

Rubin, & Thompson, 2006), demonstrating no relationship (r = 0.23) between SCr and creatine 

kinase following exercise induced muscle damage.  It should be noted that Clarkson et al. (2006) 

conducted elbow flexor exercises, whereas Machado et al. (2012) conducted resistance exercises 

typically performed by athletes.  The difference in muscle mass engaged, as well as exercise 

duration and intensity, may explain variations in these findings.  Additionally, the practical 

implications for the Clarkson et al. findings that SCr is not directly impacted by creatine kinase 

elevations are limited, as most athletes are not conducting exercise on a unilateral single muscle 

group (i.e. elbow flexors).  The participants in this study were also well hydrated with no 

environmental stress or prior exercise, not commonly experienced in athletics.  

 Regular resistance training may also impact renal health.  A murine model assessing renal 

outcomes after 12 weeks of high intensity training compared with no training found lower 

plasma creatinine levels with high intensity exercise (Aparicio et al., 2014).  Interestingly, 

negative morphological renal effects were found in the high intensity exercise intervention, 

which the authors suggest could lead to long-term kidney disease (Aparicio et al., 2014).  

Unfortunately, there is little epidemiological evidence to support the negative aspects of this 

hypothesis.  Apoptosis of renal tubular cells has been shown following exercise to exhaustion in 

rats, however, regular endurance training reduced the number of apoptotic cells compared to a 

sedentary group following exhaustive exercise (Podhorska-Okolow et al., 2007).  These results 

suggest that the type of exercise training program may affect the outcomes of renal health, yet 
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further evaluation is necessary to ensure individuals completing long-term high intensity exercise 

are not increasing risk for renal disease.   

Renal Function with Passive and Active Heat Stress 

 Increases in global temperatures have resulted in heat waves, subsequently increasing the 

thermoregulatory strain in populations across the world (Glaser et al., 2016; Kjellstrom, Butler, 

Lucas, & Bonita, 2010).  In Florida from 2005 to 2012, there were nearly 24,000 heat related 

illnesses not related to work treated in the emergency department (Harduar Morano, Watkins, & 

Kintziger, 2016).  This is a rate of 33.11 visits per 100,000 person-years (Harduar Morano et al., 

2016).  Analysis from 12 years of hospital admissions in South Australia, revealed increases in 

hospital admissions during heat waves for renal disease and acute renal failure (IRR; 1.13 and 

1.25, respectively) (Hansen et al., 2008).  Further, prolonged occupational exposure to heat stress 

in Thailand led to CKD at odds 2.22 times greater than men without exposure (Tawatsupa et al., 

2012).  High skin temperature induced by heat stress causes significant impact on renal perfusion 

(Wilson, 2017).  Similar to exercise, heat stress causes redistribution of blood flow away from 

vital organs such as the splanchnic and renal vasculatures (Radigan & Robinson, 1949; Rowell, 

Brengelmann, Blackmon, & Murray, 1970; Wilson, 2017).   Rowell and colleagues demonstrated 

progressive decreases in renal blood flow as skin temperature and rectal temperature increased 

via passive heating (Rowell et al., 1970).  Hales et al. (1979) confirmed these findings with 

reduced renal blood flow by ~27% during passive heat stress in baboons.   

   Hyperthermia has also been found to induce heat shock protein 72 upregulation in renal 

cells (Borkan, Emami, & Schwartz, 1993; Emami, Schwartz, & Borkan, 1991).  This is thought 

to occur as a mechanism to induce thermal protection for subsequent bouts of heat stress (Borkan 

et al., 1993; Emami et al., 1991).  Further, this may be beneficial to prevent mitochondrial 



29 
 

function impairments that can occur with extreme levels of heat stress (Borkan et al., 1993).  The 

upregulation of heat shock proteins has also shown to be promising in reducing the negative 

effects of ischemia/reperfusion injuries (Harrison et al., 2008).   

 The addition of heat stress to exercise provides a further challenge to maintain cardiac 

output in the face of cutaneous vasodilation and increased perfusion to active skeletal muscle.  

As such, blood flow to the splanchnic and renal vasculature may be further attenuated (Radigan 

& Robinson, 1949; Rowell, 1974).  Radigan and Robinson reported renal plasma flow and GFR 

decreases of 38% and 25% from resting values, respectively, during treadmill walking in a hot 

environment (50°C) (Radigan & Robinson, 1949).  Renal function following a soccer match 

played in 27°C was also found to be compromised with significant elevations in SCr and 

substantial reductions in estimated GFR (Colombini, Machado, Lombardi, Lanteri, & Banfi, 

2014).  Schlader et al. (2017) recently evaluated different durations of treadmill walking (two 20 

minute bouts vs three 20 minute bouts) in the heat on biomarkers of renal function.  The authors 

revealed greater changes in plasma NGAL and augmented creatinine responses during the long 

protocol (Schlader et al., 2017).  In congruence with previous literature from marathon and 

ultramarathons, the NGAL and creatinine values returned to baseline by 24 hours post exercise 

(Schlader et al., 2017).  The authors also demonstrated a weak, but significant relationship (r = 

0.32), between core temperature and plasma NGAL (Schlader et al., 2017).  This could suggest 

that higher body temperatures, which in this protocol, increased with protocol duration, may be a 

contributor to the extent of NGAL expression.  This hypothesis also fits with data from our own 

laboratory regarding a relationship between NGAL and exercise finishing time at an endurance-

cycling event (100 km or 100 mile) in the heat.  As exercise in the heat may induce an ischemic-

like event in the kidneys, the duration of exercise may elicit greater stress on the tubules.   
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 A common risk with exercise in the heat is the development of exertional heat illness, 

with exertional heat stroke representing the most severe condition (Casa et al., 2015b; Leon & 

Bouchama, 2015).  If treated improperly, heat stroke can result in multiple organ failure, renal 

compromise, and potential fatality (Leon & Bouchama, 2015; Leon & Helwig, 2010; Sawka et 

al., 2011).  Furthermore, heat stroke is commonly associated with a systemic inflammatory 

response, thought to potentially leading to the development of multiple organ dysfunction or 

failure (Leon & Bouchama, 2015; Leon & Helwig, 2010).  One factor thought to induce this 

inflammatory response is the release of endotoxins (e.g. lipopolysaccharide, LPS) into the blood 

from the intestinal tract caused by severe reductions in splanchnic blood flow (Leon & Helwig, 

2010).  The impact of LPS on renal function has also received investigation in the absence of 

heat stroke.  In rats injected with LPS, SCr was significantly elevated from three to 12 hours 

post-injection, meeting guidelines for AKI (Han, Li, Liu, & Cong, 2012).  Further, at three hours 

and six hours post-administration, plasma NGAL and urinary NGAL reached peak values, 

indicating stress in the proximal tubule (Han et al., 2012).  Interestingly, TNF-α mRNA were 

strongly correlated with NGAL mRNA (r = 0.99), suggesting that the upregulation of NGAL 

following sepsis may be regulated by a TNF-α cytokine response (Han et al., 2012).  However, 

NGAL was not related to IL-6 expression, which has been shown in other models of AKI (Han et 

al., 2012; Junglee et al., 2013).   

 In addition to dynamic exercise, the effects of forearm heating on renal vascular 

responses to static handgrip exercise have also been evaluated (Kuipers, Sauder, Kearney, & 

Ray, 2007).  The exercise-induced reductions in renal blood flow velocity were augmented with 

forearm heating, potentially indicating a greater activation of the exercise pressor reflex with 

heat stress.  The authors suggested the increased renal vasoconstriction with heating likely 
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occurred due to enhanced mechanoreceptor sensitivity, as post-exercise ischemia (i.e. 

metaboreceptor stimulation) did not increase renal vasoconstriction (Kuipers et al., 2007).  In 

contrast, cooling the forearm reduced vasoconstriction in the renal vasculature via a dampened 

metaboreflex response (Kuipers et al., 2007).   

Influence of Hydration on Renal Function 

 Hydration also affects renal structure and function both acutely and chronically.  

Dehydration is defined as the process of losing total body water and can be divided into 

extracellular (e.g. diuretics, diarrhea) and intracellular (e.g. thermoregulatory sweating) deficits 

(Cheuvront & Kenefick, 2014).  Common measures of dehydration include blood (serum or 

plasma), urine, and body mass, however, the proper assessment depends largely on the 

mechanism of fluid loss (Cheuvront & Kenefick, 2014).  Regardless, deficits in total body water, 

acute and chronically, necessitate return to homeostasis through fluid retention strategies via 

renal mechanisms.  As such, proper renal function with suboptimal hydration is of serious 

concern to prevent negative consequences related to physiological, performance, or health 

outcomes. 

 Acutely changing an individual’s drinking pattern to high fluid volumes has been shown 

to reduce the kidney’s ability to concentrate urine following subsequent fluid deprivation (DE 

WARDENER & HERXHEIMER, 1957).  Short-term dehydration (60 hours) in rats has been 

shown to upregulate aquaporin-2 mRNA expression, sodium chloride creatine transporter mRNA 

expression, and creatine uptake compared to a water loaded animal (Garcia-Miranda, Peral, & 

Ilundain, 2010).  In clinical settings, the use of early hydration has been found to reduce the 

incidence of contrast-induced AKI (Rihal & Kashani, 2011). 
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 Heat stress following 48 hours of water deprivation in rats was shown to induce 

substantial reductions in renal and mesenteric blood flow (Massett, Johnson, & Kregel, 1996).  

Interestingly, the change in renal blood flow during heating in the euhydrated rats were greater 

than those in the 48-hour water deprivation trials. The altered pressor response following water 

deprivation may have been due to adrenergic receptor sensitivity or lower cardiac output 

(Massett et al., 1996). 

 Smith et al. (1952) conducted early work evaluating the influence of dehydration on renal 

function during treadmill walking in the heat.  High ambient temperatures induced marked 

reductions in GFR and renal plasma flow, with greater attenuations found when work was 

conducted in the heat while dehydrated (Smith et al., 1952).  This work was pivotal in 

demonstrating that dehydration during exercise in the heat induces substantial GFR and renal 

blood flow reductions, with some greater than 50% of those during exercise in a cool 

environment (Smith et al., 1952).  These interruptions in renal plasma flow may have a 

substantial impact on the ischemic response to exercise.  The response noted by Smith and 

colleagues were during light activity as well, therefore it would be expected that a graded 

decrease in renal blood flow during dehydration would occur as exercise intensity increases.  

Melin et al. (1997) also evaluated the influence of dehydration on renal responses during one 

hour of treadmill walking in the heat.  Compared with a euhydrated control trial, dehydration 

reduced creatinine clearance, urine volume, and free water clearance.    

 Method of dehydration also impacts renal and hormonal responses (Melin et al., 2001).  

Melin et al. (2001) evaluated similar levels of dehydration induced by passive heating or 

exertional hyperthermia, demonstrating greater plasma levels of renin and aldosterone as well as 

larger reductions in creatinine clearance with exercise induced dehydration.  The reduction in 
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creatinine clearance likely contributed to the reduced osmolar clearance and free water clearance 

with exercise (Melin et al., 2001).  Although not directly measured, the renal hormonal and 

filtration responses suggest a greater reduction in renal blood flow during the exercise trial 

compared to passive heating. 

 Renal GFR during recovery from dehydrating exercise is also significantly reduced, 

however by 240 minutes post-exercise GFR had returned to baseline values (Stachenfeld, Gleim, 

Zabetakis, & Nicholas, 1996).  Subsequently, urine volume was also reduced from the end of 

exercise through 240 minutes of recovery, even though the participants had consumed to within 

1% of their baseline mass (Stachenfeld et al., 1996).  Interestingly, a gender comparison revealed 

males to have slower recovery of aldosterone at one and two hours post exercise.  Yet, males 

also had greater osmolar clearance than females at two hours post exercise (Stachenfeld et al., 

1996).  These findings suggest an influence of gender (potentially oestrogen driven) on the 

hormonal regulation of fluid post dehydrating exercise (Stachenfeld et al., 1996).  

 Beverage choice during rehydration following exercise induced dehydration also impacts 

the renal functionality.  Kamijo et al. (Kamijo et al., 2012) provided participants with high 

carbohydrate, low carbohydrate, or control following mild dehydration induced by exercise in 

the heat.  The consumption of a high carbohydrate beverage, increased sodium reabsorption in 

the kidney and decreased urine volume.  Interestingly, GFR (assessed by inulin) was greater in 

the high carbohydrate trial during and immediately after drinking.  The authors suggest that this 

increase was due to greater insulin with the high glucose concentration, inducing vasodilation 

and thus increased blood flow through the glomerulus (Kamijo et al., 2012).  Further, the 

increased sodium reabsorption was suggested to occur via insulin stimulation in the proximal 

tubule (Kamijo et al., 2012).     
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 Acute intense exercise also enhances proximal tubular sodium reabsorption during the 

following day (Nagashima, Wu, Kavouras, & Mack, 2001).  The reabsorption of sodium then 

aids to enhance plasma volume expansion.  This is potentially due to reduced renal blood flow 

driving a decreased hydrostatic pressure in the peritubular capillaries (Nagashima et al., 2001).  

These findings provide a mechanism for improvements in plasma volume expansion with 

endurance exercise training.   

 Hydration is also suggested to play a role in the development and progression of CKD 

(Clark et al., 2016; Kuwabara et al., 2017).  A recent retrospective analysis of over 12,000 

subjects over a 5 year period evaluated the effect of elevated serum sodium, a potential indicator 

of inadequate hydration, on CKD development (Kuwabara et al., 2017).  Regression analysis 

revealed every 5 mmol/L increase in serum sodium was associated with an 18% increase in risk 

of CKD (Kuwabara et al., 2017).  Roussel et al. (2014) evaluated the relationship between 

copeptin or vasopressin and CKD in a sample of ~2300 participants.  The authors determined a 

strong relationship between AVP and copeptin, supporting the use of copeptin as a surrogate of 

AVP (Roussel et al., 2014).  Elevated copeptin levels have also been related to greater 

prevalence of renal cyst formation and number of cysts (Ponte et al., 2015).  Using water 

restriction to induce recurrent dehydration in spontaneously hypertensive rats has recently been 

found to increase renal fibrosis, pro-inflammatory cytokine release and urinary NGAL levels 

(Hilliard et al., 2016).  These findings support the work from Bouby et al. (Bouby et al., 1990), 

augmenting the progression of CKD as well as hypertension with poor drinking habits (Hilliard 

et al., 2016).  
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Modifiers of Exercise Induced Muscle Damage  

 Exercise induced muscle damage may range from asymptomatic increases in damage 

biomarkers to exertional rhabdomyolysis requiring medical attention.  Subclinical 

rhabdomyolysis can easily be treated with rest and hydration (Tietze & Borchers, 2014).  

Rhabdomyolysis is characterized as the breakdown of skeletal muscle, resulting in the release of 

intracellular components such as creatine kinase and myoglobin in the circulation (Tietze & 

Borchers, 2014).  Exertional rhabdomyolysis is characterized as an overuse injury, often due to 

unaccustomed exercise.  Exertional rhabdomyolysis is typically defined as a creatine kinase 

response greater than 5 to 10 times the upper limit or values >1000 U/L (Tietze & Borchers, 

2014).   

 While creatine kinase may not be an ideal marker of muscle damage, it does provide 

indication that there is a disturbance to the skeletal muscle.  This information is important given 

the presence of creatine kinase elevations and possible hospitalizations for rhabdomyolysis in 

preseason and offseason athletes, military settings, and working populations, both with and 

without exertional rhabdomyolysis (Aizawa, Morita, Minami, Sasaki, & Tobise, 1995; Bhalla & 

Dick-Perez, 2014; M. A. Cleary, Sadowski, Lee, Miller, & Nichols, 2011; Ehlers et al., 2002; 

Galvez, Stacy, & Howley, 2008; Hummel, Gregory, Desai, & Diamond, 2016; Kahanov, 

Eberman, Wasik, & Alvey, 2012; Smoot et al., 2013; Smoot et al., 2014; "Update: Exertional 

rhabdomyolysis, active component, U.S. Armed Forces, 2011," 2012).  Creatine kinase 

responses are criticized in clinical diagnosis of exertional rhabdomyolysis as the values exhibit 

large inter-individual variabilities, even when individuals perform similar exercises (Lin, Chie, & 

Lien, 2006).  Individuals completing a 246 km road race demonstrated dramatic increases in 
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creatine kinase (>43000 U/L), yet were essentially asymptomatic for exertional rhabdomyolysis 

and did not require clinical treatment (Skenderi et al., 2006). 

