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Abstract

This thesis focuses on the discretization of degenerate partial differential equa-

tions arising in Finance.

In particular, the Cauchy problem for a second order linear parabolic PDE is

discretized in the spatial variables for both the bounded and unbounded coefficient

cases. The semi-discretization is considered for the general multi-dimensional

version of the PDE and also for the particular one-dimensional case.

The approximation to the PDE problem solution is obtained by using basic

finite difference methods in discrete Sobolev and weighted Sobolev spaces.

Existence and uniqueness results for the generalized solution to the semi-

discretized problem are deduced. Finally, we give an estimate for the rate of

convergence of the solution of the semi-discretized problem to the solution of

corresponding the exact problem. Stronger results are deduced for the special

case of one dimension on space.





Sumário

Esta dissertação estuda a discretização de equações diferenciais parciais de-

generadas com aplicações às Finanças.

Em particular, o problema de Cauchy para uma equação diferencial parcial

linear de segunda ordem é discretizado nas variáveis espaciais para os casos de coe-

ficientes limitados e ilimitados. A semi-discretização é considerada para a versão

multidimensional da EDP e também para o caso particular de uma dimensão

espacial.

A aproximação à solução da EDP é obtida com recurso a métodos básicos

de diferenças finitas em versões discretas de espaços de Sobolev e de Sobolev

ponderados.

São deduzidos resultados de existência e unicidade para a solução generaliz-

ada do problema semi-discretizado. Finalmente, é dada uma estimativa para a

taxa de convergência da solução do problema semi-discretizado para a solução do

problema exacto correspondente. São obtidos resultados mais fortes para o caso

especial de uma dimensão no espaço.
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Chapter 1

Introduction

Banks and other financial and non-financial institutions deal daily with credit

and investment decisions. The mathematical problems involved in this financial

decisions have been, in the last 50 years, object of increasing interest.

From the seminal contribution by Bachelier, the field of Financial Mathematics

was built with the works of Fama, Cox, Black, Scholes, Merton and others. One

of the major studies concerning quantitative modelling with the use of stochastic

processes is the Black-Scholes model (1973) which allows pricing an option by

solving a simple partial differential equation, the Black-Scholes equation.

Since then, the field of Financial Mathematics enjoyed an explosive expansion.

With the markets’ globalization, the financial system suffered a profound trans-

formation and evolved to the present state of extreme product sophistication and

complexity.

Financial derivatives are central to Financial Mathematics. Since there are

not, in general, closed form solution to derivative prices, numerical analysis plays

a major role in the field. Our interest goes to the approximation to the price of

multi-asset options.

In this work, we consider the Cauchy problem for second order linear partial

differential equation of parabolic type the multi-asset European option pricing can

be cast into. The degenerate PDE is considered in its multidimensional version

and its coefficients are allowed to grow in the spacial variables. The PDE problem

is set in Sobolev and weighted Sobolev spaces and its solvability considered in

the variational framework.

The main of this thesis is to approximate degenerate PDE linear parabolic of

second order, both to unbounded and unbounded coefficient cases.

To achieve these goals we began by recalling some important classical results,

in particular, we define the Cauchy problem, enunciate results about Sobolev and

weighted Sobolev spaces and the we state conditions to the exact problems (both

in degenerate and degenerate situations).
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Previous works have been published on these subject, namely the works of

[26, 27, 28, 31, 45]. In particular, in [26] developed a discretized problem in space

variable and proved the existence and uniquenessof generalized solution to the

nodegenerate problem (to bounded and unbounded case).

This thesis, adapted the same procedures but to degenerate case and proved

the existence and uniqueness of this solution of the space discretized Cauchy

problem. Is also proved the consistency of the scheme and obtained a rate of

convergence of the solution to the problem in analysis to the corresponding exact

problem.

With the new results and with the previous works on the one dimensional

case to unbounded coefficients in the nondegenerate case, already mentioned,

we applied this methodology to the degenerate problem both with bounded and

unbounded coefficients (case of dimension d and one) and also applied to the one

dimensional case to unbounded coeffients in the nondegenerate case.

Therefore, we begin by defining a spatial-discretized version of the PDE prob-

lem by using a basic finite-difference scheme. This new problem is considered in

discrete versions of the Sobolev and weighted Sobolev spaces. Then, we prove ex-

istence and uniqueness results for the generalized solution to the semi-discretized

problem and show that the scheme is stable. Next, we prove that the scheme is

consistent. Finally, we deduce a convergence result and an estimate for the rate

of convergence of the solution of the semi-discretized problem to the solution of

corresponding the exact problem.

We treat separately the special case of one dimension in space for which

stronger results are obtained.

We note that the usual procedure for obtaining numerical schemes for the

PDE problem under study is to localize the exact problem to a bounded domain,

and then to approximate the localized version of the problem (see, e.g., [8, 41, 57]

and also [48], where the same technique is used for a more complex problem). If

the procedure is adopted, then the PDE coefficient unboundedness is no longer a

difficulty to tackle and the functional spaces to consider need not to be weighted.

If the alternative procedure of semi-discretizing the PDE problem in the whole

spacial domain and then localizing the semi-discretized problem to a discrete

bounded domain is chosen (see, e.g., [17, 18, 19]), then the coefficient unboun-

dedness remains a problem to deal with. The present investigation is meaningful

in this latter case.

Moreover, the study now developed extends the works [26, 27, 28, 30, 45] on

the nondegenerate PDE case to the general degenerate case.

Next, we present this thesis contents.
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In Chapter 2 - Financial problem: stochastic modelling, we summarize the

stochastic and financial background for the Black-Scholes modelling of a multi-

asset option of European type.

In Chapter 3 - Approximation of PDEs with bounded coefficients, we begin by

presenting a Cauchy problem for a parabolic evolution equation in abstract spaces

the PDE problem can be cast into. Classical existence and uniqueness results are

given. Then, we present the initial value problem for a linear parabolic PDE, in

both the nondegenerate and the degenerate cases, introduce the Sobolev spaces,

and give classical existence and uniqueness results.

The PDE problem is then discretized in space by using a finite-difference

scheme. The functional discrete Sobolev spaces are introduced. We establish the

existence and uniqueness of the semi-discretized problem generalized solution, its

stability, the scheme’s consistency, and the convergence to the solution to the

corresponding exact problem. A rate of convergence is estimated.

The special case of one dimension in space is dealt in separately, with stronger

results.

In Chapter 4 - Approximation of PDEs with unbounded coefficients, we be-

gin with the presentation of classical results for the existence and uniqueness of

the generalized solution to a parabolic PDE initial value problem in a class of

weighted Sobolev spaces. The PDE coefficients are allowed to grow and the PDE

is considered in both the nondegenerate and the degenerate cases.

Then we discretize the PDE problem in space with the use of a finite difference

scheme and introduce a discrete version to the weighted Sobolev spaces. Stability,

consistency, and convergence results are proved.

As in the previous chapter, stronger results are obtained for the one dimen-

sional case.

In Chapter 5 - Conclusion and further research, we briefly discuss our results

and we outline future extensions of the present research.
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Chapter 2

Financial problem: stochastic
modelling

Financial analysis, in the first half of the 20th century based the price of the

future options in the past information: the price variation in a certain period was

based in variations in previous periods.

Bachelier, french mathematician already mentioned on the previous chapter,

wrote in 1900 his PhD thesis under the theme ”Théorie de la Spéculation” where,

for the first time, the financial process is associated to stochastic process, but these

results were only revealed sixty years later. Bachelier studied the french treasury

bonds and concluded that the price behaviour is similar to random walk, which

he studied in continuous time, known as Brownian motion.

2.1 Financial theory framework

To ensure the capacity of future prices it is fundamental to have a standardiza-

tion of option prices. It is well known that random factors have a huge role in

economics activity. Due to this fact, the process of pricing is random and any

model used to describe this process has to be a stochastic process.

Random walk, martingale model and efficiency market theory.

Louis Bachelier, with his seminal work, associated the pricing process to ran-

domness in his ”Théorie de la Spéculation” thesis, due to the inexistence of

memory in stochastic processes. One of the best examples is the random walk, the

reason this dynamic was the first model used to describe the prices flutuation:

in each moment the variation of prices (increasing or decreasing) is a random
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quantity between statistical independent moments.

Bachelier showed also that prices changes occur without any connection to

external events, very often. So, using probability theory it is possible to estab-

lish laws that are verified by the prices and its variations. Bachelier modeled

the sucessive changes in prices, using the Central Limit Theorem, obtaining a

normal distribution to the prices flutuation and assuming that they were inde-

pendent and identically distributed: assumption that formed the basis of the

Theory of Efficient Markets. The later denominated random walk, was defined

in Bachelier’s thesis through the distribution function of the Wiener stochastic

process (Brownian motion outset) and connecting with the diffusion equation.

Later, Albert Einstein presented the partial differential diffusion equation,

using Brownian motion and defined an estimate to the molecula’s size.

Until the middle of the 60’s, efficiency of markets was about random walk

theory, but since 1965 with Eugene Fama, the efficiency of financial markets comes

up associated to the martingale model, accepting the predictability in expected

variance conditioned of the profitability and the volatility in certain periods of

time. Also Samuelson studied, in parallel with Fama, the random character of

prices as the consequence of rational markets. The only difference between the two

authors was the probabilistic model they used to describe the random variantion:

Fama choose the Random Walk model and Samuelson introduced, for the first

time, the Martingale model.

Fama revealed that asset’s returns can variate in time in a predictable way

and prices can be not random. So, Fama’s efficiency model is based in the dif-

ference between the observed expected return and the foreseen expected return

by a pricing model - the mean controled return to the asset risk, in order to get

economic profit.

Eugene Fama (1970) defended that financial markets can have three efficiency

stadiums: weak form, semi-strong form and strong form. In the weak form past

price movements and volume data do not affect stock prices, in the semi-strong

form all public information is calculated into a stock’s current share price and

in the strong form all information in a market, whether public or private, is

accounted for in a stock’s price.

2.2 Stochastic process background

In this section we will state some theorical results which are fundamental to this

work.
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Stochastic processes

As in [36], a stochastic process is a mathematical model for the occurrence,

at each moment after the initial time, of a random phenomenon. Attending also

to [46], we have:

Definition 2.2.1. {Xt(ω), ω ∈ Ω, t ∈ T} is said to be a stochastic process if it is

a family of random variables defined in a probability space (Ω,F,P), with T the

asset where the parameter t is defined. If T = N then the process is said to be in

discrete time; if T = [a, b] ⊂ R or T = R the process is said to be in continuous

time.

Remark 1. {Xt} is the state of the process in instant t and Xt(ω) is called a

trajectory of the process.

Remark 2. Consider the succession of independent random variables {Zt, t ∈ N}.
Then, the Random Walk

Xt = Z1 + Z2 + ...+ Zt = Xt−1 + Zt

is a stochastic process in discrete time.

It is now important to establish the definition of continuity in mean, of a

stochastic process.

Definition 2.2.2. Let p ≥ 1. A stochastic process {Xt(ω), ω ∈ Ω, t ∈ T} with

values in R, where T is an interval of R and such that E[|Xt|p] < ∞, is said to

be continuous in mean of order p if, for all t ∈ T, we have

lim
s→t

E[|Xt −Xs|p] = 0

Remark 3. Continuity in mean of order p implies the continuity in probability.

Martingales

The martingale theory is very important on the modern theory of financial

derivatives and requires knowledge on measure theory.

Owing to [46] the following results are established:
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Definition 2.2.3. Let X be a random variable. The σ-algebra generated by X

is the minor σ-algebra containing X and it is represented by {X−1(B) : B ∈ BR}.

Definition 2.2.4. Assume the probability space (Ω,F,P) and the succession of

σ-algebras {Fn, n ≥ 0}. Also consider that F0 ⊂ F1 ⊂ ... ⊂ Fn ⊂ F. The

succession {Fn, n ≥ 0} is called a filtration.

Definition 2.2.5. A stochastic process {Mn;n ≥ 0} is a martingale, in discrete

time, in order to the filtration {Fn, n ≥ 0} if:

1. For each n, Mn is a random variable Fn measurable (M is a stochastic

process adapted to the filtration {Fn, n ≥ 0});

2. For each n, E[|Mn|] <∞;

3. For each n: E[Mn+1|Fn] = Mn.

Remark 4. In the definition of martingale we have that for every n,

E[Mn+1|Fn] = Mn

Instead, if we have for every n,

E[Mn+1|Fn] ≥Mn

then Mn is called a submartingale.

However, if we have for every n,

E[Mn+1|Fn] ≤Mn

then Mn is called a supermartingale.

Once again, it is important to state the definition in terms of continuity.

Definition 2.2.6. A stochastic process {Mt; t ≥ 0} is a martingale, in continuous

time, in order to the filtration {Ft, t ≥ 0} if:

1. For all t, Mt is a random variable Ft measurable (M is a stochastic process

adapted to the filtration {Ft, t ≥ 0});
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2. For all t > 0, E[|Mt|] <∞;

3. For all s ≤ t: E[Mt|Fs] = Ms.

The following theorem is an important result for continuous martingales (see

[46]).

Theorem 2.2.7 (Kolmogorov’s submartingale inequality). IfMn is a non-negative

submartingale, then P [max(M1, ...,Mn) ≤ a] ≤ E[Mn]

a
for a > 0.

Theorem 2.2.8 (Martingale Convergence Theorem). If {Mn, n ≥ 1} is a martin-

gale and E[|Mn|] ≤M then, with probability 1, limn→∞Mn exists and is finite.

Brownian motion

The Brownian motion concept is associated to the botanist Robert Brown

(1828) who observed an irregular motion in his pollen grain experience. Math-

ematically it is explained by the Brownian motion (see [46]).

Definition 2.2.9. A stochastic process B = {Bt; t ≥ 0} is a Brownian motion if:

1. B0 = 0;

2. B has independent increments;

3. If s < t, then Bt − Bs is a random variable with distribution N(0, t− s);

4. The process B have continuous paths.

Remark 5. The Brownian motion has the following properties:

1. The Brownian motion is a Gaussian process;

2. E[Bt] = 0;

3. E[BsBt] = min(s, t);

4. If Bt is a process satisfying the conditions (1), (2) and (3) then the distri-

bution of Bt for each t must be normal;

5. Consider Bt a process satisfying the conditions (1), (2) and (3) and let m and

σ2 be the mean and the variance of B1. Then E[Bt] = tm and V ar[Bt] = tσ2.

If m = 0 and σ2 = 1 then Bt is called a standard Brownian motion.
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Theorem 2.2.10 (Wiener). There exists a Brownian motion on some probability

space.

Some examples of Brownian motions are:

• Geometric Brownian motion: Xt = eµt+σBt , where X has lognormal

distribution;

• Brownian motion with drift: Yt = µt+ σBt is a gaussian process;

• Brownian bridge: Zt = Bt − tB1, t ∈ [0, 1], is also a gaussian process.

Next we introduce the definition of Brownian motions with filtrations.

Definition 2.2.11. Let Ft be a filtration. A stochastic process Bt is called an

Ft-Brownian motion if:

1. Is a Brownian motion;

2. Is Ft adapted;

3. Bt − Bs is independent of Fs for any t > s.

In order to clarify some properties, the following results connect martingales

and Brownian motion.

Lemma 2.2.12. If Bt is an Ft- Brownian motion then it is an Ft-martingale.

Proposition 2.2.13. If B = {Bt; t ≥ 0} is a Brownian motion and {FBt , t ≥ 0}
is the filtration generated by B, then the following processes are {FBt , t ≥ 0}-
martingales:

1. Bt;

2. B2
t − t;

3. exp(aBt −
a2t

2
).

Stochastic integral

To state the existence of the stochastic integral (known as Itô process), it is

necessary to impose some conditions.
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Definition 2.2.14. Consider a measurable space (Ω,F) equipped with a filtration

Ft. A random time T is a stopping time of the filtration, if the event {T ≤ t}
belongs to the σ-field Ft, for every t ≥ 0. A random time is an optional time of

the filtration if {T < t} ∈ Ft, for every t ≥ 0.

Lemma 2.2.15. If T is optional and θ is a positive constant then T + θ is a

stopping time.

Lemma 2.2.16. If T and S are stopping times then so are T∧S, T∨S and T+S.

Definition 2.2.17. A process X is said to be simple if there exists a strickly

increasing sequence of real numbers 0 = t0 < t1 < ... < tn = T and a set of

random variables {εn} with supn≥0 εn(ω) ≤ C <∞, for every ω ∈ Ω, such that ε

is Ftn-measurable for every n ≥ 0 and

Xt(ω) = ε0(ω)I{0}(t) +
∞∑
i=0

εi(ω)I(ti,ti+1](t),

0 ≤ t <∞, ω ∈ Ω. The class of all simple processes will be denoted by L0 and we

have L0 ⊂ L∗(M) ⊂ L(M).

The stochastical integral with respect to a Brownian motion is defined next.

Definition 2.2.18. Suppose that X ∈ L0. The stochastic integral of the simple

process X, with respect to a Brownian motion, Bt, is defined as

It(X) =
n−1∑
i=0

εi(Bt∧ti+1
−Bt∧ti), 0 ≤ t <∞,

where n ≥ 0 is the unique integer for which tn < t < tn+1

Proposition 2.2.19 (Itô’s Isometry). Consider X a simple process and the

Brownian motion Bt. X verifies the isometry property:

E

[(∫ T

0

XtdBt

)2
]

= E

[∫ T

0

X2
t dt

]
.

The definition of Itô Integral follows.

Definition 2.2.20. Consider the Brownian motion Bt and the stochastic process

Xt, such that:
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1. Xt is Ft-measurable;

2. Xt is adapted;

3. E
[∫ T

0
X2
t dt
]
<∞;

Then, the Itô Integral is defined by∫ T

0

XtdBt = lim
n→∞

∫ T

0

X
(n)
t dBt

where X
(n)
t satisfies limn→∞E

[∫ T
0

(
Xt −X(n)

t

)2
dt

]
= 0 and the limit is con-

sidered in L2.

Now we relate stochastic integrals and martingales.

Proposition 2.2.21. Let X be a process satisfying the conditions:

1.
∫ b
a
E[X2

s ]ds <∞

2. X is adapted to the Ft-filtration

Then the following relations hold:

• E
[∫ b

a
XsdBs

]
= 0

• E
[(∫ b

a
XsdBs

)2]
=
∫ b
a
E[X2

s ]ds

•
∫ b
a
XsdBs is FB

b -measurable.

Proposition 2.2.22. For any process g ∈ L2[s, t] that is E
[∫ t

s
gudBu|Fs

]
= 0.

Corollary 2.2.23. For any process g ∈ L2, the process X, defined by

X(t) =

∫ t

0

gsdBs

is an (Ft)-martingale. It means that every stochastic integral is a martingale.

Extensions of the Stochastic Integral

The stochastic integral can be defined for a larger class of integrands processes.

It is necessary to make some changes in the definition of stochastic integral.

Therefore, the first and third conditions in Definition (2.2.20) can be relaxed for:
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• There exists an increasing family of σ-algebras {Ht : t ≥ 0} such that:

1. Bt is a martingale with respect to Ht and

2. Xt is Ht-adapted.

• P
[∫ T

0
X2
t dt <∞

]
= 1.

Definition 2.2.24. A continuous and Ft-adapted stochastic process

{Xt, 0 ≤ t ≤ T} is called an Itô Process if it can be expressed in the form

Xt = X0 +

∫ t

0

usdBs +

∫ t

0

vsds

where u, v ∈ L2.

As a shorthand notation, it can be written by

dXt = udt+ vdBt.

Theorem 2.2.25 (One-dimensional Itô formula). Let Xt be an Itô process given

by

dXt = udt+ vdBt.

Let g(t, x) ∈ C2([0,∞)×R) (i.e. g is twice continuous differentiable on [0,∞)×R).

Then

Yt = g(t,Xt)

is again an Itô process, and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt).(dXt)

2,

where (dXt)
2 = (dXt).(dXt) is computed according to the rules

dt.dt = dt.dBt = dBt.dt = 0, dBt.dBt = dt.

