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This paper presents a methodology to design and to predict the behaviour of electronic circuits, which combines artificial neural
networks and design of experiments. This methodology can be used to model output variables in electronic circuits either with
similar features to the circuit configuration that is analysed in this study or with more complex configurations in order to
improve the process of electronic circuit design.

1. Introduction

Artificial neural networks (ANNs) are employed in a wide
range of applications for optimization, system identification,
control and pattern recognition, among others [1]. ANNs
have been widely used in several fields of both engineering
and technology, and many researchers have analysed their
application over the past few years. Among the published
research works in the field of ANNs, the research study of
Kamar et al. [2] predicted the cooling load, compressor
power input, and the performance coefficients of an air-
conditioning system. Their results showed correlation coeffi-
cients that were very close to unity, which indicates that their
ANN models predicted the selected performance parameters
to a high degree of accuracy [2]. In another study, Xiao et al.
[3] used backpropagation neural networks for predicting
oxygen dissolved in water with a combination of linear, log-
sig, and tansig transfer functions. The authors found that
the neural networks yielded the most accurate results, in
comparison with common prediction methods such as curve
fitting and autoregression, among various others [3]. Further
examples might include works by Peng et al. [4] in which
short-term wind power produced at a wind farm was ana-
lysed with ANNs and a hybrid strategy based on both physi-
cal and statistical methods [4]. It is also worth mentioning
the study in which Karami [5] proposed a method of estimat-
ing transient stability analysis in a power system using multi-
layer perceptrons. The author concluded that the proposed

approach was highly suitable for online normalized transient
stability margin estimation, because of its accuracy and com-
putational efficiency [5]. Moreover, Srinivasan and Saghir [6]
reported the results of modelling thermodiffusion in molten
metals, by training neural networks with the Levenberg-
Marquardt backpropagation algorithm. They concluded that
a well-trained neural network can be reliably employed to
quantify the thermotransport properties of binary metal
alloys [6]. On the other hand, in the research study of Notton
et al. [7], the authors determined global solar irradiation on
tilted planes, by using multilayer perceptron, feedforward
backpropagation, and the Levenberg-Marquardt algorithm
[7]. In other studies, Gao et al. [8] proposed a modelling
and error compensation approach based on backpropagation
neural networks, for an articulated arm coordinate measur-
ing machine. Likewise, Pedro et al. [9] published their design
of a neural network for an antilock braking system. They
concluded that the NN-based controller provided better
results than the generic PID-based controller [9].

In addition to artificial neural networks, fuzzy set theory
and their combination have been studied in depth over the
past few years [10] and many researchers have investigated
their application. For instance, Lovassy et al. [10] proposed
fuzzy flip-flop-based neural networks (FNN) as an imple-
mentation of multilayer perceptron, in which the network
was trained with the Levenberg-Marquardt algorithm. These
authors found that this neural network is able to approximate
both single and multiple variable functions to a high degree
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of accuracy [10]. Zhang et al. [11] proposed the application of
a hierarchical fuzzy neural network as a new type of fault
diagnosis for an asynchronous motor, which performed
effective diagnosis of both single and multiple faults [11].
Yang et al. [12] employed FNNs to provide an efficient means
of detecting and evaluating concrete strength, and Yang et al.
[13] combined fuzzy theory and artificial neural network
techniques to evaluate and to analyse the safety status of an
oil depot [13]. In further research studies, Lovassy et al.
[14] reported an analysis of the behaviour of an FPGA imple-
mentation of the FNNs and went on to state that their FPGA
implementation provided a safe and hazardless solution in
environments where observation might be distorted by a
component of noise [14].

In other research studies that concern the applicability of
ANNs, Djeffal et al. [15] showed the applicability of ANNs in
the simulation of nanoscale CMOS circuits, training the
ANN with a backpropagation algorithm. Moreover, Moha-
gheghi et al. [16] employed neural networks for the monitor-
ing of electronic power circuits. Among their conclusions,
they mentioned that, with a proper and a systematic selection
of design parameters and sufficient training data, a neural
network can learn to model any nonlinear system to a high
level of accuracy [16].

This present research study compares the results pro-
vided by ANNs with those of a conventional regression.
Moreover, it examines how the ANN is employed to obtain
the main effect plots and the interaction effect plots, in order
to determine the influence of the input parameters on the
circuit response. It is shown that ANNs can be used to
analyse electronic circuits and to optimize their perfor-
mance. This methodology may also be used to model
other output variables in electronic circuits with more
complex configurations, in order to improve the process
of electronic circuits design.