Castellani et al. (2016) conducted eccentric elbow flexor exercise with and without heat 

stress, demonstrating that muscle temperature >40°C does impact injury biomarkers or skeletal 

muscle strength assessment.  However, these findings are limited as only skeletal muscle 

temperature was increased (via short-wave diathermy), which would not occur in exercise 

settings without core body temperature increases as well.   

 Hydration impacts resistance exercise performance, however has no impact on circulating 

markers of muscle damage (i.e. creatine kinase and myoglobin) with exercise (Yamamoto et al., 

2008).  Moderate hypohydration (5%) was successful at inducing slight increases in myoglobin 

one and two hours post-exercise, however, total work was not affected compared to an 

euhydrated condition.  In contrast, work in wrestlers found the greatest creatine kinase levels in 

those who reported the greatest body mass change to compete in a certain weight class (Ozkan & 

Ibrahim, 2016).  These data were purely observational, and body mass changes were reported by 

the athletes.  The impact of dehydration on anaerobic exercise performance remains somewhat 

controversial.  An excellent review of the literature on this topic, concluded that the overall 

effect of dehydration on muscular strength and power was negative (Judelson et al., 2007).   

 Finally, dehydration combined with hyperthermia may impact recovery from muscle 

damaging exercise (M. A. Cleary, Sweeney, Kendrick, & Sitler, 2005).  Cleary et al. (2005) 

investigated the effects of fluid restriction on delayed onset muscle soreness (DOMS) recovery 

from downhill running in the heat.  Perceptions of muscle pain were found to be significantly 

elevated 24- and 48 hours post exercise, with nonsignificant elevations through 96 hours post 

exercise (M. A. Cleary et al., 2005).  Overall perceptions of pain were elevated throughout the 96 
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hour recovery (M. A. Cleary et al., 2005).  However, there were no differences between trials in 

strength decreases, indicating no impacts on the severity of muscle damage.  Interestingly, when 

the downhill running was performed in a thermoneutral environment, the effects of dehydration 

on DOMS were ameliorated (M. A. Cleary, Sitler, & Kendrick, 2006).  Therefore, the addition of 

hyperthermia with concomitant dehydration may impact perceptions of skeletal muscle recovery, 

yet, the authors did not evaluate biomarkers of muscle damage (creatine kinase levels) at any 

time point.  In organized sport, when compared with a normothermic soccer match, there was no 

impact of heat stress on markers of muscle damage recovery, however perceptions were not 

assessed (Nybo et al., 2013).  Furthermore, this was post-soccer match therefore, the hydration 

and damage responses may have differed significantly between individuals.  Regardless, the 

impact of muscle damaging exercise with concomitant dehydration may exacerbate symptoms of 

DOMS, potentially due to delayed recovery induced via hyperthermia and dehydration.  

Renal Function with Exercise-Induced Muscle Damage  

Exertional rhabdomyolysis is the breakdown of skeletal muscle, causing the release of 

cellular contents, such as creatine kinase and myoglobin (a nephrotoxic substance), into 

circulation (Huerta-Alardín, Varon, & Marik, 2005).  Acute renal failure with exertional 

rhabdomyolysis has been well documented.  Athletes, soldiers, or workers completing 

unaccustomed strenuous activity induce significant muscle damage which then overwhelms the 

kidneys, potentially inducing AKI (Bach & Clement, 1980).  Furthermore, the presence of heat 

stress and dehydration often create the “perfect storm” to accentuate the severity of the muscle 

damage and prompt AKI (Clarkson, 2007; M. Cleary, Ruiz, Eberman, Mitchell, & Binkley, 

2007; Kodama et al., 1985). This is often transient with aggressive fluid resuscitation and rest 

resulting in full recovery of function after the event (M. Cleary et al., 2007).   In certain cases, 
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however, rhabdomyolysis severity may induce significant AKI resulting in renal replacement 

therapy to return renal function.  The presence of genetic predispositions, such as sickle cell trait, 

also facilitate the risk of rhabdomyolysis and AKI, therefore, precautions are necessary to 

prevent negative health outcomes in challenging physiological and environmental conditions 

(Anzalone et al., 2010; O'Connor et al., 2012) 

 The risk of exertional rhabdomyolysis is of concern for athletes, particularly those 

completing unaccustomed exercise.  However, the impact of subclinical rhabdomyolysis (i.e. 

low-grade muscle injury) on renal function and structure has received considerably less attention 

as this event does not require medical attention and likely goes unnoticed by medical 

professionals.  After exercise, creatine kinase levels in the blood can rise considerably without 

any clinical symptoms, making this marker rather unreliable in the assessment of risk for 

immediate negative renal outcomes (Clarkson & Eichner, 2006).   Furthermore, this suggests 

that, for the development of AKI, other stressors (i.e. environmental heat, dehydration) are 

necessary to compromise renal function (Clarkson & Eichner, 2006).  Renal stress induced by 

subclinical rhabdomyolysis with concomitant heat stress and dehydration may have substantial 

impact on AKI and the development of CKD.   

 Knochel and colleagues evaluated military recruits undergoing physical training at Fort 

Sam Houston in San Antonio, Texas during hot, warm, and cool weather (Knochel et al., 1974).  

Uric acid excretion continuously increased through study day 11 in recruits while creatinine 

clearance fell during the initial days of observation, before returning to basal levels during 

training in the hot weather.  Further, urine volume in hot weather was nearly half the production 

in cool weather, while urine creatinine initially decreased through day four, but then steadily 

increased through day 25 of training (Knochel et al., 1974).   
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 The assessment of AKI in military recruits was also assessed by another study (Schrier et 

al., 1970).  The findings demonstrated similar creatinine elevations to severe exercise at 10 days 

and three weeks of training.  The authors showed similar increases in uric acid at these time 

points (Schrier et al., 1970).  Further, the authors provided a schematic suggesting contributing 

mechanisms leading to acute renal failure following exercise in the heat.  Interestingly, this 

model was proposed in 1970, yet the recent rise in CKD associated with Mesoamerican 

sugarcane workers has revealed a model that provides nearly identical mechanisms (dehydration, 

heat stress, physical exertion, subclinical rhabdomyolysis) for the development of AKI and CKD 

in this population (Johnson et al., 2016; Roncal-Jimenez et al., 2016; Schrier et al., 1970).  

To date, there have been few controlled laboratory investigations of the cumulative 

effects of dehydration, heat stress, and muscle damage on renal function during and following 

exercise.  Junglee and colleagues  investigated the renal responses to exertional hyperthermia 

following 40 minutes of moderate intensity treadmill running in the heat with muscle damage 

previously induced via downhill running (Junglee et al., 2013).  Compared with the no muscle 

damage trials, exercise in the heat following muscle damage elicited elevations in urinary 

NGAL, plasma NGAL, and SCr.  The hydration status of individuals was not well controlled, 

likely resulting in minor dehydration (1-2%) in these individuals.  Additionally, no follow-up 

measures were collected, therefore it is difficult to ascertain whether these responses followed a 

similar transient path shown in marathon running (Mansour et al., 2017; McCullough et al., 

2011).  Thus, the impact of dehydration with muscle damage during exercise in the heat remains 

a heretofore unstudied phenomenon.   

Unfortunately, the long-term impact of low-grade muscle injury on the development of 

CKD is relatively unknown in athletic or working populations in the United States.  Agricultural 
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workers in central California demonstrated renal dysfunction after a single shift (Moyce et al., 

2016).  Using SCr measurements before and after a work shift, 11.8% of the 295 workers 

assessed met the criteria for stage one AKI (Moyce et al., 2016).  Mesoamerican sugarcane 

workers represent one such population that regularly experiences subclinical rhabdomyolysis 

with extreme heat stress and dehydration (García-Trabanino et al., 2015; Glaser et al., 2016; 

Paula Santos, Zanetta, Terra-Filho, & Burdmann, 2015; Peraza et al., 2012; Roncal-Jimenez et 

al., 2016).  The recent rise in CKD in Mesoamerican sugar cane workers has been largely related 

to physiological responses to environmental working conditions (Bodin et al., 2016; Crowe et al., 

2015; García-Trabanino et al., 2015; Laws et al., 2015, 2016; Roncal-Jimenez et al., 2016).  

These workers experience progressive dehydration throughout the work day through elevated 

urine specific gravity and decreased glomerular filtration rates (García-Trabanino et al., 2015; 

Roncal-Jimenez et al., 2016; Wesseling et al., 2016). The combination of heat stress with 

strenuous exercise and gradual dehydration throughout the work day places a high demand on 

the kidneys to retain fluid while clearing excess waste from potential muscle damage.  As GFR 

has been shown to decrease throughout the work day, the increased prevalence of CKD may be 

due to the additive effects of repetitive kidney stress from the concomitant environmental and 

physiological strain experienced by these workers (Bodin et al., 2016; Crowe et al., 2015; 

García-Trabanino et al., 2015; Laws et al., 2015, 2016; Peraza et al., 2012; Roncal-Jimenez et al., 

2016).  Cutters regularly experience uncompensable heat stress with wet bulb globe temperatures 

>30°C by 9:00 AM in coastland working areas (Bodin et al., 2016).  Interestingly, coastland 

areas tend to have greater elevations in creatinine as well, suggesting a link to environmental 

heat stress (Peraza et al., 2012).  Furthermore, metabolic loads in the Costa Rican sugarcane 

cutters have been estimated to be 261 W/m2, which, using recommendations from the National 
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Institute of Occupational Safety and Health in Spain, is suggested to be conducted at a maximum 

wet bulb globe temperature of 26°C (Crowe et al., 2013).  The characteristics of the heat stress 

experienced may apply to many other occupations as well, such as firefighters, military, 

agricultural and industrial settings. 

 Interestingly, implementation of a simple water (CamelBaks), shade, and rest break 

intervention by Bodin and colleagues  in sugar cane workers in El Salvador, not only increased 

water consumption, but also improved worker productivity and reported symptoms of heat stress 

and dehydration (Bodin et al., 2016).  However, renal function in these individuals was not 

evaluated therefore it is difficult to ascertain whether the increased fluid consumption or rest 

breaks resulted in substantial improvements in the development of CKD.   

Beneficial Effects of Exercise on Renal Function 

 It should be clarified that the aim of this review is not to indemnify the beneficial effects 

of exercise on long term renal functionality.  Following 16 weeks of treadmill running, blood 

pressure increases and renal function impairments were prevented in spontaneously hypertensive 

rats compared to their sedentary counterparts (Agarwal et al., 2012).  Furthermore, the exercise 

training program prevented elevations in inflammatory markers such as TNF-α or NF-κB 

(Agarwal et al., 2012).  Twelve weeks of resistance training in patients receiving hemodialysis 

was found to have no impact on circulating pro-inflammatory markers (e.g. TNF-α, IL-8) with a 

slight positive impact on anti-inflammatory markers (IL-6) associated with muscular adaptations 

(Cheema et al., 2011).  Skeletal muscle growth induced in Akt-1 transgenic mice has also shown 

mitigation of renal damage, inflammation, and fibrosis following surgery (Hanatani et al., 2014).  

These findings are substantial as the benefit of skeletal muscle growth occurred independent of 

exercise.  While clinically less applicable than an exercise model, the improvement in skeletal 
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muscle mass inducing renal protective effects, further supports the need for exercise and other 

benefits associated with exertion.  Renal resistance artery sensitivity to vasoconstrictor stimuli 

was increased following an exercise training protocol in rats (Koçer et al., 2011).   

A concern with elevations in kidney injury biomarkers or changes in renal function is the 

development of chronic kidney disease.  Hiraki and colleagues  utilized chronic kidney disease 

patients to evaluate the effects of an acute bout of moderate intensity treadmill walking on renal 

biomarkers (Hiraki et al., 2013).  The authors demonstrated slight, but non-significant, increases 

in L-type fatty acid binding protein (L-FABP) with no changes in NAG or estimated GFR 

(Hiraki et al., 2013).  Thus, moderate intensity treadmill walking in this population provides a 

safe modality for physical activity.  These findings are also confirmed in healthy populations, 

with lower intensity exercise producing no changes in GFR (Poortmans & Vanderstraeten, 

1994).  The aforementioned return of renal blood flow shortly after ceasing moderate intensity 

exercise (Pricher et al., 2004) likely plays an important role in the ability for individuals to 

tolerate or recover renal function from exercise.   

Cardiovascular and Thermoregulatory Responses to Exercise in the Heat 

 The challenge of exercising in the heat requires marked cardiovascular and 

thermoregulatory adjustments to maintain both core body temperature and mean arterial pressure 

(González-Alonso, Mora-Rodríguez, Below, & Coyle, 1997; González-Alonso et al., 2000; 

González-Alonso et al., 1999; Montain & Coyle, 1992; Montain, Latzka, & Sawka, 1995; 

Montain, Sawka, Latzka, & Valeri, 1998; Rowell, 1974; Sawka, Cheuvront, & Kenefick, 2012; 

Sawka et al., 2011).  During the initial transition to exercise, feed-forward signals from central 

command and feedback from the exercise pressor reflex (i.e. mechanoreflex and metaboreflex) 

dictate an increase in heart rate and blood pressure to maintain perfusion of cerebral vasculature 
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and exercising tissue.  Further, the cutaneous vasculature experiences marked vasoconstriction to 

aid in the maintenance of central venous pressure (i.e. cardiac filling).  As exercise continues, 

especially in the heat, cutaneous blood flow and sweating increase as core temperature and skin 

temperature rise (Nadel, 1979; Nadel, Bullard, & Stolwijk, 1971; Rowell, 1974; Sawka et al., 

2011).  The redistribution of blood flow to the cutaneous vasculature causes a subsequent 

reduction in central blood volume.  To maintain cardiac output, heart rate and cardiac 

contractility are increased, and blood flow to the splanchnic and renal vasculature is decreased 

(Rowell, 1974).  As intensity increases during exercise in the heat, however, the competition for 

blood flow between the cutaneous and skeletal muscle vasculature induces greater cardiovascular 

strain.  As a result, performance is attenuated, particularly during endurance events (Ely, 

Cheuvront, Roberts, & Montain, 2007; Sawka et al., 2011).      

 When dehydration is combined with exercise in the heat, there is substantial impairment 

in stroke volume due to blood volume reductions (González-Alonso et al., 2000; González-

Alonso et al., 1999).  Cardiac output is therefore reduced compared to a euhydrated state 

(González-Alonso et al., 1997). Further, there is a reduction in muscle blood flow which leads to 

sacrificed performance (Casa et al., 2010; González-Alonso et al., 1998).  Dehydration has also 

been found to impair skin blood flow and sweating (González-Alonso et al., 2000).  Therefore, 

there is a decreased ability to dissipate heat, resulting in elevated core temperatures during 

exercise as compared to a euhydrated state (Casa et al., 2010; Cheuvront & Kenefick, 2014; 

González-Alonso, Mora-Rodríguez, Below, & Coyle, 1995; González-Alonso et al., 1997).   

 Thermal strain is also increased with prior muscle damage (Fortes et al., 2013).  Fortes et 

al. (2013) induced muscle damage via a downhill running protocol, followed by exercise in the 

heat either 30 minutes or 24 hours post-muscle damage.  Interestingly, rectal temperature during 
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exercise in the heat was elevated above the non-muscle damage trial when exercise was 

completed 30 minutes post damage. There were no differences in sweat rate in any of the trials, 

however IL-6, an inflammatory cytokine, was significantly greater in the muscle damage trial 

versus no damage.  Interestingly, when the exercise was performed 24 hours post muscle damage 

there were no differences as compared to no damage.   Hence, the acute inflammatory 

immediately post-muscle damage may have led to the decreases in thermoregulation (Fortes et 

al., 2013).  However, the authors did not assess skin blood flow, thus potential differences in heat 

losses via convective mechanisms may have contributed.  There were also no differences in skin 

temperature, so it is likely that the cutaneous blood flow responses were similar between trials 

(Fortes et al., 2013).  Additionally, the authors provided fluids during the muscle damaging 

exercise but not during exercise in the heat, allowing for potential hydration changes.  Therefore, 

the impact of dehydration in thermal strain during exercise in the heat following exercise induced 

muscle damage has not been fully investigated.  

