
 
 

UNIVERSIDADE DE LISBOA 
 

Faculdade de Medicina Veterinária 
 
 
 
 
 
 
 

NEW ADMINISTRATION FORMULA OF PARASITICIDE FUNGI SPORES TO PREVENT 
INFECTION BY GASTROINTESTINAL NEMATODES IN PASTURING HORSES 

 
 

FRANCISCO MIGUEL DIAS EVANGELISTA 
 
 
 
                                                                     

 
 
 
 
 
 
 

CONSTITUIÇÃO DO JURI: 

Doutor José Augusto Farraia e Silva 

Meireles 

Doutor Adolfo Paz Silva 

Doutora Berta Maria Fernandes Ferreira 

São Braz 

ORIENTADOR: 

Doutor Adolfo Paz-Silva                                                                                             

 

COORIENTADOR: 

Doutor Luís Manuel Madeira de Carvalho 

 
 
 
 
 
 

2018 
 

LISBOA 
 

 

  



  



 
 

UNIVERSIDADE DE LISBOA 
 

Faculdade de Medicina Veterinária 
 
 
 
 
 
 

NEW ADMINISTRATION FORMULA OF PARASITICIDE FUNGI SPORES TO PREVENT 
INFECTION BY GASTROINTESTINAL NEMATODES IN PASTURING HORSES 

 
 
 

FRANCISCO MIGUEL DIAS EVANGELISTA 
 
 

DISSERTAÇÃO DE MESTRADO INTEGRADO EM MEDICINA VETERINÁRIA 
 
 
 

 

 
 
 

 
CONSTITUIÇÃO DO JURI: 

Doutor José Augusto Farraia e Silva 

Meireles 

Doutor Adolfo Paz-Silva 

Doutora Berta Maria Fernandes Ferreira 

São Braz 

ORIENTADOR: 

Doutor Adolfo Paz Silva 

 

CO-ORIENTADOR 

Doutor Luís Manuel Madeira de Carvalho 

 
 
 
 
 
 

2018 
 

LISBOA 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Science, my lad, is made up of mistakes, but they are mistakes which 
it is useful to make, because they lead little by little to the truth.” 

 
Jules Verne in Journey to the Centre of the Earth 

 





i 
 

ACKNOWLEDGEMENTS 

First, a big thanks to my supervisor Professor Doctor Adolfo Paz Silva, for accepting a random 

foreign student to work with him and his team. Thank you for all the knowledge, support and 

friendship you provided during my stay in Spain. 

To my co-supervisor Professor Doctor Luís Madeira de Carvalho, for all the support, mentoring 

me and for his friendship over the last few years. Thank you for believing in me and showing 

me the wonders of scientific work and teaching. 

 

To my parents and brother, you are always there despite anything that might happen. Thank 

you for supporting me and my decisions, even when some might seem crazy. 

To the rest of my family, thank you for all the support and knowing that I would be able to 

achieve my goals. To my grandparents, Manuel and António, both of you inspired me more 

than you know and are an example that I’ll take for the rest of my life. 

To the members of COPAR Group (Faculty of Veterinary, University of Santiago de 

Compostela, Spain), Professors Dr. Rita Sánchez-Andrade and Dr. María Sol Arias, the PhD 

students Maria, Mathilde, António and Isabel, and Joana. Thank you for receiving me so well 

in Spain and supporting me throughout all the internship. I really felt like I was at home and not 

once I felt alone. 

To Dr Lídia Gomes and Doctor David Ramilo. Thank you for helping me with the students in 

Parasitology classes and hearing me babbling about my work like it was the most interesting 

thing in the world. 

To Professor Telmo, for the help with statistics and the introduction to the R language. 

To all my friends throughout the last 15 years, Rita Freitas, Bruno Mourinha, Bruno Mendes, 

Daniel Silva, Filipa Ramalheira, Joana Conceição, Cátia Matos and Rómulo Pereira. Thank 

you for sticking by my side despite all the distance and different paths we have taken. 

To all my “football friends”, Rui Madeira, Filipe Silva, Diogo Alves and Pedro Costa. Couldn’t 

ask for a better group of friends that supports me through literally everything and I know I can 

count on you all for the rest of my life. 

To all my friends throughout my university years, I can’t name you all because I would fill this 

page with a continuous list of names. Let it be known that I remember everyone. Thank you all 

for your friendship and support, without it I wouldn’t be able to “survive” the best years of my 

life. 

To Rita, thank you so much for being my main support in the last year. For putting with all my 

tantrums due to this work and other issues, but always being a beacon of positivity and strength 

on which I could rely on. I can’t put into words how much you have helped me. 

  



ii 
 

FINANCIAL SUPPORT 
 

The experimental design has been approved by the Ethical committee of the University of 

Santiago de Compostela, complies with the Directive 2010/63/EU and partly supported by the 

Research Project protocol number CTM2015-65954-R (Spanish Ministry of Economy and 

Competitiveness; FEDER) and Project UID/CVT/276/2013 (CIISA-FMV-ULisboa). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



iii 
 

RESUMO 

NOVA FÓRMULA DE ADMINISTRAÇÃO DE FUNGOS PARASITICIDAS PARA 
PREVENIR INFEÇÃO POR NEMÁTODES GASTROINTESTINAIS EM CAVALOS DE 

PASTOREIO (LUGO, ESPANHA) 
A resistência a anti-helmínticos em cavalos tem vindo a aumentar recentemente e a procura 

por métodos de controlo alternativos levou ao desenvolvimento de abordagens 

complementares como o controlo biológico. Esta abordagem usa fungos parasiticidas, como 

Duddingtonia flagrans e Mucor circinelloides, no controlo da população parasitária e estudos 

recentes têm-se focado no desenvolvimento de novos métodos de administração. Seguindo 

esta tendência, uma fórmula nova e alternativa foi desenvolvida utilizando um produto 

liofilizado que contém esporos de D. flagrans e M. circinelloides para o controlo de nematodes 

gastrointestinais em cavalos. 

Após fabrico do produto e verificação da morfologia normal dos esporos, estes foram testados 

para crescimento in vitro. Um total de 20 placas de Petri foram semeadas com uma mistura 

de 0.1 g de produto e 0.5 ml de água em meio sólido. As placas foram mantidas a 25ºC em 

escuridão total e todas demonstraram desenvolvimento de novos esporos passados 10 dias. 

Após a verificação in vitro, o produto foi administrado per os a cavalos para observar o seu 

efeito nas contagens fecais de ovos (CFO) por grama (OPG). Assim, um grupo de 5 cavalos 

em pastoreio foi escolhido para receber 10 g de produto cada (com esporos de M. 

circinelloides e um total de cerca 105 clamidosporos de D. flagrans por cavalo) 3 vezes por 

semana, de setembro a março. Outro grupo de 7 cavalos numa pastagem adjacente foi 

utilizado como controlo. Após tratamento com unção contínua de Ivermectina em setembro 

de 2017, uma amostra fecal de cada cavalo foi colhida mensalmente e o CFO foi avaliado 

utilizando a técnica de McMaster modificado. Apenas ovos de nemátodes gastrointestinais, 

nomeadamente estrongilídeos, foram observados com esta técnica. A média de OPG de cada 

grupo foi comparada para cada mês e no total do estudo para observar o efeito de redução 

do tratamento fúngico. Diferenças estatisticamente significativas entre os dois grupos foram 

observadas em fevereiro, redução de 72%, março, redução de 64%, e no total, 66% de 

redução. Cavalos no grupo de teste só passaram o limiar de 300 OPG dois meses depois dos 

cavalos do grupo controlo. Em novembro e janeiro foram realizadas culturas fecais em todas 

as amostras, demonstrando apenas a existência de larvas de ciatostomíneos. 

Este estudo permitiu com sucesso o desenvolvimento de uma nova fórmula para 

administração oral de fungos parasiticidas para cavalos com base num produto liofilizado, 

aumentando as futuras possibilidades de desenvolvimento e aplicações de produtos. Novas 

e aperfeiçoadas formas de controlo biológico devem ser desenvolvidas e implementadas para 

aumentar o controlo de parasitas e diminuir os casos de resistência a anti-helmínticos. 

Palavras-chave: Controlo parasitário, controlo biológico, fungos parasiticidas, Duddingtonia flagrans, 

Mucor circinelloides, produto liofilizado, estrongilídeos, cavalos.  
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ABSTRACT 

NEW ADMINISTRATION FORMULA OF PARASITICIDE FUNGI SPORES TO PREVENT 
INFECTION BY GASTROINTESTINAL NEMATODES IN PASTURING HORSES (LUGO, 

SPAIN) 
 
Anthelmintic resistance in horses has increased in recent years and the continuous search for 

alternative control methods has led to the development of complementary approaches such 

as biological control. This approach can make use of parasiticide fungi, such as Duddingtonia 

flagrans and Mucor circinelloides, in parasite population control and recent research has been 

focused on the development of new administration methods. Following this line of research, a 

new and alternative formula has been developed by using a lyophilized product that contained 

both D. flagrans and M. circinelloides spores for the control of gastrointestinal nematodes in 

horses. 

After the product manufacture and the normal spore morphology were assessed, these were 

tested for in vitro growth. A total of 20 Petri dishes were assembled with a mix of 0.1 g of 

product and 0.5 ml of water in solid media. The assembled plaques were kept at 25ºC in total 

darkness and all showed the development of new fungi spores after 10 days. 

Following the in vitro assessment, the product was administered per os to horses in order to 

observe their effect in the faecal egg count (FEC) of eggs per gram (EPG). Thus, one group 

of 5 horses in a pasture was chosen to receive 10 g of product (with M. circinelloides spores 

and a total of around 105 D. flagrans chlamydospores per horse), 3 days a week starting in 

September, and another group of 7 horses in an adjacent pasture remained as control. 

Following treatment with Ivermectin pour-on in September 2017, a faecal sample was collected 

from each horse on a monthly basis and FEC was assessed using a Modified McMaster 

technique. Only gastrointestinal nematode eggs, namely strongyle eggs, were observed with 

this technique. The EPG average from each group was compared for each individual month 

and overall to see the reduction effect achieved with the fungi treatment. Statistically significant 

differences were found between the two groups in February (72% reduction), March (64% 

reduction), and overall, 66% reduction. The horses in the test group only reached a cut-off 

value of 300 EPG two months after the horses in the control group. In November and January, 

faecal culture method was applied to all faecal samples, showing only the presence of 

cyathostomin larvae. 

This study allowed the successful development of a new formula for the administration of 

parasiticide fungi to horses, based on lyophilized product, which increases the possibilities for 

future product development and application. New and improved ways of biological control 

should be developed and implemented to increase parasite control and reduce anthelmintic 

resistance cases. 

Keywords: Parasite control, biological control, parasiticide fungi, Duddingtonia flagrans, Mucor 

circinelloides, lyophilized product, strongyles, horses. 
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CHAPTER 1 – INTRODUCTION AND RESEARCH AIMS 

 

Alternative and complementary approaches in parasite control have been developed and 

researched due to the increasing anthelmintic resistance and rise of new environmental 

concerns in the last decades. Of those approaches, biological control using parasiticide fungi 

has seen a big development for the past 30 years, with special regards to the discovery of new 

species and distribution methods. 

Biological control is a pest control method through the use of biological antagonists. When 

applied to horse parasite control, it makes use of parasiticide fungi that affect either larvae or 

eggs in their free-range forms (Larsen, 2000). It is already used for the control of Nematodes 

and Trematodes that affect domestic animals, namely cattle, horses and small ruminants. 

There is not a single species of fungi or distribution method ideal for all the situations and 

environments. Every scenario should be assessed individually to choose the adequate way to 

apply the most appropriate parasiticide fungi. 

 

The major goal of this dissertation was to develop a new viable and experimental formula for 

oral administration of parasiticide fungi for the control of gastrointestinal nematodes in horses. 

This can be divided into 3 specific aims: 

 

1. To develop a lyophilized product with viable Duddingtonia flagrans chlamydospores and 

Mucor circinelloides spores. 

2. To assess fungi in vitro growth after product manufacture. 

3. To assess fungi predatory activity against gastrointestinal nematodes after being fed to 

pasturing horses. 
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1.1 INTERNSHIP WITH COPAR RESEARCH GROUP. 

 

Between September 13th and December 15th, the trainee did an internship at the Parasitic 

Diseases Laboratory of the Faculty of Veterinary Medicine, University of Santiago de 

Compostela (Campus of Lugo) (FVM-USC) (Spain). With a total of 500 hours, this internship 

was supervised by Prof. Doctor Adolfo Paz-Silva, coordinator of COPAR Research Group, a 

group from the Animal Pathology Department, FMV-USC, and embodied in the research 

project “Formulating spores of parasiticide fungi in edible gelatines for the prevention of soil-

transmitted helminthezoonoses”. 

 

The activity of the COPAR Research Group, which stands for “Control of parasites affecting 

animals and humans: detection, prevention and treatment”, focuses on the biological control 

of parasitic zoonoses, diseases shared by animals and humans, through the use of soil 

innocuous fungi. 

While in the internship, the trainee engaged in all the activities in which COPAR takes part and 

collaborates. Starting with the diagnostic of parasitic diseases, collaborated collecting blood 

and faecal samples from dogs and horses that took part in research projects for further 

analyses. Blood samples were mostly used for the research of Babesia spp. and Theileria spp., 

using a blood smear technique, or antibodies agaisnt Dicrocelium sp. and Fasciola sp. by 

means of serological techniques as ELISA. Faecal samples sent to the laboratory were 

analysed using faecal egg count (FEC) techniques, such as modified McMaster technique 

(used as both a quantitative and qualitative method) and sedimentation, faecal culture and 

modified Baerman technique. These tests were used to identify a large array of parasites in 

very different hosts, such as baboons, pigs, lynxes, bison, and many more. Following the 

diagnosis, he helped in the treatment of different parasitic diseases, resorting to 

pharmacological treatment and other approaches such as biological control. 

 

Besides all the work that dealt directly with parasites, the trainee was inducted to help with the 

biological control research held at COPAR, specifically dealing with parasiticide fungi. With the 

intention of developing a research on the subject of parasiticide fungi (mainly with 

Duddingtonia flagrans and Mucor circinelloides), he got a specific theoretical training on how 

they develop, act and how they should be handled at a laboratory level. During the remaining 

of the internship, he was responsible for the continuous development of these fungi in the 

laboratory which has several steps: isolation of pure fungi culture from already prepared solid 

cultures; preparation of solid and submerged culture mediums; assemblage of solid and 

submerged fungi cultures using the previous media and isolated fungi culture; counting of 

fungal spores per ml in submerged media (between coverslip and glass slide for D. flagrans 

and in a Neubauer chamber for M. circinelloides) for further usage in product manufacture; 
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assessment of fungi activity against parasite eggs and larval stages, either in faecal cultures 

or in solid media with previously added larvae and eggs. 

 

Furthermore, there were visits to some institutions that currently work with COPAR such as 

the Zoological Park Marcelle Natureza (Outeiro de Rei, Lugo) (developing research among 

captive wild animals), Galician Horse Breed Associations (Santiago de Compostela) (Puraga, 

Centro de Referencia e Mostra do Cabalo de Pura Raza Galega and Granja Gayoso Castro) 

and “Scooby” (Medina del Campo, Valladolid), an animal sanctuary and shelter. These visits 

allowed to have a glance at which species COPAR works with and how the theoretical 

approaches are applied in real life situations. 

 

1.2 INTERNSHIP IN LABORATORY OF PARASITOLOGY AND PARASITIC DISEASES OF 

FMV-ULISBOA 

 

The trainee continued his work in the Laboratory of Parasitology and Parasitic Diseases of 

FMV-ULisboa where it learned about larvae identification and observed both larvae 

parasiticide fungi present in faecal samples. This knowledge was then applied in the present 

work (described further below). Besides this specific training for the present work, the trainee 

enroled in the daily activities in the laboratory from December to January and March to May, 

helping with diagnostic tests such as the ones already mentioned in the previous chapter and 

other students’ works with the fungi.  
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CHAPTER 2 – BIBLIOGRAPHIC REVIEW 

 

2.1 IMPORTANT GASTROINTESTINAL NEMATODES OF HORSES 

A parasite is an organism that lives in or on a larger organism and can only survive and prosper 

due to the expense of this host. Since the early Egyptian medical records that there are reports 

of what are, almost certainly, parasitic infections in humans (Cox, 2002). The interaction 

between parasite and host can be somewhat insignificant, without any visible changes in the 

host biology and quality of life but can also reach the extreme of host death. The parasite 

genus, density and lesion it inflicts, in interaction with the nourishment and development state 

of the host, will ultimately decide what kind of interaction ends up occurring. Helminths or 

worms are a group of animals that includes parasites, affecting not only animals but also 

humans and plants, and free-range non-parasite organisms essential for the biology of an 

ecosystem (Bowman, 2014). Helminths are divided into two major phyla, Nematoda and 

Platyhelminthes, and a minor phylum, Acanthocephala, being the former two the most relevant 

in equine medicine (Sallé & Cabaret, 2015; Taylor, Coop, & Wall, 2016). 