Theorem 2.2.26 (Integration by parts). Suppose f(s, w) is continuous and of

bounded variation with respect to s ∈ [0, t], for a.a.w. Then∫ t

0

f(s)dBs = f(t)Bt −
∫ t

0

Bsdfs.
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Consider now with the multi-dimensional Itô formula. Let

B(t, w) = (B1(t, w), ..., Bm(t, w))

denote m-dimensional Brownian motion. If each of the processes ui(t, w) and

vij(t, w) satifies the conditions given in the extension and definition of Itô process

(1 ≤ i ≤ n, 1 ≤ j ≤ m), then it is possible to form the following n-Itô processes:


dX1 = u1dt+ v11dB1 + ...+ v1mdBm

...

dXn = undt+ vn1dB1 + ...+ vnmdBm

Or, in matrix notation simply

dX(t) = udt+ vdB(t),

where

X(t) =

 X1(t)
...

Xn(t)

, u =

 u1
...

un

, v =

 v11 ... v1m
... . . .

Vn1 ... vnm

, dB(t) =

 dB1(t)
...

dBm(t)

.

Definition 2.2.27. A process X(t) in the conditions above is called an n- di-

mensional Itô process (or simply an Itô process).

Theorem 2.2.28 (The general Itô formula). Let

dX(t) = udt+ vdB(t)

be an n-dimensional Itô process as above. Let g(t, x) = (g1(t, x), ..., gp(t, x)) be a

C2 map from [0,∞)× Rn into Rp. Then the process:

Y (t, ω) = g(t,X(t))

is again an Itô process, whose component number k, Yk, is given by

dYk =
∂gk
∂t

(t,X) +
∑
i

∂gk
∂xi

(t,X)dXi +
1

2

∑
i,j

∂2gk
∂xi∂xj

(t,X)dXidXj

where dBidBj = δijdt, dBidt = dtdBi = 0.
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Theorem 2.2.29 (The Itô representation theorem). Let F ∈ L2(Ω,FT , P ).

There exists a unique stochastic process u, Ft-adapted and with E
[∫ T

0
u2tdt

]
<∞,

such that:

F = E(F ) +

∫ T

0

usdBs :

Theorem 2.2.30 (The martingale representation theorem). Consider B(t) such

that B(t) = (B1(t), ..., Bn(t)) is n-dimensional. Suppose Mt is an F
(n)
t -martingale

(w.r.t. P ) and that Mt ∈ L2(P ) for all t ≥ 0.Then there exists a unique stochastic

process g(s, ω) such that g ∈ V(n)(0, t) for all t ≥ 0 and

Mt(ω) = E[M0] +

∫ t

0

g(s, ω)dBs a.s. for all T ≥ 0.

Stochastic differential equations

Consider a Brownian motion {Bt, t ≥ 0} defined on a probability space

(Ω,F,P). Suppose that {Ft, t ≥ 0} is a filtration such that Bt is Ft-adapted

and for any 0 ≤ s < t, the increment Bt −Bs is independent of Fs.

We aim to solve the stochastic differential equation:

dXt

dt
= b(t,Xt) + σ(t,Xt)Wt, b(t, x) ∈ R, σ(t, x) ∈ R

With initial condition X0 independent of Bt. The coefficients b(t, x) and σ(t, x)

are called, respectively, drift and diffusion coefficient. Wt is one dimensional

”white noise”.

The SDE can be written in the integral form:

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs

Or in the differential form:

dXt = b(t,Xt)dt+ σ(t,Xt)dBt.

Let us define now the solution of a stochastic differential equation: diffusion

process.

Definition 2.2.31. The solution of a stochastic differential equation is an Itô

process Xt such as:
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1. Xt is adapted to Browian motion with continuous path;

2. E
[∫ T

0
(σ(s,Xs))

2ds
]
<∞.

Then Xt, solution of the SDE, is called diffusion process.

We now state the existence and uniqueness solution for SDE.

Theorem 2.2.32. Let T > 0 and b(·, ·) : [0, t] × Rn → Rn,

σ(., .) : [0, T ]× Rn → Rn×m be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ]

for some constant C, (where |σ|2 =
∑
|σij|2) and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ]

for some constant D.

Let Z be a random variable which is independent of the σ-algebra F
(m)
∞ generated

by Bs(.), s ≥ 0 and such that

E[|Z|2] <∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T, X0 = Z (2.1)

has a unique t-continuous solution Xt(ω).

Also have the property that Xt(ω) is adapted to the filtration FZ
t generated by

Z and Bs(.), s ≤ t and

E

[∫ T

0

|Xt|2dt
]
<∞.

Remark 6.

1. The solution Xt defined above is called a strong solution, since the version

Bt of Brownian motion is given in advance and the solution constructed

from it is FZ
t -adapted.

2. If only are given the functions b(t, x) and σ(t, x) and ask for a pair of

processes ((X̃t, B̃t), Ht) on a probability space (Ω,H, P ) such that (2.1)

holds, then the solution (X̃t, B̃t) is called a weak solution.

Note that Ht is a increasing family of σ-algebras such that X̃t is Ht-adapted

and B̃t is an Ht-Brownian motion.
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3. A strong solution is also a weak solution but the inverse is not in general

true.

Diffusion Theory

Due to the diffusion process, a role of important results to the stochastic

calculus are important to be recalled.

Definition 2.2.33. A n-dimensional stochastic process {Xt, t ≥ 0} is a Markov

process if, for every, s < t that is

E[f(Xt)|Xr, r ≤ s] = E[f(Xt)|Xs]

for any bounded Borel function f on Rn.

Theorem 2.2.34 (The Markov property to diffusion processes). Assume a bounded

Borel function from Rn to R. Then, for t, h ≥ 0

Ex[f(Xt+h)|F(m)
t ](ω) = EXt(ω)[f(Xh)].

Where F
(m)
τ is the σ-algebra generated by {Bs∧τ ; s ≥ 0}.

Definition 2.2.35. Let {Nt} be an increasing family of σ-algebras in Ω. A

function τ : Ω→ [0,∞] is called a (strict) stooping time w.r.t. {Nt} if

{ω; τ(ω) ≤ t} ∈ Nt, for alt ≥ 0.

τ is trivially a stopping time w.r.t. any filtration.

Theorem 2.2.36 (Strong Markov property for diffusions processes). Let f be a

bounded Borel function on Rn, τ a stopping time w.r.t. F
(m)
t , τ <∞ a.s.. Then,

Ex[f(Xτ+h)|F(m)
τ ] = EXτ [f(Xh)]

for all h ≥ 0.

The following definition is very important to link a diffusion process Xt to a

second order partial differential operator A, in order to A be the generator of the

process Xt.
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Definition 2.2.37. Let {Xt} be a (time- homogeneous) diffusion process in Rn.

The (infinitesimal) generator A of Xt is defined by

Af(x) = lim
t→0

Ex[f(Xt)]− f(x)

t
; x ∈ Rn.

The set of functions f : Rn → R such that exists the limit at x is denoted by

DA(x), while DA denotes the set of functions for which the limits exists for all

x ∈ Rn.

The relation between the operator A and the diffusion process is due to the

Itô’s formula: let f(t, x) be a function of class C1,2. Then f(t,Xt) is an Itô process

with differential

df(t,Xt) =

(
∂f

∂t
(t,Xt) + Atf(t,Xt)

)
dt+

n∑
i=1

m∑
j=1

∂f

∂xi
(t,Xt)σi,j(t,Xt)dB

j
t .

As a consequence, if

E

(∫ t

0

∣∣∣ ∂f
∂xi

(s,Xs)σi,j(s,Xs)
∣∣∣2ds) <∞ (2.2)

for every t > 0 and every i, j, then the process

Mt = f(t,Xt)−
∫ t

0

(
∂f

∂s
+ Asf

)
(s,Xs)ds

is a martingale.

Remark 7.

1. A sufficient condition for (2.2) is that the partial derivatives
∂f

∂xi
have linear

growth, that is ∣∣∣ ∂f
∂xi

(s, x)
∣∣∣ ≤ C(1 + |x|N). (2.3)

2. If f satisfies the equation
∂f

∂t
+ Atf = 0 and (2.3) holds, then f(t,Xt) is a

martingale.

3. The martingale property of this process leads to a probabilistic interpreta-

tion of a parabolic equation with fixed terminal value, i.e.,

∂f

∂t
+ Atf = 0

f(T, x) = g(x).
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Theorem 2.2.38. Let Xt be the diffusion process

dXt = b(Xt)dt+ σ(Xt)dBt.

If f ∈ C2
0(Rn) then f ∈ DA and

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
.

Theorem 2.2.39 (Dynkin’s formula). Let f ∈ C2
0(Rn). Suppose τ is a stopping

time, Ex[τ ] <∞. Then

Ex[f(Xτ )] = f(x) + Ex

[∫ τ

0

Af(Xs)ds

]
.

Remark 8. If τ is the first exit time of a bounded set, Ex[τ ] < ∞, then the

previous theorem holds for any function f ∈ C2.

In the following, we have some classical results on solutions of stochastic dif-

ferential equations, beginning with the Kolmogorov’s backward equation.

Theorem 2.2.40. Let f ∈ C2
0(Rn). Define

u(t, x) = Ex[f(Xt)] (2.4)

then u(t, .) ∈ DA for each t and

∂u

∂t
= Au, t > 0, x ∈ Rn (2.5)

u(0, x) = f(x); x ∈ Rn (2.6)

where the right hand side is to be interpreted as A applied to the function

x → u(t, x). Moreover, if w(t, x) ∈ C1,2(R × Rn) is a bounded function satis-

fying (2.5), (2.6), then w(t, x) = u(t, x), given by (2.4).

Theorem 2.2.41 (The Feynman-Kač formula). Let f ∈ C2
0(Rn) and

q ∈ C(Rn). Assume that q is lower bounded. Put

v(t, x) = Ex

[
exp

(
−
∫ t

0

q(Xs)ds

)
f(Xt)

]
. (2.7)

Then
∂v

∂t
= Av − qv, t > 0, x ∈ Rn (2.8)

v(0, x) = f(x); x ∈ Rn (2.9)

Moreover, if w(t, x) ∈ C1,2(R×Rn) is bounded on K×Rn for each compact K ⊂ R
and w solves (2.8) and (2.9), then w(t, x) = v(t, x) given by (2.7).
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The following results are fundamental in the stochastic calculus, and its applic-

ations. The main result is the drift coefficient can be changed without transform-

ing radically the process law. Moreover, the new Itô process will be continuous

in order to the original law. The following results are based on [46].

Theorem 2.2.42 (The Lèvy characterization of Brownian motion). Consider

X(t) = (X1(t), ..., Xn(t)) a continuous stochastic process on a probability space

(Ω,H,Q) with values in Rn. Then, the following (1) and (2), are equivalent:

1. X(t) is a Brownian motion w.r.t. Q, i.e., the law of X(t) w.r.t. Q is the

same law of an n-dimensional Brownian motion.

2. (a) X(t) = (X1(t), ..., Xn(t)) is a martingale w.r.t. Q (and w.r.t. its own

filtration) and

(b) Xi(t)Xj(t)−δij is a martingale w.r.t. Q (and w.r.t. its own filtration),

for all i, j ∈ {1, 2, ..., n}.

Theorem 2.2.43 (The Girsanov theorem I). Let Y (t) ∈ Rn be an Itô process of

the form

dY (t) = a(t, ω)dt+ dB(t); t ≤ T, Y0 = 0.

where T ≤ ∞ is a given constant and B(t) is n-dimensional Brownian motion.

Put

Mt = exp

(
−
∫ t

0

a(s, ω)dBs −
1

2

∫ t

0

a2(s, ω)ds

)
; 0 ≤ t ≤ T.

Assume that Mt is a martingale with respect to F
(n)
t and P. Define the measure

Q on F
(n)
T by

dQ(ω) = MT (ω)dP (ω).

Then Q is a probability measure on F
(n)
T and Y (t) is an -dimensional Brownian

motion w.r.t. Q, for 0 ≤ t ≤ T .

Theorem 2.2.44 (The Girsanov theorem II). Let Y (t) be an Itô process of the

form

dY (t) = β(t, ω)dt+ θ(t, ω)dB(t), t ≤ T

where B(t) ∈ Rm, β(t, ω) ∈ Rn and θ(t, ω) ∈ Rn×m. Suppose that exist processes

u(t, ω) ∈Wm
H and α(t, ω) ∈Wn

H such that

θ(t, ω)u(t, ω) = β(t, ω)− α(t, ω).

21



Put

Mt = exp

(
−
∫ t

0

u(s, ω)dBs −
1

2

∫ t

0

u2(s, ω)ds

)
, t ≤ T

and

dQ(ω) = MT (ω)dP (ω) on F
(m)
T .

Assume that Mt is a martingale (w.r.t. F
(n)
t and P ). Then Q is a probability

measure on F
(m)
T , the process

B̂(t) =

∫ t

0

u(s, ω)ds+B(t); t ≤ T

is a Brownian motion w.r.t. Q and in terms of B̂(t), the process Y (t) has the

stochastic integral representation

dY (t) = α(t, ω)dt+ θ(t, ω)dB̂(t).

2.3 Aplication of stochastic calculus to finance

The field of Mathematics applied to finances emerged with the results of Black and

Scholes (1973) and Merton (1973), when the stochastic modelling of assets prices

has been generalized. They proposed the first equation to model a European

option, which allows to price an option by solving a simple PDE.

The Black-Scholes Option Pricing Formula

First, we will define some basic terminology in finances. Then we will show

the relation between Black-Scholes formula for pricing and the partial differential

equations.

Definition 2.3.1.

1. A (mathematical) market is an F
(m)
t -adapted (n+1)-dimensional Itô process

X(t) = (X0(t), X1(t), ..., Xn(t)); 0 ≤ t ≤ T which we will assume has the

form

dX0(t) = ρ(t, ω)X0(t)dt; X0(0) = 1

and

dXi(t) = µi(t, ω)dt+
m∑
j=1

σij(t, ω)dBj(t) = µi(t, ω)dt+ σi(t, ω)dB(t);

with Xi(0) = xi. σi is row number i of the n × m matrix [aij];

1 ≤ i ≤ n ∈ N.
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2. The market {X(t)}t∈[0,T ] is called normalized if X0(t) = 1.

3. A portfolio in the market {X(t)}t∈[0,T ] is an (n + 1)-dimensional

(t, ω)-mesurable and F
(m)
t -adapted stochastic process

θ(t, ω) = (θ0(t, ω), θ1(t, ω), ..., θn(t, ω)); o ≤ t ≤ T.

4. The value at time t of a portfolio θ(t) is defined by

V (t, ω) = V θ(t, ω) = θ(t).X(t) =
n∑
i=0

θi(t)Xi(t)

where · denotes inner product in Rn+1.

5. The portfolio θ(t) is called self-financing if∫ T

0

{
∣∣θ0(s)ρ(s)X0(s) +

n∑
i=1

θi(s)µi(s)
∣∣

+
m∑
j=1

[
n∑
i=1

θi(s)σij(s)

]2
}ds <∞ a.s.

(2.10)

and

dV (t) = θ(t).dX(t)

i.e.

V (t) = V (0) +

∫ t

0

θ(s).dX(s) for t ∈ [0, T ].

Definition 2.3.2. A portfolio θ(t) which satisfies (2.10) and which is self-financing

is called admissible if the corresponding value process V θ(t) is (t, ω) a.s. lower

bounded, i.e., there exists K = K(θ) <∞ such that

V θ(t, ω) ≥ −K for a.a.(t, ω) ∈ [0, T ]× Ω.

Definition 2.3.3. An admissible portfolio θ(t) is called an arbitrage (in the

market {Xt}t∈[0,T ]) if the corresponding value process V θ(t) satisfies V θ(0) = 0

and

V θ(T ) ≥ 0 a.s. and P [V θ(T ) > 0] > 0.
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Remark 9. The existence of arbitrage means a lack of equilibrium in the market.

Assume that the price Xt of a risky asset (stock) at time t is given by the

geometric Brownian motion:

Xt = f(t, Bt) = X0e
(c− 1

2
σ2)t+σBt

where B = (Bt, t ≥ 0) is a Brownian motion and X0 is assumed to be independent

of B. X is the unique strong solution of the linear stochastic differential equation

Xt = X0 + c

∫ t

0

Xsds+ σ

∫ t

0

XsdBs

which can be written as

dXt = cXtdt+ σXtdBt.

The cdt is the linear trend, σdBt is the stochastic noise term, c > 0 is the mean

rate of return and σ > 0 is the volatility.

Assume, now, a non-risky asset bound. An initial investiment capital β0

returns an amount at time t of

βt = β0e
rt

where r > 0 is the interest rate and β satisfies

βt = β0 + r

∫ t

0

βsds.

The portfolio includes the amounts of share at in stock and bt in the bound, both

stochastic processes adapted to Brownian motion. So, (at, bt), t ∈ [0, T ] is called

trading strategy. The choice of this pair will define the existence of profit.

The value of portfolio Vt at time t is given by Vt = atXt + btβt.

If at < 0 means short sale of stock and if bt < 0 then the money is borrowed at the

bond’s riskless interest rate r. We will suppose that the trading stategy (at, bt) is

self-financing (i.e. the variation of its value is only responsability of variation on

asset prices xt and βt).

The self-financing condition in differential form is:

dVt = d(atXt + btβt) = atdXt + btdβt,

and in Itô form is:

Vt − V0 =

∫ t

0

d(asXs + bsβs) =

∫ t

0

asdXs +

∫ t

0

bsdβs.
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An option is a type of derivatives and it is negociated in financial institutions

or in Stock Exchange.

Consider T the time of maturity/expiration of the option and K the exer-

cise/strike price. We have two types of options: call option and put option. The

first gives the owner the right to buy and the second the right to sell the option,

both during the contract life and at a fixed price. The options can be either

European or American (the most important). European option can only be ex-

ercised at the expiration date and the American options can be at any moment

until expiration.

The payoff function of a European call option is given by:

(Xt −K)+ = max(0, XT −K)

The payoff function of a European put option is given by:

(K −Xt)
+ = max(0, K −XT )

In the following results we will consider the European call option.

At this time a question is relevant: what is the fair price for a European call

option at t = 0?

The Black-Scholes Model

This model impose some assumptions. One is the option is European and

market movements cannot be predicted. Also is assumed that no dividens are

paid out during the option life and that there are no transitions costs in buying

the option. Besides that, the risk-free rate and volatility of the underlying are

known and constant and the return is normally distributed.

Therefore, the price of the stock (risky asset) is described by the stochastic

differential equation

dXt = cXtdt+ σXtdBt, t ∈ [0, T ],

where c is the mean rate of return, σ the volatility, B is the standard Brownian

motion and T is the time of maturity of the option.

The price of the bond (riskless asset) is described by the deterministic differ-

ential equation

dβt = rβtdt, t ∈ [0, T ],
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where r > 0 is the interest rate of the bound.

The value of portfolio at time t is given by

Vt = atXt + btβt, t ∈ [0, T ].

The portfolio is self-financing if

dVt = atdXt + btdβt, t ∈ [0, T ].

At maturity time, VT is equal to the contingent claim h(XT ) for a given

function h. European options, in particular,for call options we have h(x) =

(x−K)+. For put options, that is h(x) = (K − x)+.

Recalling the Girsanov Theorem and changing the underlying probability

measure P, the discounted price of one share of stock X̃t = e−rtXt, t ∈ [0, T ],

becomes a martingale under the new probability measure Q.

Representing f(t, x) = e−rtx and applying Itô lemma we obtain

dX̃t = σX̃tdB̃t (2.11)

where

B̃t = Bt +

[
c− r
σ

]
t, t ∈ [0, T ].

By Girsanov Theorem, B̃ is a standard Brownian motion and the solution of

(2.11), given by

X̃t = X̃0e
− 1

2
σ2t+σB̃t , t ∈ [0, T ],

transform, under Q, into a martingale with respect to the natural Brownian

motion.

Finally we state the Black-Scholes formula.

Theorem 2.3.4. Assume in the Black-Scholes model that there exists a self-

financing strategy (at, bt) such that the value Vt of a portfolio at time t is given

by

Vt = atXt + btβt, t ∈ [0, T ],

and that VT is equal to the contingent claim h(XT ). Then, the value of the

portfolio at time t is given by

Vt = EQ
[
e−r(T−t)h(Xt)|Ft

]
, t ∈ [0, T ], (2.12)

where EQ(A|Ft) denotes the conditional expectation of the random variable A,

given by Ft = σ(Bs, s ≤ t), under the new probability measure Q.
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Next we study the value Vt of the portfolio and the Black-Scholes price of a

European option. Let

θ = T − t for t ∈ [0, T ].

