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Abstract

The problem of named entity recognition (NER) consists in identifying and classifying named
entity mentions in free text. Classification is typically based on predefined categories such as
people, organizations or locations. NER is a crucial task in the information extraction pipeline
and many natural language processing (NLP) tasks depend on the results of NER. NER systems
started as rule based engines and later evolved to machine learning approaches such as conditional
random fields.

In recent years deep learning approaches have proven to outperform traditional machine learn-
ing methods in many natural language processing tasks. Deep Neural Networks are a family of
machine learning methods that have been applied to many different fields such as computer vision
and speech recognition. The great appeal of deep learning techniques is the fact that the critical
process of feature engineering is embedded in the architecture and no longer requires the feature
set to be predefined.

Up to this moment there is few research in using deep learning applied to NER in Portuguese
texts. This work exposes some of the challenges and limitations of applying a deep learning
architectures to NER for the Portuguese language.

This work was split into several stages, starting with analysis and preparation of the textual
corpora, followed by defining an evaluation method that will be used to test and compare the
different models created. And finally studying, implementing and testing multiple deep learning
architectures.

The textual corpora used in this work is split into two categories: annotated and non annotated
datasets. Several annotated datasets were used in various experiments, these include: HAREM I
GC, HAREM II GC, MiniHAREM GC and WikiNER. Non annotated data was also a crucial part
of this work as it is the base for the bootstrapping process, there were two sources of raw textual
data: Wikipedia articles and Portuguese news media articles.

The results obtained did not improve the state of the art for NER in the Portuguese language
but helped better understand what the challenges and roadblocks are compared to other more
researched languages.

Taking into consideration that this work was done without any linguistics background , the
results obtained prove that deep learning architectures are very powerful. All feature engineering
was handled by the architecture and not by a linguistics expert, this means the process of creating
state of the art NLP systems for the Portuguese language has the potential of being improved as
long as there is more research and resources available in the future.
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Resumo

O problema de reconhecimento de entidades (RE) consiste em, olhando para texto livre, identificar
e classificar entidades. A classificação é feita tendo em conta um conjunto predefinido de classes
tais como pessoas, organizações ou locais. Existem abordagens clássicas de machine learning
para este problema mas nos últimos anos abordagens que usam deep learning provaram conseguir
ultrapassar os métodos tradicionais para muitas das tarefas de processamento de linguagem natu-
ral.

RE é uma etapa crucial no processo de extração de informação e existem várias tarefas de
processamento de linguagem natural que dependem de RE.

Deep Neural Networks são uma família de métodos de machine learning que são usados com
grande sucesso em vários campos de ciência dos computadores como por exemplo o reconhec-
imento de voz ou a visão por computador. A grande vantagem destas técnicas é o facto de que
uma das etapas críticas o feature engineering está embebido na própria arquitetura deixando de
ser necessário a existência de um feature set predefinido.

Até este momento existe pouca investigação no que toca ao uso de deep learning aplicado ao
RE em textos Portugueses, este trabalho ajuda a expor os desafios, as limitações e a viabilidade de
aplicar arquiteturas de deep learning ao RE para Português.

O trabalho foi dividido em várias fases, começando por analisar e preparar os dados textuais.
De seguida definir um método de avaliação que será usado para testar e comparar os modelos
criados. E finalmente estudar, implementar e testar múltiplas arquiteturas de deep learning.

Os dados textuais usados neste trabalho estão separados em duas categorias: dados anotados
e não anotados. Vários datasets anotados são usados nas variadas experiências: HAREM I GC,
HAREM II GC, MiniHAREM GC e WikiNER. Os dados não anotados, isto é texto limpo, são
também uma parte crucial deste trabalho pois são a base para o processo de bootstrapping. Duas
fontes de dados não anotados foram usadas: artigos da Wikipedia e artigos noticiosos de jornais
Portugueses.

Os resultados obtidos não melhoraram o estado da arte de RE para a língua Portuguesa mas
ajudaram a perceber quais os desafios e dificuldades que existem em comparação com outras
línguas mais estudadas.

Tendo em consideração o facto de este trabalho ser feito sem conhecimento especializado
em linguítica, os resultados salientam o poder das arquitetura de deep learning. Todo o feature
engineering é feito pela arquitetura e não por um especialista em línguistica, isto significa que o
processo de criação de sistemas que superam o estado da arte para a lingua Portuguesa pode ser
melhorado desde que, no futuro, exista mais investigação e mais recursos disponíveis.
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Chapter 1

Introduction

The popularization of virtual assistants shed light into the importance of many natural language

processing tasks and their usefulness for the everyday life of many people. Writing text messages,

setting reminders or calling someone are some of the simple actions that can be done solely using

voice commands thanks to the combination of multiple natural language tasks. This is just one of

the many practical examples where natural language processing is essential.

1.1 Context

Natural language processing (NLP) is a field of science computer science that incorporates the

fields of artificial intelligence, computational linguistics and more. NLP is focused on creating

ways for computers to process large natural language corpora. To fully process and understand

the content of corpora, scientists and researchers have subdivided this macro problem into smaller

subtasks with specific goals. These subtasks include word sense disambiguation, stemming, part

of speech tagging, chunking, named entity recognition (NER, the focus of this work), co-reference

resolution, sentiment analysis, discourse analysis and more [DM14].

Deep Neural Networks refer to a family of machine learning methods that have been applied to

many different computer science fields such as computer vision and natural language processing

tasks, namely named entity recognition [SM13]. Deep learning (DL) techniques are very ap-

pealing since they tend to avoid hand-crafted features, something necessary for classical machine

learning techniques. When provided with enough data, DL methods are capable of identifying

relevant features, leading to good performance without any external hand-designed resources or

time-intensive feature engineering.

Named entity recognition is a task that aims at identifying and classifying entity mentions

in free text; these entities are sometimes referred to as proper nouns. If we want to process the

Portuguese sentence “O José comprou 100 ações da Apple em Janeiro de 1999.” the expected

result of the NER task applied to this sentence would be:

O [José]Person comprou 100 ações da [Apple]Organization em [Janeiro de 1999]Date

1
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Research in NER applied to the Portuguese language started with the HAREM contest in

2004. This contest received submissions from multiple countries and is recognized as being the

first evaluation contest for named entity recognition in Portuguese [SSCV06].

Nowadays, the focus of research in NER is the application of deep learning methods, but this

is only true for languages with a big research community such as the English language. Having a

big research community means there is more annotated corpora available, which is a requirement

for all supervised machine learning algorithms; DL methods, in particular, benefit from corpora

with a larger size [GBC16]. Looking back at research done in the last few years on NER applied

to Portuguese it is hard to find DL methods, with just one particular instance standing out – the

work of Santos and Guimarães [dSG15].

The work of this dissertation focuses on experimenting with multiple DL architectures applied

to NER for the Portuguese language in order to evaluate the applicability of DL approaches to NER

for Portuguese texts and highlight the challenges when compared to more researched languages

such as English. To overcome the limitation of the small amount of annotated data available a

bootstrapping approach is implemented where non annotated textual data is used to help train

NER models. Results obtained in the various experiments are compared with the work of Teixeira

et.al. [TSO11] and the work of Santos et.al. [dSG15].

1.2 Problem Definition

The named entity recognition task is typically subdivided into two subtasks: named entity identifi-

cation and named entity classification. Identification of the named entities means retrieving all the

entity tokens from the free text. Named entity classification focuses on assigning a class to each

of the identified entities; often, the set of classes is predefined.

The task of NER has a long history with implementations dating back to the 1990s and mostly

focusing on the English language. Early systems were based on hand-crafted rule-based engines

with rules created by linguistic specialists, a process that would take months [TRM08]. Next came

supervised machine learning algorithms, using annotated texts to automatically train a model that

performs NER. Further down the line, deep learning models started to be applied to NLP and “have

been shown to perform very well on various NLP tasks such as language modelling, POS tagging,

named entity recognition, sentiment analysis and paraphrase detection, among others” [SM13,

p. 5].

When looking at the study of NER for the Portuguese language, the earliest works are the

results of the HAREM contest that started in 2004. HAREM was the first contest for NER in

Portuguese and received submissions from various countries, with some of the submissions later

developing into stand-alone NER tools [SSCV06, SPC06, Car12].

The named entity recognition task is one of many tasks included on the information extrac-

tion pipeline, many times used as a preprocessing step or data preparation step for other natural

language processing tasks. Tasks that depend on NER include entity linking [DMR+15, Ste12,

2
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RMD13, SWH15, CM12] and relation extraction [dABV13]. This dependency means that having

a good NER model is necessary in order to create a model for a NLP tasks that relies on NER.

Creating a NER tool with good performance is quite challenging, in particular when there is

no restriction on textual genre. An aspect that has affected the NER task through the years is

the impact that textual genre has on the generated models. Solutions are highly dependent on

the textual genre and porting the solution to another text domain is a major challenge, with cases

where the performance of the system goes down 20% to 40% of precision and recall [Nad07]. For

this reason, most models do not generalize to different genres – if a model is trained using news

media texts it will perform poorly when applied to other genres, for example social media texts.

Another issue that NER models have trouble overcoming is associated with the age difference

between the train and test datasets. Training a NER model with textual data that was produced

at a very different time period from the test textual data normally results in a drop in perfor-

mance [TSO11].

Most methods and tools for NER require some preprocessing of the text corpora. A common

preprocessing step is part-of-speech tagging that consists of associating the part of speech tag to

each word in the text. Part of speech tags and other preprocessing tasks are used to provide the

model with some more information about the text being processed, which allows for more accurate

detection and classification of named entities. All natural language processing tasks have some

error associated with them and using multiple tasks in the same pipeline makes it so that the quality

of the previous tasks affects the quality of the following ones. It is often the case that mistakes in

preprocessing tasks are propagated to the NER model and can affect performance [dABV13].

Another typical application of NER is question answering systems. Given a document, the

top level questions to answer are who, when, where and what [MUSC+13]. The answer to these

questions are in most cases named entities that can be found in the analysed text.

1.3 Objective

This work is focused on applying multiple deep learning architectures to named entity recognition

on texts in the Portuguese language. A total of 4 different architectures are tested. The perfor-

mance of the models created will be compared with previous solutions for NER. Bootstrapping

experiments are compared with the work of Teixeira et.al. [TSO11] and models trained using

annotated datasets are compared with the work of Santos et.al. [dSG15].

1.4 Research Guidelines

In order to reach the outlined objective the following research guidelines were defined:

• Compare available NER datasets for the Portuguese language with the ones available for the

English language;
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• Apply state of the art deep learning architectures for NER in the English texts to Portuguese

texts;

• Evaluate different deep learning NER architectures with Portuguese data;

• Explore NER in different Portuguese textual genres;

• Highlight challenges of using deep learning architectures.

During the development of this work some roadblocks were encountered and many lessons

were learned. The learned lessons are discussed in section 6.3.

1.5 Dissertation Structure

The rest of this dissertation is organized into five more chapters. In Chapter 2, the state of the

art is described and related work is presented. Chapter 3 lists the datasets used and explains the

data gathering process. Chapter 4 describes all deep learning architectures used in this work both

for NER and training word embeddings and their respective results in the various experiments.

Chapter 5 describes the bootstrapping method, all the experiment setups and results obtained.

Finally, in chapter 6 objective completion is discussed followed directions for future work.

4



Chapter 2

State of The Art

The purpose of this chapter is to summarize the various stages involved in named entity recogni-

tion, their evolution through time and defining some concepts in more detail. By the end of this

chapter it should be clear what is the current state of the art in NER and what makes this work

relevant.

2.1 Named Entity

The term named entity was first introduced at the 6th Message Understanding Conference (MUC-

6) in 1996 [GS96], where the named entity category set included the following classes: PERSON,

ORGANIZATION and LOCATION. In addition to the three classes for entity name expressions

(nicknamed ENAMEX), the task also involved numerical expressions such as time, money or dates

that were nicknamed NUMEX.

To this day, most NER tools keep using these types but with some modifications such as

including more classes or creating hierarchical structures of classes. An example of hierarchical

named entity types was introduced in [SSN02], this structure contains about 150 named entity

types. In the hierarchical structure the type PERSON is a sub-category of the first level category

NAME; additionally, numerous new types were added such as COMPANY and SPORTS_TEAM.

The definition of a named entity, however, is still up for debate, as there are many proposed

ways to describe and define the meaning of named entity. In [MUSC+13], four definitions are

presented and discussed, starting with defining a named entity as a proper noun. Proper nouns or

common names designate beings and one-of-a-kind items; however, “common characteristics of

proper nouns, such as the lack of inflexions or determinants, the lack of lexical meaning and the

use of capital letters, are insufficient to describe named entities” [MUSC+13, p. 484].

The second definition consists on saying that a term is a named entity if it classifies as a rigid

designator. A term is a rigid designator if it refers to the same thing in all possible worlds where

the thing exists on; on worlds where the thing does not exits the term has no meaning. However,

saying that a term can only be identified as a named entity if it is a rigid designator is too restrictive.
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For instance, “President of the United States” is a named entity that represents a person, but the

person it represents changes through time, therefore not classifying as a rigid designator.

Another way to define a named entity is the concept of unique identification. When first

introduced in MUC-6, the named entity task was resumed as: “The expressions to be annotated

are ‘unique identifiers’ of entities (organizations, persons, locations), times (dates, times), and

quantities (monetary values, percentages)” [GS96]. Marrero et al. [MUSC+13] expose a problem

with this definition, “we cannot ensure the existence of unique identifiers in all cases because it

depends on the objective. For example, the classification of Airbus A310 as unique identifier of a

type of aircraft seems clear, but the classification of the concept water does not seem to respond to

it being a unique identifier, unless we want to recognize different types of water, such as sparkling

water and still water.”[MUSC+13, p. 484].

The final definition of a named entity defended by Marrero et al. [MUSC+13] state that what

defines a named entity is dependent on the purpose and the domain of application. This can be

seen when looking into the categories considered in the different conferences. MUC conferences

focused on identifying and classifying people, organizations, locations, times and quantities. All

the MUC categories are linked to military application, which is no surprise, as MUC was spon-

sored by the Defence Advanced Research Projects Agency (DARPA). A typical application case

would be to determine the agent name, time, cause and localization of an event. “The definition

of NE according to the purpose and domain of application seems the only one consistent with the

literature, evaluation forums and tools.” [MUSC+13, p. 484].

2.2 Datasets

In the context of named entity recognition, a dataset is a list of tokens along side with the true

named entity labels, these labels identify if a token belongs to an entity and the respective named

entity category. Sometimes datasets include other relevant tags; for example in the CoNLL-2003

dataset the part of speech tag and chunk tag are added [SD03].

For the English language a common dataset used to test models and compare results is the

CoNLL-2003 dataset, created in the scope of the CoNLL-2003 shared task that was focused on

named entity recognition. As for the Portuguese language, the standard dataset used for testing

and comparing systems is the HAREM dataset [SC06], the collection used in HAREM contest

which was the first advanced NER evaluation contest for the Portuguese language.

Dataset analysis is focused on the reference datasets for English and Portuguese; these are

the datasets most researchers resort to when it comes to evaluating their NER systems. However,

there are more datasets available specially for the English language but also for the Portuguese

language. Some examples of other relevant NER annotated corpora is listed in Table 2.1.