Cardiovascular and Thermoregulatory Responses Following Exercise in the Heat 

 Upon completion of exercise, there is a marked decrease in sympathetic nervous system 

activity.  This may induce post-exercise hypotension due to the continued vasodilation of skeletal 

muscle vasculature in combination with increases in blood flow to splanchnic and renal systems 

(Charkoudian, Halliwill, Morgan, Eisenach, & Joyner, 2003; Halliwill, 2001; Pricher et al., 

2004).  Interestingly, skin blood flow and sweating also decrease following exercise completion, 

despite continued elevations in core body temperature (Kenny et al., 2008; Kenny, Jay, & 

Journeay, 2007; Kenny et al., 2006).  It has been suggested that these decreases in 

thermoregulatory mechanisms are largely baroreflex driven as adjusting body posture to the 

supine position (i.e. baroreflex loading) improves sweating and skin blood flow (Jay et al., 2008; 
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Kenny et al., 2008; Kenny et al., 2007; Kenny et al., 2006).  As dehydration impairs 

thermoregulatory mechanisms, cardiovascular stability, and blood flow to the muscle during 

exercise, it has been shown that some of these mechanisms continue to be altered during 

immediate recovery as well (Charkoudian et al., 2003; Gagnon, Lynn, Binder, Boushel, & 

Kenny, 2012; González-Alonso et al., 1998; González-Alonso et al., 1997; González-Alonso et 

al., 2000; González-Alonso et al., 1999; McDermott, Casa, Lee, Yamamoto, Beasley, 

Emmanuel, Anderson, et al., 2013; McDermott, Casa, Lee, Yamamoto, Beasley, Emmanuel, 

Pescatello, et al., 2013).  Lower mean arterial pressures were demonstrated when dehydrated 

following exercise, with greater effects reductions in trained individuals (Gagnon et al., 2012).  

Further, esophageal temperature was elevated by ~ 0.8°C in untrained and trained individuals 

with dehydration after 210 minutes of recovery from exercise (Gagnon et al., 2012).  However, 

esophageal temperature at the end of exercise was greater with dehydration than the euhydrated 

condition.  Consequently, the rate of passive cooling may have been similar.  Our laboratory has 

demonstrated small but significant reductions in cooling rates during cold water immersion with 

mild dehydration (Butts et al., 2016).  McDermott et al. also revealed a slowed recovery rate of 

rectal temperature when dehydrated compared to conditions of post-exercise rehydration 

(McDermott, Casa, Lee, Yamamoto, Beasley, Emmanuel, Anderson, et al., 2013).   Interestingly, 

skin temperature was similar between dehydrated and rehydrated individuals, suggesting a 

possible mechanism that would lead to similar skin blood flow responses.   

 Lynn and colleagues found a slower core temperature recovery with elevated skin blood 

following exercise in the heat without fluid replacement (Lynn, Minson, & Halliwill, 2009).  As 

hyperosmolality associated with dehydration is shown to induce alterations in skin blood flow 

and sweating, it is possible that this mechanism would continue to alter thermoregulatory 
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responses post-exercise (Charkoudian, 2010; Charkoudian et al., 2003; Fortney, Wenger, Bove, 

& Nadel, 1984; Shibasaki, Aoki, Morimoto, Johnson, & Takamata, 2009). These responses were 

only compared to compared to fluid and no fluid replacement exercise bouts in thermoneutral 

environments, thus the impact of elevated skin and core temperature on these responses cannot 

be stated (Lynn et al., 2009). Paull et al. (2016) recently assessed the effects of plasma 

osmolality on heat loss mechanisms post-exercise (i.e. skin blood flow and sweating) using 

hypertonic and isotonic saline infusion during exercise.  Interestingly, hypertonic saline during 

exercise resulted in a slower recovery of skin temperatures, with elevations through 60 minutes.  

However, there were no differences in skin blood flow, esophageal temperature, or local sweat 

rate between isotonic and hypertonic saline infusion.  Conversely, hypertonic saline resulted in 

lower sweat rates on the upper back and chest.  Thus, the effects of hyperosmolality appear to 

moderately impact heat loss mechanisms post-exercise.  However, the post-exercise responses of 

skin blood flow and sweating when fluid replacement during exercise was provided by oral 

drinking compared with no drinking has not been exclusively investigated.   

Summary 

 There is overwhelming evidence to suggest a negative role of dehydration in renal 

function, thermoregulation, performance, and cardiovascular stability.  The concomitant 

exposure to physiological (i.e. exercise, muscle damage) and environmental (high ambient 

temperature and humidity) stressors commonly experienced by athletes, military, and 

occupational populations may augment the deleterious responses to dehydration.  The recent use 

of novel biological markers (e.g. NGAL, KIM-1) to evaluate renal function during and following 

exercise has also provided the ability to evaluate stress placed on renal components outside of 

the glomerulus, further detailing the response of renal health with exertion.  However, the role of 
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optimal hydration during exercise on renal function and the expression of AKI biomarkers, has 

not been exclusively investigated.  Elucidating the acute effects of dehydration with concomitant 

exercise, muscle damage, and heat exposure may provide insight for long-term consequences in 

populations regularly exposed to these combined stressors.   
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III. Methods 

 Eighteen healthy, recreationally active males (age 24 ± 5 y, wt 75.9 ± 10.0 kg, ht 1.79 ± 

0.05m, body fat 17.3 ± 6.2%, VO2max, 51.0 ± 6.0 ml/kg/min) were recruited from the University 

and surrounding areas to participate in this randomized, crossover, counterbalanced design study.  

All procedures were approved by the University Institutional Review Board and written 

informed consent was acquired from all individuals prior to participation.  Participants 

completed five total visits including one familiarization day and two experimental days (one 

hypohydrated, HY, and one euhydrated, EU) each with 24-h follow-up visits.  Experimental 

visits were separated by ≥28 days (average; 41 ± 16 days) to allow for muscle damage recovery 

and prevent acclimation to the heat.  Exclusionary criteria included previous heat exhaustion or 

heat stroke within the past 3 years, current musculoskeletal injury, hypertension where vigorous 

exercise is contraindicated, diagnosed sickle cell trait, use of medications that may alter 

thermoregulation or kidney function, current use of creatine supplementation, and a history of 

kidney disease.  All participants were asked to refrain from alcohol use for 24-h, caffeine use for 

12-h, resistance training for 5-days and exercise for 24-h prior to each trial.  Body composition 

was assessed via dual energy x-ray absorptiometry (DXA, Lunar Prodigy, General Electric, 

Madison, WI, USA).   

Familiarization Day:  

 During the initial familiarization visit, participants signed an informed consent form and 

completed a medical history questionnaire.  Upon approval, baseline demographic information 

was collected and body composition assessed via DXA.  Participants then completed a five-

minute warm-up on a cycle ergometer (~50W) and were fitted to the isokinetic dynamometer 

(Biodex System 3, Biodex Medical Systems, New York) with seat and leg positions recorded for 
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future testing.  Baseline isometric strength at 70° and 90°, and isokinetic strength at 60°·sec-1 

were competed in triplicate.   Because these were used as a familiarization, these measures were 

not included in analysis.  Participants then underwent a graded maximal exercise test on a 

treadmill to assess maximal oxygen uptake (VO2max) to establish exercise intensities for 

subsequent trials.  The test consisted of a constant jogging speed (selected by the participant) 

with grade increasing by 2% every two minutes until volitional exhaustion. 

Experimental Days: 

 Prior to arrival, participants completed three-day euhydrated baseline body weights with 

a provided scale (BalanceFrom High Accuracy Bathroom Scale, BalanceFrom LLC, China) for 

both trials, as well as a diet record on a standard log for 24-h prior to each trial.  Additionally, 

participants collected all urinations for the 24-h prior to the start of trial, which was subsequently 

analyzed for 24-hr urine osmolality (freezing point depression, Model 3250, Advanced 

Instruments Inc., Norwood, MA).  For the HY trial, the dehydration protocol consisted of 24-h 

fluid restriction in addition to fluid restriction during the protocol.  Prior to the euhydrated 

protocol, participants were instructed to consume fluids prior to arrival, while water was 

provided during the trial to ensure less than 2% body mass loss.   

 Upon arrival, participants completed a 24-h history, provided a spot urine sample, and 

completed a nude body mass.  The 24-h urine collection and spot urine were analyzed for urine 

specific gravity (refractometer, model Master-SUR,NM, Atago Co Ltd, Tokyo, Japan) and 

osmolality (freezing point depression, Model 3250, Advanced Instruments Inc., Norwood, MA) 

to confirm hydration status.  Spot urine was also stored for later assessment of the acute kidney 

injury biomarker, (UNGAL) and creatinine (UCr) via their respective assays. Participants were 

provided a rectal thermometer (RET-1, Physitemp Instruments Inc, Clifton, NJ, USA) to insert 
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~15 cm past the anal sphincter to assess rectal temperature (Tre).  Participants were also 

instrumented with a Polar heart rate monitor (FT1/T31, Polar Inc, Lake Success, NY, USA), 

automated blood pressure cuff (Tango+, Suntech, Medical Inc., Morrisville, NC, USA) and skin 

temperature thermochrons (iButton, Maxim Integrated, San Jose, CA, USA) to assess four-site 

mean weighted skin temperature (Tsk) (Ramanathan, 1964).  Participant attire consisted of 

running shorts, socks, and shoes.  prior to arrival will also be analyzed.    

 Participants completed a 20-minute semi-recumbent baseline rest in a thermoneutral 

environment (~20°C).  During this time, participants were informed on the perceptual scales for 

rating of perceived exertion (RPE) (Borg, 1970), thermal sensation (Toner, Drolet, & Pandolf, 

1986), and perceived thirst (Engell et al., 1987), as well as visual analog scales to identify overall 

and leg-specific muscle pain.  Following the 20 minutes of rest, baseline physiological and 

perceptual measures were recorded and a baseline blood draw via venipuncture was conducted to 

collect serum and sodium heparin plasma vacutainers (BD, Ontario, Canada  

Participants moved to a cycle ergometer (Monark 828E, Monark Exercise AB, Sweden) 

to complete a 5-minute warm-up at 50W before completing the muscle damaging protocol on an 

isokinetic dynamometer (Biodex System 3, Biodex Medical Systems, New York) (Xin, Hyldahl, 

Chipkin, & Clarkson, 2014). The muscle damaging procedure involved unilateral eccentric knee 

extension exercise, with the contralateral leg utilized during the second trial to minimize the 

potential repeated bout effects.  The leg used during the first trial was randomized and 

counterbalanced for hydration and dominance between participants.  Prior to, and immediately 

following the eccentric protocol, isometric strength (i.e. peak torque) measures were performed 

via three 5-second maximal voluntary isometric knee extensor contractions at 70° and 90° knee 

flexion with one minute of rest between repetitions.  Isokinetic knee extensor strength (i.e. peak 
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torque) was also completed in triplicate at 60°·sec-1.  For each trial, participants completed 10 

sets of 10 eccentric maximal effort knee flexion repetitions at a speed of 30°/s with sets separated 

by one-minute (Xin et al., 2014).   Perceptions of muscle pain and RPE were recorded following 

the exercise induced muscle damage.  Decreases in strength, as well as elevations in SCK and 

muscle pain, served as indices of muscle damage (Damas, Nosaka, Libardi, Chen, & 

Ugrinowitsch, 2016).  While it is recognized that there are contralateral adaptations following 

single leg eccentric exercise, the 4 weeks trial separation should minimize many of the 

responses.  Xin et al. (2014) demonstrated no differences in muscle soreness or creatine kinase 

following contralateral eccentric exercise separated by 4 weeks, while isometric strength was 

lower in the second bout from 24 to 96 hours post exercise.  Further, the purpose of the eccentric 

exercise protocol was to induce mild muscle damage similar to athletic practices or labor-

intensive occupational settings, thus physiological adaptations were not expected to alter the 

findings given our counterbalanced, crossover study design.  Also, the participants were directed 

to avoid changes in their exercise regimen between trials to minimize changes in fitness.         

 Next, the participants transitioned to an environmental chamber (33.0 ± 0.3°C, 54 ± 2% 

relative humidity) and complete a 10-minute up-right seated acclimation period.  During this 

period sweat patches (Tegaderm+Pad, 3M, St. Paul, MN, USA) were applied to the dorsal or 

ventral forearm (depending on the forearm hair) and superior scapula (back) (Baker, Stofan, 

Hamilton, & Horswill, 2009).  Physiological and perceptual measures were assessed at the end of 

the ten minutes, at which time a body mass was obtained and the participant moved to a treadmill 

to begin a 5-minute walking warm-up (1.3 m/s) followed by running at 60% VO2max (no 

difference between trials; EU 61.8 ± 3.9%, HY 62.5 ± 3.85%; P = 0.18) (1% grade) for 60 

minutes with a 5- minute walking (1.3 m/s) break at 30 minutes and 5-minute cool down (1.3 
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m/s).  Heart rate, Tre, Tsk, and perceptual measures were recorded every 10 minutes.  Exercise 

was paused every 10 minutes to complete a body mass, which was subsequently used to provide 

water (warmed to 38°C) to replace sweat losses within 2% body mass loss in the EU trial 

(average intake; 0.96 ± 0.63 L).  In the HY trial, small amounts of water were provided every 10-

20 minutes to prevent excessive dehydration and improve participant comfort (average intake; 

0.19 ± 0.12 L).  Exercise was terminated early in 3 individuals due to rectal temperature equal to 

40°C in the HY trial and in one individual in the EU trial due to trial time. 

 Immediately following exercise, a body mass was obtained and participants remained in 

the chamber to complete a 30-minute semi-recumbent recovery period with physiological (heart 

rate, Tre, Tsk) and perceptual measures (thirst, thermal sensation, muscle pain) recorded every 10 

minutes. A blood draw was also collected at 20 minutes of recovery.  The participants then 

exited the chamber, removed instrumentation, and provided a final nude body mass and urine 

sample.     

 Participants were provided with a 24-hour urine collection container, diet log, and 

rehydration instructions such that 100% of fluid losses were replaced within four hours of 

completion and an additional 2.5 L were consumed before arriving for the follow-up visit ~24-h 

later (actual time; 21.5 ± 0.9 h). Compliance was verbally confirmed upon arrival at the 24-h 

follow-up visit.  

At the 24-h follow-up visit, participants provided a nude body mass and spot urine 

sample, followed by a 20-minute semi-recumbent rest.  At the end of the rest, physiological and 

perceptual measures were recorded and a blood draw was collected.  Participants then completed 

the five-minute warm-up on a cycle ergometer at 50W before moving to the isokinetic 

dynamometer.  Knee extension strength was once again recorded for isometric contractions at 
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70° and 90° of knee flexion as well as isokinetic knee extension contractions at 60°·sec-1. 

Participants were then instructed to resume normal exercise routines and second visits were 

scheduled, if applicable. 

Blood analysis 

 Serum collected at each time point clotted at room temperature followed by 

centrifugation at 1000g and 4°C for 15 minutes. Serum was then used to assess osmolality via 

freezing point depression, sodium (ion-selective electrode, EasyElectrolyte, Medica Corporation, 

Bedford, MA, USA), and protein (refractometer, model Master-SUR,NM, Atago Co Ltd, Tokyo, 

Japan) in duplicate.  Serum was also aliquoted and stored at -80°C for subsequent analysis of 

creatine kinase (SCK) and creatinine (SCr) performed per manufacturer’s instructions via their 

respective commercially available colorimetric assays (BioAssay Systems, Hayward, CA, USA).  

Plasma collected at each time point was used to assess hemoglobin (Hb) in duplicate 

(HemoCueHb 201+, HemoCue, Angelholm, Sweden) and hematocrit read in triplicate using 

microcapillary tubes with a Micro-Capillary Reader (International Equipment Company, 

Needham Heights, MA).  Plasma was also aliquoted and stored at -80°C for subsequent analysis 

of NGAL (PNGAL) performed per manufacturer’s instructions via a commercially available 

enzyme linked immunosorbent assay kit (R&D Systems Inc, Minneapolis, MN, USA). UNGAL 

assessment was also completed per manufacturer’s instructions via a commercially available 

enzyme linked immunosorbent assay kit (R&D Systems Inc, Minneapolis, MN, USA).  UCr was 

assessd performed per manufacturer’s instructions via a commercially available colorimetric 

assay (BioAssay Systems, Hayward, CA, USA).  The coefficients of variation for SCK, SCr, 

UCr, PNGAL, and UNGAL were 2.1%, 2.8%, 4.9%, 3.2%, and 3.8% respectively.  

Statistical Analysis 
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 All statistical analyses were completed using SPSS version 24 (IBM Corporation, 

Somers, NY).  Normality was assessed via Shapiro-Wilks test and histogram analysis and 

outliers were identified as three x interquartile range.  Statistical analyses were initially 

completed with outliers removed.  Outliers were then returned to the data to identify the impacts 

on statistical outcomes.  Results were reported with outliers maintained if they did not impact 

statistical conclusions.  Statistical findings that required outlier removal (i.e. decreasing sample 

size) are noted in the results.  All partial eta squared (ηp²) and Hedge’s g values were calculated 

using a spreadsheet from Lakens (2013).  Based on a .80 power calculation using the primary 

outcome variable NGAL (Junglee et al., 2013; Melin et al., 1997) with a correlation between 

time points of 0.42, a 2-standard deviation effect size, β of 0.20, and α of 0.05, it was determined 

17 participants would be sufficient to complete this study. An increased experiment-wise type I 

error rate is acknowledged due to the multiple multivariate and univariate analyses conducted.  