By (2.12), the value Vt of the portfolio at time t, according to the contingent

claim VT = h(XT ) is:

Vt = EQ
[
e−rθh(XT )|Ft

]
= EQ

[
e−rθh(Xte

(r− 1
2
σ2)θ+σ(B̃T−B̃t))|Ft

]
.

Since σ(Xt) ⊂ Ft, Xt is a function of Bt and, under Q, B̃T − B̃t is independent

of Ft and has an Normal distribution with µ = 0 and σ = θ. So, considering

Vt = f(t,Xt)

with

f(t, x) = e−rθ
∫ ∞
−∞

h(xe(r−
1
2
σ2)θ+σy

1
2 )ϕ(y)dy,

and ϕ(y) is the standard Normal density function.

As in a European call option we have h(x) = max(0, x−K) it goes

f(t, x) =

∫ ∞
−z2

[
xe−

1
2
σ2θ+σyθ

1
2 −Ke−rθ

]
ϕ(y)dy

= xΦ(z1)−Ke−rθΦ(z2),

with Φ(x) the standard Normal distribution,

z1 =
ln
(
x
K

)
+ (r + 1

2
σ2)θ

σθ
1
2

and z2 = z1 − σθ
1
2 .

The Cauchy problem and a Feynman-Kač representation

Consider a solution to the stochastic integral equation

X(t,x)
s = x+

∫ s

t

b(θ,X
(t,x)
θ )dθ +

∫ s

t

σ(θ,X
(t,x)
θ )dWθ; t ≤ s <∞ (2.13)

The coefficients

bi(t, x), σij(t, x) : [0,∞)× Rd → R (2.14)

are continuous ans satisfy the linear growth condition.

Since we have a stochastic problem, under some conditions is the solution of

the partial differential equation. The equation (2.13) has a weak solution.

(X(t,x),W ), (Ω,F,P) (2.15)
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for every pair (t, x) and this solution is unique in the sense of probability law.

Consider, now, a fixed T > 0, the constants L > 0, λ ≥ 1, and the functions

f(x) = Rd → R, g(t, x) : [0, T ]× Rd → R and k(t, x) : [0, T ]× Rd → [0,∞) are

continuous and satisfying one of the conditions

|f(x)| ≤ L(1 + ||x||2λ) (2.16)

f(x) ≥ 0; ∀x ∈ Rd (2.17)

|g(t, x)| ≤ L(1 + ||x||2λ) (2.18)

g(t, x) ≥ 0; ∀0 ≤ t ≤ T, x ∈ Rd.

Theorem 2.3.5. Under the preceding assumption (2.13)-(2.18), suppose that

v(t, x) : [0, T ]×Rd → Rd is continuous, of class C1,2([0, T )×Rd and satisfies the

Cauchy problem

−∂v
∂t

+ kv = Atv + g; in [0, T )× Rd,

v(T, x) = f(x); x ∈ Rd,

as well as the polynomial growth condition

max
0≤t≤T

|v(t, x)| ≤M(1 + ||x||2µ); x ∈ Rd, (2.19)

for some M > 0, µ ≥ 1. The v(t, x) admits the stochastic representation

v(t, x) = Et,x[f(XT )exp{−
∫ T

t

k(θ,Xθ)dθ}

+

∫ T

t

g(s,Xs)exp{−
∫ s

t

k(θ,Xθ)dθ}ds]

on [0, T ]× Rd, in particular, such a solution is unique.

Remark 10. In the case of bounded coefficients, i.e.,

|bi(t, x)|+
r∑
j=1

σ2
ij(t, x) ≤ ρ; 0 ≤ t <∞, x ∈ Rd, 1 ≤ i ≤ d,

the polynomial growth (2.19) in Theorem (2.3.5) may be replaced by

max
0≤t≤T

|v(t, x)| ≤Meµ||x||
2

; x ∈ Rd

for some M > 0 and 0 < µ < (
1

18
ρTd).
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Remark 11. A set of conditions sufficient for the existence of a solution v satis-

fying the polynomial growth condition (2.19) is:

1. Uniform ellipticity : Exists a positive constant δ such that

d∑
i=1

d∑
k=1

aik(t, x)ξiξk ≥ δ||ξ||2

holds for every ξ ∈ Rd and (t, x) ∈ [0,∞)× Rd;

2. Boundedness : The functions aik(t, x), bi(t, x), k(t, x) are bounded in

[0, T ]× Rd

3. Smoothness : The functions aik(t, x), bi(t, x), k(t, x) and g(t, x) are uniformly

Hölder-continuous in [0, T ]× Rd

4. Polynomial growth: The functions f(x) and g(t, x) satisfy (2.16) and (2.18),

respectively.

We aim to approximate by finite-difference methods, under some assumptions,

the Cauchy problem:

L(t)u− du

dt
+ f(t) = 0 in [0, T ]× Rd

u(0, x) = g(x) on Rd.

We will assume L, the second-order partial differential operator, such as

L(t, x) = a(t, x)
∂2

∂x2
+ b(t, x)

∂

∂x
+ c(t, x)

where f and g are real functions, T ∈ (0,∞), and the coefficients of second

order partial derivatives have quadratic growth and the ones of first order have

linear growth. The independent terms are bounded.
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Chapter 3

Approximation of PDEs with
bounded coefficients

As revealed earlier in this thesis, we aim to approximate degenerate PDEs when

dealing with the Cauchy problem.

We begin by stating some of the most important results, for bounded coeffi-

cient case, on the solvability of parabolic PDE, essencial to set our problem.

3.1 Classical results

3.1.1 The Cauchy problem for a general parabolic evolu-
tion equation

Let V be a reflexive Banach space embedded into a Hilbert space with a fixed

inner product. Let V ∗ be the dual of V .

Consider the initial version of the Cauchy problem:

L(t)u− du

dt
+ f(t) = 0 in [0, T ], u(0) = g (3.1)

with T ∈ (0,∞), L(t) and d
dt

are linear operators from V to V ∗, ∀t ≥ 0,

f ∈ L2([0, T ];V ∗) and g ∈ H.

It is important to define, at this moment,a generalized solution of the Cauchy

problem and set, as well, some assumptions on asbtract spaces, so we can garantee

the existence and uniqueness of a generalized solution to the problem above.

Assumption 3.1.1.1. There exist constants λ ≥ 0, K,M and N such that

1. 〈L(t)v, v〉+ λ|v|2V ≤ K|v|2H , ∀v ∈ V ;
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2. |L(t)v|V ∗ ≤M |v|V , ∀v ∈ V ;

3.
∫ T
0
|f(t)|2V ∗dt ≤ N, |g|H ≤ N .

Definition 3.1.1.2. u ∈ C([0, T ];H) is said to be a generalized solution of (3.1)

on [0, T ] if

1. u ∈ L2([0, T ];V );

2. For all t ∈ [0, T ]

(u(t), v) = (g, v) +

∫ t

0

〈L(s)u(s), v〉ds+

∫ t

0

〈f(s), v〉ds

holds for all v ∈ V .

Theorem 3.1.1.3. Under the conditions of Assumption (3.1.1.1), (3.1) has a

unique generalized solution on [0, T ]. Moreover,

sup
t∈[0,T ]

|u(t)|2H +

∫ T

0

|u(t)|2V dt ≤ N

(
|g|2H +

∫ T

0

|f(t)|2V ∗dt
)
,

where N is a constant.

3.1.2 The Sobolev spaces

In order to study the solvability of PDE with bounded coefficients, we have to in-

troduce the Sobolev spaces and some elementary properties. With these concepts

we are able to demonstrate the embbeding theorems, essential to our intended

approximation.

To introduce the Sobolev spaces, we begin by defining the weak derivatives.

Definition 3.1.2.1. Let v, w ∈ L1
loc(U) (U is a domain in Rd) and α is a multi-

index. w is said to be the αth weak partial derivative of v, denoted by Dαv = w

if for all functions φ ∈ C∞0 (U):∫
U

vDαφdx = (−1)|α|
∫
U

wφdx.

Notation 3.1.2.2. Lploc(U), 1 ≤ p < ∞ is the locally convex space of all the

numeric functions u measurable in U , φ is a called a test function and C∞0 is the

set of all infinitely differentiable functions on U with compact support.
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In order to establish the framework to our problem, we state the following

results (see [20]).

Lemma 3.1.2.3 (Uniqueness of weak derivatives). A weak αth-partial derivative

of v, if it exists, is uniquely defined up to a set of measure zero.

Introducing, at this point, the Sobolev spaces.

Definition 3.1.2.4. Fix 1 ≤ p ≤ ∞ and k as a nonnegative integer. The Sobolev

space Wm,p(U) is the group of all functions u : U → R such that for each multi-

index α with |α| ≤ m,Dαu exists in the weak sense and belongs to Lp(U).

Remark 12. If p = 2,Wm,2(U) can be written as Hm(U), (m = 0, 1, ...). The

notation H is used to represent a Hilbert space, as we are going to see. Also

consider H0(U) = L2(U).

Definition 3.1.2.5. If u ∈ Wm,p(U) the norm is given by

||u||Wm,p(U) =
∑
|α|≤m

∫
U

(|Dαu|pdx)
1
p .

Definition 3.1.2.6. The closure of C∞c (U) in Wm,p(U) is denoted by Wm,p
0 (U).

Next we state the elementary properties of weak derivatives, set in [20], so we

can prove that partial derivatives are approximated by difference quotients.

Theorem 3.1.2.7 (Properties of weak derivatives). Assume u, v ∈ Wm,p(U),

|α| ≤ m. Then

1. Dαu ∈ Wm−|α|,p(U) and Dβ(Dαu) = Dα(Dβu) = Dα+βu for all multi-

indices α, β with |α|+ |β| ≤ m.

2. For each λ, µ ∈ R, λu + µv ∈ Wm,p(U) and

Dα(λu+ µv) = λDαu+ µDαv, |α| ≤ m.

3. If V is an open subset of U , then u ∈ Wm,p(V ).

4. If ζ ∈ C∞0 (U), then ζu ∈ Wm,p(U) and

Dα(ζu) =
∑
β≤α

(
α
β

)
DβζDα−βu (Leibniz’ formula)
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Theorem 3.1.2.8 (Sobolev spaces as function spaces). For 1 ≤ p ≤ ∞, the

Sobolev space Wm,p(U) is a Banach space.

Theorem 3.1.2.9. Wm,p(U) is separable if 1 ≤ p < ∞ and is uniformly convex

and reflexive if 1 < p < ∞. In particular, Wm,2(U) is a separable Hilbert space

with inner product

(u, v)m =
∑

0≤|α|≤m

(Dαu,Dαv),

where (u, v) =
∫
U
u(x)v(x)dx is the inner product on L2(U).

The Sobolev embedding theorem, see [2] for the results, states the existence of

embeddings of Wm,p(U) (or Wm,p
0 (U)) into Banach spaces of the following types.

1. W j,q(U), where j ≤ m and in particular Lq(U);

2. W j,q(Uk), where, for 1 ≤ k < d, Uk is the intersection of U with a k-

dimensional plane in Rd;

3. Cj
B(U), the space of functions having bounded, continuous derivatives up

to order j on U , normed by:

||u;Cj
B(U)|| = max

0≤|α|≤j
sup
x∈U
|Dαu(x)|.

4. Cj ¯(U), the closed subspace of Cj
B(U) consisting of functions having bounded,

uniformly continuous derivatives up to order j on U , with the same norm

as Cj
B(U):

||φ;Cj ¯(U)|| = max
0≤|α|≤j

sup
x∈U
|Dαφ(x)|.

This space is smaller than Cj
B(U) due to the fact that its elements must be

uniformly continues on U .

5. Cj,λ ¯(U), the closed subspace of Cj ¯(U) consisting of functions whose deriv-

atives up to order j satisfy Hölder conditions of exponent λ in U . The norm

on Cj,λ ¯(U) is:

||φ;Cj,λ ¯(U)|| = ||φ;Cj ¯(U)||+ max
0≤|α|≤j

sup
x,y∈U ;x 6=y

|Dαφ(x)−Dαφ(y)|
|x− y|λ

.

Remark 13 (The cone condition). U satisfies the cone condition if there exists a

finite cone C such that each x ∈ U is the vertex of a finite cone Cx contained in

U and congruent to C (Cx can be obtained from C by rigid motion).
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Remark 14 (Strong local Lipschitz property). U has the strong local Lipschitz

property if there exists positive δ and M , a local finite open cover Ui of boundary

U and for each Uj a real-valued function fj of n − 1 variables, such that the

following conditions hold:

1. For some finite R, every collection of R + 1 of the sets Uj has empty inter-

section;

2. For every pair of points x, y ∈ Uj = x ∈ U : dist(x, bdryU) < Ω such that

|x− y| < δ, there exists j such that

x, y ∈ Vj = x ∈ Uj : dist(x, bdryUj) > δ;

3. Each function fj satisfies a Lipschitz condition with constant M :

|f(ξ1, ...ξn−1)− f(η1, ..., ηn−1)| ≤M |(ξ1 − η1, ..., ξn−1 − ηn−1|;

4. For some cartesian coordinate system (ξj,1, ..., ξj,n) in Uj the set Ω ∩ Uj is

represented by the inequality

ξj,n < fj(ξj,1, ..., ξj,n−1).

Theorem 3.1.2.10 (The Sobolev embedding theorem). Let U be a domain in

Rd and let Uk be the k-dimensional domain obtaining by intersecting U with a

k-dimensional plane in Rd, 1 ≤ k ≤ d. Let j and m be non-negative integers and

let p satisfy 1 ≤ p <∞.

Part I If U has te cone property, then there exist the following embeddings:

Case A Suppose mp < d and d−mp < k ≤ d. Then

W j+m,pU → W j,q(Uk), p ≤ q ≤ kp/(d−mp), (3.2)

and in particular,

W j+m,pU → W j,q(U), p ≤ q ≤ dp/(d−mp),

or

Wm,p(U)→ Lq(U), p ≤ q ≤ dp/(d−mp).

Moreover, if p = 1, so that m < d, embedding (3.2) also exists for

k = d−m.
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Case B Suppose mp = d. Then for each k, 1 ≤ k ≤ d;

W j+m,p(U)→ W j,q(Uk) p ≤ q <∞, (3.3)

so that, in particular,

Wm,p(U)→ Lq(U), p ≤ q <∞. (3.4)

Moreover, if p = 1 so that m = d, embeddings (3.3) and (3.4) exist

with q =∞ as well. More,

W j+n,1(U)→ Cj
B(U).

Case C Suppose mp > d. Then

W j+m,p(U)→ Cj
B(U).

Part II If U has the strong local Lipschitz property, then Case C of Part I can

be refined as:

Case C’ Suppose mp > d > (m− 1)p. Then

W j+m,p(U)→ Cj,λ ¯(U), 0 < λ ≤ m− (d/p).

Case C” Suppose d = (m− 1)p. Then

W j+m,p(U)→ Cj,λ ¯(U), 0 < λ < 1. (3.5)

Also, if d = m− 1 and p = 1, then (3.5) holds for λ = 1 as well.

Part III All the conclusions of Parts I and II are valid for arbitrary domains

provided the W -spaces undergoing embedding are replaced with the corres-

ponding W0-spaces.

The next Sobolev Embedding Theorem is based on [2] and [26].

Theorem 3.1.2.11. Let U be a bounded domain in Rd with a C1 boundary. Let

v ∈ Wm,2(U).

If m >
d

2
then v ∈ C(m−[ d

2
]−1)+δ(U), where

δ =


[
d

2

]
+ 1− d

2
, if

d

2
is not an integer

any positive number < 1, if
d

2
is an integer.

Moreover,

|v|(m−[ d
2
]−1)+δ;U ≤ N |v|Wm,2(U),

with N a constant only depending on m, d, δ and U .
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3.1.3 A parabolic PDE problem - the nondegenerate case

Based on previous works [26, 27, 30], we state the conditions to the existence

and uniqueness of generalized solution of PDEs in the nondegenerate case for the

exact problem.

Consider the second-order parabolic partial differential equation problem, with

second order operator L, such that:

L(t, x) = aij(t, x)
∂2

∂xi∂xj
+ bi(t, x)

∂

∂xi
+ c(t, x)

with aij, bi, c are real valued functions on [0, T ]× Rd

Consider now the Cauchy Problem:

Lu− ut + f = 0 in Q
u(0, x) = g(x) in Rd (3.6)

with T ∈ (0,∞);Q = [0, T ]× Rd and f and g functions.

We consider now the Cauchy case where (3.6) is assumed to be nondegenerate.

We will use the notation, C([0, T ];W ) for the space of continuous W -valued

functions on [0, T ] and L2([0, T ];W ) the space of continuous W -valued functions

ω on [0, T ], with the norm ||ω||L2([0,T ];W ) = (
∫ T
0
||ω||2dt)1/2 <∞.

We assume the following assumption.

Assumption 3.1.3.1. Let m ≥ 0 be an integer. There exist constants λ > 0, K

such that

1.
∑d

i,j=1 aij(t, x)ξiξj ≥ λ
∑d

i=1 |ξi|2, for all t ≥ 0, x, ξ ∈ Rd;

2. |Dα
xaij| ≤ K for all |α| ≤ m ∨ 1, |Dα

x bi| ≤ K, |Dα
xc| ≤ K for all |α| ≤ m,

where Dα
x denotes the αth partial derivative operator with respect to x;

3. f ∈ L2([0, T ];Wm−1,2), g ∈ Wm,2.

We define the generalized and classical solution of the problem (3.6).

Definition 3.1.3.2. u ∈ C([0, T ];L2) is said to be a generalized solution of the

problem (3.6) on [0, T ] if:

1. u ∈ L2([0, T ];W 1,2);
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2. ∀t ∈ [0, T ]

(u(t), φ) = (g, φ) +

∫ t

0

{−(aij(s)Diu(s), Djφ) + (b(s)Diu(s)

−Djaij(s)Diu(s), φ) + (c(s)u(s), φ) + 〈f(s), φ〉}ds,

for all φ ∈ C∞0 (Rd).

Remark 15.

Above, (·, ·) denots the inner product in L2 and || · || is the norm space in W .

Definition 3.1.3.3. A given problem for a partial differential equation is well-

posed in a classical sense if:

1. The problem has a solution;

2. This solution is unique;

3. The solution depends continuously on the data given in the problem.

By solving a PDE in the classical sense we need a definition of classical solu-

tion that holds the previous conditions (1) - (3).

Definition 3.1.3.4. u(t, x) ∈ [0, T ] × Rd is called a classical solution of the

problem (3.6) if:

1. u ∈ C0,2([0, T ]× Rd)

2. For all x ∈ Rd, for all t ∈ [0, T ]

u(t, x) = g(x) +

∫ t

0

{ ∂
∂xi

(aij
∂

∂xj
u(s, x) + ai0u(s, x) + fi(s, x))

+ bi
∂

∂xi
u(s, x) + cu(s, x)}ds.

Next we state the conditions of existence and uniqueness, see e.g. [31] and

[26].
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Theorem 3.1.3.5. Under (1)−(3) in Assumption (3.1.1.1), problem (3.6) has a

unique generalized solution on [0, T ]. Moreover,

u ∈ C([0, T ];Wm,2) ∩ L2([0, T ];Wm+1,2)

and

sup
t∈[0,T ]

‖u(t)‖2Wm,2 +

∫ T

0

‖u(t)‖2Wm+1,2dt ≤ N
(
‖g‖2Wm,2 +

∫ T

0

‖f(t)‖2Wm−1,2dt
)
,

where N is a constant.

3.1.4 A parabolic PDE problem - the degenerate case

Consider the problem (3.6) and assume the situation where the operator L is

degenerate in the spatial variables. Beginning to establish some assumptions,

see e.g. [26, 31], we will state the conditions to the existence and uniqueness of

generalized solution to the exact degenerate problem.

