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Resumo

Esta tese tem como objetivo apresentar uma solução que previna a morte de crianças dentro de
automóveis, tirando partido de tecnologias low-cost que podem ser facilmente integradas, ou até
já fazer parte de um veículo.

As circunstâncias que conduzem a estas consequências podem restringir-se à falta de atenção
dos cuidadores, por exemplo, quer por deixarem a criança desacompanhada quando foram fazer
compras e demoraram mais que o esperado, quer simplesmente porque se esquecerem dela depois
de levarem as compras para casa.

Diversos sistemas foram considerados aquando do estudo do estado de arte, culminando na
idealização de um sistema que incorpora dois tipos de input – um sensor de movimento e uma
câmara – enquanto o condutor é notificado via SMS.

A dissertação foi realizada tendo em conta duas perspetivas. Uma abordagem low-cost, que
utiliza o sensor de movimento, e outro, que se antecipa ser mais seguro, consistindo em detetar
humanos através de visão. Enquanto o sistema integrado é idealizado como a solução ótima para
reconhecer a presença de crianças dentro do veículo, os estudos realizados sugerem que uma
aplicação independente dos dois sistemas pode ser viável.

Ao longo deste estudo podem verificar-se limitações inerentes à implementação low-cost, uma
vez que é necessário que haja movimento para que a deteção seja efetuada, ao passo que as câ-
maras podem reconhecer crianças mesmo que estejam a dormir. Ao mesmo tempo, os algoritmos
de visão tornam-se mais viáveis a longo prazo, devido tanto ao seu constante desenvolvimento,
como ao aprimoramento da eletrónica dos automóveis, que cada vez mais utilizam câmaras para
a resolução de diversos problemas, por exemplo, sonolência do condutor, acabando por mitigar a
limitação dos custos.

É esperado que esta dissertação sirva tanto como uma solução, bem como catalisador de
soluções, uma vez que não está limitada a esta aplicação e sendo capaz de prevenir roubos de
automóveis ou arrombamentos para surpreender o condutor sem que este se aperceba, ainda que o
principal foco seja apresentar um sistema que detete e notifique de forma confiante e que permita
reduzir o número de acidentes com crianças em automóveis.

Palavras chave - Algoritmos de visão, sensores de movimento PIR, tecnologia GSM, YOLO
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Abstract

This thesis aims to present a solution to prevent in-car infants’ deaths, capitalizing on low-cost
technologies that can easily be integrated on the vehicle or are already a part of it.

The circumstances that led to this outcome can be narrowed down to parent’s carelessness, for
example, whether they left the child unattended because of a short time stop to do groceries that
turned out too long, or simply because the child was forgotten after bringing such groceries home
first.

As part of the state of art, several possible systems were considered, culminating in a sys-
tem idealization incorporating two approaches as inputs – a motion sensor and a camera – while
notifying the driver via SMS.

The dissertation was conducted in two perspectives. A low-cost approach, which utilizes the
motion sensor, and other, that is anticipated to be more reliable, consisting in human detection
through vision algorithms. While the integrated system is idealized to optimally recognize the
presence of children inside the vehicle, the performed studies suggest a stand-alone application
may be viable.

Throughout this study it is noted the low-cost implementation limitations due to the sensor
requiring movement to acknowledge that there is someone present, while the use of a camera can
recognize infants even if they are asleep. At the same time, vision algorithm becomes even more
reliable overtime due to their constant improvements as well as the car electronics enhancements,
with cameras providing solutions for several other issues such as driver drowsiness detection,
mitigating cost constraints.

It is hoped that this dissertation serves as both a solution and solution catalyst since it is
not limited to this application, being able to prevent cars from being stolen or burglar’s break-
in to surprise an unaware driver, although it’s main focus is to present a reliable detection and
notification system that allows in-car infant casualties decrease.

Keywords - GSM technology, PIR motion sensor, vision algorithms, YOLO
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Chapter 1

Introduction

1.1 Context and Motivation

The automobile industry is presently in a mature state, where thousands of cars are commercialized

per day and every year new models are presented that surpass previous ones. In order to remain

competitive, automotive corporations explore new ways to improve their vehicles taking advan-

tage of technological advances. The integration of electronics systems, in detriment of mechanical

ones, provided enhancements both at comfort and security levels. The Electrical Engineering

advancements allowed the development of several technologies which became standard in every

automobile such as electronic injection and ignition, or as extras, such as GPS or automatic park-

ing. This dissertation inserts itself in this branch of technological improvements, where a system

is envisioned to solve a life-threatening behavior.

The main purpose is the development of a system that recognizes human presence inside a

vehicle whenever the driver leaves the vehicle and posterior notification, as this dissertation title

suggests. The necessity of such solution has as main problematic children left unattended inside

the automobile, which in some cases might lead to the end of their life.

According to a San Jose State University’s study from Jan Null [2], an average of thirty-seven

kids die per year in the USA, victims of heatstroke. Statistics show that 54% of these casualties

are due to being forgotten and 28% due to being unattended while playing. The study comprises

kids age up to 14 years, yet 96% of the deaths are infants up to 5 years old. This reality indicates

negligence after parking the vehicle, either by leaving the infants unattended or even forgetting

about them.

In this dissertation we propose a solution whose purpose is recognizing the presence of infants,

regardless of their age, whenever the caregiver is distracted by its daily routine and simply forgets

the children in the rear in the back seat.

In the following, two different systems are proposed, a low-cost approach whose implementa-

tion is documented and evaluated as well as a higher-cost alternative whose reliability is studied.

1



2 Introduction

The most desirable solution would compound both these concepts in a single, more reliable sys-

tem.

Both standalone proposed solutions should provide reliable detection and notification on their

own and be able to mitigate in-car infant fatalities.

1.2 Objectives

As previously state, in this dissertation we propose a solution to the in-car infant death. In order to

achieve the optimal solution several steps are taken to decide which path should be chosen, such

as study of different detection and notification techniques, analyze and compare each ones’ pros

and cons.

Along with these steps several objectives are drawn, namely:

• System’s architecture choice;

• System’s architecture and algorithm implementation;

• System’s validation through test.

It is also required that the developed system is:

• Generic - able to port to any automobile brand;

• Low-cost - in order to be affordable for virtually everyone;

• Low power consumption - since the energy is drawn from the car’s battery.

Following these lines, it is expected that the developed system is reliably capable of in-car

detection and subsequent driver warning. Lastly, conclusions of the results will be drawn, as well

as suggestions for future improvements.

In short, we intend to propose a generic low-cost system, whose selected architecture has been

carefully considered and its reliability and limitations tested and acknowledged.

1.3 Structure

The present document is structured in a way that showcases the dissertation agenda, meaning that,

more or less, the chapters accompany the time frame of the realized work.

Chapter 1 serves as an introduction to this dissertation thematic, its technological context, the

catalysts that propelled its proposition and its fundamental objectives.

Chapter 2 presents the state of art, several publications of this dissertation problematic are

reviewed, as well as other solutions that are also related. It is also briefly reviewed some vision

algorithms state of art.
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Chapter 3 extends the previous chapter into an evaluation of the potential technologies that

might be chosen to the final system’s implementation. For both detection, communication and

control choices pros and cons are pondered and considered.

Chapter 4 introduces the system idealization and further expands the implemented solution,

the options that were adopted, architecture, realized tests and their results.

In chapter 5, an overall conclusion is made about the several different points discussed along

the document. In this chapter, future work possibilities are also discussed as well.
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Chapter 2

State of the Art

Throughout this chapter it is presented the state of the art, where several scientific papers whose

contents address this dissertation problematic or have solutions that can be redesigned for this

system’s application, are analyzed. The technologies pros and cons are expanded in the following

(chapter 3).

2.1 Potential Conceptual Systems

The first two papers analyzed were authored by Fairuz Rashidi and Ikhwan Muhamad [3] [4], both

aiming to mitigate in-car infants death, due to caregivers’ neglection, fundamentally the same as

this dissertation.

In their first paper [3] it is conceptualized a system that alerts the driver whether he is nearby

or not. The system consists of:

• A passive infrared (PIR) sensor;

• A GSM module;

• A PIC microcontroller.

The algorithm kicks off when the vehicle is immobilized, checking, for example, if the igni-

tion is turned off. Since there is no need for a full time running system, this allows a decreased

current consumption. After starting up, and whenever the PIR sensor detects motion, the PIC mi-

crocontroller interprets its signal and generates an alert message which is sent through the GSM

module. According to the authors, the developed prototype behaves as intended, suggesting a po-

tential integration within the vehicle electronics, allowing the employment of the vehicle’s alarm

as an alternative notification system.

Their second paper’s premise is the same, in-car infant detection, however using a different

type of approach.

5



6 State of the Art

This other system consists of two cameras, one for the back seats, the other for the front ones,

and a Raspberry Pi. It follows the same rule to start up, requiring the vehicle to be immobilized

and turned off. It is also worth noting that it turns OFF thirty minutes without positive detection.

Since this solution has higher current consumption than the sensor-based one, this guideline,

turning OFF after thirty minutes, allows a better energy management. There is also the temperature

inside the vehicle which is bound to rise risking heatstroke fatalities, especially during sunny days.