Because the experimental protocol is time, resource, and cost intensive, power estimates were 

calculated based on singular analyses to provide initial experimental outcome indicators and 

guide future research.    

For paper number one, repeated measures multivariate analysis of variance were used to 

assess blood NGAL and creatinine differences with a 3-way repeated measures analysis. 

Repeated measures multivariate analysis of variance were also used to assess urine NGAL and 

creatinine differences with a 3-way repeated measures analysis.  All thermoregulatory, 

cardiovascular, hydration, and muscle damage variables (i.e. Tre, Tsk, thermal sensation, RPE, 

thirst, heart rate, blood pressure, body mass, urine specific gravity, urine osmolality, and 

isometric strength changes) were analyzed using two-way (time x hydration) repeated measures 

analysis of variance.  When sphericity was violated, Greenhouse-Geisser adjustments were used 
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in the omnibus test.  Post-hoc analyses involved pairwise comparisons with an appropriate 

Bonferroni corrected alpha to identify significant time point differences.  Data that failed 

normality tests (thirst sensation and muscle pain) were analyzed with a Friedman test across time 

and between hydration states.  Follow-up pairwise analysis were conducted using a Wilcoxon 

signed rank test for individual time point differences. Alpha of 0.05 was set a priori to determine 

significance at the omnibus level for each analysis.  

For paper number two, repeated measures multivariate analysis of variance was used to 

assess absolute peak torque (i.e. strength) across time (pre-muscle damage, post-muscle damage, 

and the 24-h follow-up) and between hydration (EU and HY) for isometric peak torque at 70° 

and 90° knee flexion and 60°·sec-1 isokinetic peak torque with a 3-way repeated measures 

analysis. Additional variables (body mass, creatine kinase, and muscle pain) were analyzed using 

two-way (time x hydration) repeated measures analysis of variance.  When sphericity was 

violated, Greenhouse-Geisser adjustments were used in the omnibus test.  Post-hoc analyses 

involved pairwise comparisons with an appropriate Bonferroni corrected alpha to identify 

significant time point differences.  Dependent t-tests were used to assess differences in 24-h 

urine osmolality, total eccentric work, average eccentric peak torque and ratings of perceived 

exertion between trials.  Data that failed normality tests (muscle pain) were analyzed with a 

Friedman test across time and between hydration states.  Follow-up pairwise analysis were 

conducted using a Wilcoxon signed rank test for individual time point differences. Alpha of 0.05 

was set a priori to determine significance at the omnibus level for each analysis.   
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Abstract 

Purpose: We investigated the combination of dehydration, muscle damage, and exercise in the 

heat on biomarkers of renal stress. Methods: Eighteen male participants (age 24±5 y, mass 

75.9±10.0 kg, body fat 17.3±6.2%, VO2peak 51.0 ± 6.0 ml/kg/min) completed two trials, one 

euhydrated (EU; fluid replacement ≤2% body mass loss; actual loss -1.2 ± 0.8%) and one 

hypohydrated (HY; fluid restriction 24-h prior to and throughout exercise; total loss -4.4 ± 

1.9%), separated by ≥28 days. Trials consisted of muscle damaging unilateral eccentric knee 

flexion, 60 minutes of treadmill running (~60% VO2peak) in the heat (33.0 ± 0.3°C, 54 ± 2% 

RH), and 30 minutes of passive recovery. Participants were provided a rehydration protocol in 

both trials and returned 24-h later for a follow-up visit. Results: The HY trial caused greater 

changes in rectal temperature during exercise (1.8 ± 0.5°C) compared to the EU trial (1.5 ± 

0.4°C, P = 0.04).  Percent change in plasma neutrophil gelatinous associated lipocalin (NGAL, a 

biomarker of acute kidney injury) was greater in the HY trial post-exercise (EU 28.0 ± 15.2%, 

HY 41.8 ± 17.5%, P <0.001), but not at 24-h follow-up (P = 0.39).  Serum creatinine also 

exhibited a main effect of trial (EU 0.97 ± 0.14, HY 1.04 ± 0.15, mg/dL, P = 0.025).  Urine 

NGAL and urine creatinine were also elevated in the HY trial pre-exercise and post exercise (all, 

P<0.05) but were returned to EU levels by 24-h follow-up (all, P > 0.05).  Conclusion: These 

findings suggest that improper fluid consumption prior to and during exercise may augment renal 

stress, yet the long-term consequences of these detriments require further investigation. 

 

Key Words: acute kidney injury, hyperthermia, dehydration  
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Introduction 

 Heat stress and humidity can place high levels of physiological and perceptual strain on 

individuals conducting physical labor and exercise (1-5).  Poor hydration practices in these 

environments, whether due to unavailability of fluids or voluntary under-consumption, may 

result in progressive dehydration (2, 3, 5).  If individuals are not able to replace fluids 

adequately, this may lead to a cycle in which people report for subsequent bouts of work or 

exercise sub-optimally hydrated (5).  As such, populations including agricultural workers, 

military members, and athletes may be at risk for negative health outcomes in these settings.  For 

example, Mesoamerican nephropathy, also known as chronic interstitial nephritis of agricultural 

communities, occurring in Central American agricultural workers has been suggested to occur 

partially due to recurrent dehydration, exertional hyperthermia, and subclinical rhabdomyolysis 

(3, 6-8).  From 1997 to 2013, an estimated 47,885 deaths occurred in Costa Rica, El Salvador, 

Nicaragua and Panamá because of chronic kidney disease, with ~40% of deaths occurring in 

persons aged 60 years or younger (6).  While certain aspects of these occupations are 

unavoidable (i.e. muscle damaging labor, heat stress, pesticides), understanding the role of sub-

optimal hydration in the elevation of biomarkers of acute kidney injury may allow for proper 

recommendations in fluid intake that would mitigate long term health consequences.   

 During exercise and exposure to heat stress, blood flow to the splanchnic and renal 

regions decrease, allowing for increased perfusion of the skin for thermoregulation (9, 10).  This 

often results in elevated blood markers of renal function (i.e. creatinine), however, these 

alterations are transient and a consequence of reduced glomerular filtration associated with the 

lower renal perfusion (11, 12).  Due to the energetic demands of the renal tubules, this reduction 

in blood flow during exercise in the heat may cause an ischemic atmosphere and subsequent 
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oxidative stress.  Ischemic damage and nephrotoxicity in the renal tubules lead to the release of 

biological markers in the urine and blood (13). Novel biomarkers, such as neutrophil gelatinase 

associated lipocalin (NGAL), have been implicated as an alternative to traditional creatinine 

measurement due the expression of these markers in the renal tubules (13, 14). Schlader et al. 

(15) showed augmented levels of NGAL by extending the duration of exercise in the heat. 

Further, NGAL elevations have been shown immediately following distance running events (12, 

16). However, these studies did not evaluate the influence of hydration on NGAL responses with 

exercise. 

 The addition of other physiological stressors such as muscle damage has been shown to 

cause further strain during exercise in the heat (17, 18).  Muscle damage can be a consequence of 

exercise, particularly when individuals are unaccustomed to the activity or an eccentric 

component is present in the movements.  Biological markers of muscle damage (e.g. serum 

creatine kinase) can be elevated in military training (19), agriculture workers (20), and athletes 

during preseason American football practices (21).  Intramuscular contents leaked following 

muscle damage (e.g. myoglobin) may have nephrotoxic effects therefore, managing breakdown 

is necessary to mitigate renal stress (22).  Junglee et al. (18) demonstrated significantly greater 

increases in NGAL and creatinine when muscle damaging exercise was performed before a bout 

of exertional hyperthermia compared with no damage.  Thus, the presence of heat stress and 

exercise increase the nephrotoxic effects associated with muscle damage (18).  However, 

hydration status of these individuals was maintained similarly between trials, therefore the 

potential protective effect of proper fluid intake when completing exercise in the heat with 

concomitant muscle damage is unclear.   
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 Dehydration leads to significant reductions in creatinine clearance (i.e. glomerular 

impairment), however, the impact of dehydration on biomarkers of acute kidney injury (i.e. 

tubular damage) has received little investigation in humans (11).  Combining heat stress with 

dehydration and exercise causes to further decreases in renal blood flow and subsequently 

greater increases in creatinine (11, 23). As dehydration combined with muscle damage, exercise, 

and heat stress are commonly experienced by a variety of occupations, it is necessary to 

understand the role of adequate fluid intake in the mitigation of renal stress (5, 19, 20).  As such, 

the aim of this study was to identify the combined influence of dehydration, exercise in the heat, 

and muscle damage on biomarkers of acute kidney injury and renal function.  It was 

hypothesized that the thermoregulatory strain associated with dehydration during exercise in the 

heat would augment renal biomarker elevations immediately post-exercise as compared to the 

euhydrated trial, however, these differences would be transient with returns to baseline 24-h 

post-exercise.  

Methods 

Participants 

Eighteen healthy, recreationally active males (age 24 ± 5 y, wt 75.9 ± 10.0 kg, ht 1.79 ± 

0.05m, body fat 17.3 ± 6.2%, VO2peak, 51.0 ± 6.0 ml/kg/min) were recruited from the 

University and surrounding areas to participate in this randomized crossover counterbalanced 

design study.  All procedures were approved by the University Institutional Review Board and 

written informed consent was acquired from all individuals prior to participation.  Participants 

completed five total visits including one familiarization day and two experimental days (one 

hypohydrated, HY, and one euhydrated, EU) each with 24-h follow-up visits.  Experimental 

visits were separated by ≥28 days (average; 41 ± 16 days) to allow for muscle damage recovery 
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and prevent acclimation to the heat.  Exclusionary criteria included previous heat exhaustion or 

heat stroke within the past 3 years, current musculoskeletal injury, hypertension where vigorous 

exercise is contraindicated, diagnosed sickle cell trait, use of medications that may alter 

thermoregulation or kidney function, current use of creatine supplementation, and a history of 

kidney disease.  All participants were asked to refrain from alcohol use for 24-h, caffeine use for 

12-h, resistance training for 5-days and exercise for 24-h prior to each trial.  Body composition 

was assessed via dual energy x-ray absorptiometry (DXA, Lunar Prodigy, General Electric, 

Madison, WI, USA).   

Familiarization Visit 

Participants completed baseline knee extensor isometric strength at 70° and 90° of knee flexion 

as well as isokinetic strength at 60°·sec-1, following a 5-minute warm-up on a cycle ergometer 

(Monark 828E, Monark Exercise AB, Sweden) at ~50W (~50 rpm at 1 kilopond).  Participants 

then underwent a graded maximal exercise test on a treadmill to assess maximal oxygen uptake 

(VO2peak) to establish exercise intensity for subsequent trials.  The test consisted of a constant 

jogging speed (selected by the participant) with grade increasing by 2% every two minutes until 

volitional exhaustion.  VO2peak was verified by a plateau in VO2, respiratory exchange ratio 

≥1.1, heart rate within 10 beats of age predicted maximum heart rate, or rating of perceived 

exertion ≥ 17. 

Experimental Visits 

 Prior to arrival, participants completed three-day euhydrated baseline body weights with 

a provided scale (BalanceFrom High Accuracy Bathroom Scale, BalanceFrom LLC, China) for 

both trials, as well as a diet record on a standard log for 24-h prior to each trial.  For the HY trial, 

the dehydration protocol consisted of 24-h fluid restriction in addition to fluid restriction during 
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the protocol.  Prior to the euhydrated protocol, participants were instructed to consume fluids 

prior to arrival, while water was provided during the trial to ensure less than 2% body mass loss.   

 Upon arrival, participants completed a 24-h history, provide a spot urine sample, and 

completed a nude body mass.  Spot urine was analyzed for urine specific gravity (refractometer, 

model Master-SUR,NM, Atago Co Ltd, Tokyo, Japan) and osmolality (freezing point depression, 

Model 3250, Advanced Instruments Inc., Norwood, MA) to confirm hydration status.  Urine was 

also stored for later assessment of acute kidney injury biomarkers (uNGAL) and creatinine (uCr) 

via their respective assays. Participants were provided a rectal thermometer (RET-1, Physitemp 

Instruments Inc, Clifton, NJ, USA) to insert ~15 cm past the anal sphincter to assess rectal 

temperature (Tre).  Participants were also instrumented with a Polar heart rate monitor (FT1/T31, 

Polar Inc, Lake Success, NY, USA), automated blood pressure cuff (Tango+, Suntech, Medical 

Inc., Morrisville, NC, USA) and skin temperature thermochrons (iButton, Maxim Integrated, San 

Jose, CA, USA) to assess four-site mean weighted skin temperature (Tsk) (24).  Mean arterial 

blood pressure was calculated as (systolic blood pressure – diastolic blood pressure) *1/3 + 

diastolic blood pressure). Participant attire consisted of running shorts, socks, and shoes. 

 Participants completed a 20-minute semi-recumbent baseline rest in a thermoneutral 

environment (~20°C).  During this time, participants were informed on the perceptual scales for 

rating of perceived exertion (RPE) (25), thermal sensation (26), and perceived thirst (27), as well 

as visual analog scales to identify overall and leg-specific muscle pain.  Following the 20 

minutes of rest, baseline physiological and perceptual measures were recorded.  A baseline blood 

draw was also conducted via venipuncture to obtain serum and plasma (sodium heparin) samples 

(BD, Ontario, Canada).  The participants then moved to a cycle ergomenter to complete a 5-

minute warm-up at ~50W.  Eccentric muscle damaging exercise was then performed on an 
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isokinetic dynamometer (Biodex System 3, Biodex Medical Systems, New York) (28).  The 

procedure consisted of 10 sets of 10 repetitions of maximal unilateral eccentric knee flexion 

exercise at a speed of 30°/s with one minute of rest between sets (28). During the second trial, 

the contralateral leg was utilized to minimize the repeated bout effect and the leg used during the 

first trial was randomized and counterbalanced between participants for hydration and 

dominance.  Prior to, and immediately following the eccentric protocol, isometric strength 

measures were performed via three 5-second maximal isometric knee extensor voluntary 

contractions at 70° and 90° knee flexion with one minute of rest between trials.  Isokinetic knee 

extensor strength was also completed in triplicate at 60°/sec.  Decreases in strength, as well as 

elevations in muscle pain, served as indices of muscle damage.  While it is recognized that there 

are contralateral adaptations following single leg eccentric exercise, the 4 weeks trial separation 

should have minimized many of the responses.  Xin et al (28) demonstrated no differences in 

muscle soreness or creatine kinase following contralateral eccentric exercise separated by 4 

weeks, while isometric strength was lower in the second bout from 24 to 96 hours post exercise.  

Further, the purpose of the eccentric exercise protocol was to induce mild muscle damage similar 

to athletic practices or labor-intensive occupational settings, thus physiological adaptations did 

not alter the findings given the counterbalanced, crossover study design.  Also, the participants 

were directed to avoid changes in their exercise regimen between trials to minimize changes in 

fitness.         

 Next, the participants transitioned to an environmental chamber (33.0 ± 0.3°C, 54 ± 2% 

relative humidity) and completed a 10-minute up-right seated acclimation period.  During this 

period, sweat patches (Tegaderm+Pad, 3M, St. Paul, MN, USA) were applied to the dorsal or 

ventral forearm (depending on the forearm hair) and superior scapula (back) (29).  Physiological 
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and perceptual measures were assessed at the end of the 10 minutes, at which time a body mass 

was obtained and the participant moved to a treadmill to begin a 5-minute walking warm-up (1.3 

m/s) followed by running at 62.4 ± 4.4% VO2peak (1% grade) for 60 minutes with a 5-minute 

walking (1.3 m/s) break at 30 minutes and 5-minute cool down (1.3 m/s).  Exercise was paused 

every 10 minutes to complete a body mass, which was subsequently used to provide water 

(warmed to 38°C) to replace sweat losses within 2% body mass loss in the EU trial (average 

intake; 0.96 ± 0.63 L).  In the HY trial, small amounts of water (25-50 mL) were provided every 

10-20 minutes to prevent excessive dehydration and improve participant comfort (average 

intake; 0.19 ± 0.12 L).  Physiological and perceptual measures were recorded at the beginning, 

30 minutes, and end of exercise.  Exercise was terminated early for 3 individuals due to rectal 

temperature equal to 40°C in the HY trial and in one individual in the EU trial due to non-trial 

related reasons. 

