
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Smart collision avoidance system for a
dual-arm manipulator

Inês Pinto Frutuoso

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Pedro Luís Cerqueira Gomes da Costa

Co-Supervisor: José Luís Magalhães Lima

Supervisor INESC TEC: Luís Freitas Rocha

July 19, 2018



c© Inês Pinto Frutuoso, 2018



Resumo

O crescente aumento do interesse e importância da robótica implica um avolumar de desafios
e problemas que têm de ser resolvidos. Do particular interesse por robôs humanoides advém a
necessidade de lidar com manipuladores de dois braços, os quais têm de ser capazes de executar
as tarefas pretendidas sem colidir um com o outro ou com qualquer objeto à sua volta. É este o
propósito desta tese.

O desvelo em evitar colisões é inato a qualquer ser humano, no entanto, tal não acontece para
seres artificiais, nestes esta característica é conseguida recorrendo a algoritmos de planeamento de
trajetória. Estes permitem a um robot, ou a um manipulador, chegar ao destino sem colidir com
nenhum obstáculo ou com ele mesmo.

O problema do planeamento de trajetórias tem sido exaustivamente estudado e várias soluções
já foram proposta, todavia, nenhuma destas foi especificamente desenvolvida para um manip-
ulador de dois braços. Ao longo deste projeto seis planeadores são escolhidos: RRT, RRT-
Conect, KPIECE, PRM, PRM* e EST. Todos eles são explicados e testados num manipulador
de dois braços, composto por dois braços UR5, com 6 graus de liberdade cada. Inicialmente os
planeadores são aplicados num ambiente sem quaisquer objetos e somente depois em situações
simuladas de operações de pick e place.

Os planeadores são comparados tendo em vista a viabilidade de aplicação a manipuladores de
dois braços, especialmente quando manipulam objetos. Este projeto não só apresenta uma solução
que assegura um caminho sem colisões para um manipulador de dois braços, mas é também,
segundo o nosso conhecimento, pioneiro na medida em que afere o comportamento de diferentes
planeadores, alguns dos quais não são comummente utilizados para este propósito.
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Abstract

The growth in the interest and importance of the robotic field entails a greater number of challenges
and problems that must be addressed. The particular passion and utility of humanoid robots lead
to the need to handle dual arm manipulators, these must be able to perform the assigned tasks
without colliding with each other or with any object in their surroundings. This is the purpose of
this thesis.

The concept of collision avoidance for a human is inherently natural, however for an artificial
being this is achieved through the usage of motion planning algorithms. These allow a robot, or a
manipulator, to achieve the desired goal without hitting any obstacle or other parts of itself.

The motion planning problem has been widely tackled and several different solutions have
been proposed, however none of these are specially designed to handle dual arm manipulators.
Throughout this project six different planners are chosen: RRT, RRT-Connect, KPIECE, PRM,
PRM* and EST. All of them are explained and then tested on a dual arm manipulator, composed
of two UR5 arms, with 6 degrees of freedom each. On a first instance the planners are applied in
an object free environment and only then in different simulated real life scenarios of picking and
placing tasks.

The planners are compared to evaluate which of them are able to handle dual arm manipulators,
specially when dealing with objects. This project not only presents a solution that ensures a
collision free path on a dual arm manipulator but, to our knowledge, is pioneer in the sense that
assess the behaviour of different planners, some of which are not commonly used for this specific
purpose.
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Chapter 1

Introduction

Robots have an ever increasing importance in today’s society and in our daily life. Industry wise,

dual arm robots play a central role since they are designed to behave in a similar manner to a

human being and present a more versatile set of behaviours and tasks than a single arm robot. This

thesis aims to operate in an anthropomorphic dual arm robot, in order to start we will do a first

approach on what is an anthropomorphic dual arm robot and its schematics.

1.1 Anthropomorphic Dual Arm Robot

An anthropomorphic robot, as the name indicates, is a robot that somehow mimics a certain human

condition, this means that an anthropomorphic dual arm robot is a robot that intends to replicate

human arms and their functions.

To assemble any kind of manipulator one needs to use both joints and links; joints are respon-

sible for the degrees of freedom (DoFs) - the movements - of the robot and links are the parts

that keep the joints attached. Robotic joints are divided in manly two categories: prismatic and

revolute (there are more but these are the most common and relevant for this work). As depicted

in Fig. 1.1, prismatic joints are responsible for linear movements and revolute joints for rotational

movements.

An anthropomorphic manipulator, as stated before, aims to replicate the movements of a hu-

man arm, therefor it has to have at least three revolute joints, as is represented in Fig. 1.2 - there

are also some anthropomorphic manipulators that in addition have three prismatic joints, one in

between each of the revolute joints. The manipulator is fixed in a base and attached to it has a

rotational joint that rotates along an axis z0, this axis goes through another revolute joint that ro-

tates around z1 and has parallel to it another joint that rotates along z2. An additional revolute joint

is added in order to replicate the rotation of the wrist. A dual arm anthropomorphic manipulator,

in addition to two anthropomorphic manipulators, has also a rigid body - that can take several

forms, from a simple cylinder to an elaborated torso - that connects the two arms. The details and

schematics of the manipulator used throughout this project will be presented in Chapter 2.
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2 Introduction

Figure 1.1: Prismatic (Left) and Revolute (Right) Joints [1]

1.2 Problem Overview

The problem we aim to tackle is simple to understand, if there are two robots working in the

same workbench and on the same piece what might happen is, when the arms are moving to the

defined working position, they may bump into each other. It is obvious that this entails a series

of problems, not only will the arms not reach the desired positions, and therefor not perform the

wanted task, they can be damaged in the process. It is then in paramount importance that a solution

or a method to avoid this presents itself.

Collision avoidance was born through the necessity of addressing this problem. In the present

day collision avoidance is already implemented in many devices (one obvious example is its im-

plementation in automated vehicles) and it is an absolute indispensable feature when it comes to

security.

Figure 1.2: Schematics for an anthropomorphic manipulator [1]
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The base concept of collision avoidance for the human mind is quite simple, if there is an

obstacle do not crash with it, but for a robot this concept is not easy to implement. There are two

different types of collision avoidance: one that the robot knows the plant (its surroundings and

the obstacles that it contains) and has to plan the path to follow without hitting anything and the

other where for each defined moment the robot has to sense its surroundings and evaluate if there

is any object close by that needs to be avoided and, if so, decide how to do it. Both methods entail

different disadvantages, the latter implies that the robot has a series of sensors that allows it to

sense its surroundings for obstacles, the former is not equipped to deal with unforeseen situations.

In this project we will deal with a senseless robot, which means the path planning is done

before the motion of the robot and cannot be changed midways. Due to the frequency of this

problem there are already several proposed solution and methods developed throughout the years

to solve the collision avoidance issue, however these methods are not specially designed for dual

arm manipulators. This work aspires to analyze the existing solutions and evaluate how they

perform when applied to a dual arm manipulator. In the end, we aim to find a motion planner

capable of planning the path for both arms in a way that they do not bump into one another or with

any object present in their surroundings.

1.3 Document Overview

Throughout this document there is a detailed explanation of all steps necessary to complete this

work. First, in Chapter 2, the forward and inverse kinematics of each arm will be thoroughly

explained. Chapter 3 presents a review of several motion planners, commonly used for collision

avoidance, between them are the planners that will further one be applied to the dual arm manipu-

lator. After having understood the kinematics and the motion planners we step in Chapter 4 where

a study of the state of the art of motion planning on dual arm manipulators is done. Following this

Chapter 5 presents the used implementation and some experiments’ results. Here the programs

along with some first tests’ results are exposed. Chapter 6 replicates and discusses the results ob-

tained when simulating real life like scenarios. Finally, Chapter 7 states all the conclusions taken

from this work as well as some recommended future work to pursue.
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Chapter 2

Forward and Inverse Kinematics

In order to operate any kind of manipulator it is fist necessary to understand its kinematics, i.e.

how the manipulator moves and how each change in one of the joints affects the others and the end

effector pose; it is also important to know which configurations can be achieved by the manipulator

and which cannot. There are two types of kinematics: forward kinematics (FK) and inverse kine-

matics (IK). The former seeks to calculate the end effector’s pose for a given joint configuration

whereas the latter intends to know the joints’ configuration for a wanted end effector’s position.

As stated in Chapter 1, an anthropomorphic manipulator can take many forms. During this

project we will use two anthropomorphic arms, each with a spherical wrist, whose schematics can

be seen in Fig. 2.1. In addition to the body, shoulder and elbow joints in Fig. 1.2, there are three

other revolute joints that grant the manipulator three more degrees of freedom. Each revolute joint,

qi, allows a rotation of θi around its z axis. Connecting each joint qi to qi+1 there is a link with a

size of di. The end effector is represented as a gripper in the far right of the picture.

Before we start analyzing the forward and inverse kinematics of the manipulator there are a few

concepts that are fundamental to grasp. The first of them is the concept of frame, a frame can be

interpreted as a referential, in R3 it has an x,y and z axis, all perpendicular with one another, being

the origin the point where they intercept. In robotics is common that each joint has associated with

itself a certain frame, therefor it is important to know how one can transform a point ~Q in frame i,

with coordinate (xi,yi,zi), to the same point but in respect to frame j, with coordinate (x j,y j,z j).

In order to achieve this one can use a transformation matrix T j
i , that will transform coordinates in

frame i to the frame j, being T j
i :

T j
i =

[
R j

i
~P j

i

0 1

]
(2.1)

Where R j
i is the rotation matrix that characterizes the rotation between both frame and ~P j

i

the vector around which the translation is carried out. Having the transformation matrix we can

compute the wanted ~Q j
i :

~Q j
i = T j

i
~Qi (2.2)

5



6 Forward and Inverse Kinematics

Figure 2.1: Schematics of an anthropomorphic arm with spherical wrist

Another important feature about transformation matrices is that they can be associated with

one another, i.e. if we have a point ~Q0 in frame 0 and want to express it in frame k we can

apply (2.2) where T j
i will be the successive multiplication between all the frames from 0 to k, such

that:

~Qk
0 =

k−1

∏
i=0

T i+1
i

~Q0 (2.3)

Having understood these basic concepts we can now look into the forward and inverse kine-

matics of the manipulator.

2.1 Forward Kinematics

Forward Kinematics is the process of calculating the end effector’s position based on the config-

uration of the joints. This implies that if we have set a certain joint configuration we can then

compute the end effector’s pose.

In fact, a homogeneous transformation can be represented by six numbers, three of them in

respect to the translation and the other three to the rotation. However Jacques Denavit and Richard

Hartenberg [2] introduced what is now known as the Denavit–Hartenberg (DH) method - or simply

DH method - that allows the homogeneous transformation to be represented by only four elements,

if the right coordinate frame is chosen. The coordinate frame assignment must follow the following

rules:

1. zi should be the qi joint’s actuation axis

2. x0 and y0 should be assigned according to the right hand rule
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3. iteratively chose oi, xi, yi and zi with respect to oi−1, xi−1, yi−1 and zi−1 such that, if:

(a) zi and zi−1 are not in the same plane: then there is a line perpendicular to both axes

that connects them by the shortest distance. This line should be xi and the point where

it intersects zi shall be the origin of the frame, oi;

(b) zi and zi−1 are parallel: xi should be in the line perpendicular to both axes and should

cross oi−1;

(c) zi and zi−1 match: xi should be in the line perpendicular to them and can start at any

point of the axes;

(d) zi intersects zi−1: xi should be perpendicular to the plane formed by zi and zi−1 and oi

is the point where zi and zi−1 intersect.

After this step is complete one can then compute a homogeneous transformation as:

Ai =


cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinai cosai di

0 0 0 1

 (2.4)

Where the DH parameters are:

• ai - distance between zi−1 and oi;

• αi - angle between zi−1 and zi;

• di - distance between xi and oi−1;

• θi - angle between xi−1 and xi;

To sum up if one seeks to compute the transformation matrix from joint qi to q j one can obtain

it by:

A j
i =

j

∏
k=i+1

Ak (2.5)

Applying this to the manipulator represented in Fig. 2.1 we get the DH parameters in Table 2.1.

Where θi, i = {1, ...,6} are the only variables during the manipulator’s operation.

With the Table 2.1 and (2.4) we can easily compute the end effector pose with each joint

configuration.

Having calculated the DH parameter and understood the forward kinematics we can now step

in to the inverse kinematics.
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Joint ai αi di θi

1 0 π

2 d1 θ1

2 d2 0 0 θ2

3 d3 0 0 θ3

4 0 π

2 d4 θ4

5 0 −π

2 d5 θ5

6 0 0 d6 θ6

Table 2.1: DH parameters

2.2 Inverse Kinematics

Completed the analysis of the forward kinematics and examining the DH parameters in Table 2.1

we can conclude that the only parameters that change with the pose of the end effector are the

angles θi. Since the inverse kinematics concerns itself with determining the configuration of each

joint for a given end effector pose what it aims to do is, given T 0
6 , which is the end effector’s

position and orientation in frame 0, determine each θi.

We start with a desired end effector pose:

T 0
6 =


xx yx zx px

xy yy zy py

xz yz zz pz

0 0 0 1

 (2.6)

where xi,yi and zi, i = {x,y,z} represent the orientation of the end effector and px, py and pz

represent the position.

