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Resumo

Nesta dissertação trabalhamos em teoria do risco. Damos principal ênfase principal nos mod-

elos de risco e teoria de rúına, dedicando a nossa atenção a algumas das mais interessantes

e relevantes quantidades da área: a probabilidade da rúına, a transformada de Laplace e os

dividendos descontados esperados. Os modelos de risco têm o objetivo de resolver, ou pelo

menos, fornecer uma solução aproximada, a problemas que aparecem na prática do negócio

dos seguros. Os desenvolvimentos que produzimos nesta dissertação têm a mesma finalidade.

A nossa intenção é apresentar novas ferramentas para o cálculo das quantidades mencionadas

acima, e uma melhor compreensão delas na prática.

Consideramos o modelo dual de risco quando os tempos entre ganhos seguem uma dis-

tribuição exponencial matricial e, quando for posśıvel, dar exemplos dos nossos resultados

para casos particulares, como as distribuições Phase–Type e Erlang. Mostramos, na maioria

dos casos, fórmulas e fazemos uso de técnicas matemáticas de várias áreas, como a teoria da

probabilidade, a teoria das equações integro–diferenciais, álgebra linear, análise complexa,

entre outras.

PALAVRAS-CHAVE: modelo de risco dual; distribuição exponencial matricial; probabil-

idade da rúına; transformada de Laplace; dividendos descontados esperados antes da rúına.
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Abstract

In this manuscript we work on risk theory. The main emphasis is on risk models and ruin

theory, devoting our attention to some of the most interesting and relevant quantities in this

area: ruin probabilities, Laplace transforms and expected discounted dividends.

Risk models are meant to solve or, at least, provide an approximate solution, to problems

that appear in the practice of the insurance business. The developments we produce in this

dissertation have the same goal. Our aim is to present new tools for computation of the

quantities mentioned above, and a better understanding of them in the practice.

We consider the dual risk model when the interclaim times follow a matrix exponential

distribution and, whenever possible, we give examples of our findings for particular cases, like

the Phase–Type, the Generalized Erlang and the Erlang distributions. We show, in most

cases, explicit formulas and we make use of mathematical techniques from several areas,

like probability theory, the theory of integro–differential equations, linear algebra, complex

analysis, among others.

KEYWORDS: Dual risk model; Matrix exponential distribution; ruin probability;

Laplace transforms; expected discounted dividends prior to ruin.
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Chapter 1

Introduction

In the 20th century many of the necessary tools for dealing with matters of insurance were

developed. These consist of probability theory, statistics and stochastic processes. The

Swedish mathematicians Filip Lundberg and Harald Cramér were pioneers in those areas.

They realized in the first half of the 20th century that the theory of stochastic processes

provides the most appropriate framework for modelling the claims arriving in an insurance

business. Nowadays, the Cramér–Lundberg model is one of the backbones of non–life in-

surance mathematics. It has been modified and extended in very different directions and,

moreover, has motivated research in various other fields of applied probability theory, such

as queuing theory, branching processes, renewal theory, reliability, dam and storage models,

extreme value theory, and stochastic networks.

In 1903 Lundberg laid the foundations of modern risk theory. Risk theory is a synonym

for non–life insurance mathematics, which deals with the modeling of claims that arrive in

an insurance business and which give insight on how much a premium has to be charged in

order to avoid bankruptcy (ruin) of an insurance company.

One of the Lundberg’s main contributions is the introduction of a simple model which is

capable of describing the basic dynamics of a homogeneous insurance portfolio. By this we

mean a portfolio of contracts or policies for similar risks such as car insurance for a particular

kind of car, insurance against theft in households or insurance against water damage of family

homes. There are three assumptions in the model:
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• Claims happen at the times Wi satisfying 0 ≤ W1 ≤ W2 ≤ · · · . We call them claim

arrivals, claim times or claim arrival times, and constitute a sequence of i.i.d (indepen-

dent and identically distributed) non–negative random variables.

• The i–th claim arriving at time Wi causes the claim size or claim severity Xi. The

sequence {Xi} constitutes as well an i.i.d. sequence of non–negative random variables.

• The claim size process {Xi} and the claim arrival process {Wi} are mutually indepen-

dent.

The i.i.d. property of the claim sizes, Xi, reflects the fact that there is a homogeneous

probabilistic structure in the portfolio. The assumption that the claim sizes and the claim

times be independent is very natural from an intuitive point of view. But the independence

of claim sizes and claim arrivals also makes the life of the mathematician much easier, i.e.,

this assumption is made for mathematical convenience and tractability of the model.

Risk theory has been an active research area in Actuarial Science since the 20th century.

In the heart of risk theory is ruin theory, which discusses how an insurance portfolio may

be expected to vary with time. Ruin is said to occur if the insurer’s surplus drops under

a specific lower bound. The probability that ruins occurs, commonly referred as the ruin

probability, is a very important measure of risk.

Much of the literature on ruin theory is concentrated on the classical risk theory, where

an insurer starts with an initial surplus u, collects premiums continuously at a positive

constant rate of c, while the aggregate claim process follows a compound Poisson process.

The main research interest is the calculation of finite and infinite time ruin probabilities.

Later on, actuarial researchers considered more components related to the time of ruin, like

the surplus prior to ruin, the severity or deficit at ruin and its maximum, the probability of

attaining a given upper barrier before ruin and the expected discounted dividends. Many

results involving those quantities have been found during the recent years.

Gerber and Shiu (1998) considers the evaluation of the expected discounted penalty func-

tion, giving a unified treatment to the surplus before ruin, the deficit at ruin and the time

to ruin.
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Great part of the results in the classical risk model, like the results of Gerber et al. (1987),

Dufresne and Gerber (1988a), Dufresne and Gerber (1988b), Dickson (1992) and Dickson

and Eǵıdio dos Reis (1996), are obtained as particular cases when the discount factor is zero,

and almost all the previous results in classical ruin theory can be extended to the case with

a positive discounting factor.

Lin and Willmot (1999) proposed an approach to solve the defective renewal equation, in

which the discounted penalty function is expressed in terms of a compound geometric tail.

Lin and Willmot (2000) further used it to derive the moments of the surplus before ruin, the

deficit at ruin and the time of ruin.

During the last decades there have been a great interest in more general surplus processes,

like surplus models with stochastic premium income processes, classical surplus processes un-

der an economical environment (investment and inflation), surplus processes with dependent

claim amounts and claim inter–occurrence times, surplus processes in which aggregate claims

come from some classes of dependent or independent businesses, surplus processes with gen-

eral claim number processes, or classical risk models perturbed by an independent diffusion

process.

Sparre-Andersen (1957) in a paper to the International Congress of Actuaries in New

York proposed a generalization of the classical (Poisson) risk theory, instead of assuming just

exponentially distributed independent inter–occurrence (interclaim) times, he introduced a

more general distribution function but retained the assumption of independence. He let

claims occur according to a more general renewal process and derived an integral equation

for the corresponding ruin probability. Since then the Sparre–Andersen model has been

studied by many authors. In addition, random walks and queueing theory have provided a

more general framework, which has led to explicit results in the case where the waiting times

or the claim severities have distributions related to the Erlang (see Borovkov (1976)).

Another generalization of the surplus model that have deserved some attention in the

past years is what is called the dual model. One of the innovations introduced by this model,

is that it considered the claims as “gains”, i.e., positive jumps at random times, and pays

“costs” at a constant rate. Several authors have addressed the dual model. We can go

back to Gerber (1979), pages 136–138, who called it the negative claims model. We can

3



even go further back in time to authors like Cramér (1955), Takács (1967), Seal (1969) and

Bühlmann (1970).

The dual model has a simple but illustrative interpretation, the surplus can be considered

as the capital of an economic activity like research and development where gains are random,

at random instants, and costs are certain. More precisely, the company pays expenses which

occur continuously along time for the research activity and gets occasional profits according

to a renewal process.

Recent works on the dual model focus on the study of dividends. When we consider the

payment of dividends by means of a barrier or a threshold strategy the time to ruin becomes

finite, i.e., ruin is certain. Therefore there is great interest in the study of dividend strategies

in order to maximize the expected amount of “income” that can be attained prior to ruin.

We can mention Avanzi et al. (2007), who works on an idea proposed by de Finetti (1957),

to find the dividend-payment strategy that maximizes the expected discounted value of divi-

dends which are paid to the shareholders until the company is ruined or bankrupt, assuming

that the surplus or shareholders’ equity is a Lévy process which is skip-free downwards and

a barrier strategy. Later on Avanzi and Gerber (2008) they extend their results to an ag-

gregate gains process composed by a shifted compound Poisson process and an independent

Wiener process.

On Avanzi (2009), the authors make a a taxonomical synthesis of the 50 years of actuarial

research on different dividend strategies that followed de Finetti’s original paper de Finetti

(1957).

Afonso et al. (2013) considered a compound Poisson dual risk model with an upper divi-

dend barrier. By establishing a proper and crucial connection between the original Cramér–

Lundberg model and the dual model they study different ruin and dividend probabilities,

such as the calculation of the probability of a dividend, distribution of the number of divi-

dends, expected and amount of dividends as well as the time of getting a dividend.

Hua (2013) investigated the dual of a Sparre–Andersen model perturbed by diffusion

under a barrier strategy, in which innovation inter-arrival times have a generalized Erlang

distribution. Integro–differential equations with certain boundary conditions for the expected

total discounted dividends are derived.
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Ji and Zhang (2014) considered the generalized Erlang risk model and its dual model. By

using a conditional measure-preserving correspondence between the two models, they derive

an identity for two interesting conditional probabilities. Applications to the discounted joint

density of the surplus prior to ruin and the deficit at ruin are also discussed.

Bayraktar and Egami (2008) considered the dual risk model with capital investments

and Bayraktar et al. (2013) generalized further their results using the fluctuation theory of

spectrally positive Lévy processes to show optimality of barrier strategies.

Ng (2009) considered the dual of the compound Poisson model under a threshold dividend

strategy. They derive a set of two integro-differential equations satisfied by the expected total

discounted dividends until ruin and show how the equations can be solved by using only one

of the two integro-differential equations. Then Ng (2010) considered again the dual of the

compound Poisson model but assuming that the gains follow a Phase-Type distribution. By

using the property of the Phase-Type distribution, two pairs of upcrossing and downcrossing

barrier probabilities are derived.

In the same line of research of threshold strategies, Zeng and Xu (2013) make contribu-

tions on the moment-generation function of the present value of total dividends until ruin.

Sendova and Yang (2014) considered times between positive gains independent and identi-

cally distributed following a generalized Erlang distribution to derive an explicit expression

for the Laplace transform of the ruin time and the expected discounted dividends when

the threshold-dividend strategy discussed by Ng (2009) is implemented under the Sparre–

Andersen model with Erlang distribution of the inter-event times.

Wen (2011a) considered the dual of compound Poisson model with diffusion under a

threshold dividend strategy and Wen (2011b) considered the dual of the generalized Erlang

risk model under a threshold dividend strategy. In both articles they derive an integro–

differential equation satisfied by the expectation of the discounted dividends until ruin.

Cheung (2012) studied the dual risk model to investigate the fair price of a perpetual in-

surance which pays the expenses whenever the available capital reaches zero; the probability

of recovery by the first gain after default if money is borrowed at the time of default; and

the Laplace transforms of the time of recovery and the first duration of negative capital.

Liu and Liu (2014) studied the dual risk model with a barrier strategy under the concept
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of bankruptcy, in which one has a positive probability to continue business despite tempo-

rary negative surplus. Integro–differential equations for the expectation of the discounted

dividend payments and the probability of bankruptcy are derived.

Dong and Liu (2010) considered an extension to a dual model under a barrier strategy,

in which the innovation sizes depend on the innovation time via the FGM (Farlie–Gumbel–

Morgenstern) copula. They first derived a renewal equation for the expected total discounted

dividends until ruin. Some differential equations and closed-form expressions are given for

exponential innovation sizes. Then the optimal dividend barrier and the Laplace transform

of the time to ruin are considered.

Chen and Xiao (2010) considered the ruin probability of a kind of dual risk model with a

threshold. They assumed that the expenses with a constant rate,and the aggregate positive

gains is a compound process. Besides, the gain size depends on the inter-arrival time. The

integro-differential equations satisfied by the ruin probability are derived.

Zhu and Yang (2008) devoted to studying a dual Markov-modulated risk model for the cal-

culation of both the finite and infinite horizon ruin probabilities. Upper and lower bounds of

Lundberg type are derived for these ruin probabilities. They also obtained a time–dependent

version of Lundberg type inequalities.

Ma et al. (2010) considered the dividend problem in a two-state Markov-modulated dual

risk model, in which the gain arrivals, gain sizes and expenses are influenced by a Markov

process. A system of integro-differential equations for the expected value of the discounted

dividends until ruin is derived. In the case of exponential gain sizes, the equations are solved

and the best barrier is obtained via numerical example.

Liu et al. (2013) studied the dual risk model in which periodic taxation are paid according

to a loss-carry-forward system and dividends are paid under a threshold strategy. They gave

an analytical approach to derive the expression of the Laplace transform of the first upper

exit time. They discussed the expected discounted tax payments for this model and obtain

its corresponding integro-differential equations.

Outlining this dissertation we present developments in a dual risk model when the times

between gains follow a matrix exponential distribution. Our work involves developments in

Lundberg’s equations, the ruin probability, the Laplace transform of the time to ruin, the

6



expected discounted dividends, the probability of a dividend, distribution of the number of

dividends, expected and amount of dividends as well as the time of getting a dividend.

Chapter 2 reviews the relevant results and techniques in the literature on the classical

and the dual risk model and gives the mathematical preliminaries to the thesis.

In Chapter 3 we consider developments in the ruin probability and the Laplace transform

of the time to ruin.

Chapter 4 is completely devoted to the expected discounted dividends.

Chapters 3 and 4 are the main core of this thesis where new developments are presented.

Numerical examples are discussed in the parts of the work related to the Lundberg’s equa-

tions, the ruin probability and the expected discounted dividends for particular distributions,

like the Phase–Type and the Erlang.

At last, some conclusions and comments on further research are set out in Chapter 5.

This thesis is based on the following papers:

1. In Rodŕıguez-Mart́ınez et al. (2015) we study the dual risk model when the times

between gains are Erlang distributed. Using the roots of the fundamental and the gene-

ralized Lundberg’s equations, we get expressions for the ruin probability and the Laplace

transform of the time of ruin for an arbitrary single gain distribution. Furthermore, we

compute expected discounted dividends, as well as higher moments, when the individual

common gains follow a Phase–Type distribution.

2. In Bergel et al. (2016) we consider the dual risk renewal model when the waiting

times are Phase–Type distributed. Using the roots of the fundamental and the generalized

Lundberg’s equations, we get expressions for the ruin probability and the Laplace transform

of the time of ruin for an arbitrary single gain distribution. Then, we address the calculation

of expected discounted future dividends particularly when the individual common gains

follow a Phase–Type distribution. We further show that the optimal dividend barrier does

not depend on the initial reserve.

As far as the roots of the Lundberg equations and the time of ruin are concerned, we

address the existing formulae in the corresponding Sparre-Andersen insurance risk model

for the first hitting time of an upper barrier, shown by Li (2008a) and Li (2008c), and we

generalize them to cover also the situations where we have multiple roots. We do that working

7



a new approach and technique, which we also use for working the dividends. Unlike others,

it can be also applied for every situation. For the Erlang model there is no multiplicity, e.g.

see Bergel and Eǵıdio dos Reis (2015), for the generalised Erlang we can have double roots,

see Bergel and Eǵıdio dos Reis (2016). In other Phase–Type and matrix exponential models

we can have higher multiplicity.

3. Last but not least, we are currently working on a paper that will be submitted in the

future, that generalizes several results from Afonso et al. (2013) for the case of a matrix

exponential distribution.
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Chapter 2

Risk models

In this chapter we set out the main characterization of the models and the concepts of risk

theory that we consider in this manuscript.

In Section 2.1 we describe the dual risk model and denote the aggregate gains as a random

process S(t).

Section 2.2 introduces the definitions of ruin probability, the Laplace transform of the

time to ruin and the expected discounted dividends.

In Section 2.3 we present the existing connection between the dual risk model and the

Cramér–Lundberg risk model. We define the Lundberg’s equations and talk about their

solutions.

Section 2.4 is devoted to introduce the integro–differential equations that are satisfied by

the quantities in Section 2.2.

Finally, in Section 2.5 we focus on defining the matrix exponential distribution which we

use along this manuscript.

2.1 The dual risk model

In a dual risk process, an insurer’s surplus at a fixed time t > 0 is determined by three

quantities: the amount of surplus at time 0, the amount of costs up to time t and the

amount received as gains up to time t. The only one of these three which is random is the

gains income, so we start by describing the aggregate gains process, which we denote by
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{S(t)}t≥0.

Let {N(t)}t≥0 be a counting process for the number of gains, so that for a fixed value

t > 0, the random variable N(t) denotes the number of gains that occur in the fixed time

interval (0, t].

The individual gain amounts are modeled as a sequence of independent and identically

distributed random variables {Xi}∞i=1, so that Xi denotes the amount of the i–th gain,

with cumulative distribution function P (x) and density p(x). We assume the existence of

µ1 = E[X1]. We denote the Laplace transform of p(x) by p̂(s).