2. Modelling of Circuit Parameters

A bipolar transistor, configured as a common emitter ampli-
fier, is selected as an example application to show the pro-
posed methodology. The gain voltage and the relation
between the collector current and base current (IC/IB) of
the transistor are determined, following a full factorial design
of experiments when the electrical resistances in the circuit
are varied, from software simulations. These output values
are then used to train an artificial neural network, in order
to model both the gain voltage and the IC/IB as a function
of the electrical resistances in the amplifier circuit. Once the
artificial neural network is trained, it can then be used to
obtain both the gain voltage and the IC/IB, when the electrical
resistances are varied, with no further need for additional
simulations. A 34 factorial design of experiments (DOE)
was selected, which corresponds to 81 possible combinations
of the input parameters (electrical resistances).

Table 1 shows the range of variation of the electrical resis-
tances that form part of the electrical circuit shown in
Figure 1. This circuit is analysed in this present study by
training a neural network and then using the results to obtain
the main effect plots and the interaction effect plots. That is,

Table 1 shows the electrical resistance levels, which were
selected following a full factorial DOE, based on raising and
lowering the nominal value of the electrical resistances by
25% (from the centre value). The number of resistance values
which could be employed, following this methodology, may
be higher than three with the aim of obtaining a large number
of data to train the ANN. Nevertheless, in this study, we have
considered that three levels of variation is a high enough
number to obtain significant results.

Figure 1 shows the nominal values of the amplifier cir-
cuit employed in this study, where Rj are the electrical resis-
tances to be varied and V is a 20mV and 1 kHz sinusoidal
voltage source.

The values shown in Figure 1 may be modified with the
data shown in Table 1, following a full-factorial DOE. After
simulation of these electronic circuits, it will be possible to
determine the gain voltage and the relation between both
the collector and base currents of the transistor.

3. ANN and Regression Modelling

As was previously mentioned, simulations made it possible to
determine the output data that correspond to all of the possi-
ble combinations of electrical resistances shown in Table 1.
This will lead to different transistor polarizations that will
induce variations in the gain voltage and in the IC/IB. By
using the data shown in Table 2, a neural network can then
be trained to predict both the IC/IB and the gain voltage of
the amplifier circuit.

The ANN employed in this present study is composed of
a hidden layer and an output layer. Figure 2 shows the config-
uration of the neural network used for modelling the

Table 1: Electrical resistance values.

Low Nominal High

R1 (kΩ) 9.00 12.0 15.0

R2 (kΩ) 2.25 3.0 3.8

R3 (kΩ) 3.00 4.0 5.0

R4 (kΩ) 1.50 2.0 2.5

V1

RLC1

C2

C3

Q1

10 V

1 nF
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1 M𝛺
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−
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4 k𝛺

Figure 1: Nominal values of the amplifier circuit.
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Table 2: Gain voltage Δ V and IC/IB results.