 

Nematodes are helminths belonging to phylum Nematoda, commonly called roundworms due 

to their cross-section appearance. The study of the transmission and development of parasitic 

nematodes began in the middle of the 19th century with Trichinella spiralis. The class 

Secernentea is the one that includes most of the important parasitic nematodes in veterinary 

medicine. Nematodes are relatively similar between each other, with worm-like appearance 

and covered by a cuticle, and at least 16,000 species have been described (Anderson, 2000). 

In the Nematoda, there is sexual dimorphism and it allows, most of the time, to distinguish 

between genera using characteristics from either male or female reproductive tracts (Taylor et 

al., 2016). 

 

2.1.1 FAMILY STRONGYLIDAE 

 

The family Strongylidae belongs to the superfamily Strongyloidea, which includes several other 

families. Strongylidae contains the most commonly found parasites in horses using FEC 

techniques (American Association of Equine Practitioners [AAEP], 2013). Most of the adult 

nematodes in this family are found in the mucosal surface of the intestine while the larvae can 

have different development routes inside the host depending on the species (Taylor et al., 

2016). There are two important subfamilies concerning infection in horses, the Cyathostominae 

and Strongylinae, usually called equine or horse strongyles (Anderson, 2000; Sallé & Cabaret, 

2015). 
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In the 1960s and 1970s, the Strongylinae (large strongyles) had the most important parasitic 

species regarding equine medicine, namely Strongylus vulgaris, and the Cyathostominae, 

small strongyles or cyathostomins, were not considered as important. This situation as 

reversed due to the big control over Strongylus vulgaris and the appearance of widely spread 

anthelmintic resistance in cyathostomins (AAEP, 2013; Love, Murphy, & Mellor, 1999). The 

exogenous free-living stages, including larvae and eggs of the Strongylidae family, are 

extremely resilient in the environment, withstanding a wide range of temperatures, from 

freezing to above 40ºC, surviving up to months within the faecal matter (Nielsen, Kaplan, 

Thamsborg, Monrad, & Olsen, 2007). 

 

2.1.1.1 CYATHOSTOMINAE 

 

Cyathostomins group contains around 50 species spreading over several genera, four of them 

considered the most important, i.e. Cyathostomum, Cylicocyclus, Cylicodonthophorus, and 

Cylicostephanus (Taylor et al., 2016). From these genera, the species Cylicostephanus 

longibursatus, Cylicocyclus nassatus, and Cyathostomum catinatum represent 70 and 80% of 

the total cyathostomins population in horses (Kaplan, 2002). The subclass Cyathostominae is 

considered nowadays the most important and frequently reported strongyle group in horses. 

This is due to their increased importance in cases of anthelmintic resistance, the susceptibility 

of large strongyles to macrocyclic lactones which led to their eradication in well-controlled 

farms. Other nematode parasites (such as Parascaris equorum) affect almost exclusively foals, 

and the remaining (such as pinworms), are not as pathogenic as cyathostomins (Corning, 

2009; Kaplan, 2002; Reinemeyer & Nielsen, 2013; Sallé & Cabaret, 2015) 

 

2.1.1.1.1 LIFE CYCLE 

 

All cyathostomins have an almost identical direct life cycle (Figure 1). Eggs are shed to the 

environment with the faeces, embryonate and the first larval stages (L1) hatch in as little as 4 

days. Under optimal temperature (25-33ªC) and humidity (57-63%), L1 develops to the second 

stage larvae (L2) and, ultimately, into third stage larvae (L3), the infective stage (Nielsen et al., 

2007; Taylor et al., 2016). The L3 larvae start to migrate from the faeces to the surrounding 

pasture and are ingested by horses while grazing. After ingestion, the L3 migrate to the large 

intestine where they invade the mucosa and become “encysted”, entering a hypobiotic state 

(Corning, 2009). This encysted L3 can remain within the intestinal wall for up to 2 years and 

no chemical treatment is 100% effective against them (Monahan, Chapman, Taylor, French, 

& Klei, 1996; Reinemeyer & Nielsen, 2013). Eventually, these L3s develop into late L3s (LL3) 

and then to fourth stage larvae (L4). The later are released from the cyst, enter the lumen of 

the large intestine and become into fifth stage larvae (L5), which finally mature to adult worms. 
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These adults are usually found in different places in the large intestine and cecum, depending 

on the species, and females start to shed eggs as soon as 5 weeks after infection (Reinemeyer 

& Nielsen, 2013). 

 

Figure 1 – Life cycle of cyathostomins. Source: Corning (2009).

 

 

2.1.1.1.2 PATHOGENICITY AND CLINICAL SIGNS 

 

A large cyathostomin burden is not an indication that an animal is going to develop clinical 

signs of disease, and there are reports that showed horses harbouring thousands of 

cyathostomes without any detectable illness (Love et al., 1999). The more severe cases of 

disease caused by cyathostomin infections occur in late winter/early spring and with a big 

burden of encysted L4, where there is a massive and simultaneous emergence of these larvae 

from the cysts to the intestine. This excystment can lead to severe cases of larval 

cyathostominosis, which is a clinical syndrome with performance decline, weight loss, 

diarrhoea, anaemia, dehydration, ventral oedema and death, in up to 50% of the cases, due 

to inflammatory enteropathy (Bowman, 2014; Love et al., 1999). Encystment of L3s can 

produce similar clinical signs despite not being as severe as the excystment, and adult 

cyathostomins are relatively harmless. Although much more common in foals up to 3 years of 

age, infection with clinical signs can also happen in adults (Reinemeyer & Nielsen, 2013; Taylor 

et al., 2016). 
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2.1.1.2 STRONGYLINAE 

 

The members of subclass Strongylinae are considered the most pathogenic nematodes that 

infect horses. The genus Strongylus has three different species that are usually considered 

the most important, Strongylus edentatus, S. equinus and S. vulgaris, being the last one the 

most pathogenic (Reinemeyer & Nielsen, 2013). Although they are recently considered less 

important than cyathostomins due to their lower prevalence, they are still a high priority in horse 

parasite control (AAEP, 2013; Sallé & Cabaret, 2015). The previously referred three species 

of the genus Strongylus have considerable differences when it comes to their life cycle, larvae 

migration in the host and their pathogenicity (Bowman, 2014; Reinemeyer & Nielsen, 2013; 

Taylor et al., 2016). Due to this difference, S. vulgaris will serve as a model species since it is 

considered the most pathogenic. 

 

2.1.1.2.2 Strongylus vulgaris LIFE CYCLE 

 

S. vulgaris follows the same kind of development in its free-range lifeforms as cyathostomins, 

in which it develops into an L1, L2 and L3, the infective stage, in 4 to 20 days, depending on 

the environment temperature and humidity (Anderson, 2000; McCraw & Slocombe, 1976). The 

horses ingest the L3 when they graze on the pasture, migrating to the lumen of the small 

intestine before reaching the cecum and ventral colon (Bowman, 2014). Around 2 days after 

being swallowed, the larvae penetrate the mucosa and the submucosa where they moult to L4 

in the following 2 to 3 days (Figure 2). The L4 migrate to the arterioles of the submucosa, reach 

the cecal and ventral colic arteries by day 8 and the cranial mesenteric and ileo-ceco-colic 

arteries by days 11 to 14 (McCraw & Slocombe, 1976). There are reports of larvae that 

continue migrating and can even attain the aorta near the left ventricle (Cranley & McCullagh, 

1981). The larvae stay in the arteries for around 4 months where they moult to L5. These L5 

are led back through the bloodstream, over the intima layer of arteria, to the large intestine, 

where they end up encased in small nodules in the submucosa of the caecum and ventral 

colon (Reinemeyer & Nielsen, 2013). Subsequently, the nodules rupture and release the L5 

into the intestinal lumen, in which they mature to adults after 6 to 8 weeks (McCraw & 

Slocombe, 1976). The adults start to shed eggs in faeces around 6 months after infection 

(Round, 1969). 
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Figure 2 – Life cycle of S. vulgaris. Source: http://articles.extension.org/pages/10280/strongyles-in-
horses 

 

 

2.1.1.2.3 PATHOGENICITY AND CLINICAL SIGNS IN HORSES INFECTED BY Strongylus 

vulgaris  

 

Most of the acute clinical signs and health problems caused by S. vulgaris infections are 

caused by the larval stages, as occurs with cyathostomins (McCraw & Slocombe, 1976).  

Larval migration to the mesenteric and ileo-ceco-colic arteries is the cause of the thrombo-

embolic colic syndrome due to the release of previously formed thrombi. These blood clots are 

a consequence of larval migration damaging the endothelium, leading to inflammation and 

thickening of the arterial wall (Taylor et al., 2016). The clinical signs associated with these 

larval migrations are hyperthermia, loss of appetite, painful colic when the thrombus become 

embolized, abdominal distress, and, occasionally death (McCraw & Slocombe, 1976). An 

erratic migration of larvae will cause local inflammation as reported by Cranley & McCullagh 

(1981), where larvae that migrate to the heart can lead to ischaemic myocardial fibrosis. Adults 

are usually not pathogenic but when in high numbers, they may cause a high amount of local 

inflammation and ulceration due to the morphology of their buccal capsules and feeding habits, 

leading to anaemia, emaciation, poor coat and poor performance (Bowman, 2014; McCraw & 

Slocombe, 1976). Rupture of nodules can cause haemorrhages, even if not as problematic 

and frequent as with cyathostomins excystment, and occasionally lead to fatal cases 

(Bowman, 2014). 
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2.1.1.3 DIAGNOSIS OF STRONGYLE INFECTION 

 

Although the diagnosis can be performed by taking in account the clinical signs and the 

presence of strongyle eggs in qualitative and quantitative faecal analysis techniques, there is 

the need for specific techniques to differentiate between large strongyles and small strongyles 

due to the similarities between the eggs. The strongyle eggs dimensions are about 50 µm x 

100 µm, oval-shaped, with a smooth surface and identifiable cells (Anderson, 2000; 

Reinemeyer & Nielsen, 2013). One of these techniques and the most used is the faecal culture 

where the eggs can develop to L3 which will be further identified according to morphological 

keys (Madeira de Carvalho, Fazendeiro, & Afonso-Roque, 2008; Reinemeyer & Nielsen, 

2013). Both the faecal culture technique and larval identification applied during this research 

will be described further below in the Material and Methods chapter. Since these techniques 

require time and experience for a regular and reliable diagnosis, some molecular techniques 

have been developed to differentiate between adults species by analysing faecal samples 

(Traversa et al., 2007), others can be applied to detect prepatent infections using the horse 

serum (Andersen et al., 2013; Nielsen, Vidyashankar, et al., 2014). The diagnosis of encysted 

cyathostomin larvae continues to be a challenge because there is not a single direct test that 

can detect and quantify the number of encysted larvae, although there have been recent 

developments in molecular diagnosis using ELISA (Mitchell et al., 2016). There is also the 

possibility in necropsies to retrieve and identify adults and larvae and to check for lesions 

correspondent to the ones caused by the migrating larval stages (Bowman, 2014). 

 

2.1.2 ASCARIDAE – Parascaris SPP. 

 

The family Ascaridae, belonging to the phylum Nematoda, has some of the biggest adult 

worms affecting animals, namely genus Parascaris, with adults reaching up to 50 cm in length 

(Bowman, 2014; Hernández Malagón, 2014). Parascaris equorum and P. univalens are the 

species infecting horses and, while they are anatomically identical, the former is the most 

studied and believed to be the cause of most horse infections (Bowman, 2014; Clayton, 1986; 

Nielsen, Wang, et al., 2014). Recently, it has been reported that the prevalence of P. univalens 

probably has been underestimated over the years and that this parasite might actually be the 

most prevalent in horses (Nielsen, Wang, et al., 2014) 
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2.1.2.1 LIFE CYCLE 

 

Like most ascaridoids in domestic animals, P. equorum and P. univalens have a direct life 

cycle and, since so little is known about the later, it is being considered the same (Reinemeyer 

& Nielsen, 2013). Eggs are expelled in the faecal matter and contain one single cell that further 

develops into an embryo, morula, L1 and L2, the infective stage (Figure 3). This development 

may range from 10 days to 6 weeks, depending on environmental conditions such as humidity 

and temperature (25ºC to 35ºC). Horses, mainly foals, get infected when they ingest the eggs 

containing the L2 which later hatches when it reaches the small intestine (Arroyo Balán, 2017; 

Bowman, 2014). After hatching, the L2 become into L3, penetrate the gut and reach the liver 

in 24 hours, in which they remain for around a week. Following this week, the larvae migrate 

to the lungs using the caudal vena cava, heart and pulmonary artery until they finally reach the 

alveoli. The larvae stay in the lungs until about four weeks after infection, ascending afterwards 

in the mucus to the tracheoesophageal area (Reinemeyer & Nielsen, 2013; Taylor et al., 2016). 

After ascending, the larvae are swallowed and reach the intestinal tract once again, where they 

mature and reach the adult stage, usually remaining in the duodenum and proximal jejunum 

unless in heavy infections, where they can be found all through the small intestine (Clayton, 

1986). Adults of P. equorum usually start to shed eggs approximately 75-80 days after infection 

and there are reports that show the presence of adults in horses intestine as early as two 

weeks after infection (Clayton, 1986; Reinemeyer & Nielsen, 2013). 

 

Figure 3 – Life cycle of P. equorum. Source: Boyle & Houston (2006). 
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2.1.2.2 PATHOGENICITY AND CLINICAL SIGNS 

 

Clinical signs of infection are mainly seen in foals due to the development of immunity as 

horses age, although they can also be observed in adults (Clayton, 1986; Lyons, Tolliver, & 

Collins, 2006). The first signs of infection are associated with larvae migration and consist 

mainly of coughing and nasal discharge, while in a necropsy we can see white, fibrous scars 

(“milk spots”) under the liver capsule, usually accompanied by oedema and haemorrhage in 

the lungs (Clayton, 1986; Reinemeyer & Nielsen, 2013). Following the larval development into 

adults, the clinical signs can develop into diarrhoea, lethargy, weight loss, rough hair coat, and 

gastrointestinal impaction with colic (Bowman, 2014; Reinemeyer & Nielsen, 2013). As Nielsen 

(2016) reports, an infection with a large number of P. equorum adults should be taken into 

consideration when foals show signs of small intestinal impaction following deworming.  

 

2.1.2.3 DIAGNOSIS OF INFECTION BY Parascaris SPP.  

 

These nematodes are usually diagnosed in foals younger than 2 years of age, but can also be 

found in adults (Clayton, 1986, Francisco, I. et al., 2009). Diagnosis is based on the presence 

of P. equorum eggs in faeces, the clinical signs and, in a necropsy, the presence of adults and 

lesions in the organs in which the larvae migrate (Bowman, 2014). The eggs of P. equorum 

(80-100 µm) are almost spherical, dark-brown coloured and have a rough thick external wall, 

allowing them to be extremely resilient, resisting chemical and physical agents, and able to 

remain viable for several years (Bowman, 2014; Hernández Malagón, 2014). Even though 

there is a cellular response with eosinophilia associated with larvae migration, being a typical 

occurrence in many parasitic infections should not be considered specific for parascariosis 

(Clayton, 1986). The only way to completely distinguish between P. equorum and P. univalens 

is through genomic sequencing and analysis (Nielsen, Wang, et al., 2014). 

 

2.1.3 OXYURIDAE – Oxyuris equi 

 

The members of the Oxyuridae family are also referred has “pinworms”, due to their pin-shaped 

tail, and it gets its name after Oxyuris equi, the common and large pinworm of horses 

(Beveridge & Emery, 2014; Bowman, 2014). Although previously relatively nonpathogenic, O. 

equi has shown some changes on its biology and anthelmintic resistance which has led to an 

increased challenge in its control (Wolf, Hermosilla, & Taubert, 2014). 
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2.1.3.1 LIFE CYCLE 

 

The life cycle is direct, and horses get infected by ingesting the eggs present in the 

environment containing an L3 (Figure 4). Although the L3 hatch in the small intestine, they 

migrate to the anterior large bowel and invade the crypts of Lieberkühn (Wolf et al., 2014). 