The English subset of the CoNLL-2003 dataset consists of Reuters news stories between Au-

gust 1996 and August 1997; details of this corpus are summarized in Table 2.2. The CoNLL-

2003 dataset uses the three original named entity categories plus one extra category: MISCEL-

LANEOUS. The miscellaneous category is meant for those named entities that do not belong to
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Name Genre Tokens

PT

HAREM I GC Varied 92K

SIGARRA News Corpus News articles –

WikiNER Wikipedia articles 3.5M

EN

CoNLL-2003 News Articles 300K

OntoNotes 5.0 Varied 1.5M

WikiNER Wikipedia articles 3.5M
Table 2.1: Relevant NER annotated corpora.

the three original categories (person, location or organization) but still fit into the definition of a

named entity. “This includes adjectives, like Italian, and events, like 1000 Lakes Rally, making it

a very diverse category.” [SD03, p.143]

Resources are more scarce for the Portuguese language, with the major reference being the

collection used in the HAREM contest [SSCV06]. HAREM was the first advanced NER eval-

uation contest for the Portuguese language and is still viewed as a major reference for NER in

Portuguese texts. The collection created was named HAREM’s Golden Collection (GC) and is a

combination of texts from several origins and genres. More than half belong to the web genre or

the media genre, but some other genres are included, such as E-mail and oral.

Types present in the GC are more elaborate than the ones present in the CoNLL-2003 dataset.

A two layer hierarchy is created with the upper level referred to as category and the lower layer as

type. Categories include: person (PESSOA), organization (ORGANIZACAO), time (TEMPO), lo-

cation (LOCAL), title (OBRA), event (ACONTECIMENTO), abstraction (ABSTRACAO), thing

(COISA), value (VALOR), and others (VARIADO). Each category then has a list of types that

can be used to classify named entities with finer detail [SSCV06]. GC statistics are available in

Table 2.4.

One of the downsides of the GC corpus is the age of textual data used, Teixeira et.al. [TSO11]

explored the impact of age difference between train and test datasets for NER models and proved

that a large age difference between the datasets has a negative impact on the models. The GC

corpus is quite old, using texts created as far back as 1997, which can affect performance of

models trained using the GC if the test set contains, say, more contemporary texts or the reverse

Articles Sentences Tokens LOC MISC ORG PER

Training set 946 14987 203621 7140 3438 6321 6600

Development Set 216 3466 51362 1837 922 1341 1842

Test set 231 3684 46435 1668 702 1661 1617
Table 2.2: CoNLL 2003 English data statistics
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Token POS tag Token tag NE tag

U.N. NNP I-NP I-ORG

official NN I-NP O

Ekeus NNP I-NP I-PER

heads VBZ I-VP O

for IN I-PP O

Baghdad NNP I-NP I-LOC

. . O O
Table 2.3: CoNLL 2003 dataset notation example

where models trained using recent textual data are tested using the GC corpus.

There are other two datasets related to HAREM, the Mini-HAREM golden corpus and the

Second HAREM golden corpus that were created in the following editions of the HAREM contest.

Details about all three datasets are further explored in chapter 3.

The SIGARRA News Corpus was created in the scope of the master thesis of André Pires [Pir17]

and is composed of news articles collected from the information system of University of Porto,

SIGARRA. A total of 905 news articles were collected and manually annotated using eight dif-

ferent named entity categories: Hour, Event, Organization, Course, Person, Location, Date and

Organic Unit.

WikiNER is the name for the collection of silver-standard datasets that resulted from the work

of Nothman et.al. [NRR+13], these datasets are composed of Wikipedia articles that are auto-

matically annotated using the internal structure and categories present in the Wikitext1 format.

All datasets created have a total of 3.5 million tokens and are available in 9 languages: English,

German, Spanish, Dutch, Russian, French, Italian, Polish and Portuguese.

OntoNotes [HMP+06, WPR+12] project was a collaborative effort between BBN Technolo-

gies, Brandeis University, the University of Colorado, the University of Pennsylvania, and the

University of Southern California’s Information Sciences with the goal to annotate a large cor-

pus that includes multiple textual genres. The focus was on three languages: English, Chinese

1https://www.mediawiki.org/wiki/Wikitext

Size GC

Words 92761

Text extracts 129

Named entities 5132
Table 2.4: HAREM I Golden Collection statistics
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Category Description

PERSON People, including fictional

NORP Nationalities or religious or political groups

FACILITY Buildings, airports, highways, bridges, etc.

ORGANIZATION Companies, agencies, institutions, etc.

GPE Countries, cities, states

LOCATION Non-GPE locations, mountain ranges, bodies of water

PRODUCT Vehicles, weapons, foods, etc. (Not services)

EVENT Named hurricanes, battles, wars, sports events, etc.

WORK OF ART Titles of books, songs, etc

LAW Named documents made into laws

LANGUAGE Any named language

DATE Absolute or relative dates or periods

TIME Times smaller than a day

PERCENT Percentage (including “%”)

MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance

ORDINAL “first”, “second”

CARDINAL Numerals that do not fall under another type
Table 2.5: Different named entity categories in the OntoNotes 5.0 dataset. From [WPR+12].

and Arabic with the size of 1.5 million words, 800 thousand word and 300 thousand words re-

spectively. These datasets were created with multiple NLP tasks in mind, NER included. Named

entities were classified into 18 different named entity categories (see Table 2.5).

The file structure and notation varies from dataset to dataset. For example, the CoNLL-2003

data format consists in having a word per line with empty lines representing sentence boundaries.

Each line contains four fields: the word, part of speech tag, chunk tag and named entity tag [SD03].

The GC follows a different data format, an Extensible Markup Language (XML) styled format

that incorporates the named entity tags in the text. The extract <PESSOA TIPO="INDIVIDUAL"

MORF="M,S">Marcelo Calixto </PESSOA> represents that the words "Marcelo Calixto"

are a named entity of category PESSOA and type INDIVIDUAL [SSCV06].

Using the XML styled format, identifying the start and end of the named entity is not a prob-

lem, but for the format followed in the CoNLL-2003 dataset it is necessary to have a tag rep-

resentation scheme to identify the beginning and end of a named entity. A simple IO scheme,

inside (I) outside(O), is not sufficient as it is not capable of labelling consecutive named entities.

IOB scheme introduces a beginning label, and therefore supports consecutive named entities. The

IOB1 variation of the IOB scheme is adopted by the CoNLL-2003 dataset. There are a total of 5
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different tag schemes available: IOB1, IOB2, IOE1, IOE2 and IOBES. Differences between these

schemes are described in chapter 3.

There is a cost associated with creating new datasets, since manually annotating the texts takes

a long time and is prone to errors even when done by specialists. In cases where dataset size and

quality is a bottleneck, some techniques such as bootstrapping can be applied.

A good dataset is an invaluable resource, and has two major applications: testing models and

training supervised learning models. Aspects to take into consideration when analysing a dataset

are: the textual genre, the age of the text, the number of sentences, the number of tokens and also

the number of entities for each category.

2.3 Data Preprocessing and Representation

2.3.1 Feature sets

The first thing to consider when trying to create a supervised learning NER model is how to

represent the text, more specifically the words. The chosen representation must contain enough

information for the model to be able to learn to identity if the word belongs to a named entity or

not. One of the ways to represent words in text is using a feature set.

The most simple feature set would be for the model to only have access to the word being

processed. If we are processing the Portuguese sentence “O José comprou 100 ações da Apple em

Janeiro de 1999.” and want to classify the word “José” the only information our model would have

access to would be the current word “José” and nothing else. It is easy to see how this feature set of

only the current word would perform badly; even human specialists would struggle in classifying

named entities if the only information they had to work with was the word out of its context in the

phrase.

In most approaches, feature sets are complex and include features that aim to capture infor-

mation that the word by itself can not represent. An example of a feature set used in a real system

can be seen in Table 2.6.

Word-level features are features that are directly related to word-level information: for ex-

ample, if a word is capitalized or the word length. On the other hand, document-level or global

features are at the level of the document, for example the number of words in the text being pro-

cessed. Even when using an extensive set of features to describe the current word and including

document-level features, there is information that is not captured. To capture context information

for a particular word, it is necessary to include features of not only that word but also neighbouring

words. To achieve this, windows are used.

To use a window size of two means that the total feature set includes the features of the focus

word as well as the features of the two words to the right of the focus word and the features of the

two words to the left of the focus word. Meaning a word is represented not only by its features

but also by the features of all other words in the window. Teixeira et.al. use a window size of 2

together with the feature set described in Table 2.6 to represent words.
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Features Examples

Capitalized word John

Acronym NATO

Word length "musician" - 8

End of sentence

Syntactic category "said" - verb

Semantic category "journalist" - job

Names of people Barack Obama
Table 2.6: Example of feature set used in real system. Feature set used in the work of Teixeira
et.al. [TSO11].

2.3.2 Preprocessing tasks

For most NER systems, in order to process the text to extract entities it is first necessary to do some

preprocessing steps, which may include splitting the text into tokens, performing part-of-speech

tagging and chunking.

Tokenization is the process of given a string of text return a list of tokens that will be used on

the following tasks. Usually these tokens are words but the concept of tokenization can be applied

in the same way if we want to obtain a list of characters. For example, given the text “That will be

a total of $34.55.” and considering the tokens to be words, the result of tokenization is the token

list: [’That’, ’will’, ’be’, ’a’, ’total’, ’of’, ’$34.55’, ’.’].

At a first glance, this process does not seem to be very difficult, but there are some special cases

that are hard to overcome. Periods and commas have a special meaning when next to numbers, so

they should not be split. Emoticons are another special case, they use a range of special symbols

and should be interpreted as a single token when processing the text.

Part of speech (POS) tagging is the task of annotating each word in the text with their part of

speech tag. It is common for NER systems to require the text input to already have POS tags since

the POS tag is part of the feature set.

Chunking (or shallow parsing) is a NLP task that segments the input text into non-overlapping

groups of related words and is normally a step done after POS tagging. A simple example to

illustrate chunking, consider the phrase: “My dog likes his food.”. The phrase can be split into a

total of three chunking groups: “My Dog” as a noun phrase (NP); “likes” as a verb phrase (VP);

“his food” as a NP. An example of applying tokenization, POS and chunking to a sentence can be

seen in Figure 2.1.

Including chunking information can result in improvements in performance for the subsequent

NLP tasks [DM14]; in fact, chunking tags were, along side with the POS tags, one of the tags

included in the CoNLL-2003 annotated NER dataset [SD03].

2http://www.nltk.org/book/ch07.html
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Figure 2.1: Representation of the sentence “the little yellow dog barked at the cat” after tokeniza-
tion, POS tagging (seen in the leaf nodes) and Chunking (seen at depth 1). From NLTK book2.

The goal of both stemming and lemmatization is to reduce inflectional forms and related forms

of a word to a common base form. For example, considering the list of words working, worker,

and worked, all words have a common root word which is work.

All tasks presented above can, in some way, be used to help with the NER task either by adding

information to the words like POS and stemming or by splitting the text in non trivial ways like

chunking and tokenization do.

2.3.3 Word Embeddings

The classical way to represent a word from a vocabulary using a vector is by creating one-hot

vector representations, where every word is represented by a vector with one position set to the

value 1 and all others set to 0. One-hot representations create very sparse vector spaces and the

number of dimensions can grow to a huge number depending on the vocabulary size. With a

vocabulary size of one million words the number of dimensions would be one million. One-hot

word representations do not capture any notion of relationship between similar words. As such,

distance between word vectors has no meaning and the vector is simply used as a unique identifier

for a specific word.

An alternative to one-hot representations of words is to represent words using word embed-

dings [Mik13, MCCD13]. Word embeddings are distributed representations of words in a vector

space and are able to capture linguistic regularities, patterns and even relationships [MCCD13].

With this approach a word is represented as a N dimensional vector, where the vector size N is not

dependent on the size of the vocabulary.

With word embeddings, instead of having a very large vector full of zeros and only one cell

set to one, the number of dimensions is smaller (typically ranging between 50 to 300) and vector

values are real numbers learned using neural network models. Vectorial representations of words

were popularized by Mikolov et.al. [MCCD13] with the Word2Vec model. They presented two
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main approaches to learning word embeddings: the SkipGram (SG) approach predicts context

words given the centre word; the Continuous Bag of Words (CBOW) approach predicts the centre

word given the context words.

Simply put, the SG model receives the centre word one-hot vector as input and outputs context

word prediction probabilities that are then compared to the actual context words. Prediction error

is calculated and network weights adjusted using back-propagation. At the end of the training

phase, network weights in the hidden state contain the word embeddings.

Following the work done by Mikolov et.al. new embedding models were developed, including:

Wang2Vec [LDBT15], GloVe [PSM14] and FastText [BGJM16]. The GloVe model works with a

co-occurrence word matrix, while Wang2Vec, Word2Vec and FastText are composed of predictive

methods.

Wang2Vec is a slightly modified version of Word2Vec, modifications were added to take into

consideration word order. Word order is important to solve syntax based problems, and Wang2Vec

showed improvements in POS and dependency parsing [LDBT15].

FastText approaches the problem in a different way: each word is represented by the sum

of vectors representing character n-grams. FastText tries to overcome the problem of obtaining

representational vectors for words in languages with large vocabularies and many rare words.

Representing each word by a sum of character n-gram representations ensures all words have an

unique representational vector meaning unknown words for the embedding model are no longer

mapped to a vector representation of unknown [BGJM16].

A downside of word-level embeddings is that “information about word morphology and shape

is normally ignored when learning word representations” [SZ14, p. 1]. There are tasks in NLP

such as part-of-speech tagging that require morphological or word shape information; hand-crafted

features are used to include this information. Alongside word embeddings, in the work of Namaz-

ifar [Nam17] two one-hot vectors are used; one representing the POS tag of the token and another

identifying if the token contained special characters.

Character-level representations can capture some information left out by word-level represen-

tations. Santos and Zadrozny [SZ14] propose a deep neural network that learns character-level

representations of words and in combination with word embeddings creates state-of-the-art POS

taggers for both English and Portuguese.

Embeddings are a powerful representation and in most cases have a real chance of improving

performance. Passos et al. [PKM14] have presented the first system to obtain state-of-the-art

results for NER using embeddings. One disadvantage embeddings have is the fact that the time

it takes to train can be very long, mainly because huge amounts of textual training data are used.

Mikolov et.al. [MCCD13] report a training time of two days using 140 CPU cores to train a 1000

dimensional vectors using a 6 billion word vocabulary.

Systems that use embeddings as word representations normally initialize these embeddings

with previously trained embeddings. Since most of the final network trainable parameters will be

related with word embeddings, initializing them with already good weights gives a head-start to

training the network. Examples of this can be seen in [CN15, dSG15, Nam17]. After initializing
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the network with pre-trained word embeddings the training starts and word embeddings will be

fine tuned to adjust to the domain and task at hand. It is also possible to initialize the network with

pre-trained embeddings and freeze the embeddings layer, this means word embeddings will not be

fine tuned but translates into a decrease in training time.

To evaluate the quality of embeddings there are two options: intrinsic evaluations and extrinsic

evaluations. Intrinsic evaluation consists on word vector analogies, essentially doing additions and

subtractions with the word vectors and then comparing the result with all words in the vocabulary

in order to find the one that is most similar. The measure of similarity is normally the cosine

distance between the result and the words in the vector space.

A simple example of one analogy is finding the word in the vector space that relates to the

word small in the same was as the word biggest relates to the word big. This analogy is mapped to

the following operations: X = vector(”biggest”)− vector(”big”)+ vector(”small”). If the word

embeddings are well trained, searching for the closest word to X in the vector space will result in

finding the word smallest, proving that the learned word embeddings successfully capture word

relationships. The example used was obtained from the work of Mikolov et.al. [MCCD13].

Extrinsic evaluation is more time consuming since it requires the newly trained word embed-

dings to be tested as part of a system to perform a real task and evaluate the impact the change

makes on the performance of the system.

2.4 Methodologies

Early implementations of NER systems were largely based on hand-crafted rules created by spe-

cialists, who looked at the features of named entities of different categories and came up with rules

to detect and classify them. Features regularly used to categorize named entities include whether

the word starts with capital letter, whether it ends with a period and word length. A rule based

system can be implemented using, for example, regular expressions.

