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Abstract 

Introduction 

Pain intensity attenuates muscular activity, proprioception, and tactile acuity, with consequent 

changes of joint kinematics. People suffering from low back pain (LBP) frequently show movement 

control impairments of the lumbar spine in sagittal plane. This cross-sectional, observational study 

investigated if the intensity of LBP attenuates lumbar movement control. The hypothesis was that 

lumbar movement control becomes more limited with increased pain intensity. 

Methods 

The effect of LBP intensity, measured with a numeric rating scale (NRS), on lumbar movement 

control was tested using three movement control tests. The lumbar range of motion (ROM), the ratio 

of lumbar and hip ROM as indicators of direction specific movement control, and the recurrence and 

determinism of repetitive lumbar movement patterns were assessed in ninety-four persons suffering 

from LBP of different intensity and measured with an inertial measurement unit system. Generalized 

linear models were fitted for each outcome. 

Results 

Lumbar ROM (+0.03°, p=0.24) and ratio of lumbar and hip ROM (0.01, p=0.84) were unaffected by 

LBP intensity. Each one point increase on the NRS resulted in a decrease of recurrence and 

determinism of lumbar movement patterns (-3.11 to -0.06, p≤0.05). 

Discussion 
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Our results indicate changes in movement control in people suffering from LBP. Whether decreased 

recurrence and determinism of lumbar movement patterns are intensifiers of LBP intensity or a 

consequence thereof should be addressed in a future prospective study. 

Keywords: Low back pain; Movement Disorders; Biomechanical Phenomena; Recurrence 

Quantification Analysis 

1. Introduction 
Low back pain (LBP) is a common disorder with a lifetime prevalence as high as 84%, and a high 

probability of recurrence (Airaksinen et al.,2006). In many cases the cause of pain is never fully 

resolved (Hoy et al.,2010). LBP causes functional impairment in everyday life for a large proportion of 

the population and thus imposes large demands on healthcare and social systems (Dunn and 

Croft,2004). Contemporary LBP classification systems propose that there is a large group of patients 

who present with movement control impairments (MCI), which are a relevant and provocative factor 

for ongoing pain (O’Sullivan,2005). Typically 50% of patients with a MCI demonstrate changes in the 

sagittal plane (Vibe Fersum et al.,2009). These impairments may be the consequence of decreased 

tactile acuity (Luomajoki and Moseley,2011), decreased ability to modulate task specific 

proprioceptive feedback (Claeys et al.,2011) or altered muscle recruitment patterns (Humphrey et 

al.,2005). 

Tests of direction specific movement control (DSMC) assess the ability of a person to stabilize the 

lumbar spine during active movement of the hip and or knee. They are based on visual observation 

and use a dichotomous rating, have substantial reliability, and have been shown to differentiate 

between asymptomatic persons and patients with LBP (Luomajoki et al.,2007, Luomajoki et al.,2008). 

However, objective, quantitative data on the severity of MCI assessed by DSMC tests in people 

suffering from LBP are currently lacking. Repetitive movements (RM) can demonstrate changes in 

lumbar spine kinematics which are not observed when analysing purely the range of motion or 

magnitude of MCI (Lamoth et al.,2006, Silfies et al.,2009). Less variable movement patterns of 

lumbar spine were observed in persons with chronic LBP when they repetitively picked up a box 

(Dideriksen et al.,2014) or performed repeated trunk movements (Asgari et.al.,2015). Persons with 

chronic LBP also demonstrated less variable recruitment patterns of lumbar erector muscles during 

lifting tasks (Falla et al., 2014).  

The effect of LBP on lumbar movement may be more pronounced in higher order kinematics  (Aluko 

et al.,2013, Bourigua et al.,2014, Marras et al.,1993, Marras et al.,1995). Participants with chronic 

LBP showed smaller lumbar angular velocity and acceleration during a repeated trunk flexion-

extension task, compared to pain free participants. These group differences were less pronounced 

when analysing purely their angular displacement (Marras et al.,1995). Increased lumbar angular 
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velocity and acceleration during lifting tasks had a greater odds ratio for future low back pain 

episodes when compared to changes in angular displacement (Marras et al.,1993). Chronic LBP 

patients showed lower angular velocity during trunk flexion at self-selected and fast movement 

speeds (Bourigua et al,.2014). Lumbar acceleration increased after a six weeks exercise intervention 

that reduced LBP intensity (Aluko et al,.2013).   