 Immediately following exercise, a body mass was obtained and participants remained in 

the environmental chamber to complete a 30-minute semi-recumbent recovery period with 

measures recorded every 10 minutes. A blood draw was also collected at 20 minutes of recovery.  

The participants then exited the chamber, removed instrumentation, and provided a final nude 

body mass and urine sample.   

 Participants were provided with a 24-hour urine collection container, diet log, and 

rehydration instructions such that 100% of fluid losses from HY and/or exercise heat stress were 

replaced within four hours of completion for both trials and an additional 2.5 L were consumed 

before arriving for the follow-up visit ~24-h later (actual time; 21.5 ± 0.9 h). Compliance with 

this protocol was verbally confirmed upon arrival at the 24-h follow-up visit and diet logs were 

compared between trials.  
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At the 24-h follow-up visit, participants provided a nude body mass and spot urine 

sample, followed by a 20-minute semi-recumbent rest.  At the end of the rest, physiological and 

perceptual measures were recorded and a blood draw was collected.  A five-minute warm-up on 

a cycle ergometer at ~50W was then conducted, followed by concentric knee extensor isometric 

and isokinetic strength assessment, respectively.   

Blood analysis 

 Serum collected at each time point clotted at room temperature followed by 

centrifugation at 1000g and 4°C for 15 minutes. Serum was then used to assess osmolality via 

freezing point depression, sodium (ion-selective electrode, EasyElectrolyte, Medica Corporation, 

Bedford, MA, USA), and protein (refractometer, model Master-SUR, NM, Atago Co Ltd, Tokyo, 

Japan) were measured in duplicate.  Serum was also aliquoted and stored at -80°C for subsequent 

analysis of creatinine (sCr) performed per manufacturer’s instructions via a commercially 

available colorimetric assay (BioAssay Systems, Hayward, CA, USA).  Whole blood collected at 

each time point was used to assess hemoglobin (Hb) in duplicate (HemoCueHb 201+, HemoCue, 

Angelholm, Sweden) and hematocrit was read in triplicate using microcapillary tubes with a 

Micro-Capillary Reader (International Equipment Company, Needham Heights, MA).  Plasma 

was also aliquoted and stored at -80°C for subsequent analysis of NGAL (pNGAL) performed 

per manufacturer’s instructions via a commercially available enzyme linked immunosorbent 

assay kit (R&D Systems Inc, Minneapolis, MN, USA). uNGAL assessment was also completed 

per manufacturer’s instructions via a commercially available enzyme linked immunosorbent 

assay kit (R&D Systems Inc, Minneapolis, MN, USA).  uCr analysis was performed per 

manufacturer’s instructions via a commercially available colorimetric assay (BioAssay Systems, 

Hayward, CA, USA). uNGAL was also corrected for Uosm and uCr to remove the effects of urine 
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concentration on outcomes (30).  The coefficients of variation for sCr, uCr, pNGAL, and 

uNGAL were 2.8%, 4.9%, 3.2%, and 3.8% respectively.  

Statistical Analysis 

  All statistical analyses were completed using SPSS version 24 (IBM Corporation, 

Somers, NY).  Normality was assessed via Shapiro-Wilks test and histogram analysis and 

outliers were identified as three x interquartile range and removed.  Statistical analyses were 

initially completed with outliers removed.  Outliers were then returned to the data to identify the 

impacts on statistical outcomes.  Results were reported with outliers maintained if they did not 

impact statistical conclusions.  Statistical findings that required outlier removal (i.e. decreasing 

sample size) are noted in the results. All partial eta squared (ηp²) and Hedge’s g values were 

calculated using a spreadsheet from Lakens (31).  Repeated measures multivariate analysis of 

variance was used to assess pNGAL and sCr differences with a 3-way repeated measures 

analysis. Repeated measures multivariate analysis of variance was also used to assess uNGAL 

and uCr differences with a 3-way repeated measures analysis. All thermoregulatory, 

cardiovascular, hydration, and muscle damage variables (i.e. Tre, Tsk, thermal sensation, RPE, 

heart rate, blood pressure, body mass, urine specific gravity, urine osmolality, and isometric 

strength changes) were analyzed using two-way (time x hydration) repeated measures analysis of 

variance.  When sphericity was violated, Greenhouse-Geisser adjustments were used.  Post-hoc 

analyses involved pairwise comparisons with an appropriate Bonferroni corrected alpha to 

identify significant time point differences.  Data that failed normality tests (thirst sensation and 

muscle pain) were analyzed with a Friedman test across time and between hydration states.  

Follow-up pairwise analyses were conducted using a Wilcoxon signed rank test for individual 

time point differences. Alpha of 0.05 was set a priori to determine significance at the omnibus 
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level for each analysis. Based on a .80 power calculation using the primary outcome variable 

pNGAL (11, 18) with a correlation between time points of 0.42, a 2-standard deviation effect 

size, β of 0.20, and α of 0.05, it was determined 17 participants would be sufficient for adequate 

power. An increased experiment-wise type I error rate is acknowledged due to the multiple 

multivariate and univariate analyses conducted.  Because the experimental protocol was time, 

resource, and cost intensive, power estimates were calculated based on singular analyses to 

provide initial experimental outcome indicators to guide future research.     

Results 

Hydration Measures 

Body mass was influenced by the interaction effect of time and trial (F1.475,23.598 = 39.64, 

P < 0.001, ηp² = 0.71, Table 1).  Pairwise comparisons revealed no differences between trials for 

3-day baseline masses (P = 0.87), but lower masses for the HY treatment at baseline (P < 0.001) 

and at end of trial (P < 0.001).  There were no differences in masses at the 24-h follow-up (P = 

0.29). The dehydration protocol in the HY trial resulted in significantly greater reduction in body 

mass compared to the hydration protocol (t17 = 5.79, Hedge’s g = 2.60, P < 0.001, Table 1).  

There was an interaction effect of hydration and time for urine osmolality (F3,42 = 13.44, ηp² = 

0.49, P < 0.001, Table 1).  By design, Uosm was more concentrated in the HY pre-trial spot 

sample than the EU sample (P < 0.001) with similar differences in post-trial spot samples (P < 

0.001).  There was no difference in Uosm between the 24-h follow-up urine spot samples (P = 

0.96, Table 1) or the 24-h urine collected between the end of the trial and the follow-up visit (EU 

367 ± 197, HY 533 ± 316, P = 0.08).  Urine specific gravity was also influenced by hydration 

and time (F3, 39 = 7.13, ηp² = 0.35, P < 0.001, Table 1) with greater values in the pre-trial spot 

sample (P < 0.001) and post-trial spot sample (P < 0.001) of the HY group using a pairwise 
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alpha of 0.0125.  There were no differences between trials in the 24-h follow-up spot sample (P 

= 0.697) or 24-h urine collected between the trial and follow-up visit (EU 1.011 ± 0.006, HY 

1.016 ± 0.008, P = 0.048).   

There was an interaction of trial and time for serum osmolality (F2,34 = 29.22, ηp² = 0.63 

P < 0.001, Table 1).  Serum osmolality was greater for the HY trial compared to the EU trial pre 

(P < 0.001) and post-trial (P < 0.001), but not at the 24-h follow-up (P = 0.13).  Serum Na+ 

exhibited an interaction effect for trial and time (F2,32 = 45.68, ηp² = 0.74, P <0.001, Table 1), 

where there were elevations for the HY trial at baseline (P < 0.001), and post-trial (P < 0.001), 

but no differences at 24-h follow-up (P = 0.54).  There were no differences between trials for 

sweat sodium on the back (EU 84.7 ± 27.1, HY 86.5 ± 17.3 mEq/L, t17 = -0.46, Hedge’s g = -

0.21, P = 0.66) and arm (EU 64.7 ± 24.8, HY 67.4 ± 23.0 mEq/L, t16 = -0.62, Hedge’s g = -0.29, 

P = 0.55).  Hb content was influenced by time and trial (i.e. interaction effect) (F2,34 = 14.60, ηp² 

= 0.46, P <0.001, Table 1).  Hb tended to be elevated for the HY group at baseline (P = 0.018; 

pairwise alpha = 0.0167) and was significantly higher post-trial (P < 0.001), but was not 

different at the 24-h follow-up (P = 0.84).  Hct was greater in the HY trial independent of time 

(F1,17 = 5.429, ηp² = 0.24, P = 0.03, Table 1), and was decreased at the 24-h follow-up compared 

to baseline and post-exercise independent of trial (F2,34 = 15.14, ηp² = 0.47, P < 0.001), but there 

was not a significant interaction effect (F2,34 = 3.22, ηp² = 0.16, P = 0.053).  There was a 

significant interaction for serum protein (F2,28 = 4.93, ηp² = 0.26, P = 0.02, Table 1), with levels 

only different at baseline (P = 0.002), and no differences at post exercise (P = 0.07) or 24-h 

follow-up (P = 0.68). 

Exercise Measures 
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Muscle damage was confirmed by evaluating percent changes in muscular strength from 

baseline using a multivariate analysis including isometric peak torque measured at 70° and 90° 

as well as peak isokinetic torque assessed at 60°·sec-1. At the multivariate level, there was not a 

significant interaction of time and hydration (Wilks Λ = 0.62, F6,11 = 1.13, P = 0.41) nor a main 

effect of hydration (Wilks Λ = 0.70, F3,14 = 2.05, P = 0.15), but there was a main effect of time 

(Wilks Λ = 0.27, F6,11 = 4.91, P = 0.01). The analysis of time was then conducted using an alpha 

of 0.017.  Strength was reduced independent of trial (i.e. main effect of time) for isometric 

strength at 70° (F2,32 = 15.19, ηp² = 0.49, P < 0.001), isometric strength at 90° (F2,32 = 8.03, ηp² = 

0.33, P = 0.003), and isokinetic strength at 60°·sec-1 (F2,32 = 6.16, ηp² = 0.28, P = 0.005). 

Pairwise comparisons for each of the strength measures were then completed using an alpha of 

0.006. Isometric strength at 70° decreased immediately post-damage (grand mean; -16.9 ± 

12.7%, P < 0.001) and remained reduced at the 24-h follow-up (grand mean; -9.5 ± 11.3%, P = 

0.003).  Isometric strength at 90° was also reduced from immediate-post damage (grand mean; -

15.7 ± 14.3%, P < 0.001) and tended to be reduced at the 24-h follow-up (grand mean; -10.6 ± 

14.9%, P = 0.010).   

Analysis of rectal temperature revealed an interaction effect of hydration and time (F2,34 

= 4.28, P = 0.02, ηp² = 0.20, Figure 1C). Pairwise comparisons using a corrected alpha of 0.0167 

revealed no differences between trials at the beginning (P = 0.05) or 30 minutes of exercise in 

the heat (P = 0.06), however, end of exercise Tre were greater in the HY trial compared to the EU 

trial (P < 0.001). Pairwise analysis of time also revealed significant elevations from baseline 

through end of exercise in both the EU (all P < 0.001) and HY trials (all P < 0.001). Overall 

change in Tre during exercise was greater in the HY (1.8 ± 0.5°C) compared to the EU trial (1.5 ± 

0.4°C; t17 = -2.26, Hedge’s g = -1.01, P = 0.04).   



70 
 

There was a significant interaction of hydration and time for skin temperature (F2,34 = 

5.49, ηp² = 0.24, P = 0.01, Figure 1B), however, pairwise analysis (adjusted alpha = 0.008) 

revealed no differences between trials at any time point (all P > 0.05).  In the EU trial, skin 

temperature was lower at baseline compared to 30-minutes of exercise (P < 0.001) and the end of 

exercise (P < 0.001), however, in the HY trial, baseline was only lower than the 30-minutes of 

exercise time point (P < 0.001), with a trend to be lower than the end of exercise (P = 0.01). 

 There was an interaction of time and hydration for heart rate (F2.09, 35.50 = 10.61, ηp² = 

0.38, P < 0.001, Figure 1A), with no differences between conditions at the beginning of trials (P 

= 0.73) or pre-exercise (P = 0.43).  Heart rate was greater in the HY trial at mid-exercise (P < 

0.001) and end of exercise (P < 0.001).  Pairwise analysis of time also revealed significant 

elevations from baseline through end of exercise in both the EU (all P < 0.001) and HY trials (all 

P < 0.001).  

Perceptual Measures 

Ratings of perceived exertion exhibited an interaction effect for hydration and time (F1,16 

= 10.32, P = 0.005, ηp² = 0.39), with greater levels of perceived exertion in the HY trial at the 

mid-exercise (EU 14 ± 3, HY 15 ± 3, P < 0.001) and end of exercise (EU 14 ± 2, HY 17 ± 2, P < 

0.001) time periods. Thermal sensation was not affected by hydration status (F1,15 = 1.29, P = 

0.27, ηp² = 0.08), but increased independent of trial (F2,30 = 57.01, P < 0.001, ηp² = 0.79) from 

pre-exercise (5.1 ± 0.6) to the end of exercise (6.6 ± 0.5, P < 0.001), with no interaction (F2,30 = 

1.69, P = 0.20, ηp² = 0.10). Thirst sensation was influenced by hydration (χ2
1 = 16.00, P <0.001) 

and time (χ2
5 = 53.88, P <0.001).  Pairwise comparisons completed using an adjusted alpha of 

0.008, revealed significantly greater thirst from baseline (EU 2.2 ± 1.4, HY 6.1 ± 1.5, P < 0.001) 

through pre-exercise (EU 3.2 ± 1.9, HY 6.8 ± 1.2, P < 0.001) to the end of recovery (EU 2.0 ± 
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0.9, HY 8.2 ± 1.2, P < 0.001).  There were no differences in perceived thirst at the 24-h follow-

up time point (EU 1.7 ± 1.0, HY 2.3 ± 1.3, P = 0.02).  There was no effect of hydration (χ2
1 = 

1.00, P = 0.32) for muscle pain, however, there was an effect of time (χ2
3 = 29.60, P < 0.001). 

Using a pairwise alpha of 0.008, muscle pain was increased in both trials from baseline (EU 1.3 

± 1.6, HY 2.2 ± 3.1 mm) to the end of exercise (EU 20.9 ± 22.0, HY 29.7 ± 22.9 mm, both P < 

0.001), and at the 24-h follow-up (EU 12.2 ± 12.4, HY 10.7 ± 12.2 mm, both P < 0.008).  

Overall pain was influenced by hydration (χ2
1 = 4.00, P = 0.046) and time (χ2

3 = 35.76, P 

<0.001), with significantly greater pain at baseline in the HY trial (2.5 ± 2.6 mm) compared to 

the EU trial (0.9 ± 1.3 mm, P = 0.007), but no difference from any other point (all P > 0.008).   

Recovery Measures 

 Analysis of rectal temperature responses during recovery revealed no interaction effects 

(F3,51 = 0.21, P = 0.89, ηp² = 0.012, Figure 2C) with greater temperatures in the HY trial 

compared to the EU trial independent of time (F1,17 = 18.40, P < 0.001, ηp² = 0.52).  Rectal 

temperature was also reduced in recovery regardless of trial (F1.32, 22.49 = 186.98, P < 0.001, ηp² 

=0.92).  Pairwise analysis revealed differences at every time point (P <0.001) with decreases 

from the beginning of recovery through 30 minutes in both trials.   Skin temperature in recovery 

exhibited an interaction effect (F1.53,24.53 = 4.09, P = 0.04, ηp² = 0.20), with no differences 

between trials at any time point (all pairwise P > 0.05), however, temperatures were reduced in 

the EU trial from the beginning of recovery to the end of recovery with differences between all-

time points (all P < 0.001) except 20 and 30 minutes. In the HY trial, temperatures were reduced 

from the beginning through 20 min of recovery (P = 0.002). Heart rate in recovery was greater in 

the HY trial compared to the EU trial independent of time (F1,17 = 91.45, P < 0.001, ηp² = 0.84, 

Figure 2A).  Heart rate was also reduced regardless of trial (F3,51 = 73.70, P < 0.001, ηp² = 0.81), 
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from the beginning of recovery to the end of recovery (P < 0.001) with no differences between 

20 and 30 minutes (P = 0.63), and no interaction effects (F3,51 = 2.02, P = 0.12, ηp² = 0.11).  

Mean arterial pressure during recovery was not different between trials (grand means; EU 80.7 ± 

5.7, HY 82.4 ± 8.0 mmHg; F1,17 = 1.83, P = 0.19, ηp² = 0.10), and did not change significantly 

across time (F5,51 = 1.07, P = 0.37, ηp² = 0.10), with no interaction of time and hydration 

(F2.06,35.10 = 2.84, P = 0.07, ηp² = 0.14).  Mean arterial pressure at the 24-h follow-up was not 

different between the EU trial (85.3 ± 8.1 mmHg) and HY trial (85.7 ± 6.2 mmHg; t17 = -0.21, P 

= 0.84, Hedge’s g = -0.09).   