Let the times between gains, or gain inter–occurrence times, be denoted by the sequence

of random variables {Wi}∞i=1, that we assume i.i.d. and independent from sequence {Xi}.

Then we have N(t) = max{k : W1 + W2 + · · · + Wk ≤ t}. The cumulative distribution

function of the Wi is denoted by K(t) with density k(t).

We say that the aggregate gains amount up to time t, denoted S(t), is

S(t) =

N(t)∑
i=1

Xi. (2.1.1)

If N(t) = 0 then S(t) = 0.

In the compound Poisson dual risk model it is assumed that {N(t)}t≥0 is a Poisson process

and therefore the gain inter–occurrence times are exponentially distributed. In this case the

aggregate gains process {S(t)}t≥0 is a compound Poisson process.

In a more general renewal dual risk model the distribution of the gain inter–occurrence

times is not necessarily exponential, and it is more difficult to determine the nature of the

counting process {N(t)}t≥0 for every possible distribution. For the total gains amount S(t)

the expectation can be easily calculated by exploiting the independence of {Xi} and N(t),

provided E[N(t)] and E[X1] are finite

E[S(t)] = E

E
N(t)∑

i=1

Xi |N(t)

 = E[N(t)E[X1]] = E[N(t)]E[X1].

The expectation does not tell us too much about the distribution of S(t). We learn more

about the order of magnitude of S(t) if we combine the information about E[S(t)] with the

10



variance V ar[S(t)].

Assume that V ar[N(t)] and V ar[X1] are finite. Conditioning on N(t) and exploiting the

independence of {Xi} and N(t), we obtain

V ar

N(t)∑
i=1

(Xi − E[X1]) |N(t)

 =

N(t)∑
i=1

V ar[Xi|N(t)]

= N(t)V ar[X1|N(t)] = N(t)V ar[X1],

and we can conclude that

V ar[S(t)] = E[N(t)V ar[X1]] + V ar[N(t)E[X1]]

= E[N(t)]V ar[X1] + V ar[N(t)](E[X1])2.

Now we can describe the surplus process, denoted by {U(t)}t≥0, as

U(t) = u− ct+ S(t), (2.1.2)

where u is the surplus at time 0 and c is the rate of costs per unit time, which we assume to

be paid continuously.

Whenever the moment generating function of X1 exists, we denote it by MX and we

assume that when it exists, there exists some quantity γ, 0 < γ ≤ ∞, such that MX(r) is

finite for all r < γ with

lim
r→γ−

MX(r) =∞

A graphical interpretation of the surplus process is given in Figure 2.1, where we see how

the surplus process starts from the initial capital u at time t = 0, then decreases at the

constant cost rate of c paid until the time W1 when the first gain arrives, and continues over

time. By the time t0 the surplus process already had four received gains, so the counting

process is equal to four.

A model of the form (2.1.2) seems to be natural for companies that have occasional gains

11



-

6U(t)
u

U(t0) = u− ct0 + X1 + X2 + X3 + X4, N(t0) = 4

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
@
@
@
@
@
@
@

@
@

@

@
@

@
@

@
@
@

@

@
@

@
@

@
@

@
@

@

r r r r r
r(t0, U(t0))

ppp
ppp
ppp
ppp

t00 t

X1

X2

X3

X4
6

?

6

?

6

?

6

?

� -� -� -� -
W1 W2 W3 W4

Figure 2.1: The surplus process

whose amount and frequency can be modelled by the process (2.1.1). For pharmaceutical or

petroleum companies, the gain or “upward jump” should be interpreted as the net present

value of future income from an invention or discovery. Other examples are commission–

based business, such as real estate agent offices or brokerage firms that sell mutual funds

or insurance products with a front–end load. Some authors have postulated that the model

might be appropriate for an annuity or pension fund (see Cramér (1955), Takács (1967)

and Seal (1969)). In summary, the surplus can be considered as the capital of an economic

activity like research and development where gains are random, at random instants, and

costs are certain.

2.2 The ruin probability, the Laplace transform of the

time to ruin and the expected discounted dividends

In this moment we introduce some of the most common quantities of interest for the dual

risk model. Specifically we talk about the ruin probability, the Laplace transforms of the

time to ruin and the expected discounted dividends.

The probability of ruin in infinite time, also known as the ultimate ruin probability, is

12



defined as

ψ(u) = Pr(U(t) ≤ 0 for some t > 0).

In words, ψ(u) is the probability that the surplus falls below zero at some time in the future,

that is when the constant costs exceeds the initial surplus plus the aggregate gains.

We denote the time to ruin, from initial surplus u, as the random variable Tu, so we have

Tu = inf{t > 0 : U(t) ≤ 0}, u ≥ 0, and Tu =∞ if and only if U(t) > 0 ∀t > 0. Therefore,

we can express the ruin probability as

ψ(u) = Pr(Tu <∞).

Define φ(u) = 1− ψ(u) to be the probability that ruin never occurs starting from initial

surplus u. This probability is also known as the survival or non–ruin probability.
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Figure 2.2: The time to ruin

Figure 2.2 represents the time to ruin. In this example we have a surplus process with 2

received gains. Afterwards, no more gains were received and therefore the surplus fell at the

constant rate c until it dropped to the level zero at the time t = Tu.

We also assume the so called net profit condition

cE[Wi] < E[Xi], (2.2.1)
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which means cE[W1] < µ1, so that, per unit of time, the costs are less than the expected

aggregate gain amount. This condition is very important and it brings an economical sense

to the model. If this condition does not hold, then Ψ(u) = 1 for all u ≥ 0. It is often

convenient to write cE[W1] = (1 − θ)µ1, so that θ > 0 is the cost loading factor. During

the interval of time Wi the costs paid are given by cWi and the gain is Xi. The net profit

Xi − cWi might be positive or negative, but on average it has to be positive. We show this

in the Figure 2.3.
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Figure 2.3: The net profit condition

The Laplace transform of the time to ruin is defined by

ψ(u, δ) = E[e−δTuI(Tu <∞) | U(0) = u],

where δ > 0 and I(.) is the indicator function. This Laplace transform can be interpreted

as the expected value of one monetary unit received at the time of ruin discounted at the

constant force of interest δ.

In particular, we can obtain the ultimate ruin probability ψ(u) as a limiting case of the

Laplace transform of the time to ruin, since

lim
δ→0

ψ(u, δ) = ψ(u). (2.2.2)
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We introduce an upper barrier into the dual model, let b denote its level. This barrier

means a dividend payment level whose i-th single amount is going to be denoted by the

random variable Di explained as follows. Each time the surplus process upcrosses level b

the excess gain is paid out immediately to the capital holders as a dividend, prior to ruin.

Let {Di}∞i=1 be the sequence of the dividend payments and let D(u, b) be the aggregate

discounted dividends, at force of interest δ and from initial surplus u. Let τi be the arrival

time of Di, then

D(u, b) =
∑
i

e−δτiDi.

We denote by Vk(u, b) = E[D(u, b)k], k ≥ 1, the k-th order moment of D(u, b). For

simplicity denote V (u, b) = V1(u, b) = E[D(u, b)], the expected value of D(u, b).

Note that

V (u, b) = E[u− b+D(b, b)] = u− b+ V (b, b), u ≥ b. (2.2.3)

If no gain arrives before the time t0 = u/c the surplus process arrives to ruin, and no

dividends are paid. This is illustrated in the Figure 2.4.
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Figure 2.4: The dual risk model with an upper barrier level b.

On the contrary, if gains are received before the time u
c
, the situation looks like in Figure

2.5.

2.3 The primal and the dual model. The Lundberg’s

equations.

In this section we make some connections of interest between the Cramér-Lundberg insurance

risk model and the dual model. We could call the first as the classical or standard risk model

however, often the literature when referring to the classical model it means the compound

Poisson risk model, which is a particular case of the Sparre–Andersen risk model. So, we

chose to call it simply the primal model.

The primal model is driven by an equation similar to (2.1.2)

UP (t) = u+ ct−
N(t)∑
i=0

Xi, t ≥ 0, u ≥ 0

where UP (t) represents the surplus of a portfolio of insurance risks at time t. For convenience

we keep the same notation but note that the quantities involved have different meanings,
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Figure 2.5: The dual risk model with an upper barrier level b.

particularly c and Xi, respectively premium rate and individual claim size i. Here, it is

assumed a net profit condition cE(Wi) > E(Xi) (reversed in comparison with (2.2.1)),

which brings an economical sense to the model: it is expected that the income until the

next claim is greater than the size of the next claim. The net income between the (i −

1)-th and the i-th claims is cWi − Xi. In this model it is well known the notion of the

adjustment coefficient, provided that the moment generating function of X1 exists, MX(·).

The adjustment coefficient, denoted as R, is the unique positive real root of the equation,

developed as follows,

E
[
e−r(cW1−X1)

]
= 1 ⇔ E

[
e−rcW1

]
E
[
erX1

]
= 1

⇔ MX(r) =
1

E [e−rcW1 ]
, r ∈ R. (2.3.1)

We note that expectation E
[
erX1

]
exists at least for r < 0. Expectation E

[
e−RcW1

]
is a

Laplace transform and W1 follows, on this manuscript, a light tail distribution (matrix expo-

nential, and especial cases Phase–type or Erlang). The lefthand side of the starting equation

above can be regarded as the expected discounted profit for each waiting arrival period. So

that the adjustment coefficient R, provided that it exists, makes the expected discounted

profit even (considering that premium income and claim costs come together). Constant R is
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then seen as an interest force. The equation (2.3.1) is known as the fundamental Lundberg’s

equation.

Now, let’s take a similar perspective for the dual model case, driven by equation (2.1.2).

The fundamental Lundberg’s equation is now given as

E
[
e−s(X1−cW1)

]
= 1⇔ E

[
escW1

]
E
[
e−sX1

]
= 1⇔ p̂(s) =

1

E [escW1 ]
, (2.3.2)

where the corresponding net income per waiting arrival period i is given by the reversed

difference Xi− cWi. In either case the fundamental Lundberg’s equation has the same form,

but here we do not have to assume the existence of the moment generating function of X1,

if we consider s > 0, and the definition of a similar constant to the one of the adjustment

coefficient is not needed, we would indeed need the existence of expectation E
[
escW1

]
if a

general distribution of W1 were considered. As a final remark, obviously, if we set r = −s,

equations (2.3.1) and (2.3.2) look the same.

In practice, the Lundberg’s equation in the primal and the dual model are almost the

same, the only difference between them lies in the nature of their roots, which depend on

different choices of parameters. In the primal model, the roots will depend on any choice of

parameters such the net profit condition cE(Wi) > E(Xi) is satisfied. In the dual model,

the choice of parameters must satisfied the reversed net profit condition cE(Wi) < E(Xi).

Next, we extend the domain for s ∈ C.

Since E
[
e−sX1

]
= MX(−s) = p̂(s), where p̂ denotes the Laplace transform of the gain

amounts density p, we could even go further with this notation and write E
[
escW1

]
= k̂(−cs),

where k̂ denotes the respective Laplace transform of the gain inter–occurrence times density

k. Thus, the fundamental Lundberg’s equation becomes

p̂(s) =
1

k̂(−cs)
, or k̂(−cs)p̂(s) = 1. (2.3.3)

From now on every time when we refer to the fundamental Lundberg’s equation we refer to

the equation (2.3.3).

A generalization of each of (2.3.2) was introduced to the actuarial literature and became

known as the generalized Lundberg’s equation. It takes the following form, for a constant
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δ > 0 (see e.g. Landriault and Willmot (2008)):

E
[
e−δW1e−s(X1−cW1)

]
= 1,

In our notation, it becomes

p̂(s) =
1

k̂(δ − cs)
, or k̂(δ − cs)p̂(s) = 1. (2.3.4)

From now on every time when we refer to the generalized Lundberg’s equation we refer to

the equation (2.3.4).

This last equation can be found in Gerber and Shiu (2005) and Ren (2007). We can think

of (2.3.3) as the limiting case of (2.3.4) when δ → 0+.

In the barrier and dividend problems that we treat later in this thesis, it is introduced

the notion of δ > 0 as an interest rate. For the calculation of dividends and the Laplace

transform of the time to ruin we use the generalized Lundberg’s equation (2.3.4). For the

calculation of the ruin probability we use the fundamental Lundberg’s equation (2.3.3).

2.3.1 Roots of the Lundberg’s equations

The roots of the Lundberg’s equations play an important role in the calculation of many

quantities that are fundamental in risk and ruin theory. Namely, the ultimate and finite

time ruin probabilities, the Laplace transform of the ruin time, the expected discounted

future dividends, among others. All those calculations depend on the nature of the roots of

the Lundberg’s equation, particularly those roots with positive real parts. A study on the

multiplicity of the roots can be found in Bergel and Eǵıdio dos Reis (2014) and Bergel and

Eǵıdio dos Reis (2016). For the Erlang(n) model there is no multiplicity, e.g. see Bergel and

Eǵıdio dos Reis (2015), for the generalised Erlang(n) we can have double roots, see Bergel

and Eǵıdio dos Reis (2016). In other Ph(n) and more general models we can have higher

multiplicity.

In Rodŕıguez-Mart́ınez et al. (2015) we showed that both the fundamental and the general-

ized Lundberg’s equations have exactly n roots with positive real parts in a dual risk model
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with Erlang(n) distributed gain inter–occurrence times. We compared with the Sparre–

Andersen risk model with Erlang(n) distributed interclaim times, where the situation is

different, i. e., the generalized Lundberg’s equation has still n roots with positive real parts,

but the fundamental only has n− 1 of these roots (see Li and Garrido (2004)). We illustrate

this on Figure 2.6 for the case of Erlang(n) distributed times, and we give a brief description

of it in the following paragraphs below.

First, we used Rouché’s theorem to prove that the generalized Lundberg’s equation has

exactly n roots with positive real parts. This fact is true for more general distributions, like

the Phase–Type (see Albrecher and Boxma (2005)). Then with considered the limiting case

δ → 0+ and showed that all these roots remain with positive real parts. This proves that

the fundamental Lundberg’s equation also has exactly n roots with positive real parts.

Let ρ1(δ), . . . , ρn(δ) denote the roots of the generalized Lundberg’s equation with positive

real parts. At least one of them is real, say ρn(δ).

We have at least one negative real root, we denote the largest by −R(δ) (this is the

adjustment coefficient for a Sparre–Andersen or primal risk model).

On the one hand, using the net profit condition cE(Wi) > E(Xi) (primal model) we arrive

at the limiting case:

lim
δ→0+

(−R(δ)) < 0,

lim
δ→0+

ρn(δ) = 0,

lim
δ→0+

Re(ρi(δ)) > 0, i = 1, . . . , n− 1.

On the other hand, using the net profit condition cE(Wi) < E(Xi) (dual model) we arrive

at the limiting case:

lim
δ→0+

(−R(δ)) = 0

lim
δ→0+

ρn(δ) > 0

lim
δ→0+

Re(ρi(δ)) > 0, i = 1, . . . , n− 1.
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Thus, in the dual model, both the fundamental and the generalized Lundberg’s equation

have n roots with positive real parts. For simplicity we will denote ρi(δ) by ρi, i = 1, ..., n,

unless stated otherwise.

2.4 Integro–differential equations

In this section we present the renewal and integro–differential equations satisfied by three

important quantities: the ruin probability, the Laplace transform of the time to ruin and

the expected discounted dividends.

2.4.1 The ruin probability and the Laplace transform of the time

of ruin

In the dual risk model with exponentially distributed gain inter–occurrence times, i.e. k(t) =

λe−λt, the ruin probability satisfies the following renewal equation

ψ(u) = e−λt0 +

∫ t0

0

λe−λt
∫ ∞

0

p(x)ψ(u− ct+ x)dx dt, (2.4.1)

where t0 = u/c is the time of ruin without any gain arrival. This can be found in Afonso

et al. (2013), and it is derived by conditioning on the time and amount of the first gain.

Differentiating with respect to u and rearranging, we get an integro–differential equation

for ψ(u) given by

ψ(u) +
( c
λ

) d

du
ψ(u) =

∫ ∞
0

p(x)ψ(u+ x)dx.

We can write this equation as

(
I +

( c
λ

)
D
)
ψ(u) =

∫ ∞
0

p(x)ψ(u+ x)dx, (2.4.2)

where I is the identity operator and D is the differentiation operator, D = d/du.

We can extend the previous method for more general distributions, like the distributions

belonging to the matrix exponential family, i. e. Phase–Type, Erlang, among others. The
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renewal equation corresponding to (2.4.1) becomes

ψ(u) = 1−K(t0) +

∫ t0

0

k(t)

∫ ∞
0

p(x)ψ(u− ct+ x)dx dt. (2.4.3)

The integro–differential equation analogous to (2.4.2) will be given in the following chapter.

In a similar way, conditioning on the time and the amount of the first gain, we find

that the Laplace transform of the time to ruin for the dual risk model satisfies the renewal

equation

ψ(u, δ) =
(

1−K
(u
c

))
e−δ(

u
c ) +

∫ u
c

0

k(t)e−δt
∫ ∞

0

p(x)ψ(u− ct+ x, δ)dx dt.

Note that the above equation is valid for any renewal model with density k and distribution

K. Changing variables s = u− ct, we get

ψ(u, δ) =
(

1−K
(u
c

))
e−δ(

u
c ) +

1

c

∫ u

0

k

(
u− s
c

)
e−δ(

u−s
c )Wψ(s, δ) ds, (2.4.4)

where Wψ(s, δ) =
∫∞

0
p(x)ψ(s+ x, δ)dx.