First we will determine the angle θ1. In order to do that we analyze the transformation between

frame 1 and 5. We know that T 0
6 must be equal to ∏

6
k=1 Ak, using (2.5) to manipulate these

expressions to find the transformation from frame 1 to 5 we get:

(A1)
−1 T 0

6 (A6)
−1 =

5

∏
k=2

Ak (2.7)

If we examine the position on the z axis - the third line of the forth column - of each multipli-

cation it will result in the following equality

(px−d6zx)sinθ1 +(d6zy− py)cosθ1 = d4 (2.8)

Knowing that

~P0
5 =

px−d6zx

py−d6zy

pz−d6zz

 (2.9)

And aided by the upper view seen in Fig. 2.2 we conclude that:
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Figure 2.2: Upper View

θ1 = β +α +
π

2
(2.10)

where

β = atan2
((

~P0
5

)
y
,
(
~P0

5

)
x

)
(2.11)

α =±arccos

 d4√(
~P0

5

)2

y
+
(
~P0

5

)2

x

 (2.12)

Having computed θ1 it is possible to obtain θ5 by repeating the same process but now consid-

ering the transformation from frame 1 to 6, resulting in:

(A1)
−1 T 0

6 =
6

∏
k=2

Ak (2.13)

Examining once again the position on the z axis yields:

px sinθ1− py cosθ1 = d4 +d6 cosθ5 (2.14)
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Figure 2.3: Schematics of joints 1 and 2 as a 3R manipulator

Allowing us to directly compute θ5 as:

θ5 =±arccos
(

px sinθ1− py cosθ1−d4

d6

)
(2.15)

Calculated θ1 and θ5 we can now compute θ6 using once again the matrices in (2.13) but this

time considering the z coordinates of the rotation, i.e. the third line except the last column, which

results in:

xx sinθ1− xy cosθ1

yx sinθ1− yy cosθ1

zx sinθ1− zy cosθ1

=

 cosθ6 sinθ5

−sinθ5 sinθ6

cosθ5

 (2.16)

Solving the system will lead to:

θ6 = atan2
(

xx sinθ1− xy cosθ1

sinθ5
,
yx sinθ1− yy cosθ1

−sinθ5

)
(2.17)

There are now three joints whose angles we still need to compute, however if we analyze

Fig. 2.1 we can see that, if only joint 2 and 3 are considered, the manipulator becomes a classical

3R manipulator. A visualization of this is present in Fig. 2.3

In this type of manipulators θ3 is computed by:

θ3 =±arccos

(P1
3
)2

x +
(
P1

3
)2

y−d2
2 −d2

3

2∗d2 ∗d3

 (2.18)

Where (P1
3 ) is the position of the frame 3 in respect to frame 1, which is encoded in the fourth

column of the matrix A−1
1 T 0

6 A−1
6 A−1

5 A−1
4 . From Fig. 2.3 we can also see that θ2 =−(δ − γ), from
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simple trigonometry we can state that

δ = atan2
((

P1
3
)

y ,
(
P1

3
)

x

)
(2.19)

And from the law of sines we compute γ as:(
P1

3
)2

x +
(
P1

3
)2

y

sinφ
=

d3

sinγ
(2.20)

γ =±arcsin

 sinφ ∗d3(
P1

3

)2
x +
(
P1

3

)2
y

 (2.21)

We are now missing only θ4, however from (2.4) we know that:

θ4 = atan2
(
(A4)2,1 ,(A4)1,1

)
(2.22)

being (A4)i, j the element from A4 in row i, column j. Knowing all the other joints’ configura-

tions it is simple to compute A4 as:

A4 = A−1
3 A−1

2 A−1
1 T 0

6 A−1
6 A−1

5 (2.23)

Having computed the angles of each joint the inverse kinematics is complete, we can now

know the configuration of each joint for a desired end effector. In addition it is important to men-

tion that this type of manipulator entails that for a desired pose there is more than one possible

configuration. For example one can put the elbow up or down, the wrist can be "in/down" or

"out/up". This characteristic can be exploited as an advantaged but can also present some chal-

lenges since not all the configuration present the same manipulability.

Here we presented the forward and inverse kinematics for a single arm, since the kinematics is

applied separately to each arm and the robot’s body has only fixed joints there is no need to have

in consideration the body of the robot.
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Chapter 3

Path Planning Algorithms

Path planning, or motion planning, is a highly valuable and studied field not only in robotics but

in other fields of studies. It has been used in digital animation [3], computational biology [4],

self driving vehicles [5], medical surgery [6] and several different robots, from domestic to indus-

trial [7]-[8].

Motion planning has the goal to find a path from A to B without hitting any obstacle. This can

be done either online, where the plan is designed as the robot moves, or offline, where the path

is decided ahead and then executed [9]. The former usually relies on sensory based information

provided along the movement, whereas the latter might be less capable of dealing with unforeseen

situations or unexpected obstacles.

The first step in motion planning is the definition of the configuration space, which can some-

times be a difficult and daunting task. The configuration space is the space of all transformations

possible. Lozano-Perez [10] divides this space, C, in two classes: C f ree if the configuration does

not contain any obstacle or Cobs otherwise. The robot is commonly represented as a configuration,

q, which has the same dimension as the configuration space it moves in. The goal and start con-

figuration are usually designated as qgoal and qstart and a path is a set of connected configurations

that connects qstart to qgoal without any of them being in Cobs.

Throughout this chapter we will approach several different motion planning algorithms, in do-

ing so we will also discuss what are the main advantages and downsides of each of them. To do

this there is a concept that has to be clear, that is the notion of completeness. Completeness, in

motion planning, refers to the ability of an algorithm yielding a solution if there is one in a finite

time. However, due to the complexity of some problems and to computational limitations, this

is not always achievable, leading the way to different forms of completeness, such as resolution

completeness, that allows the algorithm to find a solution if one exists at a given resolution of dis-

cretization, and probabilistic completeness, which means the probability of the algorithm finding

a solution if there is one converges to 1 as time goes by [9].

13
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3.1 Roadmaps

Roadmaps are a familiar concept to anyone that has ever wanted to go from point A to point B,

which is precisely what motion planing aims to do, so it is easy to understand why this concept

has been extended to the field of path planning.

The similarity from common roadmaps to roadmaps in the scope of motion planning is that

when we want to travel from city A to city B we usually leave city A, get on the closest high-

way network and when we are approaching city B we take the nearest exit onto "smaller" roads.

Applying this to motion planning we can say that we have a starting point, qstart , a set of known

configuration that form several paths between themselves - the equivalent of the highway network

- and a ending point, qgoal . Like in the previous example we have to have a path that connects

qstart to the known configurations and one that connects these to qgoal .

It is important to define exactly what is a roadmap (from now on we will refer to roadmap in

the scope of motion planning). A roadmap, RM, is a union of one dimensional curves if for all

qstart and qgoal there is a path such that [9]:

• there is a path from qstart to q′start , where q′start ∈ RM;

• there is a path from q′goal to qgoal , where q′goal ∈ RM

• there is a path from q′start to q′goal in RM

Thus the final path will be qstart → q′start → q′goal → qgoal .

One main advantage of roadmaps is that the same configuration can be used multiple times

without the need to be computed once again. For any qstart and qgoal it only needs to compute a

path to or from the roadmap and not the whole path or even the whole roadmap.

Although there are several different roadmaps algorithms, Delaunay triangulation [11], adap-

tive roadmaps [12], silhouette methods [13], just to mention a few, we will only approach two of

them: visibility graphs and Voroni diagrams. Both of these methods are based on graphs, which

are defined by nodes and edges, which is the name given to the connection between the nodes.

3.1.1 Visibility Graph

Visibility graphs are the simplest instance of a broader category named visibility maps. In this

type of map each node is a vertex of an obstacle, and, as the name states, a node is only connected

to another if it is visible to him, i.e. if we can draw a straight line from vertex i to j without

intersecting any obstacle. Besides the vertices of the obstacles, the graphs also include the start

and end point, qstart and qgoal . An example of this architecture can be seen in Fig. 3.1.

The process of creating a visibility graph is simple and follows an algorithm commonly known

in computational geometry as plane sweep algorithm. This algorithm sweeps a line segment l,

starting in the vertice we are analyzing the visibility, from 0 to 2π; for each intersection between

l and a vertex the angle of l is stored as αi. Then a vertex list, V , is initialized with the angles αi
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Figure 3.1: Example of a Visibility Graph. The thin lines represent the edges and the doted line
the shortest path between qstart and qgoal [9]

sorted. Next a set, S, is initialized with the edges that intersect l when it is horizontal, i.e. with

angle 0. Finally the list is updated. The whole algorithm for a vertex υ can be described as:

1. Rotate l from 0 to 2π storing for each intersection with a vertex the angle αi;

2. Sort α and store it in V ;

3. Initialize S with the edges that intersect l when its angle is 0;

4. for each element of V :

(a) check if the vertex of V is visible to υ , if so add the edge to the visibility graph;

(b) check if if the vertex of V is the beginning of an edge not yet in S, if so add the edge

to S;

(c) check if if the vertex of V is the ending of an edge in S, if so remove the edge from S;

Where step 4 describes the process of updating both the visibility graph, V and S. This last

set is the one that allows to know if a the vertex υi is visible to υ since if the line that connects

both vertices does not intersect the closest edge in S and if l does not intersect the interior of an

obstacle, then υi is visible to υ .

This method, in addition to being complete, also yields the optimal path in terms of length

but this presents one major disadvantage, since the nodes mostly represent obstacles vertices, it

implies that the path to follow will be very close to the obstacle, in case of minor errors of control

or disturbances this may lead to unwanted collisions. To avoid this problem one can represent

the obstacles bigger than they actually are or change the optimal path found to one, that although

non optimal, will force the robot to move further away from the obstacles. Another feature worth
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Figure 3.2: Example of a Voroni Diagram. [14]

mentioning is that as the number of obstacle or vertices increases so will the size of the graph,

hence this method is fast and efficient in sparse environments whereas other methods may provide

better results for denser scenarios [14].

3.1.2 Voroni Diagram

Another example of a Roadmap type motion planning algorithm are Voroni Diagrams. We can

trace Voroni Diagrams’ history as far back as the nineteenth century and their applications in

computer science are vast, from file searching, cluster analysis to collision avoidance [15].

This method, opposite to the visibility graph, has not in its core the vertices or edges of an ob-

stacle but rather the middle point between these. A Voroni Diagram is then a connection between

points that are equidistant to the obstacles that surround them - Fig. 3.2.

There are three ways to create a Voroni Diagram: sensory based construction, polygonal space

analysis or through the bushfire method. We will now briefly approach the operation mode of each

one of them.

3.1.2.1 Sensory Based Construction

As the name states this method implies that the robot must have in its features sensors capable of

detecting objects around it. To create the Voroni Diagram the robot must first scan the environment

and for each point measure the distance between himself and the surrounding objects, placing

himself in the middle point of these. As he wanders around the Voroni Diagram will be created.
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Figure 3.3: Types of equidistant set of points. [9]

3.1.2.2 Polygonal Space

An obstacle can be defined by its vetices and edge, the polygonal space analysis takes advantage

of these features to create the Voroni Diagram. The set of points equidistant between two edges is

a line, between two vertices is also a line and between an edge and a vertices is a parabola, as it

can be seen in Fig. 3.3.

3.1.2.3 Bushfire Method

The bushfire method, or bushfire algorithm, requires that a grid be lay on the environment, each

square on the grid shall be labeled with either 0 if it has no obstacle in it or 1 otherwise. This grid

is then iteratively updated being the final result the same grid with each free pixel now containing

the distance to the nearest obstacle.

If we view the bushfire method as a wave that starts at each obstacle and then propagates

throughout the free space, then the points where the waves crash are points on the Voroni Diagram.

After the Voroni Diagram is created q′start and q′goal can be computed by drawing a line along which

its distance to the boundary of the obstacles increases the fastest.

Although this algorithm is also complete it does not yield the optimal solution path in terms

of length.

3.2 Cell Decomposition

Another form of motion planning is based on cell decomposition, where the field is divided into

several polygons called cells. The most common cell decomposition is the trapezoidal decom-

position, where the environment is carved into trapezes. Each trapeze is then adjacent to one or
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Figure 3.4: Field division in different cells (Up) and the respective adjacency graph (Bottom). [9]

more trapezes, this allows the cell decomposition to be seen as an adjacency graph, where each

node is a cell - trapeze - and an edge between node exists if the trapezes are adjacent, i.e. if they

share a boundary. Interestingly this adjacency graph can also be seen as a roadmap, however, cell

decomposition differentiates itself from other methods by providing coverage, in the sense that

can provide a path that covers all points in all the free space.

We can now break down this method into two steps:

1. Division of the field into cells (and consequent construction of the adjacency graph);

2. Computation of the path from qstart to qgoal .

The first step follows a plane sweep line algorithm as explained in 3.1.1 but the environment

is swept by a vertical line, l, from left to write - along the x axis - and for each vertex an upper and

lower vertical line is drawn. The vertex list V is now a sorted list with the x coordinates of each

vertex and S is still the list of edges that l intercepts at the moment. After this step we obtain a cell

decomposition and an adjacency graph as seen in Fig. 3.4
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Figure 3.5: Final path from qstart - in c1 - to qgoal - in c5 - (Up) and the respective sequence nodes
(grey) in the adjacency graph (Bottom). [9]

Obtained the adjacency graph it is now possible to apply a search algorithm to find the se-

quence of nodes from qstart to qgoal . The final path can then be computed by connecting midpoints

of the boundaries to the center of each trapezoid as in Fig. 3.5

Here we explained in further detail the trapezoidal decomposition, however, other polygons

can also be used, to this we call exact cell decomposition. Still, it is also possible to decompose

the surroundings in to approximate cells [16], this type of division allows the cells to be labelled

full, if all of its area is composed by an obstacle, mixed, if only part of its area is filled by an

obstacle, or empty, if no obstacle is inside it.

3.3 Sampling Based Planning

So far we have studied two different kinds of motion planning algorithms, however as the com-

plexity of the problems grows these methods fail to yield a fast solution, thus Sampling Based

Planning (SBP) is usually the path to pursuit.

SBP was proposed in order to solve path planning problems in a 6 DoF robot [17], which

makes it an ideal solution for the problem that this project aims to tackle. This method, as the
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name refers, does a sampling of the configuration spaces and then with the samples it recovered

defines the path to follow. The sampling of the surroundings provides SBP methods the peculiar

feature of not having to handle the whole configuration space but only the sampled points of it.

Although this type of algorithms have proven themselves successful in solving complex problems

they do not ensure completeness, but rather probabilistic completeness, where the probability of

finding a solution converges to one as time goes by.

The family of SBP algorithms is broad so we will not approach all of the known methods.

3.3.1 Probabilistic Roadmap Method

Kavraki et al. [18] divide the PRM in two phases: the learning phase, where the roadmap is created,

and the query phase, where the path between a start and end configuration is computed. PRM is

also an example of a roadmap method, so the rules stated in 3.1 still apply. The main difference

between this method and the other roadmaps described before is that the creation of the roadmap

does not deal with the whole configuration space but rather samples of it. Despite that PRM still

handles the configuration space like a graph, where each configuration is a node and each edge is

a path between configurations.