n R1 R2 R3 R4
IC
IB

Δ V

1 15.00 3.00 4.00 2.50 149.41 2.33

2 15.00 2.25 5.00 1.50 150.66 3.12

3 9.00 2.25 4.00 1.50 162.94 5.04

4 12.00 3.80 4.00 1.50 166.54 6.24

5 15.00 3.00 3.00 2.50 149.84 1.76

6 12.00 2.25 5.00 1.50 156.84 4.52

7 9.00 2.25 5.00 1.50 162.25 6.29

8 9.00 3.80 3.00 2.50 163.44 3.93

9 9.00 3.80 5.00 2.00 164.41 5.36

10 15.00 3.80 5.00 2.00 157.53 4.83

11 15.00 3.80 3.00 2.50 154.99 2.33

12 9.00 3.80 3.00 1.50 171.68 5.78

13 15.00 3.80 4.00 2.00 158.30 3.82

14 9.00 3.80 3.00 2.00 167.19 4.84

15 9.00 3.00 3.00 2.00 163.91 3.87

16 15.00 3.80 4.00 1.50 163.10 5.05

17 12.00 3.80 4.00 2.50 158.32 3.98

18 15.00 3.80 5.00 1.50 162.04 6.18

19 15.00 3.00 3.00 2.00 153.98 2.17

20 9.00 2.25 3.00 1.50 163.98 3.82

21 9.00 3.00 4.00 2.50 159.14 4.19

22 9.00 2.25 4.00 2.00 158.11 3.84

23 9.00 2.25 5.00 2.00 157.36 4.77

24 12.00 3.00 3.00 2.00 158.84 2.85

25 12.00 2.25 5.00 2.50 147.51 2.68

26 12.00 2.25 5.00 2.00 151.44 3.34

27 15.00 2.25 5.00 2.00 145.60 2.38

28 12.00 2.25 4.00 1.50 157.04 3.48

29 9.00 3.00 4.00 2.00 162.84 5.11

30 9.00 3.80 5.00 2.50 161.27 5.70

31 9.00 3.00 5.00 1.50 165.76 5.68

32 9.00 3.80 4.00 2.00 165.80 5.79

33 12.00 2.25 3.00 1.50 157.72 2.63

34 15.00 2.25 4.00 1.50 151.12 2.50

35 9.00 2.25 3.00 2.50 154.78 2.32

36 9.00 2.25 5.00 2.50 153.60 3.86

37 12.00 2.25 3.00 2.00 152.44 2.00

38 12.00 2.25 4.00 2.00 151.94 2.65

39 15.00 3.00 5.00 2.00 152.88 3.60

40 12.00 3.00 3.00 2.50 154.75 2.30

41 15.00 3.00 5.00 2.50 148.98 2.92

42 12.00 3.00 3.00 1.50 163.94 3.74

43 12.00 3.00 5.00 2.50 153.58 3.85

44 12.00 3.80 3.00 1.50 167.94 4.85

45 15.00 2.25 3.00 2.00 146.28 1.44

46 12.00 3.00 4.00 2.50 154.17 3.09

47 12.00 2.25 3.00 2.50 148.28 1.61

48 12.00 3.80 5.00 2.00 161.05 6.02

49 9.00 2.25 3.00 2.00 158.87 2.85

Table 2: Continued.

n R1 R2 R3 R4
IC
IB

Δ V

50 12.00 3.80 5.00 1.50 165.15 5.96

51 9.00 3.00 3.00 2.50 159.98 3.16

52 15.00 2.25 3.00 1.50 151.59 1.89

53 12.00 2.25 4.00 2.50 147.89 2.14

54 9.00 3.80 5.00 1.50 145.53 4.83

55 15.00 2.25 4.00 2.00 145.94 1.91

56 15.00 2.25 4.00 2.50 141.87 1.55

57 12.00 3.80 3.00 2.00 163.07 3.65

58 12.00 3.00 5.00 2.00 157.33 4.76

59 12.00 3.00 4.00 1.50 162.90 5.03

60 12.00 3.80 5.00 2.50 157.53 4.93

61 15.00 2.25 5.00 2.50 141.61 1.93

62 9.00 3.00 3.00 1.50 168.73 5.14

63 9.00 3.00 5.00 2.00 161.76 6.10

64 15.00 3.00 4.00 1.50 158.47 3.78

65 9.00 3.00 5.00 2.50 158.30 5.09

66 12.00 3.80 4.00 2.00 162.06 4.91

67 15.00 3.80 3.00 1.50 164.15 3.78

68 15.00 3.00 3.00 1.50 159.23 2.85

69 9.00 3.80 4.00 1.50 169.76 5.33

70 9.00 2.25 4.00 2.50 154.19 3.07

71 15.00 3.80 5.00 2.50 153.80 3.91

72 15.00 3.00 5.00 1.50 157.72 4.76

73 12.00 3.00 5.00 1.50 158.61 6.12

74 15.00 3.80 3.00 2.00 159.06 2.88

75 9.00 3.80 4.00 2.50 162.35 5.16

76 15.00 3.00 4.00 2.00 153.43 2.88

77 15.00 2.25 3.00 2.50 142.14 1.16

78 9.00 3.00 4.00 1.50 167.24 6.15

79 12.00 3.00 4.00 2.00 158.08 3.83

80 15.00 3.80 4.00 2.50 154.39 3.09

81 12.00 3.80 3.00 2.50 159.11 2.96
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Figure 2: ANN structure.
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behaviour of both the IC/IB and the Δ V . The results dealing
with the ANN were calculated with the Neural Network
Toolbox™ of MATLAB® (MathWorks Inc.).

As may be seen, the same ANN was employed to model
both outputs. Following a trial-and-error process, a hidden
layer with four neurons was selected for modelling the values
of both IC/IB and Δ V .