Assumption 3.1.4.1. Let m ≥ 0 be an integer. There exist constants K ≥ 0

such that

1.
∑d

i,j=1 aij(t, x)ξiξj ≥ 0, ∀t ≥ 0, x ∈ Rd;

2. |Dα
xiaij| ≤ K for all |α| ≤ m ∨ 1, |Dα

xibi| ≤ K, |Dα
xic| ≤ K for all |α| ≤ m;

3. f ∈ L2([0, T ];Wm−1,2), g ∈ Wm,2.

Definition 3.1.4.2. u ∈ C([0, T ];L2) is a generalized solution of (3.6) on [0, T ]

if:

1. u ∈ L2([0, T ];W 1,2);

2. ∀t ∈ [0, T ]

(u(t), ϕ) =(g, ϕ) +

∫ t

0

{−(aij(s)Diu(s), Djϕ)

+ (b(s)Diu(s)−Djaij(s)Diu(s), ϕ)

+ (c(s)u(s), ϕ) + 〈f(s), ϕ〉}ds,

∀ϕ ∈ C∞0 (Rd)
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Considering [26, 31], and adapting to the case of bounded coefficients, we state

the next result, to existence and uniqueness of solution.

Theorem 3.1.4.3. Assume conditions on Assumption (3.1.4.1). Let K be a

constant and σ a matrix-valued function σ : [0, T ]× Rd → Rd×d2 such that

1. σinσjn = A

2. |σinxj(t, x)| ≤ K for all (t, x) ∈ [0, T ]× Rd, i = 1, ..., d n = 1, ..., d2.

Then, there exists a unique generalized solution (u(t))t∈[0,T ] of the problem (3.6).

Moreover,

u ∈ C([0, T ];Wm,2) ∩ L2([0, T ];Wm+1,2)

and

sup
t∈[0,T ]

|u(t)|2Wm,2 +

∫ T

0

|u(t)|2Wm+1,2dt ≤ N
(
|g|2Wm,2 +

∫ T

0

|f(t)|2Wm−1,2dt
)
,

for N constant.

3.2 Finite-difference approximation

We will now discretize our degenerate problem (3.6) in the spatial variables in

order to approximate its solution.

Based on the discrete framework defined by Gonçalves in [26] for the nonde-

generate case, with bounded coefficients, we will adapte this framework and spaces

to the degenerate case.

3.2.1 The discrete Sobolev spaces

We introduce the discretized version of Sobolev spaces W 0,2 and W 1,2.

l0,2: We have the function space l0,2 = {v : Zd
h → R : |v|l0,2 <∞}

with the inner product: (v, w)l0,2 =
∑

x∈Zdh
v(x)w(x)hd

and the norm induced by the inner product: |v|l0,2 = (v, v)
1/2

l0,2 =
(∑

x∈Zdh
|v(x)|2hd

)1/2
.

l1,2: Now we have the function space l1,2 = {v : Zd
h → R : |v|l1,2 <∞}

with the inner product (v, w)l1,2 = (v, w)l0,2 +
∑d

i=1(∂
+
i v, ∂

+
i w)l0,2

and the the norm induced by the inner product, with v, w functions in l1,2

|v|l1,2 = |v|2l0,2 +
∑d

i=1 |∂
+
i v|2l0,2 .
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In these conditions, l1,2 is densely embedded into l0,2 and its dual (owing

to the properties of the inner product defined above, we will maintain as l0,2)

is also densely embedded in the dual (l1,2)∗. Thus, we have the normal triple

l1,2 ↪→ l0,2 ↪→ (l1,2)∗.

According to [26] the following results, can be stated and ensure that some of

the conditions to the existence of solution is garantee. For the completeness we

give brief proofs on that.

Proposition 3.2.1.1. The functions spaces l0,2 and l1,2 are Hilbert Spaces.

Proof. The first step of this proof is to prove that the space l0,2 with the inner

product defined is complete, i.e., that l0,2 is a Banach space with a inner product,

therefore a Hilbert space.

Assume (un) as a Cauchy sequence in l0,2. Then,∀ε > 0 ∃N that for m,n > N

|um − un|l0,2 =

∑
x∈Zdh

|um(x)− un(x)|2hd
 1

2

< ε (3.7)

So, for every x ∈ Zd
h, for m,n > N there is,

|um(x)− un(x)|2hd < ε2. (3.8)

Fix x = x0. Owing to (3.8) (u1(x0), ..., um(x0)) is a Cauchy sequence of

numbers in R. Consequently, um(x0) is convergent to u(x0). Let u = u(x0),∀x ∈
Zd
h.

Considering B a ball in Zd
h and owing to (3.7), for m,n > N

∑
x∈B

|um(x)− un(x)|2hd < ε2.

For n→∞ and for m > N

∑
x∈B

|um(x)− u(x)|2hd < ε2.

Considering the diameter of B to tend to ∞, for m > N that is

∑
x∈Zdh

|um(x)− u(x)|2hd < ε2.

Therefore we have that um−u ∈ l0,2 and that um is convergent to u. By Minkowski

inequality and as l0,2 we have
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u = um + (u− um) ∈ l0,2.

We proved that any Cauchy sequence in l0,2 is convergent in the space norm,

which proves the result for l0,2 .

For l1,2 the proof is similar.

Proposition 3.2.1.2. The function space l1,2 is separable.

Proof. We have to prove that l1,2 with the inner product has a compact subset

that is dense. Let S be the set as S = B ∪ {x + ei : x ∈ B, i = 1, ..., d}, where

B is a ball in Zd
h. Assume l as the set of all functions w(x) ∈ l1,2 with rational

values when x ∈ S and becoming zero outside S. l is countable.

Consider u an arbitrary function in l1,2 and let x ∈ B. For some ε > 0, it is

possible to choose w that

∑
x

|u(x)− w(x)|2hd +
d∑
i=1

∑
x

|∂+i (u(x)− w(x))|2hd (3.9)

=
∑
x

|u(x)− w(x)|2hd +
d∑
i=1

∑
x

|h−1(u(x+ hei)− w(x+ hei)− (u(x)− w(x)))|2hd

≤
∑
x

|u(x)− w(x)|2hd + 2
d∑
i=1

∑
x

|u(x+ hei)− w(x+ hei)|2hd−2

+ 2
d∑
i=1

∑
x

|u(x)− w(x)|2hd−2 < ε2

2
.

As |u|2l1,2 is a convergent series, for some ε > 0 there exists a diameter of B

that, for x outside B that

∑
x

|u(x)|2hd +
∑
x

|u(x)− w(x)|2hd +
d∑
i=1

∑
x

|∂+i u(x)|2hd < ε2

2
. (3.10)

By (3.9) and (3.10) that is |u− w|l1,2 < ε.

Therefore l1,2 has a countable subset dense in l1,2 and the result is proved.

Proposition 3.2.1.3. The function space l1,2 is densely embeddable in l0,2.
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Proof. Let u be an arbitrary function such that u ∈ l0,2. Consider B a ball in Zd
h.

Let ∈ l1,2w be a function defined as below

w(x) =

{
u(x), x ∈ B
0, otherwise.

For some ε > 0, for a diameter of B sufficiently large, that is

|u− w|l0,2 < ε.

Therefore, we proved that l1,2= l0,2 and the result is showed.

3.2.2 The discretized problem

As mentioned befor, this discretization of the Cauchy problem is based on previous

works but now, adapting to degenerate case, we set the discretization in spatial

variables of the second order linear parabolic PDE for the bounded coefficient

case.

Starting the discretization of Cauchy problem (3.6), we begin by defining the

discretized framework.

Assume the h-grid on Rd, with h ∈ (0, 1]. Assume also that ei denotes the

canonical basis of Rd.

Zd
h = {x ∈ Rd : x =

d∑
i=1

eini, ni = 0,±1,±2, ...},

establish the difference quotients in space:

• Forward: ∂+i u = ∂+i u(t, x) =
u(t, x+ hei)− u(t, x)

h

• Backward: ∂−i u = ∂−i u(t, x) =
u(t, x)− u(t, x− hei)

h
.

and consider the discrete operator Lh such that:

Lh(t, x) = aij(t, x)∂−j ∂
+
i + bi(t, x)∂+i + c(t, x).

The discrete problem can be written as

Lhu− ut + fh = 0 in Q(h) = [0, T ]× Zd
h (3.11)

u(0, x) = gh(x) in Zd
h

42



with T ∈ (0,∞), fh, gh such that

fh : Q(h)→ R and gh : Zd
h → R

So, we have:

aij(t, x)
∂2u

∂xi∂xj
+ bi(t, x)

∂u

∂xi
+ c(t, x)u− ∂u

∂t
+ fh(t, x) = 0.

Assumption 3.2.2.1. For the discretization of problem (3.6), we assume

1. fh ∈ L2([0, T ]; l0,2);

2. gh ∈ l0,2.

Remark 16. In previous Assumption (3.2.2.1), the first condition can be replaced

by fh ∈ L2([0, T ]; (l1,2)∗), where (l1,2)∗ is the dual space of l1,2, defining a weaker

condition on this space.

Remark 17. By [26] we can state that

|∂+i aij(t, x)| = |h−1(aij(t, x+ hei)− aij(t, x))| ≤
∣∣∣∣ ∂∂xiaij(t, x+ τei)

∣∣∣∣ ,
with τ such that 0 < τ < h.

We define now the generalized solution of the problem (3.11), solution we want

to prove that exists and is unique in this discrete problem.

Definition 3.2.2.2. u is said to be a generalized solution of the discrete problem

(3.11) if, ∀t ∈ [0, T ]

(u(t), ϕ) = (gh, ϕ) +

∫ t

0

{−(aij(s)∂
+
i u(s), ∂+j ϕ)

+ (bi(s)∂
+
i u(s)− ∂+j aij(s)∂+i u(s), ϕ)

+ (c(s)u(s), ϕ) + 〈fh(s), ϕ〉}ds,

∀ϕ ∈ (l1,2)∗. (·, ·) denotes the inner product in l0,2.

We now state the existence and uniqueness of a generalized solution to the

discretized problem (3.11).
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Theorem 3.2.2.3. Suppose (2) in Assumption (3.1.4.1), (1)-(2) of Assumption

(3.2.2.1) and conditions (1)-(2) in (3.1.4.3). Then the discretized problem (3.11)

has a unique generalized solution u(t) on [0, T ]. Moreover,

supt∈[0,T ]|u(t)|2l0,2 +

∫ T

0

|u(t)|2l1,2dt

≤ N

(
|gh|2l0,2 +

∫ T

0

|fh(t)|2l0,2dt
)

where N is a constant independent of h.

Proof. Let us consider the new problem obtained of (3.11) by changing the coef-

ficient aij by aλij(t, x, λ) = aij(t, x) + λ, λ > 0.

We begin by proving that this problem has a unique generalized solution. Since

l1,2 and (L1,2)∗ satisfies the normal triple Lh(s)l1,2 → (L1,2)∗ for the problem.

Let Lh(s) : l1,2 → (L1,2)∗ be a discrete bilinear functional and consider ϕ, ψ ∈
l1,2 such that

〈Lh(s)ψ, ϕ〉 =−
(
(aij(s) + λ)∂+i ψ, ∂

+
j ϕ
)(

bi(s)∂
+
i ψ − ∂+j (aij(s) + λ)∂+i ψ, ϕ

)
+ (c(s)ψ, ϕ)

To state the uniqueness of solution to the given problem, we need to prove:

1. |〈Lh(s)ψ, ϕ〉| ≤ k|ψ|l1,2|ϕ|l1,2 for all ϕ, ψ ∈ l1,2 and k constant

2. 〈Lh(s)ψ, ψ〉 ≤ k|ψ|2l0,2 − ε|ψ|2l1,2 for all ψ ∈ l1,2, ε > 0, k constant

To prove the first inequality, owing to |Dα
xaij| ≤ k, |Dα

x bi| ≤ k, |Dα
xc| ≤ k by
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(2) in Assumption (3.1.4.1) and λ ∈ (0, 1) we have:

|〈Lh(s)ψ, ϕ〉| = |
∑
x∈Zdh

∑
i,j

(aij(s) + λ)∂+i ψ∂
+
j ϕh

d +
∑
x∈Zdh

∑
i

bi(s)∂
+
i ψϕh

d

−
∑
x∈Zdh

∑
i,j

(∂+j (aij(s) + λ)∂+i ψϕh
d +

∑
x∈Zdh

c(s)ψϕhd|

≤ |
∑
x∈Zdh

∑
i,j

(k + λ)|∂+i ψ∂+j ϕ|hd

+ k
∑
x∈Zdh

∑
i

|∂+i ψϕ|hd + k
∑
x

|ψϕ|hd

≤ (k + λ)
∑
i

|∂+i ψ|l0,2
∑
j

|∂+j ϕ|l0,2

+ k
∑
i

|∂+i ψ|l0,2|ϕ|l0,2 + k|ψ|l0,2|ϕ|l0,2

≤ (k + λ)
∑
i

|∂+i ψ|l0,2
∑
j

|∂+j ϕ|l0,2 + k
∑
i

|∂+i ψ|l0,2|ϕ|l0,2

+ |ψ|l0,2
∑
j

|∂+j ϕ|l0,2 + k|ψ|l0,2|ϕ|l0,2

≤ k
∑
j

|∂+j ϕ|l0,2
[∑

i

|∂+i |l0,2 + |ψ|l0,2
]

+ k|ϕ|l0,2|ψ|l1,2

≤ k
∑
j

|∂+j ϕ|l0,2
[∑

i

|∂+i ψ|l0,2 + |ψ|l0,2
]

+ k|ϕ|l0,2 |ψ|l1,2

≤ k
∑
j

|∂+j ϕ|l0,2|ψ|l1,2 + k|ϕ|l0,2|ψ|l1,2

≤ k
∑
j

|∂+j ϕ|l0,2|ψ|l1,2 + k|ϕ|l0,2|ψ|l1,2

≤ k|ψ|l1,2 |
∑
j

|∂+j ϕ|l0,2 + |ϕ|l0,2|

≤ k|ψ|l1,2 |ϕ|l1,2

For the second inequality, recalling the Cauchy-Schwartz, 2ab ≤ δa+ 1
δ
b,

δ > 0.

45



〈Lh(s)ψ, ψ〉 =

− ((aij(s) + λ)∂+i ψ, ∂
+
j ψ)

+ (bi(s)∂
+
i ψ − ∂+j (aij(s) + λ)∂+i ψ, ψ) + (c(s)ψ, ψ)

= −
∑
x

∑
i,j

(aij(s) + λ)|∂+i ψ|2hd +
∑
x

∑
i,j

[
bi(s)− ∂+j (aij(s) + λ)

]
∂+i ψψh

d +
∑
x

c(s)|ψ|2hd

≤ −(ε+ λ)
∑
x

∑
i

|∂+i ψ|2hd + (k + λ)
∑
x

∑
i

|∂+i ψψ|hd + k
∑
x

|ψ|2hd

≤ (−ε− λ)
∑
i

|∂+i ψ|2l0,2 + 2k
∑
i

|∂+i ψψ|l0,2 + k|ψ|2l0,2

≤ −ε
∑
i

|∂+i ψ|2l0,2 + ε|ψ|2l0,2 − ε|ψ|2l0,2 + k|ψ|2l0,2 + 2k
∑
i

|∂+i ψψ|l0,2

≤ −ε|ψ|2l1,2 + (ε+ k)|ψ|2l0,2 + 2k|∂+i ψψ|l0,2

≤ −ε|ψ|2l1,2 + (ε+ k)|ψ|2l0,2 + kδ
∑
i

|∂+i ψ|+
1

δ
k
∑
i

|ψ|l0,2

≤ −ε|ψ|2l1,2 + k|ψ|2l0,2

We proved the discretized problem (3.11) has a unique solution.

The following steps are in to prove that the estimate in this theorem is valid.

l0,2 and l1,2 are Hilbert spaces, in particular they are complete spaces such

that l0,2, l1,2 ⊂ L2(Rd). Also their weak derivatives are in L2(Rd).

Consider λ ∈ (0, 1) and aλij(t, x, λ) = aij(t, x)+λ, instead of aij(t, x). Let uλ be

the generalized solution of our problem. Then, uλ ∈ C([0, T ], l0,2)∩L2([0, T ], l1,2).

It is known that weak continuity in a Sobolev space implies strong continuity in

its dual space.

Let Lh be a linear functional such that Lh : l1,2 → (l1,2)∗, with inner product

and norm defined as above in this proof. Assume the conditions on Assumption

(3.1.4.1) and that fh ∈ L2([0, T ], l0,2) and gh ∈ l0,2.
By Definition (3.1.2.1) and Theorem (3.1.2.7), uλ converges weakly to u in

C([0, T ], l0,2) ∩ L2([0, T ], l1,2).

We have to prove that the estimate in this theorem is true to uλ and inde-

pendent of λ. Replacing in definition (3.11):

46



(uλ(t), ϕ) = (gh, ϕ) +

∫ t

0

{−(aij(s) + λ)∂+i uλ(s), ∂
+
j ϕ)

+ (bi(s)∂
+
i uλ(s)− ∂+j (aij(s) + λ)∂+i uλ(s), ϕ)

+ (c(s)uλ(s), ϕ) + 〈fh(s), ϕ〉}ds

As gh ∈ l0,2 ⊂ Wm,2 ⊂ L2 then (gh, ϕ)l0,2 ≤ (g, ϕ)Wm,2 ≤ (g, ϕ)L2 and fh ∈
L2([0, T ], l0,2) ⊂ L2 then (fh, ϕ)l0,2 ≤ (f, ϕ)L2 .

Then we have

(uλ(t), ϕ) ≤ (g, ϕ)L2 +

∫ t

o

{−(aij(s) + λ)Diu(s), Djϕ)L2

+ (bi(s)Diu(s)−Dj(aij(s) + λ)Diu(s), ϕ)L2

+ (c(s)u(s) + f, ϕ)L2}ds

Since λ→ 0 then

(uλ(t), ϕ) ≤ (g, ϕ)L2 +

∫ t

o

{−aij(s)Diu(s), Djϕ)L2

+ (bi(s)Diu(s)−Djaij(s)Diu(s), ϕ)L2

+ (c(s)u(s) + f, ϕ)L2}ds

We conclude that the estimate given is valid and in limit it is the solution to the

nondegenerate problem.

Recalling Lemma (3.1.2.3), we found a upper bound to the left side of the

estimate and, as λ → 0, we have that uλ → u, i.e., the upper bound does not

depend on λ.

By Theorem (3.1.4.3) the estimate in this theorem is valid for u and that the

problem admits a unique generalized solution.

3.2.3 Approximation results

Obtained the scheme it is necessary to prove that it is consisten. The following

is a result to the consistency of the scheme.

Theorem 3.2.3.1. Let m be an integer such that m > d
2
. Let

u(t) ∈ Wm+2,2, v(t) ∈ Wm+3,2, for all t ∈ [0, T ]. Then there exists a constant N

not depending on h such that

1.
∑

x |uxi(t, x)− ∂+i u(t, x)|2hd ≤ h2N |u(t)|2Wm+2,2 .
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2.
∑

x |vxixj(t, x)− ∂−j ∂+i v(t, x)|2hd ≤ h2N |v(t)|2Wm+3,2 .

for all t ∈ [0, T ], x ∈ Zd
h and

∑
x is the summation over Zd

h

Proof. The proof follows the main steps of the proof in [26] for the corresponding

result to the nondegeneracy case.

In order to prove the first inequality. Consider the mean-value theorem:

∂+i u(t, x) = h−1(u(t, x+ hei)− u(t, x)) = uxi(t, x+ θhei)

on the another hand,

uxi(t, x)− ∂+i u(t, x) = uxi(t, x)− uxi(t, x+ θhei) = hxixi(t, x+ θ′hei)

for some 0 < θ′ < θ < 1.

Let us consider the d-cells

Rh = (x1, x2, ..., xd) ∈ Rd : xih < xi < xih + h, i = 1, 2, ..., d,

with xh = (x1h, x
2
h, ..., x

d
h) ∈ Zd

h.