For this reason, it is demanded fast recognition and, therefore, it is required a low false negative

(FN) rate.

As expected, this system’s input is a video, so it requires a higher processing power, therefore

the necessity for a Raspberry Pi. The image processing is based on a simple algorithm of motion

detection.

The authors explain that the testing procedures were performed in controlled light conditions,

admitting that further development and investigations could improve the system reliability. It is

also showcased the algorithm’s performance, claiming that it can detect human presence in less

than three minutes.

On a slightly different premise, Haibin Cai [5] proposes a vision-based system that aims to

reduce car theft.

The presented system can be broken down in two parts, one consisting of an accelerator and

the other of a camera. It is assumed that the accelerator is able to detect evident theft attempts,

such as breaking a window. The camera is only used if the accelerator recognizes an attempt but is

not evident enough. The modus operandis can be visualized in Figure 2.1. The system starts wit a

window damage detection, immediately activating the alarm if it was indeed damaged. After that,

the accelerator is turned on, and will be generating two possible outputs, the assault detection,

which will immediately activate the alarm, or a possible disturbance detection, which will then

activate the vision system. The vision system will then confirm the assault attempt, and turned

OFF right after.

Whenever the camera is activated, the image processing algorithm distinguishes intrusion

movements from, for example, people crossing by.

It is claimed that this system was tested in several locations under different conditions, simu-

lating both intrusion movements and people crossing by, presenting a 91.7% success. The author

also provides the current consumption rates, that varies between 2mA while the accelerator is

turned on, to 160mA when the camera is activated.

The paper entitled "RF-Based child occupation detection in the vehicle interior" [6] presents

yet another solution to reduce in-car casualties. In this article it is documented the development

of a radio frequency sensor capable of detecting respiration as well as the heartbeat of sleeping

babies or children.

The main challenge of this approach is to differentiate background noise from a heartbeat or

respiration. In Figure 2.2 it is shown the distinction between a rain signal and a child using a
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Figure 2.1: Haibin Cai functional system’s flowchart [5]

pattern recognition algorithm.

This article’s authors also declare that tests were run with fifty different children, being able

to distinguish them apart from traffic noises or rain without any false positives. It is also referred

that a dummy was created in order to simulate the worst-case scenery, allowing further systematic

experiences regarding the system’s reliability.

Contrasting with previous papers, the self-regulated automatic ventilation of vehicle interior

[7] premise is not about preventing casualties or even thefts, instead its objective is opening the

cars windows if the vehicle temperature rises above a certain threshold.

Although it does not fit this dissertation theme, it showcases an idea that can be considered

relevant, for instance, if a child is still inside the vehicle, the ability to create an airflow can reduce
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Figure 2.2: Comparison of analyzed patterns after algorithm process [6] of rain (left) and child
heartbeat (right)

the inherent danger, although not being able to mitigate it.

The idealized system consists of a temperature sensor as well as motion sensor that detect

movement around the vehicle and a precipitation sensor in case of rain.

The last solution analyzed was published by Norizam Sulaiman and Kamarul Hawari Ghaz-

ali entitled "Development of comprehensive unattended child warning and feedback system in

vehicle" [8]. It consists in a system that contains some of the referred technologies such as the

PIR motion and temperature sensors, GSM module, car alarm integration and window opening,

including also an EasyVR Shield for voice recognition and an eNose for odor recognition.

The modus operandis is similar to the previous systems, for example it is activated only once

the car is immobilized. The detection blocks are turned ON in sequential order, as follows:

• Temperature sensor;

• PIR sensor;

• Voice recognition;

• Odor recognition.

If any of these modules gets triggered, the alarm is set ON generating a notification that is

transmitted to the vehicle’s owner via SMS. If this message is ignored, the car alarm is turned

OFF and the windows are lowered to create an airflow.

2.2 Vision Algorithms

Some of the previously reported papers present a vision-based solution, which demands image

processing. Throughout this section a brief history and evolution of some of the approaches are

presented.
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2.2.1 Viola-Jones Object Detection

Figure 2.3: Viola-Jones first and second selected features for face detection [9]

In 2001 Paul Viola and Michael Jones [9] presented a machine learning approach capable of

fast object detection with high detection rates.

The presented algorithm had as cornerstones three key contributions:

• Integral Image - which allows fast computation;

• AdaBoost based algorithm - which selects a small number of visual characteristics;

• Combining complex classifiers in a cascade which concedes a fast dispose of the back-

ground.

This algorithm allowed real-time applications running at 15 fps without resorting to image

difference or skin color, as previous state of art solutions.

In Figure 2.3 it is shown two features that helps the algorithm perceive human faces.

The left feature measures the light difference between the eyes and upper cheeks taking ad-

vantage of the eye region being darker. The right feature works the same way, comparing the eyes

region with the nose’s one.

2.2.2 R-CNN Family

Several other approaches were proposed, until in 2012 Alex Krizhevsky et al. [10] turned CNN

(Convolutional Neural Networks) into the image classification standard, winning the annual Olympics

of computer vision - ImageNet - with a CNN known as AlexNet.

The CNN itself was not a novelty, CNNs were around since the 90’s, however two reasons

were holding it back, and only then was possible to reliably adopt CNN at image classification:
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• The GPU improvement - increasing substantially the computing power;

• The amount of data - creating far wider training sets.

With this revolutionary tool, one of the most popular approaches was introduced by Ross

Girshick et al. - the R-CNN (Regional CNN) [11].

Figure 2.4: RCNN classification process [11]

With R-CNN the main goal was to correctly identify where the objects were in the picture.

The process is enhanced due to running a selective search to extract around two thousand region

proposals, which are then fed to a CNN version of the AlexNet [10] as pictured in Figure 2.4. The

classification layer operates with linear regression that allows the creation of a tighten bounding

box.

Carrying on with this evolutionary chain, Fast R-CNN was created in 2015 also by Ross Gir-

shick [12], envisioning the improvement of the training while speeding the computational process.

R-CNN could be considered slow due to the process of each of the two thousand regions going

through the AlexNet CNN. On top of that, R-CNN also has a three-stage training, the CNN image

feature, the class prediction classifier and the bounding box linear regression.

One of the improvements was the RoI (Region of Interest), since several of the regions over-

lapped, instead of running the two thousand region proposal through the CNN, the image goes

through the CNN only once, outputting a RoI projected in a h×w grid.

The second improvement consisted in the junction of the training stages both the CNN, clas-

sifier and the bounding box.

Figure 2.5 represents the Fast R-CNN architecture, the image and the RoI are fed as inputs

to the CNN. The RoI pooling layer gets a fixed-size feature map for all RoI, and the FCs (Fully

Connected layers) map a feature vector, outputting the softmax probabilities and the bounding

boxes regression offsets.
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Figure 2.5: Fast R-CNN architecture [12]

2.2.3 YOLO family

The improvement series kept going, and in 2016 Shaoqing Ren et al. published the Faster R-CNN

[13], a Fast R-CNN upgrade. After previous improvements, the region proposal computation was

exposed as a bottleneck, which previously resorted to the selective search.

Figure 2.6: Faster R-CNN architecture [13]

It was noted that the regional proposals depended of the features already calculated, so instead

of using the selective search, an RPN (Regional Proposal Network) was created. The RPN works
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as an attention mechanism and permits that only one CNN needs to be trained, allowing nearly

cost-free region proposals by telling the Fast R-CNN module where to look.

In Figure 2.6 it is shown the Faster R-CNN architecture, where the only CNN input is the

image. Feature map then feeds both the RPN that creates the region proposals as well as the RoI

pooling.

In 2017 Kaiming He et al. published the last (to date) R-CNN development - Mask R-CNN

[14]. Mask R-CNN extends Faster R-CNN by adding an extra branch to predict an object mask,

which outputs a binary mask predicting if a given pixel is part of an object.

The pixel-to-pixel behavior employs the RoI features, which are small feature maps that need

to be well aligned to faithfully preserve the spatial correspondence, which motivated the develop-

ment of "RoIAlign".

The feature map of an image is not the same size, so the pixel translation from the feature

map back to the image may originate in decimal pixels that would be rounded down with RoIPool.

With RoIAlign a bilinear interpolation is adopted to precisely compute the exact values of the

input features.

Figure 2.7: Mask R-CNN architecture [14]

In Figure 2.7 it is shown the faster R-CNN branch which outputs the class label and the bound-

ing box parallel to the FCN (Fully Convolutional Network) that predicts the mask segmentation

pixel-to-pixel.

The previous models, the R-CNN "family", try to recognize the objects through their classifi-

cation, however in 2016 Joseph Redmon et al. created a model that used unified regression instead,

published as YOLO (You Only Look Once) [15]. YOLO image processing can be described in

three steps:

• Resize the input image;

• Run CNN;
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• Apply confidence bounding boxes.

The YOLO model is depicted in Figure 2.8.

Figure 2.8: YOLO model [15]

This model can be narrowed down to:

• Dividing the image into an S×S grid - leftmost image in Figure 2.8;

• For each grid cell it is predicted B bounding boxes - uppermost image - which are repre-

sented through thickness, meaning that the thicker the bounding box, the higher the confi-

dence of the prediction;

• C class probabilities are predicted - lowermost image - depicted as different colors in differ-

ent cells;

• The result - rightmost image - is given by setting the confidence threshold, eliminating every

other bounding box.

