
dokspot – Securely Linking Healthcare Products with Online Instructions

Kevin Lapagna, Moritz Zollinger, Marc Rennhard

School of Engineering
Zurich University of Applied Sciences

Winterthur, Switzerland
Email: lkev,zolg,rema@zhaw.ch

Hans Strobel, Cyrille Derché

dokspot GmbH
Zurich, Switzerland

Email: hans.strobel,cyrille.derche@dokspot.com

Abstract—Printed instructions for products get replaced more
and more by digital versions that are made available over the
Internet. In safety-sensitive fields, such as healthcare products,
availability and integrity of these instructions is of highest
importance. However, providing and managing instructions online
opens the door to a wide range of potential attacks, which
may negatively affect availability and integrity. In this paper,
dokspot is presented, which is an Internet-based service that
aims at solving this problem by securely linking healthcare
products with online instructions. The key to achieve this is a
sophisticated security architecture and the focus of this paper is
on the core components of this architecture. This includes a secure
workflow to manage online instructions, which prevents, e.g.,
attacks by malicious insiders. Also, the traditionally monolithic
web application architecture was split into role-based microser-
vices, which provides protection even if parts of the system
are compromised. Furthermore, digital signatures are utilized
to continuously safeguard the lifecycle of online instructions
to guarantee their genuineness and integrity. And finally, a
passwordless signature scheme is introduced to hide inconvenient
extra steps from the users while still maintaining security. Overall,
this security architecture makes dokspot highly resistant to a wide
range of attacks.

Keywords–Web Application Security; Microservices; Digital Sig-
natures; Passwordless Signatures; Healthcare Product Instructions;
Online Document Management System.

I. INTRODUCTION

Today, products should be designed in a way that allows in-
tuitive and safe use without reading the instructions. However,
with increasing risks of using a product, relying on intuition
and using a “trial and error” approach is unacceptable and
becomes a potential safety risk. An illustrative example is the
operation of a passenger airplane, where pilots have to read and
tick off instructions every time before operating the aircraft.
Everybody would agree that in this scenario, doing it in this
way and by using the right instructions is an important safety
factor.

Another product category that requires detailed knowledge
of the instructions are healthcare products, which – in the
context of this paper – includes any substance, product, or sys-
tem used for therapeutic or diagnostic purposes on the human
body (or animals). Healthcare professionals (doctors, nursing
staff, operators of medical machines, etc.) must be aware of
all details involving the use of a healthcare product prior to
its application on a patient. To achieve this, the healthcare
professional must have guaranteed and simple access to the
right instructions in the right language at the right time.

To comply with this, manufacturers of healthcare products
predominantly ship printed instructions in multiple languages
together with their products. This has various disadvantages,
including that the related costs – financial, operational, and
environmental – are substantial, that most of the included
instruction languages remain unused, and that the required
instructions can often not be found when needed (e.g., because
they were misplaced or thrown away). Also, it is sometimes
necessary to break a product seal to get to the printed instruc-
tions, which implies the product can often not be returned to
the manufacturer if it turns out the product is not suited for
the planned application.

Some of these limitations can be remedied by providing the
instructions online. This is typically done with a web portal
where healthcare professionals can search for and download
instructions of specific products. While this sounds to be a
good solution, it has its limitations in practice. One limitation
is that every manufacturer uses its own portal, which means
the healthcare professional not only has to find the right
portal, but also has to be able to cope with different user
interfaces. Another limitation is that once the right portal has
been found, it may be difficult to find the correct instruction
for a specific product. A third limitation is that such a portal
may be an attractive attack point, e.g., for competitors or for
outside attackers, as tampering with the provided instructions
in malicious ways may have a devastating effect on patient
safety.

To overcome these limitations, dokspot was developed.
dokspot is a novel Internet-based service that aims at trans-
forming the way companies handle instructions by providing
an innovative paperless and trustworthy solution. Figure 1
depicts the basic functionality of dokspot.

dokspot

HCIHCPM

manage content
online

easy and secure
access

simplify your
operations

paperfree
shipping

(healthcare product manufacturer) (healthcare institution)

Figure 1. Basic Functionality of dokspot

Figure 1 shows that manufacturers of healthcare products

55Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/160247448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(left side, these are the customers of the dokspot service)
upload their instructions to dokspot (top). Users of the prod-
ucts, in this example healthcare professionals that are typically
working at healthcare institutions (right side, these are the
customers of the manufacturer of the healthcare products), can
easily access this information using the dokspot service when
they need to do so. Of course, the physical products must still
be shipped to the healthcare institutions (bottom), but they do
not include instructions on paper. Among other advantages,
this simplifies operations for the manufacturers of healthcare
products and reduces hospital waste.

To link a physical product to the online instructions, a
Uniform Resource Locator (URL) pointing to the dokspot
service is used. This URL is defined by the manufacturer of
the healthcare product and communicated to the healthcare
professional (the user of the device) together with the product,
e.g., on the product label. Figure 2 shows an example of such a
label, which includes the URL on the right side. The important
contents of this label are a product-specific alphanumeric code
and a scannable data matrix.

Figure 2. Example of a dokspot Label.

To access the instructions, the healthcare professional
simply scans the data matrix (using for example a stan-
dard QR code reader app on a smartphone or tablet) or
enters the product-specific code (here: VM520-4678C) on the
web page at the URL provided by the manufacturer (here:
ifu.vitalmonitoringinc.com). As a result, the instructions are
displayed in the required language.