For research in some languages, such as Portuguese, it took longer for researchers to adopt

new methodologies compared to the English language. In 2004, in the first HAREM contest

only one of the submissions used a machine learning [SSCV06] approach; in contrast, during the

CoNLL-2003 shared task all submissions were machine learning implementations [SD03].

Creating hand-crafted rules is a long process that takes a long time to complete and requires

the expertise of linguistics specialists. Machine learning, on the other hand, can obtain models

that encode these rules in a fraction of the time. However, supervised machine learning method-

ologies require annotated examples to train the models, and annotated corpora can in itself be very

expensive to obtain.

2.4.1 Classification Methodologies

NER can be viewed as a classification problem: given a word, classify it as a named entity of

a specific category or as not a named entity. There are several machine learning classification
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algorithms that can be applied to the problem, namely support vector machines [TC02, EB10],

Naïve Bayes [SS15, AHFB17] and decision trees [AHFB17, SFK06, PKPS00].

2.4.2 Sequential Methodologies

Textual data is in itself sequential. Word order matters and is an essential factor to the meaning of

the sentence. NER can be viewed as a sequence labelling problem: given an annotated corpus and

a set of features, a sequence classifier is trained to predict the labels from the data.

Both classification and sequential methods require a large enough annotated corpus so that

the models can learn what features identify each category. In addition, the feature set needs to be

manually chosen and can be highly dependent on context and domain of the datasets used.

Sequential machine learning algorithms include Hidden Markov Model [TRM08, ZS01], Max-

imum Entropy Markov Model [BON03, CN03] and Conditional Random Fields [TSO11, LZWZ11,

dAV13, SZH17, CF13].

A Hidden Markov Model (HMM) is a finite state automaton that models a probabilistic gen-

erative process where a sequence of observations is produced by starting in some state, emitting

an observation selected by the state, changing to another state and repeating the process until a

desired final state is reached [MFP00].

With a more formal notation, a HMM is represented by a finite set of states S, a set of obser-

vations O, two conditional probability distributions – a state transition probability P(s|s′) repre-

senting the probability of the current state s given that the previous state is s′, with s,s′ ∈ S and an

observation probability P(o|s), o ∈ O, s ∈ S – and finally a initial state distribution P0(s).

For a natural language processing task such as NER, the observations are typically a vocabu-

lary and sequences of observations are associated with a sequence of labels. Models can associate

one or more states to each label. So, given a set of observations, the model can output the most

likely label sequence obtained using the path returned by the Viterbi algorithm [For73], that finds

the most likely sequence of hidden states.

A Maximum Entropy Markov Model (MEMM), also known as Conditional Markov Model

(CMM), is a model based on HMM but “allows observations to be represented as arbitrary over-

lap of features and defines a conditional probability of state sequences given observation se-

quences” [MFP00, p. 591].

Comparing MEMM to HMM, we can observe that the two conditional probabilities are re-

placed by a single conditional probability distribution P(s|s′,o), the probability of the current state

s given the previous state s′ and the current observation o. Unlike HMM where the current obser-

vation only depends on the current state, for MEMM the current observation may also depend on

the previous state [MFP00].

According to Lafferty et.al. [LMP01], conditional random fields offer several advantages over

both HMMs and MEMMs. MEMMs and other non-generative finite-state models based on next-

state models share a weakness that Lafferty et.al. called the label bias problem.

The label bias problem appears due to the fact that transitions leaving a given state compete

only against each other, rather than against all other transitions in the model. In other words, this
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is a conditional probability of the next state given the current state and the observation sequence.

All the mass that arrives at a state must be distributed among the possible successor states. An

observation can affect which destination states get the mass but not how much total mass to pass

on. This causes a bias towards states with fewer outgoing transitions.

Conditional random fields is a sequence labelling framework that has all the advantages of

MEMM but solves the label bias problem. The critical difference is that a MEMM uses per-state

exponential models for the conditional probabilities of next states given the current state, while

CRF has a single exponential model for the joint probability of the entire sequence of labels given

the observation sequence.

2.4.3 Deep Learning Methodologies

Aside from the performance improvement, the great appeal of approaches based on deep learning

(DL) is the possibility of discarding the need of feature engineering [CN15]. The deep learning

model is capable of learning what features to detect and using these features to identify and classify

the named entities into the predefined categories.

Deep learning can be described as allowing computers to learn from experience and to repre-

sent concepts as a hierarchy where each concept is defined through its relation to simpler concepts.

As Goodfellow, Bengio and Courville put it, “If we draw a graph showing how these concepts are

built on top of each other, the graph is deep, with many layers. For this reason, we call this

approach to AI deep learning.” [GBC16, p. 1-2]

Abstract and formal tasks such as playing chess, despite having many possible moves, are still

very restricted and follow a strict set of rules. These types of tasks are challenging for humans

but technically simple for computers. On the other hand, there are tasks that seem effortless for

humans, like speech recognition, but that computers have struggled with for many years.

Handling tasks with specific rules and restrictions is not much of a challenge but the everyday

life encompasses tasks that require a large amount of knowledge about the world. This knowledge

is subjective and differently interpreted by different people making it difficult to articulate in a

formal way interpretable by a machine [GBC16].

Advances in hardware, specially GPU’s, have allowed for faster training times and conse-

quently for deep learning solutions to become viable. Having the possibility of training deep

learning models in less time and with fewer hardware resources allowed for much more research

to be done that resulted in deep learning solutions improving the state of the art of problems in

various computer science areas.

The modern deep learning framework is quite versatile. Adding more layers and units within

a layer enables a deep learning network to represent functions of great complexity. Tasks that

consist of mapping an input vector to an output vector and are intuitive for a person to do rapidly,

can be accomplished via deep learning. It is just a matter of having a large enough model and

sufficiently large datasets of labelled training examples [GBC16].
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The versatility and power of deep learning architectures combined with advancements in hard-

ware pushed DL to be used in many computer science areas, including NLP and more specifi-

cally NER. The last few years of research in the English language has mainly focused on DL ap-

proaches [LBS+16, SVL14, YZD17, dSG15, CN15, Nam17, CWB+11, CW08, HXY15, SM13]

Feedforward neural networks, or multilayer perceptrons (MLPs), are the standard model for

deep learning, and all other models can be seen as variations of this simple architecture. The goal

of feedforward neural networks is to approximate some function f ∗. “For example, for a classifier,

y = f ∗(x) maps an input x to a category y. A feedforward network defines a mapping y = f (x;θ)

and learns the value of the parameters θ that result in the best function approximation.” [GBC16,

p. 164]

As the name suggests, the information is only fed forward through the network until a result

comes out. If the outputs of the model are fed back into itself, a feedback connection is created,

resulting on what is called a recurrent neural network. The name of these networks also includes

neural since “each unit resembles a neuron in the sense that it receives input from many other

units and computes its own activation value. The idea of using many layers of vector-valued

representation is drawn from neuroscience” [GBC16, p. 165]. Feedforward neural networks are

named networks because they are a composition of multiple simple functions arranged in what can

be described as a directed acyclic graph.

Convolution neural networks (CNNs) are a special kind of neural network for processing data

that has a known grid-like topology, such as time-series data or image data. “The name "con-

volutional neural network” indicates that the network employs a mathematical operation called

convolution. A convolution is a specialized kind of linear operation. Convolutional networks are

simply neural networks that use convolution in place of general matrix multiplication in at least

one of their layers.” [GBC16, p. 326]

CNNs have had major successes in practical applications. A task that seems to fit perfectly

as a use case for CNNs is image processing, as images have a representation that is inherently

represented as a 2 dimensional matrix. CNNs can also be applied to NLP, for Santos et.al. [dSG15]

use a convolutional layer to extract character level representations of words.

Analysing a famous CNN for image classification [KSH12] three different types of layers are

identified: convolutional layers, polling layers and dense or fully-connected layers. A convolution

can be seen as going through the input data and applying an operation to multiple subsets of the

input; the operation is named a kernel or filter. The kernel defines what action to take for the

input. Normally kernels are small in terms of width and height but extend through the full depth

of the input. In the case where the input to a CNN is an image with dimensions [256,256,3] a

typical kernel would be [5,5,3] (5 in width 5 in height and 3 in depth, the colour channels). During

the forward pass the kernel convolves across the width and height of the input and dot products

between the filter and input positions are computed. In the example of image processing it is

expected that some of the learned kernels activate when they see some kind of visual feature, such

as an edge or a corner.

Along side with kernel dimensions there are some other hyper-parameters that need to be
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Figure 2.2: Max polling layer in effect. From cs231n website3.

configured, namely the use of zero-padding and the stride value. Zero-padding means padding the

input with zeros around the border, this allows control of the size of the output and is normally

used so that output dimension is equal to input dimension. The stride value is related to how many

pixels to slide the kernel after each application, when stride is 1 the kernel is moved one pixel at a

time, larger stride values mean outputs with smaller dimensions are produced.

Polling layers are commonly used in-between successive convolutional layers, they are used

to reduce the dimension of the representation and therefore reducing the amount of parameters

and computation required. Polling layers are also responsible for controlling overfitting. The most

common polling operation is max polling where the output is the max value for each kernel pass

in the input. A simple example of the effect of a max polling layer is illustrated in Figure 2.2.

Polling layer can perform other functions, such as average polling or L2-norm polling but the

most commonly used is max polling.

Fully-connected or dense layers are connected to all activations in the previous layer and are

normally used at the end of the CNN architecture to map the internal representation to the output

vector. In the work of Krizhevsky et.al. [KSH12] the tasks was to classify an image into 1000

different categories so the last layer of the network is a dense layer that maps the internal repre-

sentation to a 1000 dimensional vector that can be interpreted as the scores of each of the 1000

different categories.

Recurrent neural networks (RNNs) are a family of neural networks that work on sequential

data such as text. Typically, approaches are limited in sequence size, which represents the number

of previous inputs that are used in predicting the label for the current input. Increasing the sequence

size leads to the memory requirements growing to a point where it is computationally inviable

to train the network. RNNs use the output of the previous time step as an input for the next

3http://cs231n.github.io/convolutional-networks/#pool
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step, essentially allowing the following prediction to be influenced by all previous inputs and

predictions.

Infinite sequence length would be ideal since the prediction of the following sequence would

be based on the whole previous sequence and not only in a portion of it. In reality having an infinite

sequence length is not only limited computationally but also by the vanishing gradient problem

and exploding gradient problem. When the sequence length is too large, gradients of the initial

sequence inputs either get too close to 0 or explode to infinity meaning no actual learning is done.

Even using techniques to counter the problem, like gradient clipping, it is never truly solved.

In the previous explanation the sequence in which the next tag prediction is based on only

includes the words up to the focus word, but the context of the word is also affected by the words

that follow it. The bidirectional RNN architecture is composed of two RNNs, a forward RNN

that processes the input in the normal order and a backward RNN that processes the input in

the reverse order. The tag prediction is based on the combined output of both RNNs which means

information of both the previous sequence of words and following sequence of words is considered

when making the tag prediction.

Long short term memory networks (LSTMs) are a specific case of RNNs, and as the name

indicates they are designed to learn long term dependencies, longer than RNNs do. The main

components of a LSTM are: a memory cell or cell state, input gate, output gate and forget gate.

At each step, the first decision that needs to be made is to decide what information is no longer

relevant and can be thrown away. This is done using the forget gate; irrelevant information is then

removed from the cell state. Next is to decided what new information to add to the new cell state.

Using the input gate, a decision is made as to what values of the cell state to update, and finally

the output gate is used to decide what is exposed by the cell.

The way LSTMs can maintain longer dependencies than RNNs is by making use of gates to

selectively keep interesting dependencies and throw away those which have no value.

RNNs, specifically LSTMs, are the architectures most used for NER in the last few years [Nam17,

LBS+16, SVL14, YZD17, ABP+16, MH16, HXY15, CN15]. NER can be viewed as a sequence

to sequence problem, where the input is a sequence of words and the output is a sequence of named

entity tags that match the input words. This concept perfectly fits the RNN architecture. CNNs

are also used but not as a main architecture. There are several works that explore the use of CNNs

to extract character level information from words [MH16, CN15, dSG15].

Just like classical machine learning architectures, DL network architectures also suffer from

the over-fitting problem. One of the ways DL researchers found to deal with this problem is to

apply dropout [SHK+14] in some of the layers of the network. Applying dropout means randomly

ignoring units from the neural network during training, this prevents units from fitting too strictly

to the training data. An example of the application of dropout to a neural network is illustrated in

Figure 2.3

Training a neural network means iteratively tweak the network parameters to gradually obtain

slightly lower and lower errors over the training dataset. To update each network parameter it

is necessary to know how it affect the error function. If the parameter value positively affects
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Figure 2.3: Effect of dropout on a neural network. From [SHK+14]

the error function the objective should be to lower the parameter value, on the other hand if the

parameter value negatively affects the error function the objective should be to increase it’s value.

To know exactly how the network parameters affect the error function the gradient of the loss

function is calculated.

Now that the gradient for each network parameters is known, finishing the network training

iteration is only a matter of updating the parameter value based on the gradient. There are various

algorithms that describe exactly how these updates should be made. Gradient descent is one of the

most used algorithms to perform neural network optimization [Rud16].

Gradient descent has three variations, differences between them are related to how many train-

ing examples are processed before gradients are calculated and network parameters adjusted.

Batch gradient descent requires the gradients for the whole training dataset to be calculated

to perform just one update to the network parameters, batch gradient descent can be very slow

and becomes unusable if the training dataset does not fit into memory. Stochastic gradient descent

(SGD), on the other hand, performs a parameter update for each training example, these frequent

updates with high variance cause the objective function to fluctuate heavily. Mini-batch gradient

descent combines batch gradient descent and SGD, it performs an update for every mini-batch of

n training examples.

In all variations of the gradient descent algorithm the update to the parameters is done us-

ing the following rule: params = params− learning_rate ∗ params_grad. Choosing the proper

learning rate can be difficult, too small and the convergence is very slow, too large and it can

overshoot the minimum and start diverging. Another big challenge when minimizing highly non-

convex functions is avoiding getting trapped in the numerous suboptimal local minima. A number

of algorithms and modifications were developed in order to deal with these challenges: Momen-

tum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop, Adam, AdaMax, Nadam and

more [Rud16]. However no meaningful improvements were observed when using sophisticated
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optimization algorithms on DL network architectures target at the NER task [CN15, MH16].

2.5 Evaluation Metrics

There are several evaluation metrics used to evaluate performance of NER systems. The major

difference between methods is related to how each one defines what an error is and what impact

different types of errors have in the performance measure.

Consider the following test case:

O [José]Person comprou 100 ações da [Apple]Organization em [Janeiro de 1999]Date

Suppose our system outputs the following named entities:

O [José]Person comprou 100 ações da [Apple]Miscellaneous em [Janeiro]Date de 1999

Only one fully correct named entity is identified, “José”, as a named entity of the class Person.

But there are other types of measures that take into account multiple types of errors.

The performance of NER systems is measured using precision (Eq. 2.1), recall (Eq. 2.2) and

F1-score (Eq. 2.4), which is the F-measure (Eq. 2.3) where both precision and recall have the same

weight (β = 1) for the final score.

Precision =
Number correct NEs detected
Total number NEs detected

(2.1)

Recall =
Number correct NEs detected
Total number NEs in test set

(2.2)

Fβ = (1+β
2) · Precision ·Recall

β 2 ·Precision+Recall
(2.3)

F1 = 2 · Precision ·Recall
Precision+Recall

(2.4)

There are different scoring techniques that basically differ in how they consider the named

entity identification and classification to be correct. When taking into consideration identification

and classification of named entities, the system can make five different types of errors, as shown

in Table 2.7.

Considering these types of errors, there are three main scoring techniques: MUC evaluations,

Exact-match evaluations and ACE evaluations.