The sampling of the surroundings can be done following several different distributions, from

uniform to gaussian, and the choice of the sampling process is of the utmost importance. After the

sampling strategy has been defined the construction of a probabilistic roadmap goes as following:

1. A node qrand is sampled from the configuration space;

(a) If qrand ∈Cobs forwent qrand ;

(b) If qrand ∈C f ree add qrand to the graph;

2. Find all nodes near qrand ;

3. Attempt to connect all nodes found to qrand ;

4. Check if there is collision and disconnect colliding paths;

This process is repeated until a certain number of nodes is reached resulting in the roadmap

seen in Fig. 3.6

After the learning phase is completed the query phases is the same as any other roadmap

method, a path from qstart and qgoal to the roadmap is found, resulting in q′start and q′goal . Then a

path between q′start and q′goal is computed. Being the final path qstart → q′start → q′goal → qgoal .

3.3.2 Rapidly-Exploring Random Trees

Especially designed for handling nonholonomic constraints and high degrees of freedom manipu-

lators RRTs were introduced by LaValle [20] and, although they are descendant from PRM, differ

from it by being biases towards the free configuration space. Another particular characteristic of

this method is that the path is iteratively searched from qstart to qgoal .
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Figure 3.6: Example of a probabilistic roadmap. [19]

So far, and in most path planning problems, the configuration space is usually used as the

metric space, however in RRT a more general concept is used, the state space. The state space

can have many interpretations, but in RRT it encodes both the configuration space and velocity.

Similarly to the configuration space, a state space X can be divided in Xobs - in this are also included

states that violate the velocity bounds - and its complement X f ree. A nonholonomic constraint is

defined by ẋ = f (x,u), being ẋ the derivative of the state x over time. In order to achieve a new

state xnew a control u is applied to x for a period of time ∆t, which mathematically translate to

integrating f (x,u) for a fixed interval of time ∆t.

A tree - in mathematics - is a particular type of graph where each pair of nodes is connected

by exactly one path, so RRT stores the state space as a series of nodes and edges. In this method

the path from xstart to xgoal is computed according to:

1. The search begins at xstart

2. A random state xrand is sampled from the configuration space;

(a) If xrand ∈ Xobs forwent xrand ;

3. The nearest state in the tree to xrand , xnear, is computed using the Nearest Neighbor method;

4. An input u is chosen in order to minimize the distance between xnear and xrand

5. The input u is applied to xnear for a time ∆t, resulting in xnew
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Figure 3.7: Rapidly-Exploring Random Tree - Algorithm example. [21]

6. xnew is added to the tree, along with a connection - edge - with xnear

When xnew is xgoal then a path from xstart to xgoal has been found. It is important to notice that

the need to compute xnear comes from the fact that a fixed interval of time ∆t is applied to u, which

results in a maximum distance, ε , that can be travelled from xnear- Figure 3.7.

3.3.3 Rapidly-Exploring Random Trees-Connect

A couple of years after RRT was created a different approach to it is developed, thus giving

place to Rapidly-exploring Random Trees-Connect, commonly referred to as RRT-Connect. This

method was specially conceived in order to manipulate 7 DoF human arms for the automatic

animation of grasping and manipulation tasks for animated characters in interactive 3D virtual

environments [21].

RRT-Connect combines the concept of RRT with a greedy heuristic that attempts to connects

two trees, the existence of two trees is another aspect that differentiates the two methods. Each tree

is initialized with either the initial or final configuration. The idea is that RRT provides a rapidly

uniform exploration of the free space while RRT-Connect takes advantage of these characteristics

but directs it towards the connection of both trees, leading RRT-Connect to yield faster results.

In Section 3.3.2 and in Figure 3.7 is clear that there is a maximum distance of ε that can be

travelled towards q, in RRT after xnew has been added to the tree a new xrand is sampled, however

in RRT-Connect the path between qnear and qrand is continuously built until qrand or an obstacle

is reached, only then a new random sample is taken. Each tree is extended in turns and in the

end of each turn an attempt to connect the new node to the other tree’s nearest node is made, if

this attempt is successful then both trees are connected and a path connecting the start and goal

configuration has been computed.

3.3.4 Kinematic Planning by Interior-Exterior Cell Exploration

As robotic systems become more complex, physics-based simulation becomes a necessity, this

is the main catalyst for the development of Kinematic Planning by Interior-Exterior Cell Explo-
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Figure 3.8: State space discretization. [22]

ration (KPIECE) [22]. Although it is also categorized as a sampling planning algorithm, KPIECE

presents a distinctive approach from the previous two methods, first it is designed for systems

where only a forward propagation routine is possible and second no state sample or distance met-

ric are necessary (which is a great advantage for problems where these are hard to define). All

these features make this model appropriate to handle problems not characterized by equation of

motion but rather by physical models.

Analogously to the previous examples, KPIECE also builds a tree of motions in the state space.

Each motion µ is composed of (s,u, t), where s is a state in the state space, u is a control in the

control space and t is the amount of time that u is applied from s to produce a motion. The state

space is discretized and divided in levels and each level in cells. Each level provides a different

resolution, being that lower levels have higher resolution - Figure 3.8. A level k can then be

formally defined by:

∀i∈{1,...,k} : Li = {pi|piis a cell in the grid at level i} (3.1)

∀i∈{2,...,k} : ∀p ∈Li,Dp = {q ∈Li−1|q ∈ p}, such that (3.2)

∀p ∈Li,Dp 6= /0

∪p∈Li ,Dp = Li−1

∀p,q ∈Li, p 6= q,→Dp∩Dq = /0

Viewing the whole problem we get that for a motion µ there is one, and only one, cell at each

level that µ is part of, if this requirement is not fulfilled then the motion is splitted into smaller

motions. Hence, a motion will be a whole set of cells - one for each level -, this set is called a cell

chain, i.e. a cell chain for k levels of discretization is k-tuple. These cell chains are the base of the

motion tree.
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It is important to understand that the cells are only instantiated if a motion requires so, this

leads to the concept of exterior and interior cells (thus the algorithm’s the name). A cell is con-

sidered as exterior if it has, at its level, less then 2n instantiated neighboring cells (diagonal neigh-

boring cells are ignored), being that n is the dimension.

In the beginning of the algorithm the motion tree is initialized with a motion µ0 that contains

the initial state, qstart . An empty grid structure, G, is created and the motion µ0 is added to it

according to:

1. Divide the motion so that the motion is contained in one cell at each level;

2. For each divided motion

(a) Find the respective cell chain, Instantiating cells if needed

(b) Add the said motion to the cell at the lowest level in the chain

(c) Update the lists of interior and exterior cells

This process can be extended to any motion one seeks to add to G. At this moment the motion

tree only has the initial motion, in order to expand it is needed that, for each iteration:

1. A cell chain c is chosen from G, with a preference for exterior cells;

2. A motion µ is selected from c with a half normal distribution

3. A state s is selected along µ

4. A control u and a time t are randomly sampled

5. If a motion (s,u, t) is valid then

(a) The valid motion µ0 = (u,s, t) is constructed

(b) If µ0 already reaches the goal region then the path to µ0 is returned

(c) The motion µ0 is added to G

KPIECE has proven to yield solution to complex problems and with relative fast planning

times, mostly due to its parallel implementation, taking advantage of the increasing computational

power over the last few years.

3.3.5 Expansive Space Trees

Extensive Space Trees (EST) [23] share some of PRM’s base principle, similarly to this algorithm

EST also creates a roadmap, however its sampling is directed towards the areas of interest of the

problem to solve.

EST is based in the principle that if an expansive configuration is uniformly sampled at random

and for each pair of samples only points that have straight line paths are connected, then the

resulting roadmap are highly probable to be connected regions of the configuration space.
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Besides the parity with PRM due to the usage of a roadmap EST also share a common feature

with RRT-Connect, in both planners two separate trees are built, one from the initial configuration,

qstart , and the other from the final one, qgoal . However, instead of building the roadmap for the

whole configuration space, merely the part of the roadmap that is connected to either the initial

or final configuration is built. In a first instance only the neighbourhood of qstart and qgoal are

sampled, then after a connection is found the neighbourhood of the new found configuration is

sampled, this process repeats itself until a path is found. The algorithm can be then divided in two

different phases, the expansion and the connection.

The expansion process is executed by:

1. Picking a node, n from the roadmap with a probability 1
w(n)

2. Sampling K points from the neighbourhood of n

3. For each q configuration picked;

(a) Calculate the probability w(q) and retain q with a probability of 1
w(q)

(b) If q is not in Cobs and there is a straight line path between n and q then add q to the tree

with an edge connecting n and q

There is a key consideration in these steps and that is the probability 1
w(x) , where is x represents

a configuration (or node). w(x) is the number of sampled nodes in the tree that lay in the neigh-

bourhood of x, being that this neighborhood is defined by all the configuration within a maximum

set distance.

The process explained above applies to both trees, the one whose root is the initial configura-

tion, Tstart , and whose root is the final configuration, Tgoal . It is necessary to check if a connection

between the two is possible, and if so a path from qstart to qgoal has been found. Thus the connec-

tion phase is set by:

1. For every x in Tstart and y in Tgoal

(a) Check if x and y are close enough to one another

(b) If so, determine if there is a straight line path from x to y

Step 1a is necessary to reduce computational costs, since it is unlikely that a straight line path

can be computed if the configurations are too far apart. If the final line returns a positive outcome

then a path has been computed.

3.4 Search Algorithms

Having described several motion planning algorithms there is still one more issue that we must

discuss in order to wrap up this chapter and that is search algorithms. We have refrained from

explaining how a path between two nodes within a graph can be found and that is what search
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Figure 3.9: Example of a tree (Left) and a graph (Right).

algorithms are used for, they seek to find a sequence of nodes within a graph that, by being con-

nected, can lead from a starting to a goal node.

Previously we have explained that a graph is the combination of nodes and their connection,

to which we call edges, we have also referred to trees, that are acyclic graphs - you cannot form

a path from and to node ni without visiting one other node at least twice. For clarification an

example of a graph and a tree is presented in Fig. 3.9. Each node in a tree can have children -

nodes in the higher level - if a node has no children then it is called a leaf. All nodes must have a

single parent - a node in the lower level - except for the root that is characterized by not having a

parent node.

In this section we will explain two search algorithms, depth-first and breadth-first search, by

first stating how they apply to trees and then extending them to graphs. We will then describe two

other search algorithms commonly used in motion planning.

3.4.1 Depth-first Search

Depth-first search in a tree starts by examining the root then moves on to one of its children, then

to the child’s children and so on until a leaf is found. If so, then it backs out a level and moves to

another child until it finds a leaf again. If the goal node is found then the search stops and a path

from the root is found.

In a graph there is no concept of levels or children but in order to simplify we will assume

that, in a graph, a node’s ni children are the nodes connected to it whose edge did not lead to it.

The concept of level is replaced by what is called link length, which is the number of edges in a

path. Extending the tree depth-first search to a graph we would have an initial node, from whom

we would choose a child - in this case every node connected to it is a child -, this process would

be repeated iteratively increasing the link length from the start node until a childless or already

visited node is reached.

The difference between tree and graph depth-first search can be seen in Fig. 3.10.
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Figure 3.10: Depth-first search in a tree (Left) and in a graph (Right)

3.4.2 Breadth-first Search

Opposite to depth-first search the breadth-first search starts at the root then visits all of its children,

then all of its grandchildren and so on until the goal node is found. Analogously, in a graph each

node’s child is visited, i.e. each node with the same link length, then one of this children is chosen

and the process repeats itself until the goal node is found. Fig. 3.11 is an example of this algorithm

for both trees and graphs.

3.4.3 A* Algorithm

Depth-first and breadth-first methods both search a graph without any particular influence or bias

to a particular node, however if there is some information about the goal node, e.g. the coordinates

of the final configuration, it can be used towards a more efficient search. It is important when

discussing search algorithms to distinguish from efficient and optimality, efficient refers to the

number of the nodes in the path, whereas optimality refers to path length. One cannot expect

depth-first or breadth-first algorithms to yield an efficient path, although breadth-first can return

an optimal path.

Assuming that an useful information about the end node is provided one can try to guess what

will be the best node to explore, for example if, like stated before, we know the final configuration’s

coordinates we can choose the nodes that lead successively to a shorter distance to the final point.

To this guess rule we call heuristic.

An A* algorithm will yield an optimal path if the heuristic chosen is optimistic, i.e. if the

"guess rule" returns a value that is less or equal to the cost of the shortest path, in the graph, from

the current to the goal node. An example of an optimistic heuristic is the use of the hypotenuse

when computing the path between its vertices, since the actual path would be sum of the cathetus.

Figure 3.11: Breadth-first search in a tree (Left) and in a graph (Right)
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Instead of presenting the steps that define A* we will first, for clarification purposes, provide

an example and only then do a formal and general exposure of the algorithm.

Lets suppose we have a graph as presented in Fig. 3.12 where the start node is A and the goal

node is identified, the length of each edge is established next to it and inside each node there is the

heuristic value. A* needs to form a list of nodes sorted by their priority, which is the sum of each

edge length needed to achieve the node from the start plus the heuristic value of that node. The

smaller the priority value, the higher the priority.

The list starts with the starting node, then this node is removed and its adjacent nodes are

added, resulting in the first table in Fig. 3.13. The best node to expand now is B, it is then removed

from the list and its adjacent nodes are inserted - note that a node that was once in the list cannot

be inserted in it again so the start node is ignored. The list is then re-sorted and E becomes the

node with higher priority (second table of Fig. 3.13), however E has no neighbor nodes so it is

not possible to continue the search. When this occurs the next node on the list becomes the node

to expand, in this example that is C. Once again C is removed from the list giving place to its

adjacent nodes H and F. After reorganizing the list H becomes the node to pursuit, since the goal

node is a neighbor of H it is possible to compute the length of complete path, that is the sum of

the edges that lead so far from A to the goal node. Still the algorithm does not stop here due to

the fact that there are nodes in the list that present a smaller priority value then the length of the

found path, this means that a better path could still be found. To verify this A* expands the nodes

whose priority values are smaller than the path’s length already found. In this case it expands D,

resulting in the final table seen in Fig. 3.13. Updating the list with the adjacent nodes of D and

computing the priority values it is clear that there is no better path since the priority values are all

equal the path’s length and neither of this node is yet the goal one. A* has then computed the final

path A→ C→ H→ Goal.