The first published YOLO paper presented two versions of this algorithm, the YOLO and the

fast YOLO, the latter meant to push the fast object detection boundaries. This consists in less

convolutional layers (nine instead of twenty-four) and was able to run at 155 f ps (frames per sec-

ond) compared to the 45 f ps of the original version. Its precision 1 is 52.7% mAP (Mean Average

Precision) while the original YOLO pushes further to 63.4%. The main struggle, acknowledged

by the authors, is the localization of errors.

Still in 2016, Joseph Redmon and Ali Farhadi publish the article "YOLO9000 Better, Faster,

Stronger" [16], with two new directions, the YOLO9000 that is able to detect over nine thousand

1Precision - The probability that a decision is correct - #TruePositives/#PredictedPositives
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object categories and the YOLOv2 that is capable of running at 67 f ps with 76.8% mAP in the

VOC 2007 dataset.

The YOLOv2 improvement comes from several designed decisions such as:

• Batch normalization;

• High resolution classifier;

• Convolutional network with anchor boxes;

• Dimension clusters;

• Direct location prediction;

• Fine grained features;

• Multi-scale training.

Each of these improvements led to significant mAP increases, excluding the convolutional

network with anchor boxes, which saw a small decrease of 0.3% mAP but displaying a higher

recall2, meaning that there is still room for improvement.

Lastly, in April 2018 Joseph Redmon and Ali Farhadi published the last (to date) YOLO

upgrade, the YOLOv3 [17].

Figure 2.9: YOLOv3 performance [17]

In this "tech report" some small improvements are made to YOLO and some approaches that

did not improve it are also listed, such as:

2Recall - The probability that a prediction is correct - #TruePositives/#ActualPositives



2.3 Solutions Limitations 15

• Anchor box x,y offset predictions - this formulation decreased the model stability;

• Linear x,y predictions instead of logistic - this decreased a couple of mAP points;

• Focal loss - also decreased a couple of mAP points;

• Dual IOU thresholds and truth assignment - also decreased the mAP.

It is acknowledged that these techniques eventually might produce better results with fine

tuning.

In this paper there is a metric switch to measure the detectors accuracy and Figure 2.9 displays

the precision versus inference time of YOLOv3 comparatively to RetinaNet.

2.3 Solutions Limitations

All the analyzed papers provide a solution that can decrease the fatalities. However it is also

possible to pin point some limitations inherent to the proposed technologies.

Starting with PIR sensor, it is only possible to detect motion if the vehicle temperature differs

from the child’s, otherwise the reliability decreases, especially during Summer.

The radio-frequency sensor has another type of constraints related with the children’s health.

According to the IEEE standard for safety levels with respect to human exposure to radio fre-

quency electromagnetic fields, 3kHz to 300gHz [18] the maximum power density level for human

exposure is 10mW/cm2.

Even though cameras have a higher energy need comparatively to other options, it is expected

to become more reliable over time following the algorithms natural evolution. An elegant solution

to the consumption problem, as previously analyzed, is the integration with another detection

system and activating the cameras only when there is doubt in the detection.

In order to employ cameras there is also the need for a vision algorithm. Some potential

approaches were also analyzed, all of them relying in machine learning techniques. There are

also several other approaches that were not reviewed such as the background subtraction whose

operation principal is close to the motion sensor as it requires motion to effectively detect the

target.

As for the facial recognition algorithms, it is expected that its reliability increase over time, as

the several successive upgrades to the R-CNN and YOLO suggest.

2.4 Conclusions

In this chapter several papers with a relevant basis were analyzed in order to present potential

starting points as well as provide an overview of their limitations.

Several different types of implementations were analyzed and some were proven to be clearly

worse due to the dissertation thematic, for instance, there is little to gain from a voice pattern

recognition to detect infants cries as it requires more processing power and will not work if the
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child is silent. However, this implementation was integrated with three more detection technolo-

gies, and showcasing that an integration of different options might upgrade the systems reliability

and usability.

It is also possible to see a trend in the components that the majority of the articles analyzed

follow, which are cameras and PIR motion sensors. It is deduced that these choices seem to be

more reliable than their counterparts, and further review, in chapter 3, shall provide a better picture

of pros and cons associated with each technology.

Lastly, a small introduction of some vision algorithms was presented, in order to provide a

better understanding of the vision solutions and if it is indeed a reliable option. As the articles

suggest, both the last versions of Mask R-CNN and YOLO provide an increasing accuracy rate as

the algorithms evolve, inducing that over time their reliability will keep increasing. As it stands, it

is already considered a reliable solution to object detection while running in real-time.



Chapter 3

Technologies

Throughout the previous chapter several documents were presented that aim to detect presence

inside the vehicle. Any of the previous solutions could be chosen as a starting point for this

dissertation thematic, however, the selection of the system components needs to consider their

inherent pros and cons.

In this chapter we discuss the technologies that can be potentially used, weighting their advan-

tages. Three distinct groups are analyzed:

• Sensors;

• Communication techniques;

• Control Units.

This evaluation will lead to the components that were chosen. More detailed analysis of the

selected components is presented with the system development, in chapter 4.

3.1 Sensors

3.1.1 Weight Sensor

There are several different sensors that can be applied to in-car human detection. A simple way to

know if a seat is occupied is by measuring the weight. A weight sensor installed on the seat will

be able to sense whenever someone is sitting there. There are several topologies of this sensor, the

most common being the strain gauge, coupling the gauges to a Wheatstone bridge, as depicted in

Figure 3.1 half bridge.

This sensor working principle simply consists in generating a variable electric resistance which

unbalances the Wheatstone bridge translating in a voltage output deviation that is proportional to

the gauge deformation. Since this deformation proportionately depends on the weight applied to

the gauge the weight measure is enabled. The strain gauge is the most used weight sensor as a

result of its reliability along with long lifetime.

17
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Figure 3.1: Half Wheatstone bridge, left, and strain gauge, right

The recognition algorithm could rely on just a couple of measurements, the first whenever

the car starts moving, which guarantees that no one is going to enter the car afterwards and the

second after the car is locked, assuring that no one is going to leave the car. It is also possible to

set the value for the empty seat and comparing to the last measure, requiring a measure only after

the car is locked. The difference of these measurements provides information on whether there is

someone inside.

According to the sensor precision it is possible to detect a small child’s weight, however there

is no sensibility to whether the pressure is done by a person or some other object left in car. This

system is already present in several vehicles with the goal of checking if everyone inside is wearing

their seat-belts. However if a heavier object is on top of the seat, the alert will be equally activated.

3.1.2 Microphone

In section 2.1, the last paper analyzed [8] introduces a voice recognition system. This solution

requires that every noise needs to be distinguished from the children cry, requiring a voice pattern

recognition algorithm that potentially needs the same processing power as a camera, with more

disadvantages. This system is not reliable when the baby is sleeping, and even if he is awake

it needs the baby to cry. If the child is older, then it might not even cry, making this solution

ineffective.

3.1.3 Continuous Wave Sensor

Also analyzed in previous chapter, a continuous wave (CW) sensor [6], might be the most efficient

one. A potential architecture is depicted in Figure 3.2, from İsmail Şişman et al. publication

"Micro-doppler radar for human breathing and heart-beat detection" [19].

This type of sensor allows to detect heart-beats, and with a pattern recognition algorithm it is

possible to distinguish it from other type of noises, such as rain. The working principle relies in
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reflecting a signal on the target, resorting in the Doppler effect, and filtering the received wave

eliminating its noise, obtaining an observable pattern, as shown in Figure 3.2.

Figure 3.2: Doppler radar architecture [19]

Contrary to the other sensors, this approach is immune to light and temperature conditions as

well as target shape or steadiness, precisely detecting human beings (or animals) [19] [20]. This

technology has, however, a health constraint. Since this type of sensors resort in emitting energy,

there is a concern regarding the emitted signal’s power which cannot be over 10mW/cm2 [21]

[18]. An exposure to a high power radiation for a long period of time might originate in radiation

poisoning.

3.1.4 Passive InfraRed Sensor

Throughout chapter 2.1 several investigators choose to detect in-car presence resorting to mo-

tion PIR sensors. This type of sensors is sensitive to the body temperature, in contrast with the

surroundings.

Every object with greater temperature than absolute zero emits a thermal radiation, which is

not observable with naked eye - infrared radiation. The PIR sensor captures the energy trans-

mitted by the target objects although no energy is transmitted from the sensor, hence the passive

nomenclature. If the target temperature becomes too close to the surroundings, the sensor’s re-

liability drastically decreases, not being able to distinguish one from the other. The temperature

inside a vehicle rapidly rises due to sun’s radiation and when it gets in the range of human body

temperature, detection is no longer possible.

In the presence of temperature differences, the infrared sensor will only be activated if motion

is detected. This means that a still body, like a sleeping baby, might not be detected.

3.1.5 Cameras

On pair with PIR sensors, also cameras seem to be a good option for in-car presence detection. The

integration of cameras in vehicles has increased over the last decade, benefiting of both algorithm
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improvements, automobile industry evolution and brands competition. Since the cameras range of

applications is not restricted to the automobile industry, its improvement benefits from every field

of application breakthroughs.