After developing for 3-11 days to L4, the larvae emerge and start feeding on the mucosa going 

through L5 until they mature to adult, 150 days later (Reinemeyer & Nielsen, 2014). Adults are 

usually found in the dorsal colon but females, when ready for oviposition, migrate to the anus 

and deposit up to 60,000 eggs in yellow gelatine like masses that can adhere to almost any 

surface and contaminate the environment (Bowman, 2014). After 3-5 days in the environment, 

the infective stage is reached (L3) (Reinemeyer & Nielsen, 2013; Wolf et al., 2014). 

 

Figure 4 – Life cycle of O. equi (original). 

 

 

2.1.3.2 PATHOGENICITY AND CLINICAL SIGNS 

 

The most evident and common clinical sign of infection by O. equi is pruritus caused by the 

adhesive egg masses deposited by the adult females that can lead to horses constantly 

rubbing their tails on different surfaces (leading to egg dispersion), eventually ending with their 

tail heads tangled, hair scarce, or even wounded. These symptoms are rather distinct and lead 

to a condition known as “rat-tailed” (Bowman, 2014; Reinemeyer & Nielsen, 2014). Although 

relatively nonpathogenic in moderate infections, in high-density infections with L4 can lead to 

signs of abdominal discomfort due to inflammation of the ventral colon and caecum caused by 

their mouth structure and feeding activity (Reinemeyer & Nielsen, 2014).  
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2.1.3.3 DIAGNOSIS OF Oxyuris equi INFECTION 

 

Diagnosis is mainly based on the clinical signs, especially the “rat-tailed” condition. Usual 

coprological techniques bare no results in the diagnosis of the disease due to female adults 

depositing the eggs directly on the perianal area (Bowman, 2014). A technique named “Scotch 

Tape Technique” was developed for Oxyuridae diagnosis, in which a piece of transparent 

scotch tape is applied (with the sticky side down) to the perianal area of the horses and then 

transferred to a microscope slide, with one or two droplets of water, for further observation 

under a microscope (Reinemeyer & Nielsen, 2013). This “Scotch Tape Technique” allows the 

observation of any O. equi egg present. These eggs are 42x 90 µm in size, yellow to brownish 

in colour, slightly flattened on one side and have an operculum-like plug in one of its ends 

(Bowman, 2014; Foreyt, 2002). 

 

2.2 PARASITE CONTROL PRACTICES 

 

Parasite control is achieved by blocking any single event from a parasite life cycle, preventing 

its development to the infective stage. Most of the efforts taken into parasite control involve the 

use of anthelmintics (chemical treatments), which disrupt life cycle events within the hosts. 

There is a variety of alternative strategies that act not only in the host but also the parasite 

itself, the environment or a combination of these and should be applied in parasite control 

programs, complementing the treatment with anthelminthics (Bowman, 2014; Madeira de 

Carvalho et al., 2011; Reinemeyer & Nielsen, 2013). Modern parasite control practices have 

also moved from an eradication goal to maintenance of sustainable levels of parasitism 

(Reinemeyer & Nielsen, 2013). 

 

2.2.1 ANTHELMINTIC APPROACHES 

 

As reviewed by Lyons, Tolliver, & Drudge (1999), there are ancient treatments that were meant 

to target parasitic diseases, more specifically, helminths in horses. Such treatments would 

include the use of other animals’ and humans’ faeces, black soap, hens’ eggs, and others. It 

is only in the early 1900s, with the introduction of carbon disulfide, and in 1940s, with the 

launch of phenothiazine, that control and treatment of parasites starts to diverge from mere 

empirical knowledge (Lyons et al., 1999). In spite of an increase in the number of reported 

anthelmintic resistances, chemical compounds are still needed to treat horses and to support 

other strategies focused on parasite control (Nielsen, 2016; Nielsen et al., 2018; Reinemeyer 

& Nielsen, 2013).  
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There are currently 5 classes of anthelmintic commercially available and regulated for horses: 

Benzimidazoles (fenbendazole and oxibendazole), Tetrahydropyrimidines (pyrantel salts), 

Macrocyclic Lactones (ivermectin and moxidectin), Heterocyclic Compounds (piperazine), and 

Isoquinoline-Pyrazines (praziquantel) (AAEP, 2013; Bowman, 2014; Matthews, 2014). While 

there were several parasite control programs used over the years, most of the anthelmintic 

treatment regimens used the interval-dose program described in the 1960s by Drudge & Lyons 

(1966) as a base concept for their development (Reinemeyer & Nielsen, 2013). 

 

The interval-dose programs follow a time fixed treatment of all horses on a farm, all year long, 

with a regular interval of 2, 3 or 4 months and without any diagnostic or efficacy evaluation 

(Reinemeyer & Nielsen, 2013). This was first designed to deal with the threat of S. vulgaris but 

continues to be applied in farms all over the world (Drudge & Lyons, 1966; Nielsen et al., 2018; 

Relf, Morgan, Hodgkinson, & Matthews, 2012; Sallé & Cabaret, 2015). This systematic 

approach and similar methods are considered by most equine parasitologists to be the main 

source of anthelmintic resistance nowadays. This statement is also applied to the rotational 

program, in which, in theory, rotation of anthelmintics with different mechanism of action would 

reduce the number of resistance cases that could appear in a near future (Kaplan & Nielsen, 

2010). 

 

The most commonly accepted as the correct chemical approach by parasitologists is called 

the selective or targeted treatment (Reinemeyer & Nielsen, 2013). This approach requires the 

diagnosis of parasitism and FEC, quantification of the numbers of eggs per gram (EPG) being 

excreted in faeces, on all horses from a farm. Following this step, the horses that have 

surpassed a certain FEC threshold (ranging 200-500 EPG) are submitted to treatment with an 

anthelmintic that specifically targets the observed parasite (Francisco, R. et al., 2012; Krecek, 

Guthrie, van Nieuwenhuizen, & Booth, 1994). This approach would also be able to reduce 

anthelmintic administration by up to 82% (Lester et al., 2013) Despite being highly acceptable, 

this approach can lead to the reappearance of previously controlled parasites such as S. 

vulgaris (Nielsen, Vidyashankar, Olsen, Monrad, & Thamsborg, 2012). 
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2.2.2 ALTERNATIVE APPROACHES 

 

Even though the pharmacological approach is the most common and observed, there has been 

a search for new methods that can aid in the control of parasites and support those referred 

before, keeping parasite burdens within acceptable levels and reducing resistance cases. 

Adequate hygiene and management of the pasture, genetic selection, nutrition, plant extracts, 

vaccines and biological control through parasiticide fungi, are the most commonly mentioned 

methods of alternative approaches that act on the parasites but also in the environment and 

the host (Arroyo Balán, 2017; Shalaby, 2013; Taylor et al., 2016). 

 

Pasture is essential for the development of certain parasites as described in previous chapters. 

Thus, adequate control of the environment can help to prevent most of the infections from 

happening and spreading (AAEP, 2013). There are numerous recommendations for pasture 

management and hygiene that can aid with parasite control. Easy actions such as regular 

removal of faeces can result very useful regarding parasite control, limiting transmission and 

movement of larvae from the faeces to the surrounding pasture, thus avoiding horse infection. 

Other actions such as mowing and rotating pastures, mixing or alternating grazing species, 

and quarantine practices are all part of a good and sustainable management of a farm or 

grassland and are also very effective in minimizing parasite transmission (Barger, 1997; 

Reinemeyer & Nielsen, 2013; Taylor et al., 2016). 

 

Genetic selection has been applied over the years to improve production parameters of 

domestic animals but can also be used to increase resistance to parasite infections. Although 

not as a short-term approach (can take up to 8-10 years in sheep), the results can be quite 

satisfactory, not only in terms of parasite control and overall parasite burden but also in 

production parameters such as body growth and body condition score as a result (Behnke et 

al., 2003; Bisset, Morris, McEwan, & Vlassof, 2001; Taylor et al., 2016). 

 

Nutritional status correlates directly with the possibility of horses becoming infected and a bad 

nutrition condition diminishes their response to infection. It is crucial to make sure that horses 

are in a healthy condition so that pathophysiological status such as reduced appetite and 

changes in nutrient metabolism caused by parasites are easier to manage and control (Smith, 

Panickar, Urban, & Dawson, 2018). The amount of protein intake and the resistance to 

gastrointestinal nematodes have been correlated, so higher protein intake is associated to the 

capacity of the host to overcome and control parasite infections (Coop & Kyriazakis, 2001). 

Besides this, copper oxide supplements can be given in order to reduce parasite burden, as it 

directly affects them, and base levels of copper in the host are needed for an adequate immune 

response (Knox, 2002; Shalaby, 2013). 
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Plant extracts can be administered to animals and act as anthelmintics, even though this has 

mostly been tested in vitro and still needs more validation with in vivo studies (Githiori, 

Athanasiadou, & Thamsborg, 2006). From the diversity of plants with parasiticide activity, only 

the common garlic (Allium sativum) can inhibit ascarid egg eclosion and development 

(Hernández Malagón, 2014). 

 

So far there is only one vaccine developed to control equine protozoal myeloencephalitis 

caused by Sarcocystis neurona (Marsh et al., 2004). There have been advances in the overall 

development of vaccines in recent years which lead to more commercially available vaccines 

against cattle lungworm (Dictyocaulus viviparus) and poultry protozoa (Eimeria spp.) (Taylor 

et al., 2016). 

 

2.3 BIOLOGICAL CONTROL 

 

With the rise in the concern regarding environmental sustainability and the increase of 

anthelmintic resistance in horse nematodes, research for new or improved methods of parasite 

control has seen a great development over the last 30 years (Suárez, 2017). As described for 

the approaches developed in the previous chapter, biological control has been increasingly 

developed and used as a complementary component to the use of anthelmintics in parasite 

control, with a special regard to Brasil and Spain where a lot of research has been performed 

in recent years (Braga et al., 2009; Cazapal-Monteiro, 2015; Cruz, 2015). Biological control 

can be defined as pest control using biotic agents, which in the control of horses nematode 

usually involves the use of parasiticide fungi, and is designed to keep pest population at a non-

harmful level (Larsen, 2000; Madeira de Carvalho et al., 2011). 

 

2.3.1 PARASITICIDE FUNGI  

 

Fungi used as biological control agents are eukaryotes and can be found in all kind of 

environments. They usually possess structures called hyphae, with a cell wall composed of 

chitin but without chlorophyll or cellulose, forming a mycelium (a mass of hyphae), with both 

sexual and asexual reproductive behaviours producing conidia or spores. In adverse 

environmental conditions, the hyphae can produce chlamydospores, which are spores with a 

very thick wall, capable of withstanding harsh conditions and developing new hyphae once 

under favorable conditions (Barron, 1977). Even though most of the parasiticide fungi are 

saprophytes, they can use other organisms, such as free-range stages of parasitic nematodes, 

as a nutrient resource, if the opportunity and need arise (Alexopoulos & Mims, 1979; 

Dijksterhuis, Veenhuis, Harder, & Nordbring-Hertz, 1994).  
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Since late 19th century that is known the activity of certain fungi, namely Arthrobotrys 

oligospora, against plant nematodes (Zopf, 1888; cited by (Cruz, 2015)), and over 200 species 

have already been recorded (Nordbring-Hertz, Jansson, & Tunlid, 2011). Parasiticide fungi can 

be divided into three different categories according to their parasitic abilities: the nematode-

trapping or larvicide fungi (such as Duddingtonia, Arthrobotrys and Monacrosporium), ovicide 

fungi (namely Mucor, Pochonia, Paecilomyces and Trichoderma), and endoparasitic fungi (for 

example Drechmeria and Harposporium) (Braga & Araújo, 2014; Nordbring-Hertz et al., 2011). 

Endoparasitic fungi are usually not considered when making a biological control program due 

to their inability to grow in the soil, dependence on the presence of water and nematodes for 

their development both in vitro and in vivo (Braga & Araújo, 2014). In Figure 5 are represented 

the most studied parasiticide fungi.
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Figure 5 - Schematic representation of parasiticide fungi taxonomic classification (original) (Raghukumar, 2017; Spatafora et al., 2016). 
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2.3.1.1 SOIL LARVICIDE FUNGI  

 

Nematode-trapping or predator fungi are the most studied and known specimens used in 

biological control programs, with Duddingtonia flagrans, Arthrobotrys spp. and 

Monacrosporium spp. being the prime representatives (Braga & Araújo, 2014). These fungi 

are characterized by the development of a large network of hyphae to capture nematode larvae 

in the soil, where they can be frequently isolated, for ensuring their nourishing, especially 

carbon and nitrogen (Arias, Cazapal-Monteiro, Suárez, et al. (2013). Morphogenesis (and 

hyphae growth) is influenced by several environmental aspects such as fungi feeding 

possibilities, temperature, soil and faecal larval density, where the contact between fungi and 

larvae or their compounds is the most effective inducer of trap formation (Arias et al., 2013, 

Dijksterhuis et al., 1994; Madeira de Carvalho et al., 2011; Su et al., 2017). 

The larvicide fungi can have different trap mechanisms that derivate from their hyphae growth 

and one species can use one or more of these to capture the larvae: adhesive branches, 

adhesive two-dimensional and tri-dimensional networks, adhesive knobs, constrictive rings 

and non-constrictive rings (Arroyo Balán, 2017; de Ulzurrun & Hsueh, 2018). Several phases 

occur until nematode destruction, beginning with the attraction of nematodes due to 

components released by the mycelium. Following this, there is a phase of adhesion where the 

parasites get attached to the trap structures on contact or, in the case of constrictive rings, the 

traps themselves encase the nematodes. Once parasites get fully immobilized, the hyphae 

produce enzymes and invasive tube-like hyphae that penetrate the parasite cuticle. Once 

inside the parasite, the fungi start digesting and end up completely destroying it (Nordbring-

Hertz et al., 2011). 

 

2.3.1.1.1 Duddingtonia flagrans 

 

Isolated by Duddington for the first time in 1949, it is only since the beginning of the 1990s 

Duddingtonia flagrans has become one of the most studied parasiticide fungi. This was mostly 

due to its ability to survive passage through the animals intestinal tract (Larsen, 2000; Madeira 

de Carvalho et al., 2011). Chlamydospores are thick-walled resting spores (Figure 6), 

produced when the fungus grows older, from a hyphal cell, and can last more than 20 months 

in a dried air environment (Barron, 1979). A recent study by Arroyo Balán et al. (2014) showed 

their ability to withstand the treatment used in factories for the production of nutritional pellets, 

while others showed the capacity of surviving lyophilization processes (Santurio et al., 2009). 

The production of spores in submerged cultures increases the possiblities of spreading them 

by using different ways of administration (Arias, Cazapal-Monteiro, Suárez, et al., 2013), and 

thus D.flagrans becomes into a suitable candidate for future integration in animal feeding 

habits. Besides the survival capacity due to the production of chlamydospores, D. flagrans is 
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able to quickly produce a large number of conidia and therefore is able to spread in the faecal 

matter in a short timespan (Grønvold et al., 1993). 

 

Figure 6 - D. flagrans chlamydospore present in a horse faecal sample (original) 

 

 

Trap formation in D. flagrans mycelium begins with the first germinative hyphae, where lateral 

branches start to develop and loop. Hyphae continue to grow and curve until they anastomose 

with the original one or another, repeating until they form non-constricting rings, constricting 

rings and tri-dimensional networks that can capture nematode larvae (Barron, 1979; Grønvold 

et al., 1996). These rings are covered with an adhesive substance that entraps the larvae not 

relying solely on the constriction mechanism. Following the entrapment, chitinases and 

proteases are produced to help with the solubilization of cuticle and digestion of the nematodes 

(Braga et al., 2015; Suárez, 2017). There are already reports that show the possibility of usage 

not only for nematode control but also in vector control, such as Aedes aegypti (Braga et al., 

2016). 

Concerns regarding the effect on non-parasite nematodes and the soil were tested by Saumell 

et al. (2016) showing no significant effect on free-living nematode populations and lasting no 

longer than 2 months in the environment. There has been no record of adverse effects 

regarding D. flagrans oral administration in horses (Hernández et al., 2016; Suárez, 2017). 