Previous cross-sectional studies often do not report the relationship between LBP intensity and MCI, 

and do not consider that pain differently attenuates motor planning and diminishes proprioception, 

and that tactile acuity depends up on its intensity (Catley et al.,2014, Matre et al.,2002, Ervilha et 

al.,2004). The purpose of this study is to investigate the effect of LBP intensity on MCI using two 

DSMC tests, and one RM test. The emphasis is on reduced control of active movement (Luomajoki et 

al.,2008, O’Sullivan,2005) and on repetitive task movement control (Dideriksen et al.,2014). It is 

hypothesised that lumbar movement control deteriorates with increased LBP intensity. 

Anthropometric factors such as age, gender, or body mass index (BMI) influence lumbar kinematics 

(Consmuller et al.,2012). Persons engaging in heavy manual labour have a higher risk of developing 

LBP (Hoozemans et al.,2002). These factors should be controlled for when investigating the 

relationship between lumbar kinematics and LBP.   

2. Methods 

2.1 Design 
Cross-sectional, observational study 

2.2 Participants 
Sixty-three participants with sub-acute or chronic LBP and 31 asymptomatic participants, aged 

between 18-65 years were recruited from physiotherapy practice, the university campus and through 

newspaper advertisements. Participants with LBP were included if their current episode of LBP 

persisted for four weeks or longer, and if they reported at least moderate disability, defined as an 

Oswestry-disability-index (ODI) >8% and a low level of psychosocial risk factors defined with less than 

four points on the subscale of the STarT Back screening tool (Mannion et al.,2006). Exclusion criteria 

were specific LBP, vertigo or disturbance of the equilibrium, systemic diseases (diabetes, tumours), 

pain in other areas of the body (neck, head, thoracic spine, or arms), complaints, injury, or surgery of 

the legs (hips to feet) within the last six months, medication affecting postural control (e.g. anti-

depressants) and pregnancy. The exclusion criteria for asymptomatic participants were the same as 

for the LBP participants, and additionally no current LBP episodes or episodes during the preceding 

three months. The study was conducted according to the declaration of Helsinki, and approved by 
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the local ethics committee (KEK-ZH-2011-0522). Participants provided their written informed 

consent. 

2.3 Movement Analysis 

2.3.1 Sensor placement and data processing 
Trunk movements were measured by an inertial measurement unit (IMU) system, with multiple IMUs 

placed above the right thigh, sacrum and at the level of L1, (Ernst et al.,2013, Schelldorfer et al.,2015) 

(Figure 1). The IMU system has been shown to provide concurrently valid estimates of spinal 

kinematics (Bauer et al.,2015).  

The sensors of the IMU system (ValedoMotion, Hocoma AG, Volketswil, Switzerland) include a tri-

axial gyroscope, magnetometer, and accelerometer. Movement data were recorded with a sampling 

frequency of 200 Hz (Valedo®Research, Hocoma AG). The raw data from the IMUs were transformed 

into quaternions to prevent rotational singularities (Madgwick et al.,2010) . Segmental kinematics 

were calculated using the tilt/twist formulation (Crawford et al.,1999) with sagittal and frontal planes 

defined by the global coordinate system. All outcome variables were derived from the 

flexion/extension angle, where flexion is positive and extension is negative. An angle of zero degrees 

is defined as alignment of two IMUs. A second-order zero-phase low-pass Butterworth filter (1Hz cut-

off frequency) was applied on the angular displacement data since angular velocity and acceleration 

required smoothing to obtain interpretable estimates. Angular velocity and acceleration were 

calculated using the first and second derivative of the filtered angular displacement data. A complete 

description of the data processing from raw data to tilt/twist angles is described elsewhere (Bauer et 

al.,2015).  

2.3.2 Movement Tests 
Participants attended one measurement session and performed two DSMC tests: “Sitting Knee 

Extension”, and “Waiters Bow”; and one RM test: “Pick Up a Box”(Figure 2) (Bauer et al.,2015). Prior 

to each test the participants received standardized oral instructions by one of the examiners and 

visual instructions in a video. In case of poor initial performance these instructions were repeated up 

to three times and the test was demonstrated by one examiner. If the participant was still 

performing the test incorrectly it was omitted.  