It is obvious that this approach removes some of the
limitations identified earlier. However, there is still the chal-
lenging problem of how such a service should be designed
and developed so that it provides sufficient protection from
attacks. In particular, it must be guaranteed that when a user
accesses online instructions through dokspot, there is high
assurance that the instructions they receive and view on their
device match the original instructions as provided by the
manufacturer of the healthcare product. In this context, it is
also important to realize that several regulatory authorities
have issued guidelines obliging manufacturers to protect the
integrity of their electronic files, which includes protecting
online instructions from unauthorized modification. One recent
example for such a guideline is the GXP Data Integrity
Definitions and Guidance from the UK Medicine & Healthcare
Products Regulatory Agency (MHRA) [1].

To our knowledge, no work has been published so far that
presents a solution to this challenging problem. The focus

of this paper therefore lies on filling this gap by presenting
the underlying security architecture of dokspot. This security
architecture contains several key components to protect from
a wide range of attacks and provides the basis to achieve the
required level of security and also to comply with regulations
as mentioned earlier. As a result of this, dokspot truly allows
to securely link healthcare products with online instructions.
Note that while this security architecture has been designed,
developed and evaluated in the context of dokspot and for
healthcare products, the architecture is general enough so it
can be applied to other industries as well. Therefore, the main
contribution of this paper is to provide a security architecture
that allows to securely link physical products and online
documents in general, independent of the field of application.

The remainder of this paper is organized as follows:
Section II describes the security goals and threat model of
dokspot. Based on this, the security architecture is explained in
Section III, followed by the evaluation in Section IV. Related
work is covered in Section V and Section VI concludes this
work.

II. SECURITY GOALS AND THREAT MODEL

In this section, the overall architecture, the security goals
and the threats against dokspot are described. This provides the
basis for the security architecture that follows in Section III.

A. Overall Architecture
Figure 3 depicts a high-level view of the overall architec-

ture of dokspot.

Data
base

File

Storage

HCIHCPM

EndtoEnd Integrity

HCP
staff

HCPM
employees

dokspot

8

743

21 5

6

Figure 3. dokspot Architecture and Threats against dokspot.

In the middle of Figure 3, there is the central component
of the dokspot service. This component corresponds to a web
application that provides the core functionality and which is
deployed on a suitable cloud application platform. To store the
instructions, a cloud storage provider is used. Using 3rd party
services to run the application is much more reasonable than
deploying and operating an own infrastructure, especially as
these services provide high availability and can easily scale
with growing demands with respect to computing power and
storage space.

On the left side, there is a company – identified as
healthcare product manufacturer (HCPM) – that uses dokspot
to provide its instructions. HCPM employees are interact-
ing with the dokspot service via the web browser on their

56Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

workplace computers to upload and maintain instructions of
their products. To support this, the dokspot service provides a
corresponding web interface.

On the right side, there is a healthcare institution (HCI)
that is using the online instructions provided by the HCPMs
via dokspot. Its users are identified as healthcare professionals
(HCP). HCPs can access the instructions using any web
browser on any device, including workstations, laptops, tablets
or smartphones. This is also supported with a corresponding
web interface provided by the dokspot service.

B. Security Goals
With respect to the general security goals – confidentiality,

integrity, and availability – dokspot is a “special case”. In many
typical Internet-based applications, confidentiality is highly
important, but in the case of dokspot, confidentiality of the
instructions is not critical at all. All instructions provided
through dokspot are usually considered public information and
it is therefore not necessary to restrict read-access to them.

Availability and integrity are paramount, though. The in-
structions should be available within a few seconds whenever
they are needed by a HCP and unavailability may mean –
in the worst case – that patient safety is negatively affected.
High availability is achieved by operating the service using
well-established cloud-based services that have demonstrated
to be suitable for high-availability services and by putting a
strong focus on robust and secure software during the entire
development process.

Integrity is even more critical. Tampering with medical
device instructions without anyone detecting this can have a
severe impact on patient safety, which in turn would likely
result in legal consequences for all involved parties. E.g., a
deliberately wrong dosage of a substance, an altered configu-
ration value of a life-sustaining machine or misinformation
about allergens present in a product can lead to a serious
endangerment of patients up to fatal complications. A lack
of integrity protection can be exploited in a variety of attacks,
e.g., by a disgruntled employee at the HCPM to harm their
employer, by an external attacker to blackmail the HCPM
or the dokspot service provider (request them pay a sum of
money, otherwise tampering with the instructions will begin
or continue), by a competitor of the HCPM, dokspot service
provider or the HCI to gain an own advantage, and so on.

From this discussion, it follows that providing end-to-end
integrity protection is crucial to achieve a truly trustworthy
linking of physical products with online instructions. End-
to-end integrity means that the HCP receives the original
instruction that was provided by the HCPM, i.e., if the HCP
receives and views an instruction on their device, then there is
high assurance the instruction can be trusted and has not been
tampered with. The bottom part of Figure 3 illustrates this end-
to-end integrity: A HCPM employee provides an instruction
and the dokspot service must make sure that the instruction is
delivered to the HCP in the original form.

In the remainder of this paper, the focus will be on
achieving this integrity-protection. Of course, other security
aspects are relevant as well, but they can be solved by using
state-of-the-art technologies and practices (as described, e.g.,
in [2]) and therefore do not require innovative approaches to
be solved.

C. Threat Model
Figure 3 also includes possible threats against dokspot to

compromise the integrity of instructions. The corresponding
attack points are numbered 1–8 and explained in the following
list.