The integro–differential equations for the Laplace transform of the time to ruin will be

considered in the next chapter.

2.4.2 The expected discounted dividends

The expected discounted dividends V (u, b) satisfy the following renewal equation:

V (u, b) =

∫ u
c

0

k(t)e−δt
[∫ b−u+ct

0

V (u− ct+ y, b)p(y)dy

+

∫ ∞
b−u+ct

Ṽ (u− ct+ y, b)p(y)dy

]
dt, for u < b,

with

Ṽ (x, b) = E[D(x, b)] = E[x− b+D(b, b)] = x− b+ V (b, b), x ≥ b.
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The k-th ordinary moment of the discounted dividends Vk(u, b) satisfies the renewal equa-

tion

Vk(u, b) =

∫ u
c

0

kn(t)e−δkt
[∫ b−u+ct

0

Vk(u− ct+ y, b)p(y)dy+∫ ∞
b−u+ct

Ṽk(u− ct+ y, b)p(y)dy

]
dt,

with

Ṽk(x, b) =
k∑
j=0

(
k

j

)
(x− b)jVk−j(b, b), x ≥ b.

In the above expression we have V0(u, b) ≡ 1.

The integro–differential equations for the expected discounted dividends will be studied

in the next chapter.

2.5 The matrix exponential distribution

In probability theory, the matrix-exponential distribution is an absolutely continuous dis-

tribution with rational Laplace–Stieltjes transform (see Asmussen and O’Cinneide (2006)).

They were first introduced by David Cox in 1955 as distributions with rational Laplace–

Stieltjes transforms, see Bean et al. (2008).

The probability density function is

f(x) = αeBxbT for x ≥ 0

(and 0 when x < 0) where

α ∈ R1×n, B ∈ Rn×n, b ∈ R1×n.

There are no restrictions on the parameters α,B,b other than that they correspond to

a probability distribution, see He and Zhang (2007). There is no straightforward way to

ascertain if a particular set of parameters form such a distribution (Bean et al. (2008)). The

dimension of the matrix B is the order of the matrix-exponential representation (Asmussen
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and O’Cinneide (2006)).

The distribution is a generalisation of the Phase–Type distribution.

In the following chapters we will work with distributions belonging to the matrix–

exponential family, namely de Phase–Type and the Erlang. Next, we set our notation for

these distributions.

2.5.1 The Phase–Type distribution

Phase–type distributions are the computational vehicle of much of modern applied proba-

bility. Typically, if a problem can be solved explicitly when the relevant distributions are

exponentials, then the problem may admit an algorithmic solution involving a reasonable

degree of computational effort, if one allows for the more general assumption of phase–type

structure, and not in other cases. A proper knowledge of phase–type distributions seems

therefore a must for anyone working in an applied probability area like risk theory.

We say that a distribution K on (0,∞) is Phase–Type(n) if K is the distribution of

the lifetime of a terminating continuous time Markov process {J(t), t ≥ 0} with finitely

many states and time homogeneous transition rates. More precisely, we define a terminating

Markov process {J(t), t ≥ 0} with state space E = {1, 2, . . . , n} and intensity matrix B

(n × n) as the restriction to E of a Markov process {J̄(t), 0 ≤ t < ∞} on E0 = E ∪ {0}

where 0 is some extra state which is absorbing, that is, Pr(J̄(t) = 0|J̄(0) = i) = 1 for all

i ∈ E and where all states i ∈ E are transient. This implies in particular that the intensity

matrix for {J̄(t)} can be written in block–partitioned form as

 B bT

0 0

 . (2.5.1)

The (1 × n) vector b = (b1, . . . , bn) is the exit rate vector, i.e., the i–th component bi gives

the intensity in state i for leaving E and going to the absorbing state 0.

Note that since (2.5.1) is the intensity matrix of a non–terminating Markov process,

the rows sums to zero which in matrix notation can be written as bT + B1T = 0 where

1 = (1, 1, . . . , 1) is the (1 × n) vector with all components equal to one. In particular we
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have

bT = −B1T.

The intensity matrix B is denoted by B = (bij)
n
i,j=1. This matrix satisfies the conditions:

bii < 0, bij ≥ 0 for i 6= j, and
∑n

j=1 bij ≤ 0 for i = 1, . . . , n. The vector of entry

probabilities is given by α = (α1, α2, . . . , αn) with αi ≥ 0 for i = 1, . . . , n, and
∑n

i=1 αi = 1,

so Pr(J̄(0) = i) = αi. We illustrate the Phase–Type distribution in Figure 2.7.
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Figure 2.7: The Phase–Type distribution

Below we list expressions of most of the quantities of interest related to K, density,

distribution, Laplace transform, mean and the j-th derivative of k(t) at 0:

k(t) = αeBtbT, t ≥ 0,

K(t) = 1−αeBt1T, t ≥ 0,

k̂(s) = α(sI−B)−1bT, (2.5.2)

E[W1] = −αB−11T,

k(j)(0) = αBjbT, j ≥ 0,

where I is the n× n identity matrix.

It is important to notice that we can write the corresponding net profit condition (2.2.1)

as

−cαB−11T < µ1. (2.5.3)
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We call the parameters (α,B,b) the representation of the Phase–Type distribution.

2.5.2 The Erlang distribution

The Erlang(n) distribution is a particular example of the Phase – Type(n) distribution. The

corresponding representation (α,B,b) is given by

α = (1, 0, . . . , 0)

b = (0, 0, . . . , λ)

B =



−λ λ · · · 0

0 −λ · · · 0
...

...
. . .

...

0 0 · · · −λ

0 0 · · · 0

0

0
...

λ

−λ


Therefore we obtain the probability density function and the cumulative distribution

function

kn(t) =
λntn−1e−λt

(n− 1)!
, t ≥ 0,

Kn(t) = 1−
n−1∑
i=0

1

i!
e−λt(λt)i, t ≥ 0.

Some interesting properties of the Erlang(n) probability density function (for n ≥ 2), are

the following

k′n(t) = λ(kn−1(t)− kn(t)),

k(i)
n (0) = 0, i = 0, . . . , n− 2,

k(n−1)
n (0) = λn.

These properties do not hold for a general Phase–Type distribution. They will allow us

to obtain easier formulas for ruin probabilities, as we shall see in the next chapter.

27



2.6 Final remarks

In this chapter we have learned about some of the most important quantities of interest in

Risk Theory. We have taken a closer look at the renewal risk models, specifically the Sparre–

Andersen and the dual risk models and the relation between the two of them. We presented

the Lundberg’s equations and described the probability distributions that will be used in

the remaining of this thesis. In the next chapter we will evaluate ruin probabilities and

the Laplace transform of the time of ruin for a dual risk model with gain inter–occurrence

times distributed according to a matrix exponential distribution, specifically, a Phase–Type

or Erlang.
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Chapter 3

Lundberg’s equation, ruin

probabilities and Laplace transforms

3.1 Introduction

In this chapter we study the ruin probability and the Laplace transform of the time to ruin for

a dual risk model. The distribution of the gain inter–occurrence times is matrix exponential.

However, for simplicity and elegance of the formulas we concentrate on the Phase–Type and

the Erlang distributions.

In Section 3.2 we devote attention to the Erlang case. For that purpose we go back to the

Lundberg’s equations, which will be useful to obtain closed formulas for the ruin probability

and the Laplace transform of the time to ruin.

In Section 3.3 we do the same as in Section 3.2 but considering the Phase–Type distribu-

tion instead the Erlang distribution. Given the proximity between the Phase–Type and the

more general matrix exponential distributions, the methods used can be easily extended to

the latter.

We provide examples of our results whenever possible.
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3.2 The Erlang case

The fundamental Lundberg’s equation from the previous chapter (2.3.3) can be written in

the form (
λ

c
− s
)n

=

(
λ

c

)n
p̂(s). (3.2.1)

This equation is considered for the calculation of ruin probabilities.

On the other hand we have the generalized Lundberg’s equation (2.3.4) expressed as

(
λ+ δ

c
− s
)n

=

(
λ

c

)n
p̂(s), (3.2.2)

where δ > 0 is the force of interest. We use this equation for the calculation of the Laplace

transform of the time to ruin.

We recall from Chapter 2 the roots of the fundamental (generalized) Lundberg’s equation

with positive real parts: ρ1, ρ2, . . . , ρn ∈ C. In the case of the generalized Lundberg’s

equation, those roots depend on δ. However, we will use the same notation for the roots of

(3.2.1) and (3.2.2).

We assume the net profit condition (2.2.1), which in our case becomes

cE[Wi] < E[Xi]⇐⇒ c
n

λ
< µ1. (3.2.3)

3.2.1 The ruin probability

We already know that the ruin probability is a limiting case of the Laplace transform of the

time to ruin when the interest force δ tends to zero. However, we pay attention to both the

former and the latter separately to make some important remarks.

For Erlang(n) distributed gain inter–occurrence times, the renewal equation satisfied by

the ruin probability is

ψ(u) = 1−Kn(t0) +

∫ t0

0

kn(t)

∫ ∞
0

p(x)ψ(u− ct+ x)dx dt. (3.2.4)

The integro–differential satisfied by the ruin probability is given in following theorem.
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Theorem 1 In the Erlang(n) dual risk model the ruin probability satisfies the integro–

differential equation

(
I +

( c
λ

)
D
)n
ψ(u) =

∫ ∞
0

p(x)ψ(u+ x)dx, (3.2.5)

with boundary conditions

ψ(0) = 1 and
di

dui
ψ(u)

∣∣∣∣
u=0

= 0, i = 1, . . . , n− 1. (3.2.6)

Proof. We proceed taking successive derivatives of the ruin probability using the renewal

equation (3.2.4). Changing the variable, u − ct = s, the renewal equation can be rewritten

in the form

ψ(u) = 1−Kn

(u
c

)
+

1

c

∫ u

0

kn

(
u− s
c

)
W (s)ds,

where W (s) =
∫∞

0
ψ(s+ x)p(x)dx.

After applying the operator (I + (c/λ)D) to the ruin probability we get

(
I +

( c
λ

)
D
)
ψ(u) = 1−Kn−1

(u
c

)
+

1

c

∫ u

0

kn−1

(
u− s
c

)
W (s)ds.

Following an inductive argument, it is easy to show that

(
I +

( c
λ

)
D
)i
ψ(u) = 1−Kn−i

(u
c

)
+

1

c

∫ u

0

kn−i

(
u− s
c

)
W (s)ds,

for i = 1, . . . , n− 1. Particularly, we have

(
I +

( c
λ

)
D
)n−1

ψ(u) = 1−K1

(u
c

)
+

1

c

∫ u

0

k1

(
u− s
c

)
W (s)ds.

Applying the operator once more, we get

(
I +

( c
λ

)
D
)n
ψ(u) = W (u).

This proves equation (3.2.5). We have used here some very known properties of the Erlang(n)
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probability density function (for n ≥ 2), namely

k′n(t) = λ(kn−1(t)− kn(t)),

k(i)
n (0) = 0, i = 0, . . . , n− 2,

k(n−1)
n (0) = λn.

We now prove the boundary conditions. Clearly, ψ(0) = 1. We find the remaining condi-

tions by computing directly the derivatives of ψ(u) and evaluating at u = 0,

di

dui
ψ(u) = −

(
1

c

)i
k(i−1)
n

(u
c

)
+

(
1

c

)i+1 ∫ u

0

k(i)
n

(
u− s
c

)
W (s)ds

for i = 1, . . . , n− 1. Hence, we obtain

di

dui
ψ(u)

∣∣∣∣
u=0

= 0, i = 1, . . . , n− 1.

The solution for the integro-differential equation (3.2.5) with boundary conditions given

by (3.2.1) is shown in the following theorem.

Theorem 2 The ultimate ruin probability can be written as a combination of exponential

functions

ψ(u) =
n∑
k=1

[
n∏

i=1,i 6=k

ρi
(ρi − ρk)

]
e−ρku, (3.2.7)

where ρ1, . . . , ρn are the only roots of the fundamental Lundberg’s equation (3.2.1) which

have positive real parts.

Proof. Let’s consider a general solution f(u) for equation (3.2.5)

(
I +

( c
λ

)
D
)n
f(u) =

∫ ∞
0

p(x)f(u+ x)dx. (3.2.8)

We now look for particular solutions of this equation. Let f(u) = e−ru, for some r ∈ C.
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Then, for the left hand side of (3.2.8) we obtain

(
I +

( c
λ

)
D
)n
f(u) =

(
1−

( c
λ

)
r
)n
e−ru,

hence, (
1−

( c
λ

)
r
)n

= p̂(r),

which means that r must be a root of the fundamental Lundberg’s equation (3.2.1).

Define the functions f1(u) = e−ρ1u, . . . , fn(u) = e−ρnu. Since they are linearly independent

we can write any solution of (3.2.8) as

f(u) =
n∑
i=1

aie
−ρiu,

where ai, i = 1, ..., n, are constants. To get a formula for ψ(u) we must find the constants

ai using the boundary conditions (3.2.6). These can be determined by solving a system of n

equations on the unknowns a1, ..., an. In matrix form we have


a1

a2

...

an

 =


1 1 · · · 1

ρ1 ρ2 · · · ρn
...

...
. . .

...

ρn−1
1 ρn−1

2 · · · ρn−1
n



−1
1

0
...

0

⇔ a = P−1e,

where P = P(ρ1, . . . , ρn) is a Vandermonde matrix, a′ = (a1, a2, . . . , an) and e′ =

(1, 0, . . . , 0). The determinant of P is given by

Det P =
∏

1≤i<j≤n

(ρj − ρi),

and using Cramér’s rule we get expressions for the coefficients

ak =
(−1)k−1(

∏n
i=1, i 6=k ρi)(

∏
1≤i<j≤n, i 6=k, j 6=k(ρj − ρi))∏

1≤i<j≤n(ρj − ρi)

=
(−1)k−1(

∏n
i=1, i 6=k ρi)

(
∏k−1

i=1 (ρk − ρi))(
∏n

j=k+1(ρj − ρk))
=

n∏
i=1,i 6=k

ρi
(ρi − ρk)

.
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Remarks:

1. Note that although some of the roots are complex, expression (3.2.7) is always a real

number.

2. If we considered the net profit condition from the primal model, cE(Wi) > E(Xi),

recall that ρn = 0 as explained at the end of Section 2.3, then we would have an = 1

and all the remaining coefficients ak = 0, k = 1, ..., n− 1, therefore giving ψ(u) = 1 as

expected.

Example 1 For n = 1 (exponential or Erlang(1) case): Gerber (1979) found that ψ(u) =

e−ρ1u, where ρ1 is the unique positive root of the fundamental Lundberg’s equation (3.2.1).

For n = 2:

ψ(u) =
ρ2

ρ2 − ρ1

e−ρ1u − ρ1

ρ2 − ρ1

e−ρ2u,

where ρ1, ρ2 > 0 are real and solutions of
(

1−
( c
λ

)
s
)2

= p̂(s).

For n = 3:

ψ(u) =
ρ2ρ3

(ρ3 − ρ1)(ρ2 − ρ1)
e−ρ1u − ρ1ρ3

(ρ3 − ρ2)(ρ2 − ρ1)
e−ρ2u +

ρ1ρ2

(ρ3 − ρ1)(ρ3 − ρ2)
e−ρ3u,

where ρ1, ρ2, ρ3 are solutions of
(
1−

(
c
λ

)
s
)3

= p̂(s); one root is real and the other two are

complex conjugates.

3.2.2 The Laplace transform of the time to ruin

For the Erlang(n) case, the Laplace transform of the time to ruin satisfies the renewal

equation

ψ(u, δ) = (1−Kn (t0)) e
−δt0 +

∫ t0

0
kn (t) e

−δt
∫ ∞

0
p(x)ψ(u− ct+ x, δ)dxdt. (3.2.9)

with t0 = u/c. The following theorem shows an integro–differential equation for ψ(u, δ).
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Theorem 3 In the Erlang(n) dual risk model the Laplace transform of the time of ruin

satisfies the integro–differential equation

((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

ψ(u, δ) =

∫ ∞
0

p(x)ψ(u+ x, δ)dx, (3.2.10)

with boundary conditions

ψ(0, δ) = 1,
di

dui
ψ(u, δ)

∣∣∣∣
u=0

= (−1)i
(
δ

c

)i
, i = 1, . . . , n− 1. (3.2.11)

Proof. Using a similar procedure to that of Theorem 1 we take successive derivatives of

(3.2.9). Then, changing variable the renewal equation can be rewritten in the form

ψ(u, δ) =
(

1−Kn

(u
c

))
e−δ(

u
c

) +
1

c

∫ u

0

kn

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds,

where Wδ(s) =
∫∞

0
ψ(s+ x, δ)p(x)dx.

After applying the operator
((

1 + δ
λ

)
I +

(
c
λ

)
D
)

to the Laplace transform we get

((
1 +

δ

λ

)
I +

( c
λ

)
D
)
ψ(u, δ) =

(
1−Kn−1

(u
c

))
e−δ(

u
c

)

+
1

c

∫ u

0

kn−1

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds.