∀xh ∈ Zd
h, |uxixi(t, xh + θ′hei)| ≤ sup

x∈Rh
|uxixi(t, x)|,

therefore

|uxi(t, xh)− ∂+u(t, xh)|2 ≤ h2 sup
x∈Rh
|uxixi(t, x)|2. (3.12)

For the particular case of the d-cell where h = 1 and x1 = (0, ..., 0) we will

represent by R0
1. Thus,

sup
x∈Rh
|uxixi(t, xh + hx)|. (3.13)

Now, fixing open ballsBh such thatBh ⊃ Rh, with vertices xih, x
i
h + h, i = 1, 2, ..., d

on the boarder of the sphere. Let R0
1 be contained in the B0

1 . Therefore,

sup
x∈R0

1

|uxixi(t, xh + hx)|2 ≤ sup
x∈B0

1

|uxixi(t, xh + hx)|2 (3.14)

Owing to (1) of Theorem (3.1.2.7) and to Theorem (3.1.2.11), for m > d
2

that

is:
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sup
x∈B0

1

|uxixi(t, xh + hx)|2 ≤ N
∑
|α|≤m

∫
B0

1

|Dα
xuxixi(t, xh + hx)|2dx

≤ N
∑

|α|≤m+2

∫
B0

1

|Dα
xu(t, xh + hx)|2dx

= N
∑

|α|≤m+2

∫
Bh

|Dα
xu(t, x)|2h−dh2|α|dx

≤ N
∑

|α|≤m+2

∫
Bh

|Dα
xu(t, x)|2h−ddx. (3.15)

By (3.12), (3.13), (3.14) and (3.15) we have:

∑
xh∈Zdh

|uxi(t, xh)− ∂+i u(t, xh)|2hd ≤ Nh2
∑

|α|≤m+2

∑
xh∈Zdh

∫
Bh(xh)

|Dα
xu(t, x)|2dx

≤ Nh2
∑

|α|≤m+2

∑
xh∈Zdh

∫
Rh(xh)

|Dα
xu(t, x)|2dx

≤ h2N |u(t)|2Wm+2,2 ,

with Bh(xh) = Bh, Rh(xh) = Rh, and we just proved the first inequality. For

the second inequality the process is similar.

The following steps are in order to state the rate of convergence, attending to

[26].

Theorem 3.2.3.2. Let u be the solution of problem (3.6) in Theorem (3.1.4.3)

and uh the solution of (3.11) in Theorem (3.2.2.3). Consider m an integer such

that m > d
2

and u ∈ L2([0, T ];Wm+3,2). Then, for some constant N not depending

on h,

supt∈[0,T ]|u(t)− uh(t)|2l0,2 +

∫ T

0

|u(t)− uh(t)|2l1,2dt

≤ h2N

∫ T

0

|u(t)|2Wm+3,2dt+N(|g − gh|2l0,2 +

∫ T

0

|f(t)− fh(t)|2l0,2dt).

Proof. From (3.6) and (3.11), we have that u− uh satisfies the problem{
(u− uh)t = Lh(u− uh) + (L− Lh)u+ (f − fh) in Q(h)

(u− uh)(0, x) = (g − gh)(x) in Zd
h.
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This result is already proved for the nondegenerate case and is valid independ-

ently of the degeneracy.

Under the conditions of theorem, there are modifications in x such that the data

f(t) and g are continuous in x, for every t ∈ [0, T ], we have that f − fh ∈
L2([0, T ]; l0,2) and g − gh ∈ l0,2.

With respect to the term (L − Lh)u, note that if u(t) ∈ Wm+3,2, for all

t ∈ [0, T ],∑
x∈Zdh

|(L− Lh)(t)u(t)|2 hd

=
∑
x∈Zdh

∣∣∣∣aij(t, x)

(
∂2

∂xi∂xj
− ∂−j ∂+i

)
u(t, x) + bi(t, x)

(
∂

∂xi
− ∂+i

)
u(t, x)

∣∣∣∣2hd
≤ h2N‖u(t)‖2Wm+3,2 <∞,

Thus

(L − Lh)(t)u(t) ∈ l0,2, for every t ∈ [0, T ]. Moreover, u ∈ L2([0, T ];Wm+3,2),

we obtain immediately (L− Lh)u ∈ L2([0, T ]; l0,2).

Holding the estimate, owing to Theorem (3.1.4.3)

sup
0≤t≤T

‖u(t)− uh(t)‖2l0,2 +

∫ T

0

‖u(t)− uh(t)‖2l1,2dt

≤ N

(
‖g − gh‖2l0,2(r) +

∫ T

0

‖f(t)− fh(t)‖2l0,2dt+

∫ T

0

‖(L− Lh)(t)u(t)‖2l0,2 dt
)
.

Owing again to (2) in Assumption (3.1.4.1) and to Theorem (3.2.3.1), the result

follows.

Next corollary state the previous rate of convergence with a well structured

statement.

Corollary 3.2.3.3. Let u be the solution of problem (3.6) in Theorem (3.1.4.3)

and uh the solution of (3.11) in Theorem (3.2.2.3). Consider m an integer such

that m > d
2

and u ∈ L2([0, T ];Wm+3,2).

If there is a constant N not depending on h,such that

|g − gh|2l0,2 +

∫ T

0

|f(t)− fh(t)|2l0,2dt) ≤ h2N(|g|2Wm,2 +

∫ T

0

|f(t)|2Wm−1,2dt),

then

supt∈[0,T ]|u(t)− uh(t)|2l0,2 +

∫ T

0

|u(t)− uh(t)|2l1,2dt

≤ h2N(

∫ T

0

|u(t)|2Wm+3,2dt+ |g|2Wm,2 +

∫ T

0

|f(t)|2Wm−1,2dt).

Proof. The result is a imediatly consequence of Theorem (3.2.3.2).
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3.2.4 The special one-dimensional case

Following the previous results and [26, 27, 28, 45] we now apply the same approach

to the special one dimension in space, in degenerate case, to bounded coefficients.

Consider the Cauchy Problem in R.

Lu− ∂u

∂t
+ f = 0 in Q (3.16)

u(0, x) = g(x) in R

where Q = [0, T ]×R, T is a positive constant and L is the second-order partial

differential operator with bounded coefficients in R:

L(t, x) = a(t, x)
∂2

∂x2
+ b(t, x)

∂

∂x
+ c(t, x),

t with values in [0, T ] and f , g real valued functions.

The PDE theory to this special problem is a particularization of the theory

presented above to the d-dimensional problem. Therefore we state the most

important results for the one dimensional case.

Assumption 3.2.4.1. Let the integer m be nonnegative. There exist constants

k and λ ≥ 0 such that:

1. a(t, x) ≥ λ, ∀t ≥ 0, ∀x ∈ R

2. |Dα
xa| ≤ k, ∀|α| ≤ m ∨ 1

|Dα
x b| ≤ k, |Dα

xc| ≤ k, ∀|α| ≤ m

3. f ∈ L2([0, T ];Wm−1,2), g ∈ Wm,2

where Dα
x is the αth-partial derivative operator with respect to x.

With the previous assumptions it is possible to establish the definition of

generalized and classical solutions of (3.16) in R.

Definition 3.2.4.2. Under the conditions in Assumption (3.2.4.1), we say that

u ∈ L2([0, T ];W 1,2) is a generalized solution of (3.16) if:

1. u ∈ L2([0, T ];W 1,2)
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2. ∀t ∈ [0, T ],

(u(t), ϕ) = (g, ϕ) +

∫ t

0

{−a(s)Dxu(s), Dxϕ)

+ (b(s)Dxu(s)−Dxa(s)Dxu(s), ϕ) + ((c(s)u(s), ϕ) + 〈f(s), ϕ〉}ds

for all ϕ ∈ C∞0 (R).

Finally, the following results states the existence and uniqueness of solution

of (3.16).

Theorem 3.2.4.3. Under the conditions in Assumption (3.2.4.1) exists a gener-

alized solution (u(t))t∈[0,T ] of the problem (3.16).

Moreover

u ∈ C([0, T ];Wm,2) ∩ L2([0, T ];Wm+1,2)

and

sup
t∈[0,T ]

|u(t)|2Wm,2+

∫ T

0

|u(t)|2Wm+1,2dt

≤ N(|g|2Wm,2 +

∫ T

0

|f(t)|2Wm−1,2dt

for N constant.

Discrete framework

We now particularize the framework presented above for the d-dimensional

case.

Consider the h-grid, on R, with h ∈ (0, 1]:

Zh = {x ∈ R : x = nh, n = 0,±1,±2, ...}

and consider the difference quotients in space, for all x ∈ Zh:

• Forward: ∂+u = ∂+u(t, x) =
u(t, x+ h)− u(t, x)

h
;

• Backward: ∂−u = ∂−u(t, x) =
u(t, x)− u(t, x− h)

h
.
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Let Lh be the discrete operator, such that:

Lh(t, x) = a(t, x)∂−∂+ + b(t, x)∂+ + c(t, x).

So, the discrete version of the second order parabolic Cauchy problem, can be

written as:

Lhu− ut + fh = 0 in Q(h) = [0, T ]× Zh
u(0, x) = gh(x) in Zh

with T ∈ (0,∞) and fh and gh functions such that

fh : Q(h)→ R and gh : Zh → R.

The particular discrete Sobolev space for the one dimensional case are

l0,2 = {v : Zh → R : |v|l0,2 <∞}
with the inner product (v, ω)l0,2 =

∑
x∈Zh v(x)ω(x)h

and norm |v|l0,2 = (v, v)
1/2

l0,2 = (
∑

x∈Zh |v(x)|2h)1/2.

l1,2 = {v : Zh → R : |v|l1,2 <∞}
with the inner product (v, ω)l1,2 = (v, ω)l0,2 + (∂+v, ∂+ω)

and norm |v|l1,2 = |v|2l0,2 + |∂+v|2l0,2 , with v, ω ∈ l1,2..

Assumption 3.2.4.4. Assume that:

1. fh ∈ L2([0, T ]; l0,2)

2. gh ∈ l0,2.

As we are proving the existence of weak solution of (3.16), consider next the

definition of generalized solution.

Definition 3.2.4.5. Consider u ∈ C([0, T ]; l0,2) ∩ L2([0, T ]; l1,2) and ϕ ∈ l1,2.

Under the conditions in Assumption (3.2.4.4), we say that u is a generalized

solution of problem (3.16), if, for all t ∈ [0, T ]:

(u(t), ϕ) = (gh, ϕ) +

∫ t

0

{−(a(s)∂+u(s), ∂+ϕ)

+ (b(s)∂+u(s)− ∂+a(s)∂+u(s), ϕ) + (c(s)u(s), ϕ) + 〈fh(s), ϕ〉}ds

where (·, ·) is the inner product in l0,2.
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Now, state the conditions of existence and uniqueness of solution to the prob-

lem in study. The proof is a consequence of the Theorem (3.2.2.3) for the d-

dimensional case.

Theorem 3.2.4.6. Assume the conditions on Assumptions (3.2.4.1) and (3.2.4.4).

Then the problem (3.16) has a unique generalized solution u in [0, T ]. Moreover,

sup
t∈[0,T ]

|u(t)|2l0,2+
∫ T

0

|u(t)|2l1,2dt

≤ N(|gh|2l0,2 +

∫ T

0

|fh(t)|2l0,2dt)

with N a constant independent of h.

Approximation results

In what concerns consistency we can prove results sharper then the corres-

ponding one for the d-dimensional cases.

Proposition 3.2.4.7. Consider u(t) ∈ W 2,2, v(t) ∈ W 3,2 for all t ∈ [0, T ].

There exists a constant N , independent of h, such that:

1.
∑

x∈Zh

∣∣∣ ∂
∂x
u(t, x)− ∂+u(t, x)

∣∣∣2h ≤ h2|u(t)|2w2,2

2.
∑

x∈Zh

∣∣∣ ∂2
∂x2

v(t, x)− ∂−∂+v(t, x)
∣∣∣2h ≤ h2N |v(t)|2W 3,2

for all t ∈ [0, T ], x ∈ Zh.

Proof. This proof follows the guidelines of [45] for the particular case. We will

prove (1).

The forward difference quotient can be written

∂+u(t, x) = h−1(u(t, x+ h)− u(t, x)) =

∫ 1

0

∂

∂x
u(t, x+ hq)dq.

Thus ( ∂
∂x
− ∂+

)
u(t, x) =

∫ 1

0

( ∂
∂x
u(t, x)− ∂

∂x
u(t, x+ hq)

)
dq

= h

∫ 1

0

∫ 1

0

q
∂2

∂x2
u(t, x+ hqs)dsdq.

(3.17)
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From (3.17), using Jensen’s inequality, we obtain∣∣∣( ∂
∂x
− ∂+

)
u(t, x)

∣∣∣2 ≤ h2
∫ 1

0

∫ 1

0

q2
∣∣∣ ∂2
∂x2

u(t, x+ hqs)
∣∣∣2dsdq

= h

∫ 1

0

∫ hq

0

q
∣∣∣ ∂2
∂x2

u(t, x+ v)
∣∣∣2dvdq

≤ h

∫ 1

0

qdq

∫ h

0

∣∣∣ ∂2
∂x2

u(t, x+ v)
∣∣∣2dv

=
h

2

∫ h

0

∣∣∣ ∂2
∂x2

u(t, x+ v)
∣∣∣2dv

=
h

2

∫ x+h

x

∣∣∣ ∂2
∂z2

u(t, z)
∣∣∣2dz.

(3.18)

Observe also that from (3.18) and (??), by the mean value theorem for in-

tegration, using Hölder inequality and Assumption (3.2.4.1) we have, for any

θ ∈ (0, 1),

∣∣∣( ∂
∂x
− ∂+

)
u(t, x)

∣∣∣2 ≤ hN

∫ x+h

x

∣∣∣ ∂2
∂z2

u(t, z)
∣∣∣2dz. (3.19)

Finally, summing up (3.19) over Zh, we get∑
x∈Zh

∣∣∣( ∂
∂x
− ∂+

)
u(t, x)

∣∣∣2h ≤ h2N‖u(t)‖2W 2,2 ,

with N a constant independent of h, and (1) is proved.

We now prove (2). By writing the forward and backward difference quotients

∂+v(t, x) = h−1(v(t, x+ h)− v(t, x)) =

∫ 1

0

∂

∂x
v(t, x+ hq)dq

and

∂−v(t, x) = h−1(v(t, x)− v(t, x− h)) =

∫ 1

0

∂

∂x
v(t, x− hs)ds,

respectively, we have for the second-order difference quotient

∂−∂+v(t, x) = ∂−
∫ 1

0

∂

∂x
v(t, x+ hq)dq =

∫ 1

0

( ∂
∂x

∫ 1

0

∂

∂x
v(t, x+ hq − hs)dq

)
ds

=

∫ 1

0

∫ 1

0

∂2

∂x2
v(t, x+ h(q − s))dsdq.

Thus( ∂2
∂x2
− ∂−∂+

)
v(t, x) =

∫ 1

0

∫ 1

0

( ∂2
∂x2

(t, x)− ∂2

∂x2
v(t, x+ h(q − s))

)
dsdq

= h

∫ 1

0

∫ 1

0

∫ 1

0

(q − s) ∂
3

∂x3
v(t, x+ hv(q − s))dvdsdq.

(3.20)
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From (3.20), by Jensen’s inequality,∣∣∣( ∂2
∂x2
− ∂−∂+

)
v(t, x)

∣∣∣2 ≤ h2
∫ 1

0

∫ 1

0

∫ 1

0

|q − s|2
∣∣∣ ∂3
∂x3

v(t, x+ hv(q − s))
∣∣∣2dvdsdq

= h

∫ 1

0

∫ 1

0

∫ h(q−s)

0

(q − s)
∣∣∣ ∂3
∂x3

v(t, x+ w)
∣∣∣2dwdsdq

≤ h

∫ 1

0

∫ 1

0

∣∣q − s∣∣dsdq ∫ h

0

∣∣∣ ∂3
∂x3

v(t, x+ w)
∣∣∣2dw

≤ h

∫ h

0

∣∣∣ ∂3
∂x3

v(t, x+ w)
∣∣∣2dw = h

∫ x+h

x

∣∣∣ ∂3
∂z3

v(t, z)
∣∣∣2dz,

and, following the same steps as in the proof of (1), we finally obtain∑
x∈Zh

∣∣∣( ∂2
∂x2
− ∂−∂+

)
v(t, x)

∣∣∣2h ≤ h2N‖v(t)‖2W 3,2 ,

with N a constant independent of h, and (2) is proved.

Based on results of [26], where the result is proved for the one dimensional

case with bounded coefficients but to the nondegenerate case, it is possible to

define the rate of convergence of problem (3.16).

Theorem 3.2.4.8. Let u be the solution of the problem (3.16) and uh be the solu-

tion of the same problem discretized (3.11), with d = 1. Assume u ∈ L2([0, T ];W 3,2).

Then

sup
t∈[0,T ]

|u(t)− uh(t)|2l0,2+
∫ T

0

|u(t)− uh(t)|2l1,2dt

≤ h2N

∫ T

0

|u(t)|2W 3,2dt+N(|g − gh|2l0,2

+

∫ T

0

|f(t)− fh(t)|2l0,2dt)

for a constant N not depending on h.

Proof. Consider u and uh as in the conditions of the theorem. We have:

Lh(u− uh)− d
dt

(u− uh) + (L− Lh)u+ (f − fh) = 0 in [0, T ]× Zh

(u− uh)(0, x) = (g − gh)(x) in Zh

We know that (f − fh) ∈ L2([0, T ], l0,2), (g − gh) ∈ l0,2 and (L − Lh)u ∈
L2([0, T ], l0,2) since u ∈ W 3,2.
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Owing to Theorem (3.2.4.6) and to definition of the operators:

(L− Lh)u(t) =(a(t, x) + λ)(
∂2

∂x2
− ∂−∂+)u(t, x)

+ b(t, x)(
∂

∂x
− ∂+)u(t, x)

As λ→ 0 we can have

(L− Lh)u(t) =a(t, x)(
∂2

∂x2
− ∂−∂+)u(t, x)

+ b(t, x)(
∂

∂x
− ∂+)u(t, x)

By definition,

∂−u(t, x) = h−1(u(t, x)− u(t, x− h))

=

∫ 1

0

∂

∂x
u(t, x− hs)ds

∂+u(t, x) = h−1(u(t, x+ h)− u(t, x))

=

∫ 1

0

∂

∂x
u(t, x+ hq)dq

Then,

∂−∂+u(t, x) = ∂−
∫ 1

0

∂

∂u
u(t, x+ hq)dq

=

∫ 1

0

∂

∂u

∫ 1

0

(
∂

∂x
u(t, x+ hq − hs)dq)ds

=

∫ 1

0

∫ 1

0

∂2

∂x2
u(t, x+ h(q − s))dsdq.

And

(
∂

∂x
− ∂+)u(t, x) =

∂

∂x
u(t, x)− ∂+u(t, x)

=
∂

∂x
u(t, x)−

∫ 1

0

∂

∂x
u(t, x+ hq)dq

=

∫ 1

0

∂

∂x
u(t, x)− ∂

∂x
u(t, x+ hq)dq

= h

∫ 1

0

∫ 1

0

q
∂2

∂x2
u(t, x+ hqs)dsdq
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Applying the Jensen’s inequality and making v = hqs,

|( ∂
∂x
− ∂+)u(t, x)|2 = |h

∫ 1

0

∫ 1

0

q
∂2

∂x2
u(t, x+ hqs)dsdq|2

≤ h

∫ 1

0

∫ 1

0

q2| ∂
2

∂x2
u(t, x+ hqs)|2dsdq

≤ h

∫ 1

0

∫ hq

0

q| ∂
2

∂x2
u(t, x+ v)|2dvdq

≤
∫ 1

0

qdq

∫ h

0

q| ∂
2

∂x2
u(t, x+ v)|2dvdq

≤ h

2

∫ h

0

| ∂
2

∂x2
u(t, x+ v)|2dv

≤ h

2

∫ x+h

x

| ∂
2

∂z2
u(t, z)|2dz

Then, by Proposition (3.2.3.1), we have∑
x∈Zh

|( ∂
∂x
− ∂+)u(t, x)|2h ≤ h2N |u(t)|2W 2,2 .