• Attack point 1: A HCPM employee uploads manipu-
lated instructions, either because they want to harm
any of the involved parties or because they were
bribed by someone else. Such internal attacks are
common and their percentage among all cyber attacks
is rising [3]. Note that the dokspot service provider
could argue that this is out of scope: it is the problem
of the HCPM to make sure no tampered instructions
are uploaded in the first place. However, this would
contradict the goal of being a truly trustworthy service,
therefore dokspot should provide secure workflows
that at least significantly increase the difficulty of such
an insider attack.

• Attack point 2: The computer or web browser used
by a HCPM employee to interact with the dokspot
service could be compromised by an attacker. There
are different attack vectors to achieve this, the most
common ones include malicious e-mail attachments,
drive-by downloads via compromised websites, and
infected media (often USB sticks).

• Attack points 3, 5, 7: An attacker that has access to
any of the communication channels can modify the
transmitted instructions at will. This is a communica-
tion security problem and there exist good standard
solutions to solve this problem by employing secure
communication protocols, typically Transport Layer
Security (TLS) [4]. Therefore, this attack point will
not be addressed further in the remainder of this paper.

• Attack point 4: The attacker could get illegitimate
access to the dokspot service, either by guessing or
stealing (e.g., with a social engineering attack) the
credentials of a HCPM employee or by directly com-
promising the service. While getting the credentials
of users can effectively be prevented using strong
authentication methods, it is much harder to make sure
that the service cannot be compromised by exploiting
a vulnerability. Putting a strong focus on secure soft-
ware development can significantly reduce the risk of
critical vulnerabilities, but today, there are no practical
methods that can guarantee a 100% vulnerability-
free service. The dokspot service primarily provides a
web application interface, where security is especially
hard to achieve: According to the Website Security
Statistics Report of WhiteHat Security [5], 86% of
several 10’000 analyzed websites contained at least
one highly critical vulnerability. Therefore, the secu-
rity architecture of dokspot should allow to guarantee
integrity of instructions even if the service is (partly)
compromised.

• Attack point 6: The storage service is another point
of attack. While renowned companies are most likely
taking great care with appropriate security measures,
it is nevertheless possible that instructions can be
manipulated while being stored in the storage service,
either be external or internal attackers. Therefore, the

57Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

dokspot service should be able to cope with such
attacks by making sure that modified instructions can
be detected.

• Attack point 8: Just like with attack point 2, the com-
puters, web browsers, or mobile devices used on the
side of the HCI could also be compromised. This al-
lows an attacker to exchange the requested instruction
with any instruction the attacker wishes. In contrast
to “standard” computers, mobile devices implement a
stronger security model and therefore, attacks against
mobile devices are much more difficult to execute
and therefore occur significantly less frequently [15].
Most malware incidents on mobile devices happen
because users install apps from untrusted sources.
However, such malware is then confined to the actual
app (due to the sandboxing model implemented by
mobile devices) and can neither affect the underlying
operating systems nor other apps (and also not the web
browser). As a result, the risk of powerful malware on
mobile devices that can affect the instruction that is
requested and viewed in the web browser is small.

To summarize, there exist well-established security mea-
sures to secure (and integrity-protect) communications chan-
nels in the Internet. Therefore, attack points 3, 5, and 7 are
marked with a green “solved mark” in Figure 3. In addition,
mobile devices provide good protection against powerful at-
tacks by design, so it is unlikely that they are compromised.
With respect to all other attack points, however, there are no
available standard solutions that could be applied.

III. SECURITY ARCHITECTURE

In this section, key components of the security architecture
of dokspot are described. First, a secure workflow to manage
online instructions is introduced. Next, the microservices-
based approach of dokspot is described, followed by a brief in-
troduction of the cloud infrastructure that is used by dokspot as
a basis. After that, the usage of digital signatures to integrity-
protect instructions during the entire lifecycle is explained
before the section is completed by describing some further,
more common security measures that are employed.

A. Secure Workflow to Publish Instructions
The goal of this workflow is to securely publish instruc-

tions and therefore make them publicly available to HCPs.
To mitigate risks originating from a rogue HCPM employee
(attack point 1), a compromised computer (attack point 2) or
illegitimate access to the dokspot service (attack point 4), a
workflow based on a segregation of duties (SoD) approach was
introduced. The main idea is to split the process of publishing
an instruction into several steps that are only executable by
different authorized HCPM employees. To do this, Role-Based
Access Control (RBAC) is used as the authorization mecha-
nism [6] and the workflow enforces that at least three different
roles must be involved in order to publish an instruction. As an
employee can typically only have one of the three roles, this
ensures that a minimum of three employees are required to
publish an instruction. As a result of this, a single employee
(and also two colluding employees) is never empowered to
execute the entire workflow and is therefore unable to publish
malicious instructions. Figure 4 illustrates the basic idea of
this workflow.

draft published

approved

HCPM
operator

HCP
staff

HCPM
reviewer

HCPM
manager

ap
pr
ov
e publish

upload download

unpublish

HCIHCPM

dokspot

Instruction
Workflow

Figure 4. Workflow to Publish Instructions

As can be seen in Figure 4, an HCPM employee that
has the role operator uploads an instruction to the dokspot
service. As a result, the newly introduced instruction gets
stored in state draft and needs to be approved by one or
more HCPM employees with the role reviewer. A successful
review process puts the instruction into the state approved.
It can now be published by the HCPM manager of the
corresponding healthcare product (corresponds to employees
with the role manager). This results in a change of the state
of the instruction to published, which means it is now publicly
available and can be downloaded and viewed by the HCPs via
the dokspot service.