2.5.1 MUC Evaluations

The performance measure used in the message understanding conference (MUC) evaluates the

system on two aspects: ability to classify the named entity into the correct category (TYPE) and

ability to identify correctly the named entity on the text (TEXT). The correct category score is
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Correct solution System prediction Error Type

comprou 100 ações da comprou 100 [ações]Person da Identifies named entity where there is
none.

O [José]Person O José Misses the named entity completely.

ações da [Apple]Organization ações da [Apple]Object Identified the entity but paired it with
the wrong label.

ações da [Apple]Organization ações [da Apple]Organization Classified the entity correctly but
boundaries were incorrect.

ações da [Apple]Organization ações [da Apple]Object Wrong boundaries and wrong label.
Table 2.7: Different types of errors.

assigned if a named entity is matched with the correct class ignoring the boundaries as long as

there is an overlap. Correct identification score is assigned if the named entity boundaries are

correct regardless of the class prediction.

For both types TYPE and TEXT, the three counters necessary to calculate the F-measure are

kept: number of correct guesses, number of total guesses and total number of entities on the

test set. Analysis of the errors in the example above is presented in Table 2.8 and the respective

precision, recall and F1 measures in equations 2.5, 2.6 and 2.7 respectively.

Counter TYPE TEXT Total

Correctly detected 2 2 4

Total detected 3 3 6

Total on test set 3 3 6
Table 2.8: Example counters for MUC evaluation

Precision =
4
6

(2.5)

Recall =
4
6

(2.6)

F1 = 2 · Precision ·Recall
Precision+Recall

' 0.67 (2.7)

This measure has the advantage of taking into account all possible types of errors of Table 2.7.

It also gives partial credit for errors occurring on one axis only [Nad07].

2.5.2 Exact-match Evaluations

The performance measure used to evaluate NER systems in the IREX and CONLL conferences

is as simple as only considering a predicted named entity correct if it is an exact match both in
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identification and classification. Comparison between systems is achieved using micro-averaged

F-measure with the precision being the percentage of named entities found by the system that are

correct and the recall being the percentage of named entities present in the solution that are found

by the system [Nad07].

In this metric all the five types of errors presented above in Table 2.7 are interpreted as having

the same value, that is, all are considered errors with the same weight.

Looking at the example above, only one named entity is matched correctly which means a

lower F1 measure compared to MUC evaluations. Precision, recall and F1 calculations for the

exact match performance measure are present in equations 2.8, 2.9 and 2.10 respectively.

Precision =
1
3

(2.8)

Recall =
1
3

(2.9)

F1 = 2 · Precision ·Recall
Precision+Recall

' 0.34 (2.10)

2.5.3 ACE Evaluations

The evaluation used on the ACE conference has a complex structure and design. Each named

entity type has a parametrized weight and contributes up to a maximal proportion of the final

score (e.g., if each person is worth 1 point and each organization is worth 0.5 point then it takes

two organizations to counterbalance one person in the final score). Customizable costs are used

for false alarms, missed entities and type errors.

ACE evaluation may be the most powerful evaluation scheme because of its customizable cost

of error and its wide coverage of the problem. It is however problematic because the final scores

are only comparable when parameters are fixed. In addition, complex methods are not intuitive

and make error analysis difficult [Nad07].

2.6 Related Work in Portuguese

As mentioned before, the HAREM contest that took place in 2004 was the first time NER was

tackled for the Portuguese language. A second HAREM contest took place in 2008 with some

slight changes to the categories and types and a new evaluation measure [FMS+10].

From all the participations on the second HAREM contest, only one adopted a machine learn-

ing approach; all others relied on hand-crafted rules in combination with dictionaries, gazetteers

and ontologies. “This shows that the community dedicated to NER in Portuguese hasn’t embraced

machine learning techniques, contrary to the situation for English.” [FMS+10, p. 3635]

This observation is no longer true, as there is active investigation using machine learning

techniques for the Portuguese language [TSO11, NRR+13, GG15, dAV13, VR08, MD07, Sar06].
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However, nowadays we notice another trend: research in NLP, specially for English, is focus-

ing on deep learning architectures [SM13, SVL14, YZD17, CWB+11, HXY15, CN15, GBVS15,

Nam17]. But looking at the Portuguese language most research still focuses on classical machine

learning approaches, an exception is the work of Santos et.al. [dSG15] which is the most promi-

nent research on NER applied to the Portuguese language that uses a deep learning approach.

The process described by Teixeira et.al. [TSO11] presents a way to train semi-supervised

NER models using non-annotated corpora. Creating annotated corpora is difficult and expensive

and as a result the available NER-annotated corpora is usually small and composed of texts that

are several years old. Unannotated corpora is much more accessible and readily available and can

be exploited to create more up to date NER models.

The corpus used by Teixeira et.al. [TSO11] consists of 50,000 news items extracted from

Portuguese online newspapers between April 2011 and May 2011. Each item contains a title and a

body. The number of sentences present is approximately 400,000. The method consists in starting

with non-annotated news items and annotate names using a dictionary approach. Next, this corpus

is used to infer a CRF model. Using the newly learned model the initial corpus is re-annotated

and used once more to train a CRF model. This cycle continues until performance stabilizes. At

each step, model performance is measured in different ways: using the HAREM GC, manually

evaluating precision and recall over a small sample of news corpus from the original corpus, and

checking the correctness and number of new names identified. The results obtained by Teixeira

et.al. [TSO11] mean that it is a viable option to include non-annotated corpora in the process of

creating models for named entity recognition for Portuguese.

Another solution based on traditional sequence labelling machine learning techniques is intro-

duced by Amaral et.al. [dAV13]. NERP-CRF is a NER system based on CRF for the Portuguese

language. The data used was HAREM corpus. Two experiments were done: one using the golden

corpus of the second HAREM to both train and test, and another using the GC of the first HAREM

to train and the GC of the second HAREM to test.

Santos et.al. [dSG15] use both word embeddings and character embeddings in combination

with the neural network architecture for sequential classification presented by Collobert et.al.

[CWB+11] to create a solution for NER in Portuguese texts. This solution outperformed the

state-of-the-art system in the HAREM corpus. The fact that this solution performed so well is a

testament to the fact that deep neural networks are suitable for NER in the Portuguese language.

Garcia et.al. [GG15] introduced CitiusTools, a multilingual suite for NLP that performs mul-

tiple tasks, including NER. The tool started only supporting the Spanish language but in 2015 the

tool was extended to support both Portuguese and English. This tool uses a rule based approach

to NER, making use of gazetteers, dictionaries and a list of the most frequent personal names for

each language.

Another tool that supports the Portuguese language in many NLP tasks is FreeLing [PS12].

This open-source tool started supporting 3 languages (English, Spanish and Catalan) and now

supports 9 (added Galician, Italian, Welsh, Portuguese, Asturian and Russian). Both modules
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involved in NER, recognizer and classifier, are based on the CoNLL-2002 shared task winning

system [CMP02]. This machine learning based system makes use of binary AdaBoost classifiers.

spaCy4 offers a multi-task convolutional neural network that supports part-of-speech tagging,

dependency parsing and named entity recognition for the Portuguese language. The spaCy library

also includes language models for English, German, Spanish, French, Italian and Dutch.

Natural Language Toolkit (NLTK) is a platform built to work with human language data,

provides corpora loaders and trained models for many NLP tasks. Useful models available for the

Portuguese language5 include: word tokenizer, sentence tokenizer, POS tagging and stemming.

2.7 Related Work in English

Maintaining the trend associated with other natural language processing tasks, the English lan-

guage is the one language that most named entity recognition research focuses on. The work on

named entity recognition started in the Message Understanding Conference (MUC-6) in 1996,

where the task of NER was first introduced. Further work was done in CoNLL-2002, CoNLL-

2003, MUC-7 and continues today.

Collobert et.al. [CWB+11] present a neural network architecture. This architecture can be

applied to multiple natural language processing tasks. By avoiding task-specific engineering and

ignoring man-made input features, the system learns what are the optimal representations and

therefore can adapt to multiple tasks. Four NLP tasks are explored: POS tagging, Chunking, NER

and semantic role labelling. For the NER task the corpus used is the one made available in the

CoNLL-2003, which consists of Reuters news articles, a training set of around 200,000 tokens

and test set of approximately 46,000 tokens. Since most of the trainable parameters of the network

are related to word embeddings, Collobert et.al. initializes the word embedding weights with pre-

trained embeddings in order to jump start the learning process. Word embeddings were trained

using two datasets: English Wikipedia with 631 million words and Reuters news articles contain-

ing 221 million words. The use of pre-trained word embeddings to initialize the word embeddings

layer improved performance in all the tasks tested. Collobert et.al. [CWB+11] demonstrated that

it is possible to create a neural network architecture capable of surpassing state of the art solutions

without requiring any external feature engineering or external resources. The flexibility of the

network to adapt to different NLP tasks also shows the strength of deep learning approaches when

applied to NLP.

Yang et.al. [YZD17] present a way to improve baseline NER solutions. Given the output of

the baseline solution, all entities are substituted with their class, resulting in sentence patterns

such as "PERSON was born in LOCATION". These patterns are then used in training LSTM

and CNN structures that will improve the baseline performance. Improvements are based on

changing the class of entities when the pattern assigned does not seem to be correct. In the example

“U.S. beat El Salvador 3-1” the pattern present is “LOCATION beat LOCATION”. If the baseline

4https://spacy.io/models/pt
5http://www.nltk.org/howto/portuguese_en.html
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incorrectly tags one of the named entities as something other than LOCATION the output can be

corrected. The system identified that “LOCATION beat LOCATION” is more likely to be correct

than “LOCATION beat ORGANIZATION” or any other combination.

Namazifar [Nam17] set to solve the problem of assigning confidence value to detected named

entities. This problem is defined as Named Entity Sequence Classification (NESC). The use case

in which including confidence levels is important is for example content recommendation systems.

The work focuses on twitter data (tweets). “It is important to note that for recommending content

it is crucial to have very high confidence in the detected named entities to be actually true named

entities.” [Nam17, p.2]. To achieve this, an architecture based on the one presented by Huang

et.al. [HXY15] was implemented; 200 dimensional word vectors are trained using Glove [PSM14]

on over 1 billion tweets. Along side with word embeddings they use 2 one-hot vectors: one en-

codes information about word capitalization and presence of special characters; the other vector

specifies the part-of-speech tag associated with the token. The full system includes: word em-

beddings followed by a bidirectional recurrent neural network (bidirectional LSTM) and a fully

connected layer followed by a softmax layer that produces a discrete probability distribution for

the possible labels. In the last step, probabilities go through a CRF which learns the correct order

of entity labels. The dataset used contains 100,000 manually annotated tweets and the training set

included 62,507 named entities.

Lample et.al. [LBS+16] introduce an architecture based on LSTM and CRF that obtained

state of the art NER performance for English, German, Dutch and Spanish. Results are presented

for CoNLL-2002 [Tjo02] and CoNLL-2003 [SD03] datasets. This approach uses both word-

level embeddings as well as character-level embeddings. “The embedding for a word derived

from its characters is the concatenation of its forward and backward representations from the

bidirectional LSTM.” [LBS+16, p.6]. For the model to consider both the word-level and character-

level representations, dropout training was necessary and severely improved the performance. A

different approach inspired on shift-reduce parsers is also presented, but performed worse than the

LSTM-CRF architecture.

Gillick et.al. [GBVS15] use a different approach to text representation: text is represented

as a sequence of bytes. This notation has a very small vocabulary (just the number of different

characters) and results in a compact model when compared to models that use different word rep-

resentation techniques such as feature sets or word embeddings, but still produces results similar

to or better than state-of-the-art in POS tagging and NER [GBVS15]. The LSTM-based model

does not depend on any of the standard tasks of the natural language processing pipeline, not even

tokenization, which is required by most other models. The output of the model are annotations in

the form [start, length, label] that in the case of NER correspond to the byte in which the named

entity starts, the length of the named entity in bytes and the corresponding named entity class.

Chiu et.al. [CN15] make use of a bidirectional LSTM and CNN architecture to create a NER

model that still is the state of the art model for the OntoNotes 5.0 dataset [HMP+06]. The CNN

architecture is used to obtain character level word representations that are concatenated with the

word embedding representation of the word and input to the bidirectional LSTM. The best per-
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forming variation of the model includes using pre-trained embeddings obtained with the word2vec

architecture and lexicon features.

Ma et.al. [MH16] use a similar approach to the work of Chiu et.al.. Just like Chiu et.al., the

main components of the model are a bidirectional LSTM and CNN architecture. This model is

truly end-to-end, meaning it requires no feature engineering and proved to work with two separate

sequence labelling tasks, obtaining state of the art performance for both POS and NER. Just like

Chiu et.al., Ma et.al. use the CNN to create character level representations of words and con-

catenate them with the word embedding representation before feeding the representations to the

bidirectional LSTM. Dropout layers are included in multiple parts of the model to mitigate over-

fitting. Dropout is applied before character embeddings are input to the CNN and to the input and

output vectors of the bidirectional LSTM.

All the tools presented for the Portuguese language (CitiusTools, FreeLing and spaCy) also

support English, but there are some tools that do not offer support for Portuguese that are worth

mentioning.

Stanford CoreNLP [MSB+14] provides a set of human language technology tools, focused on

ease of use. The CoreNLP tool is highly flexible and extensible. NLP tasks supported include

POS tagger, NER, co-reference resolution, sentiment analysis, among others. The tool is opti-

mized for the English language but also supports Arabic, Chinese, French, German and Spanish.

Named entities are recognized using a combination of CRF sequence taggers trained on various

corpora [FGM05]. Numerical entities are recognized using two rule-based systems, one for money

and numbers and a separate system for processing temporal expressions [CM12].

Apache OpenNLP6 is a machine learning based toolkit for the processing of natural language

text. It supports the most common NLP tasks, such as tokenization, sentence segmentation, POS

tagging, named entity extraction, chunking, parsing and co-reference resolution. For the task of

NER, a maximum entropy model is trained. Trained models are available for English, Spanish and

Dutch.

Natural Language Toolkit (NLTK) is an adequate tool both for teaching and working with com-

putational linguistics. An extensive book written by the creators of NLTK is available [BKL09] in

which they give a detailed description of NLTK’s features. NLTK provides easy to use interfaces

to over 50 corpora and lexical resources. NLTK provides a NER classifier trained for the English

language. NLTK features available for the English language include: dataset loaders, multiple

word classifier models, chunking models, NER models and more.

6http://opennlp.apache.org/

27



State of The Art

28



Chapter 3

Datasets

As mentioned before, it is hard to obtain annotated data for Portuguese and very few annotated

datasets are freely available. Two different categories of datasets are explored in this work: an-

notated datasets and non annotated datasets. Annotated datasets are used to train and test the

different deep learning models (described in Chapter 4) while non annotated data is used for the

bootstrapping experiment. The bootstrapping technique (described in Chapter 5) can be used to

include non annotated text in the training of NER models. This chapter includes details about both

the annotated data and raw data used.

3.1 Data Format

Most of the time, available annotated datasets follow different formats to represent the text and the

annotations. For example the datasets that resulted from HAREM use a XML format while the

WikiNER dataset follows a simple text notation where each word is followed by the POS tag and

NER tag separated by a vertical bar: “João|NOM|B-PER”.

In order to create models that could be trained with all datasets it is necessary to adapt the

datasets to a uniform format. The adopted uniform format is the CoNLL-2003 format, this format

is adopted by almost all researches in their implementations with clear examples being the work

of Lample et.al. [LBS+16], Chiu et.al. [CN15] and Ma et.al. [MH16].

In the CoNLL-2003 [SD03] data format the file contains one word per line and empty lines

represent sentence boundaries. After each word there is tag that indicates if the word belongs to an

entity. This tag encodes both entity boundaries and the entity type. This format does not support

overlapping named entities. An example of an annotated phrase in the CoNLL-2003 format is

presented in Table 3.1.