After this example it is easier to understand the algorithm overall process. In order to operate

there are a few tools it needs:

• A priority list, P;

• A set PC that stores the nodes that have already been processed;

• Neighbor(n), the adjacent nodes of n;

• l(n1,n2), length of the edge connecting n1 and n2

• length(n), function that computes the sum the edges that connect n to the start node;

• h(n), function that computes the heuristic value of node n;

• f (n) = length(n)+h(n), function that compute the priority value of n.

Having this the whole search algorithm for a goal node ngoal can be defined as:
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Figure 3.12: Example of a graph label from A to K where the the initial node is A and the goal
node is identified. Each edge has associated with it a length (identified next to it) and each node
has inside it the heuristic value

Figure 3.13: Set of nodes in the list. The priority is the some of the length of the edges from the
start node the current one and the priority of the current node.
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While P is not empty

Choose nbest ∈ P such that f (nbest)≤ f (n),∀n ∈ P

Remove nbest from P and add it to PC

If nbest = ngoal:

Stop.

For all x ∈ Neighbor(nbest) and /∈ PC

If x /∈ P

Add x to P

Else if length(nbest)+ l(nbest ,x)< length(x)

Update path until x to include nbest

An A* algorithm will search a graph efficiently but is highly sensitive to the chosen heuristic,

which makes this a fundamental step that has to be adjusted accordingly to the problem it faces.

There are also two particular cases of A* that are worth mentioning. The first one is when

f (n) = h(n), that is when the search only considers the heuristic value, i.e. the guess for the best

path; to this we call a greedy algorithm. The second is when we choose f (n) = length(n), which

implies that the algorithm will always choose the node with the shortest edge length, this type of

algorithm is called Dijkstra’s algorithm.

Reached the end of this chapter we now have all the means necessary to implement a complete

motion planning - and collision avoidance - algorithm, that will not only imply a discretization or

sensing of the environment, but also a creation and search of a graph. Resulting in a path from A

to B without crashing with any obstacle. In the next chapter we will present different examples of

case studies that implement motion planning algorithms on dual-arm manipulator.



Chapter 4

Motion Planning on Dual-arm
Manipulator

Motion planning algorithms can be applied to several different problems, however their imple-

mentation in robotics is, not only obvious, but imperative. Given that this project aims to find a

collision avoidance system for a dual-arm manipulator it is both relevant and necessary to study

the state of the art in the field, i.e. what has already been developed to tackle problems similar to

the one we are trying to solve. Throughout this chapter we will do an overview of some of the

work that applies motion planning algorithms on dual-arm manipulators. Note that we will only

present the most relevant aspects of each project and it is not our aim to provide an extensive and

detailed explanation of what was done, for that we refer to the original paper.

In robotics, motion planning can be applied to three different cases: single body mobile robots,

fixed manipulators or mobile robots with attached manipulators. It is clear that motion planning

- and collision avoidance - is essential in robotics, therefor it is expected that the literature is vast

which forbids us to address it all. We will, however, overview the most relevant work in the light

of our own problem, i.e. we will only focus on fixed manipulators since these are the one we will

handle during our work.

4.1 First Steps Towards Dual Arm Motion Planning

One of the first experiments produced in dual-arm motion planning was done by Koga and Latombe

in 1992 [24]. Their work is important to comprehend the first steps taken in order to solve the dual-

arm manipulating problem at a time where most planning research was directed at mobile robots

with fix kinematics. The goal of their experiment is to plan the motion of two robot arms in order

to transfer an object from an initial to a desired position in a workspace constituted by obstacles.

The manipulators considered are rather simple - maximum of 3 revolute joints - and the act of

grasping is defined by positioning the end effector of each arm on each end of the object. To move

the object both arms must be grasping it.
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To address the defined problem the authors propose three different planners. For each of them

the paths computed are an alternation of three different subpaths: one-arm transit path, where only

one of the arms is moved while the other holds the object, these are then classified as obstacles;

two-arms transit path, where both arms can move and neither of them hold the object; transfer

path, where both arms hold the obstacle and the three corpses move as one.

Planner 1 assumes that the obstacles and the object are in a parallel plane to the arms, which

results in single collision possible between the arms themselves. First the planner computes the

object’s path among the obstacles based on the best-first search potential field. Then for each

configuration of the obstacle’s path the grasp configuration for each arm is calculated and finally

a path for each arm is generated.

Planner 2 considers the case where the obstacles, the object and both arms are in the same

plane, meaning that the arms may also collide with the obstacles. This method constructs a manip-

ulation graph, where each node is a grasp configuration and a connection between nodes is formed

if a transit path between nodes exists. The created graph is then searched through a breadth-first

search algorithm.

Planner 1 and 2 can only deal with a few DoFs, thus a third planner is presented in order to

solve more complex problems. The planner mainly moves as a closed loop chain - where both

arms are grasping the object. It traces the descent gradient of a potential field until it finds a

minimum. If this minimum is not the global minimum, i.e. it is not the goal configuration, it will

attempt to leave it by either a random walk or by planning a transit path. Although it is suitable for

more DoFs this last planner still fails when the number of obstacles in the workspace is increased.

These algorithms are still in an early stage and present a great number of limitation. Never-

theless the fact that a non fixed kinematic robot is consider tackles new issues for the time - one

of them being the dynamic kinematic and the other the constraints imposed on the arms’ motion -

paving the way for further work and improvements.

4.2 Heuristic Search on Dual Arm Motion Planning

Hardware enhancement allied with an increasing interest in the field of robotics allowed the devel-

opment of more sophisticated and effective motion planning algorithms, like the heuristic search

proposed by Cohen et al. [25]. This method will be explained in further detail due, not only to

the yield results, but mainly to its similarity to the problem we aim to tackle. They purpose a

heuristic search-based approach to motion planning that can handle the high-dimensionality of

manipulation. The results for a dual-arm robot with 7 DoFs in each arm are presented.

The method proposed is based on three key principles: a manipulation lattice graph, ARA*

search and informed heuristic.

The representation of the planning problem is done through what the authors call a manipu-

lation lattice graph. In this graph each node is considered a state, i.e. a joint configuration of the

robot. Thus a state of an n joint manipulator is defined as the n-tuple (θ0,θ1, . . . ,θn). An edge

is a transition between two states, these transitions are named motion primitives, that can either
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be static or adaptive. Thus an edge of an n joint manipulator is defined as the vector of joint

velocities (v0,v1, . . . ,vn). The type of motion primitives is defined according to when they are

generated, static primitives are chosen before the search begins and their purpose is to uniformly

explore the space for a valid path, adaptive primitives on the other hand are computed whenever

they are needed for a certain state expansion. The latter are particularly useful when the end ef-

fector of a particular state is in short distance to the goal, then an adaptive primitive can be use

to compute the path from the state to the goal. Before moving on to the next principle there is

another feature of the approach that must be noticed and that is its non uniform dimensionality.

The method takes advantage on the fact that not every DoF needs to be used to compute a save

path, so it first computes a path to a region within the range of the goal without using all DoFs -

lower dimensionality - and when in that region it computes the final path using all the DoFs - the

full dimensionality of the problem.

After the construction of the manipulation lattice graph the search is done by an anytime search

heuristic, ARA*. ARA*, although similar to A*, finds solutions bounded on suboptimality and

improves these solutions until a timeout is reached, thus allowing faster computations. This search

presents two main differences to the A* algorithm explained in 3.4.3, the first being the reuse of

the states it already computed in previous iterations and the second being the multiplication of the

heuristic by a factor ε that is decreased until a timeout. The cost of the solution will then be ε times

more expensive then the optimal one. The search stops when ε is 1 or the timeout established is

reached. The cost function used aims to minimize the path length while maximizing the distance

to obstacles.

The final part of the approach is the definition of the heuristic, for this the authors use a single

heuristic that guides the search towards the goal position (x,y,z) - the orientation of the goal is

disregarded. To calculate the heuristic value a 3D breadth first search that calculates the costs of

the least-cost collision free path from the goal to every cell in the grid is applied.

This approach is applied to a dual arm robot, first considering only one arm and then both. For

the one arm case the robot is placed in four different environments depicted in Fig. 4.1, for each

of them a comparison between the performance of the proposed method, ARA*, RRT* and RRT-

Connect is presented. Table 4.1 and 4.2 replicate the results produced; in Table 4.1 ARA* and

RRT* stop after the first solution found whereas in Table 4.2 the algorithms run for 60 seconds.

The authors conclude that ARA* is competitive in most environments and produces shorter paths.

They also test the consistency of the method, i.e. if given similar goal configurations the path

computed is similar and it revealed to be so, this implies predictability which is a desirable feature

for a human controlling or interacting with a robot.

For the dual-arm case, where both arms are considered, a constraint is added to the goal pose,

it is assumed that the object to grasp has to be in an upright pose. This allows a dimensionality

reduction since the pitch and roll angles are set to zero. It is also important to refer that each

state is not defined by the 14-tuple but rather by a 6-tuple (x,y,z,θyaw,θle f t ,θright), where x,y,z

represent global position of the center of the object, θyaw the yaw angle and θle f t ,θright the elbow

angles of the left and right arm respectively. At any point this configuration can be mapped to
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(a) Kitchen (b) Tabletop (c) Industrial (d) Narrow Passageway

Figure 4.1: Tested scenario for one arm experiment. The pink spheres with cyan arrows indicate
the desired 6D goal poses for the right end-effector [25]

Environment Kitchen Tabletop Industrial Narrow Passageway
Planner ARA* RRTC RRT* ARA* RRTC RRT* ARA* RRTC RRT* ARA* RRTC RRT*
Planning time
(mean, sec)

0.31 0.01 0.87 0.98 0.01 0.03 0.14 0.01 6.06 0.74 0.66 3.90

Planned length
(joint space) (mean, rad)

9.52 13.13 12.90 10.97 10.20 10.19 5.76 12.12 12.33 17.33 25.66 23.24

Simplified length
(joint space) (mean, rad)

6.93 9.81 9.30 7.37 8.14 7.71 4.09 8.81 6.88 9.54 13.56 12.60

Success rate 100% 100% 87% 100% 100% 100% 100% 100% 80% 100% 100% 100%

Table 4.1: Performance comparison of three planners for single-arm manipulation in the scenarios
shown in Figure 4.1 [25]

Environment Kitchen Tabletop Industrial Narrow Passageway
Planner
(joint space) (mean, rad)

ARA* RRT* ARA* RRT* ARA* RRT* ARA* RRT*

Planned length
(joint space) (mean, rad)

7.74 9.21 6.51 10.71 4.43 14.26 12.58 23.18

Success rate 100% 80% 100% 100% 100% 94% 100% 100%
Table 4.2: Results of ARA* and RRT* with a fixed planning time budget of 60 seconds [25]
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Figure 4.2: Tested scenario for dual.arm experiment.Clockwise from top left: stick around a pole,
wood board in bookshelf, tray with wine glasses under a table, tray with wine glasses near wall
and tray with a scotch glass in bookshelf [25]

the 14 dimension space. To assess the method’s output twelve experiments that deal with real

life scenarios were conducted. Fig. 4.2 shows the simulation’s environments, the obstacles are in

purple and the collision model of the manipulated objects in cyan. For each of the experiments a

timeout of 15 seconds is set and the time until the first solution is found, the number of expansions

until the first and final solutions as well as the parameter ε - which is initialized at 100 - are

registered and can be seen here in Table 4.3.

4.3 Re-grasping Act of a Dual Arm Manipulator

Another interesting work in manipulation motion planning is conducted by Vahrenkamp et al. [26],

not only the movement of two arms cooperating with one another is addressed but also the act of

re-grasping an obstacle. In spite of the fact that the robot used not only two 7 DoFs arms but also

a 3 Dofs hip the re-grasping actions can nonetheless be applied to dual-arm manipulators.

Two different planners based on RRT algorithms (see 3.3.2) are proposed. The first one is J+-

RRT where the extension of the RRT toward a goal pose is biased by the pseudoinverse Jacobian.

The other method is called IK-RRT and is based on bidirectional RRT, which means instead of one

single RRT two are initialized, one with the start configuration and the other with the goal. The

trees will then expand and try to connect each other. For the RRT with the goal node a random

grasp configuration is chosen and a call to the randomized IK solver is performed.
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Time
until First Solution (sec)

No of Expansions
until First Solution

ε f inal
No of Expansions

until Final Solution
0.31 182 3 8.161
0.15 76 3 7.584
0.33 182 3 6.265
2.01 544 5 5.021
1.07 379 4 7.991
0.98 432 4 6.445
14.88 6.773 100 6.785
0.56 31 3 6.714
0.57 34 3 5.960
1.06 322 5 4.932
0.14 62 3 6.437
0.13 68 3 6.437

Table 4.3: Results from 12 simulated trials for the dual-arm experiment [25]

After experiments on real life scenarios both methods proved themselves capable of yielding

a feasible path, however the IK-RRT approach performs better than the Jacobian based planner.

4.4 Motion planning with Moving Obstacles

Lastly we will discuss the work of Tsai et al. [27] where the main goal is to solve the dynamic

motion planning problem. This paper presents a stimulating approach in dealing with moving

obstacles, where time is added as a new dimension to the configuration space, turning it into the

configuration-time (CT) space. In this space only the moving - dynamic - obstacles will change

position over time so if the path planned is kept far away from these their influence will be de-

creased. The method proposed is thus a CT-RRT planner, which is a bidirectional RRT that takes

the time dimension in account. For dual-arm planning if the goal is in the shared workspace of

both arms one arm computes the trajectory while considering the other as a moving obstacle.