This secure workflow prevents several attacks. For instance,
if a malicious employee with role operator uploads a malicious
instruction, this will most likely be detected by the employees
with role reviewer as it is their obligation to review the
content of the instructions for correctness. Likewise, it may
be that malware on the computer of the operator modifies
the instruction before it is uploaded, but just like in the first
case, this should be detected by the reviewers. Note also that
employees with roles reviewer and manager can only change
the state of an instruction, but not its content, so it is not
possible that one of them (or their computers, in case they are
compromised) can modify an instruction in a malicious way.

B. Microservices
As mentioned earlier, the central component of the dokspot

service is a web application. Nowadays, when developing
a modern web application, developers heavily rely on pre-
existing libraries. This includes frameworks that usually al-
ready consists of hundreds of thousands lines of code, plug-ins
that themselves depend on many other plug-ins, middleware
that helps to glue together all the pieces of a modern cloud-
based architecture, and more. Unfortunately, the more complex
a web application gets, the higher are the chances that one
of its components has a security flaw that can be exploited
by an attacker. That means that even if the developer of the
web application itself is able to produce secure code (which is
hard), there might still be some vulnerabilities lurking in the
numerous dependencies, over which the developer has little
control.

In addition, web applications often use monolithic archi-
tectures, which means there is usually one server (or multiple
in the case of load-balancing) that is capable of handling all
incoming requests. This implies that this server has to contain
all of the required software components (which includes, as

58Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

mentioned earlier, application, framework, plug-ins, middle-
ware, etc.) at some point and must have full access to all
data that is processed by the application. This leads to the
unfavorable situation that attackers have many potential points
of attack available to break into the system, and once they
succeed in doing so, they are typically able to access and
manipulate all data available to the web application.

To mitigate this risk, the dokspot service was split into
multiple sub- or microservices, which handle just specific parts
of the entire functionality. As a result of this, individual parts
of the application, especially parts that handle sensitive data
(e.g., login information), can be hardened against attacks, e.g.,
by blocking all requests outside their area of responsibility.
Also, such a microservice requires just a small subset of the
entire codebase and is therefore much harder to attack. Further-
more, the different microservices run on different servers with
restricted access to the storage subsystems. This implies that if
an attacker manages to get unauthorized access to one of the
microservices, their possibilities are limited by the boundaries
of the specific capabilities of the compromised service.

How to split up an application into microservices is de-
pendent on the actual application. In the case of the dokspot
service, this resulted in the microservices shown in Figure 5.

Upload
Service

File

Storage

Authen
tication
Service

Download
Service

Database

HCIHCPM
HCP
staff

HCPM
employees

Signing
Service

Approve
Service

Publish
Service

Figure 5. dokspot Microservices

Figure 5 shows the six microservices (in short service):
authentication, upload, approve, publish, download and signing
as well as the two storage types: database and file storage.
Instructions are stored in the file storage, whereas all other data
is stored in the database. The access privileges of the different
services to the database and the file storage are restricted to the
bare minimum, meaning that each service is only allowed to
access or modify information which is required by the service
in order to work as designed.

The authentication service is used to authenticate HCPM
employees during login and to handle other tasks related to
user management. The authentication service has exclusive
access permissions to security-relevant data in the database
such as the passwords of HCPM employees or their assigned
roles. This also means that solely the authentication service is
allowed to modify user accounts of HCPM employees and all
modifications, such as password changes or role assignments,
must happen via the authentication service. Naturally, due to
its access to highly critical data, the authentication service is
an attractive attack target, and therefore security was taken
very seriously during its development. This included, e.g.,

working out a detailed security design as its basis, performing
thorough code reviews and doing penetration tests. These are
usually quiet costly activities, but due to the microservices-
based architecture, they could be done in the context of a
component with limited complexity, which allows to carry
them out efficiently and which significantly increases the
probability that the outcome is secure.

The upload, approve and publish services provide the func-
tionality to perform the different steps during the workflow to
publish instructions (as illustrated in Figure 4). They are only
accessible by HCPM employees that have the corresponding
role and only after they have successfully authenticated at
the authentication service. This means the upload service is
only accessible by authenticated HCPM operators, for the
single purpose to upload instructions to dokspot. The upload
service has exclusive rights to store instructions in the file
storage and permissions to insert the corresponding metadata
into the database. Once uploaded, an instruction can neither
be modified nor deleted by the upload service or any other
service, because the file storage does not allow it. Therefore,
compromising any service does not allow an attacker to delete
instructions. The approve service is used by authenticated
HCPM reviewers and enables them to approve instructions
after reviewing them carefully. The publish service is used by
authenticated HCPM managers to make approved instructions
publicly available.

The advantage of having different services to upload,
approve and publish instructions becomes apparent under
attack. For instance, a compromised upload service enables
an attacker to upload malicious instructions with wrong or
harmful content, but due to the service architecture, it is not
possible to publish the instruction without compromising the
approve and publish services as well. The reason is that the
upload service lacks the capabilities and permissions on the
database to complete the review or publish steps. On the other
hand, if an attacker controls the publish service, it is still
not possible to make harmful instructions publicly available,
because the service is missing the upload functionality and
permissions. To summarize, it is required to compromise all
three services in order to publish an arbitrary instruction.