 

2.3.1.2 SOIL OVICIDAL FUNGI 

 

Ovicidal fungi show activity mostly against eggs, although some of them can also damage 

adults and larvae. The most researched telluric fungi with ovicide effect are Pochonia 

chlamydosporia, Paelomyces lilacinus, Dactyella ovoparasitica, Trichoderma spp. and, one of 

the focused in this essay, Mucor circinelloides (Braga & Araújo, 2014; Hernández Malagón, 

2014). Most nematodes eggs rapidly develop into larvae, which reduces the activity of these 

fungi on them. In contrast to other nematodes such as strongyles, larvae belonging to the 
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Ascaridae or Oxyuridae do not develop free-range larvae in the environment, so these fungi 

have enough time to act and destroy eggs (Cortiñas et al., 2015).  

There are four different phases that these fungi develop over a parasite egg. After the hyphae 

contact with the eggshell, they adhere and penetrate inside, then the inner embryo is destroyed 

and hyphae exit off in search of new eggs (deliberation) (Arroyo Balán, 2017; Hernández 

Malagón, 2014). Contact phase begins when the fungi present in the soil or faeces get in 

physical contact with parasite eggs as a result of hyphae net development from spores or 

mycelium (Irving & Kerry, 1986). Following contact, the hyphae produce an appressorium, 

which is a swollen portion of these hyphae in contact with the egg that adheres to the eggshell 

(Barron, 1977). Only hyphae that adhere nearly perpendicularly to the egg are able to 

penetrate it, although the mechanism is still not completely identified, not knowing what is the 

relation between physical pressure and certain released enzymes (Cazapal-Monteiro, 2015). 

Once it penetrates, the fungus continues to grow inside the eggs, keeping the shell intact but 

destroying and nurturing on all the egg contents, including the embryos. Once there are no 

more nutrients, the fungus feeds on the eggshell and releases the recently formed hyphae, 

ready to infect other eggs (Lýsek & Stĕrba, 1991). 

Even though there are studies using ovicide fungi, most of these are in vitro and performed in 

Petri dishes, only a few evaluate the direct effect in the helminth eggs present in the faeces 

(Arroyo Balán, 2017; Cortiñas et al., 2015). 

 

2.3.1.2.1 Mucor circinelloides 

 

Mucor circinelloides was previously studied as a way to produce biodiesel and animal feed and 

only recently it is viewed as a possible fungus for biological control due to its ovicidal 

characteristics (Arias, Cazapal-Monteiro, Suárez, et al., 2013; Vicente et al., 2009). Belonging 

to the phylum Mucoromycota (previously Zygomycota) it develops through both sexual and 

asexual life cycles, with the formation of hyphae and sporangia in the former, and zygospores 

with meiospores in the later, both structures represented in Figure 7 (Li et al., 2011; 

Raghukumar, 2017). A recent study by Cortiñas et al. (2015) has shown that, just like D. 

flagrans, M. circinelloides has the ability to survive passage through animals intestinal tract. 
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Figure 7 - M. circinelloides zygospores (1.) and hyphae (2.) (original) 

 

 

This species is able of developing on eggs of trematodes (Calicophoron daubneyi and Fasciola 

hepatica) and nematodes (Toxocara canis, Baylisascaris procyonis, Ascaris suum, Parascaris 

equorum or Trichuris spp.). It has the capacity of not only to delay development and diminish 

their viability but also to destroy the embryos (Arroyo Balán, 2017; Cazapal-Monteiro et al., 

2015; Cortiñas et al., 2015; Hernández Malagón, 2014). 

There are no reports of disease caused by the ingestion of this fungus in animals (Arroyo 

Balán, 2017; Suárez, 2017). Some human cases regarding mucormycosis have been 

described among hospitalized human patients with immunodeficiency (Ribes, Vanover-Sams, 

& Baker, 2000). 

 

2.3.2. PARASITICIDE FUNGI DISTRIBUTION 

 

Over the years there have been studies to find the best methods to disseminate the spores in 

the environment in order to act on free-range parasite stages (Table 1). Most of the studies 

have been developed in vitro, but other found ways to apply these fungi in the pasture or 

directly to the animals (Arroyo Balán, 2017). There is probably no perfect way to distribute 

these fungi so every situation should be assessed individually, taking into consideration factors 

such as the environment, the purpose of the farm/pasture, the animals and their parasites. 

  

1. 

2. 
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Table 1 - Fungi distribution methods and some related researches. 

Fungi distribution method Research 

Directly in the soil 
Arias, Cazapal-Monteiro, Suárez, et al. 

(2013) 

Fungi soaked cereals Waller, Knox, & Faedo (2001) 

Feed premixes Cazapal-Monteiro et al. (2014) 

Mineral/energy blocks Sagüés et al. (2011) 

Slow-release bolus Waller, Faedo, & Ellis (2001) 

Pellets Hernández et al. (2016) 

Gelatines Vilá Pena (2017) 

 

2.3.2.1 DIRECTLY ON THE SOIL 

 

The development of (submerged) liquid media for the growth of D. flagrans and M. 

circinelloides, enables new ways of dispersing spores through the pasture by using sprayers 

and other devices (Arias et al., 2012; Arias, Cazapal-Monteiro, Suárez, et al., 2013). This 

method allowed to reduce FEC in the tested areas to around 50 to 100 strongyle EPG, while 

horses in control areas shed 250 to 300 strongyle EPG (Arias et al., 2012). The procedure 

could be easily applied in areas such as parks, leisure places, zoological enclosures or small 

farms (Arroyo Balán, 2017; Suárez, 2017). Despite the high efficacy when applied directly to 

the soil, this method is not as useful in large extensions of land or in high animal density areas 

(Paz-Silva et al., 2011). 

 

2.3.2.2 ORAL ADMINISTRATION  

 

Direct administration to animals enchances the direct contact between fungi and parasites in 

faeces, where eggs and larvae develop, allowing the fungi to grow and act as soon as they 

leave the intestinal tract (Arroyo Balán, 2017; Larsen et al., 1995). Fungi can be given directly 

to the animals by feeding fungi soaked cereals, animal feed premixes, mineral/energetic 

blocks, slow-release bolus, sodium alginate or nutritional pellets, or gelatines. 

Cereals provide an ideal substrate for fungi spores growth and large-scale production. Studies 

by Waller, Knox, et al. (2001) showed the ability of D. flagrans spores embedded in cereals to 

survive the passage through the intestinal tract in sheep and reduce the number of larvae 

present in faecal plot. These authors suggested that this would be a good method to implement 

biological control in intensive farming systems. Other proposal by Sagüés, Purslow, et al. 
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(2011) consisted of feeding animals with these fungi during critical time points, such as calving, 

due to to the rise in faecal parasite egg excretion. 

Fungi can be directly incorporated into feed concentrate usually mixing it with liquid media 

containing spores or with spores collected from the surface of agar solid cultures (Arroyo 

Balán, 2017). Studies by Arias, Cazapal-Monteiro, Valderrábano, et al. (2013) and Cazapal-

Monteiro et al. (2014) showed that after providing spores of D. flagrans and M. circinelloides 

to wild animals captive in a zoological park, previously treated according to selective therapy 

indications, the values of FEC remained under 300 EPG for over a year. 

Mineral and energy blocks are a way for animals to intake a supplement of certain nutrients in 

deficiency, especially in areas with limited land and feed resources (Knox, 1996). This appears 

to be an effective way to control parasites in sheep, with advantages of price, working as a 

nutritional supplement and a vehicle for fungi, and remaining viable for up to 2 years at room 

temperature of 24ºC without losing activity. Despite being effective, there is the disadvantage 

of being reliant on individual animal consumption of the blocks which is almost never consistent 

(Sagüés, Fusé, et al., 2011; Waller, Knox, et al., 2001). 

Slow-release boluses have been used in ruminants for the last 40 years to provide several 

different compounds, such as anthelmintics like Ivermectin (Barth, Heinze-Mutz, Roncalli, 

Schlüter, & Gross, 1993). Waller, Faedo, et al. (2001) tested the same mechanism of slow-

release boluses as a way of constantly providing D. flagrans chlamydospores to sheep instead 

of feeding them. This procedure continues to release spores up to 3 weeks after administration, 

but the author refers that it should be over 4 weeks to be a viable method.  

Pellets are given to most livestock, due to the capacity of ensuring a complete and balanced 

nutrition. Several formulations have been tried to incorporate fungi in hand made sodium 

alginate pellets (Araújo, Stephano, & Sampaio, 2000; Braga et al., 2009; Tavela et al., 2013; 

Vilela et al., 2016) and industrial manufactured pellets (Arroyo Balán, 2017; Arroyo Balán et 

al., 2014; Hernández et al., 2016; Suárez, 2017) with a promissing high success rate in the 

control of parasites affecting sheep and horses. Parasiticide fungi have been incorporated in 

sodium alginate at the stage of myceliium, but the studies with industrial pellets involved the 

addition of spores and chlamydospores due to their higher resistance. This is important for 

pellet production because temperatures higher than 70ºC can be reached (Arroyo Balán et al., 

2014; Vilela et al., 2016). It has been demonstrated that the addition of fungal spores to 

industrial pellets does not modify their shelf life ( Arroyo Balán, 2017). 

Gelatine capsules have been used as a physical vehicle of fungi administration with the 

incorporation of lyophilized chlamydospores (Buske, 2010; Santurio et al., 2009) or spores 

directly collected and diluted from the surface of agar solid cultures (Faedo, Larsen, & Waller, 

1997). A very recent investigation by Vilá Pena (2017) demonstrated the effectiveness of orally 

administered fresh edible gelatines containing a blend of spores of D. flagrans and M. 

circinelloides against cyathostomins when given to grazing horses.   
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CHAPTER 3 - MATERIAL AND METHODS 

3.1 DEVELOPING LYOPHILIZED ORAL PRODUCT WITH VIABLE SPORES OF 

Duddingtonia flagrans AND Mucor circinelloides  

 
Following the recent research trends on how to develop new formulations containing 

parasiticide fungi, a novel idea emerged on using lyophilized product already containing 

spores. Theoretically, this would allow an easier storage and a more stable product like those 

already used in many pharmaceutical compounds (Bosmans, 1974). The experimental design 

has been approved by the Ethical committee of the University of Santiago de Compostela, 

complies with the Directive 2010/63/EU and partly supported by the Research Project protocol 

number CTM2015-65954-R (Spanish Ministry of Economy and Competitiveness; FEDER). 

 

3.1.1 PRODUCT MANUFACTURE 

 

Product was manufactured at the Laboratory of the COPAR Research Group (Faculty of 

Veterinary, Lugo, Spain). First, a submerged medium (COPFr – patent PCT/ES2014/070110), 

was prepared, by mixing (per litre of  distilled water) 500 ml of commercial chicken broth, 0.423 

mg FhrAPS protein (recombinant protein of Fasciola hepatica tegument) and 12.5 g of wheat 

(Triticum aestivum). Spores of Duddingtonia flagrans (CECT 20823) and Mucor circinelloides 

(CECT 20824) (Arias, Cazapal-Monteiro, Suárez, et al., 2013; Vilá Pena, 2017) were finally 

added. A minimal concentration of 3300 D. flagrans spores/ml (100 spores/30 µl) is required, 

while that of M. circinelloides is not relevant due to the elevated growth rate observed in the 

culture (Figure 8).  

Figure 8 - a) Production of spores of D. flagrans and M. circinelloides in submerged media (original). 
b) D. flagrans chlamydospores (1.) and M. circinelloides spores (2.) in liquid medium (original). 
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The concentration is calculated by counting the number of chlamydospores in a 30 µl aliquot 

of the submerged medium between coverslip and glass slide in an optical microscope (Leica 

DM2500, Spain) and using the following formula: 

 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑙𝑎𝑚𝑦𝑑𝑜𝑠𝑝𝑜𝑟𝑒𝑠 𝑝𝑒𝑟 𝑚𝑖𝑙𝑖𝑙𝑖𝑡𝑒𝑟 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑙𝑎𝑚𝑦𝑑𝑜𝑠𝑝𝑜𝑟𝑒𝑠 ×  𝑊𝑎𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒

𝐴𝑙𝑖𝑞𝑢𝑜𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
  

 

Eight grams of powder gelatine are added per 100 ml of submerged medium and left to hydrate 

for 10 minutes at room temperature. Meanwhile, 2.5-3 g of previously autoclaved (20 minutes 

at 121ºC) horse feed pellets are poured into plastic moulds. After the 10 minutes have elapsed, 

the solution is heated in a microwave (1050 W) for 30-45 seconds (if the total volume was 100-

300 ml), or 1.5-2 minutes (if the total volume was 450-600ml) and homogenized with a spatula. 

The temperature of the solution must reach 50-75ºC. 

 

The solution is then poured into the silicone moulds, kept at room temperature (so it starts to 

gel) and then transferred to a refrigerator (4-6ºC) until fully gelled. Products were retrieved 

from the moulds using a metal spatula and stored in plastic/glass boxes at -35ºC. 

When frozen, the products were transferred to a lyophilization machine (“Alpha 1-2 LD plus”, 

Christ, B. Braun Biotech®, Germany) for about 3 days until the process is over. The 

lyophilization process has two major steps: protein solution freezing and then drying the frozen 

solution under vacuum. Drying is divided into two substeps of removing the frozen water and 

removing non-frozen bound water (Wang, 2000). 

 

Lyophilized products were then mashed in a blender until they reach dimensions ranging from 

dust particles to 2 cm by 2 cm blocks, so they are easier to store and administer to the horses. 

Two and a half kg of product were stored in a plastic box and kept at room temperature for 

further use (Figure 9). 
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Figure 9 - Product manufacture steps (original): a) Pouring gelatine mixture into silicone moulds. b) 
Lyophilization machine. c) Product mashing in a blender. 

 

 

3.1.2 SPORE VIABILITY ASSESSMENT 

 

With the aim to verify that chlamydospores remained unaltered and to assess the amount 

within the product, 20 random samples of 0.03 g of product each, were thoroughly mixed with 

0.4 ml distilled water in eppendorf tubes (Figure 10). After mixing, the presence of M. 

circinelloides was verified and the amount of D. flagrans chlamydospores per gram (CPG) of 

lyophilized product calculated by counting the number of chlamydospores in a 30 µl aliquot of 

the mixture, between coverslip and glass slide in an optical microscope and using the following 

formula: 

 𝐶𝑃𝐺 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑙𝑎𝑚𝑦𝑑𝑜𝑠𝑝𝑜𝑟𝑒𝑠 ×  𝑊𝑎𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒

𝐴𝑙𝑖𝑞𝑢𝑜𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 × 𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑤𝑒𝑖𝑔ℎ𝑡
  

 

Figure 10 - Lyophilized product mixed with distilled water in eppendorf tubes (original). 
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Three months later, to verify the absence of degradation, changes, abnormal odour, as well as 

that chlamydospores numbers and viability remained unchanged, a visual exam followed by 

the previous counting protocol were applied to the product kept within the plastic box.  

 

3.2 ASSESSING FUNGI IN VITRO GROWTH AFTER PRODUCT MANUFACTURE 

 

Even with the presence of seemingly viable spores within the product, there was no certainty 

that these would be able to continue their life cycle according to normal morphogenesis. Then, 

Petri dishes with Wheat-Agar-Chloramphenicol (ATC) and Water-Agar-Chloramphenicol 

(AAC) media were placed with product to verify if there was any development of new spores 

and the lack of abnormalities. 

 

Previously, 8 Petri dishes with ATC solid medium and 12 Petri dishes with AAC solid medium 

were prepared (Figure 11). ATC medium is composed of 20 g of agar, 20 g of corn wheat flour, 

1 L of distilled water, and, for every 1 L of medium, 500 mg of Chloramphenicol while AAC 

medium is composed of 20 g of agar, 1 L of distilled water, and, for every 1 L of medium, 500 

mg of Chloramphenicol. These mediums were previously autoclaved (121ºC, 20 minutes) and, 

when the temperature dropped to 37ºC, poured into sterile Petri dishes while inside a laminar 

flow cabinet. They were kept under UV light for 12 hours before being sealed with Parafilm M® 

and left at room temperature until used (Arroyo Balán, 2017; Hernández Malagón, 2014). 

Following medium preparation, 0.1 g of lyophilized product were mixed with 0.5 ml of distilled 

water in eppendorf tubes and then poured at the centre of the medium surface using a 

discardable plastic Pasteur pipette and resealed with Parafilm M®. 