Throughout this chapter some previous work relevant to our project was reviewed, however,

as we said before, the literature is vast and the works of Srivastava et al. [28], Saut et al. [29] or

Kurosu et al. [30] among many others could also have been mentioned. Finally it is important

to notice that neither of the works explained, as well as the ones found throughout the research,

solve or tackle the same problem we aim to. In the cases explained the manipulator was either to

simple [24], the cases tested were too restricted [25], the focus was on the re-grasping task [26] or

on moving obstacles [27]. Neither of them seeked to compare the already existing planners and

analyze their performance in the execution of different task without the need to tune any specific

motion.
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Implementation and Experiments

So far we have reviewed the theoretical grounds for this project, so now we have all the foundations

to start the work itself: finding a motion planner capable of planning a collision free path for each

arm of the manipulator. This chapter is divided in two main parts, the first one briefly exposes

the programs used to simulate a functional robot and the second addresses the experiments carried

out.

5.1 Workbench

To simulate a functional robot it is first necessary to create the robot’s model, then there needs to

be a way for it to communicate - exchange joint values, position in the environment, etc. -, finally

there has to be a tool that implements the motion planning. To accomplish this several different

programs are used:

• Robotic Operating System (ROS) [31] - open source code that has already implemented

several key feature for robot programming, such as Robot Description Language, Standard

Messaging or Diagnostics Tools;

• Gazebo [32] - free for use robot simulator with robust physics engine and high-quality

graphics. Together with ROS can establish a movable simulated robot;

• MoveIt! [33] - open source motion planning framework, which is already prepared to work

alongside ROS. MoveIt provides many tools useful in motion planning, spearing the user

from wasting valuable time reimplementing certain feature. One of these tools is its vast

offer of motion planners such as:

– Open Motion Planning Library (OMPL) [34] - vast library of planners that provides

several planning algorithms, from PRM, RRT to KPIECE or EST - mentioned in Chap-

ter 3.

To simulate a dual arm manipulator with 6 DoF in each arm a UR5 robot model is used to

represent each arm. Due to its popularity this specific robot entails a vast documentation, therefor
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Figure 5.1: Simulated dual arm manipulator

an open source code was adapted and reconfigured to replicate the two arms. The robot’s body is

represented by a cylinder connecting the two arms. Each arm has a length of about 0.9m and are

separated by 1m long cylinder. The final model can be seen in Figure 5.1.

To sum up, we use ROS to handle the robot, Gazebo for the simulation and MoveIt in collab-

oration with OMPL to motion plan.

5.2 Experiments

Having set the robot’s model as well as all the necessary tools to simulate and plan the wanted

path it is now time to start comparing the performance of several motion planners when facing

different scenarios.

Due to the extensive number of available planners a selection has to be done, therefor, after

considered thought, the following six planners presented themselves as the most relevant for the

mentioned reasons:

• RRT - since they were specially designed for handling nonholonomic constraints and high

degrees of freedom manipulators;

• RRT-Connect - yields competitive results to RRT in less time and was conceived to handle

arms with high DoFs - such as ours;
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(a) Experiment A, C (b) Experiment B, D, E and F

Figure 5.2: Experiment’s feasible end-effector’s final position for the left (blue) and right (green)
arm

• PRM - although it is not commonly used when kinematic constrains are present, it is nev-

ertheless interesting to explore its behaviour when facing a non typical roadmap problem.

The search algorithm used is A*;

• PRM* - similar to PRM yet converges to the optimal path. This can be proved useful for

faster computations. The search algorithm used is A*;

• EST - given it combines the concept of roadmap with the construction of two motion trees,

this method provides a different, though overlapping, approach of PRM and RRT-Connect ;

• KPIECE - this algorithm was specially designed for systems with complex dynamics, where

physics-based simulation is necessary. Although it is not very widely known it addresses

the motion planning problem in a distinct way.

To test the dual manipulator six different experiments will be carried out, these six experiments

can be severed in two major groups relating to the movement of the arms. In experiment A, B and

E the planning and movement of the right arm is executed and only if this succeeds will the left

arm’s path be planned and executed, as for experiments C, D and F both arms move at the same

time. The experiments are thought so the feasible set of the end-effector’s final poses will be

reduced, promoting the possibility of collision or crossing of the arms over one another; for an

easier visualization the sets for each experiment are represented in Figure 5.2. Every test is made

under the same conditions, there is a range of x,y,z - position - and roll, pitch and yaw angle -

orientation - values for the end-effector, within the established scope a number of random points

is selected. The robot’s initial position is always the same, with all its joints set to zero (as seen in

Figure 5.1) and for each point all six planners are tested. Table 5.1 registers the condition of each

experiment.

For all evaluations both the planners outcome and planning time are registered, however, be-

cause of MoveIt!’s implementation methods when both arms move at the same time - and are
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planned also at the same time - there is no way of knowing which arm led to the failure of the

algorithm. Thus, for the both arms movement only the overall outcome and planning time are

registered, whereas for the separate planning each arm performance and planning time is noted,

which allows to further on compute the final outcome and planning time. The maximum allowed

planning time is set to 5 seconds after this time the planner will yield failure.
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5.3 Experiments’ Results

Following the implementation explanation we will now present the results for the experiments de-

tailed before, some conclusions withdrawn from each test will be exposed and whenever possible

visual representation will be displayed.

5.3.1 Experiment A

As it can be seen in Table 5.1 this experiment not only moves one arm at a time but also has a very

wide feasible set of end-effector positions, this leads to a very low number of cases of possible

collisions. However, it allows us to perceive each planners behaviour when presented with more

simple scenarios. Before starting to state the results yielded from this experiment it is important

to remember that for this type of movement - one arm at a time - the right arm is first planned and

then moved, and only if this succeeds will the left arm be planned and moved, so, when talking

about the left arm’s success and failures we will only be referring to the cases where the planning

is actually carried out, i.e. when the right arm has previously succeed.

From the 500 points tested a total of 73 are impossible to plan to, either because they are out

of reach for the specified arm or because they are in collision with the robot’s body or arm. These

points automatically lead to a decline in the maximum possible success rate, being that for the

right arm only 91.60% of those points are reachable and for the left one 93.67%, which means

that overall, for both arms, the maximum possible success rate is 85.80%. The values that can be

consulted in Table 5.2 replicate the results concerning the success rates for this experiment, these

are already scaled to consider only the possible cases. Columns 1, 2 and 3 register the success

rate for the right and left arm and the final overall performance, respectively. The overall outcome

entails the cases where both arms managed to succeed,

Analyzing Table 5.2 in more detail we can see that all the planner show very similar success

rates, never deviating more than 6% from the lowest and highest value. However, it is clear that the

PRM* presents the best result for both the right and both arm, as for the left arm it is not the most

successful but still presents competitive results. On the other hand PRM exhibits the worst results

for all three cases - right, left and for both arms. This is due to the way each algorithm works, as

explained before PRM creates a randomly sampled roadmap and tries to connect each node to a

fixed number of neighbours as for PRM* it gradually increases the number of connection attempts

as the roadmap grows in a way that provides convergence to the optimal path, this leads to a more

concentrated roadmap.

For an easier visualization of the results Figure 5.3 represents the failed cases of each planner

for the right arm. In accordance with what was already stated it is obvious that PRM* has the

lowest number of failed points. We can also perceive that there are a lot of common points for

all planner, this is due to the impossible cases already mentioned. It is clear that all planners

present great difficulty when planning for the boundaries of the defined feasible set of possible

final points and that there seems to be a cluster of points surrounding the initial position of the

arm. A visualization of the failed cases for the left arm is not present due to the challenge of
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Planner Right Arm Left Arm Overall
RRT 82,97% 84,28% 69,93%
RRTConnect 82,53% 84,17% 69,46%
PRMStar 86,68% 84,44% 73,19%
PRM 81,66% 81,07% 66,20%
KPIECE 82,31% 85,80% 70,63%
EST 83,19% 85,46% 71,10%

Table 5.2: Experiment A - Success Rate (%)

representing, for all failed points, the end-effector of the left and right arm, since the latter clearly

influence the planning of the former.

The success rate is, without a doubt, a crucial factor in a planner’s evaluation, however it is not

the only one. The time it takes to compute a path, also known as the planning time, must also be

considered. Because of that, Table 5.3 allows us to compare each planner’s planning time, being

that the planning time when each planner succeeded is noted for each arm. The Overall column

is the average planning time of the whole process, i.e., the time it took to plan a path for the right

plus the left arm. We can clearly conclude that, although it presents exceptional success rates,

PRM*, alongside PRM, presents the longest planning time. This phenomenon was expected since

for each query both planner have to create a roadmap. Another aspect that is worth to notice is

that, when successful, RRT Connect does take less time to compute a path than RRT. We can now

infer that judging by the planning time alone RRT Connect would be the way to go, although any

of the other three planners, RRT, KPIECE or EST, could also yield fast results.

5.3.2 Experiment B

Experiment B shares a lot of common ground with the previous one, differing only in the feasible

set of possible final positions. By making this set smaller in this test we want to increase the

occurrence of more difficult scenarios, by doing so we also decreased the number of unreachable,

therefor impossible, cases, adding these to a total of 43 of the 500 points tested. As we explained

before this affects the maximum possible success rate, and once again the values in Table 5.4

already rule out this cases.

Planner Right Arm Left Arm Overall
RRT 0,053 0,056 0,110
RRTConnect 0,038 0,038 0,076
PRMStar 5,023 5,023 10,046
PRM 5,013 5,014 10,026
KPIECE 0,102 0,103 0,204
EST 0,085 0,084 0,167

Table 5.3: Experiment A - Average Planning Time (seconds)
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(a) RRT (b) RRT Connect

(c) PRM (d) PRM*

(e) KPIECE (f) EST

Figure 5.3: Experiment A - right arm failed points
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Planner Right Arm Left Arm Overall
RRT 87,63% 88,40% 77,46%
RRTConnect 87,21% 85,56% 74,62%
PRMStar 89,94% 86,13% 77,46%
PRM 88,68% 87,35% 77,46%
KPIECE 88,05% 85,49% 75,27%
EST 89,10% 84,73% 75,49%

Table 5.4: Experiment B - Success Rate (%)

Once we start to inspect Table 5.4 we can notice, like in Experiment A, that all success rates

are very similar between planners, having a maximum difference of 4% form the lowest to the

highest rate. This allows us to conclude that there is not a planner that stands out for the task

given, at least when it comes to the success rate. However we can, nevertheless, point out that

RRT Connect produced the worst outcome for the right and both arms case. Another interesting

fact is that RRT, PRMStar and PRM present the exact same success rate for the overall result,

making them the most effective planners.

Like in Experiment A Figure 5.4 shows, for each planner, the points in which the right arm’s

planning failed. All six figures are alike and we can see a clear concentration of failed points in

the left boundary of the planning space, being that the cluster present in the top and bottom left,

common to all planners, are unreachable points for the arm.

As for the average planning time it is detailed in Table 5.5, where we can see that, as expected,

the planning times are very close to the ones presented in Table 5.3 relating to Experiment A.

Once again both PRM and PRM* performed poorly, taking about 5 seconds to plan for each arm

- which relates to the time to create the roadmap. All other planners present a planning time of

circa 1 second.

5.3.3 Experiment C

All the experiments mentioned so far planned and moved one arm at a time, this is the main differ-

ence between experiment C and A. In this test both arms are planned and moved simultaneously,

which entails a greater problem since when one arm is being planned it has to take in account

that there is a moving object in its surroundings - the other arm. It is therefor expected that this

Planner Right Arm Left Arm Overall
RRT 0,062 0,068 0,130
RRTConnect 0,045 0,045 0,089
PRMStar 5,023 5,025 10,047
PRM 5,013 5,013 10,026
KPIECE 0,119 0,120 0,236
EST 0,107 0,116 0,223

Table 5.5: Experiment B - Average Planning Time (seconds)
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(a) RRT (b) RRT Connect

(c) PRM (d) PRM*

(e) KPIECE (f) EST

Figure 5.4: Experiment B - right arm failed points
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Planner Success Rate
RRT 66,19%
RRTConnect 64,99%
PRMStar 67,63%
PRM 66,67%
KPIECE 66,19%
EST 66,19%

Table 5.6: Experiment C - Success Rate (%)

experiment will yield worse results than the previous ones. In order to be able to perform a fair

comparison experiment C has the exact same query points as experiment A.

It is important to keep in mind that for this type of planning is not possible to assign the failure

to either of the arms, so there is only one success rate for the overall outcome. Table 5.6 registers

the efficiency of each planner. Before further analyzing the results it is necessary to explain the

disparity between the maximum possible success rate in this experiment and the one presented in

Table 5.2 for experiment A. Although the points are exactly the same the number of impossible

cases is not, simply because, as explained before, for experiment A the left arm is only planned

if the right arm’s planning is successful, so there are some impossible cases for the left arm that

are not accounted due to the failure of the right arm’s planning. When both arms are planned at

the same time all impossible cases are considered, justifying the lower maximum possible success

rate in this experiment.

As it was expected this test exhibits a worse performance than the one achieved in experiment

A, some conclusions are nonetheless alike. Once again the efficiency of each planner is almost

identical and, analogously to experiment A, PRM* proves to be the most successful planner. How-

ever RRT Connect replaces PRM in experiment A as the less reliable.

Although this type of movement falls short compared to one at a time arm movement when we

analyze the average planning time for this experiment - Table 5.7 - we can conclude that it yields

far better results for PRM and PRM*, since there is no need to create two roadmaps - one for each

arm. However there is a slightly slower response for all other planners, this is due to the higher

complexity of the problem; not only it has to plan for two objects but each one of them has a series

of joints that must be taken in account.

Planner Success
RRT 0,144
RRTConnect 0,071
PRMStar 5,029
PRM 5,028
KPIECE 0,183
EST 0,152

Table 5.7: Experiment C - Average Planning Time (seconds)
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Planner Success Rate
RRT 70,42%
RRTConnect 71,96%
PRMStar 72,41%
PRM 73,95%
KPIECE 69,54%
EST 73,73%

Table 5.8: Experiment D - Success Rate (%)

Finally there is another interesting evaluation that must be done, that is the analysis of which

points were successful for experiment C but not for A. Between all planner there is a total of 224

points where this occurs - not common for all planners though. To verify if the failed planner is

actually unable to plan to these points another test has to be done, where each planner is allowed

to re-plan the points it failed when a successful outcome was possible. After this experiment the

number of failed points dropped from 224 to 63, this new outcome can be explained by the nature

of the planners, i.e. all of them rely on a sampling process, which will lead to different outcomes

for the same query points.