Similarly, following an inductive argument, we show that

((
1 +

δ

λ

)
I +

( c
λ

)
D
)i
ψ(u, δ) =

(
1−Kn−i

(u
c

))
e−δ(

u
c

)

+
1

c

∫ u

0

kn−i

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds,

for i = 1, . . . , n− 1. In particular, we obtain

((
1 +

δ

λ

)
I +

( c
λ

)
D
)n−1

ψ(u, δ) =
(

1−K1

(u
c

))
e−δ(

u
c

)

+
1

c

∫ u

0

k1

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds.
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Applying once more the operator gives

((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

ψ(u, δ) = Wδ(u).

This proves equation (3.2.10).

For the boundary conditions, clearly ψ(0, δ) = 1. We find the remaining conditions

computing directly the derivatives of ψ(u, δ) and evaluate at u = 0,

di

dui
ψ(u, δ) =

[(
−δ
c

)i (
1−Kn

(u
c

))
− 1

ci

i∑
j=1

(
i

j

)
(−δ)i−j k(j−1)

n

(u
c

)]
e−δ(

u
c

)

+

(
1

c

)∫ u

0

[
1

ci

i∑
j=0

(
i

j

)
(−δ)i−j k(j)

n

(
u− s
c

)]
e−δ(

u−s
c

)Wδ(s)ds,

for i = 1, . . . , n− 1, so that we get diψ(u, δ)/dui|u=0 = (−δ/c)i , i = 1, . . . , n− 1.

The solution for ψ(u, δ) is given in the following theorem.

Theorem 4 The Laplace transform of the time of ruin can be written as a combination of

exponential functions

ψ(u, δ) =
n∑
k=1

[
n∏

i=1,i 6=k

(
ρi − δ

c

)
(ρi − ρk)

]
e−ρku, (3.2.12)

where ρ1, . . . , ρn are the only roots of the generalized Lundberg’s equation (3.2.2) which

have positive real parts.

Proof. We use a similar procedure as in Theorem 2 to obtain formula (3.2.12). All the

functions e−ρku, k = 1, ..., n, are particular solutions of the integro–differential equation

((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

f(u) =

∫ ∞
0

p(x)f(u+ x)dx. (3.2.13)

Since these functions are linearly independent, we can write every solution of (3.2.13) as a

linear combination of them. Therefore,

ψ(u, δ) =
n∑
i=1

aie
−ρiu,
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where ai, i = 1, ...n, are constants and solutions of the system of equations


a1

a2

...

an

 =


1 1 · · · 1

ρ1 ρ2 · · · ρn
...

...
. . .

...

ρn−1
1 ρn−1

2 · · · ρn−1
n



−1
1

δ
c
...(

δ
c

)n−1

⇔ a = P−1Λ,

in matrix form, where P = P(ρ1, . . . , ρn) is a Vandermonde matrix, a′ = (a1, a2, . . . , an) and

Λ′ = (1, δ/c, . . . , (δ/c)n−1).

Finally, we get expressions for the coefficients

ak =
(−1)k−1(

∏n
i=1, i 6=k(ρi −

δ
c
))(
∏

1≤i<j≤n, i 6=k, j 6=k(ρj − ρi))∏
1≤i<j≤n(ρj − ρi)

=
(−1)k−1(

∏n
i=1, i 6=k(ρi −

δ
c
))

(
∏k−1

i=1 (ρk − ρi))(
∏n

j=k+1(ρj − ρk))
=

n∏
i=1,i 6=k

(
ρi − δ

c

)
(ρi − ρk)

.

We note that δ/c is not a root of equation (3.2.2). Hence, we get the result.

Remarks:

1. The Laplace transform (3.2.12) shows an interesting form, it corresponds to Formula

(2.12) found by Li (2008b), concerning the primal model and applied for the first hitting

time that the surplus risk process, starting from zero, upcrosses a level u > 0. This

result enhances the duality of the two models as explained by Afonso et al. (2013) who

worked the compound Poisson, or Erlang(1), model. We mean, the first hitting time in

the primal model corresponds to the ruin time in the dual model. It is interesting that

the duality features shown for the classical Erlang(1) can be extended [see beginning of

Section 3 of Afonso et al. (2013)]. Note that the net profit conditions in the two models

are reversed. We refer to the explanations for the Lundberg’s equations in Section 2.3.

Formulae (3.2.12) above and (2.12) from Li (2008b) show the same appearance but

parameter c have different admissible values.

2. Formula (3.2.7) is a limiting case, as δ → 0+, of (3.2.12). We couldn’t transpose directly

to our model Formula (2.12) of Li (2008b) derived for the primal model because its
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limit as δ → 0+ would lead to a ruin probability of one. This is due to the reversed

loading condition. The first hitting time in the primal model is a proper random

variable whereas the time to ruin in the dual model is a defective one.

Example 2 For n = 1, the exponential case, Ng (2009) found that ψ(u, δ) = e−ρ1u, where

ρ1 is the unique positive real solution of 1 + δ/λ− cs/λ = p̂(s).

For n = 2:

ψ(u, δ) =
ρ2 − δ

c

ρ2 − ρ1

e−ρ1u −
ρ1 − δ

c

ρ2 − ρ1

e−ρ2u,

where ρ1, ρ2 > 0 are real, solutions of (1 + δ/λ− cs/λ)2 = p̂(s). The above formula corre-

sponds to expression (2.1) of Dickson and Li (2013), for the Laplace transform of the first

hitting time in the primal model.

For n = 3:

ψ(u, δ) =
(ρ2 − δ

c )(ρ3 − δ
c )

(ρ3 − ρ1)(ρ2 − ρ1)
e−ρ1u −

(ρ1 − δ
c )(ρ3 − δ

c )

(ρ3 − ρ2)(ρ2 − ρ1)
e−ρ2u +

(ρ1 − δ
c )(ρ2 − δ

c )

(ρ3 − ρ1)(ρ3 − ρ2)
e−ρ3u,

where ρ1, ρ2, ρ3 are solutions of (1 + δ/λ− cs/λ)3 = p̂(s). One root is real and positive, the

other two are complex conjugates.

3.3 The Phase–Type case

In the dual risk model with Phase–Type distributed gain inter–occurrence times, the gener-

alized Lundberg’s equation is given by (2.3.4). We recall this expression

p̂(s) =
1

k̂(δ − cs)
, or k̂(δ − cs)p̂(s) = 1,

noting that the Laplace transform of the probability density k has the form

k̂(δ − cs) = α((δ − cs)I−B)−1bT, (3.3.1)

Thus, in order to solve equations (2.3.4) numerically we need to determine a rational

expression for the Laplace transform k̂(δ− cs). The main difficulty is to compute the inverse

matrix ((δ− cs)I−B)−1. Before we go further we give some definitions from linear algebra.
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Definition 3.3.1 Let A = (ai,j)
n
i,j=1 be a n × n matrix. Define, for the given subindexes

1 ≤ i1 < i2 < . . . < ik ≤ n,

Mi1,i2...ik(A) = det


ai1,i1 ai1,i2 . . . ai1,ik

ai2,i1 ai2,i2 . . . ai2,ik
...

...
. . .

...

aik,i1 aik,i2 . . . aik,ik

, 1 ≤ k ≤ n.

These are the minors k × k of the matrix A obtained by deleting the row and the column

that meet in aii for i /∈ {i1, i2, . . . , ik}. Then

trk(A) =
∑

1≤i1<i2<...<ik≤n

Mi1,i2...ik(A).

We call trk(A) the k-generalized trace of the matrix A. In particular, tr1(A) = tr(A) =

trace(A), and trn(A) = det(A).

Using this definition enables us to express the characteristic polynomial of the matrix B

as

det(sI−B) =
n∑
i=0

(−1)n−itrn−i(B)si.

Moreover, the inverse matrix (sI−B)−1 can be obtained as follows:

Theorem 3.3.1 The inverse matrix (sI−B)−1 has the expression

(sI−B)−1 =
N(s,B)

det(sI−B)
,

where the matrix N(s,B) takes the form

N(s,B) =
n−1∑
i=0

(
n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

)
si.
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Proof. We prove that (sI−B)−1(sI−B) = I or, equivalently, that

(sI−B)N(s,B) = det(sI−B)I.

If we denote by ai the n× n matrix given by

ai =
n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j,

then

(sI−B)N(s,B) = (sI−B)
n−1∑
i=0

(
n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

)
si

= (sI−B)
n−1∑
i=0

ais
i

= an−1s
n +

n−1∑
i=1

(ai−1 − aiB)si − a0B.

Now we can easily verify that an−1 = I. Since

det(BI−B) =
n∑
j=0

(−1)jtrj(B)Bn−j = 0,

we get −a0B = (−1)ndet(B)I, and

ai−1 − aiB =
n−i∑
j=0

(−1)jtrj(B)Bn−i−j −

(
n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

)
B

= (−1)n−itrn−i(B)I.

Therefore,

(sI−B)N(s,B) = Isn +
n−1∑
i=1

((−1)n−itrn−i(B)I)si + (−1)ndet(B)I

=
n∑
i=0

((−1)n−itrn−i(B)I)si = det(sI−B)I.
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This completes the proof.

From Theorem 3.1 and (3.3.1) we get the rational expression for the Lundberg’s equations.

The generalized Lundberg’s equation for the Phase–Type(n) dual risk model becomes

det((δ − cs)I−B)

αN(δ − cs,B)bT
= p̂(s), (3.3.2)

and we obtain the corresponding fundamental Lundberg’s equation by setting δ = 0 in

equation (3.3.2)
det((−cs)I−B)

αN(−cs,B)bT
= p̂(s). (3.3.3)

Although the new expressions for the Lundberg’s equations found in (3.3.2) and (3.3.3)

are already in rational form, they are not adequate for our purposes. What we need are

expressions that show a natural connection with other parts of this manuscript. The reason

for this will be clear in Section 3.3.1 when we will calculate quantities like the Laplace

transform of the time of ruin and the ruin probability using integro–differential equations. It

turns out that these integro–differential equations can be expressed using polynomial forms,

denoted as Bδ(·) and qδ(·), and these polynomial forms can be used instead to rewrite the

generalized and fundamental Lundberg’s equations (3.3.2) and (3.3.3). This is shown next.

The generalized Lundberg’s equation can be written as

Bδ(−s) = qδ(−s)p̂(s), s ∈ C, (3.3.4)

where Bδ and qδ are polynomials in s given by

Bδ(s) =
det(B− δI− csI)

det(B)
=

n∑
i=0

Bi

(
s+

δ

c

)i

and

qδ(s) =
n−1∑
j=0

B̃j

(
s+

δ

c

)j
.

The equivalent fundamental Lundberg’s equation (for δ = 0) is

B(−s) = q(−s)p̂(s), s ∈ C. (3.3.5)
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The coefficients Bi and B̃j of the polynomials B and q, respectively, are given by the following

expressions

Bi = (−c)i trn−i(B)

det(B)
, B̃j =

n∑
i=j+1

Bi

(
1

c

)i−j
k(i−1−j)(0).

Theorem 3.3.2 Expressions (3.3.2) and (3.3.4) are equivalent forms of the generalized

Lundberg’s equation. Corresponding expressions (3.3.3) and (3.3.5) represent the funda-

mental Lundberg’s equation.

Proof. The proof is simple and follows by rearranging and comparing the coefficients of

the above mentioned versions of the Lundberg’s equations. Namely, we have to prove that

det((δ − cs)I−B)

αN(δ − cs,B)bT
=
Bδ(−s)
qδ(−s)

. (3.3.6)

From the left-hand side we have

Bδ(−s) =
det(B− δI + csI)

det(B)
=

(−1)n

det(B)
det((δ − cs)I−B),

and from the right-hand side:

qδ(−s) =
n−1∑
j=0

B̃j

(
δ

c
− s
)j

=
n−1∑
j=0

n∑
i=j+1

Bi

(
1

c

)i−j
k(i−1−j)(0)

(
δ

c
− s
)j

=
n−1∑
j=0

n∑
i=j+1

(−1)ici
trn−i(B)

det(B)

(
1

c

)i
αBi−1−jbTcj

(
δ

c
− s
)j

= α
n−1∑
j=0

n−j−1∑
i=0

(−1)n−i
tri(B)

det(B)
Bn−1−i−j (δ − cs)j bT

=
(−1)n

det(B)
αN(δ − cs,B)bT .

This proves (3.3.6).

Remark 3.3.1 Alternatively, we can write

Bδ(s) =
det(B− δI− csI)

det(B)
=

n∑
i=0

Bi,δ s
i, (3.3.7)
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qδ(s) =
n−1∑
j=0

B̃j,δ s
j, (3.3.8)

where the coefficients Bi,δ and B̃j,δ are given by

Bi,δ = (−c)i trn−i(B− δI)

det(B)
,

B̃j,δ =

n−1−j∑
i=0

B1+i+j,δ

(
i∑
l=0

(
i

l

)
(−δ)lk(i−l)(0)

)(
1

c

)1+i

.

These forms are going to be used in the following section.

3.3.1 The time to ruin and its Laplace transform

In this section we study the ruin probability and the Laplace transform of the time to ruin

in the Phase–Type(n) dual risk model.

Conditioning on the time and the amount of the first gain, we find that the Laplace

transform of the time to ruin for the Phase–Type(n) dual risk model satisfies the renewal

equation

ψ(u, δ) =
(

1−K
(u
c

))
e−δ(

u
c ) +

∫ u
c

0

k(t)e−δt
∫ ∞

0

p(x)ψ(u− ct+ x, δ)dx dt.

Note that the above equation is valid for any renewal model with density k and distribution

K. Changing variables s = u− ct, we get

ψ(u, δ) =
(

1−K
(u
c

))
e−δ(

u
c ) +

1

c

∫ u

0

k

(
u− s
c

)
e−δ(

u−s
c )Wψ(s, δ) ds, (3.3.9)

where Wψ(s, δ) =
∫∞

0
p(x)ψ(s+ x, δ)dx.

Before we continue further, we state the following lemma, which will be useful in a sub-

sequent theorem.
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Lemma 3.3.1 Let Bδ, qδ be the polynomials described in (3.3.4) for the generalized Lund-

berg’s equation, and consider the following differential operators

Bδ(D) =
n∑
i=0

Bi

(
D +

δ

c

)i
=

n∑
i=0

Bi,δ Di, qδ(D) =
n−1∑
j=0

B̃j

(
D +

δ

c

)j
=

n−1∑
j=0

B̃j,δ Dj.

(3.3.10)

for D = d
du

. Then the following properties hold

Bδ(D)

[
k

(
u− s
c

)
e−δ(

u−s
c )
]

= 0,

Bδ(D)
[(

1−K
(u
c

))
e−δ(

u
c )
]

= 0.

Proof.

Bδ(D)

[
k

(
u− s
c

)
e−δ(

u−s
c )
]

=
n∑
i=0

Bi,δDi[αeB(u−s
c

)bTe−δ(
u−s
c )I]

= α

[
n∑
i=0

Bi,δDi(e(B−δI)(u−s
c

))

]
bT

= α

[
n∑
i=0

Bi,δ

(
1

c

)i
(B− δI)ie(B−δI)(u−s

c
)

]
bT

= α

[
Bδ

(
1

c
(B− δI)

)]
e(B−δI)(u−s

c
)bT

= α

[
det(B− δI− cI

(
1
c
(B− δI)

)
)

det(B)

]
e(B−δI)(u−s

c
)bT = 0,

Analogously, we can see Bδ(D)
[(

1−K
(
u
c

))
e−δ(

u
c )
]

= 0.

We can obtain a formula for the Laplace transform of the time of ruin ψ(u, δ) solving the

following integro–differential equation with boundary conditions:

Theorem 3.3.3 The Laplace transform of the time of ruin ψ(u, δ) satisfies the integro–

differential equation

Bδ(D)ψ(u, δ) = qδ(D)Wψ(u, δ), (3.3.11)
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The boundary conditions of (3.3.11) are given by

ψ(0, δ) = 1,

di

dui
ψ(u, δ)

∣∣∣∣
u=0

=

(
−δ
c

)i
−

i−1∑
j=0

1

ci

(
i

j

)
(−δ)jk(i−1−j)(0) (3.3.12)

+
i−1∑
j=0

(
i−1−j∑
l=0

1

ci−j

(
i− 1− j

l

)
(−δ)lk(i−1−j−l)(0)

)
W

(j)
ψ (0, δ),

i = 1, . . . , n− 1.