 

Figure 11 - Petri dishes assembled with solid medium and product for fungi growth (original). 
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After assembled, Petri dishes were kept at 25ºC ± 2ºC in total darkness. 10 days after being 

assembled, each plate was analysed for the presence of new spores using an optic 

microscope.  

 

3.3 ASSESSING FUNGI PREDATORY ACTIVITY AFTER PASTURING HORSES BEING 

FED  

 

Following product manufacture, fungi predatory activity against gastrointestinal nematodes 

was assessed following product oral administration to horses. A total of 12 Galician Pure Breed 

horses, 4-8 years old, with no clinical signs were selected at the “Gayoso Castro” farm 

(property of Provincial Deputation of Lugo, Spain) (Figure 12), and divided into 2 groups. The 

first group (Group T), was constituted by 5 horses (Figure 13) and received product containing 

fungal spores, while the second group (Group C) was composed by 7 horses serving as 

controls, without receiving product. Both groups were kept in two adjacent pastures each with 

2 hectares with constant access to grazing. These pastures have already been occupied by 

horses for the last ten years. 

 

Figure 12 - Air view of the two pastures from Provincial Deputation of Lugo used in this study (Map 
data ©2017 Google). 
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Figure 13 – Galician Pure Breed horses from group T (original) 

 

 

From 26th September 2017 to 22nd March 2018, each horse from group T was hand-fed with 

10 g of product (Figure 14), 3 days a week (Monday, Wednesday and Friday). With the results 

from the chapter 5.2.2 already gathered, 10 g of product would be enough to give 105 

chlamydospores to each horse, considering some waste on their behalf. This would mean a 

weekly average around 3-4 x 105 D. flagrans chlamydospores per horse. 

 

Figure 14 -  Preparation of individual product doses (original). 
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3.3.1 ASSESSING FUNGI EFFECT ON HORSES’ FEC 

 

The effect of fungi on gastrointestinal nematodes was established by comparing the EPG 

values in faeces of the two groups by means of FEC techniques and reduction formulas. 

On September 26, the day in which the administration of fungi started, faecal samples from all 

horses in the two different groups were collected. Samples were taken directly from the rectum 

or from fresh faeces on the ground (only when sure of the source animal identification) using 

disposable insemination gloves and kept at 3-6 ºC until analysed once in the laboratory. 

 

The samples were analysed using a modified McMaster technique to assess the 

genus/species (if possible) and the proportion they existed in both groups. Horses that reached 

a cut-off value of 300 gastrointestinal nematodes’ EPG were treated with Ivermectin pour-on 

(5 mg of ivermectin (Paramectin Pour-on®) per 5 kg of body weight) (Francisco, I.et al., 2011; 

Reinemeyer & Nielsen, 2013). The decision to use this was made due to the wild nature of the 

horses, making harder to use other types of Ivermectin administrations such as oral. 

 

After 13 days (9th of October 2017), the same procedure of collecting and analysing was used 

to evaluate treatment efficacy (AAEP, 2013). Any horse above the same cut-off was treated 

again with a dosage of 10 mg of Ivermectin per 5 kg of body weight and all the horses in both 

groups got reevaluated after 14 days (23rd of October 2017). From the 13th of November 2017 

until 22nd March 2018, faecal samples from each horse were collected monthly as previously 

described and evaluated using the modified McMaster technique. It is important to mention 

that, on November 15th, the two groups swapped pasture with each other (the decision was 

taken by the farm direction). 

The following formula was applied to each month and overall (from November to March) giving 

us an idea of the EPG reduction effect when comparing between groups (Cruz, 2015). 

 

 % 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  [1 − (
𝑇 𝑔𝑟𝑜𝑢𝑝 𝐸𝑃𝐺 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝐶 𝑔𝑟𝑜𝑢𝑝 𝐸𝑃𝐺 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
)] × 100  

 

Faecal egg count reduction test (FECRT) is used to determine the efficacy of anthelmintics. 

This test should only be used in a group context, not at individual level, and makes use of the 

following formula, applied whenever faeces were collected and processed with modified 

McMaster technique. (AAEP, 2013): 

 

 𝐹𝐸𝐶𝑅𝑇 (%) =  
𝐸𝑃𝐺 (𝑃𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) − 𝐸𝑃𝐺 (𝑃𝑜𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)

𝐸𝑃𝐺 (𝑃𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)
 × 100  
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When using Ivermectin, FECRT above 98% means that the strongyle population is susceptible 

to the treatment, 95-98% suspect to resist and below 95% is resistant to the anthelmintic. 

Values below 95% should first be an indication to repeat treatment ir order to discard false 

cases of resistance (AAEP, 2013). 

Egg-Reappearance Period (ERP) is the period between the last treatment with anthelmintics 

and the reappearance of relevant strongyle egg shedding (AAEP, 2013; Lyons et al., 2011). It 

makes use of the previous formula results so that the weeks between treatment and FECRT 

below 90% correspond to the ERP. For strongyles treated with Ivermectin, ERP is considered 

normal when it is around 6-8 weeks. 

 

3.3.1.1 MODIFIED MCMASTER TECHNIQUE 

 

Modified McMaster technique is a quantitative technique for FEC useful to assess the EPG 

numbers in a faecal sample. Despite being a quantitative technique, it can also be used as 

qualitative and allow for parasite identification. 

 

The used technique follows the procedure found in the Manual of Veterinary Parasitological 

Laboratory Techniques (Ministry of Agriculture, Fisheries and Food [MAAF], 1986), with some 

modifications (Figure 15). Three grams of a faecal sample are introduced in a plastic flask with 

50 ml capacity, and mixed 42 ml of water to achieve an almost homogenous solution. The 

solution is then filtered using a mesh with 150 µm pore diameter. After being filtered, the 

solution is poured into two 12 ml centrifuge tubes and centrifuged at 2000 rotations per minute 

(rpm) for 10 minutes. All supernatant is discarded using a vacuum pump and approximately 8 

ml of saturated sodium chloride (NaCl) solution (= 1.2 g/ml) is added. Using a discardable 

plastic Pasteur pipette, the content of the centrifuge tubes is mixed and retrieved to fill the two 

chambers in a McMaster chamber.  

 

Figure 15 – Modified McMaster technique (original): a) Material needed for preparation. b) McMaster 
slides ready for microscopical examination. 
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The McMaster chamber is examined under a microscope using 100x magnification, focusing 

the existing grid and counting the number of parasite eggs. The EPG is then calculated using 

the following formula (50 EPG sensitivity): 

 

 𝐸𝑃𝐺 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑔𝑔𝑠 𝑖𝑛 𝑀𝑐𝑀𝑎𝑠𝑡𝑒𝑟 𝑐ℎ𝑎𝑚𝑏𝑒𝑟 × 45 𝑚𝑙

0.30 𝑚𝑙 × 3 𝑔
 

 
3.3.2 ASSESSING LARVAE POPULATION 

 

Faecal samples collected in November 2017 and January 2018 were analysed by means of 

the faecal culture method, for the identification of L3 genus and the species when possible, 

and the larvae population ratio present in the faeces.  

 

3.3.2.1 FAECAL CULTURE METHOD 

 

Faecal culture is used to identify and quantify the number of L3 larvae present in faeces. For 

this purpose, 10 g from the previously collected faecal samples of all horses were put in plastic 

boxes (Figure 16) provided with holes to allow oxygenation. Every 2-3 days they were 

humidified with water using a discardable Pasteur pipette. Boxes were kept for 30 days at room 

temperature in order to allow the fungi to grow and larvae to develop (Paz Silva, personal 

communication, November 13, 2017). 

 

Figure 16 - Plastic boxes with faecal samples for faecal culture method (original). 

 

 

Once the 30 days have elapsed, the larvae are collected using a modified Baermann technique 

(Vilá Pena, 2017). First, a 12 ml centrifuge tube is placed at the end of a rubber tube attached 

to a funnel. Following the assembly of the apparatus, all the faecal content from each box is 

collected, put on a filter paper with 200 µm pore diameter and put on the top of the funnel. The 

apparatus is then filled with tepid water until it covers the faeces, allowing the larvae to migrate 
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from the faeces to the water and then to the end of the centrifugal tube (Figure 17). After 12 to 

24 hours, each tube is collected and centrifuged at around 1000 rpm for 5 minutes. 

Supernatant is removed using a vacuum pump until around 2 ml to 5 ml are left in the tube, 

depending on the amount of deposit left. The content of each tube is mixed and a 100 µl aliquot 

is retrieved using a micropipette. This aliquot is then analysed between coverslip and glass 

slide in an optical microscope for the presence and identification of larvae according to the 

keys suggested by Madeira de Carvalho et al. (2008). All the content of each tube was 

analysed according to this method. 

 

Figure 17 - Assembled Baermann apparatus for the retrieval of larvae (original). 

 

 

3.4 DATA STORAGE AND STATISTICAL ANALYSES 

 

Data obtained in the current study were stored in a Microsoft Excel 2016® datasheet and 

analysed using The R Project for Statistical Computing version 3.4.1. The Shapiro-Wilk test 

was used to test the normality of the samples for both CPG and EPG. 

CPG in the first and second assessments was transformed using a Log10 base. The Welch 

Two Sample T-Test was applied to see if there were differences between CPG counts in the 

two assessments. 

EPG for each horse group were analysed as a total (from November to March) and in each 

individual month. The Welch Two Sample T-Test was applied if the results were normal and a 

Mann-Whitney U-test when not, signalling differences between groups T and C. 

Chi-square tests were applied for larvae population present in November and January with the 

same aim described above. 

All tests were conducted at a significance level of 5% (p <0.05). 
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CHAPTER 4 – RESULTS 

 

4.1 PRODUCT MANUFACTURE AND SPORE VIABILITY 

 

Lyophilized product weight ranged from 4 to 7 g, depending on the mould format and number 

of nutritional pellets used. 

In the first assessment of spore viability after production, all 20 samples of product contained 

seemingly unaltered and viable spores of D. flagrans and M. circinelloides. One of the samples 

showed an undamaged M. circinelloides zygospore, as shown in Figure 18. D. flagrans 

chlamydospores were counted and averaged 1.5 x 104 CPG ( SD = 14448). Thus, 10 g of 

product administered per os to each horse should guarantee a minimum ingestion of 105 

chlamydospores. 

 

Figure 18 - M. circinelloides zygospores (1.) and D. flagrans chlamydospores (2.) present in product 
(original). 

 

 

Three months after storing the product in a plastic box, no degradation, alteration, abnormal 

odour, colour or macroscopic fungi growth were observed. Spores of D. flagrans and M. 

circinelloides did not show any change regarding their morphology. Ten assessments of 

chlamydospores concentration showed an average of 2.2 x 104 CPG ( SD = 5302), showing a 

narrower range of results than the first assessment. The results for both the first and second 

assessment of chlamydospores concentration are scrutinised in Appendix A.  

Log10 results were found normal under Shapiro-Wilk test (w = 0.97, p = 0.5744) and statistically 

different between both assessments with Welch Two Sample T-Test (t(26) = -3.79, p < 0.001). 
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4.2 FUNGAL GROWTH IN VITRO 

 

After 10 days, all 20 Petri dishes assembled with lyophilized product showed growth of new D. 

flagrans hyphae and chlamydospores, as well as M. circinelloides hyphae and zygospores, 

outside the initial central area. It is important to note that growth was substantially more 

exuberant in ATC medium than AAC medium (Figure 19 and Figure 20). 

 

Figure 19 - Macroscopic aspect of fungi growth in Petri dishes (original). a) Example of growth in ATC 
medium. b) Example of growth in AAC medium. 

 

 

Figure 20 - Microscopic aspect of fungal growth in Petri dishes (original). a) D. flagrans conidia (1.) 
and M. circinelloides spores (2.) present in ATC medium. b) White arrows indicate the formation of 

new D. flagrans chlamydospores from the present hyphae present in AAC medium. 
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4.3 FUNGI INFLUENCE IN HORSES’ FEC 

 

In the first FEC performed on 26th September 2017 all horses in both groups T and C surpassed 

the 300 EPG cut-off for gastrointestinal nematodes, namely strongyle eggs (Figure 21). No 

other parasite eggs or larvae were observed throughout this study. All horses were then treated 

with Ivermectin pour-on due to these results. 

 

Figure 21 – Horse strongyle egg observed with modified McMaster Technique (original). 

 

 

Thirteen days after treatment with Ivermectin, the second FEC showed that only one horse in 

group T (horse 7487) had 650 EPG and one horse in group C (horse 7020) had 100 EPG. All 

other horses had no observable eggs in the faecal samples. Due to these results, horse 7487 

in group T was treated again with Ivermectin pour-on. 

On 23rd October all horses were assessed again for FEC and only the horse 7020 in group C 

showed the excretion of parasite eggs in faeces. This assessment was performed 4 weeks 

after the treatment with Ivermectin for all horses, 2 weeks for horse 7487 in group T. 

 

The FECs of all horses in group T was below the 300 EPG cut-off until February 2018, lasting 

two more months without the need for treatment than the horses in group C. In the control 

group, in December two horses had already surpassed the 300 EPG cut-off. In February only 

one horse in group T exceeded the cut-off, in contrast to what happened in group C where all, 

but one had already gone over it. The EPG average of both groups throughout the study are 

represented in Graphic 1 and percentage of horses exceeding the cut-off are shown in Graphic 

2. Individual FEC results are scrutinised in Appendix B. 
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Graphic 1 - Average EPG for groups T and C from September 2017 to March 2018. 

 

 

Graphic 2 – Percentage of horses exceeding 300 EPG cut-off in group T and group C. 

 

 

Statistically significant differences between group T and C FEC were found overall, from 

November to March (w = 0.79, p < 0.001 and U = 600.5, p = 0.01391), February (w = 0.93, p 

= 0.3763 and t(9) = 3.13, p = 0.0121) and March (w = 0.94, p = 0.5422 and t(10) = 4.32, p = 

0.001573). 

No statistically significant differences between groups were found in November (w = 0.61, p < 

0.001 and U = 21.5, p = 0.4879), December (w = 0.73, p = 0.001704 and U = 29.5, p = 0.0528) 

and January (w = 0.68, p < 0.001 and U = 21, p = 0.6187). 

To apply the reduction formula described in the Material and Methods section, from November 

to March, an arithmetic mean of all horses’ EPG from each group was obtained. These results 

are displayed in Table 2 and Graphic 3.  
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Table 2 - Average EPG for groups T and C from November 2017 to March 2018, overall and 
respective % Reduction. (*) highlights where EPG was statistically different between groups. 

 
Average EPG in  

group T 

Average EPG in  

group C 
% Reduction  

November 10 21 53 

December 20 179 89 

January 140 221 37 

February (*) 230 807 72 

March (*) 310 871 64 

Overall (*) 142 420 66 

 

Graphic 3 - Average EPG for groups T and C from November 2017 to March 2018 and overall. (*) 
highlights where EPG was statistically different between groups. 

 

  

FECRT (Graphic 4) was 99% for the first two months (around 7 weeks) after treatment with 

anthelmintics in both groups except in October for group T due to the already mentioned case 

of horse 7487. 

 

(*) (*) (*) 



40 
 

Graphic 4 – FECRT results for group T and C. 

 

 

As observed in Graphic 4, an ERP of 16 weeks was found in both groups. 

 

It is important to note that D. flagrans chlamydospores and M. circinelloides spores were found 

in group T faecal samples and no horse rejected the product. No clinical signs associated with 

parasite activity or adverse reaction to product was recorded for the duration of this study. 

 

4.4 LARVAE POPULATION 

 

Only larvae belonging to the subfamily Cyathostominae were found in the faecal cultures from 

November and January. 

In November, 73.9% of the collected larvae in the group T were identified as Cyathostomum 

spp. type A (Figure 22), 14.5% Cyathostomum spp. type C (Figure 23) and 11.6% 

Cyathostomum spp. type D (Figure 24). In group C 74,2% of the larvae were Cyathostomum 

spp. type A, 14.8% Cyathostomum spp. type C and 11% Cyathostomum spp. type D. Chi-

square test, x2 (2, N = 539) = 0.058, p = 0.9715, showed no stastically significant difference 

between both groups. 