During “Sitting Knee Extension” the participants sat upright and were asked to stabilize their lumbar 

spine whilst extending their right knee. They were instructed to stop extending their knee before 

they perceived movement of their lumbar spine, without giving a target range for knee extension or 

target duration for the test. In “Waiters Bow” they were instructed to stand upright and then flex 

their hips as far as possible whilst keeping their lumbar spine stable. They were instructed to stop 
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flexing their hips before they perceived movement of their lumbar spine, without giving a target 

range for hip flexion or target duration for the test. The participants were allowed to perform the 

DSMC tests at their own preferred speed.  

The “Pick Up a Box” test consisted of ten cycles, of four seconds duration, starting in upright 

standing. During each cycle the participants were asked to pick up the box from the ground and put it 

back down again. They were guided with a metronome set at 60bpm. The box was loaded to ten 

percent of their body weight and placed at a standardized distance in front of the participants. 

The order of the tests was randomized between participants. The DSMC tests were repeated three 

times and the participants were allowed to choose their rest time between repetitions, whereas the 

RM test was performed one time.  

2.3.3 Outcomes 
For “Sitting Knee Extension” the range of motion at the lumbar spine        was calculated 

between the sacrum and L1 sensors. For “Waiters Bow” the ratio between the range of motion of the 

lumbar spine and the hip was calculated and is later denoted with 
  

   
   . For both outcomes, the 

mean of the three repetitions was used for further analysis. For the “Pick Up a Box” test recurrence 

quantification analysis was performed on the angular displacement, velocity, and acceleration data. 

This method has been described previously and is only briefly summarized here (Webber and 

Zbilut,1994). In recurrence quantification analysis, movement data are projected into a phase space 

by taking time-delayed samples from the movement data. The time-delayed samples represent 

movement patterns which can be visualized as points in the phase-space plot. Similar movement 

patterns are located close to each other, and form a cluster of recurrent points (Ri,j). In this study, the 

phase-space reconstruction was undertaken separately for angular displacement, velocity, and 

acceleration data by using the set of parameters specified in Table 1. All Ri,j:s were subsequently 

transferred into a NxN-sized recurrence plot (RP) with N being the number of measurement points. 

Two measures were then calculated: the recurrence rate (REC) and the determinism (DET). REC is a 

measure of the density of the recurrent points in the RP. It measures the probability of recurrence of 

movement patterns and is expressed as:  

    
 

  
     

 

     

     

DET is the amount of Ri,j that form diagonal lines (i.e. are sequential to each other in time) of a 

prespecified minimal length (lmin) given in Table 1. The DET is a measure of the stochasticity of the 

movement data and expressed as:  
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with l being the length of the diagonal lines, lmax the maximal possible length of the diagonal lines, 

and P(l) being the number of diagonal lines of length l. All data processing and calculations were 

done using Matlab 2012b® (Mathworks, USA), with code from University of Potsdam, Germany 

(Marwan and Kurths,2002). REC and DET were calculated for angular displacement (REC AD and DET 

AD), velocity (REC AV and DET AV), and acceleration (REC AA and DET AA). In a previous study the 

reliability of all outcomes, using the current test setup, was found to be high (Bauer et al.,2015). 

2.4 Covariates 
For each of the participants, LBP intensity, age, gender, BMI, and the amount of physical stress at 

work (PS) were recorded. All participants rated their LBP intensity, defined as the mean level of LBP 

pain during the past four weeks, using a 11 point numerical rating scale (NRS) anchored with “no 

pain” (0) through to “the worst possible pain imaginable” (10). Following this the participants were 

allocated into eight groups, according to their perceived LBP intensity (0-7). PS was measured with a 

five point Likert scale; ranging from “almost no physical stress” (1) to “maximal physical stress” (5) 

(Galati-Petrecca,2008).  

2.5 Statistical Analysis 
For each outcome a linear model was fitted to the data with LBP intensity as the covariate of interest. 

In a first model, we adjusted for gender, age, BMI, PS and all the two-way interactions between these 

covariates with LBP intensity. A stepwise model selection procedure with backwards optimisation by 

the Akaike-Information-criterion was used to determine the final model. The aim of this procedure 

was to choose a parsimonious model in order to prevent overfitting of the data. This procedure 

ensured that the model is optimized for prediction, that is, for future data.  