Proof. We proceed taking successive derivatives of ψ(u, δ) using the renewal equation

(3.3.9). We want to prove the equation Bδ(D)ψ(u, δ) = qδ(D)Wψ(u, δ). The j-th derivative

of ψ(u, δ) with respect to u is given by

dj

duj
ψ(u, δ) =

[(
−δ
c

)j (
1−K

(u
c

))
−

j−1∑
i=0

1

cj

(
j

i

)
(−δ)ik(j−1−i)

(u
c

)]
e−δ(

u
c )

+

j−1∑
i=0

(
j−1−i∑
l=0

(
1

c

)j−i(
j − 1− i

l

)
(−δ)lk(j−1−i−l)(0)

)
W

(i)
ψ (u, δ)

+
1

c

∫ u

0

[
j∑
i=0

1

cj

(
j

i

)
(−δ)ik(j−i)

(
u− s
c

)]
e−δ(

u−s
c )Wψ(s, δ)ds,

for j = 1, . . . , n− 1. Hence, we obtain

dj

duj
ψ(u, δ)

∣∣∣∣
u=0

=

(
−δ
c

)j
−

j−1∑
i=0

1

cj

(
j

i

)
(−δ)ik(j−1−i) (0)

+

j−1∑
i=0

(
j−1−i∑
l=0

(
1

c

)j−i(
j − 1− i

l

)
(−δ)lk(j−1−i−l)(0)

)
W

(i)
ψ (0, δ),

for j = 1, . . . , n− 1.
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Now we apply the differential operator Bδ(D) to ψ(u, δ)

Bδ(D)ψ(u, δ) = Bδ(D)
[(

1−K
(u
c

))
e−δ(

u
c )
]

︸ ︷︷ ︸
=0

+Bδ(D)
(
1

c

∫ u

0
k

(
u− s
c

)
e−δ(

u−s
c )Wψ(s, δ) ds

)

=
n∑
j=0

Bj,δDj
(
1

c

∫ u

0
k

(
u− s
c

)
e−δ(

u−s
c )Wψ(s, δ)ds

)

=
n∑
j=0

Bj,δ

[
j−1∑
i=0

(
j−1−i∑
l=0

(
1

c

)j−i(j − 1− i
l

)
(−δ)lk(j−1−i−l)(0)

)
W

(i)
ψ (u, δ)

+
1

c

∫ u

0

(
j∑
i=0

1

cj

(
j

i

)
(−δ)ik(j−i)

(
u− s
c

))
e−δ(

u−s
c )Wψ(s, δ)ds

]

=

n∑
j=1

Bj,δ

[
j−1∑
i=0

(
i∑
l=0

(
1

c

)i+1(i
l

)
(−δ)lk(i−l)(0)

)
W

(j−1−i)
ψ (u, δ)

]

+
1

c

∫ u

0
Bδ(D)

[
k

(
u− s
c

)
e−δ(

u−s
c )
]

︸ ︷︷ ︸
=0

Wψ(s, δ)ds

=
n−1∑
j=0

n−1−j∑
i=0

B1+i+j,δ

(
i∑
l=0

(
1

c

)i+1(i
l

)
(−δ)lk(i−l)(0)

)
︸ ︷︷ ︸

=B̃j,δ

W
(j)
ψ (u, δ)

=
n−1∑
j=0

B̃j,δW
(j)
ψ (u, δ) = qδ(D)Wψ(u, δ).

This completes the proof.

For the Phase–Type(n) dual risk model, we have found that the Laplace transform of the

time of ruin can be written as follows

Theorem 3.3.4

ψ(u, δ) =
L∑
i=1

βi∑
j=1

aij,δu
j−1e−ρiu, (3.3.13)

where ρ1, . . . , ρL are the only roots of the generalized Lundberg’s equation which have

positive real parts, and ρi has multiplicity βi, with
∑L

i=1 βi = n.

Proof. It is very simple to verify that if ρ is a single root of the generalized Lundberg’s

equation Bδ(−s) = qδ(−s)p̂(s) then the function f(u) = e−ρu satisfies the integro–differential

equation Bδ(D)f(u) = qδ(D)Wf (u), where Wf (u) =
∫∞

0
p(x)f(u + x)dx. Moreover, we can

show that if ρ is a root of the generalized Lundberg’s equation with multiplicity β ≥ 1 then
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the functions f(u) = uj−1e−ρu, j = 1, . . . , β are all solutions of the same integro–differential

equation. We will prove that Bδ(D)f(u) = qδ(D)Wf (u). We have

f (k)(u) =

j−1∑
l=0

(
l−1∏
m=0

(k −m)

)
(−ρ)k−l

(
j − 1

l

)
uj−1−le−ρu.

Then from the left-hand side

Bδ(D)f(u) =
n∑
k=0

Bk,δf
(k)(u)

=
n∑
k=0

Bk,δ

j−1∑
l=0

(
l−1∏
m=0

(k −m)

)
(−ρ)k−l

(
j − 1

l

)
uj−1−le−ρu

=

j−1∑
l=0

(
n∑
k=l

Bk,δ

(
l−1∏
m=0

(k −m)

)
(−ρ)k−l

)(
j − 1

l

)
uj−1−le−ρu

=

j−1∑
l=0

B
(l)
δ (−ρ)

(
j − 1

l

)
uj−1−le−ρu. (3.3.14)

From the right-hand side, we have

Wf (u) =

∫ ∞
0

f(u+ x)p(x)dx =

∫ ∞
0

(u+ x)j−1e−ρ(u+x)p(x)dx

=

∫ ∞
0

j−1∑
i=0

(
j − 1

i

)
uj−1−ixie−ρxe−ρup(x)dx

=

j−1∑
i=0

(
j − 1

i

)
uj−1−ie−ρu

∫ ∞
0

xie−ρxp(x)dx

=

j−1∑
i=0

(
j − 1

i

)
uj−1−ie−ρu(−1)ip̂(i)(ρ).
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Therefore,

qδ(D)Wf (u) =
n−1∑
k=0

B̃k,δW
(k)
f (u)

=

j−1∑
i=0

(
j − 1

i

)
(−1)ip̂(i)(ρ)

n−1∑
k=0

B̃k,δ
d

dk
(uj−1−ie−ρu)

=

j−1∑
i=0

(
j − 1

i

)
(−1)ip̂(i)(ρ)

j−1−i∑
l=0

q
(l)
δ (−ρ)

(
j − 1− i

l

)
uj−1−i−le−ρu

=

j−1∑
i=0

(
j − 1

i

)
(−1)ip̂(i)(ρ)

j−1∑
l=i

q
(l−i)
δ (−ρ)

(
j − 1− i
l − i

)
uj−1−le−ρu

=

j−1∑
l=0

[
l∑

i=0

(−1)i
(
l

i

)
q

(l−i)
δ (−ρ)p̂(i)(ρ)

](
j − 1

l

)
uj−1−le−ρu. (3.3.15)

Since the root ρ has multiplicity β ≥ 1, it satisfies the equations

B
(l)
δ (−ρ) =

l∑
i=0

(−1)i
(
l

i

)
q

(l−i)
δ (−ρ)p̂(i)(ρ), l = 0, 1, . . . β − 1, (3.3.16)

which implies that expressions (3.3.14) and (3.3.15) are identical, thus proving our statement.

Since the functions uj−1e−ρiu, i = 1, . . . , L; j = 1, . . . , βi are linearly independent, any

solution of Bδ(D)f(u) = qδ(D)Wf (u) can be expressed in the following way

f(u) =
L∑
i=1

βi∑
j=1

biju
j−1e−ρiu, (3.3.17)

for some constants bij.

Since the Laplace transform of the time of ruin satisfies an integro–differential equation of

the same form, Bδ(D)ψ(u, δ) = qδ(D)Wψ(u, δ), it can be written as

ψ(u, δ) =
L∑
i=1

βi∑
j=1

aij,δu
j−1e−ρiu.

Using the boundary conditions (3.3.12) we can determine the constants aij,δ that correspond
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to ψ(u, δ) in the following way

ψ(0, δ) =
L∑
i=1

ai1,δ = 1,

dm

dum
ψ(u, δ)

∣∣∣∣
u=0

=
dm

dum

L∑
i=1

βi∑
j=1

aij,δu
j−1e−ρiu

∣∣∣∣∣
u=0(

−δ
c

)m
−

m−1∑
j=0

1

cm

(
m

j

)
(−δ)jk(m−1−j)(0)

+
m−1∑
j=0

(
m−1−j∑
l=0

1

cm−j

(
m− 1− j

l

)
(−δ)lk(m−1−j−l)(0)

)
W

(j)
ψ (0, δ),

m = 1, . . . , n− 1.

where Wψ(u, δ) =
∫∞

0
p(x)

[∑L
i=1

∑βi
j=1 aij,δ(u+ x) j−1e−ρi(u+x)

]
dx.

Regardless of multiplicities, this gives a system of n equations on the n unknowns constants

aij,δ, i = 1, . . . , L; j = 1, . . . , βi, that can be solved using standard linear algebra methods.

Remark 3.3.2 If all the roots with positive real parts of the generalized Lundberg’s equa-

tion are single (multiplicity 1), then we write the Laplace transform of the time of ruin in

the following way

ψ(u, δ) =
n∑
i=1

ai,δe
−ρiu,

and the constants ai,δ can be found using the boundary conditions (3.3.12), which is equiv-

alent to solving the following system of n equations on the n unknowns ai,δ:

n∑
i=1

ai,δ = 1,

and

n∑
i=1

ai,δ

[
(−ρi)j − p̂(ρi)

j−1∑
m=0

(
j−1−m∑
l=0

1

cj−m

(
j − 1−m

l

)
(−δ)lk(j−1−m−l)(0)

)
(−ρi)m

]

=

(
−δ
c

)j
−

j−1∑
m=0

1

cj

(
j

m

)
(−δ)mk(j−1−m)(0), j = 1, . . . , n.
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Example 3 For n = 2, the Laplace transform of the time of ruin in the Phase–Type(2)

model has the expression

ψ(u, δ) =
ρ2 − δ

c
+ 1

c
αbT(p̂(ρ2)− 1)

ρ2 − ρ1 + 1
c
αbT(p̂(ρ2)− p̂(ρ1))

e−ρ1u

−
ρ1 − δ

c
+ 1

c
αbT(p̂(ρ1)− 1)

ρ2 − ρ1 + 1
c
αbT(p̂(ρ2)− p̂(ρ1))

e−ρ2u,

where ρ1, ρ2 > 0 are real and solutions of Bδ(−s) = qδ(−s)p̂(s).

3.3.2 The ruin probability

The ruin probability in the dual risk model with exponential inter–arrival times (Ph(1),

k(t) = λe−λt) satisfies the following renewal equation

ψ(u) = e−λ(u
c

) +

∫ u
c

0

λe−λt
∫ ∞

0

p(x)ψ(u− ct+ x)dx dt,

where u/c is the time of ruin if no gain arrives. See e.g. Afonso et al.(2013). Gerber (1979)

found that ψ(u) = e−ρu, where ρ is the unique positive root of the fundamental Lundberg’s

equation (n = 1).

For the Ph(n) dual risk model the renewal equation becomes

ψ(u) = 1−K
(u
c

)
+

∫ u
c

0

k(t)

∫ ∞
0

p(x)ψ(u− ct+ x)dx dt. (3.3.18)

The corresponding integro–differential equation is given in the following theorem:

Corollary 3.3.1 The ruin probability ψ(u) satisfies the following integro–differential equa-

tion

B(D)ψ(u) = q(D)W (u), (3.3.19)

where W (u) =
∫∞

0
p(x)ψ(u + x)dx and B, q are the same polynomials described before for

the fundamental Lundberg’s equation (3.3.5). The operator D is the differentiation with

respect to u, as before.
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The boundary conditions of (3.3.19) are given by

ψ(0) = 1,

dj

duj
ψ(u)

∣∣∣∣
u=0

= − 1

cj
k(j−1)(0) +

j−1∑
i=0

1

ci+1
k(i)(0)W (j−1−i)(0), (3.3.20)

j = 1, . . . , n− 1.

Proof. This is a special case of Theorem 3.3.3 for δ → 0.

For the Phase–Type(n) dual risk model, we found that the ruin probability can be written

as follows

Corollary 3.3.2 The ultimate ruin probability ψ(u) can be written in the general form

ψ(u) =
L∑
i=1

βi∑
j=1

aiju
j−1e−ρiu,

where ρ1, . . . , ρL are the only roots of the Fundamental Lundberg’s equation which have

positive real parts, and ρi has multiplicity βi, with
∑L

i=1 βi = n.

Proof. This is a special case of Theorem 3.3.4 for δ → 0.

Example 4 For n = 2, the ruin probability in the Phase–Type(2) model has the expression

ψ(u) =
ρ2 + 1

c
αbT(p̂(ρ2)− 1)

ρ2 − ρ1 + 1
c
αbT(p̂(ρ2)− p̂(ρ1))

e−ρ1u

−
ρ1 + 1

c
αbT(p̂(ρ1)− 1)

ρ2 − ρ1 + 1
c
αbT(p̂(ρ2)− p̂(ρ1))

e−ρ2u,

where ρ1, ρ2 > 0 are real and solutions of B(−s) = q(−s)p̂(s).

3.4 Final remarks

As we have mentioned before, one of the fundamental purposes in insurance mathematics

is to provide adequate methods to solve the problems that may appear in the actuarial

practice. Throughout this chapter we have considered the calculation of ruin probabilities
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and the Laplace transform of the time to ruin in the case when the gain inter–occurrence

times follow distributions belonging to the matrix exponential family, like the Phase–Type

and the Erlang.

The presented methods can be extended for more general distributions. We will continue

our work in the next chapter on the expected discounted dividends.
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Chapter 4

Expected discounted dividends

4.1 Introduction

In this chapter we study the expected discounted dividends for a dual risk model with an

upper barrier level. The distribution of the gain inter–occurrence times is matrix exponential.

However, for simplicity and elegance of the formulas we concentrate on the Phase–Type and

the Erlang distributions.

In Section 4.2 we devote attention to the Erlang case, where we study the expected

discounted dividends and higher moments.

In Section 4.3 we work with the Phase–Type distribution. We show formulas for the

expected discounted dividends and results on optimal dividend barriers.

In both Sections 4.2 and 4.3 we make the additional assumption that the claim amounts

follow a Phase–Type distribution.

4.2 The Erlang case

From this section on we consider the existence of an upper dividend barrier b so that when

the surplus upcrosses b the excess is paid as dividend. From that arrival/payment instant

the process restarts from level b and that repeats whenever it occurs in the future, until ruin.
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4.2.1 An integro-differential equation

In the Poisson case, exponentially distributed interjumps arrivals, see e.g. Afonso et al.

(2013), the expected present value of the discounted dividends, V (u, b), satisfies the renewal

equation, for u ≤ b,

V (u, b) =

∫ u
c

0

λe−(λ+δ)t

{∫ b−u+ct

0

V (u− ct+ y, b)p(y)dy

+

∫ ∞
b−u+ct

[y + u− ct− b+ V (b, b)] p(y)dy

}
dt

Note that V (0, b) = 0, since for u = 0 ruin immediately occurs, and that

V (u, b) = u− b+ V (b, b), for u > b. (4.2.1)

Changing variable, s = u− ct, and differentiating with respect to u we get

((
1 +

δ

λ

)
I +

( c
λ

)
D
)
V (u, b) = Wδ(u, b),

where

Wδ(u, b) =

∫ b−u

0

V (u+ y, b)p(y)dy +

∫ ∞
b−u

(y + u− b+ V (b, b))p(y)dy. (4.2.2)

In the Erlang(n) model (n ≥ 2), the corresponding renewal equation is given by

V (u, b) =

∫ u
c

0

kn(t)e−δt
[∫ b−u+ct

0

V (u− ct+ y, b)p(y)dy+∫ ∞
b−u+ct

(y + u− ct− b+ V (b, b))p(y)dy

]
dt.

After a similar variable change, we can write it in the following form

V (u, b) =
1

c

∫ u

0

kn

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s, b)ds. (4.2.3)
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The following theorem shows the final form of this equation.

Theorem 4.2.1 V (u, b) satisfies the integro–differential equation

((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

V (u, b) = Wδ(u, b), (4.2.4)

where Wδ(u, b) is given by (4.2.2), with boundary conditions

di

dui
V (u, b)

∣∣∣∣
u=0

= 0, i = 0, . . . , n− 1. (4.2.5)

Proof. The proof follows exactly the method applied previously, taking successive deriva-

tives of (4.2.3).

4.2.2 The annihilator of p(x− u)

Because of condition (4.2.1), we can not write the solutions of (4.2.4) as a linear combination

of n exponential functions as we did before in the cases of the ruin probability and the

Laplace transform of the time of ruin. Otherwise, conditions given by (4.2.5) would led

to V (u, b) ≡ 0, which is a contradiction. We will need instead more than n exponential

functions; the exact number needed will depend on the nature of the distribution of the

single gains, P (x). However, we can apply the annihilator approach known from the theory

of ordinary differential equations to find the appropriate solutions, e.g. see Zill (2012), Section

4.5.

We can rewrite Wδ(u, b) in (4.2.2) as

Wδ(u, b) =

∫ b

u

V (x, b)p(x− u)dx+

∫ ∞
b

(x− b+ V (b, b))p(x− u)dx

=

∫ b

u

V (x, b)p(x− u)dx+

∫ ∞
b

Ṽ (x, b)p(x− u)dx, (4.2.6)

with Ṽ (x, b) = x − b + V (b, b). The idea is to find a linear differential operator that will

annihilate p(x − u) (where the variable is u), so that when we apply this operator to the

integro–differential equation (4.2.4) we obtain a linear homogeneous differential equation of

a higher degree (and the integral term Wδ(u, b) vanish).
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From this moment onwards we work the particular case when the single gains follow a

distribution of the Phase-Type family, PH(m). Our notations and definitions are presented

as usually done in this case. Denote by B = (bij)1≤i,j≤m the matrix of the transition rates

between the transient states, let α′ = (α1, α2, . . . , αm) be the vector of the initial probabilities,

η′ = (η1, η2, . . . , ηm) the vector of the exit rates to the absorbing state, and the 1×m vector

1′ = (1, 1, . . . , 1). We have that η = −B1. Let Im denote the identity matrix of order m. It

is well known for this family that the probability and distribution functions are denoted as

p(x) = α′eBxη and that P (x) = 1 − α′eBx1, respectively. Its Laplace transform is given by

p̂(s) = α′ (sIm −B)−1 η. Let’s consider the following theorem:

Theorem 4.2.2 One annihilator of degree m for p(x− u) is qB(−D), where D = d
du

denote

differentiation with respect to u and qB(y) = Det(B− yIm) is the characteristic polynomial

of the matrix B.