In January, no Cyathostomum spp. type C was found and Cyathostomum spp. type D was 

found only in group C. Group T only had Cyathostomum spp. type A (100%) larvae, while 

group C had 94.8% of the larvae identified as Cyathostomum spp. type A and 5.2% were 

Cyathostomum spp. type D. Chi-square test, x2 (1, N = 726) = 8.88, p = 0.002876, showed a 

statistically significant difference between both groups. 
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Figure 22 – Cyathostomum spp. type A, with 8 intestinal cells (first 2 cells as a pair side by side, 
followed by 6 cells in a single row) (original). 

 

 

Figure 23 - Cyathostomum spp. type C, with 8 intestinal cells (first 4 cells as pairs side by side, 
followed by 4 cells in a single row) (original). 
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Figure 24 - Cyathostomum spp. type D, with 8 intestinal cells (8 cells in a single row) (original). 
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CHAPTER 5 - DISCUSSION 

 

The present study aimed to develop a new viable formula for oral administration of parasiticide 

fungi for the control of gastrointestinal nematodes in horses. The proposed formula of 

lyophilized product could be a viable alternative in pasturing horses or other type of horse 

management like stabulation, working as a treat or a reward for behaviour, without the need 

for constant administration. 

 

5.1 PRODUCT MANUFACTURE AND SPORE VIABILITY 

 

A correct storage and conservation method of parasiticide fungi is essential to maintain their 

activity after prolonged storage periods (Mota, Campos, & Araújo, 2003) and lyophilization is 

one the best techniques to keep fungi viable, stable and unspoiled while stored (Bosmans, 

1974). 

Santurio et al. (2009) reported the first use of lyophilization in Duddingtonia flagrans 

chlamydospores, where their resistance to the process was demonstrated, even though a 10-

fold reduction after treatment occurs. Bosmans (1974) had already reported a successful 

lyophilization in Arthrobotrys genus. D. flagrans was previously classified as Arthrobotrys 

flagrans (Barron, 1979) but Bosmans (1974) does not specify the species. Mucor circinelloides 

is also able to resist lyophilization process (Von Arx & Schipper, 1978; Bosmans, 1974). Beside 

these studies, there is no information about the ability of a blend of spores of D. flagrans and 

M. circinelloides to survive lyophilization while already inserted in a gelatinous substance. 

Lyophilizing products containing the fungal spores allow their direct administration to animals, 

avoiding the troubles of appropriate dosage and preservation of freshly prepared gelatine 

capsules as indicated by Santurio et al. (2009). 

 

Lyophilized product remained unchanged for more than a three months period and equally 

treated products with fungi remain unspoiled up to six months (Bunse & Steigleder, 1991) or 

even 10 years (Bosmans, 1974). This seems to point that fungi do not develop while the 

product was stored in the plastic box. The presence of visible hyphal growth would hinder 

compliance from farmers when it comes to feeding the animals with these products. 

The differences in the two assessments could be explained by the different sample size 

between them (20 in the first and 10 in the second) and their small number (De Winter, 2013). 

Is it required to recall that it was used a minimum concentration of chlamydospores from the 

liquid medium. With this in mind, different product samples could have had more spores than 

others before lyophilization. We can also take into account the size of the product that is 

assessed. A 0.03 g sample can be very small and different people did the assessments, 

possibly leading to distinct ways of randomly selecting them. 
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There is no commercial product, with parasiticide fungi, that is developed and sold in Europe 

with the aim of being used for the control of human or animal parasites (Arroyo Balán, 2017). 

The lyophilization procedure would allow manufacturers, mainly industrial factories, to develop 

a stable product that can compete with already existing ones. It should be emphasized that 

industrial animal nutritional pellets industrially manufactured, should present a shelf life of three 

months (Arroyo Balán, 2017). Easier storage is also an advantage for farmers as lyophilized 

products wouldn’t need any kind of refrigeration, unlike fresh gelatines vehicles (Vilá Pena, 

2017), needing only to be stored in a slightly dry environment like a sealed plastic box. 

 

5.2 IN VITRO GROWTH 

 

It has been stated that nutrient-rich media such as ATC stimulate the growth of hyphae, while 

nutrient-poor media like AAC do it for conidia, spores and chlamydospores (Kamp & Bidochka, 

2002). This would explain the macroscopic difference between fungi growth in ATC and AAC 

media, where the former has a more exuberant macroscopic development compared to the 

later. Although D. flagrans and M. circinelloides showed no sign of antagonism, there are other 

blends of soil fungi showing it, preventing each other to develop in an optimal way (Arias, 

Cazapal-Monteiro, Suárez, et al., 2013). 

 

After heat treatment in the manufacturing of nutritional pellets, the spores of D. flagrans and 

M. circinelloides developed new hyphae 5 and 4 days, respectively, and new spores by 17 and 

8 days, respectively, after being assembled in a solid medium containing agar and wheat 

(Arroyo Balán, 2017). Opposite to this, without heat treatment, Arias, Cazapal-Monteiro, 

Suárez, et al. (2013) showed the growth of new D. flagrans and M. circinelloides as soon as 7 

days after inoculation in the agar-wheat solid medium. Grønvold et al. (1996) showed the 

presence of new D. flagrans chlamydospores after 5 days in Corn-Meal-Agar medium. The 

results of the present study seem to be in agreement with the last two studies, showing the 

presence of new spores from both species in all plaques, after 10 days. Fungi could be 

relatively less affected by lyophilization and develop faster than the ones in which the heat 

treatment applied in pellet fabrication was used, but this should be further tested under similar 

conditions. This could be an advantage, due to a faster fungi development over the eggs and 

larvae present in the faeces. 
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5.3 EFFECT ON HORSE FEC 

 

Only strongyle eggs were found in all horses from September to March. These results agree 

with the ones in this area of Spain for pasturing horses (Francisco, I. et al., 2009; Vilá Pena, 

2017). Since only strongyle eggs were observed, treatment with Ivermectin was correctly 

applied, as recommended for this parasitological status (Bowman, 2014). On 9th October, 

following the treatment with Ivermectin, all animals had an FEC below the 300 EPG cut-off 

except one. This could have been due to the difficult to estimate the appropriate weight of the 

horses (indigenous) and, as a consequence, their right dosage. The second treatment (10 mg 

of Ivermectin per 5 kg of body weight) led to a total reduction of EPG, supporting the previous 

statement. FECRT results of 99% are in conformity with what is expected to happen when 

strongyle population is still susceptible to treatment with Ivermectin (AAEP, 2013). These 

results are in line with Francisco, I. et al. (2011), Hernández et al. (2016) and Vilá Pena (2017) 

regarding the successfulness of Ivermectin pour-on agaisnt strongyle infections. 

 

The ERP of about 16 weeks found in both groups is higher than the ones usually reported for 

Ivermectin (AAEP, 2013; Lyons et al., 2011). Not only this would mean that treatment was 

effective agaisnt adults but also encysted L3 due to ERP being higher than prepatent period 

of strongyles. This would lead to believe that egg-shedding after treatment would be due to the 

development of new larvae infecting horses after grazing. It is important to remember that a 

switch between padocks was made in November, so horses from group T switched to group 

C padock and vice versa. Although D. flagrans was not able to withstand in the environment 

for more than 2 months after being released in the faeces (Saumell et al., 2016), the fungi 

would still be able to act for these 2 months after the switch, reducing the number of larvae 

present and able infect horses in group C. The FECs in February and March were already 

made without the influence of fungi in the environment for group C, contrary to what happened 

to group T, leading to an higher increase in EPG in the former. 

 

In Oceanic climate areas, such as those used in this research, there is a rise in FEC from most 

parasites in spring and autumn (Nielsen et al., 2007). An increase in FECs for all horses in 

February and March is consistent with the life cycle and pathology previously described for 

strongyle parasites because their ability to release more eggs when environmental conditions 

become more adequate for larvae development (Love et al., 1999; Taylor et al., 2016). Despite 

surpassing FEC cut-off, the horses were not treated again with anthelmintics to observe the 

effect of the fungi once EPG starts to increase. 

 

Using the lyophilized product, FEC ranged from an average 807 EPG in group C to 230 in 

group T, which means a 72% reduction in February, and from  871 EPG in group C to 310 
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EPG in group T, a 64% reduction in March. Statistically significant differences in the FECs 

were observed during these two months, just like with the overall FECs, with a reduction of 

66% between both groups. Horses from group T had FECs below the threshold of 300 EPG 

for three months longer than in group C, which would mean a decrease of two or three 

treatments with anthelmintics over the course of a year. As pointed before, a simple usage of 

targeted treatments with FEC techniques would reduce the anthelmintic usage by up to 82% 

(Lester et al., 2013), so a combined use of this treatment with parasiticide fungi could be a 

major benefit in parasite control. Due to the only difference between the two groups of horses 

consisted of receiving lyophilized product with parasiticide fungi, it seems correct to assume 

that they keep their activity despite the lyophilization treatment, as demonstrated in in vitro 

assays. Accordingly, this represents a viable and alternative formula of administration to those 

that already exist. 

 

A reduction of 69% of Haemonchus contortus larvae in water agar media by using lyophilized 

D. flagrans chlamydospores, when compared to the control group, has been reported. This 

study showed that their ability to resist passage through the sheep gastrointestinal tract while 

keeping their parasitic activity (Santurio et al., 2009). Later, Santurio et al. (2011) reported that 

a group of sheep receiving lyophilized chlamydospores (daily average of 106 per animal) was 

able to keep FECs of Trichostrongylidae below 500 EPG for 12 months and had statistically 

significant differences between control and test groups, before the former being treated with 

anthelmintics. The lyophilized spores of D. flagrans showed no decrease in its parasiticide 

activity at different temperature ranges following passage through sheep intestinal tract 

(Buske, 2010). 

 

Other fungi used in biological control such as Arthrobotryis oligospora (Nalepina, Matskevich, 

Kozhukhar & Teplyakova, 1990), Arthrobotriys musiformis (Garcia, 2007), Arthrobotryis 

robusta and Monacrosporium thaumassium (Mota et al., 2003) were already stored using a 

lyophilization process and tested with success. This shows the possibility of applying this 

treatment with other parasiticide fungi better suited for different situations and environments. 

 

Despite the rising number of studies with parasiticide fungi, there are only a few studying the 

action of larvicide and ovicide fungi on parasites when mixed and used together. The combined 

use of both types of parasiticide fungi could help to enlarge the spectrum of action and even 

support the final effect, where ovicide fungi would damage parasite eggs and destroy the 

embryos while larvicide fungi would act over the larvae that were still able to develop (Arroyo 

Balán, 2017). Some of these studies use the same fungi strains as the ones from the present 

work but with different administration formulas, concentration and frequency. 
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Vilá Pena (2017) worked with the same D. flagrans and M. circinelloides strains but inserted 

in fresh edible gelatines vehicles, without any additional treatment after gelation. From 

November to May, spores were given two days a week (Tuesday and Friday) to the same 

horses used in the present work, with the control group also being the same. Each horse 

received an average of 4 x 105 chlamydospores each administration, meaning 8 x 105 per 

week. Comparing to the present work it was used a doubled amount of chlamydospores. The 

EPG counts were statistically different between the groups from December to May, more 

specifically March, April and May, similar to the ones observed in the present study. Reduction 

in EPG for the group receiving chlamydospores reached 65% when compared to the control 

group, compared to the 66% (72% when significant) in the present study. FECRT in the test 

group decreased from 96% in December to 62% January and 21% in February, a more 

significant decrease than in the present study where it went from 98% to 85% and then 75%. 

These results are very similar despite a different anthelmintic administration and a lower 

frequency of administration but higher numbers of chlamydospores in the referred study. 

Besides, as soon as there is a steady increase in temperature, it is noted a higher predatory 

activity, as remarked by Madeira de Carvalho et al. (2008), which can also explain an increase 

of fungi development and consequently a higher parasiticide activity in February and March.  

It should be reminded that the fresh gelatines used by Vilá Pena (2017) needed refrigeration 

after being produced and would only last about 3 weeks, in contrast with the minimum 3 months 

of lyophilized product conservation at room temperature. Despite the higher temperature when 

comparing refrigeration and room temperature, it has been shown this has no effect on fungi 

parasiticide activity (Fitz-Aranda et al., 2015). Regardless of the higher cost and time involved 

in the production, lyophilized products have the big advantage of an easier storage and longer 

shelf-life. 

 

Another study with the same fungi strains was performed by Hernández et al. (2016) but the 

spores were added to nutritional pellets during the industrial manufacturing. Horses in the test 

group were fed on a daily basis with 2.5 kg of pellets containing 2 x 106 D. flagrans 

chlamydospores and 2 x 106 M. circinelloides spores per kg. A total of 5 x 106 chlamydospores 

were given each day, 35 x 106 per week, almost over 100 times the amount used in the present 

work. With this, the referred study was able to keep strongyle egg output below 300 EPG for 

over 64 weeks after an anthelmintic treatment in the test group and some statistically significant 

differences were also found between the test and the control groups. This administration 

formula was more effective in keeping EPG values below the established cut-off than the one 

in the present work, but the differences appear to be related to a more frequent and larger 

administration dose of fungi. Although D. flagrans is capable of reducing cyathostomin egg 

output with a lower concentration of chlamydospores as well as with a higher concentration, 

the higher frequency and the 100-fold amount of chlamydospores given to horses can explain 
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the difference between the present and preceding study of Hernández et al. (2016) (Paz-Silva 

et al., 2011). 

 

A similar study in horses, reported by Braga et al. (2009), giving D. flagrans mycelium in 

sodium alginate pellets, two times a week, achieved a 46.2% average reduction in 

cyathostomin EPG after three months. In a field trial conducted in Portugal consisting of daily 

feeding horses with 5 x 105 chlamydospores/kg of body weight mixed in the feed premix, no 

statistical differences in the EPGs between treated and not treated groups was obtained, but 

a reduction of over 60% in the group averages was observed (Madeira de Carvalho et al., 

2011).  

Both these studies used a different strain of D. flagrans than the one used in the present study, 

AC001 in Braga et al. (2009) and Troll A in Madeira de Carvalho et al. (2011), which could 

explain some of the differences in the results. Even though the frequency in which 

chlamydospores were given to the horses by Madeira de Carvalho et al. (2011) is similar to 

the one reported by Hernández et al. (2016), the total number of spores fed was increased by 

20-fold the amount per week. Taking into account that administration formula and fungus strain 

were also different, the results were significantly different giving the idea of a more effective 

formula or a strain with more parasiticide activity. 

 

Other studies have been researching the use of D. flagrans and M. circinelloides in the control 

of horse parasites with relative success, just like it happens with livestock parasites. 

The formula used in this present study allowed us to achieve comparable results to other 

studies already performed, even with a lower concentration of fungi spores and lower 

frequency of administration, showing a valuable promise for future product development. This 

formula can be applied when horses are not fed daily with pellets, as a treat, for sport and 

teaching horses. 
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5.4 LARVAE POPULATION 

 

The larvae population in November was similar in both groups and only Cyathostominae 

specimens were found. These results agree with previous studies reporting that 95-99% of the 

strongyle eggs in horses belong to cyathostomins (AAEP, 2013; Reinemeyer, Smith, Gabel, & 

Herd, 1984). Cyathostomum spp. type A was the most common, followed by Cyathostomum 

spp. type C and Cyathostomum spp. type D.  

Vilá Pena (2017) found similar results with the same horse groups, with the exception that 

Gyalocephalus capitatus larvae were also identified. Madeira de Carvalho (2001) found in 

horses that 75% of the Cyathostomum L3 belonged to Cyathostomum spp. type A, 12% to 

Cyathostomum spp. type C and 10% Cyathostomum spp. type D, very close to the ones 

reported in the present study. The presence of fungi in group T appeared to have no difference 

in larvae type ratio between groups. 

 

In January a different scenario happened with the absence of Cyathostomum spp. type C in 

both groups and no Cyathostomum spp. type D in group T. Cyathostomum spp. type C larvae 

belong to Cylicostephanus longibursatus, Cylicostephanus calicatus and Cylicostephanus 

hybridus (Madeira de Carvalho et al., 2008). 

The absence of Cyathostomum spp. type D in group T is significant and explains the 

observable differences between the two groups in January. Thus, new studies should be 

performed to test if D. flagrans and M. circinelloides affect different Cyathostomum spp. types 

of larvae and eggs in distinct ways. 
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CHAPTER 6 - CONCLUSION 

 
This study allowed the successful development of a new viable formula for oral administration 

of parasiticide fungi spores to prevent the infection by gastrointestinal nematodes in pasturing 

horses, increasing the range of possibilities for future product development and application. 