Renal Biomarkers 

Analyses of blood markers of acute kidney injury and kidney function (pNGAL and sCr, 

respectively) were conducted using multivariate repeated measures analysis of variance.  

Because of outliers causing violations of normality, the data for three participants were set aside, 

leaving 15 participants for the analysis.  The initial multivariate analysis revealed a significant 

interaction of time by hydration by outcome (Wilks Λ = 0.45, F4,11 = 3.37, P = 0.05), however, 

follow-up analysis revealed no time by hydration interaction (Wilks Λ = 0.77, F4,54 = 1.87, P = 

0.13).  Rather, there were significant main effects of hydration (Wilks Λ = 0.61, F2,13 = 4.08, P = 

0.04), as well as time (Wilks Λ = 0.14, F4,54 = 22.64, P < 0.01). Univariate analysis of main 

effects were then conducted using an adjusted alpha of 0.025.  At the univariate level, there was 

no main effect of hydration for pNGAL (F1, 14 = 1.40, P = 0.26, ηp² = 0.09, Figure 3C), however 

there was a main effect of time (F2,28 = 75.93, P < 0.001, ηp² = 0.84).  Pairwise comparisons were 

then completed using an adjusted alpha of 0.0083, with post-exercise combined values 

significantly elevated above pre-exercise (P < 0.001) and the 24-h follow-up (P < 0.001), 

however, there were no differences between baseline and the 24-h follow-up (P = 0.82).  At the 
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univariate level, sCr was different between hydration trials regardless of time (F1,14 = 6.27, P = 

0.025, ηp²  = 0.31), and changed across time independent of trial (F2,28 = 11.85, P < 0.001, ηp² = 

0.46).  Pairwise comparisons were then completed using an adjusted alpha of 0.0083, with post 

exercise elevated significantly above pre-exercise (P = 0.004) and the 24-h follow-up (P < 

0.001), however, there were no differences between baseline and the 24-h follow-up (P = 0.25). 

A separate repeated measures analysis of variance was also conducted to assess percent 

change from baseline for pNGAL.  This analysis revealed an interaction of hydration and time 

(F1,17 = 4.49, P = 0.05, ηp² = 0.21).  Pairwise comparisons revealed a greater change in the HY 

trial post-exercise compared to the EU trial (P < 0.001, Hedge’s g = 0.80), while there were no 

differences at the 24-h follow-up (P = 0.39).   

Multivariate analysis was performed using urinary markers of acute kidney injury and 

kidney function (uNGAL and uCr, repectively) with data from 16 participants, exhibiting a 

significant time by hydration trial by outcome interaction (Wilks Λ = 0.41, F4,12 = 4.33, P = 

0.02).  There was also a significant time by trial interaction (Wilks Λ = 0.52, F4,58 = 5.57, P < 

0.001).    Univariate analysis was then conducted using an adjusted alpha of 0.025.  There was a 

significant time and hydration trial interaction for uNGAL (F1.43, 21.45 = 7.11, P = 0.008, ηp² = 

0.32, Figure 3A) and uCr (F2,30 = 10.10, P < 0.001, ηp²  = 0.40, Figure 3B).  Pairwise 

comparisons were conducted for each variable using an adjusted alpha of 0.005.  uNGAL was 

greater in the HY trial compared to the EU trial at baseline (P < 0.001) and post-exercise (P < 

0.001), however, there were no differences at 24-h post (P = 0.91).  The uCr concentrations were 

also lower in the EU trial compared to the HY trial at baseline (P < 0.001) and post-exercise (P < 

0.001), but not at 24-h follow-up (P = 0.47).  
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 Following the correction of uNGAL for Uosm, there were no effects of trial (grand means; 

EU 11.2 ± 10.8, HY 11.3 ± 6.6 pg/mOsm; F1,14 = 0.01, P = 0.94, ηp² = 0.0007), time (F2,28 = 0.51, 

P = 0.60, ηp² = 0.04), or interaction (F2,28 = 1.31, P = 0.29, ηp² = 0.09).  uNGAL was also 

corrected for uCr (pg/mg) with similar results of no differences in hydration (F1,14 = 1.17, P = 

0.30, ηp² = 0.08), time, (F1.13,15.85 = 1.04, P = 0.33, ηp² = 0.07), or interaction (F1.16,16.22 = 1.13, P 

= 0.32, ηp² = 0.07).  uCr was also corrected for urine osmolality, demonstrating elevated 

responses in the HY trial independent of time (grand means; EU 0.217 ± 0.068, HY 0.248 ± 

0.064 mg/mOsm, F1,17 = 5.55, P = 0.03, ηp² = 0.25).  There was also a main effect of time (F2,34 

= 41.51, P < 0.001, ηp² = 0.71), with post-exercise (grand mean; 0.279 ± 0.068 mg/mOsm) 

elevated above baseline (0.210 ± 0.064 mg/mOsm, P < 0.001) and the 24-h follow-up (0.211 ± 

0.055, mg/mOsm, P < 0.001), however, no interaction effects for time and hydration (F2,34 = 

0.12, P = 0.89, ηp² = 0.007).     

Discussion 

 The purpose of this investigation was to evaluate the combined influence of 

hypohydration, muscle damage, and exercise in the heat on biological markers of renal stress.  

Further, we sought to evaluate the impact of proper rehydration on these responses to isolate the 

impact of hypohydration during exercise.  As hypothesized, pNGAL and sCr showed 

significantly greater changes post-exercise when HY, but elevations were transient and returned 

to baseline by 24-h follow-up.  We also demonstrated significant elevations in uNGAL and uCr 

at baseline and post-exercise, but there were no differences following rehydration by the 24-h 

follow-up.  Interestingly, when uNGAL but not uCr values were corrected for the corresponding 

urine osmolality, these differences were ameliorated, suggesting the elevations may have been 

due to concentration of the sample rather than increased production.  Overall, we demonstrated 
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that HY caused greater thermoregulatory, physiological, and renal stress following exercise in 

the heat, however, our rehydration protocol successfully mitigated these elevations by the 24-h 

follow-up.   

 Animal models have shown the negative impacts of recurrent exposure to heat stress and 

dehydration on renal health through glomerular and tubulointerstitial changes (32-36).  Repeated 

exposure to heat stress and dehydration causes elevated osmolality and activates the aldose 

reductase pathway, which leads to greater fructose metabolism in the proximal tubule (34).  

Because this is an energetically demanding process, these elevations in fructose metabolism may 

lead to ATP depletion and subsequent oxidative and inflammatory stress (34).  In addition, 

chronic vasopressin elevations may lead to hyperfiltration in the glomerulus as well as increased 

permeability and albuminuria (35).  This results in augmented formation of fibrosis, 

inflammatory responses, and overall renal injury (35). When rehydration is delayed or replaced 

with sugar-sweetened beverages, the resultant elevations in biomarkers of acute kidney injury 

(e.g. uNGAL), renal dysfunction (e.g. creatinine), and histological changes (i.e. brush border 

reduction) show damage to the tubules as well as glomerulus (32-34).   This worsening of renal 

injury highlights the importance of proper rehydration as well as beverage choice.    

 In agricultural workers, mechanisms previously shown in animal models are suggested to 

contribute to early onset chronic kidney disease in central American countries due to daily 

exposure to dehydration, subclinical rhabdomyolysis, heat stress, and exertion (7, 37).  Increases 

in biomarkers of renal injury (e.g. NGAL, creatinine) occur across singular shifts as well as 

throughout harvesting seasons (2, 3, 20).  These findings are substantial given the heat stress, 

muscle damage, and dehydration experienced by athletes, military personnel, and a variety of 

employees in occupations on a regular basis (1, 2, 5, 19, 21). 
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 Laboratory investigations of heat stress, muscle damage, and exercise on markers of renal 

function and injury tend to confirm the findings in animal and field studies.  Schlader et al. (15) 

revealed greater elevations in NGAL and creatinine by extending exercise duration in the heat, 

however, these responses returned to baseline by 24-h post.  When completing exercise in the 

heat, the addition of muscle damage was also shown to increase NGAL and creatinine responses 

(18).  However, these studies either focused on singular aspects (i.e. exertional hyperthermia), 

did not evaluate the role of hydration, or focused on traditional markers of renal function that 

may be limited in exercise settings (38).  Regardless, we showed similar increases in NGAL 

(Figure 3C and 4) and creatinine (Figure 3D) with exercise in the heat. Further, we induced 

similar thermal (i.e. Tre changes) and physiological (i.e. heart rate) stress during exercise 

compared to previous studies (15, 17, 18).  However, our HY trial caused greater increases 

during exercise and in recovery, as were expected with dehydration and exercise in the heat (4, 

39).  Additionally, our responses returned to baseline by the 24-h follow-up visit.  Because these 

stressors (heat, exertion, muscle damage) often occur concomitantly, it is important to 

understand the combined influence on markers of renal function in humans.  

According to our absolute values, we showed greater elevations in sCr but not pNGAL 

post exercise when HY. When controlling for the variability in baseline values, pNGAL 

demonstrated greater increases post-exercise (Figure 4). These support previous findings (11), 

demonstrating significant reductions in creatinine clearance when performing treadmill exercise 

in the heat while dehydrated.  Further, the present study HY trial resulted in significantly greater 

pre-exercise and post-exercise values for uNGAL and uCr.  Our dehydration protocol was 

sufficient to induce marked elevations in serum osmolality, hemoconcentration, as well as urine 

concentration.  Therefore, given the relationship between serum osmolality and vasopressin, it is 
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likely that there was marked elevations throughout the HY trial in vasopressin that may have 

impacted renal function (i.e. hyperfiltration) and contributed to increased renal injury (33, 35, 

40).  These differences were ameliorated via our rehydration protocol as all values (blood and 

urine) were similar between trials at the 24-h follow-up.  Field studies of marathon runners 

where exertion, hyperthermia, dehydration, and muscle damage tend to occur, have also shown 

significant elevations in biomarkers of renal injury, albeit these responses were transient, 

resolving by 24-h post (12, 16).  Therefore, these studies suggest that singular bouts of exertional 

hyperthermia, dehydration and muscle damage are sufficient to elevate novel (NGAL) and 

traditional (creatinine) biomarkers of renal injury, however, these can be resolved by 24-h post 

with rest and adequate rehydration.   

 These findings highlight the protective role of adequate hydration during and following 

exercise in the heat.  There is overwhelming evidence to support a negative impact of 

dehydration in renal health, thermoregulation, performance, and cardiovascular stability (4, 11, 

33, 37, 39, 41).  As heat stress, exertion, and muscle damage are often unavoidable, providing 

proper recommendations to rehydrate individuals may mitigate these stressors.  We utilized 

recommendations provided by the National Athletic Training Association and American College 

of Sports Medicine to rapidly rehydrate participants within four hours (self-reported) (42, 43).  

These protocols were successful in returning renal, perceptual, and physiological responses to 

baseline EU conditions.  In a field setting, Bodin et al. (44) successfully introduced a water-rest-

shade intervention in sugar cane cutters, showing improved fluid intake behaviors (self-

reported), symptoms associated with heat stress, and overall productivity across a harvest season.  

Wegman et al. (45) used the same intervention, however, there were still decreases in estimated 

glomerular filtration rate across the harvest and dehydration across work shifts.  Reductions in 
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glomerular filtration rate indicate impairments in renal function at the level of the glomerulus, 

potentially due to attenuations in renal blood flow associated with exertion in hot environments.  

However, these findings are also limited as sCr is used to estimate filtration rate and can be 

affected by body mass and exertion.  If these detriments are continuous, however, over time this 

may indicate the underlying development of chronic kidney disease. As the authors did not use a 

control group (i.e. no intervention), it is difficult to assess the efficacy of the intervention used in 

preventing acute kidney injury.  Regardless, future research should focus on rehydration 

strategies post-work as well as throughout the work-day to identify the longitudinal effects of 

proper hydration on renal health.  

 Our results involving corrections for concentration and creatinine provided interesting 

commentary on the meaningfulness of biomarker elevations.  We showed elevations in urine 

markers of acute kidney injury with HY, however, when corrected for concentration (i.e. 

osmolality) and creatinine, these elevations were ameliorated.  Therefore, the elevation of these 

biomarkers may have been the product of concentrated sample collection rather than increased 

expression.  However, it is also possible that this correction may be masking an increase in renal 

stress due to the relationship between concentration and expression of injury biomarkers.  

Further, the correction of samples to creatinine must be interpreted with caution, as this assumes 

a steady production of creatinine – often not the case with strenuous exercise.  It is well known 

that muscle mass and exercise can influence creatinine release, making it a flawed variable for 

use in exercise settings (38).  Regardless, the exclusive use of biomarkers, as in the current study 

cannot absolutely confirm the presence of renal damage without histological examination of 

renal tissue.  Rather, these findings suggest renal stress may have been present with these 
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biomarkers, but correcting for concentration indicates that this conclusion must be interpreted 

with caution.    

This study utilized a singular bout of exercise in the heat (total ~75 minutes) to induce 

changes in renal biomarkers.  Agricultural workers experience these stresses for entire work 

shifts (i.e. multiple hours), therefore these findings from a relatively short duration have limited 

applicability to a whole work day.  However, the detrimental relationships we highlighted in 

physiological and renal function with a relatively short bout of exercise are likely to be 

exacerbated with increased duration, and should raise concern for individuals experiencing 

prolonged exposure to these environmental stressors.  Further, it is difficult to ascertain the 

effects of repetitive bouts (i.e. daily) on these indices of renal health.  Additionally, we 

rehydrated individuals adequately, which may have limited the ability to find prolonged recovery 

of renal biomarkers.  As such, further investigation is warranted to identify the impacts of limited 

or delayed rehydration on biomarker elevations.  Another limitation of the current study pertains 

to the muscle damage protocol utilizing only a single leg to induce damage, limiting application 

to whole body exercise.  However, the design of this protocol was to induce mild muscle damage 

similar to many athletic and occupational settings.  Further, the conditions of the current study 

replicate those commonly association with clinically significant rhabdomyolysis (i.e. heat stress 

and dehydration), therefore we chose a protocol that ensured the safety of participants.  Because 

the HY trial induced greater physiological stress (i.e. Tre and cardiovascular strain) we cannot 

delineate between the effects of dehydration and stress on the biomarker elevations of acute 

kidney injury.  Increased thermal and physiological stresses are commonly associated with 

hypohydration and exercise in the heat (4, 39, 41), therefore, the authors chose to match 

workload rather than heat stress as this increases real world applicability.   
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Conclusions 

The combination of heat stress with strenuous exercise and gradual dehydration 

throughout the work day or athletic practice places a high demand on the kidneys to retain fluid 

while clearing excess waste from inherent muscle damage.  The concomitant exposure to 

physiological (i.e. exercise, muscle damage) and environmental (high ambient temperature and 

humidity) stressors commonly experienced by athletes, military, and occupational populations 

may augment the deleterious responses to dehydration.  Our results confirm previously reported 

increases in physiological and perceptual stress associated with hypohydration during exercise in 

the heat.  We demonstrated elevations in novel renal biomarkers of acute kidney injury (NGAL) 

as well as traditional markers of renal function (creatinine).  Although, correcting for 

concentration ameliorated these elevations, thus these findings must be interpreted caution.  

Regardless, the rehydration protocol used during recovery in this study highlighted the 

importance of proper fluid intake post-exertion by returning function biomarkers to baseline by 

24-h follow-up.  Therefore, these findings support the need for proper hydration strategies before 

and after dehydrating exercise in the heat to mitigate stresses and reduce negative health 

outcomes.  
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Figure Legends 

 

Figure 1. A) Heart rate B) Skin Temperature (Tsk) and C) Rectal Temperature (Tre) assessed at 

pre-exercise, 30 minutes of exercise, and end of exercise in the heat. aIndicates different from 

pre-exercise in EU trial (P < 0.05). bIndicates different from pre-exercise in HY trial (P < 0.05). 

cIndicates difference between hydration at time point (P < 0.05). dIndicates different from 30-

minutes exercise in EU trial (P < 0.05). eIndicates different from 30-minutes exercise in HY trial 

(P < 0.05). fIndicates difference from baseline in EU trial (P <0.05). gIndicates difference from 

baseline in HY trial (P <0.05). 