Proof. The proof is based on the Cayley–Hamilton theorem of linear algebra, which states

that every square matrix satisfies its own characteristic equation [see e.g. Lang (2010)].

Example 4.2.1 When we consider the exponential(β) distribution for the individual gain

size, we have that p(x) = βe−βx, then B = (−β), α′ = (1), η′ = (β) and 1′ = (1). Hence,

qB(y) = Det(B− yI1) = −β − y and qB(−D) =
d

du
− β.

It is easy to check that
(
d
du
− β

)
p(x− u) = 0.

For a more general case when the individual gain size follows an Erlang(m,β) distribution,

we have that p(x) = βmxm−1e−βx/(m− 1)!, so that

B =



−β β · · · 0

0 −β · · · 0
...

...
. . .

...

0 0 · · · −β

0 0 · · · 0

0

0
...

β

−β


,
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α′ = (1, 0, . . . , 0) and η′ = (0, 0, . . . , 0, β). Then

qB(y) = Det(B− yIm) = (−β − y)m and qB(−D) =

(
d

du
− β

)m
.

It is easily verified that
(
d
du
− β

)m
p(x− u) = 0.

Now, we want to apply qB(−D) to the integro–differential equation (4.2.4). We consider

the polynomial expression of qB(−D):

qB(−D) =
m∑
i=0

qi
di

dui
,

where qi, i = 0, 1, ...,m, are constants (namely q0 = Det(B), qm−1 = Trace (B), qm = 1).

Thus, we have the following theorem:

Theorem 4.2.3 After applying qB(−D) to the integro–differential equation (4.2.4) we get

a linear homogeneous differential equation of degree m+ n of the following form

0 =
n+m∑
l=0

[∑
i+k=l

qi

(
n

n− k

)(
1 +

δ

λ

)n−k ( c
λ

)k] dl

dul
V (u, b)

+
m−1∑
j=0

[
m∑

k=j+1

qkα
′(−B)k−j1

]
dj

duj
V (u, b). (4.2.7)

Proof. Since, expanding the binomial, with d0

du0
= I,

((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

V (u, b) =
n∑
k=0

(
n

n− k

)(
1 +

δ

λ

)n−k ( c
λ

)k dk

duk
V (u, b),

then from one side we have

qB(−D)

(((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

V (u, b)

)
=

n+m∑
l=0

[∑
i+k=l

qi

(
n

n− k

)(
1 +

δ

λ

)n−k ( c
λ

)k] dl

dul
V (u, b) ,
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and from the other side

qB(−D)Wδ(u, b) = qB(−D)

[∫ b

u

V (x, b)p(x− u)dx+

∫ ∞
b

Ṽ (x, b)p(x− u)dx

]
=

∫ b

u

V (x, b)qB(−D)p(x− u)dx−
m∑
k=1

qk

k−1∑
j=0

dj

duj
V (u, b)

[
dk−1−j

duk−1−j p(x− u)

∣∣∣∣
x=u

]
+

∫ ∞
b

Ṽ (x, b)qB(−D)p(x− u)dx

= −
m−1∑
j=0

[
m∑

k=j+1

qkα
′(−B)k−j1

]
dj

duj
V (u, b).

The result follows.

4.2.3 Expression for the expected discounted dividends

We look for solutions of (4.2.7) of the form

V (u, b) =
n+m∑
k=1

ake
−rku (4.2.8)

that are also solutions of (4.2.4), for some coefficients ak and some exponents rk that are up

to be determined. Solution is got replacing (4.2.8) in (4.2.4) and (4.2.6). The lefthand side

of (4.2.4) comes

n+m∑
k=1

ak

(
1 +

δ

λ
−
( c
λ

)
rk

)n
e−rku .

For the righthand side Wδ(u, b), given by (4.2.6), we have for the first integral, that

∫ b

u

V (x, b)p(x− u)dx =

∫ b

u

n+m∑
k=1

ake
−rkxα′eB(x−u)ηdx (4.2.9)

=
n+m∑
k=1

akα
′e−Bu

(∫ b

u

e(B−rkIm)xdx

)
η

=
n+m∑
k=1

akα
′ (B− rkIm)−1 eB(b−u)e−rkbη +

n+m∑
k=1

akp̂(rk)e
−rku .
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The second integral in (4.2.6) comes

∫ ∞
b

Ṽ (x, b)p(x− u)dx =

∫ ∞
b

(
x− b+

n+m∑
k=1

ake
−rkb

)
α′eB(x−u)ηdx

= α′eB(b−u)

(∫ ∞
0

xeBxdx

)
η +

n+m∑
k=1

ake
−rkbα′e−Bu

∫ ∞
b

eBxdxη

= α′eB(b−u)B−2η −
n+m∑
k=1

ake
−rkbα′eB(b−u)B−1η .

Gathering the two integrals we have, knowing that η = −B1,

α′

[
n+m∑
k=1

ake
−rkb

(
(rkIm −B)−1B + Im

)
−B−1

]
eB(b−u)1+

n+m∑
k=1

akp̂(rk)e
−rku .

Equation (4.2.4) then comes

0 =
n+m∑
k=1

ak

[(
1 +

δ

λ
−
( c
λ

)
rk

)n
− p̂(rk)

]
e−rku (4.2.10)

− α′
[
n+m∑
k=1

ake
−rkb

(
(rkIm −B)−1B + Im

)
−B−1

]
eB(b−u)1 .

Since equation (4.2.10) holds for any u ≥ 0, the coefficients of e−rku and eB(b−u) must be

zero. This means that

(
1 +

δ

λ
−
( c
λ

)
rk

)n
− p̂(rk) = 0, k = 1, . . . , n+m,

so the exponents rk, k = 1, ..., n+m, are all the m+ n roots of the generalized Lundberg’s

equation (??), where n roots have positive real parts, namely ρ1, ρ2, . . . , ρn, and m have

negative real parts, ρn+1, ρn+2, . . . , ρn+m. Also, we must have

α′

[
n+m∑
k=1

ake
−rkb

(
(rkIm −B)−1B + Im

)
−B−1

]
= 0. (4.2.11)

This gives a homogeneous system of m equations with (m+ n) unknown coefficients ak. The

remaining n equations that we need (to have a full system of (m+ n) equations with (m+ n)
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unknowns), are the n boundary conditions (4.2.5).

Example 4.2.2 Let’s assume that the time between two consecutive jumps is Erlang(2)

distributed and the individual jump amounts are Erlang(2, β) distributed. Then, the negative

loading condition is c < λ/β and the generalized Lundberg’s equation is given by

(λ+ δ − cs)2(β + s)2 = λ2β2. (4.2.12)

Let

V (u, b) =
4∑

k=1

ake
−ρku.

The exponents ρk, k = 1, ..., 4, are the four roots of (4.3.12). Say, ρ1, ρ2 are the two roots

with positive real parts and ρ3, ρ4 are those with negative real parts. From the two boundary

conditions (4.2.5) we get
4∑

k=1

ak = 0 and
4∑

k=1

akρk = 0,

and from (4.3.10) we get

4∑
k=1

ake
−ρkb ρk

ρk + β
= − 1

β
and

4∑
k=1

ake
−ρkb ρkβ

(ρk + β)2
= − 1

β
,

so we have a system of four equations in the four unknowns a1, . . . , a4. In matrix form we

have
a1

a2

a3

a4

 =


1 1 1 1

ρ1 ρ2 ρ3 ρ4

e−ρ1b ρ1
ρ1+β

e−ρ2b ρ2
ρ2+β

e−ρ3b ρ3
ρ3+β

e−ρ4b ρ4
ρ4+β

e−ρ1b ρ1β
(ρ1+β)2

e−ρ2b ρ2β
(ρ2+β)2

e−ρ3b ρ3β
(ρ3+β)2

e−ρ4b ρ4β
(ρ4+β)2



−1
0

0

− 1
β

− 1
β

 .

Now, set the values for the parameters λ = β = 1, c = 0.75, δ = 0.02. Then

ρ1 =1.831, ρ2 = 0.423, ρ3 = −0.063 and ρ4 = −1.471. After computing the coefficients

we obtain the values of the expected discounted dividends, for u ∈ {1, 3, 5, 10, 15, 20} and

b ∈ {2, 3, 6, 10, 30, 40}, that are shown in Table 4.1. This table was built similarly to Table
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7.1 of Afonso et al. (2013). Also we notice that for a fixed u the value of V (u, b) increases

until a certain value of b and then decreases. This suggests an existing optimal value. This

behavior is expected and corroborates the findings of Afonso et al. (2013) and Avanzi et al.

(2007).

u\b 2 3 6 10 30 40
1 1.049 1.301 1.856 1.781 0.526 0.279
3 3.492 4.533 6.451 6.189 1.826 0.972
5 5.492 6.533 9.374 8.993 2.653 1.412

10 10.492 11.533 14.501 13.829 4.081 2.172
15 15.492 16.533 19.501 18.829 5.647 3.006
20 20.492 21.533 24.501 23.829 7.746 4.123

Table 4.1: Expected discounted dividends

4.2.4 Higher moments of the discounted dividends

In the Erlang(n) model, the k-th ordinary moment of the discounted dividends Vk(u, b)

satisfies the renewal equation

Vk(u, b) =

∫ u
c

0

kn(t)e−δkt
[∫ b−u+ct

0

Vk(u− ct+ y, b)p(y)dy+∫ ∞
b−u+ct

Ṽk(u− ct+ y, b)p(y)dy

]
dt,

with

Ṽk(x, b) =
k∑
j=0

(
k

j

)
(x− b)jVk−j(b, b), x ≥ b.

In the above expression we have V0(u, b) ≡ 1.

Theorem 4.2.4 Vk(u, b) satisfies the integro–differential equation

((
1 +

kδ

λ

)
I +

( c
λ

)
D
)n

Vk(u, b) = Wδk(u, b), (4.2.13)
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with boundary conditions

di

dui
Vk(u, b)

∣∣∣∣
u=0

= 0, i = 0, . . . , n− 1, (4.2.14)

where

Wkδ(u, b) =

∫ b

u

Vk(x, b)p(x− u)dx+

∫ ∞
b

Ṽk(x, b)p(x− u)dx.

Proof. The proof is similar to that of Theorem 4.2.1.

Assuming that gains follow a PH(m) distribution we can apply an analogous method to

that used for V (u, b) to find and an expression for Vk(u, b) and numerical values in the same

way. We apply the same annihilator qB(−D) to the integro–differential equation (4.2.13) to

obtain

0 =
n+m∑
l=0

[∑
i+j=l

qi

(
n

n− j

)(
1 +

kδ

λ

)n−j ( c
λ

)j] dl

dul
Vk(u, b) +

m−1∑
j=0

[
m∑

i=j+1

qiα
′(−B)i−j1

]
dj

duj
Vk(u, b). (4.2.15)

Therefore, we seek for solutions of (4.2.15) of the form

Vk(u, b) =
n+m∑
l=1

ale
−rlu, (4.2.16)

that are also solutions of (4.2.13), for some coefficients al and some exponents rl that are up

to be determined.

Similarly to the case k = 1 in the previous subsection, replacing (4.3.9) in (4.2.13) we get

0 =
n+m∑
j=1

aj

[(
1 +

kδ

λ
−
( c
λ

)
rj

)n
− p̂(rj)

]
e−rju

−α′
[
n+m∑
j=1

aje
−rjb

(
(rjIm −B)−1B + Im

)
+

k∑
j=1

j

(
k

j

)
Vk−j(b, b)(−B)−j

]
eB(b−u)1.

(4.2.17)
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Since (4.2.17) holds for any u ≥ 0, we must have

(
1 +

kδ

λ
−
( c
λ

)
rj

)n
− p̂(rj) = 0, j = 1, . . . , n+m,

so the exponents rj, j = 1, ..., n + m, are all the m + n roots of the generalized Lund-

berg’s equation (??) (n roots have positive real parts and m roots with negative real parts).

Furthermore,

α′

[
n+m∑
j=1

aje
−rlb

(
(rjIm −B)−1B + Im

)
+

k∑
j=1

j

(
k

j

)
Vk−j(b, b)(−B)−j

]
= 0. (4.2.18)

Example 4.2.3 (Example 4.2.2 cont’d) We want to compute V2(u, b). The generalized

Lundberg’s equation is now given by

(λ+ kδ − cs)2(β + s)2 = λ2β2. (4.2.19)

Let

V2(u, b) =
4∑
j=1

aje
−ρju.

The exponents ρj are the four roots of (4.2.19). From (4.2.14) and (4.2.18) we get
∑4

j=1 aj =

0,
∑4

j=1 ajρj = 0 and

4∑
j=1

aje
−ρjb ρj

ρj + β
= −2V (b, b)

1

β
− 2

β2
,

4∑
l=1

aje
−ρjb ρjβ

(ρj + β)2
= −2V (b, b)

1

β
− 4

β2
.

Therefore, in matrix form,
a1

a2

a3

a4

 =


1 1 1 1

ρ1 ρ2 ρ3 ρ4

e−ρ1b ρ1
ρ1+β e−ρ2b ρ2

ρ2+β e−ρ3b ρ3
ρ3+β e−ρ4b ρ4

ρ4+β

e−ρ1b ρ1β
(ρ1+β)2

e−ρ2b ρ2β
(ρ2+β)2

e−ρ3b ρ3β
(ρ3+β)2

e−ρ4b ρ4β
(ρ4+β)2



−1
0

0

−2V (b, b) 1
β −

2
β2

−2V (b, b) 1
β −

4
β2

 .

Set λ = β = 1, c = 0.75, δ = 0.02. Then ρ1 = 1.853, ρ2 = 0.494, ρ3 = −0.107 and ρ4 = −1.467.
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Values for the standard deviation of D(u, b), for u = 1, 3, 5, 10, 15, 20 and b = 2, 3, 6, 10, 30, 40 are

shown in Table 4.2. Similar comments to those for Table 4.1 can be made. Note that the standard

deviation does not depend on u for u ≥ b.

u\b 2 3 6 10 30 40
1 2.534 3.389 4.893 4.638 1.655 0.973
3 3.419 5.058 7.335 6.906 2.667 1.621
5 3.419 5.058 7.483 6.985 2.966 1.841

10 3.419 5.058 7.452 6.864 3.531 2.277
15 3.419 5.058 7.452 6.864 4.269 2.829
20 3.419 5.058 7.452 6.864 5.093 3.496

Table 4.2: Standard deviation of the discounted dividends

4.3 The Phase–Type case

In this section we consider a barrier strategy for dividend calculation in terms of a dividend

barrier b. Although we just consider results for the expected discounted future dividends

we could extend the presented methods to higher moments. Any time the regulated surplus

upcrosses b the excess is paid as a dividend. From that payment instant the process restarts

from level b and that repeats whenever it occurs in the future until ruin.

Let {Di}∞i=1 be the sequence of the dividend payments and let D(u, b) be the aggregate

discounted dividends, at force of interest δ. Let τi be the arrival time of Di, then

D(u, b) =
∑
i

e−δτiDi.

We denote by V (u, b) = E[D(u, b)], the expected value of D(u, b).

Note that

V (u, b) = E[u− b+D(b, b)] = u− b+ V (b, b), u ≥ b. (4.3.1)

The expected discounted dividends V (u, b) satisfy the following renewal equation:
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V (u, b) =

∫ u
c

0

k(t)e−δt
[∫ b−u+ct

0

V (u− ct+ y, b)p(y)dy

+

∫ ∞
b−u+ct

Ṽ (u− ct+ y, b)p(y)dy

]
dt, for u < b,

with

Ṽ (x, b) = E[D(x, b)] = E[x− b+D(b, b)] = x− b+ V (b, b), x ≥ b.

Differentiating the renewal equation with respect to u produces an integro–differential equa-

tion for V (u, b).

Theorem 4.3.1 The expected discounted dividends V (u, b) satisfy the integro–differential

equation

Bδ(D)V (u, b) = qδ(D)W (u, b), u < b, (4.3.2)

where

W (u, b) =

∫ b

u

V (x, b)p(x− u)dx+

∫ ∞
b

Ṽ (x, b)p(x− u)dx.

and Bδ(D), qδ(D) are defined as in (3.3.10). The boundary conditions of (4.3.2) are given

by

V (0, b) = 0,

di

dui
V (u, b)

∣∣∣∣
u=0

=
i−1∑
j=0

(
i−1−j∑
l=0

1

ci−j

(
i− 1− j

l

)
(−δ)lk(i−1−j−l)(0)

)
W (j)(0, b),

i = 1, . . . , n− 1. (4.3.3)

Proof. The proof follows the same methodology as that of Theorem 3.3.3.