Therefore the model for each observation of the outcome     was  

                                                                   

                          

with    representing the intercept,    the effect of the k-covariate and    the independent and 

normal distributed errors              

Residual analysis was performed to check the models assumptions. Therefore the log-transformed 

ratio 
  

   
    was modelled since the residuals did not have a normal distribution. Point and interval 

estimations were performed for each covariate. The alpha-level was set at 0.05. Statistical analysis 

was done using R (R Foundation for statistical computing, Austria). 
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3. Results 
Sixty three persons with LBP and thirty one pain-free persons were included. The distribution of LBP 

intensity and the descriptive data of the covariates and outcomes are shown in Table 2. Figure 3 

depicts the DSMC and RM angular displacement, velocity, and acceleration trajectories of one 

representative participant with high movement control and one participant with low movement 

control. The parameter estimates for the final model for each outcome are shown in Table 3. 

Depending upon the presence of interaction terms, the observed effect of a one point increase of 

LBP intensity (  ) can be a function of age, BMI and gender, but not of PS (Table 3). 

Sitting Knee Extension: 
   for        was 

                                  

with 1 being the indicator function, indicating a 0.3° increase in males, but a -0.2° decrease in 

females. This means that LBP intensity had no significant effect on       . 

Waiters Bow: 

   for 
  

   
    was  

    
   

    
                        

This indicates a 0.1 increase for females on the log scale and no changes for males. This means that 

LBP intensity had no significant effect on 
  

   
   . 

Pick Up a Box: 
   for REC AD and DET AD were 

              

                

Due to the absence of interactions, these effects were independent of age, BMI and gender. This 

means that        significantly decreased with increasing LBP intensity (p=0.01). 

    for REC AV and DET AV were 

               

                         

          was independent of age, gender or BMI.           was dependent on BMI. For example, the 

effect of a one point increase in LBP intensity for a person with a BMI of 19.0 is -1.02 while for a 
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person with a BMI of 23 is -0.58. The main effect of LBP were statistically significant (p=0.03 and 

p=0.05) while the interaction of LBP with BMI was not. 

   for REC AA was 

                                            

and thus a function of age and gender. For example, the effect of a one point increase in LBP 

intensity for a 20 year old female is -0.29; while for a 50 year old female it is 0.61. The main effect of 

LBP and the interaction of LBP with gender were statistically significant (p=0.03 and p=0.02), while 

the interaction of LBP with age was not. This means that REC AA either increased or decreased with 

increasing LBP intensity, depending on the age of the participant. 

   for DET AA was 

                

This means that        significantly decreased with increasing LBP intensity (p=0.05). 

In summary the results show a statistically significant effect of LBP intensity on REC and DET. REC AV 

and DET decrease with increasing LBP intensity whilst REC AA either increases or decreases, 

depending on the age of the participant. 

Discussion 
This study examined if the intensity of LBP affects movement control of the lumbar spine during two 

DSMC tests and one RM test. LBP intensity had no effect on DSMC, which is unexpected since 

previous research demonstrated reduced DSMC in patients with LBP (Luomajoki et al.,2008) . This 

can be explained by methodological differences regarding the group allocation, study population, 

and measurement systems. In our study, participants were allocated into eight groups according to 

their LBP intensity, while Luomajoki and colleagues (2008) summarized chronic LBP patients with 

varying degrees of pain intensity into one group, which hampers comparability between the results. 

Dichotomization of the participants might have increased the contrast between the two groups. 

However, using a quantitative approach leads to a more detailed insight into the relation between 

MCI and LBP.  

Observed group differences might be further increased by the selection of the study subjects. 

Luomajoki and colleagues (2008) recruited LBP patients that were referred from physicians and 

treated by physiotherapists. Conversely, not all participants with LBP recruited for the present study 

perceived their condition serious enough to seek treatment, indicating a lower burden of disease, 

with less impairment due to LBP. Luomajoki and colleagues (2008) used a dichotomous rating of 
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movement control by observation of lumbar spine flexion, while in the present study an IMU system 

was used and movement control was measured continuously.  