Figure 2 shows the neural network configuration, which
corresponds to four inputs (R1, R2, R3, and R4), four neurons
in the hidden layer, and two outputs (IC/IB and Δ V ). A
DOE was used to train the ANN network, in order to obtain
the main effect plot and the interaction effect plot. MSE was
used as a performance index.

A log-sigmoid, defined by (1), was used as the transfer
function (f1) for the hidden layer, and a pure linear func-
tion, shown in (2), was used for the output layer (f2),
while a Levenberg-Marquardt algorithm was used to train
the neural network.

f1 x = 1
1 + e−x

, 1

f2 x = x 2

Equations (3) and (4) may be obtained from Figure 2.
These equations allow us to determine both the IC/IB and
the Δ V as a function of the input parameters. As function
f2 is purely linear, (4) can be written as follows:

output1 = f1 W1 ∗ inputs + b1 , 3

output2 =W2 ∗ f1 W1 ∗ inputs + b1 + b2 4

As previously mentioned, simulation results shown in
Table 2 were used to train, to validate, and to test the neural
network (70%, 15%, and 15%), respectively. Figure 3 shows
the values obtained to measure the correlation between out-
puts and targets using the ANN. The performance index is
also shown in Figure 4.

Figure 4 shows the training performance as well as the
error histogram and the regression plot for the ANN con-
sidered in this present study. A conventional regression
analysis was also performed using the whole set of experi-
ments. The adjusted R-squared statistic indicated that the
regression model explained 88% of the variability in IC/IB
and 90% of the variability in Δ V . As can be observed, these
values are much smaller than those obtained with the ANN.
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Figure 3: Results using the ANN.
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Best validation performance is 0.064482 at epoch 1000 Error histogram with 20 bins

Error = targets − outputs

1000 epochs

Gradient = 0.00096317, at epoch 1000

Validation checks = 0, at epoch 1000

Mu = 1e − 07, at epoch 1000
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Figure 4: Neural network training state and error diagrams.

Table 3: First layer weights and biases.

Weights Biases

−0.3842 0.2583 −0.4092 −0.4423 −0.2399
−0.3798 0.2564 −0.3915 −0.4369 −0.2456
−0.8592 1.6675 0.0988 −0.3028 2.3048

3.7471 −3.5843 −3.7366 3.1795 18.8845

Table 4: Second layer weights and biases.

Weights Biases

−57.2214 60.3744 0.9869 164.7291 −166.7892
−174.2275 178.5871 0.9639 81.1056 −83.5416
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Equation (5) show the regression polynomials for the IC/IB
and the Δ V .

IC
IB

= 187 197 − 3 145 ∗ R1 + 12 026 ∗ R2 − 1 281

∗ R3 − 14 881 ∗ R4 + 0 781 ∗ R1 ∗ R2 + 0 295
∗ R1 ∗ R3 − 0 560 ∗ R1 ∗ R4 − 1 192 ∗ R2 ∗ R3
+ 2 275 ∗ R2 ∗ R4 + 1 848 ∗ R3 ∗ R4 − 0 031
∗ R2

1 − 2 530 ∗ R2
2 − 0 457 ∗ R2

3 − 0 085 ∗ R2
4,

Δ V = 3 093 − 0 528 ∗ R1 + 2 055 ∗ R2 + 1 480 ∗ R3
− 2 840 ∗ R4 + 0 086 ∗ R1 ∗ R2 + 0 013 ∗ R1
∗ R3 − 0 025 ∗ R1 ∗ R4 − 0 018 ∗ R2 ∗ R3
+ 0 072 ∗ R2 ∗ R4 + 0 020 ∗ R3 ∗ R4 − 0 001
∗ R2

1 − 0 335 ∗ R2
2 − 0 108 ∗ R2

3 + 0 344 ∗ R2
4

5

Tables 3 and 4 show the weights and biases of the ANN.
Once determined, the ANN may be used to predict the out-
put values. Moreover, it is possible to employ the ANN to
obtain response surfaces for the IC/IB and the Δ V as well
as to analyse the effect of the input variables on these param-
eters. As previously shown, the results of the neural network
are of higher accuracy than the results of the regression analy-
sis. The ANN therefore has many advantages over traditional
methodologies that analyse the DOE frommean values. How-
ever, the models obtained with the ANN are often more com-
plex than those obtained by regression analysis.

4. Discussion

Figures 5 and 6 show the neural network response sur-
faces for both the IC/IB and the Δ V . Once the weight
and bias parameters are obtained, it is possible to plot

the response surfaces. For example, the response surface
IC/IB = f R1, R2 is obtained when both R1 and R2 are varied,
while R3 and R4 are kept at their central values.