Newer cars already have several camera applications installed such as automated parking sys-

tem as well as applications being researched such as driver drowsiness or interior presence detec-

tion.

In order to detect infants inside the car several options can be chosen, for example, a mo-

tion detection. This approach is very similar to the motion sensors, since it requires motion to

activate, without the temperature gap requirement downside. It has, however, the need for target

motion which associated with car vibration’s sensibility might translate in a false positive triggers

escalation.

The more relevant approach relies in object recognition, such as the algorithms enumerated in

chapter 2. This method reliability has been enhanced over the last decade due to different CNN

algorithms, such as R-CNN or YOLO, series of improvements.

Setting the reliability of these algorithms in detecting human beings aside, cameras require

high processing power which therefore leads to an overall current consumption increase.

3.1.6 Comparison

In table 3.1 a crude overall comparison is made, where the PIR sensor can be highlighted as the

best option. In this sense, cameras seem to be unnecessary, however, as a second layer of detection

the system’s reliability is expected to improve.

In the CW sensor case it has already been discussed the health complications, so even if this

is the most reliable option, it is still the most dangerous.

Table 3.1: Different sensors overall comparison

Power
consumption

Cost Reliability

Weight sensor ++ ++ -
Microphone - - –
Continuous
wave sensor

- - ++

PIR sensor ++ ++ +
Cameras - - +

3.2 Control Units

The previously discussed sensing components require a control unit in order to accurately process

their output signals. To properly interpret such signals, different control units might be required,

and since the presented sensors have different processing requirements, different control units

should be considered.
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In the previous section, several times was mentioned that certain sensors required higher pro-

cessing power, specifically the pattern recognition and vision-based solutions. The rationale that

distinguishes a high processing power from a low process requirement can be described as the

amount of information the control unit needs to handle in order to acknowledge, in this applica-

tion’s case, if there is in fact someone inside the vehicle. The information can be as simple as read

a digital input where zero value translates to no motion and one to motion detected, or complex as

evaluate the facial features on video frame.

Figure 3.3: ATmega2560 [22], left, and Raspberry Pi 3 [23], right

The PIR or weight sensors output can be read as a digital or analog input, not needing any

other processing consideration. On the other hand, voice or vision detection relies on pattern or

features recognition. To recognize the first type of signals a microcontroller unit (MCU), such

as an ATmega [22], is enough, which allows for a total cost of the system reduction while also

reducing the current consumption. The second type of detection requires a microprocessor unit

(MPU), such as a Raspberry Pi [23]. The choice of an MPU increases the number of features, like

RAM, that are needed in order to be able to run vision or pattern recognition algorithms, however

the overall cost of the system is increased, as well as the current consumption. Figure 3.3 depicts

both an ATmega and a Raspberry.

3.3 Communication Techniques

The recognition of presence inside the vehicle is meaningless if the driver is not warned. In order

to accomplish the proposed system purpose, there is a need to communicate alerts whenever an

individual is detected inside the car.

3.3.1 Car Alarm

Considering an integration of the developed system in the vehicle electronics, there are several

opportunities to manage the alert communication. The first potential way is triggering the car’s

alarm. If the system detects presence inside the vehicle immediately after the car is locked, the
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driver will most likely still be nearby. However, there are several problems inherent to this ap-

proach, such as:

• Considering that the system turns ON whenever the doors are locked, if the driver forgets to

lock them the system will not start up;

• Considering that the system turns ON whenever the ignition is turned off, if presence is

immediately detected the alarm will trigger before the driver is out of the car;

• Considering that the system turns on, for example, ten minutes after the ignition is turned

OFF the driver might already be too far away to hear the alarm.

In addition, every time the system falsely detects interior presence the alarm will be turned on.

For all these reasons, the driver might decide to entirely turn OFF this system.

3.3.2 Text Message Notification - GSM

It is possible to employ a GSM module that sends a text message to the driver phone. This solution

does not rely on the driver distance from the car, it will send the message regardless of the owners

position. There are, however, a couple of issues associated with this solution:

• If the driver forgets the phone, this notification is meaningless;

• For this solution to work, it is required a monthly plan or a prepaid plan.

If the phone ends up being forgotten, the driver most likely will miss it and go back to get it

since it became such an important item from the everyday life. On the other hand, a periodical

payment for the GSM module’s SIM card is not an appealing feature that the buyer looks forward

to.

While the driver might come back to get his phone, the system might become unappealing

since it requires a periodical payment for the GSM service.

3.3.3 Wireless Technologies

Comparatively to activating the car’s alarm other options are subtler. For instance, the Bluetooth

protocol is a proven technology that is integrated in a large number of car models, which permits

the integration of a quieter alarm in the car keys. It is also not restricted to car integration, requiring

that the driver carries the alarm alongside the car keys.

Bluetooth is a PAN (Personal Area Network) - an IEEE standard, namely 802.15.1 [24] - but

there are several other PAN protocols that could be used instead, such as the standard 802.15.3a

High Rate WPAN [25] or the 802.15.4 Low Rate WPAN which requires low power, but it can also

be considered WLAN (Wireless Local Area Network) protocols, such as the 802.11a/b/g Wi-Fi

[26].
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Table 3.2: Wireless technologies for automotive systems comparison [1]

Standard Bluetooth
IEEE 802.15.1

ZigBee
IEEE 802.15.4

UWB
IEEE 802.15.3a

Wi-Fi
IEEE 802.11a/b/g

Freq. band 2.4 Ghz 2.5 Ghz (ver 1.2) 2.4 Ghz 3.1-10.6 Ghz
2.4 Ghz (b/g)
5 Ghz (a)

Network P2P Mesh P2P P2P

Modulation
technique

Frequency Hopping Spread
Spectrum (FHSS)

Direct Sequence Spread
Spectrum (DSSS)

Orthogonal Frequency
Division Multiplexing
(OFDM) or Direct-
-Sequence UWB (DSUWB)

OFDM or DSSS with
ComplementaryCode
Keying(CCK)

Maximum
network
speed

1 Mbps (ver 1.0)
3 Mbps (ver 1.2)
12 Mbps (ver 2.0)

250 Kbps
50-100 Mbps (480
Mbps within short
ranges expected).

54 Mbps (802.11a)
11 Mbps (802.11b)
54 Mbps (802.11g

Network
range

Up to 100 meters,
depending~on radio class
(effective 10 meters).

Up to 70 meters
(effective 20 meters).

Up to 20 meters
(effective 10 meters).

Up to 100 meters
(effective50 meters).

Main
usage

Voice applications.
Eliminating short-distance
cabling on radio class

Sensors/control applications.
Grand-scale automation.
Remote control.

Multimedia applications.
Healthcare applications.

Office/home networks.
WLAN.
Replace Ethernet cables

Strong
points

Dominating PAN tech.
In vehicles today.
Easy synchronization of
mobile devices.
Frequency hopping tolerant
to harsh environments.

Static network.
Control/sensor.
Many devices/nodes.
Small data packets.
Low duty cycle.
Low power

Easy and cheap to build.
Consume very little power.
Provides high bandwidth.
Broad spectrum of
frequencies (robustness).

Dominating WLAN tech.
Know-how.

Weak
points

Interference with WiFi.
Consume medium power

Low bandwidth
Short range.
Interference.

Traditionally consume
highpower

Automotive
usage
(potential)

Portable devices.
Diagnostics tools.
Real-time communications.
Device connectivity.

In-vehicle communications.
Mobile/static sensor
networks.

Robust vehicle
communications.
High bandwidth
communications.

Inter-vehicle
communications.
Vehicle-to-vehicle.
Vehicle-to-roadside.

Table 3.2 was taken from Thomas Nolte and Hans Hansson published article entitled "Wireless

Automotive Communications" [1] and shows all these protocols strong and weak points, alongside

with their main characteristics.

There are some issues with wireless technologies, such as the maximum range of operation,

requiring that the system recognizes interior presence before the driver gets too far away.

Another point to keep in mind is the IoT (Internet of Things) evolution. There is an increasing

interest in this field, and the automobile industry is bound to keep up. Tesla, for example, already

provides an android/iOS [27] app that allows the driver to control and monitor his/her vehicle.

3.4 Conclusion

Throughout this chapter several technologies that could be chosen to integrate the final implemen-

tation are presented. They were arranged in three sections where their strong and weak points were

evaluated. It is possible to point out that the motion sensor might be the safest pick, comparatively

to the other analyzed options:

• it has low current consumption in comparison with vision or pattern recognition;

• is safer than continuous wave sensor;
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• seems to be more practical when compared to the weight sensor, which will be triggered if

a slightly bigger object is left on top of the seat.

On the other hand, the coupling of two systems can be a better approach, as was already ex-

pected prior to the state of art analysis, since it allows for better current consumption management,

using the higher consumption system only occasionally. At the same time higher reliability is also

provided, where each technology tries to complement the other. Discarding the continuous wave

sensor for its potential health issues, as well as the voice recognition for its low usability, cameras

appear to be the most reliable option.

In the communication case, a wireless solution, with an integrated alarm in the car keys seems

the best option. However, as a plugin-in solution the GSM module is preferred so that the driver

has only to carry the mobile phone.