The original format presented in [SD03] includes chunk tags and part of speech tags along

side with the named entity tag but for these experiments the chunk tag and part of speech tag can

be ignored as they are not used in the training or testing of the models. All tested models follow

the ideology of being an end-to-end models, making use of word embeddings to represent the
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U.N. NNP I-NP I-ORG

official NN I-NP O

Ekeus NNP I-NP I-PER

heads VBZ I-VP O

for IN I-PP O

Baghdad NNP I-NP I-LOC

. . O O
Table 3.1: Original CoNLL-2003 format using IOB1 tag scheme. From [SD03].

text allows the models to be completely independent from the output of other NLP tasks, namely

chunking or POS tagging.

The datasets used in this work are distributed in different formats and all were transformed

into the CoNLL-2003 format before being used to train the models. To transform the datasets into

the CoNLL-2003 format it is necessary to first tokenize the text into sentences and tokenize each

sentence into words.

3.2 Tag Representations

A tag representation scheme needs to be able to identify entity boundaries and the entity category.

There are multiple tag representation schemes, the differences are in the way that entity boundaries

are identified. In all schemes words tagged with O are outside of named entities and words tagged

with I-XXXX belong to an entity of category XXXX. The differences between tagging schemes are

as follows [Hak13]:

• IOB1: Tag B-XXXX is the beginning of a named entity of category XXXX that immediately

follows another named entity of category XXXX

• IOB2: Tag B-XXXX is used at the start of every named entity.

• IOE1: Tag E-XXXX is used to mark the last token of a named entity immediately preceding

another named entity of category XXXX

• IOE2: Tag E-XXXX is used at the end of every named entity.

• BIOES or IOBES: Tag S-XXXX is used to represent a named entity with a single token.

Named entities longer than one token always start with B-XXXX and end with E-XXXX

These differences are described in Table 3.2

There is some evidence that the IOBES tagging scheme improves model performance [RR09,

DLCT15]. But others have not found any significant improvement over the IOB schemes [LBS+16].
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Scheme A imprensa foi inventada na Alemanha por John Gutenberg .

IOB1 O O O O O I-LOC O I-PER I-PER O

IOB2 O O O O O B-LOC O B-PER I-PER O

IOE1 O O O O O I-LOC O I-PER I-PER O

IOE2 O O O O O E-LOC O I-PER E-PER O

IOBES O O O O O S-LOC O B-PER E-PER O
Table 3.2: Example of different tagging schemes applied to NER. Categories: Location (LOC)
and Person (PER)

3.3 Annotated data

Annotated NER datasets are hard to come by for the Portuguese language. The datasets of refer-

ence for the Portuguese language are the ones produced for the HAREM contest. Another dataset

that is useful for this work is WikiNER which focuses on Wikipedia data. Both the HAREM

datasets and the WikiNER dataset have been briefly presented in Chapter 2.

These datasets have their own data format and needed to be transformed into the CoNLL-2003

data format. All 3 datasets from HAREM – first HAREM GC1 (HAREM f irst), miniHAREM GC2

(HAREMmini) and second HAREM GC 3 (HAREMsecond) – were parsed from the XML format

to the CoNLL-2003 format. The CoNLL-2003 format does not support multiple categories for

the same named entity; in the cases where the same tokens were marked with multiple categories

the first listed category was chosen. This preprocessing decisions may be a source of noise to

the dataset, but details on how to correctly process the HAREM XML format into the CoNLL-

2003 were not available. Santos et.al. [dSG15] also use HAREM datasets but do not specify the

preprocessing steps done.

In addition to these original datasets, a selective scenario was created from HAREM f irst called

HAREM f irst_selective and from HAREMmini called HAREMmini_selective which only includes 4

named entity categories: organization (ORG), abstraction (MISC), location (LOC) and person

(PER). The selective scenario is created to be able to assess the impact of the number of different

named entity categories on the performance of the models. The 4 categories chosen to be part of

the selective datasets were selected based their distribution in the original dataset (ORG – 18.0%;

MISC – 8.5%; LOC – 25.0%; PER – 21.5%) and on the entity categories present on the CoNLL-

2003 NER datasets [SD03].

Following the same approach as Santos et.al. [dSG15], the HAREM f irst dataset is split into

train set and development (or validation) set and the HAREMmini is used as the test set for some of

the experiments performed. The development set contains the last 5% of the HAREM f irst dataset.

When referring to the train or development subsections of the datasets the additional subscript dev

or train are used.

1https://www.linguateca.pt/aval_conjunta/HAREM/CDPrimeiroHAREMprimeiroevento.xml
2https://www.linguateca.pt/aval_conjunta/HAREM/CDPrimeiroHAREMMiniHAREM.xml
3https://www.linguateca.pt/aval_conjunta/HAREM/CDSegundoHAREM.xml
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WikiNER is a silver-standard annotated dataset that resulted from the work of Nothman

et.al [NRR+13]. Nothman et.al focused on automatically creating an annotated dataset by ex-

ploiting the text and structure of Wikipedia. The Portuguese Wikipedia dump used to create

WikiNER was created on August 4, 2010. WikiNER is available in a custom format and needs

to be transformed into the CoNLL-2003 format. The original WikiNER format follows the struc-

ture word|POS tag|NER tag and uses the IOB1 tag scheme. An example of the original format of

WikiNER:

Astrobiologia|NOM|O é|V|O o|DET|O estudo|NOM|O do|PRP+DET|O

advento|NOM|O e|CONJ|O evolução|NOM|O os|DET|O sistemas|NOM|O

biológicos|ADJ|O no|PRP+DET|O universo|NOM|O

In the bootstrapping experiments (described in chapter 5, annotated datasets are used to evalu-

ate the quality of the model trained at different bootstrapping iterations. Two annotated datasets are

used for two different experiments: for the experiments involving news articles the HAREMsecond

is used, while for the experiments involving Wikipedia text the WikiNER dataset is used. Since

the bootstrapping experiments only focus on one named entity category, the category PERSON, it

is necessary to remove all other entities from the annotated datasets used to test the model. The

datasets that contain only named entities of the category PERSON are identified by the additional

subscript per.

A very small annotated dataset, Newstest_per, was produced to evaluate the bootstrapping ex-

periments. This small dataset is composed of 15 news articles from March of 2018 and only

contains named entities of category PERSON. It was created with the intention of assessing the

factor of dataset age from the performance measures of models trained with the bootstrapping

method. This dataset was created specifically for the bootstrapping experiments because the tex-

tual data used to train the models is very recent, from 2017 and 2018, while the dataset used to

test it, HAREMsecond_per, is from 1997.

Detailed statistics about all the annotated datasets used in this work are available in Table 3.3.

3.4 Raw data

The main goal of this work is testing supervised deep learning techniques to train NER models,

to perform supervised learning annotated datasets are required but there are ways to explore non

annotated data. All the deep learning models used have word embeddings as inputs and as ex-

plained and observed in chapter 4 initializing the DL models with pre-trained embeddings leads

to major improvements in performance. To obtain pre-trained word embeddings large amounts of

raw textual data are required, another useful application of raw data is training NER models using

the bootstrapping process (details in chapter 5).

The raw data used in this work is divided into two textual genres: news articles and Wikipedia

articles. The news articles are from various Portuguese newspapers and were fetched using the
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Dataset Number
Tokens

Total
number
of entities

Number of
documents

Number
of entity
categories

HAREM f irst 92 228 4 972 129 10

HAREM f irst_train 87 594 4 805 – 10

HAREM f irst_dev 4 634 167 – 10

HAREM f irst_selective 92 228 3 578 129 4

HAREM f irst_selective_train 87 594 3 458 – 4

HAREM f irst_selective_dev 4 634 120 – 4

HAREMmini 62 440 3 624 128 10

HAREMmini_selective 62 440 2 507 128 4

HAREMsecond 84 300 7 030 129 10

HAREMsecond_per 84 300 1 965 129 1

WikiNER 3 499 683 263 732 892 834 4

WikiNERper 3 499 683 64 078 892 834 1

Newstest_per 5 988 94 15 1
Table 3.3: Details of all annotated datasets used in this work.

SAPO Labs4 platform, a portal that aggregates news from several news providers in Portugal.

Wikipedia articles were obtained from the Portuguese Wikipedia dump of April 1, 2018.

The company responsible for hosting Wikipedia, Wikimedia, provides dumps of all Wikipedias

at least once a month. The dump is a large file written in a wiki markup language, Wikitext5. This

format includes all necessary information to format a Wikipedia page, figures, tables, titles, sec-

tions and so on. To extract the raw textual data it is necessary to parse the wiki markup language

and remove all the meta-data and structuring elements.

Two different parsers were used to obtain the cleaned textual data from the dump file: WikiEx-

tractor6 and an adapted version of the Perl script written by Matt Mahoney7. WikiExtractor outputs

multiple files, each with multiple articles containing only text without any of the Wikitext meta-

data and structure, no tables, images, references to other articles, etc. The resulting files are then

combined to obtain a single file of uninterrupted text. This dataset will be referenced as Wikiraw.

The perl script parser is used to obtain a text file to be used for training embeddings. Just like

WikiExtractor, this parser excludes all Wikitext meta-data and structure but also transforms all

words to lower case and all digits into their word representation. Despite excluding images and

links, all captions are preserved. All words are lower cased in order to reduce the vocabulary size

and maximize training instances for words when training embeddings. The resulting dataset is

4http://labs.sapo.pt/
5https://www.mediawiki.org/wiki/Wikitext
6https://github.com/attardi/wikiextractor
7http://mattmahoney.net/dc/textdata.html#appendixa
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Figure 3.1: Publish date distribution of Newstotal corpus.

referenced as Wikistripped .

For the bootstrapping experiments only a small portion of the Wikiraw dataset is used – the first

7 million tokens. It was necessary to restrict the dataset size because training times would be too

large to obtain results in a feasible time, the 7 million number was chosen as it was the threshold

where the dataset stopped fitting into GPU memory. This small portion is referenced as Wikipartial .

The news dataset is composed of news articles from Portuguese news websites. All articles

were published between September 2017 and April 2018 (see Figure 3.1 ). The articles were

fetched using the Sapo Labs platform and come in the JSON format; a parsing script was developed

to strip all the structural elements and meta-data, leaving only the title and body of the news article.

The totality of the dataset contains 57 000 news articles but for the bootstrapping experiments only

a subset of the first 15 100 news articles is used as the training set, the reason for this restriction

is, just like in the Wikiraw dataset, GPU memory. The complete dataset is referenced as Newstotal

and the subset as Newspartial

Statistics regarding the number of tokens and documents present in each raw text dataset is

shown in Table 3.4.

34



Datasets

Dataset Number of Tokens Number of documents

Wikiraw 236 357 457 892 834

Wikistripped 422 023 462 892 834

Wikipartial 7 000 000 -

Newstotal 23 307 376 57 000

Newspartial 6 549 587 15 100
Table 3.4: Raw dataset details
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Chapter 4

Deep Learning Models

This chapter focuses on presenting, in detail, all the architectures used to train embeddings and

NER models for the Portuguese language. All models are heavily based on published work that

focuses on the English language.

4.1 Embeddings

As mentioned in Chapter 2, embeddings are responsible for significant improvements in many

NLP tasks. Embeddings provide an effective process to create vectorial representations of words.

These representations have two major advantages over one-hot encodings, most notably: the vec-

torial space dimensionality is limited and not dependant on the size of the vocabulary; some of the

relations between words are preserved in vectorial form.

Embeddings are most commonly used to represent words, but some research has been made

with character embeddings. Examples of architectures that make use of character embeddings

include the work of Santos et.al. [SZ14, dSG15], the work of Chiu et.al. [CN15], and the work of

Xuezhe Ma et.al. [MH16].

The quality of the embeddings is related with the amount of data used to train. Consequently,

training high quality embeddings for languages that have textual resources readily available is

much easier. There are research groups and companies that provide pre-trained embeddings; sadly,

most of these embeddings are for the English language.

For this work, word embeddings were trained from scratch using Portuguese Wikipedia data.

Two different embedding training architectures were used: word2vec [MCCD13] and wang2vec [LDBT15],

a slight modification of word2vec. Details about these and other embedding models are high-

lighted in Chapter 2.

The work of Hartmann et.al [HFS+17], which focuses on evaluating different embedding mod-

els for the Portuguese language, highlighted the wang2vec structured skipngram embedding model

to be the best performing in extrinsic evaluation for the tasks of part of speech tagging and seman-

tic similarity. Extrinsic evaluation consists on using the embeddings that are meant to be evaluated
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Embedding Model Vocabulary Size Dimension Variation Window Size

wang2vec64D 615 108 64 structured skipgram 8

wang2vec100D 615 108 100 structured skipgram 8

word2vec100D 610 395 100 cbow 8
Table 4.1: Trained word embeddings details.

on a specific task, for example POS or NER, and analyse the impact on the overall task perfor-

mance. Good quality embeddings will improve overall model performance while lower quality

embeddings will hinder the model’s performance.

To train embeddings using the word2vec model, the original implementation written in C1,2

is used. To train embeddings using the wang2vec model, an implementation written in C3 is

used. The reason behind choosing these models to train embeddings is the work of: Santos

et.al. [dSG15]; Chiu et.al. [CN15]; Lample et.al. [LBS+16]; Ma et.al. [MH16]. These researchers

obtained the best results in their NER models using one of the embeddings architectures mentioned

therefore using them seems like an obvious choice.

For all embedding models the training dataset was the Wikistripped raw dataset (see Chapter 3).

Resulting embeddings were informally manually evaluated using intrinsic evaluation through word

analogies4. This intrinsic evaluation was merely a sanity check to confirm that the learned embed-

dings captured relationships between words, the true test to their value is by doing extrinsic evalu-

ation which is using them in training NER models. Details of the trained embeddings can be seen

in Table 4.1, embedding dimensions were chosen based on the work of Lample et.al. [LBS+16]

where embeddings of dimension 100 are used for the English language and embeddings of dimen-

sion 64 are used for Spanish, Dutch and German.

4.2 NER Architectures

In this section all NER models used in this work are described in detail. One of the presented mod-

els has already been applied to the Portuguese language before in the work of Santos et.al [dSG15],

but the other three were applied to the Portuguese language for the first time during this work.

Deep learning architectures are sophisticated neural networks with many layers and many

units per layer so that they are able to model complex functions that perform different tasks such

as image classifications or speech recognition. For NLP, namely NER, one of the most used

architectures is the recurrent neural network and it’s variations. RNNs can effortlessly handle

variable length sequences and create sequence to sequence models. A sequence to sequence model

is one of the possible ways to model the NER problem, a sequence of words is input to the model

and a sequence of the respective NER tags is output from the model.

1https://code.google.com/archive/p/word2vec/
2https://github.com/dav/word2vec
3https://github.com/wlin12/wang2vec
4https://github.com/nlx-group/lx-dsemvectors/blob/master/testsets/LX-4WAnalogies.txt
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Figure 4.1: Window approach network structure. From [CWB+11].

All networks used in this work are a replica or a copy with very few modifications of archi-

tectures that have proven to be successful at performing NER in the English language. In order to

accelerate the experiments most of the hyper-parameters of the network are set to those reported

to be the best for English datasets; this may limit the performance on Portuguese data. Tuning

all hyper-parameters to the best combination for the Portuguese datasets is possible but requires

running a high number of experiments and due to time limitations that would restrict the amount

of architectures that could be explored.

In the following subsections each of the architectures explored in this work is described in

detail. The names given to the architectures were chosen based on their characteristics, these

names are not the ones original given by the authors when introducing the architectures.