 

Figure 2: A) Heart rate B) Skin Temperature (Tsk) and C) Rectal Temperature (Tre) assessed 

during 30 minutes of recovery from exercise in the heat. aIndicates difference between trial 

independent of time (P < 0.05). bIndicates different from baseline independent of trial (P < 0.05).  

cIndicates different from 10 minutes independent of trial (P < 0.05). dIndicates different from 20 

minutes independent of trial (P < 0.05). eIndicates different from the onset of recovery in EU trial 

(P < 0.05). fIndicates difference onset of recovery in HY trial (P < 0.05). gIndicates different 

from 10 minutes of recovery in EU trial (P < 0.05).  

 

Figure 3: A) Urine NGAL B) Urine Creatinine C) Plasma NGAL and D) Serum Creatinine 

assessed at pre-exercise, post-exercise, and the 24-h follow-up visit. aIndicates different from 

baseline independent in hydration (P < 0.05). bIndicates different from post-exercise independent 

in hydration (P < 0.05). cIndicates different between hydration trials independent of time (P < 

0.05). dIndicates different from EU trial at time point (P < 0.05). 

 

Figure 4: Percent changes from baseline in Plasma NGAL at post-exercise and the 24-h follow-

up visit. aIndicates different from EU trial at designated time point (P < 0.05). 
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Table 1. Blood and Urine Markers of Hydration Assessed Pre-Exercise, Post-Exercise, and at 

the 24-H Follow-Up Visit.   

Note: Δ=change; Uosm=urine osmolality; Usg=urine specific gravity; Sosm=serum osmolality; Serum 

Na+=serum sodium; Hb=hemoglobin; Hct=hematocrit. a Indicates difference from EU trial at respective 

time point. b Indicates main effect of trial. c Indicates different from pre-exercise. d Indicates different from 

post-exercise. 

 

 

 

 

 Euhydrated Trial Hypohydrated Trial 

Measure Pre-Exercise Post-Exercise 24-h Follow-up Pre-Exercise Post-Exercise 24-h Follow-up 

Body Mass, kg 74.1 ± 8.5 73.1 ± 8.3 74.0 ± 8.4 72.1 ± 8.8a 70.5 ± 8.5a 73.6 ± 9.0 

Body Mass Δ, % -0.2 ± 1.1 -1.2 ± 0.8 -0.2 ± 0.9 -2.6 ± 1.5a -4.4 ± 1.9a -0.6 ± 1.5 

Uosm, mOsm·kg-1 607 ± 232 503 ± 252 554 ± 295 1012 ± 130a 977 ± 112a 559 ± 392 

Usg 1.017 ± 0.007 1.015 ± 0.009 1.015 ±0.009 1.026 ± 0.005a 1.028 ± 0.004a 1.016 ± 0.010 

Sosm, mOsm·kg-1 291 ± 4 288 ± 5 292 ± 4 299 ± 6a 302 ± 8a 293 ± 5 

Serum Na+, mEq·L-1 137.2 ± 1.6 135.9 ± 1.6 137.3 ± 1.3 140.3 ± 2.4a 141.5 ± 2.7a 137.6 ± 1.8 

Serum Protein 6.7 ± 0.4 7.5 ± 0.7 6.9 ± 0.4 7.3 ± 0.4 7.9 ± 0.4 6.8 ± 0.4 

Hb, g·dL-1 14.9  ± 1.0 15.2 ± 0.9 14.6 ± 0.9 15.4 ± 1.0 16 ± 1.2 14.6 ± 1.1 

Hct, %b 44.6 ± 2.9 44.6 ± 2.8 43.6 ± 2.3cd 45.1 ± 2.2 46.1 ± 2.3 44.1 ± 2.3cd 
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Abstract 

Purpose: Identify the effects of mild hypohydration on muscular strength recovery indices as 

well as muscle damage biomarkers from eccentric knee flexion followed by exercise in the heat. 

Methods: Recreationally active males (n = 18, age 24±5 y, mass 75.9±10.0 kg, bf 17.3±6.2%) 

completed two experimental conditions consisting of either euhydration (EU; maintaining 

hydration) or hypohydration (HY; restricting fluid consumption for 24 hours prior to and during 

the trial) separated by ≥28 days. Participants completed a baseline 20-minute rest, muscle 

damaging protocol, treadmill exercise in the heat, passive recovery, and a rehydrated 24-h 

follow-up visit, respectively.  The muscle damage was induced through contralateral (opposite 

leg for each trial) eccentric knee flexion exercises (30°/sec) on an isokinetic dynamometer.  

Isometric (70° and 90°) and isokinetic (60°/sec) strength was performed immediately before and 

after damage as well as during the 24-h follow-up.  Results: Fluid restriction induced -2.6±1.5% 

reduction in body mass at the beginning of the trial, while body mass was maintained in the EU 

trial (-0.2±1.1%, P < 0.001).  Strength was reduced independent of trial for isometric strength at 

70° (F2,32 = 12.54, P < 0.001), isometric strength at 90° (F2,32 = 8.96, P = 0.001), and isokinetic 

strength at 60°·sec-1 (F2,32 = 8.11, P = 0.001).  Serum creatine kinase increased regardless of trial 

(F1.32,18.4 = 24.42, P < 0.001), with the 24-h follow-up greater (grand mean; 58.7±25.1 U/L) than 

at baseline (grand mean; 35.7±23.1, P < 0.001) and post exercise (grand mean; 51.6±23.2 U/L, 

P=0.009). Conclusions: We demonstrated no significant impact of hydration status when 

performing muscle damaging exercise, followed by exercise in the heat, on indices of muscle 

damage recovery.  Further, the rehydration protocol successfully returned participants to a EU 

state by the 24-h follow-up, which may have impacted the recovery from muscle damaging 

protocol.  
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Introduction 

 A potential consequence of resistance exercise involves damaging muscle tissue, 

particularly if the movements involve an eccentric component (1-3).  Exercise induced muscle 

damage may range from asymptomatic increases in biomarkers to exertional rhabdomyolysis 

requiring medical attention.  Subclinical rhabdomyolysis not requiring medical treatment can 

easily be treated with rest and hydration (1). Muscle damaging exercise decreases the ability to 

generate force and may have implications for subsequent performance (4-10).  As such, 

controlling factors that may affect muscle damage and recovery is essential for athletes to enable 

expeditious returns in performance.   

Athletes commonly arrive to exercise bouts, athletic events, and practices in a fluid 

conservation state when evaluated by urinary indices (e.g. specific gravity, color, osmolality) 

(11-14).  Further, reductions in body weight have been shown across pre-season practices in 

addition to concentrated urine production, suggesting potential losses in total body water (12).  

As such, poor hydration practices during and following practices may lead to dehydration, 

potentially impacting performance and altering recovery (2, 15, 16).  This particularly applies in 

settings where there is a reduced time between practices (i.e. two-a-days) or preseason where 

individuals are undergoing rigorous workouts day after day (i.e. muscle damaging exercise).  

 The impact of suboptimal hydration on muscle damaging exercise has received relatively 

little investigation.  While hypohydration is consistently found to reduce endurance performance, 

impacts on muscular strength or power are more controversial (2, 15).  In a review by Judelson et 

al. (2), authors concluded that the overall effect of dehydration on muscular strength and power 

was negative.  However, study limitations often prevent the clear interpretation of findings, 

making it difficult to ascertain the effects of hypohydration on resistance and power performance 
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(2, 15).  Regardless, increases in physiological and perceptual strain associated with 

hypohydration merit the support for athletes to perform these exercises in a well hydrated state.       

 Hydration impacts resistance exercise performance, however, it has been shown to have 

no impact on circulating markers of muscle damage (i.e. creatine kinase and myoglobin) often 

seen following exercise (3).  Moderate hypohydration (5%) was successful at inducing slight 

increases in myoglobin one and two hours post-exercise, however, total work was not affected 

compared to an euhydrated condition.  Dehydration combined with hyperthermia may also 

impact recovery from muscle damaging exercise (6).  Cleary et al. (6) investigated the effects 

exercise induced dehydration on delayed onset muscle soreness (DOMS) recovery from downhill 

running in the heat.  Perceptions of lower extremity pain were significantly elevated in the 

dehydrated trial, albeit with no differences in muscular strength (6).  Interestingly, when 

downhill running was performed in a thermoneutral environment, the effects of dehydration on 

DOMS were ameliorated (7).  Therefore, the addition of hyperthermia with concomitant 

dehydration may impact skeletal muscle recovery. In organized sport, when compared with a 

normothermic soccer match, there was no impact of heat stress on markers of muscle damage 

recovery, however perceptions were not assessed (17).  Furthermore, these data were collected 

post-soccer match therefore, the hydration and damage responses may have differed significantly 

between individuals.  Regardless, the impact of muscle damaging exercise with concomitant 

dehydration may exacerbate symptoms of DOMS, potentially due to delayed recovery induced 

via hyperthermia and dehydration. 

 Recovery from muscle damaging exercise performed while in a fluid conserving state has 

not been extensively investigated.  Further, muscle damaging exercise is likely associated with a 

strength and conditioning session that would be completed in a normothermic environment 
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followed by exercise in the heat, rather than all in a heated environment.  Therefore, the purpose 

of this study was to identify the effects of performing muscle damaging exercise followed by 

exercise in the heat while hypohydrated, on muscular strength indices (i.e. isometric and 

isokinetic strength) as well as muscle damage biomarkers (creatine kinase), when full 

rehydration was conducted in recovery.  Based on previous investigations, it was hypothesized 

that there would be no differences in muscle damage biomarkers with hypohydration, however, 

muscle strength or recovery would be modestly impaired (i.e. slightly greater reductions) when 

compared to a euhydrated state.   

Methods 

 Eighteen healthy, recreationally active males (age 24 ± 5 y, wt 75.9 ± 10.0 kg, ht 1.79 ±  

0.05m, bf 17.3 ± 6.2%) were recruited from the University and surrounding areas to participate 

in this randomized, counterbalanced, crossover design study. All procedures were approved by 

the University Institutional Review Board and written informed consent was acquired from all 

individuals prior to participation.  The study consisted of five visits including one familiarization 

day and two experimental days (one euhydrated; EU and one hypohydrated; HY) each with 24-h 

follow-ups.  Experimental days were separated by ≥28 days (average; 41 ± 16 days), and muscle 

damaging exercise was completed on contralateral legs to mitigate the repeated bout effect (18).   

Familiarization Day:  

 During the initial familiarization visit, participants completed a medical history 

questionnaire and signed an informed consent form.  Exclusionary criteria included previous heat 

exhaustion or heat stroke within the past 3 years, current musculoskeletal injury, hypertension 

where vigorous exercise is contraindicated, diagnosed sickle cell trait, use of medications that 

may alter thermoregulation or kidney function, current use of creatine supplementation, and a 
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history of kidney disease.  Upon approval, baseline demographic information was collected and 

body composition assessed via dual energy x-ray absorptiometry (DXA).  Participants then 

completed a five-minute warm-up on a cycle ergometer (~50W) and were fitted to the isokinetic 

dynamometer (Biodex System 3, Biodex Medical Systems, New York) with seat and leg 

positions recorded for future testing.  Baseline isometric strength at 70° and 90°, and isokinetic 

strength at 60°·sec-1 were competed in triplicate and future eccentric procedures were explained.  

Because these were used as a familiarization, these measures were not included in analysis.     

Experimental Days:  

 All participants were asked to refrain from alcohol use for 24-h, caffeine use for 12-h, 

resistance training for 5-days and exercise for 24-h prior to each trial.  For the HY trial, the 

dehydration protocol consisted of 24-h fluid restriction with minimal fluid provided throughout 

the trial. Prior to the EU trial, participants were instructed to consume fluids prior to arrival, 

while water was provided during the trial to ensure less than 2% body mass loss.   

 Prior to arrival for both trials, participants recorded three-day baseline body masses on a 

lab provided scale (BalanceFrom High Accuracy Bathroom Scale, BalanceFrom LLC, China) on 

the days leading up to the trials.  For the 24-h prior to arrival, participants recorded their diet 

using a standard diet log and were asked to repeat a similar diet for the second trial.  

Additionally, participants collected all urinations for the 24-h prior to the start of trial, which was 

subsequently analyzed for 24-hr urine osmolality (freezing point depression, Model 3250, 

Advanced Instruments Inc., Norwood, MA).   

Upon arrival to the laboratory, participants completed a nude body mass and dressed in 

shorts and a t-shirt, followed by a 20-minute semi-recumbent baseline rest in a thermoneutral 

environment (~20°C).  During this time, participants were informed of perceptual scales for 



97 
 

rating of perceived exertion (RPE) and muscle pain and baseline values were recorded.  This was 

followed by a blood draw via venipuncture to assess serum creatine kinase (SCK).   

Participants moved to a cycle ergometer (Monark 828E, Monark Exercise AB, Sweden) 

to complete a 5-minute warm-up at 50W before completing the muscle damaging protocol on an 

isokinetic dynamometer (Biodex System 3, Biodex Medical Systems, New York) (18).  The 

muscle damaging procedure involved maximal effort unilateral eccentric knee extension 

exercise, with the contralateral leg utilized during the second trial to minimize potential repeated 

bout effects.  The leg used during the first trial was randomized and counterbalanced for 

hydration and dominance between participants.  For each trial, participants completed 10 sets of 

10 maximal effort eccentric knee flexion repetitions at a speed of 30°/s with sets separated by 

one-minute (18).  Prior to, and immediately following the eccentric protocol, isometric strength 

(i.e. peak torque) measures were performed via three 5-second maximal voluntary concentric 

knee extensor contractions at 70° and 90° knee flexion with one minutes of rest between 

repetitions.  Isokinetic concentric knee extensor strength (i.e. peak torque) was also completed in 

triplicate at 60°·sec-1.  Perceptions of muscle pain and RPE were recorded following the exercise 

induced muscle damage.  Decreases in strength, as well as elevations in SCK and muscle pain, 

served as indices of muscle damage (5).  As this was part of a larger study on renal biomarkers, 

the purpose of the eccentric exercise protocol was to induce mild muscle damage similar to 

athletic practices or labor-intensive occupational settings, thus physiological adaptations were 

not expected to alter the findings given our counterbalanced, crossover study design.  Also, the 

participants were directed to avoid changes in their exercise regimen between trials to minimize 

changes in fitness. 
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 Upon completion of the exercise induced muscle damage, participants moved to an 

environmental chamber set to a hot, humid environment (33°C, 50% relative humidity) to 

complete treadmill running at 60% VO2max (1% grade) for 60 minutes with a five-minute 

walking (3 mph) warm-up, break at 30 minutes, and cool-down at 60 minutes. This protocol was 

designed to increase thermal stress and further dehydrate participants during the HY trial and 

prevent >2% body mass loss in the EU trial.  Immediately following exercise, participants 

remained in the chamber to commence a 30-minute semi-recumbent recovery with a post-

exercise blood draw taken at 20 minutes.   

After the recovery period, participants provided another body mass and urine sample, and 

were provided with a rehydration protocol in both trials, such that the participant would replace 

100% of losses in the initial four hours following the trial, ensuring to consume food to prevent 

over-hydration.  Additionally, participants were then encouraged to consume at least an 

additional 2.5 liters to aid in the production of dilute urine samples.    

Participants returned to the laboratory for a 24-h follow-up visit.  Visits involved a nude 

body mass followed by 20-minute semi-recumbent rest period, during which perceptual 

measures, and a blood draw were collected.  Participants then completed the five-minute warm-

up on a cycle ergometer at 50W before moving to the isokinetic dynamometer.  Concentric knee 

extension strength was once again recorded for isometric contractions at 70° and 90° of knee 

flexion as well as isokinetic contractions at 60°·sec-1 knee extension. Participants were then 

instructed to resume normal exercise routines and second visits were scheduled, if applicable. 

Blood Analysis 

After clotting, serum samples were centrifuged for 15 minutes at 1000 g and 4°C.  Serum 

was aliquoted and stored at -80°C for further analysis.  Serum creatine kinase (SCK) was 
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assessed using a commercially available colorimetric assay (Bioassay Systems Inc, Hayward, 

CA) with an average coefficient of variation of 2.1%. 