(
∂2

∂x2
− ∂−∂+)u(t, x) =

∂2

∂x2
u(t, x)− ∂−∂+u(t, x)

=
∂2

∂x2
u(t, x)−

∫ 1

0

∫ 1

0

∂2

∂x2
u(t, x+ h(q − s))dsdq

=

∫ 1

0

∫ 1

0

∂2

∂x2
u(t, x)

∂2

∂x2
u(t, x+ h(q − s))dsdq

= h

∫ 1

0

∫ 1

0

∫ 1

0

(q − s) ∂
3

∂x3
u(t, x+ hv(q − s))dvdsdq

Once again, owing to Jensen’s inequality and making w = hv(q− s), we have:

∣∣ ( ∂2

∂x2
− ∂−∂+

)
u(t, x)

∣∣2 = |h
∫ 1

0

∫ 1

0

∫ 1

0

(q − s) ∂
3

∂x3
u(t, x+ hv(q − s)dvdsdq|2

≤ h2
∫ 1

0

∫ 1

0

∫ 1

0

|q − s|2| ∂
3

∂x3
u(t, x+ hv(q − s))|2dvdsdq

≤ h2
∫ 1

0

∫ 1

0

∫ h(q−s)

0

q − s
h
|| ∂

3

∂x3
u(t, x+ w)|2dwdsdq

≤ h2
∫ 1

0

∫ 1

0

|q − s|dsdq
∫ h

0

| ∂
3

∂x3
u(t, x+ w)|2dw

≤ h

∫ h

x

| ∂
3

∂x3
u(t, x+ w)|2dw

≤ h

∫ x+h

x

| ∂
3

∂z3
u(t, z)|2dz.
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Then we have∑
x∈Zh

|( ∂
2

∂x2
− ∂−∂+)u(t, x)|2h ≤ h2N |u(t)|2W 3,2 ,

with N independent of h.

Owing to Theorem (3.2.4.6) , we have the result:

sup
0≤t≤T

|u(t)− uh(t)|2l0,2 +

∫ T

0

|u(t)− uh(t)|2l1,2dt

≤ N |g − gh|2l0,2 +

∫ T

0

|f(t)− fh(t)|2l0,2dt+

∫ T

0

|(L− Lh)u(t)|2dt

≤ N |g − gh|2l0,2 +

∫ T

0

|f(t)− fh(t)|2l0,2dt+

∫ T

0

h2N |u(t)|2W 3,2dt

≤
∫ T

0

h2N |u(t)|2W 3,2dt+N |g − gh|2l0,2 +

∫ T

0

|f(t)− fh(t)|2l0,2dt

Now the following is a consequence of the previous theorem.

Corollary 3.2.4.9. Let u be the solution of the problem (3.16) and uh be the solu-

tion of the same problem discretized (3.11), with d = 1. Assume u ∈ L2([0, T ];W 3,2)

and m a positive integer. If exists a constant N not depending on h, such that,

|g − gh|2l0,2 +

∫ T

0

|f(t)− fh(t)|2l0,2dt ≤ h2N(|g|2Wm,2 +

∫ T

0

|f(t)|2Wm−1,2dt)

then

sup
t∈[0,T ]

|u(t)− uh(t)|2l0,2+
∫ T

0

|u(t)− uh(t)|2l1,2dt

≤ h2N

(∫ T

0

|u(t)|2W 3,2dt+ |g|2Wm,2 +

∫ T

0

|f(t)|2Wm−1,2dt

)
.

Proof. This result is an immediate consequence of the previous theorem.
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Chapter 4

Approximation of PDEs with
unbounded coefficients

The results obtained in the previous chapter are now adapted and presented to

the corresponding unbounded coefficients case. We begin by state some classical

results on PDEs with unbounded coefficients and then we present the results to

the nondegenerate case.

4.1 Classical results for parabolic PDEs

Suppose now that the coefficients of operator L are unbounded.

Let r and ρ be real positive smooth functions. Then r and ρ are called

weights on G. Consider C∞0 (G) the space of infinitely differentiable functions

with compact supports in G.

We state some results on the solvability in weighted Sobolev spaces.

4.1.1 The weighted Sobolev spaces

Now we introduce the concept of weighted Sobolev spaces as in [31, 49, 50, 51, 52],

space where we will study our framework for the unbounded coefficients.

Definition 4.1.1.1. [Weighted Sobolev spaces] Consider r and ρ positive smooth

functions on Rd and an integer m ≥ 0. We call Wm,2(r, ρ) the weighted Sobolev

space on Rd to the closure of C∞0 (Rd) with respect to the norm:

|ϕ|Wm,2(r,ρ) =

∑
|α|≤m

∫
Rd
r2|ρ|α|Dαϕ|2dx

1/2

with ϕ ∈ C∞0 (Rd).
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Remark 18. The inner product in Wm,2(r, ρ) is defined by

(v, ω)Wm,2(r,ρ) =
∑
|α|≤m

∫
Rn
r2ρ2|α|DαvDαωdx

for v, ω ∈ Wm,2(r, ρ).

Owing to results in [31] we state:

Proposition 4.1.1.2. Wm,p(r, ρ) with the norm above are separable Banach

spaces. Moreover, if p > 1 they are reflexive and if p = 2 they are Hilbert spaces.

Assumption 4.1.1.3. Let m ≥ 0 be an integer, and r > 0, ρ > 0 smooth

functions on Rd. There exists a constant K such that

1. |Dαρ| ≤ Kρ1−|α| for all α such that |α| ≤ m− 1 if m ≥ 2;

2. |Dαr| ≤ K
r

ρ|α|
for all α such that |α| ≤ m.

Example 4.1.1.4. The following functions (taken from [31, 26]), satisfy Assump-

tion (4.1.1.3):

1. r(x) = (1 + |x|2)β, β ∈ R; ρ(x) = (1 + |x|2)γ, γ ≤ 1
2
;

2. r(x) = exp(±(1 + |x|2)β), 0 ≤ β ≤ 1
2
; ρ(x) = (1 + |x|2)γ, γ ≤ 1

2
− β;

3. r(x) = (1 + |x|2)β, β ∈ R; ρ(x) = lnγ(2 + |x|2), γ ∈ R;

4. r(x) = (1 + |x|2)β lnµ(2 + |x|2), β ≥ 0, µ ≥ 0; ρ(x) = (1 + |x|2)γ, γ ≤ 1
2
;

5. r(x) = (1 + |x|2)β lnµ(2 + |x|2), β ≥ 0, µ ≥ 0; ρ(x) = lnγ(2 + |x|2), γ ≥ 0;

6. ρ(x) = exp(−(1 + |x|2)γ), γ ≥ 0; each weight function r(x) in examples

(1)− (5).
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4.1.2 A nondegenerate PDE problem

We now consider the problem of the previous chapter but applied to the case

where the operator L in nondegenerate in spatial variables and its coefficients are

unbounded.

Consider V a reflexive separable Banach space embedded continuously and

densely into a Hilbert space H. Consider also the normal triple with continuous

and dense embeddings V ↪→ H ≡ H∗ ↪→ V ∗, where H∗ is the dual of H.

We have the Cauchy problem

L(t)u− du

dt
+ f(t) = 0 in [0, T ], u(0) = g

and T ∈ (0,∞), f ∈ L2([0, T ];V ∗), g ∈ H and L(t),
d

dt
linear operators from V to

V ∗ for all t ≥ 0.

Consider the second-order parabolic partial differential equation problem, with

second order operator L, such that:

L(t, x) = aij(t, x)
∂2

∂xi∂xj
+ bi(t, x)

∂

∂xi
+ c(t, x)

with aij, bi, c are real valued functions on [0, T ]× Rd.

Consider now the Cauchy Problem:

Lu− ut + f = 0 in Q
u(0, x) = g(x) in Rd (4.1)

with T ∈ (0,∞);Q = [0, T ]× Rd and f and g functions.

Considering the operator L under a coercivity condition and some assumptions

on the behaviour of the weights r and ρ, on the operators coeficients and on the

free data f and g as in [27].

Assumption 4.1.2.1. Let r and ρ be a positive smooth functions on Rd and an

integer m ≥ 0. There are constants λ > 0, K such that

1.
∑d

i,j=1 aij(t, x)ξiξj ≥ λρ2
∑d

i=1 |ξi|2, for all t ≥ 0, x ∈ Rd, ξ ∈ Rd;

2. |Dα
xaij| ≤ Kρ2−|α| for all |α| ≤ m ∨ 1, |Dα

x bi| ≤ Kρ1−|α|, |Dα
xc| ≤ K for

all |α| ≤ m, where |Dα
x | is the αth-partial derivative operator with respect to

x;

3. f ∈ L2([0, T ];Wm−1,2(r, ρ)) and g ∈ Wm,2(r, ρ).
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Defining next the generalized solution of the problem, solution which we will

state its existence and uniqueness in the conditions defined.

Definition 4.1.2.2. We say that u ∈ C([0, T ];W 0,2(r, ρ)) is a generalized solution

of problem (4.1) on [0, T ] if

1. u ∈ L2([0, T ];W 1,2(r, ρ));

2. For every t ∈ [0, T ],

(u(t), ϕ) =(g, ϕ) +

∫ t

0

{
− (aij(s)Diu(s), Djϕ)

+ (b(s)Diu(s)−Djaij(s)Diu(s), ϕ)

+ (c(s)u(s), ϕ) + 〈f(s), ϕ〉
}
ds

holds for all ϕ ∈ C∞0 .

Remark 19. The notation (·, ·) in the above definition stands for the inner product

in W 0,2(r, ρ). Alternatively to the infinite differentiability of ϕ in (2), it can be

required that ϕ ∈ W 1,2(r, ρ).

Definition 4.1.2.3. u(t, x) ∈ [0, T ]× Rd is called a classical solution of (4.1) if:

1. u(t, x) ∈ C0,2([0, T ]× Rd)

2. For all x ∈ Rd, ∀t ∈ [0, T ]

u(t, x) = g(x) +

∫ t

0

{ ∂

∂xi
(aij

∂

∂xj
u(s, x) + ai0u(s, x)

+ fi(s, x) + (bi
∂

∂xj
u(s, x) + cu(s, x)

}
ds

Owing to [27, 31] we have the result that states the existence and uniqueness

of solution to (4.1).

Theorem 4.1.2.4 (Existence and uniqueness of generalized solution). Under

(1)−(2) in Assumption (4.1.1.3), with m + 1 in place of m, with m ≥ 0 an

integer, and (1)−(3) in Assumption (4.1.2.1), problem (4.1) admits a unique

generalized solution u on [0, T ]. Moreover

u ∈ C([0, T ];Wm,2(r, ρ)) ∩ L2([0, T ];Wm+1,2(r, ρ))

63



and

sup
0≤t≤T

‖u(t)‖2Wm,2(r,ρ) +

∫ T

0

‖u(t)‖2Wm+1,2(r,ρ)dt

≤ N
(
‖g‖2Wm,2(r,ρ) +

∫ T

0

‖f(t)‖2Wm−1,2(r,ρ)dt
)
,

with N a constant.

Under the conditions of (4.1.1.3) and (3.1.3.1) and considering

m > d
2

+ n, n ≥ 0 there exists a unique generalized solution of (4.1) which has a

modification in x that states the existence of classical solution of (4.1), as proved

in [31].

4.1.3 A degenerate PDE problem

The approach to the degenerate problem is the main issue in this thesis. Consider

the problem defined above with the operator L degenerate and the unbounded

coefficients.

Consider V a reflexive separable Banach space embedded continuously and

densely into a Hilbert space H. Consider also the normal triple with continuous

and dense embeddings V ↪→ H ≡ H∗ ↪→ V ∗, where H∗ is the dual of H.

We have the Cauchy problem

L(t)u− du

dt
+ f(t) = 0 in [0, T ], u(0) = g

and T ∈ (0,∞), f ∈ L2([0, T ];V ∗), g ∈ H and L(t),
d

dt
linear operators from V to

V ∗ for all t ≥ 0.

Consider the second-order parabolic partial differential equation problem, with

second order operator L, such as:

L(t, x) = aij(t, x)
∂2

∂xi∂xj
+ bi(t, x)

∂

∂xi
+ c(t, x)

with aij, bi, c are real valued functions on [0, T ]× Rd.

Consider now the Cauchy Problem:

Lu− ut + f = 0 in Q
u(0, x) = g(x) in Rd (4.2)

with T ∈ (0,∞);Q = [0, T ]× Rd and f , g functions.

We have to state the same results, based on [31] that we established above

but to degenerate case.
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In order to obtain a unique solution to problem (4.2) the coefficients must

satisfy some regularity conditions, adapted from [31].

Assumption 4.1.3.1. Let r, ρ be positive smooth functions on Rd,m ≥ 0 and k

constant. Consider l = 1, 2, ..., d.

1. Exists a matrix valued function σ : [0, T ]× Rd → Rd×d2 such that

σinσjn = aij

|σinj (t, x)| ≤ K
ρi(x)

ρj(x)
for all (t, x) ∈ [0, T ] × Rd, i, j = 1, 2, ..., d and

n = 1, 2, ..., d.

2. For i, j = 1, 2, ..., d and ξ ∈ Rd:

|Dαaij| ≤
ξρiρj
ρα

for all |α| ≤ m+ 1 ∨ 2

|Dαbi| ≤
ξρi
ρα

and |Dαc| ≤ ξ

ρα

3. f ∈ L2([0, T ],Wm−1,2(r, ρ)) and g ∈ Wm,2(r, ρ)

Definition 4.1.3.2. (u(t))t∈[0,T ] is called a generalized solution of problem (4.2)

if:

1. u ∈ L2([0, T ];Wm,2(r, ρ));

2. For every t ∈ [0, T ],

(u(t), ϕ) = (g, ϕ) +

∫ t

0

{
− (aij(s)Diu(s), Djϕ)

+ (bi(s)Diu(s)−Djaij(s)Diu(s), ϕ)

+ (c(s)u(s), ϕ) + 〈f(s), ϕ〉
}
ds

holds for all ϕ ∈ C∞0 .

Definition 4.1.3.3. We say that u(t, x) ∈ [0, T ] × Rd is a classical solution of

problem (4.2) if:

1. u ∈ C0,2([0, T ]× Rd);

2. For every t ∈ [0, T ],

u(t) = g +

∫ t

0

(aij(s)Dxixju(s, x)

+ bi(s)Dxiu(s, x) + c(s)u(s, x) + f(s, x))ds
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The existence and uniqueness of solution to problem (4.2) is set in the next

theorem.

Theorem 4.1.3.4. Let m ≥ 1 and assume the conditions in Assumption (4.1.3.1).

Then, there is a generalized solution (u(t))t∈[0,T ] of the problem (4.2). Moreover,

u ∈ L2([0, T ],Wm,2(r, ρ)) ∩ C([0, T ],Wm−1,2(r, ρ)) and

sup
0≤t≤T

‖u(t)‖2
Wm′,2(r,ρ)

+

∫ T

0

‖u(t)‖2
Wm′,2(r,ρ)

dt

≤ N
(
‖g‖2

Wm′,2(r,ρ)
+

∫ T

0

‖f(t)‖2
Wm′,2(r,ρ)

dt
)
,

with N a constant and m′ ∈ [0,m].

Proof. The proof can be seen in [31], with the adaptation to the present problem.

4.2 Finite-difference approximation

At this point, we will define our discrete framework for the degenerate case with

unbounded coefficients. First we need to set the spaces where this approach is

developed: weighted discrete Sobolev spaces.

4.2.1 The weighted discrete Sobolev spaces

Consider the next function space in our framework.

l0,2(r) = {v : Zd
h → R : |v|l0,2(r) <∞},

with the norm

|v|l0,2(r) =

∑
x∈Zdh

r2|v(x)|2hd
1/2

,

and with the inner product

(v, ω)l0,2(r) =
∑
x∈Zdh

r2v(x)ω(x)hd

for all v, ω ∈ l0,2(r).

Define, also, another function space:

l1,2(r, ρ) = {v : Zd
h → R : |v|l1,2(r,ρ) <∞},
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with the norm

|v|l1,2(r,ρ) = |v|2l0,2(r) +
d∑
i=1

|ρ∂+i v|2l0,2(r)

and with the inner product

(v, ω)l1,2(r,ρ) = (v, ω)l0,2(r) +
d∑
i=1

(∂+i v, ∂
+
i ω)l0,2(r),

where v, ω are functions in l1,2(r, ρ).

Consider the functions v of [0, T ] in Rd such that, for all t ∈ [0, T ],

v : Q(h)→ R and ω(t) = {ω(t, x) : x ∈ Zd
h}. Define also the subspaces:

• C([0, T ]; l0,2(r))

• L2([0, T ]; l1,2(r, ρ)) = {ω : [0, T ] → l1,2(r, ρ) : |ω|L2 < ∞}, with

|ω|2L2 =
∫ T
o
|ω(t)|2l1,2(r,ρ)dt.

The proof of following results are in [26, 31] and now we will set some import-

ant results on the new discretized weighted Sobolev spaces, which allows us to

prove some of the most important results on this chapter.

Proposition 4.2.1.1. l0,2(r) is an Hilbert space.

Proposition 4.2.1.2. l1,2(r, ρ) is a reflexive and separable Banach space.

Proposition 4.2.1.3. l1,2(r, ρ) is continuous and densely embedded into l0,2(r).

Remark 20. As in the bounded coefficients case, fh can have a weaker condition,

such that, fh ∈ L2([0, T ]; (l1,2(r, ρ))∗), with (l1,2(r, ρ))∗ the dual of l1,2(r, ρ).

4.2.2 The discretized problem

In the case of the discretization with unbounded data it is necessary to define

the framework on the new environment, considering the basis of the framework

defined in previous chapter.
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As in [26] and previous in this thesis, consider the new problem, discretized

version of the second order parabolic Cauchy problem, in Rd.

Lhu− u+ fh = 0 in Q(h) = [0, T ]× Zd
h (4.3)

u(0, x) = gh(x) in Zd
h

with T ∈ (0,∞), fh and gh such as

fh : Q(h)→ R and gh : Zd
h → R

So, we have:

aij(t, x)
∂2u

∂xi∂xj
+ bi(t, x)

∂u

∂xi
+ c(t, x)u− ∂u

∂t
+ fh(t, x) = 0

.

Based on Assumption (4.1.3.1), where regularity conditions under coefficients

in the exact problem are imposed, we have:

Assumption 4.2.2.1. Consider the following conditions and let r and ρ be pos-

itive smooth functions on Rd

1. fh ∈ L2([0, T ]; l0,2(r))

2. gh ∈ l0,2(r).

Remark 21. |∂+i aij(t, x)| = |h−1(aij(t, x + hei) − aij(t, x))| ≤ | ∂
∂xi
aij(t, x + τei)|,

with 0 < τ < h.

Now we can define the generalized solution of (4.3), solution we want to prove

that exists and is unique.

Definition 4.2.2.2. u ∈ C([0, T ]; l0,2(r)) ∩ L2([0, T ]; l1,2(r, ρ)) is a generalized

solution of the discrete problem (4.3) if, for all t ∈ [0, T ] and for all ϕ ∈ l1,2(r, ρ)

(u(t), ϕ) =(gh, ϕ) +

∫ t

0

{−(aij(s)∂
+
i u(s), ∂+j ϕ)

+ (bi(s)∂
+
i u(s)− ∂+j aij(s)∂+i u(s), ϕ)

+ (c(s)u(s), ϕ) + 〈fh(s), ϕ〉}ds

with (·, ·) representing the inner product in l0,2(r).
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Considering the previous assumptions and the framework described, we can

state the existence and uniqueness of solution.

Theorem 4.2.2.3. Considering the conditions (1)− (2) of Assumption (4.1.3.1)

and (1) − (2) in Assumption (4.2.2.1), the discrete problem (4.3) has a unique

generalized solution in [0, T ].

Moreover,

sup
t∈[0,T ]

|u(t)|2l0,2(r) +

∫ T

0

|u(t)|2l1,2(r,ρ)dt ≤ N(|gh|2l0,2(r) +

∫ T

0

|fh(t)|2l0,2(r)dt)

where N is a constant not depending on h.

Proof. Consider a new aij such that aλij(t, x, λ) = aij(t, x) + λ with λ ∈ (0, 1).

Let Lλh(s) : l1,2(r, ρ)→ (l1,2(r, ρ))∗, for every s ∈ [0, T ]. We define〈
Lλh(s)ψ, ϕ

〉
:= −(aij(s)∂

+
i ψ, ∂

+
j ϕ) + (bi(s)∂

+
i ψ − ∂+j aij(s)∂+i ψ, ϕ) + (c(s)ψ, ϕ),

for all s ∈ [0, T ], ϕ, ψ ∈ l1,2(r, ρ).