4.2.1 WindowNetwork

Introduced by Collobert et.al. [CWB+11], the WindowNetwork was the architecture that shifted the

focus of NLP tasks to Neural Networks and Deep Learning. The WindowNetwork focuses on the

window approach network that is summarized in Figure 4.1.
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The work of Collobert et.al. was the first time the choice of features was a completely em-

pirical process and not a list of hand-picked features that relied on linguistic intuition and mostly

trial and error. Hand-picked features have the added restriction that they are highly task dependant

meaning for every task a new set of features would need to be developed. Collobert et.al. in-

corporate the feature engineering process into the network itself. The architecture takes the input

sentence and learns several layers of feature extraction to process the inputs.

The way this architecture manages to represent word context is by using windows: when

trying to predict the tag for a specific word the input contains not only the target word but also its

neighbours. The window size is one of the hyper-parameters of the network.

The first two layers are responsible for automating the “feature engineering process”: the first

layer extracts features from single words while the second layer extracts features from the window

of words. This means that this network architecture is not tied to any specific NLP task but can

adapt to multiple tasks seamlessly – the features that matter for one tasks might not matter for

another but the network adapts automatically.

The first layer, identified as Lookup Table in Figure 4.1, is standard for all other architectures

explored in this work; it is the layer that maps words into their vectorial representation. When

using pre-trained embeddings, the only difference is that this first layer is initialized with the pre-

trained weights instead of random initialization.

The remaining layers of this architecture are quite simple: two linear layers with an HardTanh

activation layer in between. A linear layer can be summarized in the following way: given a fixed

size vector r the output vector o of the linear layer will be o = Wr + b where W represents the

layer weights and b the layer bias; W and b are the parameters to be learned for the linear layer.

The HardTanh activation layer is applied element wise to each input vector dimension:

x =


−1 i f x <−1

x i f −1 <= x <= 1

1 i f x > 1

The last layer maps the internal representation of the network to the tag space: the output has

a dimension equal to the number of possible different tags. Each dimension of the output vector

can be interpreted as the score of the corresponding tag.

Two different score functions are presented by Collobert et.al.: word-level log-likelihood and

sentence-level log-likelihood. The log-add operation is defined as

logadd
i

zi = log(∑
i

ezi) (4.1)

In the word-level log-likelihood score function each word is considered independently and for
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one training example (x,y) can be calculated as follows:

logp(y|x,θ) = [ fθ ]y− logadd
j

[ fθ ] j) (4.2)

where [ fθ ]i is the score of the ith tag given input x and network parameters θ .

This score function, commonly known as cross-entropy, may not be appropriate for the NER

problem. Assuming that the tag of a single word is independent from the tags of the words sur-

rounding it may lead to weaker results. The tag schemes described in Chapter 3 do not allow

certain sequences of tags to appear. For example, considering the tag scheme IOBES we can never

have a B-XXX tag following a I-YYY tag.

To include the dependencies between word tags in a sentence, the sentence-level log-likelihood

score function is used. This score function requires some additional network parameters: a tran-

sition score [A]i, j for jumping from i to j tags in successive words; initial score [A]i,0 for starting

from the ith tag. The score of a sentence [x]T1 along the path of tags [i]T1 is given by the sum of

transition scores and network scores:

s([x]T1 , [i]
T
1 ,θ) =

T

∑
t=1

([A][i]t−1,[i]t +[ fθ ][i]t ,t) (4.3)

where [ fθ ][i]t ,t represents the score output by the network with parameters θ , for the sentence [x]T1
and for the ith tag at the tth word. The sentence level cost function can then be given by:

logp([y]T1 |[x]T1 ,θ) = s([x]T1 , [y]
T
1 ,θ)− logadd

∀[ j]T1
s([x]T1 , [ j]

T
1 ,θ) (4.4)

The number of operations to calculate this sentence-level cost function grows exponentially

with sentence length, as all the combination of tag sequences need to tested. However it is possible

to compute it in linear time [CWB+11].

During training, the objective is to maximize the log-likelihood (Eq. 4.4) over all the training

pairs. When testing, given a sentence [x]T1 to process, it is necessary to find the path that minimizes

the sentence score. The Viterbi algorithm [For73] is used.

The WindowNetwork was also used and modified by Santos et.al. [dSG15]. The modifications

were mainly centered in including character level representations of words. Character representa-

tions are obtained using a small network composed of a character embeddings layer, a linear layer

and a max-polling layer.

Collobert et.al. also highlight that despite the network being able to perform the feature engi-

neering automatically it can be useful to include some manually selected features. The manually

selected features include the capitalization feature and the suffix feature. The capitalization fea-

ture has five possible values: all letters lower-cased; first letter upper-cased; all letters upper-cased;

word contains an upper-cased letter; all other cases. The suffix feature has one hyper-parameter,

the suffix size. A suffix size of 3 means that the last three characters of the word are used as a

feature. Both the capitalization and suffix embeddings have dimension five, this means each of the
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Parameter Name Value

Hidden size 300

Window size 5

Extra feature emb. size 5

Suffix size 3

Learning rate 0.01

Batch size 16
Table 4.2: Hyper parameters of WindowNetwork.

features is represented by vector of dimension five. Two variations of the WindowNetwork are used

to run experiments with, one excluding the extra features and another including both the capital-

ization and suffix features. The network without the extra features is named as RawWindowNetwork

and the one that includes the capitalization and suffix features is named CompleteWindowNetwork

The various hyper-parameter values for the WindowNetwork are listed in Table 4.2.

4.2.2 BiLST MNetwork

The second network architecture used to run experiments on Portuguese NER is based on the work

of Chiu et.al. [CN15]. Chiu et.al. use a bidirectional LSTM-CNN architecture to perform NER

that can be summarized by Figure 4.2. The BiLST MNetwork used in the experiments follows the

same structure but discards the CNN-extracted character features, so as to be able to compare the

WindowNetwork with a bidirectional LSTM network. Removing the character level word represen-

tations produced with the CNN in the recurrent neural network, BiLST MNetwork, is done to provide

a fair comparison with feed forward neural network, WindowNetwork, that has no character level

word representation.

The first layer is responsible for transforming words into their vectorial representation just like

in the WindowNetwork. After having the word representation the word is fed both to a forward and

a backward LSTM. At each time step, the outputs of both the forward LSTM and backward LSTM

are fed into a linear layer followed by a LogSoftmax layer and finally added together to generate

the final tag scores (see Figure 4.3). The network works on a sentence level, which means that

the cell state stores information about the whole sentence; thus, word tags are predicted based on

the whole sentence and not only on a restrict number of neighbouring words like in the window

approach network presented above.

The idea behind using two LSTM networks, a forward LSTM network that processes the

sentence from start to finish and a backwards LSTM network that processes the sentence from

finish to start is to ensure that the prediction of the tag for a specific word is based on information

about the words that precede and that follow it. This setup means that the tag for the nth word in a

sentence is predicted based on information of the words preceding it, from word 0 to word n−1,
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Figure 4.2: Bidirectional LSTM-CNN network structure. From [CN15].

Figure 4.3: Last layer of Bidirectional LSTM-CNN network. From [CN15].
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Parameter Name Value

Batch size 16

LSTM state size 275

LSTM layers 1

Dropout 0.68

Learning rate 0.01
Table 4.3: Hyper parameters of BiLST MNetwork.

encoded by the forward LSTM network, but also based on the words following it, from word n+1

to the last word in the sentence, encoded by the backward LSTM network.

In order to reduce overfitting, dropout is applied after the output of each LSTM layer; dropout

is only applied during training. During test time the dropout is not performed, meaning all the

outputs of both LSTM are preserved.

The objective function used in this architecture is the same as the one used in the WindowNetwork,

meaning the transition score matrix and initial score matrix are added to the network parameters.

The various hyper-parameter values for the BiLST MNetwork are listed in Table 4.3.

4.2.3 BiLST MCharNetwork

The BiLST MCharNetwork was introduced in the work of Lample et.al. [LBS+16] and just like the

BiLST MNetwork it uses a one layer bidirectional LSTM network to create a sequence to sequence

model. A sequence of words goes in and a sequence of NER tags comes out.

The outputs of both LSTM networks are combined by concatenating the outputs and feeding

them to a linear layer that outputs a vector with half the size; the activation function used is the

hyperbolic tangent. The output of the linear layer is finally fed to the final layer, a linear layer

without an activation function, that maps the internal representation to a vector with the number

of dimensions equal to the number of different tags in the dataset. Lample et.al. call this the CRF

layer.

Just like all the other network architectures no language-specific or task-specific resources

are used, but this architecture goes a step beyond: no hand-picked features are used. In order to

improve the word representation, character-based models of words are created and used side by

side with word embeddings.

Character-based models of words are created to be able to represent a single word based on

the characters that compose it. This representation is combined with the word embedding repre-

sentation to generate the final word representation that is used as input for the sequence labelling

network. A diagram of the process of generating the final word representation can be seen in Fig-

ure 4.4. The character representation of a word in the BiLST MCharNetwork is created by feeding a

word char-by-char to a Bidirectional LSTM and at the end concatenating the outputs of both the

forward and backward LSTM.
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Figure 4.4: Full representation of the word "Mars", including character representations and word
embeddings. The lMars label represents the output of the forward character LSTM and the rMars

label represents the output of the backward character LSTM. From [LBS+16].

Just like the BiLST MNetwork, this architecture also uses dropout but for a different reason and

in a different place. Dropout is applied after the final embeddings layer just before the input to

the bidirectional LSTM. According to Lample et.al. [LBS+16], this was necessary because the

incorporation of character-level embeddings were not improving the overall performance; apply-

ing dropout encourages the model do depend on both the word embeddings and character-level

representations and led to significant performance improvements.

Lample et.al. call the last layer of the network a CRF layer, this last layer is a linear layer

that maps the internal representation to a vector with dimension equal to the number of different

tags. This vector represents the score of each tag and is used to calculate the score function. The

score function is the same as the two previous architectures, where the objective is to maximize

the sentence-level log-likelihood.

Just like in the other architectures it is necessary to add some parameters to the network, the

transition score matrix and initial score list. Lample et.al. decide to combine the initial score list

into the transition matrix, start and end tags were also added meaning that the transition matrix A
is a square matrix of size k+2 where k represents the number of different NER tags in the dataset.

During training, the objective is to maximize the log-probability of the correct tag sequence,

given by Equation 4.4, and when decoding the objective is to find the path that minimizes the

sentence score.

45



Deep Learning Models

Parameter Name Value

LSTM state size 100

Batch size 16

Char Embedding dimension 25

Char LSTM hidden size 25

Dropout 0.5

Learning rate 0.05
Table 4.4: Hyper parameters of BiLST MCharNetwork.

The code used to run the BiLST MCharNetwork experiments was not written from scratch, the

implementation made available by Lample et.al.5 is used.

The various hyper-parameter values for the BiLST MCharNetwork are listed in Table 4.4.

4.2.4 BiLST M_CNNNetwork

The BiLST M_CNNNetwork was introduced in the work of Ma et.al. [MH16]. This architecture

includes a bidirectional LSTM to create a sequence to sequence model, a CNN to extract character-

level features from words and a CRF layer to jointly decode the best chain of NER tags for a given

sentence.

The overall architecture structure is quite similar to the BiLST MCharNetwork: they both use

bidirectional LSTMs and include a character-level word representation in the input vector for

each word. Major differences between these two architectures include: the way character-level

representations of words are created; where to apply dropout.

To create character representations, Ma et.al. make use of a simple CNN whose structure can

be seen in Figure 4.5. Similar approaches to creating character-level word representations had

already been developed by Chiu et.al. [CN15]. First the word is padded depending on the CNN

window size, then each character of the word is transformed into its embedding representation.

Before applying the convolution, dropout is applied to the character embeddings.

A convolution is applied to the character embedding matrix, where the convolution kernel is

equal to [CNN_WINDOW_SIZE, CHAR_EMBEDDING_DIMENSION]. After the convolution, a

matrix with dimensions [WORD_LENGTH, NUMBER_FILTERS] is obtained. To transform this

matrix into the character level word representation, a max-polling is used to transform the matrix

of size [WORD_LENGTH, NUMBER_FILTERS] into a vector of size [NUMBER_FILTERS].

Dropout is applied to the final word representation before the bidirectional LSTM and to the

output of the two LSTMs. Dropout is applied to avoid overfitting the data. Ma et.al. report major

improvements when using the described dropout setup in both NER and POS tasks.

The learning method is stochastic gradient descent just like all the other models but with two

slight modifications: gradient clipping and variable learning rate. The original learning rate, η0 is

5https://github.com/glample/tagger
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Figure 4.5: CNN used to extract character level representation of the word Playing. Dashed lines
represent that dropout is applied. From [MH16].

updated using the rule ηt = η0/(1+ρt), where ρ is the decay rate and t represents the number of

epochs completed. All gradients are clipped to the value of 5.0 to reduce the effects of the gradient

explosion problem.

The score function used for training the model is the exact same as in the BiLST MCharNetwork,

maximizing the sentence-level log-likelihood.

Ma et.al. made available their implementation6, written in Python 2.7 with the Pytorch deep

learning framework. All experiments involving the BiLST M_CNNNetwork are ran using this imple-

mentation.

The various hyper-parameter values for the BiLST M_CNNNetwork are listed in Table 4.5.

4.3 Challenges

In order to get a righteous sense of the viability of using deep learning models for NER in the Por-

tuguese language this work explores multiple NER deep learning architectures. As a consequence,

all the work related with tuning a network is multiplied by the number of networks explored. When

training a network, depending on the architecture, there are many hyper parameters that need to

be tuned for the network to achieve top performance. From all the architectures explored, only the

WindowNetwork was tuned for Portuguese textual data [dSG15]; all others were tested and tuned on

the English language.

6https://github.com/XuezheMax/NeuroNLP2
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Parameter Name Value

Batch size 16

Decay rate 0.05

Initial learning rate 0.01

LSTM hidden size 256

LSTM layers 1

Char embedding dimension 30

Number of CNN filters 30

CNN window size 3

CNN stride 1

Dropout 0.5
Table 4.5: Hyper parameters of BiLST M_CNNNetwork.

There are different strategies to identify better hyper parameters for the networks but all re-

quire running a full training cycle of the network. This limits the number of hyper parameter

combinations that can be tested, since training a network from scratch takes a significant time and

can vary greatly depending on architecture, hyper-parameters and data used.

As mentioned before most hyper parameters of the architectures used were set to the hyper

parameters reported in the paper for that specific architecture. The reported hyper parameters are

tuned for the dataset where they have been tested, normally datasets in the English language, and

there is no guarantee of optimality when used with different datasets or different languages. Tests

were done where some of the hyper-parameters were arbitrarily changed but all the changes done

affected the performance of the resulting model negatively.

4.4 Implementation

The python ecosystem for data science is very extensive and many libraries and frameworks are

available. Choosing the tools to work with is, most of the times, a matter of preference. This

chapter lists and describes the libraries and frameworks chosen to set up the experiments and

pre-process the data. All code developed for this work is publicly available in Github7.

4.4.1 Pytorch

The deep learning framework used to implement the NER models is PyTorch8. PyTorch is a

python package that supports tensor computation with GPU acceleration and includes automatic

differentiation tools required for deep learning model training. PyTorch stood out after testing

multiple DL frameworks due to it’s simplicity and very granular controls that allow for specific

7https://github.com/ivoadf/PT_NER_DL
8https://pytorch.org/
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tuning and inspecting of models. The fact that it allows the user to implement networks at a

very low level removes the black box feeling that some DL frameworks have and helps better

understand the whole process.

4.4.1.1 Description

Unlike Tensorflow9, Theano10 or Caffe11 which have a static view of the world, PyTorch uses

a dynamic representation of networks. Dynamic representations allow the user to modify the

network without having to start from scratch. Dynamic representations allow for easier debugging

of network training, allowing the user to inspect the values and gradients of each specific tensor.

PyTorch supports execution of models both on CPU and GPU, including the execution of

models distributed between multiple GPUs.

4.4.1.2 Autograd

One of the most important features of a deep learning framework is automatic differentiation.