Chapter 4

System Implementation and Vision
Study

4.1 Integrated Solution

The solution presented in this dissertation ultimately aims to allow both low-cost mass produc-

tion as well as low consumption rates while reliably detecting if someone is inside the car. In

order to reach this goal, we propose a two-level detection system that systematically detects in-car

presences. This architecture is represented in Figure 4.1.

Figure 4.1: Ideal system’s electrical circuit

As depicted in Figure 4.1, two inputs provide data regarding the presence of individuals inside

the vehicle, through both a PIR sensor and a camera. This system echoes the one present in the

paper considered in chapter 2 by Haibin Cai [5], exchanging the accelerometer with a PIR sensor,

25
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which is preferable since it is intended to detect motion, and employing a GSM module to generate

notifications.

Figure 4.2: Ideal system flowchart

The camera is connected to a microprocessor unit, which will treat the vision information

provided by the camera. The PIR sensor, on the other hand, is connected to a microcontroller unit,

which will analyze the sensor’s signal.

Lastly, the GSM module is connected to the microcontroller unit. This is not mandatory,

and the GSM module could also be connected to the microprocessor unit, however, there are
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advantages in connecting it to the microcontroller. Since the camera consumes more energy than

the PIR sensor, and since a single frame should be enough to detect if there is anyone inside the

vehicle, there is no need for the camera to be turned ON all the time. Therefore, it is also preferred

that the microprocessor only turns ON when the image is going to be processed. By having the

GSM module connected to the microcontroller unit, it is possible to send alerts whenever the PIR

sensor detects motion without needing the microprocessor branch to be turned on.

The thought-out process of such system is depicted in the flowchart in Figure 4.2 . The primary

detection level consists on the PIR sensor, which is constantly receiving information, generating

alerts whenever motion is detected.

The second level consists of a camera that captures an image every 10 min, for example, which

is afterwards processed. A single image should suffice to prove if there is in fact a human inside

the vehicle, however light issues might make it harder to detect and different time frames might

have different light levels.

The logic behind a two-level detection is to get the lowest current consumption while getting

the highest detection rate. It is anticipated that both levels, as standalone systems, are capable of

reliably detecting infant presence. However the PIR sensor might not be enough when the baby

is sleeping, while the camera will consume 160mA, taking Haibin Cais’ [5] system as example,

against the 0.3mA of some PIR sensors [28] [29].

In this dissertation we propose the first step to the realization of such system, where a low-cost

solution is implemented. This low-cost approach consists on the sensor-based solution integrating

a PIR sensor and a GSM module as well as a preliminary study on vision detection, where different

algorithms are analyzed and compared. The coupling of both the developed system and the vision

algorithm requires the acquisition of a camera and a microprocessor unit.

4.2 Low-cost Implementation

The first level of detection idealized in the previous section 4.1 consists in a motion sensor-based

solution, much like Fairuz Rashidi and Ikhwan Muhama [3].

Although the approach is the same, their published article presents few conclusive results and

no limitations are even discussed. The tests are also omitted which leaves no answer to whether

the system was actually experimented in a real environment and is not even mentioned what could

possibly further improve it.

For this implementation the following components were selected:

• A microcontroller - Arduino Mega 2560;

• A GSM module - Adafruit Fona 800;

• A motion sensor - Both the analog AMN22111 [28] or the digital EKMC1693112 [29].
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4.2.1 Components Selection Rationale

The selection of all these components had a reasoning behind it. The microcontroller does not

need to be too powerful, there was no memory or port requirement that would narrow down its

choice, so the Arduino Mega 2560 was selected because it was already owned. This means that,

in mass production, the control unit selected could be both cheaper and with lower consumption.

For example, an ATtiny85 [30], which only has eight pins (minus two for power supply) could be

selected for this application, since only four pins are required, one for the sensor and three for the

GSM module.

In terms of price, an ATmega2560 unit cost is 10.01e, with a bulk price for more than 5000

pcs of 7.27e [22] while the ATtiny85 cost is 0.80e and with a bulk of 0.58e for 5000 pcs [30],

both in the Microchip store.

Regarding the PIR sensors, two of them were selected - one digital and one analog. Several

reasons were taken into consideration for this choice. For instance, the sensor is expected to be

installed in the front seat pointing towards the baby seat, so the detecting range should be at least

around 100cm. Both sensors fulfill this requirement, the analog, AMN22111, with 200cm and the

digital, EKMC1693112, with 220cm range.

It is also required that the system has low consumption rate, which both sensors datasheet

claim to be between 0.17−0.3mA at 5V .

Since it is intended to be a low-cost implementation, the sensors should be cheap. The analog

sensor, AMN22111, cost was 19.47e [31] while the digital, EKMC1693112, was 10.37e [32],

bought together with 18.00e shipping cost. As of 29-05-2018 the unit cost is 28.04e and 9.90e

while a bulk purchase of 100 pcs or more lowers the cost down to 19.12e and 4.87e, respectively.

After comparing both sensors performances there will be a better term of comparison, assuming

both of them to be equally reliable the cost of the digital sensor is considerably lower.

Other than these requirements, both sensors can operate at 5V , which is helpful since the

microcontroller, and the GSM module can both operate at this voltage value.

Lastly, the GSM module was selected keeping in mind that enough library support would

reduce both the learning and implementation curve, the Adafruit FONA was chosen, which costs

59.95 $ in the official website [33]. This means that the GSM module could also be cheaper, but

at the same time, although this particular set is currently out of stock, there is also a price decrease

while buying in bulk.

4.2.2 System Circuit

As previous section system’s architecture, the low-cost architecture is similar to its motion sensor

branch. The PIR sensor is responsible for detecting in-car movements and will signal it through

its output to the microcontroller unit, an Arduino ATmega2560.
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The microcontroller in its turn will interpret the motion sensor signal in order to generate the

alert messages whenever a positive read is made.

Whenever the alert is generated, the message will be forwarded through the Fona800 GSM

module, also connected to the microcontroller.

In 4.3 the electrical circuit is depicted, as well as its electrical connections. The digital PIR

sensor output is connected to pin 32 - PD7 - while the analog sensor is connected to the analog

input pin 51 - ADC0. The GSM module is connected to port B, since the Fona libraries [34] allow

to define whichever pins are desired.

Figure 4.3: Low-cost implementation electrical circuit

To power the system, it was used a 2600mAh power bank. The GSM module requires a specific

battery to work, however it cannot be used to power up the whole system. The power bank has a

charging rate of 1A and should be connected to the car’s USB port or the cigarette lighter socket

in order to charge while the car is running.

If the battery goes lower than a predetermined value, the driver should be notified so that the

system can be fully charged at home.

4.2.2.1 PIR Sensors

Both selected sensors have some particularities regarding their characteristics and functional op-

eration that are almost the same in both of them.

The analog sensor selected, AMN22111, has several other models with different purposes,

for example, it is possible to choose a digital sensor. One of the specifications that varies when
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choosing a digital model is the current consumption, where two options are provided. The se-

lected model has a standard current consumption, however there are also models with low current

consumption as, for example, the AMN43121. This sensor current rate is expected to be around

0.046− 0.060mA. The reason for not selecting such model lays in the fact that the operating

voltage is between 2.2−3V , and we were looking for a 5V operating sensor.

Both sensors need time to stabilize after the system is turned ON, the analog AMN22111 time

is less than 45s while the digital EKMC1693112 is up to 30s.

The detection range of the selected sensors, both slight motion detector, is around two meters,

while other models range can go up to ten meters. The detection range is also defined by a conical

shape, as partially represented in Figure 4.4. For the analog sensor, the conical shape has an

amplitude of 91 ◦ (±45.5 ◦) while the digital has only 44 ◦ (±22 ◦).

Figure 4.4: PIR sensor detection area [28]

The PIR sensors’ performance depends heavily on the differences of temperature between the

ambient and targeted object. In order to be able to detect an object, its temperature needs to be

different from the ambient. For example, during sunny days, where the temperature rapidly rises

inside the car, this sensor’s reliability decreases, reaching its minimum when both temperatures

are equal, on account of the sensor not distinguishing the object from the surroundings.

The selected analog sensor does not document any information about temperature differences

in the datasheet. The digital sensor expresses its conditions for characteristics measurements,

one of them being the temperature differences during tests. For the slight motion detector, the

temperature difference was 4 ◦C.

Lastly, there are two other relevant conditions regarding the target: the movement speed and

size. Both sensors’ datasheets state that they can measure gestures of objects sized 200x200mm,
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for example a human head. The digital sensor claimed target motion speeds vary between 0.3−
1.0m/s. The analog sensor indicates that the measurement conditions dwell on 0.5m/s motions.

4.2.2.2 Fona800

Fona 800 requires several peripherals in order to work, for this reason it was bought the pack

which come with all necessary accessories instead of the Fona alone.

The module needs to be connected to a microcontroller which the datasheet recommends Ar-

duino, because of the supported libraries, which can be found in their GitHub repository [34].

However any microcontroller with an UART interface is enough.

The most important module pins are the Vio, T x, Rx and Rst. The Fona 800 Vio pin has to

be connected to the microcontroller’s logic voltage, since it is the pin that defines the Fona logic

level, either 3V or 5V . Rx and T x pins are used for communication to the GSM module and from

it, respectively. The Rst pin is the module hard reset.