We have to prove that this new problem, with the change in coefficients, has

a unique solution.

1. ∃K,λ > 0 constants : 〈Lh(s)ψ, ψ〉+ λ‖ψ‖l1,2(r,ρ) ≤ K‖ψ‖l0,2(r)

2. ∃K constant : |〈Lh(s)ψ, ϕ〉| ≤ K‖ψ‖l1,2(r,ρ) · ‖ϕ‖l1,2(r,ρ),

for all s ∈ [0, T ], ϕ, ψ ∈ l1,2(r, ρ).

For the first property, owing to (1) and (2) in Assumption (4.1.3.1), conditions

under the regularity of coefficients, and with the previous inner product, we have

〈Lh(s)ψ, ψ〉 =−
∑
i,j

∑
x

r2aij(s)∂
+
i ψ∂

+
j ψh

d

+
∑
i

∑
x

r2(bi(s)− ∂+j aij(s))∂+i ψψhd +
∑
x

r2c(s)ψψhd

≤− λ
∑
i

∑
x

r2
∣∣ρ∂+i ψ∣∣2 hd + 2K

∑
i

∑
x

r2ρ
∣∣∂+i ψψ∣∣hd

+K
∑
x

r2|ψ|2hd

=− λ
∑
i

∥∥ρ∂+i ψ∥∥2l0,2(r) + 2K
∑
i

∑
x

r2ρ
∣∣∂+i ψψ∣∣hd

+K‖ψ‖2l0,2(r),

(4.4)

where the variable x ∈ Zd
h is omitted,

∑
x denotes the summation over Zd

h and∑
i,
∑

j the summation over {1, 2, . . . , d}. We use the Cauchy’s inequality on the
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second term in estimate (4.4), and obtain

〈Lh(s)ψ, ψ〉 ≤ − λ
∑
i

∥∥ρ∂+i ψ∥∥2l0,2(r) + εK
∑
i

∑
x

r2
∣∣ρ∂+i ψ∣∣2 hd

+
K

ε

∑
i

∑
x

r2|ψ|2hd +K‖ψ‖2l0,2(r)

=− λ
∑
i

∥∥ρ∂+i ψ∥∥2l0,2(r) − λ‖ψ‖2l0,2(r) + εK
∑
i

∥∥ρ∂+i ψ∥∥2l0,2(r)
+
K

ε
‖ψ‖2l0,2(r) + (K + λ)‖ψ‖2l0,2(r)

≤− λ‖ψ‖2l1,2(r,ρ) +K‖ψ‖2l0,2(r),

with λ > 0, K constants, by taking ε sufficiently small. The first property is

proved.

The second property follows from (2) in Assumption (4.1.3.1), conditions un-

der the derivatives of the coefficients, and Cauchy-Schwarz inequality

|〈Lh(s)ψ, ϕ〉|

=
∣∣∣−∑

i,j

∑
x

r2aij(s)∂
+
i ψ∂

+
j ϕh

d +
∑
i

∑
x

r2bi(s)∂
+
i ψϕh

d

−
∑
i,j

∑
x

r2∂+j aij(s)∂
+
i ψϕh

d +
∑
x

r2c(s)ψϕhd
∣∣∣

≤ K
∑
i,j

∑
x

r2
∣∣ρ2∂+i ψ∂+j ϕ∣∣hd +K

∑
i

∑
x

r2
∣∣ρ∂+i ψϕ∣∣hd +K

∑
x

r2 |ψϕ|hd

≤ K
∑
i

∥∥ρ∂+i ψ∥∥l0,2(r)∑
j

∥∥ρ∂+j ϕ∥∥l0,2(r) +K
∑
i

∥∥ρ∂+i ψ∥∥l0,2(r) ‖ϕ‖l0,2(r)
+K‖ψ‖l0,2(r)‖ϕ‖l0,2(r)
≤ K‖ψ‖l1,2(r,ρ) · ‖ϕ‖l1,2(r,ρ),

where the same writing conventions are kept.

Owing to Theorem (4.1.3.4) the result of the existence of generalized solution

to the problem follows.

l0,2(r, ρ) and l1,2(r, ρ) are Hilbert spaces in L2(R) and the weak derivatives of

these spaces are also in L2(R).

As we fixed, we have aλij(t, x, λ) = aij(t, x) +λ, λ ∈ (0, 1) through a change on

the original aij(t, x).

Consider uλ the generalized solution of the discretized problem. Then

uλ ∈ C([0, T ], l0,2(r, ρ)) ∩ L2([0, T ], l1,2(r, ρ)).

Let fh ∈ L2([0, T ], l0,2(r, ρ)) and gh ∈ l0,2(r, ρ).
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Consider the linear functional Lh : l1,2(r, ρ)→ (l1,2(r, ρ))∗ with the same inner

product and norm defined above.

Assume the conditions in (4.1.2.1) on the behaviour of the weights r and ρ

on the operator coefficients and on the free data fh and gh. We have that uλ is

weakly convergent to u in C([0, T ], l0,2(r, ρ)) ∩ L2([0, T ], l1,2(r, ρ)) and

(uλ(t), ϕ) = (gh, ϕ) +

∫ t

0

{−(aij(s) + λ)∂+uλ(s), ∂
+
j ϕ)

(bi(s)∂
+
i uλ(s)− ∂+j (aij(s) + λ)∂+uλ(s), ϕ)

+ (c(s)uλ(s), ϕ) + 〈fh(s), ϕ〉}ds

Due to properties:

gh ∈ l0,2(r, ρ) ⊂ Wm,2(r, ρ) ⊂ L2(r, ρ)⇒

⇒ (gh, ϕ)l0,2(r,ρ) ≤ (g, ϕ)Wm,2(r,ρ) ≤ (g, ϕ)L2(r,ρ) and

fh ∈ L2(([0, T ], l0,2(r, ρ)) ⊂ L2(r, ρ)⇒

⇒ (fh, ϕ)l0,2(r,ρ) ≤ (f, h)L2(r,ρ)

As a consequence we have:

(uλ(t), ϕ) ≤ (g, ϕ)L2(r,ρ) +

∫ t

0

{−(aij(s) + λ)Diu(s), Djϕ)L2(rρ)

+ (bi(s)Diu(s)−Dj(aij + λ)Diu(s), ϕ)L2(r,ρ)

+ (c(s)u(s) + f, ϕ)L2(r,ρ)}ds

Then, we just fixed a bound to the left hand of the estimative which is valid

and in limit is the solution of the nondegenerate problem, not depending on λ.

Moreover, since λ→ 0+, uλ → u.

And our proof is now complete.

4.2.3 Approximation results

To characterize our approximations results, in particular that the scheme is con-

sistent, we have to define the rate of convergence of the solution to the prob-

lem (4.3)and approximate partial derivatives. A result corresponding to the one

presented bellow is proved in [26] for the nondegenerate case.
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Proposition 4.2.3.1. Consider r and ρ positive functions on Rd. Consider m an

integer such that m > d
2
. Consider, in Assumption (4.1.3.1), that the conditions

(1)− (2) are satisfied and also that ρ(x) ≥ C on Rd, with C > 0 a constant. Let

u(t) ∈ Wm+2,2(r, ρ), v(t) ∈ Wm+3,2(r, ρ), for all t ∈ [0, T ]. Then there exists a

constant N independent of h such that

1.
∑
x∈Zdh

r2(x)
∣∣uxi(t, x)− ∂+i u(t, x)

∣∣2 ρ2(x)hd ≤ h2N |u(t)|2Wm+2,2(r,ρ)

2.
∑
x∈Zdh

r2(x)
∣∣uxixj(t, x)− ∂−j ∂+i v(t, x)

∣∣2 ρ4(x)hd ≤ h2N |v(t)|2Wm+3,2(r,ρ),

for all t ∈ [0, T ].

Proof. The proof we now develop follows the main ideas of the corresponding

proof on [26].

Let us prove (1). We define a suitable geometric setting, and then obtain an

estimate for

r2(x)
∣∣uxi(t, x)− ∂+i u(t, x)

∣∣2 ρ2(x),

with x ∈ Zd
h, using a Sobolev’s inequality on a fixed ball.

Let us consider d-cells

Rh = {(x1, x2, . . . , xd) ∈ Rd : xih < xi < xih + h, i = 1, 2, . . . , d},

with xh = (x1h, x
2
h, . . . , x

d
h) ∈ Zd

h fixed. Consider the particular d-cell where h = 1

and x1 = (0, 0, . . . , 0), and denote it R0
1. Now, take open balls Bh such that

Bh ⊃ Rh, with the vertices {xih, xih + h, i = 1, 2, . . . , d} laying on the limiting

sphere. Denote B0
1 the ball containing R0

1.

For every xh ∈ Zd
h, recalling that the conditions of the theorem, function u(t)

(function v(t)) has a modification in x which is continuously differentiable in x up

to the order 2 (up to the order 3), and the derivatives equal the weak derivatives,

for every t ∈ [0, T ], we have, by the mean-value theorem,

∂+i u(t, xh) = h−1(u(t, xh + hei)− u(t, xh)) = uxi(t, xh + θhei)

and ∣∣uxi(t, xh)− ∂+i u(t, xh)
∣∣ = |uxi(t, xh)− uxi(t, xh + θhei)|

≤ h |uxixi(t, xh + θ′hei)| ,
(4.5)

for some 0 < θ′ < θ < 1. Clearly,

|uxixi(t, xh + θ′hei)| ≤ sup
x∈Rh
|uxixi(t, x)| , (4.6)
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and then, from (4.5) and (4.6),∣∣uxi(t, xh)− ∂+i u(t, xh)
∣∣2 ≤ h2 sup

x∈Rh
|uxixi(t, x)|2 . (4.7)

We change variable in order to have the supremum in (4.7) calculated over the

fixed d-cell R0
1:

sup
x∈Rh
|uxixi(t, x)| = sup

x∈R0
1

|uxixi(t, xh + hx)| . (4.8)

As

sup
x∈R0

1

|uxixi(t, xh + hx)|2 ≤ sup
x∈B0

1

|uxixi(t, xh + hx)|2 , (4.9)

from (4.7)− (4.9) we immediately obtain

r2(xh)
∣∣uxi(t, xh)− ∂+i u(t, xh)

∣∣2ρ2(xh)
≤ h2 sup

x∈R0
1

(
r2(xh + hx) |uxixi(t, xh + hx)|2 ρ2(xh + hx)

)
≤ h2 sup

x∈B0
1

(
r2(xh + hx) |uxixi(t, xh + hx)|2 ρ2(xh + hx)

)
.

(4.10)

If U , V are open subsets of Rd with V ⊂ U and w ∈ Wm,2(U) then w ∈
Wm,2(V ) and also, if w ∈ Wm,2(U) and ζ ∈ C∞0 (U) then ζ ∈ Wm,2(U) and

ζw ∈ Wm,2(U) and we have, for m > d/2, by using a Sobolev’s inequality

sup
x∈B0

1

|r(xh + hx)uxixi(t, xh + hx)ρ(xh + hx)|2

≤ N
∑
|α|≤m

∫
B0

1

|Dα
x (r(xh + hx)uxixi(t, xh + hx)ρ(xh + hx))|2 dx,

(4.11)

with N a constant independent of h. Observe that the Leibniz’ formula

|Dα
x (ruxixiρ)| =

∣∣∣∣∣∑
β≤α

(
α

β

)
Dβ(rρ)Dα−β

x uxixi

∣∣∣∣∣
=

∣∣∣∣∣∑
β≤α

(
α

β

)(∑
γ≤β

(
β

γ

)
DγrDβ−γρ

)
Dα−β
x uxixi

∣∣∣∣∣
(4.12)

holds (the arguments of r, ρ and uxixi are omitted). Also, keeping the same

convention,

|Dγr| ≤ Krρ−|γ| and
∣∣Dβ−γρ

∣∣ ≤ Kρ1−(|β|−|γ|),

with K a constant, and then∣∣∣∣∣∑
γ≤β

(
β

γ

)
DγrDβ−γρ

∣∣∣∣∣ ≤ N
∑
γ≤β

(
β

γ

)
rρ−|γ|ρ1−(|β|−|γ|) ≤ Nrρ1−|β|, (4.13)
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with N a constant. From (4.11)− (4.13), we get

sup
x∈B0

1

|r(xh + hx)uxixi(t, xh + hx)ρ(xh + hx)|2

≤ N
∑
|α|≤m

∑
β≤α

∫
B0

1

r2(xh + hx)
∣∣ρ1−|β|(xh + hx)

∣∣2 .
.
∣∣Dα−β

x uxixi(t, xh + hx)
∣∣2 dx.

(4.14)

Owing to Hölder inequality and to the hypotheses on function ρ, the integral

in (4.14) can be estimated by∫
B0

1

r2(xh + hx)
∣∣ρ1−|β|(xh + hx)Dα−β

x uxixi(t, xh + hx)
∣∣2 dx

≤ N

∫
B0

1

r2(xh + hx)
∣∣ρ2+(|α|−|β|)(xh + hx)Dα−β

x uxixi(t, xh + hx)
∣∣2 dx

· sup
x∈B0

1

∣∣ρ−1−|α|(xh + hx)
∣∣2

≤ N

∫
B0

1

r2(xh + hx)
∣∣ρ2+(|α|−|β|)(xh + hx)Dα−β

x uxixi(t, xh + hx)
∣∣2 dx.

(4.15)

Thus, from (4.14) and (4.15),

sup
x∈B0

1

|r(xh + hx)uxixi(t, xh + hx)ρ(xh + hx)|2

≤ N
∑
|α|≤m

∑
β≤α

∫
B0

1

r2(xh + hx)
∣∣∣ρ2+(|α|−|β|)(xh + hx)

·Dα−β
x uxixi(t, xh + hx)

∣∣∣2dx
≤ N

∑
|α|≤m

∫
B0

1

r2(xh + hx)
∣∣ρ2+|α|(xh + hx)Dα

xuxixi(t, xh + hx)
∣∣2 dx

≤ N
∑

|α|≤m+2

∫
B0

1

r2(xh + hx)
∣∣ρ|α|(xh + hx)Dα

xu(t, xh + hx)
∣∣2 dx

= N
∑

|α|≤m+2

∫
Bh

r2(x)
∣∣ρ|α|(x)Dα

xu(t, x)
∣∣2 h−dh2|α|dx

≤ N
∑

|α|≤m+2

∫
Bh

r2(x)
∣∣ρ|α|(x)Dα

xu(t, x)
∣∣2 h−ddx.

(4.16)

Finally, owing to the particular geometry of the framework we have set, from
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(4.10) and (4.16) we obtain∑
x∈Zdh

r2(x)
∣∣uxi(t, x)− ∂+i u(t, x)

∣∣2ρ2(x)hd

≤ Nh2
∑

|α|≤m+2

∑
xh∈Zdh

∫
Bh(xh)

r2(x)
∣∣ρ|α|(x)Dα

xu(t, x)
∣∣2 dx

≤ Nh2
∑

|α|≤m+2

∑
xh∈Zdh

∫
Rh(xh)

r2(x)
∣∣ρ|α|(x)Dα

xu(t, x)
∣∣2 dx

≤ h2N‖u(t)‖2Wm+2,2(r,ρ),

where Bh(xh) := Bh, Rh(xh) := Rh, and the proof for (1) is complete.

The proof for (2) follows the same steps.

Now we finally state the rate of convergence.

Theorem 4.2.3.2. Consider, in Assumption (4.1.3.1), that the conditions (1)−
(2) are satisfied and also that ρ(x) ≥ C on Rd, with C > 0 a constant. Con-

sider m an integer such that m > d
2

and let u be the solution of problem (4.2)

in Theorem (4.1.3.4) and uh the solution of (4.3) in Theorem (4.2.2.3). For

u ∈ L2([0, T ];Wm+3,2(r, ρ)), we have

supt∈[0,T ]|u(t)− uh(t)|2l0,2(r) +

∫ T

0

|u(t)− uh(t)|2l1,2(r,ρ)dt

≤ h2N

∫ T

0

|u(t)|2Wm+3,2(r,ρ)dt+N(|g − gh|2l0,2(r) +

∫ T

0

|f(t)− fh(t)|2l0,2(r)dt).

with N a constant not depending on h.

Proof. Fix aλij(t, x, λ) = aij(t, x) + λ, λ ∈ (0, 1).

From (3.6) and (4.3), we have that u− uh satisfies the problem{
(u− uh)t = Lh(u− uh) + (L− Lh)u+ (f − fh) in Q(h)

(u− uh)(0, x) = (g − gh)(x) on Zd
h.

(4.17)

Under the conditions of theorem, there are modifications in x such that the

data f and g are continuous in x, for every t ∈ [0, T ]. Then, we see that f − fh ∈
L2([0, T ]; l0,2(r)) and g − gh ∈ l0,2(r).
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With respect to the term (L − Lλh)u, note that if u(t) ∈ Wm+3,2(r, ρ), for all

t ∈ [0, T ],∑
x∈Zdh

r2(x)
∣∣(L− Lλh)(t)u(t)

∣∣2 hd
=
∑
x∈Zdh

r2(x)

∣∣∣∣(aij(t, x) + λ)

(
∂2

∂xi∂xj
− ∂−j ∂+i

)
u(t, x) + bi(t, x)

(
∂

∂xi
− ∂+i

)
u(t, x)

∣∣∣∣2hd
=
∑
x∈Zdh

r2(x)

∣∣∣∣aij(t, x)

(
∂2

∂xi∂xj
− ∂−j ∂+i

)
u(t, x) + bi(t, x)

(
∂

∂xi
− ∂+i

)
u(t, x)

∣∣∣∣2hd
≤ h2N‖u(t)‖2Wm+3,2(r,ρ) <∞,

owing to (2) in Assumption (4.1.3.1) and to Theorem (4.2.3.1). Thus (L −
Lh)(t)u(t) ∈ l0,2(r), for every t ∈ [0, T ]. Moreover, as by assumption u ∈
L2([0, T ];Wm+3,2(r, ρ)), we obtain immediately (L− Lλh)u ∈ L2([0, T ]; l0,2(r)).

As seen before, problem (4.17) satisfies the hypotheses of Proposition (4.2.2.3).

Holding the estimate,

sup
0≤t≤T

‖u(t)− uh(t)‖2l0,2(r) +

∫ T

0

‖u(t)− uh(t)‖2l1,2(r,ρ)dt

≤ N

(
‖g − gh‖2l0,2(r) +

∫ T

0

‖f(t)− fh(t)‖2l0,2(r)dt+

∫ T

0

‖(L− Lh)(t)u(t)‖2l0,2(r) dt
)
.

Owing again to (2) in Assumption (4.1.3.1) and to Proposition (4.2.3.1), the result

follows.

The following Corollary gives us the rate of convergence with a better struc-

tured statement.

Corollary 4.2.3.3. Let the hypotheses of Theorem (4.2.3.3) be satisfied, and

denote u the solution of (4.2) in Theorem (4.1.3.4) and uh the solution of (4.3)

in Theorem (4.2.2.3). If there is a constant N independent of h such that

|g − gh|2l0,2(r) +

∫ T

0

|f(t)−fh(t)|2l0,2(r)dt

≤ h2N

(
|g|2Wm,2(r,ρ) +

∫ T

0

|f(t)|2Wm−1,2(r,ρ)dt

)
then

sup
0≤t≤T

|u(t)− uh(t)|2l0,2(r) +

∫ T

0

|u(t)− uh(t)|2l1,2(r,ρ)dt

≤ h2N

(∫ T

0

|u(t)|2Wm+3,2(r,ρ)dt+ |g|2Wm,2(r,ρ) +

∫ T

0

|f(t)|2Wm−1,2(r,ρ)dt

)
.

Proof. The result is an immediate consequence of Theorem (4.2.3.2).
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4.2.4 The special one-dimensional case

As in Chapter 3,we now applly our methodology to the one dimension on spatial

variable, in degenerate case (our pretended goal) for the unbounded coefficients

case. The results we will prove are stronger than the results in [28, 45].

Consider the Cauchy Problem in R.