This means that the user can create networks using PyTorch tensors and operations, no matter how

complex, and have the gradients for each network parameter calculated automatically. In PyTorch

the library responsible for automatic differentiation is autograd.

4.4.1.3 GPU integration

As mentioned before, moving a model from executing on CPU to executing on the GPU is seam-

less, but not all models are worth training on GPUs. My experiments show that a model with

around 1 million trainable parameters is not worth training on GPU while a model with around 60

million trainable parameters sees a significant performance improvement when ran on a GPU.

The reason not all models run faster on the GPU and sometimes run even slower is due to the

fact that transferring training data to the GPU and then transferring results back to RAM has a

significant overhead. With a small model the speed up obtained by executing on the GPU is not

sufficient to overcome the data transfer overhead, but with larger models the GPU can execute the

training step much faster than the CPU, overcoming the data transfer overhead and resulting in a

smaller total training time.

This can be observed by running two NER models, one with a large number of trainable

parameters and another with much less, results in Table 4.6. The larger model runs much faster

on GPU and the smaller model runs faster on CPU. There are techniques to reduce or eliminate

the data transfer overhead. In cases where the whole dataset fits into GPU memory it can be pre-

emptively loaded, so that the GPU can process batches without having to wait after every batch

for the next one to load into GPU memory.

9https://www.tensorflow.org/
10http://deeplearning.net/software/theano/
11http://caffe.berkeleyvision.org/
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Iterations Number parameters
Train time (s)

CPU GPU

100 000 395 739 392 488

2 000 45 758 069 558 6.7
Table 4.6: CPU versus GPU training time comparison. One epoch with dataset of 100000 words.

4.4.2 Natural Language Tool Kit

The natural language tool kit (NLTK)12 is an extensive library with built-in interfaces for multiple

corpora and pre-trained models for many NLP tasks. NLTK is free and open-source, meaning it is

used by people with all backgrounds: teachers, students, researchers and even in the industry.

4.4.2.1 Tokenizer

From all the endless features of NLTK, the one feature used for this project was the tokenizer.

NLTK offers both a pre-trained word and sentence tokenizer. Both the sentence and word tok-

enizers were useful for preprocessing Portuguese datasets. As mentioned before, in chapter 3,

to process textual data into the CoNLL-2003 format it is necessary to first tokenize the text into

sentences and then into words.

4.5 Training

For all networks the learning algorithm used was mini-batch stochastic gradient descent. For

some of the architectures we used variable learning rate and for others a fixed learning rate. For

all experiments the mini-batch size used was 16, meaning that each update to the weights of the

network is based on the combined loss function of 16 training examples.

4.6 Results

For all the experimental results described below, the models were trained and tested using two

combinations of datasets described in Table 4.7. The selective dataset combination was created to

assess the impact that the number of different named entity categories present in the dataset has on

the performance of NER models. All metrics are obtained using the official CoNLL-2003 [SD03]

evaluation script.

Analysing the obtained F1 measures (Tables 4.8 and 4.9) for the various experiments, some

interesting observations can be extracted. Firstly, a more substantial difference between the top

performing models on the Complete dataset combination and the Selective dataset combination

was expected. The Complete dataset combination has a total of 10 different named entity cate-

gories, while the Selective dataset combination has only 4 different named entity categories. This

12http://www.nltk.org/
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Combination Name Train dataset Dev dataset Test dataset

Complete HAREM f irst_train HAREM f irst_dev HAREMmini

Selective HAREM f irst_selective_train HAREM f irst_selective_dev HAREMmini_selective

Table 4.7: Dataset combinations used for experiments.

Model Embeddings
Complete

F1 Precision Recall Epoch

RawWindowNetwork Wang2Vec64D 35.37 46.42 28.57 16

CompleteWindowNetwork Wang2Vec64D 43.26 42.40 44.15 14

BiLST MNetwork
Wang2Vec64D 59.61 64.86 55.16 14

word2vec100D 55.05 62.16 49.40 10

BiLST MCharNetwork

— 54.86 57.70 52.29 89

word2vec100D 67.02 68.31 65.78 53

Wang2Vec64D 67.35 68.94 65.84 92

BiLST M_CNNNetwork

word2vec100D 68.52 71.57 65.71 59

Wang2Vec64D 69.97 72.64 67.50 87

Wang2Vec100D 53.72 64.88 45.83 61
Table 4.8: Experiment results with the complete set of datasets.

Model Embeddings
Selective

F1 Precision Recall Epoch

RawWindowNetwork Wang2Vec64D 34.62 45.64 27.88 3

CompleteWindowNetwork Wang2Vec64D 47.13 52.81 42.55 26

BiLST MNetwork
Wang2Vec64D 61.64 65.00 43.70 11

word2vec100D 46.54 57.22 39.22 28

BiLST MCharNetwork

— 52.08 54.31 50.02 13

word2vec100D 70.15 71.90 68.49 47

Wang2Vec64D 69.50 70.12 68.89 88

BiLST M_CNNNetwork

word2vec100D 49.04 54.18 44.79 198

Wang2Vec64D 68.44 70.67 66.35 205

Wang2Vec100D 11.70 19.36 8.38 241
Table 4.9: Experiment results with the selective set of datasets.

51



Deep Learning Models

Model
This work Santos et.al.

F1 Precision Recall F1 Precision Recall

RawWindowNetwork 35.37 46.42 28.57 57.84 63.32 53.23

CompleteWindowNetwork 43.26 42.40 44.15 65.73 68.52 63.16
Table 4.10: Results observed in this work compared to those reported by Santos et.al. [dSG15],
obtained with the Complete dataset combination.

intuitively suggests that models for the Selective dataset combination would have substantially

higher performance measures. The measured difference does follow this intuition, but in a much

smaller scale: the real difference between the best performing models for the two dataset combi-

nations is under 1.0% of F1.

Just like previous published work [CWB+11, CN15, LBS+16, HXY15, LZWZ11, dSG15,

SM13, YZD17, DMR+15, NRR+13, MH16], major improvements were observed when using pre-

trained embedding weights to initialize the models. This was verified for both dataset combina-

tions: improvements of up to 18.07% in the F1 measure were observed for the BiLST MCharNetwork.

The two variations of the first network, RawWindowNetwork and CompleteWindowNetwork, were

the only architectures that had a feed forward neural network architecture. All others include a

sequence to sequence model based on recurrent neural networks. Looking at the results we can

observe that the networks that use recurrent neural network architectures perform significantly

better than the feed forward neural networks. This observation matches the latests developments

in NLP where state of the art systems for many tasks were improved after using deep learning

architectures to train new models. Deep learning architectures, namely recurrent neural networks,

fit perfectly into the textual data domain and have proved to better capture and model the context

of words, meaning better and more accurate predictions can be made.

In the work of Santos et.al. [dSG15], some of the experiments were ran using the same con-

figuration as the RawWindowNetwork and the CompleteWindowNetwork, with the same datasets.

However, the results reported by Santos et.al. were better than those observed in our experiments.

The differences in performance between the work of Santos et.al. and this work can be seen in

Table 4.10. These differences may be the result of different preprocessing of the HAREM datasets

or the use of better pre-trained word embeddings.

All the model architectures described and tested performed much better in the English lan-

guage, in some cases showing differences in F1 score of up to 23%. The BiLST MCharNetwork and

BiLST M_CNNNetwork both have F1 scores above 90.0% [LBS+16, MH16] for the NER task in the

CoNLL-2003 English dataset while in the Complete scenario neither one gets scores above 70%

F1 (see Table 4.8). These abrupt differences in performance between the two languages can be

due to a multitude of factors: the inherent differences between the two languages; the quality of

the pre-trained word embeddings used to initialize the models; the hyper-parameters used were

tuned for the English dataset; characteristics of available training datasets.

To better understand the difference in performance between the model trained using English
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Variable CoNLL-2003 HAREM I GC

Number tokens 204 567 92 228

Number sentences 14 987 3 682

Average number tokens per sentence 13.65 25.05

Number of entity categories 4 10
Table 4.11: Dataset statistics comparison between Portuguese HAREM I GC NER dataset and
CoNLL-2003 English NER train dataset.

datasets and the same model trained using Portuguese datasets, a comparison between the datasets

was done. In Table 4.11 it is possible to observe some clear differences between the datasets,

namely, total size in terms of tokens and the average sentence length.

Average sentence length is an important characteristic because all the NER models used for

this work are trained on a sentence level, that is, each training example is a complete sentence.

Longer sentences mean that more tokens are processed before making a tag prediction. This

increase in the number of tokens consumed by the model before prediction might be one of the

reasons behind the drop in performance.

If we strictly look at the number of tokens in each dataset, the HAREM I GC seems to be al-

most half the size of the CoNLL-2003 English dataset. However, the models explored are trained

on a sentence level, which means that the true number of training examples is the number of sen-

tences in the dataset. In terms of number of sentences the HAREM I GC has only approximately

25% of the number of sentences present in the CoNLL-2003 English dataset, which is a big drop

from when the datasets are compared using the number of tokens. This change in relative size is

due to the fact that the HAREM I GC has an average number of tokens per sentence much higher

than the CoNLL-2003 English dataset (as shown in Table 4.11.

Another important difference that most certainly has impact in model performance is the qual-

ity of the pre-trained word embeddings used. The English language has more raw textual data

resources freely available than the Portuguese language. Large amounts of raw textual data are es-

sential to obtain good quality embeddings. All the pre-trained word embeddings used in this work

were trained using textual data from the Portuguese Wikipedia, a corpus with a total of around 422

million tokens, while pre-trained word embeddings for the English language are trained in billions

of tokens. The publicly available GloVe13 word embeddings for the English language were trained

in a total of 6 billion tokens.

Lastly, another plausible reason behind the drop in performance is the fact that most of the

hyper-parameters of the architectures tested were left unchanged from the ones reported in the

original papers. This means that hyper-parameters that were tuned for English datasets were used

in Portuguese datasets. Reasons behind choosing not to do hyper-parameter tuning specifically for

the Portuguese dataset are discussed in Section 4.2.

13https://nlp.stanford.edu/projects/glove/
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Chapter 5

Bootstrapping

Bootstrapping can be a good way to take advantage of the large amounts of non annotated data

available. The objective is to make use of this data to help train models without the need of

annotated data. This chapter describes the process of bootstrapping that was followed in detail, in-

cluding what datasets were used, their characteristics, the performance results of the bootstrapping

experiments and what were the challenges found during the process. As explained in [TSO11] and

illustrated in figure 5.1, bootstrapping consists on:

1. identifying named entities in an unannotated corpus using a dictionary-based approach

2. training a model with the newly annotated corpus

3. testing the trained model on an external annotated corpus

4. re-annotating the corpus using the model

5. repeat until performance measures drop

The steps described above are repeated until the stop condition is met. The stopping condition

is the moment when the performance measures drop, any further iterations do not improve the

model and the new names detected become false positives leading to a model that evolves to be

worse and worse over time.

The fact that unannotated corpora can be included in training the model is a great advantage,

as unannotated corpora makes up for the vast majority of all available corpora and is for the most

part completely free.

Usually, named entity recognition focuses on multiple entity classes. However, to obtain the

initial list of annotations necessary for bootstrapping it is necessary to identify a pattern that is

followed by entities of that specific type. Identifying patterns that match enough entities with

100% precision is not always trivial. For these bootstrapping experiments, just like in [TSO11],

only entities of the type PERSON are considered.
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Figure 5.1: Bootstrapping method. From [TSO11].
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Name Name extraction Train Test

NewsExperiment Newstotal Newspartial HAREMsecond_per, Newstest_per

WikipediaExperiment Wikiraw Wikipartial WikiNERper

Table 5.1: Bootstrapping experiments details. Description of the datasets available in chapter 3.

5.1 Data

The initial objective for the bootstrapping experiments was to use the same dataset that was used

by Teixeira et.al. [TSO11], but the textual data was no longer available. As a consequence, some

adjustments to the original plan had to be made. Two datasets were gathered to be used in boot-

strapping experiments: one based on Portuguese news articles, just like the work of Teixeira et.al.;

the other based on the Portuguese Wikipedia dump of April 1, 2018. Further details about the data

used in the bootstrapping experiments is available in Chapter 3.

The textual data chosen to perform the bootstrapping experiments belongs to two different

textual genres, so two experimental setups were created to test the bootstrapping method. Details

about these two setups can be seen in Table 5.1. In the NewsExperiment two test datasets are used,

a previously annotated dataset, HAREMsecond_per, and a very small dataset that was annotated by

hand, Newstest_per. The Newstest_per dataset was created so that the model could be evaluated

using textual data from the same time period, therefore removing the age factor from the equation.

As for the WikipediaExperiment only one test dataset is used, WikiNERper, this dataset is much

larger than the test datasets used in the NewsExperiment.

The major difference between the NewsExperiment and the WikipediaExperiment is the the

textual genre used in training and testing the models. One of the experiments uses news articles as

a data source while the other uses Wikipedia articles.

5.2 Experimental setup

The strategy to obtain the initial name list is the same for both datasets: identify a common pattern

in which names of people appear with 100% precision, model a regular expression to capture the

name of the person and finally extract all names from the text.

The pattern identified is vaguely the same for both news data and Wikipedia data, and follows

a structure of 〈[CapitalizedSequence], [ergonym]〉 just like Teixeira et.al. did in 2011 [TSO11].

Some examples of words present in the ergonym list are: presidente, jogador, vocalista, pai,

marido, mulher.

This pattern proved to work fine for news articles. However, to obtain the initial name list from

Wikipedia text it was necessary to further restrict the pattern. Previous possible words are intro-

duced into the pattern, modifying the initial name pattern for Wikipedia to: 〈[possiblepreviousword]

[CapitalizedSequence], [ergonym]〉. Possible previous words include mostly words that refer to the

nationality of the person in question, like: brasileiro, chileno, argentino, inglesa.
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Both the possible previous word list and the ergonym list are preprocessed to include the

original lower-cased word and the respective word with the first letter capitalized. The full list of

ergonyms and possible previous words is present in appendix A. In order to fully guarantee that

only correct names are present in the initial name list, some further conditions were added:

1. The capitalized sequence length must be at least 2, that is, single word names are excluded.

2. For a name to be included in the initial name list it must occur at least N times for the in the

name extraction dataset. N = 3 for the NewsExperiment and N = 2 for the WikipediaExperiment.

After obtaining the initial name list it is necessary to annotate the training dataset, which

consists of just raw textual data with no annotations. The initial name list is sorted by length so

that the names with the most number of words are processed first. When the complete training

dataset is generated, it can be interpreted as an annotated dataset. In truth, it is only partially

annotated, since many names do not follow the pattern used to obtain the initial list of names and

therefore have no named entity tag associated.

A model is trained using the annotated train set. This newly trained model is then tested using

a standard annotated dataset. Before moving on to the next bootstrapping iteration it is necessary

to update the name list, which is done by annotating the train set using the trained model. The

new names obtained are added to the name list and will be used in the following bootstrapping

iteration. An example of updating the name list is illustrated in Figure 5.2, at iteration 1 the

name list used to annotate the training data contains only two names: Bernardo Silva and Gonçalo

Guedes. After training the model and re-annotating the train textual data a new name is detected,

Bruno Fernandes, this new name is added to the name list used in the following iteration where

these operations are repeated.

After some initial experimentation with different networks, the BiLST M_CNNNetwork was cho-

sen to be used in the bootstrapping experiments as it was the best performing model in the pre-

liminary experimentations. Further details on the architecture of the BiLST M_CNNNetwork are

available in section 4.2.4. The PyTorch implementation of Xuezhe Ma1 was modified to perform

the bootstrapping process.

The hyper-parameters used in both the News and Wikipedia experiments are available in Ta-

ble 5.2. The pre-trained word embeddings used were Wang2Vec64D, more details about the pre-

trained embeddings are available in section 4.1.