It is also required a Lipoly battery of 500mAh or larger to withstand 2A spikes. The module has

a micro USB port that charges the battery, however its design does not work without the battery.

It is possible to keep the module charging through the micro USB port, however it does not work

without the battery.

An antenna is also required. Two types of module builds are available, one with an SMA input,

present in the chosen module, and another with an uFL input. The later requires an uFL to SMA

adapter.

The module has also several LEDs for easy information about the module status:

• A blue LED that signals that the module is running;

• An orange LED that signals that the module is charging;

• A green LED that signals that the module is fully charged;

• A red LED that signals the network status.

The red LED is not always lit, it blinks at different intervals signaling in which mode the

module is on, making it easy to check if the SIM is registered to the network or not.

The communication with the GSM module is done through AT commands. There are several

commands for all the specific GSM control. For the current application only two At commands

are actually relevant:

• AT+CMGS - command for sending messages;

• AT+CBC - command for battery voltage check.

Both these features are of utmost importance, the notification has to be sent and knowing the

module’s energy permits warning in case the battery is excessively low.
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There are other commands that could be potentially relevant, especially the command AT+CMGR

which permits messages to be read by the module and therefore will allow the user to interact with

the device sending structured SMS texts.

During the module setup it was encountered a problem that prevented the SIM card to register

in the network. This problem was eventually solved by disconnecting the battery while connecting

the module to charge, a non-intuitive solution that was not found acknowledged by Adafruit.

4.2.3 System Algorithm

The algorithm that was developed can be seen in image 4.5 flowchart. Whenever the system starts,

the first task is checking if it is charging. The system will be connected to the car’s lighter charger

or USB port. Whenever the car is turned OFF, these ports are shut down, meaning the system will

no longer be charging. This is the moment when the system should get online.

The next task to execute is checking the battery levels, if the value is too low an SMS is sent

to the car’s owner, notifying that the vehicle charge no longer suffices and that it should be fully

charged. The battery levels check occurs every T minutes.

Finally, and continuously, the PIR sensor signal is read, and whenever a motion is detected an

alert is sent to the owner’s phone, notifying the presence of individuals inside the vehicle. The

alert is not made, however, every time the sensor signals the detection.

Since there is a sensor reading every 150us, approximately 6667 readings per second, the alert

is only generated if in a two second time frame the sensor is activated, at least, for one second.

This allows a false positive rate reduction.

The tests that were made, discussed further ahead, show that other vehicles crossing near the

parked car do not generate enough trepidation to trigger the SMS alert, so further investigation

might show that this limitation, not responding to every impulse, might not be necessary and even

limiting the system’s reliability.

4.2.4 Tests

Several tests were made to evaluate this system’s performance. The first consisted in measuring

the current consumption of the system. Each sensor current consumption was verified, and it was

noted that both sensors are in range of the datasheet specification of 0.17−0.3mA.

While charging, whenever the car is running, the GSM battery will draw up to 500mA, its

measured current was 300mA. The power bank specifies a current consumption up to 1A, the

measured value was 700mA. This means that the system batteries will draw up to 1.5A, and the

measured average is 1A.

The Fona has a current draw of 25mA average, that can go up to 200mA while sending or

receiving messages. This current is drawn from its own battery.
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Figure 4.5: Low-cost implementation flowchart

Each sensor draws up to 0.3mA while detecting motion. The Fona also has a small impact in

the power bank consumes, drawing around 3.7mA. The ATmega 2560 has a current consumption

of 10mA at 5V and 8MHz. The expected current draw of the system is 39mA.
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Since the power bank has 2600mAh, supplying 14mA it should last up to 185h. The Fona

battery, on the other hand, has 1200mAh, and supplying 20mAh should last up to 60h.

This is considering that no losses exist, meaning that the actual duration should be lower.

To further test this implementation, it was necessary to investigate how reliable the system

would be in a real environment. In order to verify its robustness, the system was activated in a

parked car to see if other vehicles passing by could trigger the sensor. The car was parked in three

different environments, and in neither of them the alert message was generated:

• Underground park, Norte Shopping from 20 h to 24 h;

• Tar road, FEUP student parking lots from 12 h to 13.30h;

• Cobblestone road, Cathedral of Bragança in a semi-controlled environment.

To showcase the prior tests, we recorded a couple of clips of the tests while the car was parked

in cobblestone. In one of the clips three cars cross at approximately 40 km/h without triggering

the sensor.

A scenario with a small doll was also tested, in order to verify if the sensor was able to detect

small gestures, and that it is even activated. When the motion of the doll is detected, the SMS alert

is received in a smartphone, also present in the video.

Figure 4.6: Experiment illustration

In this clip the system is not mounted in the front seat, which might mean that the trepidation

is less felt. However, in a posterior test, with the system fully mounted on the seat, the experiment

was repeated with the same results.

Although it was not verified with trucks crossing it is expected that the system also ignores the

generated trepidation.
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There is, however, a false negative problem, where the system does not trigger under motion.

It was also recorded a clip showcasing this behavior. The failed detection occurs when the doll’s

arm moves in the sensor’s direction.

These tests, and particularly the latter, require an actual baby to further provide correct infor-

mation of the sensor’s reliability. It is necessary to note that the doll’s temperature might be too

close the vehicle’s one, which might merge into the surroundings. To try to contradict this test lack

of faithfulness, we tried to heat a small portion of tin that was placed in the doll’s arm, however

the test was also not positive and not entirely reliable.

Figure 4.6 illustrates the setup used for the tests. The red lines indicate (approximately) the

analog sensor detection range (91 ◦) and the green represent the digital one (44 ◦). The approximate

distance from the sensor to the doll is 55cm.

In this figure the system is mounted on the front seat, it is expected to be the optimal place

to mount it, because of both the the angle formed and the smaller distance, while also being

easier to mount. However further testing with the system coupled to the ceiling should also be

experimented.

4.3 High-cost Implementation

Alternately to the sensor detection, the adoption of cameras seems to be a better option going

forward, as was stated when reviewing its state of art. The employment of cameras for real time

applications with acceptable accuracy is already possible, and as the vision algorithms improve,

so does its reliability.

Currently both Mask R-CNN and YOLO are some of the best vision algorithm choices, so in

this chapter we describe the tests performed in order to decide which is more reliable.

This section also displays other algorithms that were experimented.

4.3.1 Background Subtraction

Even though YOLO and Mask R-CNN are the state of the art in what vision detection concerns,

there are a couple of other approaches that were experimented. The first one was background

subtraction which consists in subtracting the numeric value of an image from another. This method

allows to observe changes between a succession of frames from a video capture, which implies

that an object moved. It is also possible to generate a background and compare it to a frame of the

video, which enables the detection of objects not present in the background.

This method [35] implies several assumptions, mainly that both the background and camera

are static, while the foreground objects are moving.

The process can be described as:

• Building a background model;

• Creating a mask of foreground pixels based on the distance between current frame pixels

values and the background;
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• Updating background model.

This method was tested resorting to the Chris Dahms algorithm [36] and allowed a better

perception of this approach. Several obstacles are associated to this specific method, in this dis-

sertation scope the main problem is when the infant is sleeping, therefore static. In this situation

the child will eventually be considered part of the background. Even using a frame subtraction

approach, not relying in the background, this problem persists, in addition to others such as illu-

mination changes or camera shaking.

4.3.2 Haar-cascades

The other method that was tested prior to YOLO and Mask R-CNN was also facial detection,

resorting in the Viola-Jones [9] haar-cascades method, that was briefly tackled in chapter 2.2.

The employment of facial recognition methods can mitigate background subtraction problems

since it doesn’t rely on static environments nor cares if the object is moving or not.

The base algorithm that was tested [37] handled the detection of two features, namely the face

as a whole [38] and both eyes [39].

This method was tested using stock images of adults and seemed to be a reliable approach.

However, it was also created a small dataset of small children, and in this specific case the results

were way more disappointing. One of the problems arises from closed eyes. As explained in 2.2

there is a comparison of light between the eyes and the nose or upper cheeks, so whenever the eyes

are closed the light difference is almost nonexistent. This problem was also visible with adults to a

lesser extent. However, even if the infants were with both eyes open there were still several images

where no detection was achieved. The solution that was thought-out was an haar-cascade training

with an infant dataset. This solution was not able to solve this problem, which could be due to the

small training dataset, as well as the image discrepancy, since there was no norm to the babies’

facial expression or position.

4.3.3 YOLO - You Only Look Once

As stated in chapter 2.2, since 2012, CNN has become the state of art of object detection. Out

of the presented approaches, two of them were selected and analyzed as potential solutions for

infant detection - Mask R-CNN and YOLO - since these are the most recent developments and,

therefore, the most reliable ones.

The first algorithm tested was YOLO. However instead of using the original implementation

[40], we employed a translation [41] that runs with TensorFlow [42], "an open source machine

learning framework for everyone".