Lu− ∂u

∂t
+ f = 0 in Q (4.18)

u(0, x) = g(x) in R

where Q = [0, T ]×R, T is a positive constant and L is the second-order partial

differential operator with unbounded coefficients in R:

L(t, x) = a(t, x)
∂2

∂x2
+ b(t, x)

∂

∂x
+ c(t, x),

t with values in [0, T ] and f , g real valued functions.

In order to study the existence and uniqueness of problem (4.18) we must

recall the weighted Sobolev spaces, defined on (4.1) and the solvability conditions

of PDEs with unbounded coefficients in those spaces, in the degenerated case.

We now present one particularization case of one presented before that we

include for completeness.

Assumption 4.2.4.1. Let r and ρ be positive smooth functions on R, consider

m a nonnegative integer and a constant k.

1. a(t, x) ≥ λρ2(x), λ constant;

2. For all t ∈ [0, T ], for all x ∈ R:

|Dαa| ≤ kρ2−|α|, for all |α| ≤ m+ 1 ∨ 2

and |Dαb| ≤ kρ1−|α| and |Dαc| ≤ kρ−|α| for all |α| ≤ m, where Dα is the

αth partial derivative with respect to x;

3. f ∈ L2([0, T ];Wm−1,2(r, ρ)) and g ∈ Wm,2(r, ρ).

Assumption 4.2.4.2. Consider m a positive integer and r, ρ positive smooth

functions on R. There is a constant k such that

1. |Dαρ| ≤ kρ1−α;

2. |Dαr| ≤ kr
ρα

;
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3. sup|x−y|<ε

(
r(x)
r(y)

+ ρ(x)
ρ(y)

)
= k, for ε > 0 and x, y ∈ R

Now, we can state the definition of generalized and classical solution of (4.18).

Definition 4.2.4.3. (u(t))t∈[0,T ] is said to be a generalized solution of the problem

(4.18) if:

1. u ∈ L2([0, T ];Wm,2(r, ρ));

2. ∀t ∈ [0, T ],

(u(t), ϕ) = (g, ϕ) +

∫ t

0

{(−a(s)Dxu(s), Dxϕ)

+ (b(s)Dxu(s)−Dxa(s)Dxu(x), ϕ)

+ (c(s)u(s), ϕ) + 〈f(s), ϕ〉}ds.

for all ϕ ∈ C∞0 and (·, ·) representing the inner product in W 0,2(r, ρ).

The following result defines the conditions to the existence and uniqueness of

a generalized solution to the problem (4.18).

Theorem 4.2.4.4. Let m ≥ 1 and assume the conditions on (4.2.4.1) and on

(4.2.4.2). Then, there exists a unique generalized solution u ∈ [0, T ] for the

problem (4.18). Moreover,

u ∈ L2([0, T ],Wm,2(r, ρ)) ∩ L2([0, T ];Wm+1,2(r, ρ))

and

supt∈[0,T ]|u(t)|2Wm,2(r,ρ)+

∫ T

0

|u(t)|2Wm+1,2(r,ρ)dt

≤ N(|g|2Wm,2(r,ρ) +

∫ T

0

|f(t)|2Wm−1,2(r, ρ)dt)

with N constant.

Proof. This proof can be seen at [31].
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Discrete framework

To adapt our results to the special one dimension case, we now define the

h-grid, on R, with h ∈ (0, 1]:

Zh = {x ∈ R : x = nh, n = 0,±1,±2, ...}

and consider the difference quotients in space, for all x ∈ Zh:

• Forward: ∂+u = ∂+u(t, x) =
u(t, x+ h)− u(t, x)

h
;

• Backward: ∂−u = ∂−u(t, x) =
u(t, x)− u(t, x− h)

h
.

Let Lh be the discrete operator, such that:

Lh(t, x) = a(t, x)∂−∂+ + b(t, x)∂+ + c(t, x).

So, the discrete version of the second order parabolic Cauchy problem, can be

written as:

Lhu− u+ fh = 0 in Q(h) = [0, T ]× Zh (4.19)

u(0, x) = gh(x) in Zh (4.20)

with T ∈ (0,∞) and fh and gh functions such that

fh : Q(h)→ R and gh : Zh → R.

To complete the framework we must define the discrete version of weighted

Sobolev spaces. So, instead of W 0,2(r, ρ) we will consider:

l0,2(r) = {v : |v|l0,2(r) <∞}

with norm

|v|l0,2(r) =

(∑
x∈Zh

r2(x)|v(x)|2h

)1/2

and inner product

(v, ω)l0,2(r) =
∑
x∈Zh

r2(x)v(x)ω(x)h, ∀v, ω ∈ l0,2(r),
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and the discrete version of the weighted Sobolev space W 1,2(r, ρ):

l1,2(r, ρ) = {ω : |ω|l1,2(r,ρ) <∞}

with norm

|ω|2l1,2(r,ρ) = |ω|2l0,2(r) + |ρ∂+ω|2l0,2

with inner product

(ω, z)l1,2(r,ρ) = (ω, z)l0,2(r) + (ρ∂+ω, ρ∂+z)l0,2(r),

for all ω, z ∈ l1,2(r, ρ).

Owing to (4.2) and to [27], we have the following properties:

• l0,2(r) and l1,2(r, ρ) are Hilbert spaces;

• |v|l0,2(r) ≤ |v|l1,2(r,ρ) for all v ∈ l1,2(r, ρ);

• l1,2(r, ρ) is a reflexive and separable Banach space, continuous and densely

embedded into the Hilbert space l0,2(r) (proof follows from [26]).

Consider the spaces:

• C([0, T ]; l0,2(r)): space of continuous l0,2(r)-valued functions on [0, T ];

• L2([0, T ]; lm,2(r, ρ)) = {z : [0, T ]→ lm,2(r, ρ) :
∫ T
0
|z(t)|2lm,2(r,ρ)dt <∞}, with

m = 0, 1 and z : Q(h) → R functions such that (z(t))(x) = z(t, x) for all

t ∈ [0, T ], x ∈ Zh.

Next Assumption gives us some conditions over the data fh and gh.

Assumption 4.2.4.5. Let r be a smooth positive function on R. We assume

1. fh ∈ L2([0, T ]; l0,2(r));

2. gh ∈ l0,2(r).
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Definition 4.2.4.6. u ∈ C([0, T ]; l0,2(r)) ∩ L2([0, T ]; l1,2(r, ρ)) is a generalized

solution of (4.18) if, for every t ∈ [0, T ],

(u(t), ϕ) = (gh, ϕ) +

∫ t

0

{
− (a(s)∂+u(s), ∂+ϕ)

+ (b(s)∂+u(s)− ∂+a(s)∂+u(s), ϕ)

+ (c(s)u(s), ϕ) + 〈fh(s), ϕ〉
}
ds

holds for all ϕ ∈ l1,2(r, ρ).

Remark 22. Above, (·, ·) is the inner product in l0,2(r).

Based on Theorem (4.2.4.4), with the previous Definition and Assumption we

can now ensure that the problem has a unique generalized solution.

Theorem 4.2.4.7. Under (1)−(2) in Assumption (4.2.4.1) and (1)−(2) in As-

sumption (4.2.4.5), problem (4.18) has a unique generalized solution u in [0, T ].

Moreover

sup
0≤t≤T

|u(t)|2l0,2(r) +

∫ T

0

|u(t)|2l1,2(r,ρ)dt ≤ N
(
|gh|2l0,2(r) +

∫ T

0

|fh(t)|2l0,2(r)dt
)
,

with N a constant independent of h.

Proof. The corresponding proof for the d dimensional case is above.

Approximations results

In this subsection we prove that the solution of the discrete problem approxim-

ates the solution of the exact problem. The results presented to the one dimension

case are stronger than the ones to the multidimensional case.

Next Theorem states the consistency of the scheme.

Theorem 4.2.4.8. Let r, ρ be positive functions on R and assume the conditions

in (4.2.4.2), with ρ(x) ≥ C on R and with C > 0.

Let u(t) ∈ W 2,2(r, ρ), v(t) ∈ W 3,2(r, ρ), for all t ∈ [0, T ]. There exists a constant

N such that, for all t ∈ [0, T ]:

1.
∑

x∈Zh r
2(x)|Dxu(t, x)− ∂+u(t, x)|2ρ2(x)h ≤ h2N |u(t)|2W 2,2(r,ρ)

81



2.
∑

x∈Zh r
2(x)|Dx2v(t, x)− ∂−∂+v(t, x)|2ρ4(x)h ≤ h2N |v(t)|2W 3,2(r,ρ)

with m = 0, 1.

Proof. This proof follows the main steps for the degenerate case in [45].

Let us prove (1). Observe that the forward difference quotient can be written

∂+u(t, x) = h−1(u(t, x+ h)− u(t, x)) =

∫ 1

0

∂

∂x
u(t, x+ hq)dq.

Thus ( ∂
∂x
− ∂+

)
u(t, x) =

∫ 1

0

( ∂
∂x
u(t, x)− ∂

∂x
u(t, x+ hq)

)
dq

= h

∫ 1

0

∫ 1

0

q
∂2

∂x2
u(t, x+ hqs)dsdq.

(4.21)

From (4.21), using Jensen’s inequality, we obtain∣∣∣( ∂
∂x
− ∂+

)
u(t, x)

∣∣∣2 ≤ h2
∫ 1

0

∫ 1

0

q2
∣∣∣ ∂2
∂x2

u(t, x+ hqs)
∣∣∣2dsdq

= h

∫ 1

0

∫ hq

0

q
∣∣∣ ∂2
∂x2

u(t, x+ v)
∣∣∣2dvdq

≤ h

∫ 1

0

qdq

∫ h

0

∣∣∣ ∂2
∂x2

u(t, x+ v)
∣∣∣2dv

=
h

2

∫ h

0

∣∣∣ ∂2
∂x2

u(t, x+ v)
∣∣∣2dv

=
h

2

∫ x+h

x

∣∣∣ ∂2
∂z2

u(t, z)
∣∣∣2dz.

(4.22)

Observe also that from (4.22), using (3) in Assumption (4.2.4.2) we have, for

any

θ ∈ (0, 1),

r2(x)
∣∣∣( ∂
∂x
− ∂+

)
u(t, x)

∣∣∣2ρ2(x)

≤ hNr2(x+ θh)ρ2(x+ θh)

∫ x+h

x

∣∣∣ ∂2
∂z2

u(t, z)
∣∣∣2dz. (4.23)

As, by the mean value theorem for integration, for some θ ∈ (0, 1),

r2(x+ θh)ρ2(x+ θh)

∫ x+h

x

∣∣∣ ∂2
∂z2

u(t, z)
∣∣∣2dz

=

∫ x+h

x

r2(z)
∣∣∣ ∂2
∂z2

u(t, z)
∣∣∣2ρ2(z)dz,

(4.24)
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from(4.23) and (4.24), using Hölder inequality, we obtain

r2(x)
∣∣∣( ∂
∂x
− ∂+

)
u(t, x)

∣∣∣2ρ2(x)

≤ hN

∫ x+h

x

r2(z)
∣∣∣ ∂2
∂z2

u(t, z)
∣∣∣2ρ4(z)dz · sup

z∈[x,x+h]
|ρ−2(z)|

≤ hN

∫ x+h

x

r2(z)
∣∣∣ ∂2
∂z2

u(t, z)
∣∣∣2ρ4(z)dz,

(4.25)

owing to the hypotheses on the weights ρ.

Finally, summing up (4.25) over Zh, we get∑
x∈Zh

r2(x)
∣∣∣( ∂
∂x
− ∂+

)
u(t, x)

∣∣∣2ρ2(x)h ≤ h2N‖u(t)‖2W 2,2(r,ρ),

with N a constant independent of h, and (1) is proved.

We now prove (2). Writing the forward and backward difference quotients

∂+v(t, x) = h−1(v(t, x+ h)− v(t, x)) =

∫ 1

0

∂

∂x
v(t, x+ hq)dq

and

∂−v(t, x) = h−1(v(t, x)− v(t, x− h)) =

∫ 1

0

∂

∂x
v(t, x− hs)ds,

respectively, we have for the second-order difference quotient

∂−∂+v(t, x) = ∂−
∫ 1

0

∂

∂x
v(t, x+ hq)dq =

∫ 1

0

( ∂
∂x

∫ 1

0

∂

∂x
v(t, x+ hq − hs)dq

)
ds

=

∫ 1

0

∫ 1

0

∂2

∂x2
v(t, x+ h(q − s))dsdq.

Thus( ∂2
∂x2
− ∂−∂+

)
v(t, x) =

∫ 1

0

∫ 1

0

( ∂2
∂x2

(t, x)− ∂2

∂x2
v(t, x+ h(q − s))

)
dsdq

= h

∫ 1

0

∫ 1

0

∫ 1

0

(q − s) ∂
3

∂x3
v(t, x+ hv(q − s))dvdsdq.

(4.26)

From (4.26), by Jensen’s inequality,∣∣∣( ∂2
∂x2
− ∂−∂+

)
v(t, x)

∣∣∣2 ≤ h2
∫ 1

0

∫ 1

0

∫ 1

0

|q − s|2
∣∣∣ ∂3
∂x3

v(t, x+ hv(q − s))
∣∣∣2dvdsdq

= h

∫ 1

0

∫ 1

0

∫ h(q−s)

0

(q − s)
∣∣∣ ∂3
∂x3

v(t, x+ w)
∣∣∣2dwdsdq

≤ h

∫ 1

0

∫ 1

0

∣∣q − s∣∣dsdq ∫ h

0

∣∣∣ ∂3
∂x3

v(t, x+ w)
∣∣∣2dw

≤ h

∫ h

0

∣∣∣ ∂3
∂x3

v(t, x+ w)
∣∣∣2dw = h

∫ x+h

x

∣∣∣ ∂3
∂z3

v(t, z)
∣∣∣2dz,
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and, following the same steps as in the proof of (1), we finally obtain∑
x∈Zh

r2(x)
∣∣∣( ∂2
∂x2
− ∂−∂+

)
v(t, x)

∣∣∣2ρ4(x)h ≤ h2N‖v(t)‖2W 3,2(r,ρ),

with N a constant independent of h, and (2) is proved.

Next we will present the rate of convergence of the solution. For that it is

necessary to impose to the solution of (4.18) problem to another regularity con-

dition, remaining the Theorem (4.2.4.7) satisfied. As a basis, consider Theorem

(4.2.3.2).

Theorem 4.2.4.9. Ler r, ρ be positive functions on R. Consider satisfied the

conditions in Assumption (4.2.4.2) and let ρ(x) ≥ C on R, with C constant. Let

u be the solution of (4.18) in Theorem (4.2.4.4) and uh the solution of the same

problem but in conditions of Theorem (4.2.4.7). For u ∈ L2([0, T ];W 3,2(r, ρ)) we

have

supt∈[0,T ]|u(t)−uh(t)|2l0,2(r) +

∫ T

0

|u(t)− uh(t)|2l1,2(r,ρ)dt

≤ h2N

∫ T

0

|u(t)|2W 3,2(r,ρ)dt+N(|g − gh|2l0,2(r)

+

∫ T

0

|f(t)− fh(t)|2l0,2(r)dt)

with N a constant independent of h.

Proof. From (4.18) and (4.19), we have that u− uh satisfies the problem{
(u− uh)t = Lh(u− uh) + (L− Lh)u+ (f − fh) in Q(h)

(u− uh)(0, x) = (g − gh)(x) in Zh.
(4.27)

Owing to f(t) and g are continuous in x for every t ∈ [0, T ], we have that

f − fh ∈ L2([0, T ]; l0,2(r)) and g − gh ∈ l0,2(r). Consider aλ(t, x, λ) = a(t, x) + λ,

with λ ∈ (0, 1).
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With respect to the term (L− Lλh)u, if u(t) ∈ W 3,2(r, ρ) for all t ∈ [0, T ],∑
x∈Zh

r2(x)|(L− Lλh)(t)u(t)|2h

=
∑
x∈Zh

r2(x)
∣∣(a(t, x) + λ)

( ∂2
∂x2
− ∂−∂+

)
u(t, x) + b(t, x)

( ∂
∂x
− ∂+

)
u(t, x)

∣∣2h
=
∑
x∈Zh

r2(x)
∣∣a(t, x)

( ∂2
∂x2
− ∂−∂+

)
u(t, x) + b(t, x)

( ∂
∂x
− ∂+

)
u(t, x)

∣∣2h
≤ h2N‖u(t)‖2W 3,2(r,ρ) <∞,

owing to (2) in Assumption (4.2.4.1) and to Theorem (4.2.4.7). Thus

(L− Lh)(t)u(t) ∈ l0,2(r), for every t ∈ [0, T ]. Moreover, we have, by assumption,

u ∈ L2([0, T ];W 3,2(r, ρ)), we obtain immediately (L− Lλh)u ∈ L2([0, T ]; l0,2(r)).

So, we have that problem (4.27) satisfies the hypotheses of Theorem (4.2.4.4),

therefore holding the estimate

sup
0≤t≤T

‖u(t)− uh(t)‖2l0,2(r) +

∫ T

0

‖u(t)− uh(t)‖2l1,2(r,ρ)dt

≤ N
(
‖g − gh‖2l0,2(r) +

∫ T

0

‖f(t)− fh(t)‖2l0,2(r)dt+

∫ T

0

‖(L− Lh)(t)u(t)‖2l0,2(r)dt
)
.

So the result follows.

As a consequence of the Theorem (4.2.4.9), we can state:

Corollary 4.2.4.10. Consider satisfied the conditions is Theorem (4.2.4.9). Let

u be the solution of (4.18) in (4.2.4.4) and uh the solution of the same problem

in (4.2.4.7). If exists

|g−gh|2l0,2(r)+
∫ T

0

|f(t)−fh(t)|2l0,2(r)dt ≤ h2N
(
|g|2Wm,2(r,ρ)+

∫ T

0

|f(t)|2Wm−1,2(r,ρ)dt
)

then

sup
0≤t≤T

|u(t)− uh(t)|2l0,2(r) +

∫ T

0

|u(t)− uh(t)|2l1,2(r,ρ)dt

≤ h2N
(∫ T

0

|u(t)|2Wm+3,2(r,ρ)dt+ |g|2Wm,2(r,ρ) +

∫ T

0

|f(t)|2Wm−1,2(r,ρ)dt
)
.

for m = 0, 1.
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Chapter 5

Conclusion and further research

In this thesis we used the framework in the works [31, 32] and extended the

studies [26, 27, 28, 30, 45] to the spacial approximation to the solution of the

Cauchy problem for a degenerate multidimensional second order linear parabolic

PDE both in the cases where the PDE coefficients are bounded and unbounded.

The same results have been presented before but to the case where the operator

of the second order linear parabolic PDE is nondegenerate. This thesis presents

the results applied to the degenerate case, thus completing the existing gap on

this theory scheme. Therefore, attending to Chapter 3 and to [26, 27, 28, 31,

45] and to this dissertation, we now have constituted a complete theory on the

numerical approximation, with finite-difference schemes, of partial differential

equations arising in finance, for both degenerate and degenerate cases, whether

considering bounded and unbounded coefficients.

For that, a semi-discretized version of the PDE problem was constructed with

the use of a finite-difference scheme, in discrete Sobolev and weighted Sobolev

spaces.

Existence and uniqueness results for the generalized solution to the semi-

discretized problem were deduced, as well as for its stability and for the scheme’s

consistency. Finally a convergence result was proved and a convergence rate

obtained.

The case where there is only one dimension in space was treated separately,

since stronger results could be obtained.

Although we have only studied the semi-discretization in space, a full discret-

ization can be easily obtained by combining the results in the present study with

the one in [26, 29, 45] for the time discretization.

Also, in order to obtain implementable numerical schemes, there is the need to

localize the semi-discretized problem to a discrete bounded domain, with the im-

position of artificial discrete boundary conditions. In this connection, the works

[18, 19]), where transparent discrete boundary conditions are imposed, are par-
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ticularly meaningful.

Finally, the order of accuracy of the schemes we constructed are very low.

Therefore, there is also the need to accelerate the schemes.

Thus, possible future research directions are:

• Obtaining a full discretization in the whole space;

• Localizing the discretized problem to a finite computational domain, by

imposing transparent discrete boundary conditions;

• Accelerating the numerical scheme, namely with the construction of an ADI

scheme.
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