Thus the aims for this study have been achieved: 

 

1. Development of lyophilized product with viable D. flagrans chlamydospores and M. 

circinelloides spores. 

2. Regular in vitro growth of the fungi after product manufacture. 

3. Fungi kept their predatory activity against gastrointestinal nematodes as significant 

differences were found between both horse groups EPG. 

 

Biological control continues to be one of the best complementary methods to be used in 

parasite control in order to reduce the frequency of parasiticide treatments and thus 

anthelmintic resistance. By developing new formulas for the distribution of parasiticide fungi it 

will allow manufacturers and farmers the choice to apply it in different situations, making easier 

a better and more rational use of anthelmintic treatments. 

 

Research on parasiticide fungi for biological control of parasites will continue to be developed 

as more formulae for their administration, new schedules of administration and new fungi 

strains are discovered. In the future, research will provide the industrial development of 

products for an easy access as well as more choices, so that every situation can have a wide 

range of products to choose from. 

 

  



51 
 

BIBLIOGRAPHY 

 AAEP. (2013). American Association Equine Practitioners. Parasite Control Guidelines. 
Lexington: American Association of Equine Practitioners. 
 

Alexopoulos, C. J. & Mims, C. W. (1979). Introductory Mycology (3rd ed.). John Wiley & 
Sons. 
 

Andersen, U. V., Howe, D. K., Dangoudoubiyam, S., Toft, N., Reinemeyer, C. R., Lyons, E. 
T., Olsen, S. N., et al. (2013). SvSXP: a Strongylus vulgaris antigen with potential for 
prepatent diagnosis. Parasites \& vectors, 6(1), 84. BioMed Central. 
 

Anderson, R. C. (2000). Nematode parasites of vertebrates: their development and 
transmission (2nd ed.). Cabi. 
 

Araújo, J. V., Stephano, M. A. & Sampaio, W. M. (2000). Effects of temperature, mineral salt 
and passage through the gastrointestinal tract of calves on sodium alginate formulation of 
Arthrobotrys robusta, a nematode-trapping fungus. Revista Brasileira de Parasitologia 
Veterinária, 9(1), 55–59. Colégio Brasileiro de Parasitologia Veterinária. 
 

Arias, M. S., Cazapal-Monteiro, C. F., Suárez, J., Miguélez, S., Francisco, I., Arroyo, F. L., 
Suárez, J. L., et al. (2013). Mixed production of filamentous fungal spores for preventing 
soil-transmitted helminth zoonoses: a preliminary analysis. BioMed research international, 
2013. Hindawi Publishing Corporation. 
 

Arias, M. S., Cazapal-Monteiro, C. F., Valderrábano, E., Miguélez, S., Rois, J. L., López-
Arellano, M. E., Madeira de Carvalho, L. M., et al. (2013). A preliminary study of the 
biological control of strongyles affecting equids in a zoological park. Journal of Equine 
Veterinary Science, 33(12), 1115–1120. Elsevier. 
 

Arias, M. S., Suaréz, J., Cortiñas, F. J., Francisco, I., Suárez, J., Romasanta, A., Cazapal-
Monteiro, C. F., et al. (2012). Restoration of fungal biota in the soil is essential to prevent 
infection by endoparasites in grazing animals. Fungi: Types, environmental impact and 
role in disease, 341–358. Nova Science Publishers Hauppauge, NY, USA. 

 
Arroyo Balán, F. L. (2017). Formulación de esporas de hongos parasiticidas en pellets 

nutricionales. Ph.D. Thesis. Lugo: Veterinary Medicine Faculty - University of Santiago de 
Compostela. 
 

Arroyo Balán, F. L., Uzal, D. G., Riádigos, S. M., Malagón, J. A. H., Lago, P., Vázquez, M. S. 
A., Suárez, J. L., et al. (2014). Incorporación de Esporas de Hongos en Pienso para el 
Control de Nematodos Gastrointestinales en Equinos. Pastagens e Forragens, 34, 35, 45. 
 

Von Arx, J. & Schipper, M. (1978). The CBS fungus collection. Advances in applied 
microbiology (Vol. 24, pp. 215–236). Elsevier. 
 

Barger, I. (1997). Control by management. Veterinary Parasitology, 72(3-4), 493–506. 
Elsevier. 
 

Barron, G. L. (1977). The nematode-destroying fungi. Canadian Biological Publications Ltd. 
 

Barron, G. L. (1979). Observations on predatory fungi. Canadian Journal of Botany, 57(2), 
187–193. NRC Research Press. 
 

Barth, D., Heinze-Mutz, E., Roncalli, R., Schlüter, D. & Gross, S. (1993). The degradation of 
dung produced by cattle treated with an ivermectin slow-release bolus. Veterinary 



52 
 

Parasitology, 48(1-4), 215–227. Elsevier. 
 

Behnke, J. M., Iraqi, F., Menge, D., Baker, R. L., Gibson, J. & Wakelin, D. (2003). Chasing 
the genes that control resistance to gastrointestinal nematodes. Journal of Helminthology, 
77(2), 99–109. Cambridge University Press. 
 

Beveridge, I. & Emery, D. (2014). Australian Animal Parasites-Inside and Out. The Australian 
Society for Parasitology Inc. Australia. 
 

Bisset, S., Morris, C., McEwan, J. & Vlassof, A. (2001). Breeding sheep in New Zealand that 
are less reliant on anthelmintics to maintain health and productivity. New Zealand 
Veterinary Journal, 49(6), 236–246. Taylor \& Francis. 
 

Bosmans, J. (1974). Ten years lyophilization of pathogenic fungi. Mycopathologia et 
mycologia applicata, 53(1-4), 13–23. Springer. 
 

Bowman, D. D. (2014). Georgis’ Parasitology for Veterinarians-E-Book (10th ed.). Elsevier 
Health Sciences. 
 

Boyle, A. G. & Houston, R. (2006). Parasitic pneumonitis and treatment in horses. Clinical 
Techniques in Equine Practice, 5(3), 225–232. Elsevier. 
 

Braga, F. R. & Araújo, J. V. (2014). Nematophagous fungi for biological control of 
gastrointestinal nematodes in domestic animals. Applied microbiology and biotechnology, 
98(1), 71–82. Springer. 
 

Braga, F. R., Araújo, J. V., Silva, A. R., Araujo, J. M., Carvalho, R. O., Tavela, A. O., 
Campos, A. K., et al. (2009). Biological control of horse cyathostomin (Nematoda: 
Cyathostominae) using the nematophagous fungus Duddingtonia flagrans in tropical 
southeastern Brazil. Veterinary Parasitology, 163(4), 335–340. Elsevier. 
 

Braga, F. R., Soares, F. E. F., Braga, G., Araujo, J. M., Carvalho, L. M., Hiura, E., Aguiar, A. 
R., et al. (2016). Development of Nematophagous Fungi on Dead Adults of Aedes aegypti 
(Diptera: Culicidae) and Molt Inhibition Experimental. Int. J. Curr. Microbiol. Appl. Sci, 5, 
523–531. 
 

Braga, F. R., Soares, F. E. F., Giuberti, T. Z., Lopes, A. D. C. G., Lacerda, T., de Hollanda 
Ayupe, T., Queiroz, P. V., et al. (2015). Nematocidal activity of extracellular enzymes 
produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective 
larvae. Veterinary Parasitology, 212(3), 214–218. Elsevier. 
 

Bunse, T. & Steigleder, G. (1991). The preservation of fungal cultures by lyophilization. 
Mycoses, 34(3-4), 173–176. Wiley Online Library. 
 

Buske, R. (2010). Influência da temperatura na ação do fungo Duddingtonia flagrans 
utilizado como controle biológico de Haemonchus contortus em ovinos. Master Thesis. 
Santa Maria: Universidade Federal de Santa Maria. 
 

Cazapal-Monteiro, C. F. (2015). Posibilidades de control de helmintozoonosis en Galicia. 
Ph.D. Thesis. Lugo: Veterinary Medicine Faculty - University of Santiago de Compostela. 
 

Cazapal-Monteiro, C. F., Hernández, J. A., Arroyo, F. L., Miguélez, S., Romasanta, A., Paz-
Silva, A., Sánchez-Andrade, R., et al. (2015). Analysis of the effect of soil saprophytic 
fungi on the eggs of Baylisascaris procyonis. Parasitology research, 114(7), 2443–2450. 
Springer. 
 



53 
 

Cazapal-Monteiro, C. F., Vázquez, M. S. A., Malagón, J. A. H., Marcos, M. F., Cano, E. V., 
Losada, J. L. R. & Madeira de Carvalho, L. M. (2014). Control ecológico de parásitos en 
herbívoros salvajes en pastoreo. Pastagens e Forragens, 34, 22–33. 
 

Clayton, H. M. (1986). Ascarids: recent advances. Veterinary Clinics of North America: 
Equine Practice, 2(2), 313–328. Elsevier. 
 

Coop, R. L. & Kyriazakis, I. (2001). Influence of host nutrition on the development and 
consequences of nematode parasitism in ruminants. TRENDS in Parasitology, 17(7), 325–
330. Elsevier. 
 

Corning, S. (2009). Equine cyathostomins: a review of biology, clinical significance and 
therapy. Parasites \& vectors, 2(2), S1. BioMed Central. 
 

Cortiñas, F. J., Cazapal-Monteiro, C. F., Hernández, J. A., Arroyo, F. L., Miguélez, S., 
Suárez, J., López de Arellano, M. E., et al. (2015). Potential use of Mucor circinelloides for 
the biological control of certain helminths affecting livestock reared in a care farm. 
Biocontrol science and technology, 25(12), 1443–1452. Taylor \& Francis. 
 

Cox, F. E. (2002). History of human parasitology. Clinical microbiology reviews, 15(4), 595–
612. Am Soc Microbiol. 
 

Cranley, J. & McCullagh, K. (1981). Ischaemic myocardial fibrosis and aortic strongylosis in 
the horse. Equine Veterinary Journal, 13(1), 35–42. Wiley Online Library. 
 

Cruz, R. M. da. (2015). Atividade de fungos sobre ovos, larvas e oocistos de parasitas de 
ungulados silvestres e do cão. Master Thesis. Lisbon: Veterinary Medicine Faculty - 
University of Lisbon. 
 

Dijksterhuis, J., Veenhuis, M., Harder, W. & Nordbring-Hertz, B. (1994). Nematophagous 
fungi: physiological aspects and structure-function relationships. Advances in microbial 
physiology (Vol. 36, pp. 111–143). Elsevier. 
 

Drudge, J. & Lyons, E. T. (1966). Control of internal parasites of the horse. Journal of the 
American Veterinary Medical Association, 148(4), 378–383. 
 

Faedo, M., Larsen, M. & Waller, P. (1997). The potential of nematophagous fungi to control 
the free-living stages of nematode parasites of sheep: comparison between Australian 
isolates of Arthrobotrys spp. and Duddingtonia flagrans. Veterinary Parasitology, 72(2), 
149–155. Elsevier. 

 
Fitz-Aranda, J. A., Mendoza-de-Gives, P., Torres-Acosta, J. F. J., Liébano-Hernández, E., 

López-Arellano, M. E., Sandoval-Castro, C. A., & Quiroz-Romero, H. (2015). Duddingtonia 
flagrans chlamydospores in nutritional pellets: effect of storage time and conditions on the 
trapping ability against Haemonchus contortus larvae. Journal of helminthology, 89(1), 13-
18. 
 

Foreyt, W. J. (2002). Veterinary Parasitology - Reference Manual (5th ed.). Blackwell 
Publishing. 
 

Francisco, I., Arias, M. S., Cortiñas, F. J., Francisco, R., Mochales, E., Sánchez, J. A., 
Uriarte, J., et al. (2009). Silvopastoralism and autochthonous equine livestock: Analysis of 
the infection by endoparasites. Veterinary Parasitology, 164(2), 357–362. Elsevier. 
 

Francisco, I., Sánchez, J. A., Cortiñas, F. J., Francisco, R., Suárez, J., Cazapal-Monteiro, C. 
F., Suárez, J. L., et al. (2011). Efficacy of ivermectin pour-on against nematodes infecting 
foals on pasture: coprological and biochemical analysis. Journal of Equine Veterinary 



54 
 

Science, 31(9), 530–535. Elsevier. 
 

Francisco, R., Paz-Silva, A., Francisco, I., Cortiñas, F. J., Miguélez, S., Suárez, J., Cazapal-
Monteiro, C. F., et al. (2012). Preliminary analysis of the results of selective therapy 
against strongyles in pasturing horses. Journal of Equine Veterinary Science, 32(5), 274–
280. Elsevier. 
 

Garcia, A. M. (2007). Sobrevivência e manutenção da atividade nematofágica do fungo 
Arthrobotrys musiformis submetido à liofilização. Ciência e Agrotecnologia, 31(4), 1203–
1206. Directory of Open Access Journals. 
 

Githiori, J. B., Athanasiadou, S. & Thamsborg, S. M. (2006). Use of plants in novel 
approaches for control of gastrointestinal helminths in livestock with emphasis on small 
ruminants. Veterinary Parasitology, 139(4), 308–320. Elsevier. 
 

Grønvold, J., Nansen, P., Henriksen, S. A., Larsen, M., Wolstrup, J., Bresciani, J., Rawat, H., 
et al. (1996). Induction of traps by Ostertagia ostertagi larvae, chlamydospore production 
and growth rate in the nematode-trapping fungus Duddingtonia flagrans. Journal of 
Helminthology, 70(4), 291–297. Cambridge University Press. 
 

Grønvold, J., Wolstrup, J., Nansen, P., Henriksen, S. A., Larsen, M. & Bresciani, J. (1993). 
Biological control of nematode parasites in cattle with nematode-trapping fungi: a survey 
of Danish studies. Veterinary Parasitology, 48(1-4), 311–325. Elsevier. 
 

Hernández, J. A., Arroyo, F. L., Suárez, J., Cazapal-Monteiro, C. F., Romasanta, A., López-
Arellano, M. E., Pedreira, J., et al. (2016). Feeding horses with industrially manufactured 
pellets with fungal spores to promote nematode integrated control. Veterinary 
Parasitology, 229, 37–44. Elsevier. 

 
Hernández Malagón, J. A. (2014). Posibilidades de control de helmintozoonosis por 

ascáridos mediante el uso de hongos telúricos. Master Thesis. Lugo: Veterinary Medicine 
Faculty - University of Santiago de Compostela. 

 
Irving, F. & Kerry, B. (1986). Variation between strains of the nematophagous fungus, 

Verticillium chlamydosporium Goddard. II. Factors affecting parasitism of cyst nematode 
eggs. Nematologica, 32(4), 474–485. Brill. 
 

Kamp, A. & Bidochka, M. (2002). Conidium production by insect pathogenic fungi on 
commercially available agars. Letters in Applied Microbiology, 35(1), 74–77. Wiley Online 
Library. 
 

Kaplan, R. M. (2002). Anthelmintic resistance in nematodes of horses. Veterinary Research, 
33(5), 491–507. EDP Sciences. 
 

Kaplan, R. M. & Nielsen, M. K. (2010). An evidence-based approach to equine parasite 
control: It ain’t the 60s anymore. Equine Veterinary Education, 22(6), 306–316. Wiley 
Online Library. 
 

Knox, M. (1996). Integrated control programs using medicated blocks. ACIAR 
PROCEEDINGS (pp. 141–145). 
 

Knox, M. (2002). Effectiveness of copper oxide wire particles for Haemonchus contortus 
control in sheep. Australian Veterinary Journal, 80(4), 224–227. Wiley Online Library. 
 

Krecek, R. C., Guthrie, A. J., van Nieuwenhuizen, L. C. & Booth, L. M. (1994). A comparison 
between the effects of conventional and selective antiparasitic treatments on nematode 
parasites of horses from two management schemes. Journal of the South African 



55 
 

Veterinary Association, 65(3), 97–100. AOSIS. 
 

Larsen, M. (2000). Prospects for controlling animal parasitic nematodes by predacious micro 
fungi. Parasitology, 120(7), 121–131. Cambridge University Press. 
 

Larsen, M., Nansen, P., Henriksen, S. A., Wolstrup, J., Grønvold, Zorn, A. & Wedø, E. 
(1995). Predacious activity of the nematode-trapping fungus Duddingtonia flagrans against 
cyathostome larvae in faeces after passage through the gastrointestinal tract of horses. 
Veterinary Parasitology, 60(3-4), 315–320. Elsevier. 
 