The same procedure can be used to determine the main
effect plot and the interaction effect plot. In this case, to
obtain the main effect plot, one input parameter is varied
while the others are kept at their central values, as shown
by Figure 7. The interaction plot between two parameters is
obtained by considering the higher and the lower values of
one parameter, while the other is modified in its variation
range and the rest of the parameters are kept at their central
values, as shown in Figures 8 and 9. In this way, it is possible
to obtain the interaction effect plot and the main effect plot
using the ANN, where the inputs have to be selected accord-
ing to the aforementioned procedure.

As mentioned earlier, the influence of the parameters
on both the IC/IB and the Δ V may be analysed by
means of the interaction effect plot and the main effect
plot. These plots can be obtained by determining the out-
puts provided by the neural network when appropriate
inputs are considered.

Figure 7 shows the main effect plot which has been nor-
malized from the expressions shown in (6), in which the
response variables were obtained from the data given by the
previously determined artificial neuronal network.

Ic
IbnormalizedRj

=
Ic/IbR j

−min Ic/IbR1,…,R4

max Ic/IbR1,…,R4
−min Ic/IbR1 ,…,R4

,

Δ V normalizedRj
=

Δ V Rj
−min Δ V R1,…,R4

max Δ V R1,…,R4
−min Δ V R1,…,R4

,
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Figure 5: Estimated ANN response surface for the IC/IB.
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normalizedRj
=

Rj −min Rj

max Rj −min Rj
6

As can be observed in Figure 7(a), for this present
study, when R2–R4 are kept at their central values, the
IC/IB reaches a maximum value, if R1 is kept at its mini-
mum value. The same behaviour is observed for R3 and R4.
On the contrary, IC/IB reaches a maximum value, if R2 is kept
at its maximum value, while R1, R3, and R4 are kept at their
central values.

As may also be observed in Figure 7(a), R2 is the param-
eter which affects the IC/IB more than any other, followed by
R1 and R4. The collector resistance (R3) parameter affects the

IC/IB less than any other, and its influence is much smaller
than the influence of the other three electrical resistances.

In the case of the gain voltage, as can also be observed
in Figure 7(b), the value of Δ V reaches a maximum, when
R2–R4 are kept at their central values, if R1 is kept at its min-
imum value. The same behaviour may be observed for R4. On
the contrary, the value of Δ V reaches a maximum, if either
R2 or R3 is kept at its maximum value, while the rest of the
electrical resistances are kept at their central values. As may
also be observed in Figure 7(b), the most influential parame-
ters are R2 and R3, followed by R1 and R4.

As can be observed in Figure 8, R2 exhibits a different
behaviour, with respect to R1 and to the behaviour shown
by R3 and R4. The same trend is observed in the three electri-
cal resistors R2–R4, when they are kept at either minimum or
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Figure 6: Estimated ANN response surface for the Δ V .
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Figure 7: Main effect plots showing the IC/IB and the Δ V values obtained with the ANN.
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maximum values and R1 is varied, that is, the lower the elec-
trical resistances, the higher the IC/IB. The influence of R3
and R4 on R2 is approximately the same, while the interaction
between R3 and R4 is much lower.

As can be observed in Figure 9, the behaviour of R4 in
relation to R1 differs in relation to R2 and R3. The same trend
is observed in the three electrical resistors R2–R4, when they
are kept at either minimum or maximum values, while R1
is varied: the lower the electrical resistance, the higher the Δ
V . The influence of R3 and R4 on R2 is very similar, but
its behaviour is different, the interaction between the collec-
tor resistance (R3) and the emitter resistance (R4) being much

lower than the other interactions between the electrical resis-
tances of the amplifier circuit.

5. Conclusions

In this present study, a neural network comprising four
inputs, a hidden layer of four neurons, and two outputs has
been used to model output variables in an electronic circuit.
The findings have shown that a factorial DOE combined with
an ANN can model the behaviour of IC/IB and Δ V in an
efficient way. Higher accuracy was obtained with the ANN
than with conventional regression techniques.
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Figure 8: Interaction effect plot showing the IC/IB values obtained with the ANN.
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Figure 9: Interaction effect plots for the Δ V obtained with the ANN.
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The methodology proposed in this study therefore has
the potential to assist the analytical design of electronic
circuits and their actual implementation, either with similar
features to that shown in this present study or with more
complex configurations.
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