In order to set everything up a small dataset was gathered and a simple script was developed

to check both the bounding boxes and confidence factors. One of the most relevant top-level

parameters was the threshold, which defined if the confidence factor in each image was enough

to create the expected bounding boxes. This parameter was set to 0.3, the recommended default

value, which proved enough for the majority of the dataset – but not for all of it.
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4.3.3.1 Procedure

After the first contact with the algorithm there was a necessity of augmenting the data, by both

gathering more images online as well as a selection and manually edition of some of the pictures

with the following objectives:

• Darkening the picture, simulating a lightless environment, like an underground parking or

in the night;

• Brightening the picture, simulating an intensive daylight;

• Adding Gaussian blur to the picture;

• Adding general noise to the picture;

• Creating black boxes obstructing the eyes, mouth or nose of the infant, simulating, for ex-

ample, a blanket – these boxes were also colored with pink and blue.

This script was running in a GeForce GT 740M GPU, taking up to two to three minutes to

run the script and processing each image almost instantly. As expected, the majority of the edited

images got their confidence levels lowered, however some of the dark edited pictures tended to

present a higher confidence value and the brighter a lower one.

Figure 4.7: YOLO image brightness variation confidence, left to right - 0.71; 0,77; 0.47

In Figure 4.7 an original image is presented, as well as its darker and brighter edition. As

stated before, the darker picture presents a higher confidence factor, while the brighter picture’s

confidence is drastically decreased by 0.25 points.

In the presented example, this value is meaningless, however, some of the selected images

present a confidence factor of 0.3 or less. With such a confidence decrease not even a 0.1 threshold

could recognize the child.
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Also, worth noting, ten pictures of infants were edited with boxes in certain facial parts in

three different colors - black, pink and light blue - to check if it would influence the confidence

evaluation in a perceptive way, as depicted in Figure 4.8. Out of the ten edited images, six had

higher confidence with black boxes, and four with the pink box. The majority of the editions

did not get a relevant difference of confidence across each color. However, one of them turned

impossible to detect, with a blue box edition, and three presented differences above 0.1 points.

Figure 4.8: YOLO colored boxes confidence, left to right - 0.33; 0,28; 0.19

Also, worth noting that none of the black box editions got bellow 0.2 confidence value, while

one pink and two blues did.

As for the Gaussian blur and general noise editions, the results are depicted in Figure 4.9. Out

of the ten edited images the results were varied. As Figure 4.9 suggests, the majority of the edition

had lower confidence values than original, with three exceptions: one from the Gaussian edition

with higher confidence value and the other two from the general noise edition.

The results are not very conclusive, aside from two of the images all the other edited counter-

parts had confidence levels discrepancies higher than 0.2 points. There are also mixed results of

which edition has the higher confidence values. From these results it is possible to deduce that this

edition largely depends of the original photo.

The last notable result that can be drawn, is that out of the ten original pictures none had

a confidence level lower than 0.2 and out of the Gaussian editions four became lower than this

threshold, and for the general noise only two got this low.

4.3.3.2 YOLO Reliability

To better perceive this algorithm’s reliability for infant detection, the script was modified to create

a CSV file gathering the confidence value for every picture in the set.
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Figure 4.9: YOLO normalized, Gaussian and general noise edition confidence, left to right - 0.64;
0,55; 0.69

Table 4.1: FP, TN, FN and TP results of the YOLO algorithm for four levels of confidence (0.1,
0.2, 0.3, 0.4) with G gamma manipulation

Confidence
level

0.1 0.2 0.3 0.4

G=0.5

FP 327 57.6 % 209 36.8 % 133 23.4 % 81 14.3 %
TN 241 42.4 % 359 63.2 % 435 76.6 % 487 85.7 %
FN 9 3.1 % 37 12.8 % 67 23.2 % 98 33.9 %
TP 280 96.9 % 252 87.2 % 222 76.8 % 191 66.1 %

G=0.8

FP 272 47.9 % 164 28.9 % 112 19.7 % 72 12.7 %
TN 296 52.1 % 404 71.1 % 456 80.3 % 496 87.3 %
FN 7 2.4 % 34 11.8 % 61 21.1 % 89 30.8 %
TP 282 97.6 % 255 88.2 % 228 78.9 % 200 69.2 %

G=1.0

FP 258 45.4 % 153 26.9 % 96 16.9 % 52 9.2 %
TN 310 54.6 % 415 73.1 % 472 83.1 % 516 90.8 %
FN 10 3.5 % 42 14.5 % 64 22.1 % 90 31.1 %
TP 279 96.5 % 247 95.5 % 225 77.9 % 199 68.9 %

G=1.2

FP 245 43.1 % 136 23.9 % 78 13.7 % 48 8.5 %
TN 323 56.9 % 432 76.1 % 490 86.3 % 520 91.5 %
FN 10 3.5 % 42 14.5 % 72 24.9 % 97 33.6 %
TP 279 96.5 % 247 85.5 % 217 75.1 % 192 66.4 %

G=1.5

FP 226 39.8 % 119 21.0 % 68 12.0 % 40 7.0 %
TN 342 60.2 % 449 79.0 % 500 88.0 % 528 93.0 %
FN 13 4.5 % 45 15.6 % 76 26.3 % 111 38.4 %
TP 276 95.5 % 244 84.4 % 213 73.7 % 178 61.6 %

Table 4.1 contains the false positive (FP) and false negative (FN) results obtained, as well as

true positive (TP) and true negative (TN), for a total of 568 pictures of car seats (or child seats –
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relevant background) and 289 pictures of infants (edited pictures included).

As previously stated, the darker edited pictures presented a tendency to have higher confi-

dence, while the opposite was also observable, with brighter ones presenting a smaller confidence,

forwarding the next round of test to an image light manipulation within the script. This experiment

was run with a gamma variation of both 1.2 and 1.5 of the original images, which results are also

present in the same table.

Figure 4.10: YOLO ROC Results

Since some improvement was noticed while darkening the input images, the opposite was also

tested, with gamma values lower than the original images, of 0.5 and 0.8, that are also displayed

in table 4.1.

From all the represented experiments there is a high result variance, from 2.4% to 38.4% FN

rate as well as 7% to 57.6% FP rate (noting that the better FP cases have almost the worst FN

results).

Figure 4.10 illustrates the results with the FP and FN ROC distribution. For this specific

application it is particularly important that the children present inside the vehicle are detected,

therefore having as little FN results as possible, meaning that values closer to the left axis are

preferred.

Assuming that the FP results can be dismissed, the best result obtained would be with a 0.8

gamma variation and 0.1 confidence level. However, this means that in 47.9%, almost half the

cases, there will be an incorrect positive read.

In table 4.2 are present the precision, recall and accuracy values, to better perceive which

results are ideal.

It is possible to understand the trend that with precision gains, the recall will decrease, as the

amount of total positive detection increases, the higher the amount of false positive reads. The
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Table 4.2: Precision, recall and accuracy of the YOLO algorithm for four levels of confidence (0.1,
0.2, 0.3, 0.4) with G gamma manipulation

Confidence 0.1 0.2 0.3 0.4

G=0.5
Precision (%) 46.1 54.7 62.5 70.0
Recall (%) 96.9 87.2 76.8 66.1
Accuracy (%) 60.8 71.3 76.7 79.1

G=0.8
Precision (%) 50.1 60.9 67.1 73.5
Recall (%) 97.6 88.2 78.9 69.2
Accuracy (%) 67.4 76.9 79.8 81.2

G=1.0
Precision (%) 52.0 61.8 70.1 79.3
Recall (%) 96.5 85.5 77.9 68.9
Accuracy (%) 68.7 77.2 81.3 83.4

G=1.2
Precision (%) 53.2 64.5 73.6 80.0
Recall (%) 96.5 85.5 75.1 66.4
Accuracy (%) 70.2 79.2 82.5 83.1

G=1.5
Precision (%) 55.0 67.2 75.8 81.7
Recall (%) 95.5 84.4 73.7 61.6
Accuracy (%) 72.1 80.9 83.2 82.4

accuracy simply reflects the hit rate.

It is possible to obtain the following range of rates:

• Precision - 46.1% to 81.7%;

• Recall - 61.6% to 97.6%;

• Accuracy - 60.8% to 83.4%.

The previous best FN case, with 0.1 confidence level and 0.8 gamma manipulation, achieves

50.1% precision, 97.6% recall and 67.4% accuracy. This case has the second worst precision

levels while having the best recall, as should be expected, while achieving almost an intermediate

level of accuracy.

Even if these TP results are the best, and therefore preferred, the amount of FP is too high for

a commercial application. The following results, referred in Figure 4.10 with a red circle, present

results with approximately 20% FP reduction for a 10% FN increase.

From these values, the best candidates are:

• A - 0.8 gamma and 0.2 confidence, with 11.8% FN rate and 28.9% FP;

• B - 1.5 gamma and 0.2 confidence, with 15.6% FN rate and 21% FP.

Both A and B candidates achieve higher accuracy and precision values than the previous con-

sidered option, with an accuracy of 76.9% and 80.9% respectively. As for the precision and recall,

A has 60.9% and 88.2% while B has 67.2% and 84.4%.

As expected, the recall is decreased, but A and B still achieve a TP rate of 88.2% and 84.4%

respectively.
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4.3.4 Mask R-CNN

The Mask R-CNN algorithm [43] was also tested as a term of comparison.

The GPU that was being used for the YOLO algorithm was not enough to perform this task

and running it in the CPU is a much time consuming process, so we used another computer that

possessed a GTX 550Ti. Even though it was possible to run this algorithm, the processing time

for each image took longer than with YOLO.