5.3 Results

The results gathered with the NewsExperiment setup can be compared with the results obtained

by Teixeira et.al. [TSO11]. Teixeira et.al. also use textual data from news articles and test the

trained models using the HAREMsecond_per. One important difference is the age of the articles

used in the bootstrapping process. They use news articles from the year 2011 while the exper-

iments performed in this work use news articles from 2018. This difference in age can have a
1https://github.com/XuezheMax/NeuroNLP2
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Figure 5.2: Running example of the bootstrapping method.

Parameter Name Value

Batch size 16

Decay rate 0.05

Initial learning rate 0.01

LSTM hidden size 256

LSTM layers 1

Char embedding dimension 30

Number of CNN filters 30

CNN window size 3

CNN stride 1

Dropout 0.5
Table 5.2: Hyper parameters of BiLST M_CNNNetwork used for the bootstrapping process.
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Parameter Teixeira et.al. NewsExperiment WikipediaExperiment

Initial names 2 450 427 2 711

Docs to extract names from 500 000 57 000 892 834

Year 2011 2017 & 2018 2018

Number of tokens in training set – 6 775 660 7 000 000
Table 5.3: Data comparison with the work of Teixeira et.al. [TSO11].

serious impact in the performance of the NER models, as was demonstrated by Teixeira et.al..

The larger age difference in comparison with the data used by Teixeira et.al. is expected to affect

the bootstrapping performance results negatively.

Another significant difference between the NewsExperiment setup and the work of Teixeira

et.al. is the difference in size of the datasets involved in the bootstrapping process. These dif-

ferences are highlighted in Table 5.3. Included in Appendix A are two tables, A.1 and A.2,

that list the performance measures per bootstrapping cycle for both the NewsExperiment and

WikipediaExperiment.

Analysing the performance results present in Table 5.4, it is clear that the bootstrapping process

is not fit to handle Wikipedia articles, at least not using the same parameters as the ones used for

the NewsExperiment. The reasons behind the poor results in the WikipediaExperiment could be

related to the textual genre, Portuguese Wikipedia articles contain more foreign names of people

than Portuguese media articles and the context in which names appear within the article is different

in the two textual genres. Furthermore the test set for the WikipediaExperiment, WikiNERper is a

much larger dataset than the test set used for the NewsExperiment.

Since the results from the WikipediaExperiment only proved that the described bootstrapping

process is not compatible with that textual genre, the discussion will focus on the results of the

NewsExperiment.

It is possible to view the evolution of the performance scores in both the HAREMsecond_per

and Newstest_per datasets for each of the bootstrapping iterations in Figure 5.3 and Figure 5.4.

The evolution of the number of new names added to the initial name set for each bootstrapping

iteration is illustrated in Figure 5.5. It is clear that despite starting with a much lower number of

initial names and the training set being smaller than the one used in the work of Teixeira et.al. the

Experiment Total Iterations F1 Precision Recall Avg. # new names

NewsExperiment 29 25.3 71.23 15.38 153

WikipediaExperiment 20 0.49 5.59 0.26 1.3

Teixeira et.al. 12 69 90 56 233
Table 5.4: Bootstrapping result comparison. Score measures correspond to the best models for
all bootstrapping iterations. NewsExperiment and the work of Teixeira et.al. is tested with the
HAREMsecond_per dataset while WikipediaExperiment is tested with the WikiNERper dataset.
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Figure 5.3: HAREMsecond_per test scores for the NewsExperiment setup compared to the work of
Teixeira et.al. [TSO11].

number of total names in the NewsExperiment after finishing the bootstrapping process is similar.

Looking at Figures 5.3 and 5.4 it is clear that the difference in the F1 score is due to differences

in recall and not in precision. Precision values are very similar for both the HAREMsecond_per and

Newstest_per datasets. The observed difference in recall may be due to the age difference between

the train and test datasets. HAREMsecond_per is a collection of texts from the late 90s, while the

Newstest_per dataset is made up of a small number of articles from the same time frame as the train

data.

The performance measures for both test datasets are correlated and vary in the same way

throughout the bootstrapping iterations. A drop in performance also means less new names are

discovered at that iteration.

Comparing the results reported by Teixeira et.al. with the results obtained in the NewsExperiment,

it seems that using DL in combination with bootstrapping does not provide good results. However

the work of Teixeira et.al. can not be directly compared with the NewsExperiment. Teixeira et.al.

use larger datasets from a different time frame, do not describe the preprocessing of the datasets

and do not provide the ergonym list used. These differences are a source of inconsistency in the

experiment setup and prohibit a fair comparison of results.

The hyper-parameters used in the bootstrapping experiments are the same as the ones used in

the experiments with annotated datasets in Chapter 4. The fact that the bootstrapping process only

handles one named entity category might affect the optimal hyper-parameters. Hyper-parameter

tuning was not performed due to the fact that bootstrapping experiments take a long time to run,

meaning results could not be obtained in a valid time-line.
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Figure 5.4: Newstest_per test scores for the NewsExperiment setup.

Figure 5.5: Total number of names at each bootstrapping iteration for the NewsExperiment setup
compared with the work of Teixeira et.al. [TSO11].
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Chapter 6

Conclusions and Future Work

This chapter focuses on analysing the work done, the discussion is split into three sections. Start-

ing with objective completion, where the work done is compared with the initial outlined objec-

tives. Followed by the future work section where possible improvements and follow-up work are

discussed. The final section reflects on what were the lessons learned throughout the multiple

stages.

The main contributions of this work are the train and test of multiple state-of-the-art deep

learning NER architectures with Portuguese texts. Another highlight of this work is the fact that

both annotated data and non-annotated data are explored to create NER models.

6.1 Objective Completion

To evaluate objective completion it is necessary to look back at the objective (Section 1.3) and re-

search guidelines (Section 1.4) and see to what extent did the work done follow them. The research

guidelines list the tasks required to correctly evaluate the viability of applying DL architectures to

NER in Portuguese texts.

State of the art deep learning architectures for NER proved to be adequate for Portuguese

datasets. The drop in performance when compared to the English results can be attributed to

multiple factors, as discussed in Section 4.6, but not to the architectures themselves or to the

Portuguese language specifically.

This work started by collecting and preprocessing various textual resources and NER datasets

(Chapter 3) and the next steps were selecting and testing different deep learning NER architectures.

The criteria for selecting the different architectures was the performance reported in the CoNLL-

2003 English NER dataset: all the chosen architectures were at some point in time considered the

state-of-the-art for NER in the English language. All the selected architectures were trained and

tested with Portuguese datasets. Details about the architectures, the experiment setup and results

are all available in Chapter 4.

Comparisons between English corpora and Portuguese corpora are available both is Chapter 2

and in Section 4.6. As highlighted there, besides being smaller in size, Portuguese datasets have
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some characteristics, like the average number of tokens per sentence, that might be one of the

reasons for the observed differences in performance.

In the bootstrapping experiments (Chapter 5) NER is tested with different textual genres: news

articles and Wikipedia articles. The results revealed some challenges linked to textual genre: mod-

els trained with Wikipedia data performed much worse than models trained with News articles.

The various challenges of working with DL architectures are scattered over this document.

Among them are the computational resources required and the long training times. From all the

difficulties encountered, only one can be directly linked to the Portuguese language, which is the

low amount of textual resources freely available.

It is possible to say that the objective was achieved: multiple experiments with DL architec-

tures for NER in the Portuguese language were ran. Results obtained were critically analysed and

conclusions drawn.

6.2 Future Work

There are a multitude of ways to improve and develop on the work done. Most of the improve-

ments have to do with exploring more architectures for both the NER models and pre-training

embeddings but also including more data into the training process.

In addition to exploring different DL architectures applied to NER like the work of Gillick

et.al. [GBVS15] or the work of Yang et.al. [YZD17], it is also important to tune the hyper-

parameters of the architectures used to better fit the Portuguese datasets. Hyper-parameter tun-

ing is a time consuming task that requires training and testing multiple models with different

hyper-parameter combinations. The better performing combination is then used to run the full ex-

periments. A more detailed discussion on the reasons behind not running hyper-parameters tuning

is present in Section 4.3.

Some of the architectures tested use techniques, like dropout, that introduce randomness in

the training process. Randomness in the training process means that models trained with the same

architecture and parameters perform differently in different runs. To guarantee that results are

not biased due to an above average model being tested, it is important to re-run the same training

process multiple times for the same architecture and report the average and standard deviation.

Further work could include exploring other NLP tasks related to NER such as entity linking or

co-reference resolution and performing the same analysis of the applicability of DL methods for

the Portuguese language. Named entity linking is a follow-up step to NER and aims to link entity

mentions within the same document or in other resources [DMR+15]. The target of co-reference

resolution is to find words in the given text that refer to the same thing or person [DM14].

In a broader sense, future work for NER in Portuguese should include the creation of a large

annotated dataset so that state of the art models, such as deep learning architectures, can be ex-

plored in the future. A large dataset that follows the standard format adopted by the majority of the

NLP community and shares the same evaluation strategy would be a great contribution. This new
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dataset would help Portuguese NER research to stay up to date with all the NER developments to

come.

Following the same logic, the bootstrapping experiments that use non annotated data would

also benefit from larger amounts of textual data being available. Creating an easy and free way to

obtain large amounts of Portuguese textual data would benefit the research on not only NER but

Portuguese NLP in general. Large amounts of textual data have multiple applications, including:

training NER models using techniques like bootstrapping and training better word embeddings.

The use of embeddings trained with large amounts of data that have repeatedly shown to improve

the performance of multiple NLP tasks.

6.3 Lessons Learned

After going through the multiple stages that made up this work many lessons were learned. In

this section the most relevant ones are highlighted. The first lesson learned was right at the start

of this work, when different architectures were being analysed and understood. Important aspects

and critical details are sometimes omitted from the paper that introduces the architecture. Aspects

like preprocessing of data or parameter initialization are critical details required to replicate the

architecture and eventual results but are not always present.

Time is a valuable resource, and developing work that is constrained in time is a challenge. No

matter how long the deadline is, at the end there are always some more experiments to be run and

ideas to explore. There must be a point where the decision is made to stop experimenting and start

reporting the results obtained, otherwise the end result would just be a multitude of unprocessed

results with no conclusions drawn about all the different experiments ran.

Obtaining raw unprocessed textual data is not always easy. Even though large amounts of texts

are available to consume for free in news websites, blog posts or forums, not all of these platforms

allow the textual data to be extracted in an easy way. Creating large, freely available and easily

distributed textual corpora for the Portuguese language would greatly benefit NLP developments.

Different datasets can have a different number of named entity categories and even include sub-

categories, some support overlapping named entities or multi-class named entities. These different

characteristics of the datasets lead to different evaluation methods, which means evaluation metrics

for the different models can not be compared in different datasets. Having a standard dataset

format, class set and evaluation metric for NER models that is adopted by the international NLP

community would promote knowledge sharing between research in different languages and help

the progress of NER in all languages.
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Appendix A

Bootstrapping experiment details

The full list of ergonyms used to detect the initial list of names:

[’presidente’, ’jogador’, ’treinador’, ’deputado’, ’arcebispo’, ’pastor’,

’fundador’, ’companheiro’, ’licenciado’, ’residente’, ’dinamizador’,

’especialista’, ’candidato’, ’jornalista’, ’comerciante’, ’autor’,

’conselheiro’, ’professor’, ’ministro’, ’comandante’, ’chefe’,

’guitarrista’, ’atriz’, ’actor’, ’vocalista’, ’cantor’, ’cantora’,

’produtor’, ’físico’, ’descobridor’, ’piloto’,

’almirante’, ’encenador’, ’arquiteto’, ’governador’, ’cardeal’, ’bispo’,

’músico’, ’irmão’, ’irmã’, ’filho’, ’filha’, ’pai’, ’mãe’, ’avô’, ’avó’,

’tio’, ’tia’, ’primo’, ’prima’, ’marido’, ’mulher’]

News specific ergonym list:

[’ex-líder’, ’especializado’, ’especializada’, ’apelou’, ’desafiou’,

’militante’, ’administrador’, ’vice-ministro’, ’presidiu’, ’homenageou’,

’criou’, ’alertou’, ’mostrou’]

The full list of possible previous words used to detect the initial list of names:

[’por’, ’como’, ’segundo’, ’iorquino’, ’canadense’,

’alemão’, ’brasileiro’, ’brasileira’, ’português’, ’portuguesa’,

’estadunidense’, ’americana’, ’americano’, ’coreano’, ’francês’,

’espanhol’, ’espanhola’, ’fracesa’, ’alemão’, ’alemã’, ’inglês’,

’inglesa’, ’britânico’, ’britânica’, ’chileno’, ’chilena’, ’argentino’,

’peruano’, ’peruana’, ’ucraniano’, ’ucraniana’, ’islandesa’, ’islandês’]
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Bootstrapping experiment details

Iteration
HAREMsecond_per Newstest_per NewNames

F1 Precision Recall F1 Precision Recall

1 2.76 73.08 1.41 13.08 53.85 7.45 132

2 4.44 72.09 2.29 14.81 57.14 8.51 223

3 4.03 71.79 2.07 14.81 57.14 8.51 60

4 1.02 36.84 0.52 0 0 0 38

5 5.27 72.55 2.74 16.51 60 9.57 186

6 7.87 77.78 4.14 16.22 52.94 9.57 213

7 9.97 77.42 5.33 19.13 52.38 11.7 339

8 6.92 75.38 3.62 16.51 60 9.57 70

9 10.94 72.73 5.92 19.13 52.38 11.7 173

10 13.83 74.64 7.62 31.93 76 20.21 333

11 13.23 75.38 7.25 33.33 76.92 21.28 165

12 11.03 69.23 5.99 28.57 68 18.09 108

13 12.05 71.2 6.58 31.93 76 20.21 87

14 15.03 74.34 8.36 31.93 76 20.21 146

15 14.97 77.78 8.28 31.93 76 20.21 112

16 14.71 76.39 8.14 28.57 68 18.09 80

17 13.23 75.38 7.25 31.93 76 20.21 68

18 14 77.61 7.69 31.93 76 20.21 48

19 20.99 75 12.2 35.77 75.86 23.4 365

20 18.83 77.13 10.72 31.67 73.08 20.21 147

21 22.01 75.98 12.87 38.1 75 25.53 202

22 21.96 74.68 12.87 38.4 77.42 25.53 186

23 17.4 75.14 9.84 31.4 70.37 20.21 50

24 25.3 71.23 15.38 41.86 77.14 28.72 287

25 24.2 71.38 14.57 39.06 73.53 26.6 198

26 22.29 72.65 13.17 39.06 73.53 26.6 88

27 23.97 70.91 14.42 39.06 73.53 26.6 134

28 2.98 36.84 1.55 9.09 31.25 5.32 64

29 0.87 21.43 0.44 0 0 0 8

Table A.1: News experiment bootstrapping results.
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Bootstrapping experiment details

Iteration F1 Precision Recall NewNames

1 0.27 3.14 0.14 1

2 0.36 4.28 0.19 1

3 0.04 0.52 0.02 0

4 0.21 2.45 0.11 5

5 0.43 5 0.23 0

6 0.09 1.06 0.05 0

7 0.04 0.45 0.02 1

8 0.36 4.25 0.19 0

9 0.04 0.45 0.02 4

10 0.49 5.57 0.25 0

11 0.48 5.53 0.25 0

12 0.19 2.32 0.1 1

13 0.31 3.64 0.16 1

14 0.17 2.05 0.09 0

15 0.06 0.73 0.03 7

16 0.41 4.72 0.21 1

17 0.16 1.99 0.09 1

18 0.36 4.17 0.19 0

19 0.04 0.51 0.02 0

20 0.49 5.59 0.26 3

Table A.2: Wikipedia experiment bootstrapping results. Score results in the WikiNERper dataset.
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