The download service is publicly accessible, without the
need to authenticate, and is primarily used by HCPs. Never-
theless, the download service is critical, because if an attacker
manages to compromise it, they can basically serve any
instructions they like to the HCPs. Therefore, just like the
authentication service, this service is also especially hardened
and tested. As the service contains only relatively little func-
tionality and only serves one single purpose, this was possible
with a reasonable amount of resources.

The signing service is an internal service, which means it
can only be accessed by some of the other services, but it
is not accessible (and also not visible) from the Internet. This
service is used to digitally sign instructions, which is explained
in detail in Section III-D. The reason why this service is
separated from the others and not publicly reachable is because
it contains sensitive private keys used for signing, which must
not fall into the hands of an attacker. If an attacker manages to
get access to this key material, then they can publish fraudulent
instructions, assuming they also get access to the database
and the file storage. As an internal service, this service is
considered difficult to compromise, because to start trying to

59Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

attack it, an attacker first has to successfully compromise any
of the other services. Or to put it differently: An attacker would
be required to deeply infiltrate the dokspot service in order to
reach the secrets to digitally sign instructions.

To summarize, the microservices-based architecture has
several security benefits. First of all, the complexity of each
service is much smaller compared to a monolithic approach,
which reduces the attack surface of each individual service and
which makes it easier to design, develop and configure them
in a secure way. In addition, it reduces the impact of an attack,
as in many cases, overall security is still maintained even if
an attacker manages to compromise one of the services. And
finally, it allows to hide services that provide functionality that
must not be made available to the users (and therefore also the
attackers), which further increases protection.

C. Infrastructure
More and more companies that provide Internet-based ser-

vices do this over infrastructure of commercial cloud platform
providers. As running an adequate data center usually is not
a core competency of most companies, renting computing
and network capacity is often the best option to meet the
requirements at a reasonable cost. However, this leads to
some loss of control over the service, which implies that it
is crucial to pick a reputable provider that can demonstrate its
trustworthiness, e.g., by possessing compliance certificates of
advisable standards. If this advice is followed, one typically
gets a higher level of security than by hosting the application
and all data in a self-owned but unprofessionally managed
infrastructure.

Dokspot is hosted on Amazon Web Services (AWS). The
microservices are running on Heroku, which itself is hosted
on AWS Elastic Compute Cloud (EC2). The database consists
of several PostgreSQL instances provided by Amazons Re-
lational Database Service (RDS). Every microservice has to
authenticate against the database with role-specific credentials
to restrict access to tables, columns and rows. This ensures that
each microservice can only read and alter the smallest possible
subset of data necessary for its role. The file storage is using an
Amazons Simple Storage Service (S3) Bucket. To provide fast
and reliable delivery CloudFlare is used as a Content Delivery
Network (CDN) and Domain Name System (DNS) provider
for all the microservices.

D. Digital Signatures
Usually, web applications guarantee the integrity of their

data by carefully crafting the business logic in a way that does
not allow for unwanted manipulation by the users. If there is
a need to trace the changes that happen to data (e.g., to get
an audit trail), some kind of logging mechanism is typically
implemented. Unfortunately, there are two major weaknesses
with this approach: a) One can never be sure that the code
that handles the business logic is free from errors, and b) an
administrator with sufficient access rights to the back-end of
the application can often alter data and logs in an untraceable
fashion. This weakens the guarantees one can make about the
integrity of the data, which in the case of dokspot would go
against one of the main goals. To mitigate the risks of such
manipulation, dokspot uses digital signatures to strengthen the
auditability of relevant actions. Based on this, unauthorized
modifications can easily be detected.

Every relevant action executed by a dokspot user (operator,
reviewer or manager) is digitally signed with a user-specific
signing key. This is done with public key cryptography using
RSA [7], but more modern signature schemes with smaller
signature and key sizes, e.g., ECDSA [8] or ED25519 [9],
could be used as well. The signed data covers metadata such
as the user-id, the executed action, the digest of an uploaded
instruction, etc. To make strong claims about the expressive-
ness of such signatures, it is absolutely crucial that only the
dokspot users themselves have access to their own private key.
In particular, this implies that even a service administrator or an
attacker gaining access to one of the application servers cannot
access the private keys of the users, as this would enable them
to produce valid digital signatures in the users’ names.

To achieve this, the private key of a user is stored in
encrypted form in the database and this encryption uses a
secret key that is derived from a user-chosen password. The
dokspot service never sees this password and the private key
is only decrypted and used to create signatures in-memory on
the client-side (i.e., within the browser). Figure 6 illustrates
how the key pair of a user is initially created.

:dokspot

okay

Key Pair Creation

create key pair

Public Key
Private Key

derive encryption key
(Password)

Derived Key

Enc. Private Key

Public Key ,
Enc. Private Key create certificate

(Public Key)

Certificate

Certificate ,
Enc. Private Key

dokspot Database

1

2

3

encrypt private key
(Derived Key ,
Private Key)

HCPM employee

Figure 6. Key Pair Creation Sequence Diagram

In the first step (see Figure 6 (1)), after the first successful
login, the user creates its own public/private key pair in the
browser (using JavaScript code). Next (see Figure 6 (2)), they
choose a dedicated password to protect the private key. To
make brute forcing the password much more complicated
in case an attacker gets access to an encrypted private key
of a user, the Password-Based Key Derivation Function 2
(PBKDF2) [10] is utilized to derive a secret key based on
the password. This secret key is then used to encrypt the
private key. Once this has been done, the browser uploads
the encrypted private key and the corresponding public key to
dokspot (see Figure 6 (3)). Based on the received public key,
the dokspot service then creates an X.509 certificate [11] and
as a result of this, the key pair is now certified and can be used
for signing and for verification of corresponding signatures in
the context of the dokspot service. Finally, both the certificate
and the encrypted private key are stored in the database.

60Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

Once this has been completed, the user can create signa-
tures, e.g., to sign instructions during the upload step. This
process is illustrated in Figure 7.

create digest & meta
data (Instruction)

Metadata incl. Digest #

decrypt Key(Password,
Private Key)

Private Key

Uploading

sign (Metadata #
Private Key)

Signature

Encrypted Private Key

Metadata #, Signature

dokspot Database

request upload view

Enc. Private Key

Instruction , Meta
data #, Signature

verify (Instruction ,
Metadata #, Certifi
cate , Signature)

File

Storage
okay

1

2

3

Instruction

4

fetch certificate
(Username)

Certificate

HCPM operator

Figure 7. Instruction Uploading Sequence Diagram

To upload an instruction, the user first navigates to the
corresponding view of the dokspot service by using their
web browser. Before sending the web page to the browser,
the dokspot service fetches the user’s encrypted private key
from the database and embeds it into the page (see Figure 7
(1)). Next, the user picks the instruction they want to upload
and enters the associated metadata (title, language, etc.) (see
Figure 7 (2)). In the background, a JavaScript function starts
calculating the digest for the chosen instruction, using a cryp-
tographic hash function. Once the user has finished entering
the metadata, they start the signing process (see Figure 7 (3))
by clicking a button. The user is asked to enter the password
that was used to protect their signing key and if the password
is correct, the private key is decrypted. A JavaScript routine
then adds a timestamp and the digest to the metadata and signs
the resulting metadata with the private key.

Next, the instruction, the metadata, and the signature are
sent to the dokspot service (see Figure 7 (4)). Upon receiving
the data, the service fetches the certificate of the current user
from the database and uses the public key in the certificate to
verify the signature. If it is correct, it stores the instruction in
the file storage and the metadata including the signature in the
database. As a result of this, the signature now seals both the
instruction and the metadata. If an attacker manages to alter
just a single bit in this instruction later during the lifecycle
of the instruction, this can easily be detected as verifying the
signature will fail.

When a user with the appropriate role changes the state
of an instruction (e.g., from draft to approved, see Figure 4)
then this action also results in creating a digital signature.

Technically, this works similar as as in Figure 7, meaning
that the user navigates to the corresponding view, which again
includes the user’s encrypted private key. As soon as the user
wants to initiate the state change (e.g., after they have checked
the instruction and made sure it can be approved), they click
a button, which triggers the change of the state: In a first
step, further metadata is produced, which includes the specific
action to be performed (e.g., the approval of the instruction)
and a timestamp. Next, the digest of the instruction is included
in the metadata and the resulting metadata is signed with the
user’s private key (which, just like earlier, requires the user to
enter their password). All of this is then sent to the dokspot
service, which checks if the user is allowed to execute the
specified action and which checks the validity of the signature.
If all of the requirements are satisfied, the received metadata
is stored in the database and the state of the instruction is
updated in the database.

To further enhance the auditability, the dokspot service
adds its own signatures to important actions. So when the
service receives an uploaded instruction or a state change, a
second signature, which acknowledges the reception, is created
and saved along with the metadata and the signature of the user.
This additional signature serves as a proof that the dokspot
service verified the user’s signature of the action and that is
has been declared valid.

When a HCP wants to access an instruction, they have to
navigate to the appropriate view, which shows the published
instructions for a specific product. After the user picks the
instruction they want to read, the dokspot service collects all
the signed metadata attributed to this instruction. The service
then checks if all the necessary signatures are available and
valid, i.e., it is checked whether the instruction contains valid
signatures to verify it was uploaded, it was approved, it was
published and so on. To do these checks, the service freshly
calculates the digest of the requested instruction and cross-
checks it with the digest specified in the signed metadata. If
any of the checks fail, the instruction will not be delivered to
the HCP as this is an indication of an attack.

E. Passwordless Signatures
So far, it is assumed the users use a dedicated password to

protect their private key. This mitigates a range of attacks, as
this password will never be sent across the network. However,
it requires that the user has to remember a second password (in
addition to the login password). Also, they have to enter the
password that protects the private key every time a signature
should be created. While this is the most secure configuration,
it is also somewhat inconvenient. For this reason, a password-
less signing process was developed, which lets a user trade
some of the security for a more convenient experience of the
dokspot service.

With passwordless signing, the login password is used
to encrypt the private key. After the user has entered this
password during login (which they have to do anyway when
using dokspot), the password is temporarily stored so it can be
used to automatically decrypt the private key at a later point.
Storing the password in plain text on the client side would
not be ideal from a security perspective as it may provide
an attacker that somehow gets access to the system with an
opportunity to extract this password. Therefore, the password
is protected with the approach illustrated in Figure 8.

61Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

Password Key ,
Username, Password

encrypt password
(Password Key)

Encrypted Password

:dokspot

Passwordless

request login form

Local
Storage

Enc. Password

Sess
ion okay

dokspot

authenticate
(Username,
Password)

1

2
Password Key

HCPM employee

Figure 8. Passwordless Signing Sequence Diagram

When the user opens the login page, a JavaScript function
in the background choses a sufficiently large symmetric key
at random, identified as the password key (see Figure 8 (1)).
This password key is stored in a hidden field in the login form.
When the user sends the login form with the password key
to the dokspot service, a JavaScript function in the browser
encrypts the entered password with the password key and
stores the encrypted password in the browsers local storage. If
the authentication is successful, the service stores the received
password key in the session of the user (see Figure 8 (2)).
This means that once the login is done, both sides hold just one
piece of the information needed to decrypt the user’s password.
The client needs the password key from the service to decrypt
the locally stored encrypted password and the service would
need the encrypted password to do the same. That means if an
attacker gains access to only the client (or only the service),
they will not be able to retrieve the password.

Note that during a login procedure with a simple POST
request, the user’s password must be exposed to the dokspot
service. This implies that theoretically, the service could try
to decrypt the user’s private key at that point. This can be
prevented by using a more secure login scheme, utilizing, e.g.,
the Secure Remote Password (SRP) Protocol [12].

The process of creating a passwordless signature is essen-
tially the same as described earlier in Figure 7. This time,
however, the user does not only get the encrypted private key
from the dokspot service, but additionally also the symmetric
password key. Next, a JavaScript function in the browser will
use the password key to decrypt the encrypted password that is
stored in the local storage. And finally, the decrypted password
can be used to decrypt the private key, which can then be used
to create digital signatures.

The confidentiality of the user’s password is not affected
by this signing scheme. Independent of entering the password
manually or recovering it via JavaScript, the password is
accessible in the JavaScript runtime environment during the
signing process either way.

F. Common Security Measures
Besides the very specific and innovative security measures

described earlier, the dokspot service also employs several
state-of-the-art security measures, some of which are briefly
summarized in this paragraph. First of all, the dokspot service
can only be reached using HTTP over TLS (HTTPS). This
provides an encrypted and integrity-protected communication
channel. An HTTP Strict Transport Security (HSTS) policy is
in place and preloaded, to further increase the difficulty of an
attack against the connection. The service uses secure cookies
(encrypted and signed), a Content Security Policy (CSP) and
cross-site scripting protection to reduce the risk of a break-
in. The DNS entries of the dokspot domain are protected by
DNSSEC [13] and DNS Certification Authority Authorization
(CAA) to make it difficult for an attacker to reroute users
to a fake service. The login, located on the authentication
service, can be secured using two-factor authentication. This
mitigates the risks of a stolen, lost or phished password.
In addition, some HCPM employees (e.g., the manager of
an entire product family), can be notified if a suspicious or
important events, such as publishing an instruction to the
public, takes place. This allows to quickly react in case of
a potential security breach. Finally, to verify the high level of
security, the dokspot service has been tested for vulnerabilities
by security professionals.

IV. EVALUATION

Coming back to the threat model in Section II-C, we can
see that the risks in the context of the identified attack points
could be mitigated, except for attack point 8.

If, due to attack points 1 or 2, a non-genuine instruction
gets uploaded onto the dokspot service, this cannot be detected
automatically because the platform itself is oblivious of the
content of uploaded instructions. The workflow, however,
enforces an instruction to be reviewed by multiple parties
before it can be published to the public audience. Assuming
that at least one of the involved parties performs their part of
the process diligently, a forged instruction will never be made
accessible to the HCPs.

To mitigate the risk of a break-in into one of the servers, as
mentioned in attack point 4, the service is split into multiple
microservices and all relevant actions are digitally signed. The
microservices that handle the processes of uploading, approv-
ing and publishing instructions are the ones with the widest
range of functionality. They are therefore the most probable
candidates to contain vulnerabilities that can be abused to gain
illegitimate access to the dokspot service. However, an attacker
with access to any subset of these exposed microservices
will not be able to produce the full valid set of signatures
required for an instruction in state published. As the download
service checks the full set of signatures before an instruction
is delivered to an HCP, it will not be possible for an attacker
to provide manipulated instructions through dokspot.

An exposed point in this scenario is the download mi-
croservice. An attacker controlling this component can deliver
whatever instructions they wish to HCPs because it allows the
attacker to bypass any form of signature validation. But as the
download microservice just offers a single and very simple
functionality, it is relatively easy to harden this service to a
point where a successful break-in is very unlikely.

62Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

In attack point 6, a breach of the storage system is assumed.
As Amazon RDS and S3 are used for storage, we will not
discuss how an attacker might achieve this and focus on the
consequences. The signed metadata described in Section III-D
holds, among other information, the digest of the correspond-
ing instruction. Dokspot regularly verifies that the digest of the
instructions matches the digests that are stored as part of the
signed metadata. This means that if any instruction – even a
single letter – were modified for whatever reason, this would
be detected during such a check. Also, as mentioned earlier,
the full set of signatures is checked whenever an instruction
is requested by an HCP, where any manipulation would be
detected as well. To summarize, this means that any kind
of breach of the storage system cannot result in delivering
a manipulated instruction to the HCPs.

Unfortunately, attack point 8 remains an open problem.
Assuming the attacker has control over the device used by an
HCP to download an instruction, there is nothing the dokspot
service can do to prevent the attacker from displaying whatever
instruction they wish. Therefore, preventing such attacks is
currently out of scope for dokspot and it is the responsibility
of the HCI to make sure its IT infrastructure is malware-free.