Table 4.3: FP and FN results of the Mask R-CNN algorithm for two levels of confidence (0.7, 0.8)
with G gamma manipulation

Confidence level 0.7 0.8

G=1.0
FP 99 17.5 % 80 14.1 %
FN 91 33.8 % 142 52.8 %

G=0.8
FP 99 17.5 % 72 12.7 %
FN 93 34.6 % 128 47.6 %

G=1.5
FP 79 13.9 % 64 11.3 %
FN 104 38.7 % 151 56.1 %

Figure 4.11: Mask R-CNN ROC Results

The adopted approach was similar to the YOLO one. After setting up Mask, a script was

developed that generated a confidence CSV file of the same dataset. The results obtained are

presented in table 4.3. It was also created a brightness variation which provided the following

results, as shown in the same table.

A brief observation of the tables results easily give the perception of being inferior to the

YOLO ones’. The discrepancy can be noted especially with the FN rate results being superior to

30%. Figure 4.11 better illustrates the results with the FP and FN ROC distribution, allowing a

better perspective of the tables data.
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4.3.5 CNN Approaches Comparison

Since a non-detected child might cause a casualty, it is considered primarily preferred to have a

higher number of FN than FP. For instance, with a gamma variation of 0.8 and 0.2 threshold, the

parameters for the second lowest FN rate, it is still possible to miss around 1/10 infants inside the

car, while detecting them in 1/3 of the situations where no one is there.

Figure 4.12: Mask R-CNN (square orange) and YOLO (circle blue) ROC comparison

As Figure 4.12 illustrates, the FN values are much higher with Mask R-CNN, especially con-

sidering that it is more critical for this specific application than the FP.

Both of these algorithms were tested with the pre-trained models for the “object” person,

which may contain a small number of – or even none – infants. Noting that the FN and FP ratios

should be lower, it was anticipated that a specific training of the neural network could potentially

improve these values substantially.

4.3.5.1 YOLO Training

As the results provided by both algorithms accused higher accuracy from YOLO, it was decided

to perform a CNN training in order to try to increase the system’s reliability for detecting children.

To accomplish this task, neither of the previously used GPUs was powerful enough since the

training with these would takes weeks to perform, and so another solution was required.

Google Cloud Platform is an online platform that allows users to rent GPUs for several differ-

ent purposes and therefore it was selected to realize the training.

With this tool it was possible to create a virtual machine renting a Nvidia K80. The same

YOLO algorithm was again selected, employing once again the darkflow algorithm [41] with

TensorFlow [42].
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Table 4.4: FP and FN results of the tiny YOLO algorithm for four levels of confidence (0.1, 0.2,
0.3 and 0.4) with G gamma manipulation

Confidence
level

0.1 0.2 0.3 0.4

G=0.5
FP 202 35.6 % 163 28.7 % 112 19.7 % 68 12.0 %
FN 53 18.3 % 100 34.6 % 148 51.2 % 183 63.3 %

G=0.8
FP 200 35.2 % 151 26.6 % 102 18.0 % 70 12.3 %
FN 39 13.5 % 74 25.6 % 118 40.8 % 164 56.7 %

G=1.0
FP 199 35.0 % 149 26.2 % 102 18.0 % 64 11.3 %
FN 44 15.2 % 73 25.3 % 115 39.8 % 164 56.7 %

G=1.2
FP 214 37.7 % 155 27.3 % 107 18.8 % 66 11.6 %
FN 44 15.2 % 74 25.6 % 117 40.5 % 158 54.7 %

G=1.5
FP 220 38.7 % 156 27.5 % 102 18.0 % 56 10.0 %
FN 48 16.6 % 78 27.0 % 117 40.5 % 157 54.3 %

Figure 4.13: Tiny YOLO ROC Results

Two trains were realized, the first one resorting with the original YOLO weights and the second

with the tiny YOLO one’s. The reason for the second train lies in the fact that training on the

original YOLO requires a lot more time, since the CNN has more layers. For this reason, the

first train, although it ran for roughly a day, was barely capable of detecting the original unedited

images.

With tiny YOLO, the original reliability was already worst than it’s original counterpart, how-

ever it better illustrates what was expected of a full fine tune of the original weights. In table 4.4

are presented the tiny YOLO FP and FN rates to later get a better term of comparison.

Figure 4.13 represents the FN and FP table values. It is easily observable that the results are

worse than with either Mask or YOLO. It is also possible to admit that the most interesting result,

the most left one, is for a confidence level of 0.1 and 0.8 gamma variation.
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In image 4.14 the results are displayed.

Figure 4.14: Tiny YOLO ROC Results

These results are the culmination of several training approaches. As we can see they are not

what is expected, since they don’t present an improvement to the original weights.

To obtain these results it was made a fine tuning of the CNN while only training the last layer,

following darkflow’s issue 486 [44]. With this approach, it was expected that the model gave a

response similar to the tiny YOLO. It was also not expected a big improve, due to several reasons:

• Small training dataset, six hundred images is not enough data for a meaningful train;

• Poor image systematization, the images do not follow any sort of pattern, they were taken

as both frontal and lateral, awake and asleep;

• Poor image quality, some images resolution might be too low for a meaningful learning.

The aggregation of all these points is a constraint for substantial improvement, however should

not have led to such performance decrease, especially considering that only the last layer is being

trained.

4.4 Conclusion

The low-cost solution, which was implemented, proved to be a reliable solution. From the experi-

ments it is possible to conclude that falsely detecting in-car movements is highly unlikely.

Even though the reliability of this solution was not tested in the presence of a small sleeping

children, it is expected that the system reliably triggers. However, further testing regarding this

issue is mandatory.
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As for the high-cost solution, the study also provides some degree of reliability. However, from

the obtained results, where one in ten children will not be detected, while three in ten triggers will

be from false recognition, it is possible to conclude that there is still margin for improvement.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Throughout this dissertation small conclusions have been established. In this chapter, a consolida-

tion of all the work is presented.

First, it is necessary to note that the developed system will not be integrated in the vehicle’s

electronics and it is intended to be a generic plug-in technology that can be installed in any car at

any time. However, a fully integration of this system in the vehicle is not to be discarded.

It is also worth retaining that the system will draw energy from the vehicle’s battery, it will

be charged through the USB or the cigarette lighter while the car is driving, which might not

allow to fully charge the system in small trips. On the other hand, an integration of the system in

the vehicle’s electronics is able to charge the system even after turned off, meaning that a lower

current consumption system is preferred, preventing the battery’s energy to be fully drawn. From

this point of view, a low consumption option is desired, which happens to also be the lower-cost

solution. Even though a lower cost is indeed preferred, several automobile brands have opted for

cameras instead of sensor, for example, in parking support systems, which is a cost latter financed

by the consumer.

An integration of the system in the vehicle’s electronics could also provide a better alert so-

lution with an alarm in the car keys. As a plug-in application, the GSM module is preferred in

order to fully provide notifications independently of the driver’s distance since it is not needed to

carry any other device other than the phone. On the other hand, the integrated solution could have

a wireless car keys alarm, which the driver will always have to carry.

These are the main aspects taken into consideration throughout this dissertation, culminating

in the final presented implementation. As for the possibly better approaches, section 5.2 slightly

tackles this issue.

For the actual implemented system, the low-cost approach seemed to be a reliable solution for

in-car infant detection, as the Figure 5.1 taken from one of the recorded clips suggest. However,

as pointed out before, further experimentation, especially with newborn children is of utmost

importance.

47
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Figure 5.1: SMS received upon low-cost system motion detection

As for the vision detection results it seems that it still might not be a stand-alone solution

specially because of its high false positive - false negative trade off. Further CNN training with

a large dataset specifically dedicated to small children inside vehicles would, most likely, highly

improve the algorithms accuracy.

Finally, it is expected that the coupling of these two systems will improve the system’s relia-

bility.

5.2 Future Work

To further improve and achieve a final commercial product, several aspects should be considered,

for instance:

• Further testing of the low-cost approach - as is, the implementation lacks the real target

experimentation. There is a necessity to observe the system’s behavior with a newborn

child, specially while asleep;

• Further low-cost approach - obtain cheaper components (for example, as referred in chapter

4.2, ATtiny85) with the lowest power consumption (for example, as referred in chapter 4.2

the PIR sensor AMN43121) and check if the system’s reliability is maintained;

• Vision algorithm implementation - with the acquisition of both a camera and a micropro-

cessor the vision approach should be physically tested in order to observe how the camera

position, for example, influences the system’s reliability;
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• Systems coupling - as was initially idealized, the coupling of these two solutions is expected

to be the better reliability versus low power consumption approach with the two-level de-

tection, and the low-impact consumption from the microprocessor branch;

• Further testing of the integrated solution.

The accomplishment of the previous points should come together into the development of

the best infant recognition system, but there are also other options that could be, once again,

taken into consideration. A potential incorporation to the vehicles electronics, particularly wireless

notification system. In chapter 3.3 it is referred that the incorporation of an alarm in the car keys

might be the optimal notification solution in contrast with the GSM module.

The accomplishment of all these conditions should culminate in a fully viable commercial

option.
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