These findings raise the possibility that i) a relation between severity of DSMC impairment and LBP 

intensity exists, ii) DSMC is a clinically relevant feature, but iii) DSMC impairment becomes clinically 

relevant only after it exceeds a certain magnitude or cut-off point. It is possible that only a smaller 

subgroup of patients with LBP show a DSMC impairment that manifests in “Waiters Bow” and 

“Sitting Knee Extension”. The link between performance in DSMC tests and LBP intensity is based 

upon investigations of tactile acuity tests (Cately et al.,2014, Luomajoki and Mosely 2011). However 

our results do not validate this link.  

Recurrence and determinism of lumbar movement patterns were significantly affected by LBP 

intensity. More variable lumbar movement patterns, indicated by reduced recurrence and 

determinism, were found with increasing levels of LBP and this effect was more pronounced in 

angular velocity and acceleration data. Silfies et al. (Silfies et al.,2009) found that the variability of 

lumbar movement during a repetitive reaching task was increased in LBP patients, when compared 

to those without pain indicating impaired movement control (Silfies et al.,2009). Lamoth and 

colleagues (2006) revealed that lumbar angular velocity patterns during gait were more variable in 

LBP patients, compared to no pain, and found these changes to be related to poor coordination of 

lumbar erector spinae muscles (Lamoth et al.,2006). These findings are in line with the results of the 

present study, although both studies used a different methodology, regarding task and calculation of 

variability of lumbar movement.  

Falla and colleagues (2014) examined lumbar muscular activation patterns during a RM test and 

found less variability in LBP. To maintain constant movement patterns during repetitive activities an 

adaptive muscular activation is necessary, leading to a greater variability of muscular activity and less 

variability of movement patterns. Thus, stereotyped movement may be accompanied by variable 

electromyography patterns, while this may be reversed in painful conditions such as LBP (Falla et 

al.,2014).  

Contrary to our findings one study reported less variability using a similar RM test (Dideriksen et 

al.,2014). Differences in the data processing may explain this contradiction, as Dideriksen and 

colleagues used a notch filter to smooth out the frequencies related to the RM, without affecting 

other frequency components. In this way only the deviation from the target movement was 

investigated (Dideriksen et al.,2014), while the present study investigated the target movement. 

Participants in the present study were asked to perform the repetitive movement with a 

predetermined, fast speed, possibly overriding any protective feedforward strategy of movement 
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control. This contrasts findings from two studies (Arzi et al.,2014, Uri et al.,2015) who showed that 

patients after shoulder surgery had less variable kinematics of the shoulder joint when moving at 

self-selected slow and fast speed. To test this hypothesis the repetitive “Pick up a box” task should be 

performed at self-selected preferred, slow, and fast speed. 

In summary the results indicate that there is an effect of perceived intensity of LBP on lumbar 

movement control. This effect manifests in the variability of lumbar movement patterns, but not in 

DSMC. RM tests, in contrast to DSMC tests, might better reflect lumbar movement control in 

activities of daily living, which in turn might be of greater relevance in the development, persistence 

and intensity of LBP (O’Sullivan,2005). 

The final models show that covariates such as gender and BMI, significantly affect movement control. 

Their effect was not consistent across all measures of movement control, and sometimes exceeded 

that of LBP intensity. Consequently it is recommended to consider these covariates in future research 

on movement control. Other covariates, such as the frequency and duration of the current LBP 

episode, physical stress during leisure time, might also be related to MCI. Furthermore 

anthropometric factors, such as a participants arm length, might impact performance during a 

repeated lifting test and should be controlled for in future research. The models and subsequent 

interpretations were based on the assumption of a linear relationship between perceived LBP 

intensity and MCI, which was confirmed by partial-residual plots. Backwards selection of covariates 

enabled us to test the effect of two-way interactions before testing main effects, and to exclude 

redundant covariates from the final models. Perceived LBP intensity was measured using a NRS and 

may not have ratio qualities (Price et al.,1994). Therefore a one point increase in mild pain intensity 

may not have the same meaning as in high pain intensity. In addition, two participants with similar 

pain might not rate their pain equally.  

The number of participants was unevenly distributed across the levels of perceived LBP intensity, 

with a small number that rated their perceived LBP higher than five. However, the distribution of an 

outcome does not affect the models validity, provided that the residuals follow a normal distribution, 

verified by residual analysis. Exclusion criteria were asserted using patient history interviews and 

questionnaires. To improve validity of patient selection, ascertainment should be accompanied by 

anamnestic interviews, physical examination, imaging techniques or other instruments.  