Because of the additional information of a barrier level b in V (u, b), we cannot solve the

equation

Bδ(D)V (u, b) = qδ(D)W (u, b), (4.3.4)

to find an expression for V (u, b) as we did for the Laplace transform of the time to ruin
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ψ(u, δ). There, we did not need to specify a particular density function p(x) for the gain

amounts, here we do and we show this in the following remark:

Remark 4.3.1 Consider the conditions that must be met by ρ when we insert f(u) = e−ρu

in (4.3.4). On the left hand side we have

Bδ(D)f(u) = Bδ(−ρ)e−ρu. (4.3.5)

On the right-hand side we get, denoting Wf (u, b),

Wf (u, b) =

∫ b−u

0

f(x+ u)p(x)dx+

∫ ∞
b−u

(x+ u− b+ f(b))p(x)dx

=

∫ b−u

0

e−ρ(x+u)p(x)dx+

∫ ∞
b−u

(x+ u− b+ e−ρb)p(x)dx

= e−ρup̂(ρ) +

∫ ∞
b

(x− b+ e−ρb − e−ρx)p(x− u)dx,

and

qδ(D)Wf (u, b) = qδ(−ρ)p̂(ρ)e−ρu +

∫ ∞
b

(x− b+ e−ρb − e−ρx)qδ(D)p(x− u)dx. (4.3.6)

Comparing equations (4.3.5) and (4.3.6) we obtain

(Bδ(−ρ)− qδ(−ρ)p̂(ρ))e−ρu =

∫ ∞
b

(x− b+ e−ρb − e−ρx)qδ(D)p(x− u)dx, ∀u ≥ 0. (4.3.7)

If ρ was a root of the generalized Lundberg’s equation Bδ(−s) = qδ(−s)p̂(s), the left hand

side of (4.3.7) would be zero. On the other side, the right-hand side is not necessarily zero

since qδ(D)p(x− u) may not be zero.

Indeed, we have to assume a particular distribution for the gain amounts. For the rest of

this manuscript, we assume that the gain amounts follow a Phase–Type(m) distribution and

we use the annihilator method to find V (u, b). See similar approach in Rodŕıguez-Mart́ınez

et al. (2015).

Following the notation in Section 2.5.1, consider the case when the gains Xi follow a
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Phase-Type(m) distribution P (x) with representation (α′,B′,b′). Let ρ1, . . . , ρn be the

roots of the generalized Lundberg’s equation Bδ(−s) = qδ(−s)p̂(s) with positive real parts,

and ρn, . . . , ρn+m the roots with negatiFor simplicity, assume that all those roots are distinct

(although this is not the case in general, see Bergel and Eǵıdio dos Reis (2014) or Bergel

and Eǵıdio dos Reis (2016)).

Because of condition (4.3.1), we can not write the solutions of (4.3.2) as a linear combi-

nation of n exponential functions as we did before in the cases of the ruin probability and

the Laplace transform of the time of ruin. We will need more than n exponential functions,

the exact required number will depend on the nature of the distribution of the single gains

P (x). However, we can apply the annihilator approach known from the theory of ordinary

differential equations to find the appropriate solutions.

We can rewrite W (u, b) as

W (u, b) =

∫ b

u

V (x, b)p(x− u)dx+

∫ ∞
b

(x− b+ V (b, b))p(x− u)dx (4.3.8)

=

∫ b

u

V (x, b)p(x− u)dx+

∫ ∞
b

Ṽ (x, b)p(x− u)dx,

with Ṽ (x, b) = x − b + V (b, b). The idea is to find a linear differential operator that will

annihilate p(x − u) (where the variable is u), so that when we apply this operator to the

integro–differential equation (4.3.2) we obtain a linear homogeneous differential equation of

a higher degree. We apply the annihilator operator, denoted as A(D) = Det(ImD + B′), at

both sides of the integro–differential equation

Bδ(D)V (u, b) = qδ(D)W (u, b),

where Im is the identity m×m matrix, and we obtain an homogeneous integro–differential

equation of degree m+ n.

Theorem 4.3.2 When P (x) is Phase-Type(m) the solution of V (u, b) is of the form

V (u, b) =
n+m∑
l=1

al(b)e
−ρlu, u < b, (4.3.9)
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where ρl, l = 1, . . . , n, n+1, . . . , n+m are the roots of the generalized Lundberg’s equation, n

with positive real parts and m with negative real parts, and the coefficients al(b), depending

on b, are found using the boundary n conditions (4.3.3), and the identity

α′

[
n+m∑
l=1

al(b)e
−ρlb

(
(ρlIm −B′)−1B′ + Im

)
−B′

−1

]
= 0, (4.3.10)

which gives another m conditions. We obtain a system of m + n equations on the m + n

unknowns al(b).

Proof. Let p(x− u) = α′eB
′(x−u)b′T. The annihilator operator A(D) can be expanded as

A(D) = Det(ImD + B′) =
m∑
i=0

trm−i(B
′)Di.

This operator annihilates p(x− u)

A(D)p(x− u) =
m∑
i=0

trm−i(B
′)Di

(
α′eB

′(x−u)b′
T
)

= α′

[
m∑
i=0

trm−i(B
′)DieB′(x−u)

]
b′

T

= α′


m∑
i=0

trm−i(B
′)(−B′)i︸ ︷︷ ︸

det(B′−ImB′)=A(−B′)=0

eB
′(x−u)

b′
T

= 0.

Since

V (u, b) =
n+m∑
l=1

al(b)e
−ρlu,

we will prove that V (u, b) satisfies the homogeneous integro–differential equation

A(D)[Bδ(D)V (u, b)] = A(D)[qδ(D)W (u, b)],

or equivalently,

Bδ(D)[A(D)V (u, b)] = qδ(D)[A(D)W (u, b)]. (4.3.11)
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We have

W (u, b) =

∫ b

u

V (x, b)p(x− u)dx+

∫ ∞
b

(x− b+ V (b, b))p(x− u)dx

=
n+m∑
l=1

al(b)e
−ρlup̂(ρl) +

n+m∑
l=1

al(b)e
−ρlbα′(ρlIm −B′)−1B′eB

′(x−u)1T

−α′(B′)−1eB
′(x−u)1T + α′eB

′(x−u)1T
n+m∑
l=1

al(b)e
−ρlb,

so, in the right-hand side of (4.3.11), we have

A(D)W (u, b) =
n+m∑
l=1

al(b)A(−ρl)p̂(ρl)e−ρlu.

On the left hand side, we have

A(D)V (u, b) = A(D)
n+m∑
l=1

al(b)e
−ρlu =

n+m∑
l=1

al(b)A(−ρl)e−ρlu.

Then,

Bδ(D)[A(D)V (u, b)] =
n+m∑
l=1

al(b)A(−ρl)Bδ(−ρl)e−ρlu,

qδ(D)[A(D)W (u, b)] =
n+m∑
l=1

al(b)A(−ρl)qδ(−ρl)p̂(ρl)e−ρlu.

This proves that V (u, b) satisfies (4.3.11), because Bδ(−ρl) = qδ(−ρl)p̂(ρl) for the values

l = 1, . . . n+m.

Now, we want V (u, b) to be a solution of our integro–differential equation (4.3.2), as in

Theorem 4.3.1. Since solutions of (4.3.11) include those of Bδ(D)V (u, b) = qδ(D)W (u, b), we

want to know which are the extra conditions that must be satisfied by the coefficients al(b)
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of V (u, b) for this purpose. Replacing V (u, b) in Bδ(D)V (u, b) = qδ(D)W (u, b) we obtain

0 =
n+m∑
l=1

al(b)[Bδ(−ρl) = qδ(−ρl)p̂(ρl)︸ ︷︷ ︸
=0

]e−ρlu

= α′

[
n+m∑
l=1

al(b)e
−ρlb

(
(ρlIm −B′)−1B′ + Im

)
−B′

−1

]
qδ(−B′)eB

′(x−u)1T, ∀u ≥ 0.

This proves that the identity holds

α′

[
n+m∑
l=1

al(b)e
−ρlb

(
(ρlIm −B′)−1B′ + Im

)
−B′

−1

]
= 0.

Using this identity and the boundary conditions (4.3.3) we obtain a system of m+n equations

that allow us to find the m+ n coefficients al(b) in V (u, b).

Example 4.3.1 Assume that K(t) is Ph(2) distributed (n = 2) and P (x) is Ph(2) dis-

tributed (m = 2), with representations (α,B,b) and (α′,B′,b′), respectively.

The net profit condition is −cαB1T < −α′B′1T and the generalized Lundberg’s equation

becomes

Bδ(−s)B̄(s) = qδ(−s)q̄(s), (4.3.12)

where

Bδ(−s) = 1− c tr(B)

det(B)

(
δ

c
− s
)

+
c2

det(B)

(
δ

c
− s
)2

,

qδ(−s) = 1 +
c

det(B)
αbT

(
δ

c
− s
)
,

B̄(s) = 1− tr(B′)

det(B′)
s+

1

det(B′)
s2,

q̄(s) = 1 +
1

det(B′)
α′b′

T
s.

Let

V (u, b) =
4∑
l=1

al(b)e
−ρlu .

The exponents ρl’s are the four roots of (4.3.12). Assume that ρ1, ρ2 have positive real
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parts and ρ3, ρ4 have negative real parts. The coefficients al(b)’s are obtained using the

corresponding boundary conditions (4.3.3)

V (0, b) =
4∑
l=1

al(b) = 0,

d

du
V (u, b)

∣∣∣∣
u=0

=
1

c
k(0)W (0, b) = −

4∑
l=1

ρlal(b), or

0 =
4∑
l=1

al(b)

(
k(0)

c
p̂(ρl) + ρl

)
,

and the additional constrains (4.3.10), giving

4∑
l=1

al(b)e
−ρlbρlα

′(ρlI2 −B′)−1 = α′B′
−1
, with α′ = (α′1, α

′
2), B′ =

 b′11 b′12

b′21 b′22

 ,

or

4∑
l=1

al(b)

(
e−ρlbρl(α

′
1(ρl − b′22) + α′2b

′
21)

det(ρlI2 −B′)

)
=

α′1b
′
22 − α′2b′21

det(B′)
,

4∑
l=1

al(b)

(
e−ρlbρl(α

′
1b
′
12 + α′2(ρl − b′11))

det(ρlI2 −B′)

)
=
−α′1b′12 + α′2b

′
11

det(B′)
.

If we set the values for the parameters c = 1, δ = 0.05 and

α = (0.2, 0.8), B =

 −3 2

4 −7

 , α′ = (0.7, 0.3), B′ =

 −2 1

5 −5

 ,

then ρ1 = 8.41055, ρ2 = 0.949785, ρ3 = −0.0374676 and ρ4 = −6.22287. In Table 5.1 we

show numerical values for V (u, b) for some choices of (u, b). We can observe that for a fixed

u we have a maximal V (u, b) for a value of b between 5 and 7. In the following, we devote

our study to the optimal barrier level b and show that it is independent of u.
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u\b 3 5 6 7 8 10 15 20
2 14.0478 18.5161 18.6277 18.2447 17.6847 16.4611 13.656 11.3231
3 15.9118 20.9727 21.0991 20.6653 20.031 18.6451 15.4678 12.8254
5 17.9118 23.5692 23.7112 23.2237 22.5109 20.9533 17.3828 14.4132

10 22.9118 28.5692 28.7183 28.1731 27.3464 25.4359 21.1015 17.4967
15 27.9118 33.5692 33.7183 33.1731 32.3464 30.4359 25.4503 21.1026
20 32.9118 38.5692 38.7183 38.1731 37.3464 35.4359 30.4503 25.4504

Table 4.3: Values of V (u, b)

4.3.1 Optimal Dividends

For a given initial capital u, let b∗ denote the optimal value of the barrier b that maximizes

the expected discounted dividends V (u, b). Avanzi et al. (2007) show that for a dual model

with exponentially distributed inter-arrival times the value of b∗ is independent of u. The

same situation occurs for a dual model with Phase–type(n) distributed inter-gain times and

Phase–Type(m) distributed gain amounts. Also, the optimal level is independent of the

initial surplus.

Theorem 4.3.3 b∗ is independent of the initial surplus u.

Proof. For a given initial surplus u0 ≥ 0 let b∗0 be the optimal barrier level that maximizes

the expected discounted dividends, V (u0, b) is maximal at b = b∗0 and

∂

∂ b
V (u0, b)

∣∣∣∣
b=b∗0

= 0, for u = u0.

The idea of this proof is to show that

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= 0, ∀u ≥ 0.

From (4.3.1), we have ∀u ≥ b∗0 that

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= 0 = −1 +
d

d b
V (b, b)

∣∣∣∣
b=b∗0

⇒ d

d b
V (b, b)

∣∣∣∣
b=b∗0

= 1.
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Since we have V (0, b) ≡ 0 then clearly

∂

∂ b
V (0, b)

∣∣∣∣
b=b∗0

= 0, for u = 0.

It only remains to show that

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= 0, 0 < u < b∗0.

Previously in Theorem 4.3.1 we have found that in the Phase–Type(n) dual risk model

the expected discounted dividends V (u, b) satisfy the integro–differential equation

Bδ(D)V (u, b) = qδ(D)W (u, b),

where

W (u, b) =

∫ b

u

V (y, b)p(y − u)dy +

∫ ∞
b

(y − b+ V (b, b))p(y − u)dy .

Moreover, assuming that the gain amounts follow another Phase–Type(m) distribution,

with density function p(x) = α′eB
′xb′T, we were able to write an expression of V (u, b) of the

form (4.3.9)

V (u, b) =
n+m∑
l=1

al(b)e
−ρlu.

Since

∂

∂ b
W (u, b)

∣∣∣∣
b=b∗0

=

∫ b∗0

u

∂

∂ b
V (y, b)

∣∣∣∣
b=b∗0

p(y − u)dy +(
−1 +

d

d b
V (b, b)

∣∣∣∣
b=b∗0

)
︸ ︷︷ ︸

=0

∫ ∞
b∗0

p(y − u)dy

=

∫ b∗0

u

∂

∂ b
V (y, b)

∣∣∣∣
b=b∗0

p(y − u)dy,
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then for 0 < u < b∗0 we have that

Bδ(D)
∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= qδ(D)
∂

∂ b
W (u, b)

∣∣∣∣
b=b∗0

,

or equivalently

Bδ(D)
∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= qδ(D)

[∫ b∗0

u

∂

∂ b
V (y, b)

∣∣∣∣
b=b∗0

p(y − u)dy

]
, 0 < u < b∗0. (4.3.13)

When we replace

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

=
n+m∑
l=1

a′l(b
∗
0)e−ρlu

in (4.3.13) we get an identity of exponential functions in terms of the coefficients a′l(b
∗
0) which

is valid for all u in (0, b∗0), as follows.

Let’s define the function

F (u) =
∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

=
n+m∑
l=1

a′l(b
∗
0)e−ρlu.

Then (4.3.13) becomes

Bδ(D)F (u) = qδ(D)

[∫ b∗0

u

F (y)p(y − u)dy

]
, 0 < u < b∗0. (4.3.14)

On the left-hand side of (4.3.14) we calculate Bδ(D)F (u),

Bδ(D)F (u) =
n+m∑
l=1

a′l(b
∗
0)Bδ(D)e−ρlu =

n+m∑
l=1

a′l(b
∗
0)Bδ(−ρl)e−ρlu . (4.3.15)

On the right hand side of (4.3.14) we compute qδ(D)
[∫ b∗0

u
F (y)p(y − u)dy

]
.

74



Recall that p(y − u) = α′eB
′(y−u)b′T, therefore

∫ b∗0

u

e−ρlyp(y − u)dy = e−ρlup̂(ρl)− e−ρlu
∫ ∞
b∗0−u

e−ρlyp(y)dy

= e−ρlup̂(ρl)− e−ρlu
∫ ∞
b∗0−u

e−ρlyα′eB
′(y)b′

T
dy

= e−ρlu

[
p̂(ρl)−

∫ ∞
b∗0−u

α′e(B′−ρlI)yb′
T
dy

]

= e−ρlu

[
p̂(ρl)−α′

∫ ∞
b∗0−u

e(B′−ρlI)ydy b′
T

]
= e−ρlu

[
p̂(ρl) + α′(B′ − ρlI)−1e(B′−ρlI)(b∗0−u) b′

T
]

= e−ρlu
[
p̂(ρl) + α′(B′ − ρlI)−1e(B′−ρlI)b∗0e−B

′u b′
T
]
.

Hence,

qδ(D)

∫ b∗0

u

e−ρlyp(y − u)dy = qδ(−ρl)e−ρlup̂(ρl) +

α′(B′ − ρlI)−1e(B′−ρlI)b∗0qδ(−B′)e−B
′u b′

T
,

and,

qδ(D)
∫ b∗0

u
F (y)p(y − u)dy =

n+m∑
l=1

a′l(b
∗
0)qδ(D)

∫ b∗0

u
e−ρlyp(y − u)dy

=

n+m∑
l=1

a′l(b
∗
0)qδ(−ρl)e−ρlup̂(ρl) +

n+m∑
l=1

a′l(b
∗
0)α

′(B′ − ρlI)−1e(B′−ρlI)b∗0qδ(−B′)e−B
′ub′

T
. (4.3.16)

Expressions in (4.3.15) and (4.3.16) are equal,

n+m∑
l=1

a′l(b
∗
0)Bδ(−ρl)e−ρlu =

n+m∑
l=1

a′l(b
∗
0)qδ(−ρl)e−ρlup̂(ρl) +

n+m∑
l=1

a′l(b
∗
0)α′(B′ − ρlI)−1e(B′−ρlI)b∗0qδ(−B′)e−B

′u b′
T
.
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So,

n+m∑
l=1

a′l(b
∗
0)[Bδ(−ρl)−qδ(−ρl)p̂(ρl)]e−ρlu =

n+m∑
l=1

a′l(b
∗
0)α′(B′−ρlI)−1e(B′−ρlI)b∗0qδ(−B′)e−B

′u b′
T
.