V. RELATED WORK

Microservices recently became popular as a service archi-
tecture in the web environment [14] and provide, compared
to a monolithic approach, benefits, such as scalability, cost
reduction and improved performance [15]. While some pa-
pers discuss the security challenges of microservices, such
as authentication or communication between services [16], as
well as auditability or inter-service trust [17], they do not
highlight the security benefits. Therefore, using microservices
to increase application security – as done with the dokspot
service – appears to be a novel approach.

The idea of using digital signatures to safeguard business
workflows has been covered in multiple papers since 1999
(e.g., [18], [19]). However, previous works do not cover
the particular characteristics that must be considered when
using signatures in modern web applications or role-based
microservices. In the domain of user signatures, Halpin wrote
a critical acclaim of the W3C web cryptography API (and
browser-based cryptography in general) [20], which highlights
some limitations that come with the fact that the web server
is mostly in control over the executed JavaScript code. To
address this, our approach with SoD for HCPM employees
and microservices makes it very difficult for an attacker to
gain control over the necessary key material to create a valid
set of signatures.

VI. CONCLUSION

In this paper, we presented dokspot, which is an Internet-
based service to securely link physical products with online
instructions. To achieve this, dokspot is based on a sophisti-
cated security architecture that combines several approaches.
We have shown that with the help of a well-tailored work-
flow, strong claims can be made about the genuineness of
instructions managed by the dokspot service. By utilizing
digital signatures on multiple layers, the compliance of the
workflow can be proven cryptographically and the integrity of
instructions can be guaranteed. By appropriately splitting the
service into microservices, the dokspot service gets hardened

as a whole. Due to restrictions with respect to the access
permissions of the microservices and the use of digital sig-
natures, the possibilities for an attacker are greatly restrained,
even in the case of a successful partial break-in. Finally,
we introduced a passwordless signature scheme, which leads
to a more convenient user experience when creating digital
signatures without significantly reducing security. Overall, the
presented security architecture makes dokspot highly resistant
to a wide range of attacks.

ACKNOWLEDGEMENT

This work was partly funded by the Swiss Confederation’s
innovation promotion agency CTI (project 18990.1 PFES-ES).

REFERENCES

[1] MHRA, “GXP Data Integrity Guidance and Definitions,” MHRA,
Revision 1, Mar. 2018.

[2] OWASP, “OWASP Guide Project,” 2014. [Online]. Available: https:
//www.owasp.org/index.php/OWASP Guide Project 2018.08.08.

[3] D. M. Upton and S. Creese, “The Danger from Within.” Harvard
business review, vol. 92, no. 9, pp. 94–101, 2014.

[4] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” Internet Requests for Comments, RFC Editor,
RFC 5246, Aug. 2008. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc5246.txt 2018.08.08.

[5] WhiteHat Security, “Website Security Statistics Report,” May 2013.
[Online]. Available: https://www.whitehatsec.com/wp-content/uploads/
2013/05/WPstatsReport 052013.pdf 2018.08.08.

[6] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
Based Access Control Models,” Computer, vol. 29, no. 2, pp. 38–47,
Feb. 1996.

[7] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS #1:
RSA Cryptography Specifications Version 2.2,” Internet Requests for
Comments, RFC Editor, RFC 8017, Nov. 2016. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8017.txt 2018.08.08.

[8] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital
Signature Algorithm (ECDSA),” International Journal of Information
Security, vol. 1, no. 1, pp. 36–63, 2001.

[9] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
Speed High-Security Signatures,” JCEN, vol. 2, no. 2, pp. 77–89, 2012.

[10] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification
Version 2.0,” Internet Requests for Comments, RFC Editor, RFC
2898, Sep. 2000. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc2898.txt 2018.08.08.

[11] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” Internet Requests for
Comments, RFC Editor, RFC 5280, May 2008. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5280.txt 2018.08.08.

[12] T. D. Wu, “The Secure Remote Password Protocol.” in NDSS, vol. 98,
San Diego, CA, USA, Mar. 1998, pp. 97–111.

[13] M. Larson, D. Massey, S. Rose, R. Arends, and R. Austein,
“DNS Security Introduction and Requirements,” Internet Requests for
Comments, RFC Editor, RFC 4022, Mar. 2005. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4033.txt 2018.08.08.

[14] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116,
Jan. 2015.

[15] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca,
R. Casallas, and S. Gil, “Evaluating the Monolithic and the Microservice
Architecture Pattern to Deploy Web Applications in the Cloud,” in 2015
10th Computing Colombian Conference (10CCC), Sep. 2015, pp. 583–
590.

[16] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Mapping Study in
Microservice Architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), Nov. 2016,
pp. 44–51.

63Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

[17] Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-Service for
Microservices-Based Cloud Applications,” in 2015 IEEE 7th Inter-
national Conference on Cloud Computing Technology and Science
(CloudCom), Nov. 2015, pp. 50–57.

[18] K. R. P. H. Leung and L. C. K. Hui, “Signature Management in
Workflow Systems,” in 23rd International Computer Software and
Applications Conference. Washington, DC, USA: IEEE Computer
Society, Oct. 1999, pp. 424–429.

[19] H. W. Lim, F. Kerschbaum, and H. Wang, “Workflow Signatures
for Business Process Compliance,” IEEE Trans. Dependable Secur.
Comput., vol. 9, no. 5, pp. 756–769, Sep. 2012.

[20] H. Halpin, “The W3C Web Cryptography API: Motivation and
Overview,” in Proceedings of the 23rd International Conference on
World Wide Web. Seoul, Korea: ACM, 2014, pp. 959–964.

64Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