5.3.4 Experiment D

Analogously to the first two experiments there is also a need to test the planner’s behaviour when

both arms have to move at the same time, but now in a smaller set of feasible final positions. For

the same purpose that experiment C had the same query points as A so does experiment D uses

the exact same query points as experiment B and can then be seen as a combination of experiment

C (sharing the same type of movement) and B (using the same query points).

Analyzing Table 5.8 it is easy to grasp the similarities between experiment B and D when

it comes to success rate. In the table it is visible that PRM* reveals itself as the most effective.

However in this test RRT did not yield such a satisfying result, although it is not the worst planner

it takes the second worse, being outran by KPIECE.

Given that the type of movement is the same as in experiment C it is expected that the average

planning times will be identical, that can be confirmed in Table 5.9 where the average planning

time for each planner is registered. Once again PRM and PRM* present the longest planning

times, although, as it happened in experiment C, they achieve faster times than when planning for

single arm movement. We can also confirm a consistent increase in the planning time of the other

planners due to the higher complexity of the problem to solve.

It is notorious that there is a parallelism between experiment A and B and experiment C and

D, since in both pairs there is an increase in the overall success rate. There is also a parity between

experiment C and D concerning the average planning time.
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Planner Success
RRT 0,229
RRTConnect 0,083
PRMStar 5,030
PRM 5,025
KPIECE 0,239
EST 0,188

Table 5.9: Experiment D - Average Planning Time (seconds)

5.3.5 Experiment E

The previous experiments test the planners moving separately and combined in a large and small

set of feasible final positions, however they all have one thing in common, the same end-effector

final orientation. Experiment E serves to evaluate the planner’s behaviour when facing similar

situations but with a different orientation.

Although the former experiments have tested two different sets of possible final positions,

experiment E and F deal only with the smaller set since, in most real life situation, most of the

work is done in this space.

Given that this experiment deals with single arm movements the values of each arms’ planning

performance alongside the overall outcome are registered and are here reproduced in Table 5.10.

First of all is important to enhance the proximity in success rates, never deviating more than 2%

from one another. This fact hinders the comparison between planners since there is not a clearly

superior or inferior one. Second we can also see, as it has been for other experiments, the best

planner for the right arm - RRT Connect - is not the same for the left - PRM. As for the overall

outcome PRM confirms to be the best planner, whereas PRM* and EST prove to be the worst -

although the success rate is only 2% inferior.

In order to understand the reason behind such a low success rate - when compared to exper-

iment B - the points where the right arm failed are represented as red dots in Figure 5.5. This

visualization aids in understanding not only where each planner failed, but also in verifying if

there is any consistency between planners. For example, it is clear that there is a cluster of failed

points in the top left corner, this is explained by the lack of capacity to reach these points given

the final orientation set, which also explains the common failure for all planners. It is likewise in-

Planner Right Arm Left Arm Overall
RRT 83,16% 80,53% 66,96%
RRTConnect 83,37% 80,32% 66,96%
PRMStar 81,88% 80,15% 65,63%
PRM 82,09% 82,39% 67,63%
KPIECE 81,45% 81,94% 66,74%
EST 81,66% 80,36% 65,63%

Table 5.10: Experiment E - Success Rate (%)
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Planner Right Arm Left Arm Overall
RRT 0,086 0,131 0,225
RRTConnect 0,041 0,040 0,082
PRMStar 5,028 5,025 10,053
PRM 5,024 5,019 10,042
KPIECE 0,172 0,184 0,347
EST 0,120 0,166 0,287

Table 5.11: Experiment E - Average Planning Time (seconds)

teresting to underline the impact that the final orientation has in the points that can be reached by

the manipulator, since for experiment B reaching points in the upper space is not so problematic.

Another fact that we can see is that there are few points in the middle of the work space where

the planners fail to plan to, being that KPIECE presents the higher number of failed points in this

space corroborates its poorer performance.

The average planning time - present in Table 5.11 - however, exhibits several discrepancies,

specially for PRM and PRM*. This distinction has been consistently observed in all experiments

and is justified by the development of a roadmap for each arm on each query point. The other

planners also show a regular value, never exceeding an average of 1 second on the overall planning

time for single arm movement.

5.3.6 Experiment F

For the sake of comparing the outcome of each planners between dual and single arm movement

experiment F is executed with the exact same points as in experiment E, differing only on the type

of movement.

Table 5.10 not only tells us the success rate for each planner but also allows us to observe

a decline in the success rate in view of experiment E. This is an expected observation due to

the higher complexity of the problem, it is also consistent with the decline documented between

experiment B and D. There is a difference between experiment E and F though, the planner with

the best success rate changes from PRM to RRT Connect and neither KPIECE or PRM* are the

worst planner but rather RRT.

Planner Success Rate
RRT 58,88%
RRTConnect 64,27%
PRMStar 63,82%
PRM 63,60%
KPIECE 59,33%
EST 63,60%

Table 5.12: Experiment F - Success Rate (%)
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(a) RRT (b) RRT Connect

(c) PRM (d) PRM*

(e) KPIECE (f) EST

Figure 5.5: Experiment E - right arm failed points
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Planner Success
RRT 0,316
RRTConnect 0,096
PRMStar 5,031
PRM 5,024
KPIECE 0,392
EST 0,314

Table 5.13: Experiment F - Average Planning Time (seconds)

As for the planning time - Table 5.11 - we can state that it is, as expected, faster than for the

single arm movement and is in accordance with the planning times for other experiments that move

both arms at the same time. The planning times for the algorithm that require the development of

a roadmap are just a bit above 5 seconds, as for all other planners the overall planning time does

not exceed 1 second. This leads us to conclude that a higher planning time leads to a better success

rate, this is not only expected but is also the core of sampling based algorithms, since these are

probabilistic complete, i.e. the probability of finding a solution converges to one as time goes by.

5.4 Summary

To sum up, after a series of experiments on a free object environment, where different final poses

were tested we can conclude that all planners can, to a certain degree, handle dual arm manipula-

tors, with 6 Dofs on each arm. Although it is possible to distinguish for each experiment a better

and worse planner the disparity on the success rates are not significant enough to outline a definite

conclusion when it comes to choosing the most effective planner.

It was also possible to observe the decline of the success rate when both arms must move at

the same time, thus translating in a more complex problem.

Finally, regarding the average planning time, it was observed that RRT, RRT-Connect and EST

present similar outcomes, whereas PRM and PRM*, by being solely based on roadmaps, take the

maximum available time to compute a path.



Chapter 6

Real Life Scenarios’ Simulation

After being established that all chosen planners can, to a certain degree, compute a feasible, col-

lision free plan for a dual arm manipulator it is now time to appraise each planners performance

when facing real life like scenarios.

The approach taken in this chapter is similar to the one in the experiments, first the scenarios

tested will be explained and only then will the results be presented and discussed.

6.1 Scenarios

The results in Chapter 5.3 prove that the planners chosen can, in fact, deal with a dual arm ma-

nipulator, however, in real life, one does not seek to plan in an obstacle free environment, usually

manipulators are surrounded by others objects that make the motion planning problem harder.

Thus there is a necessity to simulate real life scenarios where the manipulator must avoid and

interact with several objects to evaluate if the planners can nonetheless yield precise results.

First of all, it is mandatory to implement a tool that can manipulate the objects that the arms

have to interact with. To solve this problem a 2 finger gripper - Figure 6.1 - is attached to each arm

end effector, when one seeks to grasp an object each joint of the gripper is actuated, leading the

fingers to move together and thus grasping the object, to release the reverse process is executed.

One of the most common operations performed with robotic arms is the pick and place action,

the gripper grabs an object at a certain pose and aims to place it at different one. Due to the wide

spread usage of this type of motion the first real life scenario simulation - for mentioning purposed

will be called Scenario A - consists in replacing six cubes, all with the same size, placed on top

of a table that is 60 cm from the ground and 40 cm away from the manipulator’s body. The initial

and final position of each cube is depicted in Figure 6.2, the number associated with the cubes

represent the order in which they are picked and placed, being that the left manipulator grasps the

odd numbered cubes and the right the even ones. It is relevant to state that, since the focus of the

project is not on the grasping action but rather on the motion the end effector’s orientation and

pose are selected manually. Although the final orientation is selected to increase the probability

of success a set of different grasping poses are chosen in order to test each planners’ capability

53
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(a) Gripper (b) Dual arm manipulator with gripper

Figure 6.1: Gripper (left) and dual arm manipulator with gripper (right)

to plan for various final orientations. For an easier visualization each cube’s grasping and picking

pose is represented in Figure 6.3.

Scenario A represents a basic pick and place operation with small and identical objects, how-

ever real life situations usually include more complex and sundry objects. In the simulation the

objects are generated by MoveIt! and this only allows the spawning of simple shaped obstacles

(such as boxes and cylinders) so, for Scenario B, the cubes are replaced by two cylinders and

boxes with different orientations. All objects have a height of 20 cm and a maximum width of 5

cm, considering that the same table mentioned in Scenario A is used this implies that the vertical

cylinder and cube - objects 3 and 4 of Figure 6.4a - are only 20 cm apart in the z axis, thus reduc-

ing the free space available for the manipulators. Once again each initial and final configuration is

depicted in Figure 6.4 - the same numbering system in Scenario A is used - also the picking and

placing orientation can be seen in Figure 6.5.

For all scenarios, and analogously to the methodology of the experiments, two types of move-

ments are tested. On the first one the right arm moves to the assigned object, than so does the

left one, after both of them have grasped the respective object the right arm places the object at

the final position and only then will the left arm do this procedure, this is repeated for all objects

- the left side of Figure 6.6 illustrates the single arm movement algorithm diagram. The other

movement type is the simultaneous motion - and therefor planning - of the two arms, they will

pick or place two objects - one for each arm - for each planners’ call, as shown in the right side of

Figure 6.6.

Lastly it is vital to explain that each scenario simulation is ran 10 times, and for each planning

attempt a total of 10 tries are allowed, i.e., to pick or place an object a planner can fail up to

10 times before the simulation is stopped. This is due to the fact that the planners are random

sampling based, consequently the outcome will change for each call, which might lead to a failure

on the first try - due to poor sampling - but a success on the next. Each planner has a total of 5

seconds before yielding failure to plan a motion path.
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(a) Scenario A initial object placing (b) Scenario A final object placing

Figure 6.2: Scenario A - initial and final object placing. The number in each cube represents the
order they are picked and placed, being that the odd numbers are handled by the right arm and the
even ones by the left arm.

6.2 Results

The results registered for each scenario are presented throughout the next sections, first the out-

come of the single arm movement (one arm at a time) is discussed and only after that is the

simultaneous arm movement analyzed. For each type of movement two tables are produced, one

registers the success rate for each path, being that each object has associated with itself two paths,

picking and placing. The success rate for each path is relative to the number of successful plan-

nings within the ones that were possible, i.e., if the placing of object 1 is 50% successful, and the

next path has an 100% success rate it means that it succeed in all possible cases - in all simulation

that reached that point. In the same table, next to the success rate, is indicated the average number

of tries that it took to find the specific path. The final column - named Overall - registers the

percentage of simulations that reached the end, meaning the number of times a planner was able

to compute all paths. The second table indicates the average planning time it took to compute the

path for the picking or placing of each object, this time is only indicated for the successful cases

since the failed ones are due to an exceeding of the 5 second established time out. The symbol

"-" means that the value is not registered because neither simulation got to that point, that is, the

maximum number of tries was achieved and the simulation ended earlier.

6.2.1 Scenario A

Scenario A is a pick and place action with simple and small objects, nonetheless, there single

existence and the adding of the table - that greatly reduces the workspace - increase the problem’s

complexity considerably.

In the previous chapter we concluded that all planner yielded a similar success rate for all

experiments, however this is not verified in this real life scenario. Analyzing Table 6.1 it is obvious

that RRT behaves poorly, being that only 1 of the 10 simulations reached the end and it usually

takes it more than one try to compute a motion plan, this is due to the fact that it only creates one

motion tree, that is extended a maximum of ε per sampling - see Section 3.3.2 - thus, if given a
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(a) Object 1 and 2 grasping position (front view) (b) Object 1 and 2 placing position (rear view)

(c) Object 3 and 4 grasping position (front view) (d) Object 3 and 4 placing position (rear view)

(e) Object 5 and 6 grasping position (front view) (f) Object 5 and 6 placing position (rear view)

Figure 6.3: Scenario A - Objects’ grasping and placing position (the numbers correspond to the
ones in Figure 6.2
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(a) Scenario B initial object placing (b) Scenario B final object placing

Figure 6.4: Scenario B - initial and final object placing. The number in each cube represents the
order they are picked and placed, being that the odd numbers are handled by the right arm and the
even ones by the left arm.

(a) Object 1 and 2 grasping position (front view) (b) Object 1 and 2 placing position (rear view)

(c) Object 3 and 4 grasping position (front view) (d) Object 3 and 4 placing position (rear view)

Figure 6.5: Scenario B - Objects’ grasping and placing position (the numbers correspond to the
ones in Figure 6.4
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Figure 6.6: Single (left) and simultaneous (right) arm movement algorithm

longer planning time it may be able to compute a solution. On the other hand, both RRTConnect

and PRM* were able to succeed in all simulation, still RRTConnect has a slight advantage when it

comes to the number of tries it needs. As for KPIECE, PRM and EST the results are approximated,

having a success rate between 70 and 90%, however KPIECE is more effective - takes fewer tries -

than PRM and EST. It is interesting to notice that besides RRT all planners create either roadmaps

or two motion trees.