Statistical Analysis 

  All statistical analyses were completed using SPSS version 24 (IBM Corporation, 

Somers, NY).  A repeated measures multivariate analysis of variance was used to assess absolute 

peak torque (i.e. strength) across time (pre-muscle damage, post-muscle damage, and the 24-h 

follow-up) and between hydration (EU and HY) for isometric peak torque at 70° and 90° knee 

flexion and 60°·sec-1 isokinetic peak torque. Additional variables (body mass, creatine kinase) 

were analyzed using two-way (time x hydration) repeated measures analysis of variance.  When 

sphericity was violated, Greenhouse-Geisser adjustments were used.  Post-hoc analyses involved 

pairwise comparisons with an appropriate Bonferroni corrected alpha to identify significant time 

point differences.  Dependent t-tests were used to assess differences in 24-h urine osmolality, 

total eccentric work, average eccentric peak torque and ratings of perceived exertion between 

trials. Data that failed normality tests (muscle pain) were analyzed with a Friedman test across 

time and between hydration states.  Follow-up pairwise analysis were conducted using a 

Wilcoxon signed rank test for individual time point differences. All partial eta squared (ηp²) and 

Hedge’s g values were calculated using a spreadsheet from Lakens (19).  Alpha of 0.05 was set a 

priori to determine significance at the omnibus level.  Based on a .80 power calculation using the 

primary outcome variable NGAL (20, 21) with a correlation between time points of 0.42, a 2-

standard deviation effect size, β of 0.20, and α of 0.05, it was determined 17 participants would 

be sufficient to complete this study. An increased experiment-wise type I error rate is 

acknowledged due to the multiple multivariate and univariate analyses conducted.  Because the 

experimental protocol is time, resource, and cost intensive, power estimates were calculated 
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based on singular analyses to provide initial experimental outcome indicators and guide future 

research.   

Results 

Hydration 

There was a significant interaction of body mass for time and trial (F2,32 = 24.51, P < 

0.001, ηp² = 0.61), as three-day baseline body masses were not different between trials (EU 73.7 

± 8.6, HY 73.8 ± 9.4 kg, P = 0.87), while body mass at the beginning of the trial was reduced 

following fluid restriction (HY 72.1 ± 8.8kg, EU 74.1 ± 8.5kg, P < 0.001).  By design, the body 

masses were not different at the 24-h follow-up visit (EU 74.0 ± 8.4, HY 73.6 ± 9.0 kg, P = 

0.29).  There was also an interaction of time and trial (F1,15 = 103.50, P < 0.001, ηp² = 0.87) for 

percent body mass change, with the fluid restriction inducing a -2.6±1.5% reduction in body 

mass from the three-day baseline body mass at the beginning of the trial, while body mass was 

maintained in the EU trial (-0.2±1.1%, P < 0.001).  There were no differences between trials at 

the 24-h follow-up for percent change from the three-day baseline (EU -0.2±0.9, HY -0.6±1.5%, 

P=0.26).  Urine collection for 24 h prior to the trial days showed greater urine osmolality 

following fluid restriction (HY 775±180, EU 427±188 mOsm/kg, t17 = -6.71, P < 0.001, Hedge’s 

g = -3.01). 

Muscular Strength & Muscle Damage Markers 

Total work completed during eccentric exercise was not different between trials (EU 

8663 ± 2651, HY 8280 ± 2102 J, t17 = 0.90, P = 0.38, Hedge’s g = 0.40).  Average peak eccentric 

torque was also not different between trials (EU 196.1±62.5, HY 186.3±57.1 N·m, t17 = 1.22, P = 

0.24, Hedge’s g = 0.55).  
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Muscular strength was assessed using a multivariate analysis including isometric peak 

torque measured at 70° and 90° as well as peak isokinetic torque assessed at 60°·sec-1. At the 

multivariate level, there was a main effect of time (Wilks Λ = 0.35, F6,11 = 3.49, P = 0.04), 

however, there was no effect of hydration (Wilks Λ = 0.80, F3,14 = 1.14, P = 0.37) or interaction 

of time and hydration (Wilks Λ = 0.51, F6,11 = 1.76, P = 0.20). 

Univariate analysis of time was then conducted using an alpha of 0.017.  Strength was 

reduced independent of trial (i.e. main effect of time) for isometric strength at 70° (F2,32 = 12.54, 

P < 0.001, ηp²  = 0.44, Figure 1C), isometric strength at 90° (F2,32 = 8.96, P = 0.001, ηp²  = 0.36, 

Figure 1B), and isokinetic strength at 60°·sec-1 (F2,32 = 8.11, P = 0.001, ηp²  = 0.34, Figure 1A). 

Pairwise comparisons for each of the strength measures were then completed using an alpha of 

0.006. Isometric strength at 70° decreased from baseline (grand mean; 203.2 ± 56.8 N·m) to 

immediate-post damage (grand mean; 166.0±45.2 N·m, P = 0.001) and remained reduced at the 

24 h follow-up (grand mean; 182.9 ± 50.8 N·m, P = 0.006).  Isometric at 90° was also reduced 

from baseline (grand mean; 227.2 ± 65.7 N·m) to immediate-post damage (grand mean; 188.9 ± 

55.1 N·m, P < 0.001) and tended to be reduced at the 24 h follow-up (grand mean; 200.2 ± 58.6 

N·m, P = 0.007).  Isokinetic strength at 60°·sec-1 was reduced immediately post-damage (grand 

mean; 143.2 ± 42.0 N·m) compared to baseline (grand mean; 168.0 ± 53.7 N·m, P =0.003), 

however, there was no difference between baseline and the 24-h follow-up (grand mean; 156.5 ± 

38.0 N·m, P = 0.10).   

SCK analysis revealed increases regardless of hydration (F1.32,18.4 = 24.42, P < 0.001, ηp² 

= 0.64) with no differences between trials (F1,14 = 0.36, P = 0.56, ηp² = 0.04) and no interaction 

effects (F1.2,16.5 = 1.002, P = 0.35, ηp² = 0.07, Figure 2).  The 24-h follow-up SCK was greater 

(grand mean; 58.7 ± 25.1 U/L) than baseline (grand mean; 35.7 ± 23.1, P < 0.001) and post-
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exercise (grand mean; 51.6 ± 23.2 U/L, P=0.009).  In addition, the post-exercise SCK was 

greater than at baseline (P < 0.001). 

Perceptual Measures 

Muscle pain was affected by time (χ2
2 = 30.10, P < 0.001) and trial (χ2

1 = 4.57, P = 0.03), 

however, there were no differences between trials for muscle pain at any time (all P > 0.017). 

Rather, pain was elevated above baseline (EU 0.1 ± 0.2, HY 0.1 ± 0.2) immediately post damage 

(EU 2.7 ± 1.7, HY 3.5 ± 1.6, both P < 0.001) and at the 24-h follow-up (EU 1.3 ± 1.4, HY 1.4 ± 

1.6, both P < 0.001).  Ratings of Perceived Exertion at the end of the muscle damaging exercise 

were lower in the EU trial (EU 15.8 ± 2.0, HY 16.6 ± 1.8, t16 = -2.75, P = 0.01, Hedge’s g = -

1.27).  

Discussion 

 The purpose of this investigation was to evaluate the influence of performing muscle 

damaging exercise while fluid restricted on indices of muscle damage recovery when muscle 

damaging exercise was followed by exertional hyperthermia.  Further, we removed the impact of 

hypohydration in recovery by prescribing fluid replacement following both EU and HY trials, 

thus isolating the impact of hypohydration during muscle damaging exercise.  Contrary to our 

hypothesis, our participants demonstrated no differences between trials in strength decreases, a 

marker of muscle damage.  As expected, however, there was no difference between trials for 

SCK responses at any time point. 

 Maintaining a positive fluid balance with exercise can be difficult, particularly when 

completing repeated bouts in hot, humid conditions (e.g. pre-season practice).  This is 

demonstrated by athletes regularly reporting to activities in a state of water conservation (i.e. 

producing concentrated urine samples) (11, 12, 14, 22). This suboptimal hydration has many 
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implications on athlete safety and performance. For example, many sources have found 

detriments in resistance exercise performance when dehydrated (2, 15).  Poor hydration is also 

implicated to alter physiological and perceptual recovery following exercise in the heat (23-26).  

Therefore, proper rehydration strategies such as those recommended in consensus statements 

(27, 28) are important to prevent delayed recovery and enhance the preparation for subsequent 

bouts (24, 26).   

 The impacts of exercise induced dehydration on symptoms of DOMS have been 

conducted in both hyperthermic (6) and normothermic males (7).  Similar to the current study, 

Cleary et al. (7) found no impact of hypohydration on measures of isometric strength or muscle 

pain following muscle damaging exercise when individuals performed the exercise in a 

normothermic state.  The authors utilized 45 minutes of downhill running to induce muscle 

damage presenting isometric strength decreases similar to the current study. In contrast, 

dehydration was conducted using walking in a hot, humid environment while we utilized 24-h 

fluid restriction to initiate dehydration.  Regardless, the work by Cleary et al. (7) suggests that 

dehydration alone does not impact the extent of muscle damage, perceptions, or recovery. 

In a separate study, Cleary et al. found that performing muscle damaging exercise with 

concomitant dehydration and hyperthermia led to increased perceived pain compared to the 

euhydrated hyperthermic trial (6).  The current study utilized muscle damaging exercise while in 

a normothermic state, then participants experienced marked exertional hyperthermia, without 

showing any differences between hydration states.  Therefore, the presence of increased muscle 

temperature during muscle damaging exercise may be required for hypohydration to have an 

impact on perceived muscular soreness (6).  Cleary et al. (6) suggested that the presence of 

hypohydration augmented the intramuscular temperature due to thermoregulatory 
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compensations, which compromised the structural integrity of the tissue and led to increased 

damage. However, the authors did not report any differences between hydration trials for 

isometric quadriceps strength measures, therefore the extent of damage may have been related 

purely to perceptual measures (6).  Further, another study  confirmed these strength findings by 

elevating intramuscular temperature and completing muscle damaging exercise of the biceps 

(29).  The authors found no impact of higher muscle temperature on indices of muscle damage 

compared to exercise performed in a normothermic state (29).  This would suggest that the 

presence of hypohydration is necessary to influence changes in perception when muscle damage 

is performed in a hyperthermic condition and that these moderations are not purely temperature 

driven.  Rather, hypohydration may alter the inflammatory response to increase sensitivity and 

subsequently drive pain (9).  Fielding et al. showed that a 2% dehydration exercise protocol 

followed by exercise induced muscle damage caused greater circulating neutrophil release 

compared to the rest trial (30).  Further, there were no differences in z-band damage nor SCK 

between the trials (30). The lack of differences in muscle damage indices in the current study 

further support that hyperthermia with concomitant hypohydration is necessary during the 

damaging process to alter recovery. 

 Hypohydration has also been shown to have minimal impact on biomarkers of muscle 

damage (3). Yamamoto et al. (3) evaluated the impact of hypohydration at 2.5% and 5% body 

mass loss on muscle damage markers following an intense resistance exercise protocol.  The 

authors found no differences in SCK, but there were minor elevations in myoglobin with 

dehydration (3).  Although the present study did not investigate myoglobin, we found no 

differences between hydration on the elevations in SCK, however, our damaging protocol 

resulted in >1.5-fold elevations in SCK at 24-h.  Peak SCK values are generally reported at ~3-4 
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days post damage, therefore it is likely there were greater elevations in these values (9).  

Additionally, it is recognized that the values reported for the current study are within normal 

range for healthy individuals (<175 U/L) (8). However, SCK as a biomarker of muscle damage 

does not necessarily reflect the extent of disruption in the tissue with a great amount of inter-

individual variability (5, 8, 30). Regardless, the low SCK response may have been a function of 

the methodology used for inducing muscle damage (i.e. unilateral knee extension) resulting in 

low concentrations or possibly the colorimetric assay used to assess CK activity rather than true 

concentration.  Regardless, the SCK response was one that increased, thus confirming the 

presence of muscle damage.      

 As this study was part of a larger investigation of biomarkers of acute kidney injury, there 

were limitations in the methodology. We provided instructions to participants to rehydrate within 

four hours of finishing the trial and continue recommended fluid consumption until the 24-h 

follow-up.  This rehydration was performed by the participant outside the laboratory, therefore 

we relied on participants to complete the procedure and verbally confirmed compliance during 

the 24-h follow-up.  Additionally, we cannot comment on the impacts of poor hydration 

following muscle damaging exercise on recovery indices.  However, restricting fluids following 

a muscle damaging exercise bout with exercise in the heat may place substantial strain on the 

renal system and increase risk for exertional rhabdomyolysis.  The presence of hypohydration, 

heat stress, and unaccustomed exercise are thought to create the “perfect storm” and have been 

reported in case studies to contribute to clinically significant cases of exertional rhabdomyolysis 

(31, 32).  As such, the goal of this study was to evaluate the implications for reporting to an 

exercise session following poor fluid intake practices but finishing trials with proper rehydration 

to evaluate the impacts on muscle damage recovery.  To further ensure safety, we used a 
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unilateral knee extensor protocol for inducing muscle damage to mitigate the risk of 

rhabdomyolysis in participants.  As such, future studies may be necessary to evaluate the impacts 

of delayed rehydration or partial rehydration on muscle damage severity and recovery.   

 In conclusion, the findings of this study apply particularly well in settings where teams 

may undergo a strength training protocol (i.e. muscle damaging) followed by practice or 

conditioning session in a hot, humid environment.  We demonstrated no significant impact of 

hydration status when performing muscle damaging exercise, followed by exercise in the heat, 

on severity of muscle damage and pain, or indices of recovery.  Further, the rehydration protocol 

successfully returned participants to a euhydrated state by the 24-h follow-up, which may have 

facilitated the recovery from our muscle damaging protocol.  Therefore, when athletes report to 

activities in a state of water conservation, it is unlikely that recovery form any muscle damaging 

exercise will be impacted as long as the athlete rehydrates according to the National Athletic 

Training Association and American College of Sport Medicine guidelines (27, 28).  However, 

hypohydration, heat stress and unaccustomed exercise may increase risk for exertional 

rhabdomyolysis.  As such, to improve overall safety, coaches, strength staff, and clinicians 

should encourage athletes to report to practices to well prepared with proper hydration and diet.  
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Figure Legends 

 

Figure 1. A) Isokinetic peak torque at 60°/sec and isometric peak torque at B) 90° of knee 

flexion and C) 70° of knee flexion assessed immediately prior to and after muscle damaging 

exercise and during 24-h follow-up. aIndicates different from baseline independent of hydration 

(P < 0.05). 

 

Figure 2. Serum creatine kinase activity measured immediately prior to and after muscle 

damaging exercise and during the 24-h follow-up. aIndicates different from baseline independent 

of hydration (P < 0.05). bIndicates different from post-damage independent of hydration (P < 

0.05). 

 

Figure 3. Perceived muscle pain recorded immediately prior to and after muscle damaging 

exercise and during 24-h follow-up. aIndicates different from baseline in both hydration states (P 

< 0.05).  
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IV. Conclusions 

 These investigations were conducted to evaluate the influence of poor fluid intake 

practices on renal stress and recovery from muscle damaging exercise.  By using fluid restriction 

prior to exercise, we mimicked conditions found in athletic, military, and occupational 

populations when reporting for activity.  Further, providing minimal fluid during exercise further 

dehydrated individuals leading to greater physiological and perceptual strain. Therefore, our 

dehydration protocol was effective in creating a state of hypohydration prior to and throughout 

exercise.  We followed this by providing fluid intake recommendations based on recent position 

stands for rapid rehydration. As such, the rehydration protocol was successful at returning 

individuals to a euhydrated state.  By using these methodologies, we were able to evaluate the 

effects of performing exercise while suboptimally hydrated on renal stress and muscle damage 

recovery. 

 In Study 1, we demonstrated significantly greater increases in biomarkers of AKI when 

participants were hypohydrated.  However, the fluid replacement protocol in this study returned 

biomarkers to baseline levels, indicating no lasting impairments in renal function. The 

dehydration protocol also augmented cardiovascular, thermal strain, and perceptual strain during 

exercise in the heat.   

 In Study 2, we demonstrated no impact of hydration status when performing muscle 

damaging exercise, followed by exercise in the heat, on muscle damage and pain recovery.  We 

also demonstrated no influence of hydration on serum creatine kinase, a common biomarker of 

muscle damage or on isokinetic or isometric muscular strength.  The rehydration protocol used 

may have aided in recovery to mitigate any detriments in muscular strength between hydration 

trials. 
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 There is overwhelming evidence to suggest a negative role of dehydration in renal 

function, thermoregulation, performance, and cardiovascular stability.  The concomitant 

exposure to physiological (i.e. exercise, muscle damage) and environmental (high ambient 

temperature and humidity) stressors commonly experienced by athletes, military, and 

occupational populations augment the deleterious responses to dehydration.  We demonstrated 

that poor fluid intake practices leading into, and throughout, activity negatively impact renal, 

physiological, and perceptual measures.  However, proper fluid intake following this stressful 

environment ameliorated the negative impacts of the previous hypohydration.  Together, these 

studies provide support for proper rehydration following dehydrating activity to prevent 

deleterious impacts on renal and muscular recovery.    
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