This study investigated sagittal plane MCI as this was found to be an important subgroup of MCI 

(Vibe Fersum et al.,2009). Future studies should expand on this research and address control of 

combined movements since LBP and injury might occur while combining rotational torques and 

sagittal or lateral rotations. The IMU system provides valid and reliable estimates of lumbar 

movement control in the sagittal plane (Bauer et al.,2015), while validity and reliability of combined 
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movements have not been addressed until now. Choosing an appropriate filtering technique is a 

compromise between loss of information and noise allowed through. While significant associations 

between LBP intensity and MCI were found following our procedure, we might have missed small 

fragmentations of movement related to LBP (Dideriksen et al,2014). Future studies should address 

options that might conserve such information. 

Conclusion 
The effect of perceived LBP intensity on lumbar movement control was analysed and controlled for 

the effect of age, gender, BMI and PS. A linear effect of LBP intensity on variability of lumbar 

movement patterns was found, but not on DSMC. The variability of lumbar movement patterns 

increased with greater LBP intensity, measured with a repetitive Pick up the box test and recurrence 

quantification analysis.  
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Fig 1.  
Experimental setup: IMUs were placed on the right thigh (THI), and level of sacrum (S2), and L1 (L1). 
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Fig 2.  
Test procedure “Sitting Knee Extension”, “Waiters Bow” and “Pick Up a Box” 
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 Fig 3. Comparison of movement control 
The left column shows a participant without low back pain and high movement control, the right 

column a participant with high intensity low back pain and low movement control. 
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Table 1. Input parameters used in recurrence quantification analysis. 

Picking Up a Box Delay Embedding Dimension Distance  lmin  Size of Neighbourhood 

Angular Displacement 37 2 Euclidian  20  1.3 

Angular Velocity 16 2 Euclidian 50  1.3 

Angular Acceleration 9 2 Euclidian  20  1.3 

lmin - minimal length of diagonal line   

The delays were estimated using mutual information analysis. The first minimum of mutual information was defined as the 

optimal delay. The embedding dimensions were estimated by calculating the correlation dimension with different 

embedding dimensions. The optimal value of embedding dimension was chosen as the starting point where the correlation 

dimension did not increase significantly although increasing the embedding dimension. 

 

Table 2. Descriptive Statistics. 

LB
P 

n Gen
der 

Age BMI PS Sitting 
Knee 
Extens
ion 

Waite
rs 
Bow  

Pickin
g Up a 
Box 

     

N
RS 

 m/f years (kg/m2

) 
 ROM 

LS (°) 
Ratio 
LS/hip 
ROM 

REC 
AD 

DET 
AD 

REC 
AV 

DET 
AV 

REC 
AA 

DET AA 

0 3

1 

14/1

7 

40.1(±1

2.1) 

22.7(±

2.9) 

1(

1-

4) 

2.6(±3.

7) 

0.3(±

0.2)  

41.0(±

1.3) 

98.7(±

0.4) 

43.5(±

2.0) 

94.0(±

3.5) 

39.2(±

5.1) 

58.3(±9

.3) 

1 4 3/1 49.8(±1

0.6) 

26.9(±

2.8) 

1(

1-

2) 

1.2(±3.

8) 

0.5(±

0.4) 

40.1(±

0.4) 

98.4(±

0.4) 

42.2(±

3.4) 

87.1(±

9.6) 

39.8(±

5.9) 

55.4(±1

1.8) 

2 1

9 

11/8 43.8(±1

3.2) 

24.9(±

3.7) 

1(

1-

3) 

2.2(±3.

0) 

0.2(±

0.1) 

41.7(±

2.3) 

98.1(±

0.5) 

43.7(±

2.5) 

89.6(±

6.0) 

37.4(±

1.9) 

52.4(±6

.4) 

3 1

3 

7/6 35.2(±1

0.8) 

24.1(±

4.8) 

1(

1-

4) 

2.5(±2.