The planning times of each algorithm are present in Table 6.2, where it can be noticed that, as

observed before, both PRM and PRM* take about 5 seconds to compute a path, as for the other

planners - that in Chapter 5.3 planned a solution in about 1 second - it can be seen a increased in the

average planning time, taking sometimes more than 4 seconds to find a solution. This behaviour is

expected and can be justified by the environment’s enhanced complexity, this claim is supported
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Planner
Picking Picking Placing Placing Picking Picking
Object 1 Object 2 Object 1 Object 2 Object 3 Object 4

SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT
RRTConnect 100,00% 1,00 100,00% 1,00 100,00% 2,40 100,00% 2,70 100,00% 1,00 100,00% 1,00
RRT 100,00% 1,00 90,00% 1,22 66,67% 3,00 66,67% 2,50 75,00% 4,33 66,67% 2,50
KPIECE 100,00% 1,10 100,00% 1,00 100,00% 3,60 70,00% 3,00 100,00% 1 100,00% 1,00
PRM 100,00% 1,00 100,00% 1,00 100,00% 3,00 100,00% 1,60 100,00% 1,00 100,00% 1,10
PRMStar 100,00% 1,00 100,00% 1,00 100,00% 1,40 100,00% 1,60 100,00% 1,00 100,00% 1,00
EST 100,00% 1,00 100,00% 1,10 80,00% 2,25 100,00% 5,38 100,00% 1,00 100,00% 1,00

Planner
Placing Placing Picking Picking Placing Placing

Overall
Object 3 Object 4 Object 5 Object 6 Object 5 Object6

SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%)
RRTConnect 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,50 100,00%
RRT 100,00% 5,00 100,00% 1,00 100,00% 2,50 100,00% 1,00 50,00% 1,00 100,00% 3,00 10,00%
KPIECE 100,00% 1,43 100,00% 1,29 100,00% 1,14 100,00% 1,00 100,00% 2,75 100,00% 4,86 70,00%
PRM 100,00% 1,30 100,00% 1,00 100,00% 1,30 100,00% 1,00 90,00% 1,22 100,00% 1,00 90,00%
PRMStar 100,00% 1,10 100,00% 1,00 100,00% 1,10 100,00% 1,00 100,00% 1,20 100,00% 1,70 100,00%
EST 80,00% 1,38 80,00% 1,38 100,00% 1,13 100,00% 1,00 100,00% 1,50 100,00% 2,63 80,00%

Table 6.1: Scenario A - Single arm movement Success Rate (SR) and average Number of Tries
(NoT) it took to compute a path for picking and placing of each object

by a longer planning time for path that required more tries (e.g. the placing of object 6), which

implies that the solution is harder to compute, thus taking more time to do it.

Moving on to the simultaneous movement of both arms the planners face now an even more

challenging problem, since the arms have to move at the same time there is a greater number of

constraints and a more complex kinematics to take into account, it is then expected an inferior

success rate. This expectation is verified in Table 6.3, that exposes the success rate and number of

tries for each path when the two arms have to move at the same time. Consistently to the results

discussed before RRT’s outcomes prove its incapability to solve the problem, in all simulation the

number of tries was exceeded for the picking of the first to objects, not allowing the testing of the

others. However there is a enormous disparity from the previous shown results, PRM* was not

able to finish any of the simulations, although it has an 100% success rate for picking the first two

objects it was never capable of placing them. Likewise KPIECE also behaved more poorly, being

that the only case where it was able to place objects 1 and 2 was not able to place objects 5 and

6, thus falling in all simulations. As for RRTConnect, PRM and EST few of the simulation were

carried out until the end, however the success rate dropped drastically.

Concerning the planning times for the simultaneous movement Table 6.4 indicates that once

again PRM needs about 5 seconds to find a solution - the same for PRM* but it is not as relevant

since we only have the result for one of the six wanted paths. RRTConnect, KPIECE and EST

take more time to plan each path, which is obviously explained by the problem’s arduousness.

After all this it is worth point out the influence that non free obstacle environments have in

both the success rate and the planning time, specially in the simultaneous movement of the arms.

Even in a simple scenario some planners proved to be completely ineffective and the ones that

were not so revealed far greater planning times when compared to the experiments discussed in

Chapter 5.3.

During the simulations it was noticed that several times the planner would output failure due
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Planner
Picking Picking Placing Placing Picking Picking
Object 1 Object 2 Object 1 Object 2 Object 3 Object 4

RRTConnect 0,13 0,15 1,74 1,86 0,14 0,14
RRT 1,80 1,24 4,45 3,05 1,99 1,75
KPIECE 0,52 0,88 4,05 2,06 0,31 0,37
PRM 5,02 5,03 5,52 5,88 5,03 5,03
PRMStar 5,05 5,04 5,71 5,77 5,02 5,04
EST 0,40 0,68 4,69 3,15 0,74 0,30

Planner
Placing Placing Picking Picking Placing Placing
Object 3 Object 4 Object 5 Object 6 Object 5 Object 6

RRTConnect 1,76 1,51 0,20 0,19 1,17 3,67
RRT 2,21 0,44 1,57 0,38 5,08 3,05
KPIECE 3,16 4,11 1,23 1,33 3,28 5,39
PRM 5,71 5,65 5,03 5,03 5,58 5,76
PRMStar 5,84 5,47 5,03 5,04 5,39 6,00
EST 2,83 3,51 0,81 1,17 2,04 3,12

Table 6.2: Scenario A - Single arm movement average planning time (seconds) to compute a path
for picking and placing of each object

Planner
Picking Placing Picking Placing Picking Placing

Overall
Object 1 and 2 Object 1 and 2 Object 3 and 4 Object 3 and 4 Object 5 and 6 Object 5 and 6
SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%)

RRTConnect 100,00% 1,00 60,00% 5,33 100,00% 1,00 100,00% 1,00 100,00% 1,00 50,00% 3,33 30,00%
RRT 0,00% - - - - - - - - - - - 0,00%
KPIECE 100,00% 1,00 10,00% 7,00 100,00% 1,00 100,00% 2,00 100,00% 3,00 0,00% 0,00%
PRM 100,00% 1,20 30,00% 6,67 100,00% 1,67 100,00% 2,00 100,00% 1,33 66,67% 8,50 20,00%
PRMStar 100,00% 1,00 0,00% - - - - - - - - - 0,00%
EST 100,00% 1,10 30,00% 6,33 100,00% 1,00 100,00% 1,00 100,00% 4,67 33,33% 1,00 10,00%

Table 6.3: Scenario A - Simultaneous arm movement Success Rate (SR) and average Number of
Tries (NoT) it took to compute a path for picking and placing of each pair of objects

Planner
Picking Placing Picking Placing Picking Placing

Objects 1 and 2 Objects 1 and 2 Objects 3 and 4 Objects 3 and 4 Objects 5 and 6 Objects 5 and 6
RRTConnect 0,258 2,834 0,574 3,850 1,115 2,563
RRT - - - - - -
KPIECE 1,438 0,489 3,006 5,148 0,879 -
PRM 5,030 6,057 5,022 5,884 5,019 5,874
PRMStar 5,167 - - - - -
EST 1,357 3,817 1,117 3,394 3,086 4,901

Table 6.4: Scenario A - Simultaneous arm movement average planning time (seconds) to compute
a path for picking and placing of each pair of objects
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Planner
Picking Placing Picking Placing Picking Placing

Overall
Object 1 and 2 Object 1 and 2 Object 3 and 4 Object 3 and 4 Object 5 and 6 Object 5 and 6
SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%)

RRTConnect 100,00% 1,00 60,00% 5,00 100,00% 1,00 100,00% 1,00 100,00% 1,17 100,00% 3,17 60,00%
RRT 20,00% 5,50 0,00% - - - - - - - - - 0,00%
KPIECE 100,00% 1,40 70,00% 2,71 100,00% 1,00 100,00% 1,00 100,00% 1,86 57,14% 1,25 40,00%
PRM 90,00% 2,33 44,44% 4,50 100,00% 1,50 100,00% 1,25 100,00% 2,00 50,00% 2,00 20,00%
PRMStar 100,00% 3,40 20,00% 7,00 100,00% 1,00 100,00% 1,00 100,00% 2,00 100,00% 2,00 20,00%
EST 100,00% 1,30 60,00% 3,67 100,00% 1,00 100,00% 1,00 100,00% 1,83 66,67% 2,50 40,00%

Table 6.5: Scenario A - Simultaneous arm movement Success Rate (SR) and average Number of
Tries (NoT) it took to compute a path for picking and placing of each pair of objects, with adapted
parameters

to a contact - collision - between different robot’s links. Although the planners already incorpo-

rate collision check for each configuration chosen there is a parameter that defines the maximum

distance the robot can travel without the collision checker is called. This parameter was changed

from 5 cm to 2 cm. This change entails an increase in the planning time since collision checking

is a time consuming process. Therefor, and also due to the probabilistic completeness of the plan-

ners, the planning time was increased to 10 minutes. All the simulation were once again tested

and the results acquired are depicted in Table 6.5. There we can see that there is a more effective

performance for all planners. RRT-Connect double its success rate, KPIECE and PRM* were now

able to carry out 4 and 2 whole simulations, respectively, as for EST the overall success rate is 4

times higher. Although RRT was not able to complete any of the simulations it was now able to

pick object 1 and 2 two times. It can also be noticed a decreased in the average number of tries it

took for each planner to compute a path, this is due to the fact that there were no failed tries due

to collision.

As it was mentioned before it is expected that this set of tests, with adapted parameters, present

greater planning times. This is corroborated by the values in Table 6.6 that represent the average

planning time it took each planner to compute a path for picking or placing each pair of objects.

Besides the picking of objects 5 and 6 RRT-Connect always presents an average planning time

lower then 30 seconds, making it the faster of all planners. It is also interesting to notice that

PRM and PRM* will always use the maximum amount of time possible, thus before taking circa

5 seconds and now the whole 10 minutes.

However the yielded results are not yet satisfactory, thus a new set of tests where executed.

Planner
Picking Placing Picking Placing Picking Placing

Objects 1 and 2 Objects 1 and 2 Objects 3 and 4 Objects 3 and 4 Objects 5 and 6 Objects 5 and 6
RRTConnect 4,776 15,362 1,075 9,334 257,082 26,794
RRT 218,885 - - - - -
KPIECE 188,251 74,171 6,108 73,010 44,371 146,258
PRM 600,076 601,639 600,062 602,464 600,107 602,195
PRMStar 600,145 602,927 600,036 604,496 600,098 602,429
EST 170,272 84,707 3,469 21,265 101,566 69,806

Table 6.6: Scenario A - Simultaneous arm movement average planning time (seconds) to compute
a path for picking and placing of each pair of objects, with adapted parameters
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Planner
Picking Placing Picking Placing Picking Placing

Overall
Object 1 and 2 Object 1 and 2 Object 3 and 4 Object 3 and 4 Object 5 and 6 Object 5 and 6
SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%)

RRTConnect 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00%
RRT 90,00% 4,33 100,00% 1,56 0,00% - - - - - - - 0,00%
KPIECE 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 2,00 70,00% 2,43 70,00%
PRM 100,00% 1,70 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 2,10 40,00% 3,00 40,00%
PRMStar 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,90 90,00% 2,44 90,00%
EST 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 2,00 100,00% 1,90 100,00%

Table 6.7: Scenario A - Simultaneous arm movement Success Rate (SR) and average Number of
Tries (NoT) it took to compute a path for picking and placing of each pair of objects, with adapted
parameters and joint space goals

In these, the previous set up was maintained, i.e., the longest traveled path without performing

collision check is still 2 cm and the maximum planning time is 10 minute. The only difference

introduced was that, instead of feeding each planner the Cartesian picking or placing position the

value of each joint was passed. The transformation from Cartesian goals to joint ones can be

performed through the equations exposed in Chapter 2. The resulting success rates and average

number of tries can be consulted in Table 6.7.

The new obtained results reveal, without a doubt, a far more reliable behaviour. RRT-Connect

was able to perform every path and on the first try, making it the most effective and trustworthy

planner. RRT, on the other hand, still displayed a faulty result, albeit was able to place objects

1 and 2 in all cases - which is a further step than on the previous tests. It is also at the utmost

importance to underline the efficiency of EST and PRM*, being that the former had a perfect

success rate and the latter an almost perfect one.

As it has been the method before we will now look into the average planning time it took each

planner to compute a path, this values are replicated in Table 6.8. In these tests some surprising

results can be observed, for instance, for RRT-Connect there is a tremendous decreased in the

average planning time of almost every path. Another noticeable aspect is the times registered for

PRM*, for the first time in the all simulation it did not took the maximum given planning time,

since it was able to find the path before that. For both KPIECE and EST there is an overall decline

in the planning times, however they do not achieve valuables as low as RRT-Connect. Finally there

is still another occurrence that should be pointed out, the unanimous increase of the planning time

for the placing of object 5 and 6, this might be due to a poor choosing of the joint values fed to the

planners.

Reaching the end of this scenarios it is crucial to rewind some of the steps taken, there were

3 different test in total, the first one had the same conditions as in the experiments - maximum

planning time of 5 seconds, a discretization for collision checking of 5 cm and a Cartesian position

as goal -, the second the time was increased to 10 minutes and the discretization lowered to 2 cm

and, on the last one, besides that the goal position was in the joint space. For each tests the results

attained were gradually better, being that in the end more than one planner was able to achieve

an 100% success rate. We will now analyze the behaviour of the planners for another scenario,

being that the first results presented are with the same parameters as in this scenario’s first test,
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Planner
Picking Placing Picking Placing Picking Placing

Objects 1 and 2 Objects 1 and 2 Objects 3 and 4 Objects 3 and 4 Objects 5 and 6 Objects 5 and 6
RRTConnect 0,446 0,430 0,549 5,945 123,571 42,676
RRT 246,409 91,552 - - - -
KPIECE 16,532 3,242 6,319 35,293 31,478 248,685
PRM 600,098 600,108 600,089 602,354 600,089 601,724
PRMStar 421,320 421,796 422,083 442,131 442,279 440,092
EST 4,604 8,298 5,839 59,137 45,575 306,496

Table 6.8: Scenario A - Simultaneous arm movement average planning time (seconds) to compute
a path for picking and placing of each pair of objects, with adapted parameters and joint space
goals

i.e., maximum planning time of 5 seconds, a discretization for collision checking of 5 cm and a

Cartesian position as goal.