Since ρ1, . . . , ρm+n are the roots of the generalized Lundberg’s equation then Bδ(−ρl) =

qδ(−ρl)p̂(ρl). Thus,

0 =
n+m∑
l=1

a′l(b
∗
0)α′(B′ − ρlI)−1e(B′−ρlI)b∗0qδ(−B′)e−B

′u b′
T

=


n+m∑
l=1

a′l(b
∗
0)α′(B′ − ρlI)−1e(B′−ρlI)b∗0︸ ︷︷ ︸

=0

 qδ(−B′)e−B
′u b′

T
, ∀ u ∈ (0, b∗0),

since the above identity is valid for all u in the interval (0, b∗0). For simplicity, we have

assumed that the roots ρ1, . . . , ρm+n are all distinct, then the vectors α′(B′−ρlI)−1e(B′−ρlI)b∗0

are linearly independent and we obtain

a′l(b
∗
0) = 0, ∀ l = 1, . . . ,m+ n.

This proves that
∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= 0, 0 < u < b∗0.

Therefore, we have proven that the optimal barrier level is independent of u.

Remark 4.3.2 The result holds if we assume multiplicities higher than 1 in the roots ρl’s.

Example 4.3.2 In Example 4.3.1 the optimal value of the barrier level is b∗ = 5.61986,

with V (b∗, b∗) = 24.3976.
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4.4 Final remarks

One of the important goals of the study of risk theory is to find exact numerical techniques

which can become popular in insurance practice. In this chapter we have investigated the

expected discounted dividends in the case when the gain inter–occurrence times follow dis-

tributions belonging to the matrix exponential family, like the Phase–Type and the Erlang.

However, the results can be still generalized for other distributions.
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Chapter 5

On the probability and amount of a

dividend

5.1 Introduction

This chapter consists of some incipient ideas related to dividend problems for future research.

We consider again the dual risk model with an upper barrier level, but this time we don’t

focus on the expected discounted dividends. Instead, we study other quantities such as the

probability of reaching the upper barrier before ruin occurring and the dividend amount and

its distribution function.

In Section 5.2 we present the definition of the quantities mentioned above. We follow the

article by Afonso et al. (2013) who consider them for a dual risk model with exponentially

distributed gain inter–ocurrence times.

In Section 5.3 we present two methods to calculate the expected discounted dividends

and the distribution of a dividend amount for a case when the gain inter-arrival times follow

an Erlang distribution. This method can be applied for the probability of reaching an upper

barrier before ruin and extended for more general matrix exponential distributions.

Section 5.4 is devoted to mention some ideas of future research for more general distribu-

tion types.
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5.2 Basic definitions

Let’s consider an arbitrary upper level b ≥ u ≥ 0 and let

τu = inf{t > 0 : U(t) > b | U(0) = b}

be the time to reach b for the surplus process, allowing the process to continue even if it

crosses the ruin level ”0”. Due to the net profit condition (2.2.1) τu is a proper random

variable since the probability of crossing b is one.

We denote by χ(u, b) the probability of reaching an upper barrier level b before ruin

occurring, for a process with initial surplus u, and ξ(u, b) = 1− χ(u, b) is the probability of

ruin before reaching b. We have χ(u, b) = Pr(τu < Tu).

Because of the existence of the barrier b the ruin probability is one. The ruin level can be

attained before or after the process is reflected on b. Then the probability of ultimate ruin

is ξ(u, b) + χ(u, b) = 1.

Let Du = {U(τu)− b} and τu < Tu be the dividend amount and its distribution function

be denoted as

G(u, b;x) = Pr((τu < Tu and U(τu) ≤ b+ x) | u, b)

= Pr((τu < Tu and Du ≤ x) | u, b)

with density g(u, b;x) = d
dx
G(u, b;x). G(u, b;x) is a defective distribution function, clearly

lim
x→∞

G(u, b;x) = Pr(τu < Tu) = ξ(u, b) < 1.

5.3 Some developments

In what follows we concentrate on finding a method to calculate G(u, b;x) for a gain inter-

arrival times cdf K(t), with density k(t), and a gain amounts cdf P (x), with density p(x).

The method can be emulated to calculate other probabilities, like ξ(u, b) (and therefore

χ(u, b)).
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Let t0 = u/c. If no gain arrives before t0, we have

G(u, b;x) = Pr((τu < Tu︸ ︷︷ ︸
false

and Du ≤ x) | u, b) = 0.

If the first gain arrives before t0, then we derive a defective renewal equation

G(u, b;x) =

∫ t0

0

k(t)


∫ b−(u−ct)

0

G(u− ct+ y, b;x)p(y)dy︸ ︷︷ ︸
first gain and no dividend

= +

∫ b+x−(u−ct)

b−(u−ct)
p(y)dy︸ ︷︷ ︸

first gain and dividend

 dt.

If b ≤ u ≤ b+ x we have Du = u− b and G(u, b;x) = 1.

Now let’s assume the gain inter-arrival times follow an Erlang distribution k(t). With the

change of variables s = u− ct the defective renewal equation above becomes

G(u, b;x) =
1

c

∫ u

0

k

(
u− s
c

)
WG(s, b;x)ds, 0 < u < b, (5.3.1)

where

WG(s, b;x) =

∫ b−s

0

G(s+ y, b;x)p(y)dy +

∫ b+x−s

b−s
p(y)dy

=

∫ b

s

G(y, b;x)p(y − s)dy +

∫ b+x

b

p(y − s)dy

=

∫ b

s

G(y, b;x)p(y − s)dy + P (b+ x− s)− P (b− s).

Taking successive derivatives of (5.3.6) we obtain an integro–differential equation for

G(u, b;x)

(
I +

( c
λ

)
D
)n
G(u, b;x) = WG(u, b;x), 0 < u < b, (5.3.2)
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with boundary conditions

DiG(u, b;x) |u=0 = 0, 0 ≤ i ≤ n− 1. (5.3.3)

In what follows, we present two alternative ways to calculate G(u, b;x). The first makes

use of the same methodology used in Chapters 3 and 4, using annihilators, and the second

generalizes Afonso et al. (2013) for Erlang distributions, using Laplace transforms.

5.3.1 Expected Discounted Dividends

For a general compound renewal as set here, we can retrieve the formulae for the total

expected dividends from Afonso et al. (2013). Although it was developed for the classical

compound Poisson model it is easy to see that it is applicable more generally. Let D(u, b, δ)

denote the aggregate amount of discounted dividends and Vn(u; b) = E[D(u, b, δ)n], n ∈ N, be

its k-th ordinary moment, with V (u; b) = V1(u; b) for simplicity sake. The total discounted

dividends D(u, b, δ) is given by, see Section 4 and Formula (4.2) by Afonso et al. (2013),

V (u; b) = E[D(u, b, δ)] = E

[
∞∑
i=1

e−δ(
∑i
j=1 T(j))D(i)

]
, 0 ≤ u ≤ b ,

= E
(
e−δTuDu

)
+ E

(
e−δTu

) E
(
e−δTbDb

)
1− E (e−δTb)

.

For higher moments, Vn(u; b) recursion given by (4.7-8) in Afonso et al. (2013) also applies.

We reproduce, *

Vn(u; b, δ) =
n∑
k=0

(
n

k

)
E
[
e−nδTuDu

k
]
Vn−k(b; b, δ) , (5.3.4)

with V0(b; b, δ) = 1 and

Vn(b; b, δ) =

∑n
k=1

(
n
k

)
E
[
e−nδTbDb

k
]
Vn−k(b; b, δ)

1− E [e−nδTb ]
. (5.3.5)

[We need to develop appropriate formulae for E
[
e−δTuDu

k
]
, k ∈ N0]
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5.3.2 On the amount and the probability of a single dividend

In this section we present two methods to calculate the distribution of a dividend amount,

G(u, b;x), for a case when the gain inter-arrival times follow an Erlang(n) distribution. That

is, we consider that K(t) = 1 −
∑n−1

1=0 e
−λt (λt)i /i!, and k(t) = λntn−1eλt/(n− 1)!, t ≥ 0.

This method can be applied for the probability of reaching an upper barrier before ruin and

extended for more general matrix exponential distributions. A similar approach can then be

applied for the more general family of phase-type(n) distributions.

Let t0 = u/c. If no gain arrives before t0 necessarily event {τu < Tu} is false, and

G(u, b;x) = Pr{τu < Tu and Du ≤ x | u, b} = 0.

If the first gain arrives before t0, either it does or does not cross b, then we derive a defective

renewal equation

G(u, b;x) =

∫ t0

0

k(t)

(∫ b−(u−ct)

0

G(u− ct+ y, b;x)p(y)dy

+

∫ b+x−(u−ct)

b−(u−ct)
p(y)dy

)
dt ,

where the first inner integral represents the probability of having a first gain at fixed time

t and which amount does not cross the dividend level, but hapening in the fture, and the

second representing the probability of a dividend in the first gain at t.

If b ≤ u ≤ b + x we have Du = u − b and G(u, b;x) = 1. With the change of variables

s = u− ct the defective renewal equation above becomes

G(u, b;x) =
1

c

∫ u

0

k

(
u− s
c

)
WG(s, b;x)ds, 0 < u < b, (5.3.6)
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WG(s, b;x) =

∫ b−s

0

G(s+ y, b;x)p(y)dy +

∫ b+x−s

b−s
p(y)dy

=

∫ b

s

G(y, b;x)p(y − s)dy +

∫ b+x

b

p(y − s)dy

=

∫ b

s

G(y, b;x)p(y − s)dy + P (b+ x− s)− P (b− s) .

Taking successive derivatives of (5.3.6) we obtain the integro–differential equation for

G(u, b;x) in the following theorem, D is the differential operator with D0 = I.

Theorem 5.3.1

(
I +

( c
λ

)
D
)n
G(u, b;x) = WG(u, b;x), 0 < u < b, (5.3.7)

with boundary conditions

DiG(u, b;x) |u=0 = 0, 0 ≤ i ≤ n− 1 . (5.3.8)

�

Calculation of a solution for G(u, b;x) from equations above is not straightforward. We

can do it in two ways: Either using the annihilator method used by Rodŕıguez-Mart́ınez et al.

(2015) or the Laplace transform method as used by Afonso et al. (2013). In the following

subsections we work both.

5.3.3 Annihilator method

Let A(D) be a polynomial operator in D, such that

A(D)p(y − u) = 0.

Then A(D)WG(u, b;x) = 0 and

A(D)
(
I +

( c
λ

)
D
)n
G(u, b;x) = 0
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is an homogeneous integro-differential equation of some degree m + n, whose solutions can

be written as combinations of exponential functions

G(u, b;x) =
n+m−1∑
i=0

Cie
−riu, (5.3.9)

for some constants ri’s and some coefficients Ci’s, functions of b and x, all independent from

u.

In order to determine the ri’s and Ci’s we replace (5.3.9) in (5.3.7) leading to the result

in the theorem that follows.

Theorem 5.3.2

G(u, b;x) =
n+m−1∑
i=0

aie
−riu, (5.3.10)

where ri, i = 0, . . . , n+m− 1 is a root of Lundberg’s equation, and the ai’s are found using

the boundary conditions (5.3.8) together with the additional constraint

n+m−1∑
i=0

[
ai

∫ ∞
b−u

e−riyp(y)dy

]
e−riu − P (b+ x− u)− P (b− u) = 0 , ∀u > 0.

�

To find G(u, b;x) we must specify a distribution P (x) for the individual claim amounts,

where n of the roots of Lundberg’s equation have positive real parts and m with negative

real parts.

5.3.4 Laplace transforms method

Now we follow the approach presented by Afonso et al. (2013). Denoting z = b − u, or

u = b− z, define

G̃(z, b;x) = G(b− z, b;x) = G(u, b;x). (5.3.11)

Therefore

G̃(z, b;x) =
1

c

∫ b−z

0

k

(
b− z − s

c

)
WG(s, b;x)ds,
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and the integro-differential equation (5.3.7) becomes

(
I −

( c
λ

) d

dz

)n
G̃(z, b;x) = WG̃(b− z, b;x), 0 < z < b, (5.3.12)

with boundary conditions

di

dzi
G̃(z, b;x) |z=0 = 0, 0 ≤ i ≤ n− 1. (5.3.13)

In order to apply Laplace transforms to the integro-differential equation (5.3.12), we

extend the domain of G̃(z, b;x), as a function of z, to (0,∞):

ρ(z, b;x) :=

 G̃(z, b;x), 0 ≤ z ≤ b,

0, z > b,

Afterwards, we obtained

Theorem 5.3.3

ρ̂(s, b;x) =

∑n−1
i=0

[∑n
j=i+1

(
− c
λ

)j (n
j

)
ρ(j−1−i)(0, b;x)

]
si + TsP (x)− TsP (0)(

1− c
λ
s
)n − p̂(s) , (5.3.14)

where Tsf(x) =
∫∞

0
e−stf(t+ x)dt is an integral operator over an integrable function f .

We note Tsf(x) in known in the actuarial literature as Dickson-Hipp operator, see Dickson

and Hipp (2001).

If we want to obtain ρ(z, b;x) and therefore, G(u, b;x), we must specify a distribution

P (x) for the claim amounts. This allows to factor the denominator, using all the roots of the

Lundberg’s equation, separate the resulting expression into partial fractions and then invert

the Laplace transform (5.3.14).

5.4 Extensions

The quantities described in the previous section were all considered by Afonso et al. (2013)

for the case when the gain inter–occurrence times follow an exponential distribution.The
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same techniques shown in previous sections can be extended straightforwardly for the gener-

alized Erlang or even for the Phase–Type distributions. Our idea is to obtain similar closed

formulas, whenever possible, and to provide numerical examples that could allow us to verify

how sensitive is the model to the change of distributions and compare figures and numerical

examples with Afonso et al. (2013) for the exponential case.
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Chapter 6

Final remarks

It is in general difficult, if not impossible, to achieve all the objectives of the work plan which

we originally wanted to execute.

In many occasions, solving a problem, or answering a question, just opens up the door for

many more questions, widening up the view of an even bigger and yet unexplored landscape.

Scientific research is never a complete perfect product of developments but a long path

of successive improvements and exploration.

The work which we developed and wrote in the course of this PhD thesis is another proof

of this fact. We have been able to find the answer to some problems - which are related to

mathematical models of interest in the non-life insurance industry - just to realize right after

that we can formulate those same problems on a more general setting, with a more practical

view, or with more realistic assumptions, leading the path for possible future research in this

matter.

Now we summarize all the work which was achieved during writing this thesis.

In Chapter 1 we gave a brief history of risk theory and an overview of several differ-

ent articles that have been published in this area. We also outlined the contents of this

dissertation.

In Chapter 2 we set out the main characterization of the models and the concepts of

risk theory that we considered in this manuscript. We described the dual risk model and

denoted the aggregate gains as a random process S(t). We introduced the definitions of some

important quantities, like the ruin probability, the Laplace transform of the time to ruin and
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the expected discounted dividends and presented the existing connection between the dual

risk model and the Cramér–Lundberg risk model. We defined the Lundberg’s equations and

introduced the integro–differential equations that are satisfied by the quantities mentioned

before. Finally we presented the probability distributions that were used in the remaining

of this thesis.

In Chapter 3 we studied the ruin probability and the Laplace transform of the time to

ruin for a dual risk model. The distribution of the gain inter–occurrence times is matrix

exponential. However, for simplicity and elegance of the formulas we concentrated on the

Phase–Type and the Erlang distributions.

For that purpose, we used the respective Lundberg’s equations and their solutions, con-

sidering the situations of multiplicity one (simple roots) or multiplicity higher than one

(multiple roots). The integro–differential equations satisfied by ruin probability and the

Laplace transform of the time to ruin were solved, and we obtained closed formulas for these

quantities as well as interesting comparisons between the primal and the dual risk models.

We provided examples of our results whenever possible.

In Chapter 4 we studied the expected discounted dividends for a dual risk model with an

upper barrier level. The distribution of the gain inter–occurrence times is matrix exponential.

For simplicity and elegance of the formulas we concentrate on the Phase–Type and the Erlang

distributions.

We studied the integro–differential equations satisfied by the expected discounted divi-

dends and their higher moments, and we solved them using similar techniques as in Chapter

3. However, due to the fact that a single dividend payment is obtained at a random event, we

needed to specify a distribution for the gain amounts, and we choose again the Phase–Type.

Finally we studied the problem of setting an optimal barrier level to maximize the ex-

pected discounted dividends prior to ruin, and discovered that such optimal value of the

barrier is independent of the initial surplus.

Many open problems remain. For example, is it possible to extend the kind of techniques

used on this thesis to other - more general - distributions?, which ones?, is it possible to relax

some of the assumptions of the dual risk model in such a way that the results obtained in

this dissertation still hold? what kind of quantities from the primal/dual risk models could
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be studied by looking at their counterparts in the dual/primal risk models, using symmetric

or duality arguments? We don’t know the answers at the moment, but we hope that in the

near future, more lights could shine on this area of risk theory.
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