Lester, H. E., Bartley, D. J., Morgan, E. R., Hodgkinson, J. E., Stratford, C. H. & Matthews, J. 
B. (2013). A cost comparison of faecal egg count-directed anthelmintic delivery versus 
interval programme treatments in horses. Veterinary Record 173, 371 
 

Li, C. H., Cervantes, M., Springer, D. J., Boekhout, T., Ruiz-Vázquez, R. M., Torres-
Martínez, S. R., Heitman, J., et al. (2011). Sporangiospore size dimorphism is linked to 
virulence of Mucor circinelloides. PLoS Pathogens, 7(6), e1002086. Public Library of 
Science. 
 

Love, S., Murphy, D. & Mellor, D. (1999). Pathogenicity of cyathostome infection. Veterinary 
Parasitology, 85(2-3), 113–122. Elsevier. 
 

Lyons, E. T., Tolliver, S. & Collins, S. (2006). Field studies on endoparasites of 
Thoroughbred foals on seven farms in central Kentucky in 2004. Parasitology research, 
98(5), 496–500. Springer. 

 
Lyons, E. T., Tolliver, S. C., Collins, S. S., Ionita, M., Kuzmina, T. A., & Rossano, M. (2011). 

Field tests demonstrating reduced activity of ivermectin and moxidectin against small 
strongyles in horses on 14 farms in Central Kentucky in 2007–2009. Parasitology 
research, 108(2), 355-360. 
 

Lyons, E. T., Tolliver, S. & Drudge, J. (1999). Historical perspective of cyathostomes: 
prevalence, treatment and control programs. Veterinary Parasitology, 85(2-3), 97–112. 
Elsevier. 
 

Lýsek, H. & Stĕrba, J. (1991). Colonization of Ascaris lumbricoides eggs by the fungus 
Verticillium chlamydosporium Goddard. Folia Parasitologica, 38(3), 255–9. 
 

MAFF – Ministry of Agriculture, Fisheries and Food (1986) – Manual of veterinary 
parasitological laboratory techniques. Reference Book 418, London, Her Majesty‟s 
Stationery Office, 159 pp. 

 
Madeira de Carvalho, L. M. (2001). Epidemiologia e controlo da estrongilidose em diferentes 

sistemas de produção equina em Portugal. Ph.D. Thesis. Lisbon: Veterinary Medicine 
Faculty - University of Lisbon. 
 

Madeira de Carvalho, L. M., Fazendeiro, M. I. & Afonso-Roque, M. M. (2008). Estudo 
morfométrico das larvas infectantes (L3) dos estrongilídeos (Nematoda: Strongylidae) dos 
equídeos-3. Conclusões, perspectivas futuras e proposta de chave de identificação de 
alguns nemátodes gastrintestinais mais comuns nos equídeos em Portugal. Acta 
Parasitológica Portuguesa, 15(1/2), 57–63. 
 

Madeira de Carvalho, L. M., Serra, P. M., Bernardo, F., Agrícola, R., Jorge, H., Farrim, A., 
Fazendeiro, M. I., et al. (2011). Controlo Intregado da estrongilidose equina com anti-
helmínticos associados ao fungo Duddingtonia flagrans. Aspectos da sua utilização em 
Portugal. Acta Parasitológica Portuguesa, 18(1/2), 63–90. 
 



56 
 

Marsh, A. E., Lakritz, J., Johnson, P. J., Miller, M. A., Chiang, Y. & Chu, H. (2004). 
Evaluation of immune responses in horses immunized using a killed Sarcocystis neurona 
vaccine. Veterinary Therapeutics, 5(1), 34–42. Veterinary Learning Systems. 
 

Matthews, J. B. (2014). Anthelmintic resistance in equine nematodes. International Journal 
for Parasitology: Drugs and Drug Resistance, 4(3), 310–315. Elsevier. 
 

McCraw, B. & Slocombe, J. (1976). Strongylus vulgaris in the horse: a review. The Canadian 
Veterinary Journal, 17(6), 150. Canadian Veterinary Medical Association. 
 

Mitchell, M. C., Tzelos, T., Handel, I., Mcwilliam, H. E., Hodgkinson, J. E., Nisbet, A. J., 
Kharchenko, V. A., et al. (2016). Development of a recombinant protein-based ELISA for 
diagnosis of larval cyathostomin infection. Parasitology, 143(8), 1055–1066. Cambridge 
University Press. 
 

Monahan, C., Chapman, M., Taylor, H., French, D. & Klei, T. R. (1996). Comparison of 
moxidectin oral gel and ivermectin oral paste against a spectrum of internal parasites of 
ponies with special attention to encysted cyathostome larvae. Veterinary Parasitology, 
63(3-4), 225–235. Elsevier. 
 

Mota, M. A., Campos, A. K. & Araújo, J. V. (2003). Influence of different storage methods on 
the predatory capacity of the fungi Arthrobotrys robusta and Monacrosporium thaumasium 
after passage through the bovine gastrointestinal tract. World Journal of Microbiology and 
Biotechnology, 19(9), 913–916. Springer. 
 

Nalepina, L., Matskevich, N., Kozhukhar, G. & Teplyakova, T. (1990). Effect of different 
storage methods on viability of nematophagous predatory fungi. Mikologiya i 
Fitopatologiya, 24(1), 312–314. 
 

Nielsen, M. K. (2016). Evidence-based considerations for control of Parascaris spp. 
infections in horses. Equine Veterinary Education, 28(4), 224–231. Wiley Online Library. 
 

Nielsen, M. K., Branan, M., Wiedenheft, A., Digianantonio, R., Garber, L., Kopral, C., 
Phillippi-Taylor, A., et al. (2018). Parasite control strategies used by equine owners in the 
United States: A national survey. Veterinary Parasitology, 250, 45–51. Elsevier. 
 

Nielsen, M. K., Kaplan, R. M., Thamsborg, S. M., Monrad, J. & Olsen, S. N. (2007). Climatic 
influences on development and survival of free-living stages of equine strongyles: 
implications for worm control strategies and managing anthelmintic resistance. The 
Veterinary Journal, 174(1), 23–32. Elsevier. 
 

Nielsen, M. K., Vidyashankar, A. N., Gravatte, H. S., Bellaw, J. L., Lyons, E. T. & Andersen, 
U. V. (2014). Development of Strongylus vulgaris-specific serum antibodies in naturally 
infected foals. Veterinary Parasitology, 200(3-4), 265–270. Elsevier. 
 

Nielsen, M. K., Vidyashankar, A. N., Olsen, S. N., Monrad, J. & Thamsborg, S. M. (2012). 
Strongylus vulgaris associated with usage of selective therapy on Danish horse farms—Is 
it reemerging? Veterinary Parasitology, 189(2-4), 260–266. Elsevier. 
 

Nielsen, M. K., Wang, J., Davis, R., Bellaw, J. L., Lyons, E. T., Lear, T. L. & Goday, C. 
(2014). Parascaris univalens—a victim of large-scale misidentification? Parasitology 
research, 113(12), 4485–4490. Springer. 
 

Nordbring-Hertz, B., Jansson, H.-B. & Tunlid, A. (2011). Nematophagous fungi. Els. Wiley 
Online Library. 
 



57 
 

Paz-Silva, A., Francisco, I., Valero-Coss, R. O., Cortiñas, F. J., Sánchez, J. A., Francisco, R., 
Arias, M. S., et al. (2011). Ability of the fungus Duddingtonia flagrans to adapt to the 
cyathostomin egg-output by spreading chlamydospores. Veterinary Parasitology, 179(1-3), 
277–82. 
 

Raghukumar, S. (2017). Fungi: Characteristics and Classification. Fungi in Coastal and 
Oceanic Marine Ecosystems (pp. 1–13). Springer. 
 

Reinemeyer, C. R. & Nielsen, M. K. (2013). Handbook of equine parasite control. John Wiley 
\& Sons. 
 

Reinemeyer, C. R. & Nielsen, M. K. (2014). Review of the biology and control of Oxyuris 
equi. Equine Veterinary Education, 26(11), 584–591. Wiley Online Library. 
 

Reinemeyer, C. R., Smith, S. A., Gabel, A. & Herd, R. (1984). The prevalence and intensity 
of internal parasites of horses in the USA. Veterinary Parasitology, 15(1), 75–83. Elsevier. 
 

Relf, V. E., Morgan, E. R., Hodgkinson, J. E. & Matthews, J. B. (2012). A questionnaire study 
on parasite control practices on UK breeding Thoroughbred studs. Equine veterinary 
journal, 44(4), 466–471. Wiley Online Library. 
 

Ribes, J. A., Vanover-Sams, C. L. & Baker, D. J. (2000). Zygomycetes in human disease. 
Clinical microbiology reviews, 13(2), 236–301. Am Soc Microbiol. 
 

Round, M. (1969). The prepatent period of some horse nematodes determined by 
experimental infection. Journal of Helminthology, 43(1-2), 185–192. Cambridge University 
Press. 
 

Sagüés, M. F., Fusé, L., Fernández, A. S., Iglesias, L., Moreno, F. C. & Saumell, C. (2011). 
Efficacy of an energy block containing Duddingtonia flagrans in the control of 
gastrointestinal nematodes of sheep. Parasitology research, 109(3), 707–713. Springer. 
 

Sagüés, M. F., Purslow, P., Fernández, S., Fusé, L., Iglesias, L. & Saumell, C. (2011). 
Hongos nematófagos utilizados para el control biológico de nematodos gastrointestinales 
en el ganado y sus formas de administración. Revista Iberoamericana de Micología, 
28(4), 143–147. Elsevier. 
 

Sallé, G. & Cabaret, J. (2015). A survey on parasite management by equine veterinarians 
highlights the need for a regulation change. Veterinary record open, 2(2), e000104. BMJ 
Specialist Journals. 
 

Santurio, J. M., Zanette, R. A., da Silva, A. S., Fanfa, V. R., Farret, M. H., Ragagnin, L., 
Hecktheuer, P. A., et al. (2011). A suitable model for the utilization of Duddingtonia 
flagrans fungus in small-flock-size sheep farms. Experimental Parasitology, 127(4), 727–
731. Elsevier. 
 

Santurio, J. M., Zanette, R. A., da Silva, A. S., Mario, L., Monteiro, S. G. & Alves, S. H. 
(2009). Improved method for Duddingtonia flagrans chlamydospores production for 
livestock use. Veterinary Parasitology, 164(2-4), 344–346. Elsevier. 
 

Saumell, C., Fernández, A. S., Echevarria, F., Gonçalves, I., Iglesias, L., Sagüés, M. F. & 
Rodríguez, E. (2016). Lack of negative effects of the biological control agent Duddingtonia 
flagrans on soil nematodes and other nematophagous fungi. Journal of Helminthology, 
90(6), 706–711. Cambridge University Press. 
 



58 
 

Shalaby, H. A. (2013). Anthelmintics resistance; how to overcome it? Iranian Journal of 
Parasitology, 8(1), 18. Tehran University of Medical Sciences. 
 

Smith, A. D., Panickar, K. S., Urban, J. J. F. & Dawson, H. D. (2018). Impact of 
Micronutrients on the Immune Response of Animals. Annual review of animal biosciences, 
6(1). Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, California 94303-
0139, USA. 
 

Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., Bonito, 
G., et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on 
genome-scale data. Mycologia, 108(5), 1028–1046. Taylor \& Francis. 
 

Su, H., Zhao, Y., Zhou, J., Feng, H., Jiang, D., Zhang, K.-Q. & Yang, J. (2017). Trapping 
devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. 
Biological Reviews, 92(1), 357–368. Wiley Online Library. 
 

Suárez, J. S.-A. (2017). Control biológico de parasitismos gastrointestinales en caballos. 
Ph.D. Thesis. Lugo: Veterinary Medicine Faculty - University of Santiago de Compostela. 
 

Tavela, A. O., Araújo, J. V., Braga, F. R., Silveira, W. F., Silva, V. H. D., Júnior, M. C., 
Borges, L. A., et al. (2013). Coadministration of sodium alginate pellets containing the 
fungi Duddingtonia flagrans and Monacrosporium thaumasium on cyathostomin infective 
larvae after passing through the gastrointestinal tract of horses. Research in veterinary 
science, 94(3), 568–572. Elsevier. 
 

Taylor, M. A., Coop, R. L. & Wall, R. L. (2016). Veterinary Parasitology (4th ed.). Wiley 
Backwell. 
 

Traversa, D., Iorio, R., Klei, T. R., Kharchenko, V. A., Gawor, J., Otranto, D. & Sparagano, O. 
A. (2007). New method for simultaneous species-specific identification of equine 
strongyles (Nematoda, Strongylida) by reverse line blot hybridization. Journal of clinical 
microbiology, 45(9), 2937–2942. Am Soc Microbiol. 
 

De Ulzurrun, G. V.-D. & Hsueh, Y.-P. (2018). Predator-prey interactions of nematode-
trapping fungi and nematodes: both sides of the coin. Applied Microbiology and 
Biotechnology, 1–11. Springer. 
 

Vicente, G., Bautista, L. F., Rodríguez, R., Gutiérrez, F. J., Sádaba, I., Ruiz-Vázquez, R. M., 
Torres-Martínez, S., et al. (2009). Biodiesel production from biomass of an oleaginous 
fungus. Biochemical Engineering Journal, 48(1), 22–27. Elsevier. 

 
Vilá Pena, M. (2017). Integrated control of horse parasites. Master Thesis. Lugo: Veterinary 

Medicine Faculty - University of Santiago de Compostela 
 
Vilela, V. L. R., Feitosa, T. F., Braga, F. R., Araújo, J. V., dos Santos, A., Morais, D. F., de 

Oliveira Souto, D. V., et al. (2016). Coadministration of nematophagous fungi for biological 
control over gastrointestinal helminths in sheep in the semiarid region of northeastern 
Brazil. Veterinary Parasitology, 221, 139–143. Elsevier. 
 

Waller, P., Faedo, M. & Ellis, K. (2001). The potential of nematophagous fungi to control the 
free-living stages of nematode parasites of sheep: towards the development of a fungal 
controlled release device. Veterinary Parasitology, 102(4), 299–308. Elsevier. 
 

Waller, P., Knox, M. & Faedo, M. (2001). The potential of nematophagous fungi to control the 
free-living stages of nematode parasites of sheep: feeding and block studies with 
Duddingtonia flagrans. Veterinary Parasitology, 102(4), 321–330. Elsevier. 
 



59 
 

Wang, W. (2000). Lyophilization and development of solid protein pharmaceuticals. 
International Journal of Pharmaceutics, 203(1-2), 1–60. Elsevier. 
 

De Winter, J. C. (2013). Using the Student’s t-test with extremely small sample sizes. 
Practical Assessment, Research \& Evaluation, 18(10). 
 

Wolf, D., Hermosilla, C. & Taubert, A. (2014). Oxyuris equi: lack of efficacy in treatment with 
macrocyclic lactones. Veterinary Parasitology, 201(1-2), 163–168. Elsevier. 
 

  
  



60 
 

APPENDIX A – Chlamydospores concentration assessment. 
 

First Concentration Assessments  
(CPG) 

Second Concentration Assessments 
(CPG) 

10560 23620 

7920 17000 

58080 18600 

11000 15500 

8360 27900 

8600 22300 

11666 18440 

5720 32750 

9240 21000 

11440 24800 

9300 

8888 

3960 

7920 

7333 

24200 

15555 

20000 

51480 

9240 
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APPENDIX B  

 

 

 
FEC (EPG) 

26/09/2017 

FEC (EPG) 

09/10/2017 

FEC (EPG) 

23/10/2017 

FEC (EPG) 

13/11/2017 

FEC (EPG) 

14/12/2017 

FEC (EPG) 

23/01/2018 

FEC (EPG) 

08/08/2018 

FEC (EPG) 

14/03/2018 

T group 

 

5055 800 0 0 0 0 50 0 150 

7481 550 0 0 0 50 150 150 300 

7487 300 650 0 50 50 150 550 650 

7488 2300 0 0 0 0 150 250 200 

9001 700 0 0 0 0 200 200 250 

C group 

Ojitos 1200 0 0 0 100 200 900 850 

7020 2850 100 100 50 500 700 650 750 

7482 1300 0 0 0 200 100 850 950 

7483 1250 0 0 0 50 250 500 800 

7484 1800 0 0 50 0 200 1000 1250 

7486 2650 0 0 50 350 50 1550 1050 

9000 2750 0 0 0 50 50 200 450 

 