6.2.2 Scenario B

So far we have concluded that all planners can handle manipulators with high DoF, however when

obstacles are present and need to be manipulated the outcomes are not as satisfactory, specially

when one requests that the arms move simultaneously. Scenario B aims to subject the planners to

more complex and various objects, requiring different grasping and placing poses.

Table 6.9 allows to inspect each planners efficiency for this scenario when each arm moves at a

time. Surprisingly all planners present positive results, being that this time RRT succeeded in 9 out

of the 10 simulations, this may be the consequence of two factors: the existence of fewer objects

lead to 4 fewer paths that could have decreased the overall success of the simulation and a better

sampling might have occurred, it is not possible to pin point exactly what is the cause to this event.

There can be noticed a slightly better performance for all planners, however, considering both the

success rate and the average number of tries RRTConnect proves, once again, to be the most

efficient. Another aspect that is highlighted when comparing the number of tries in this scenario

to Scenario A - Table 6.1 - is that in this case fewer attempts were made, which indicates that the

paths were easier to compute, possibly due to the decline in the number of obstacles present in the

surroundings.

Simpler paths usually mean shorter planning times, looking at Table 6.10 that lists the planning

times for each path and planner it can be seen that the overall planning time for each planner

decreased, although some fluctuation are noted compared to Scenario A. There are three consistent

outcomes when it comes to planning times, the first one is that, in both the experiments and real life

scenarios simulation both PRM and PRM* yield similar times, always around 5 seconds; second

EST - that uses the roadmap concept though sampled towards the areas of interest of the problem to

solve. - presents faster results than PRM or PRM*; third RRTConnect, as it is expected, confirms

to need a shorter amount of time to compute a path.

When both arms move at the same time it is already known that the problem’s level of com-

plexity is elevated, therefor it is expected that the planners will not output such good results. This

is corroborated by Table 6.11, that displays this scenario’s success rates and number of tries for
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Planner
Picking Picking Placing Placing
Object 1 Object 2 Object 1 Object 2

SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT
RRTConnect 100,00% 1,00 100,00% 1,00 100,00% 1,20 100,00% 1,20
RRT 100,00% 1,90 100,00% 2,00 100,00% 2,10 90,00% 2,22
KPIECE 100,00% 1,50 100,00% 1,60 100,00% 1,60 100,00% 1,30
PRM 100,00% 1,00 100,00% 1,10 100,00% 1,20 100,00% 1,40
PRMStar 100,00% 1,00 100,00% 1,10 100,00% 1,10 100,00% 1,20
EST 100,00% 2,10 100,00% 2,20 100,00% 1,40 90,00% 1,00

Planner
Picking Picking Placing Placing

Overall
Object 3 Object 4 Object 3 Object 4

SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%)
RRTConnect 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00%
RRT 100,00% 1,22 100,00% 1,56 100,00% 1,11 100,00% 1,56 90,00%
KPIECE 100,00% 1,10 110,00% 1,20 100,00% 1,00 100,00% 1,00 100,00%
PRM 90,00% 2,56 100,00% 2,56 100,00% 1,00 100,00% 1,00 90,00%
PRMStar 90,00% 3,33 100,00% 2,89 100,00% 1,00 100,00% 1,00 90,00%
EST 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00% 1,00 90,00%

Table 6.9: Scenario B - Single arm movement Success Rate (SR) and average Number of Tries
(NoT) it took to compute a path for picking and placing of each object

Planner
Picking Picking Placing Placing Picking Picking Placing Placing
Object 1 Object 2 Object 1 Object 2 Object 3 Object 4 Object 3 Object 4

RRTConnect 0,262 0,352 0,301 0,275 1,933 0,920 0,340 0,243
RRT 1,686 1,732 1,625 1,189 2,091 2,455 1,145 1,816
KPIECE 2,999 2,120 1,393 1,800 2,141 1,740 1,208 1,139
PRM 5,033 5,022 5,047 5,027 5,030 5,025 5,030 5,024
PRMStar 5,043 5,047 5,041 5,046 5,039 5,054 5,025 5,051
EST 2,830 2,323 1,718 0,725 2,498 3,031 1,157 1,251

Table 6.10: Scenario B - Single arm movement average planning time (seconds) to compute a path
for picking and placing of each object
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Planner
Picking Placing Picking Placing

Overall
Object 1 and 2 Object 1 and 2 Object 3 and 4 Object 3 and 4
SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%)

RRTConnect 100,00% 1 100,00% 1,8 50,00% 5,2 100,00% 1,2 50,00%
RRT 40,00% 5,75 50,00% 5,5 50,00% 3 100,00% 7 10,00%
KPIECE 30,00% 5 100,00% 4 66,67% 1 100,00% 1,5 20,00%
PRM 60,00% 5,167 83,33% 3,6 0,00% - - - 0,00%
PRMStar 100,00% 2,7 90,00% 4 0,00% - - - 0,00%
EST 0,00% - - - - - - - 0,00%

Table 6.11: Scenario B - Simultaneous arm movement Success Rate (SR) and average Number of
Tries (NoT) it took to compute a path for picking and placing of each pair of objects

each path and planner. It is clear that neither PRM, PRM* or EST are able to succeed in any of

the simulations. Compared to the last scenario - Table 6.3 - PRM and EST have a decline of 20%

and 10% respectively. So far PRM* has not been able to perform in any of the real life scenarios

tested. On the other hand, this time RRT was able to finish one of the simulations and KPIECE

also had an increase on the number of succeed test, from 0 to 2. It is of the utmost importance

to state that RRTConnect has been repeatedly been proven to be the most efficient of all planners

chosen

Since PRM, PRM* and EST could only plan 1 or 2 of the wanted paths there is not much in-

formation regarding the planning time, nevertheless in Table 6.12 it can be verified that both PRM

and PRM* take the usual 5 seconds to compute a path. As for the rest of the planners - RRTCon-

nect, RRT and KPIECE - like it happened for the single arm movement case, the planning time

declined compared to scenario A and like it happened in Scenario A the planning time increased

when compared to the single arm movement.

As it occurred in scenario A, for the simultaneous arm movement the results are not at all sat-

isfactory, thus the same parameters were changed. Table 6.13 shows the success rate and average

number of tries for this scenario when the longest traveled distance without collision checking is

decreased to 2 cm, the planning time is incremented to 10 minutes and the final position is set in

the joint space.

As it is expected the newly obtained results are far better than the previous ones. RRT-Connect,

Planner
Picking Placing Picking Placing

Object 1 and 2 Object 1 and 2 Object 3 and 4 Object 3 and 4
RRTConnect 1,263 0,968 3,512 0,676
RRT 3,143 1,558 4,156 1,675
KPIECE 4,471 1,879 2,546 0,528
PRM 5,047 5,061 - -
PRMStar 5,052 5,100 - -
EST - - - -

Table 6.12: Scenario B - Simultaneous arm movement average planning time (seconds) to compute
a path for picking and placing of each pair of objects
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Planner
Picking Placing Picking Placing

Overall
Object 1 and 2 Object 1 and 2 Object 3 and 4 Object 3 and 4
SR (%) NoT SR (%) NoT SR (%) NoT SR (%) NoT SR (%)

RRTConnect 100,00% 1,00 100,00% 1,00 100,00% 1,20 100,00% 1,00 100,00%
RRT 60,00% 4,50 100,00% 1,67 100,00% 3,17 100,00% 1,50 60,00%
KPIECE 100,00% 1,90 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00%
PRM 70,00% 2,43 100,00% 1,14 28,57% 5,50 100,00% 1,00 20,00%
PRMStar 100,00% 1,30 100,00% 1,00 40,00% 6,25 100,00% 1,00 40,00%
EST 100,00% 1,80 100,00% 1,00 100,00% 1,00 100,00% 1,00 100,00%

Table 6.13: Scenario B - Simultaneous arm movement Success Rate (SR) and average Number of
Tries (NoT) it took to compute a path for picking and placing of each pair of objects, with adapted
parameters and joint space goals

as it happened in scenario A, presents a perfect performance, being able to complete every sim-

ulation almost always on the first try. EST also got some impressive results, this indicates that

the expansion of two trees - one starting at the initial and other at the final configuration - yields

effective results. In this case KPIECE was able to plan for all paths in all simulations and the av-

erage number of tries is close to the ones necessary for RRT-Connect. Although PRM and PRM*

performed poorly they still behaved better than on the previous tests - Table 6.11.

When it comes to the average planning time of the new set of tests - Table 6.14 - we can see

that there is a uniformity with the previous ones, the computational time for the picking of objects

3 and 4 is far greater than the others, indicating that it is a difficult path to plan. As it was stated

before both PRM and PRM* - planners based solely on roadmaps - take the full 10 minutes to

compute a path. Also RRT-Connect reveals to be the fastest one in yielding a response.

6.3 Summary

Having reached the end of this chapter and after completing the simulation of two pick and place

operations we can safely say that the planning for the cases where each arm moves separately

the success rates are satisfactory, and in both scenarios RRT-Connect could easily plan all wanted

Planner
Picking Placing Picking Placing

Object 1 and 2 Object 1 and 2 Object 3 and 4 Object 3 and 4
RRTConnect 8,576 1,899 100,564 1,493
RRT 58,658 121,888 197,636 24,085
KPIECE 178,305 9,321 58,828 5,574
PRM 600,099 600,084 600,095 600,140
PRMStar 600,185 600,261 600,166 600,190
EST 253,662 13,284 97,749 6,372

Table 6.14: Scenario B - Simultaneous arm movement average planning time (seconds) to compute
a path for picking and placing of each pair of objects, with adapted parameters and joint space
goals
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paths. However the main focus is on the simultaneous arm movement, in these cases the results

gotten with the same set up as for the single arm movement are not acceptable. Which leads

to the need to tune some parameters, such as, decrease the maximum traveling distance without

performing collision checking, increasing the planning time and setting the final goal on the joint

space. These are the most important conclusions withdrawn from these tests. After executing these

changes the results yielded improved significantly, being that RRT-Connect and EST presented,

for both scenarios, an 100% success rate. As for RRT it was observed that its performance is

usually poor, this is due to the expansion of a single tree starting at the initial configuration, thus

the computed path after the maximum time is usually an approximated solution since it could not

reach the goal, it only got close to it. It was also clear that the planner based solely on roadmaps -

PRM and PRM* -, although can sometimes perform, are not reliable.

As for the average planning time it was important to assess that PRM and PRM* usually take

the maximum possible planning time to output a result. KPIECE also revealed itself to compute a

faster outcome on path that took usually faster planners more time to compute - i.e. more difficult

paths. RRT-Connect and EST though presenting similar success rates do it in different times, being

that RRT-Connect is usually faster.
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Chapter 7

Conclusions

Throughout this thesis we have reviewed several motion planning algorithms, we have seen some

work that has already been done in the field of motion planning of dual arm manipulators, we have

chosen six different planner to analyzed and tested them in a two arm manipulator in both collision

free and non free environments. In the former we concluded that all planners yielded similar results

concerning the success rates, however the planners based solely in roadmaps - PRM and PRM* -

needed more time to compute a plan. It was also clear - and expected - that planning and moving

each arm separetly results in a better performance, due to the simplicity - when compared to the

simultaneous movement - of the problem. In the end of all the experiments we can safely affirm

that all planners can handle dual arm manipulators.

Following this conclusion simple pick and place operations were simulated in order to mimic

real life situations, these were simulated with several objects with different forms that required var-

ious picking and placing poses. Here the increased complexity of the simultaneous arm planning

was corroborated by the decline in the planners success rate, being that for the separate movement

the outcomes were overall satisfactory. However it is important to keep in mind that the main

goal is to find a system capable of moving both arms, simultaneously, to the goal positions with-

out colliding with anything else. This was achieved by reducing the maximum distance each arm

was allowed to move without the collision checker was called, by increasing the planning time

and by setting the goal positions in the joint space instead in the Cartesian one. In these tests the

success rate for the simultaneous movement improved drastically. However, if for the object free

environments the planners performance is quite similar, in a non obstacle free environment it is

not. In the real life scenarios simulations it is clear that the planners solely based on roadmaps

- PRM and PRM* - do not yield the wanted results and take a great deal of time to compute a

successful path, which makes them unreliable planners for dual arm manipulators. RRT although

it has been designed to handle nonholonomic constraints and high degrees of freedom falls short

when planning for two arms, this is due to the expansion of only one tree, being that in most cases

the solution found was approximated, i.e. it was close to the goal but did not reach it, leading to

a failed outcome. Possibly a longer planning time will allow it to reach the wanted goal, however

there are faster and more effective planners that can perform the wanted task, thus excluding RRT
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as the preferential choice. KPIECE presents a different approach and it is not, to our knowledge,

an extensively studied or used planner, nevertheless yielded interesting results by being able to

complete most of the simulations and by being faster in computing paths that took usually faster

planners to compute. Despite all that, it still failed in some of the tasks given making it less trust-

worthy. Finally there are two planners left to discuss: RRT-Connect and EST. These two planners

revealed similar and perfect success rates in the cases tested and there parity in creating two motion

trees leads us to conclude that this is an advantageous feature in dealing with a dual arm manipula-

tor. However, the average planning time cannot be overlooked and in this parameter RRT-Connect

displayed overall much faster times, making it the ideal planner to solve our problem. The final

goal has been reached, a smart collision avoidance system for a dual arm manipulator has been

found.

To sum up, we conclude that the simultaneous collision free arm movement, though more

complex, is possible to achieve using RRT-Connect. However it is important to underline the

need to set the final pose in the joint space, otherwise the performance of the planner can drop

drastically.

7.1 Future Work

After the end of this work there is still some further studies that can be carried out. The first of

them is the execution of tests on a real dual arm manipulator to evaluate if the planner can actually

perform with accuracy when having to deal with the inherent situations of real world testing.

Secondly it is important to analyze the planners behaviour when facing more difficult scenarios,

with more objects and with more complex forms. Adjacent to this it would also be interesting

to assess if the planner can handle path constraints, for example both arms having to pick up a

tray and carry it without turning it. Finally it would be fruitful to redo this work but taking in

consideration not only the success rate and the average planning time but also other parameters,

for example the length of the traveled path.
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