7) 

0.5(±

0.5) 

41.4(±

1.3) 

98.3(±

0.4) 

42.9(±

1.9) 

93.2(±

3.7) 

37.9(±

2.6) 

54.4(±6

.3) 

4 1

5 

7/8 34.6(±1

1.0) 

22.8(±

3.2) 

2(

1-

4) 

3.3(±4.

0) 

0.3(±

0.2) 

41.9(±

1.3) 

98.4(±

0.3) 

42.5(±

1.9) 

90.6(±

3.7) 

38.5(±

2.6) 

52.8(±7

.6) 

5 5 2/3 38.0(±1

5.8) 

23.8(±

2.9) 

1(

1-

2) 

1.1(±2.

7) 

0.8(±

0.7) 

40.9(±

0.6) 

98.3(±

0.2) 

41.5(±

1.9) 

89.4(±

4.0) 

38.7(±

2.8) 

53.8(±5

.5) 

6 4 1/3 45.0(±1

1.6) 

26.5(±

7.3) 

2(

1-

5) 

2.4(±2.

7) 

0.7(±

0.7) 

41.4(±

1.4) 

98.2(±

0.3) 

42.6(±

1.7) 

90.4(±

3.4) 

38.7(±

4.4) 

51.2(±9

.3) 

7 3 1/2 30.0(±4

.0) 

21.9(±

1.2) 

2(

2-

1.3(±3.

5) 

0.4(±

0.2) 

41.9(±

1.6) 

98.1(±

0.3) 

41.6(±

1.3) 

86.7(±

6.9) 

35.7(±

1.4) 

49.9(±4

.8) 
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5) 

AA – angular acceleration; AD – angular displacement; AV – angular velocity; BMI – body mass index; DET – determinism; 

LBP – mean low back pain in the past four weeks; LS – lumbar spine; NRS – numeric pain rating scale; PS – physical stress at 

work; REC – recurrence rate; ROM – range of motion; 

Results are provided as median (range) or mean (±standard deviation) 

 

Table 3. Final model of each outcome. 

Test & Variable Covariate Point Estimation 95% CI LB 95% CI UB p-value 

Sitting Knee 

Extension  

     

ROM LS (°) LBP  0.3 -0.2  0.9 0.24 

 Gender(Female) 0.8 -1.3 2.9 0.44 

 BMI -0.2 -0.4  0.0 0.05* 

 LBP:Gender(Female) -0.5 -1.3  0.2 0.14 

Waiters Bow            

Log Ratio LS/Hip      

 ROM LBP 0.0 -0.1  0.2 0.84 

 Gender(Female) -0.1 -0.6  0.5 0.78 

 BMI 0.1 0.0  0.1 0.03* 

 PS -0.4 -0.7  0.0 0.04* 

 LBP:Gender(Female) 0.1 -0.1  -0.1 0.16 

Pick Up the Box      

REC AD LBP 0.11 -0.05  0.26 0.18 

DET AD LBP -0.06 -0.11 -0.02 0.01* 

 Age -0.01 -0.01  0.00 0.11 

REC AV LBP -0.25 -0.46 -0.03 0.03* 

DET AV LBP -3.31 -6.21 -0.01 0.05* 

 Gender(Female) -2.22 -4.25 .-0.02 0.03* 
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 BMI -0.66 -1.11 -0.25 0.45 

 NRS:BMI 0.11 -0.02 0.24 0.11 

REC AA LBP -2.03 -3.87  -0.20 0.03* 

 Gender(Female) -2.35 -5.10  0.47 0.09 

 Age -0.05 -0.16  0.06 0.40 

 LBP:Gender(Female) 1.14 0.17  2.12 0.02* 

 LBP:Age  0.03 -0.01  0.07 0.14 

DET AA LBP -0.86 -1.73  0.00 0.05* 

 BMI -0.59 -1.06  -0.13 0.01* 

Abbreviations: 95% CI – 95 % confidence interval; AA – angular acceleration; AD – angular 

displacement; AV – angular velocity; BMI – body mass index; DET – determinism ; LB – lower bound; 

LBP – low back pain intensity; LS – lumbar spine; PS – physical stress at work; REC – recurrence rate; 

ROM – range of motion; UB – upper bound 

The reference level for gender was defined as female. The point estimation for each covariate is the 

effect of a one point increase of the respective covariate on the variable. For gender it represents the 

effect of being female. 

*indicates p ≤ 0.05  
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