
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A Secure and Privacy Preserving
Approach to Medical Data Mining

Applications

Gustavo de Castro Nogueira Pinto

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: José Manuel de Magalhães Cruz

Co-Supervisor: Rui Carlos Camacho de Sousa Ferreira da Silva

July 23, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/160239143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Secure and Privacy Preserving Approach to Medical
Data Mining Applications

Gustavo de Castro Nogueira Pinto

Mestrado Integrado em Engenharia Informática e Computação

July 23, 2018

Abstract

As information systems proliferate in medical institutions, the volume of medical data and the
need for its secure analysis and sharing increases, such as for data mining purposes.

Medical data often carries sensitive and personal information that lead to two points of failure
on the assurance of a secure and private transmission. Firstly, portions of data that can, alone or
crossed with other data, identify the patient; secondly, the transmission itself of data between two
remote devices.

Infrastructure setups and mechanisms are thus proposed to ensure proper data anonymization,
while satisfying proper risk thresholds and minimizing data loss. Furthermore, the infrastructure
also allows for a secure transmission of data, including authentication of the parties involved,
integrity of the exchanged messages and privacy of the communications.

Finally, the usage of incremental data mining algorithms is emerging as a strong method to
manage large quantities of data in a distributed fashion. Achieving implementations of incremental
data mining algorithms that use anonymized and secured data and can still perform competitively
with standard data mining techniques is also an addressed concern.

The solution will benefit researchers or institutions that handle medical data with multiple data
mining systems in different locations. Alternatively, providers of medical data can also explore
options to safely transmit and to correctly manage the risks of de-anonymization of their datasets.

i

ii

Resumo

À medida que os sistemas de informação proliferam em instituições médicas, o volume de dados
médicos e a necessidade das suas análise e partilha seguras aumentam, como para propósitos de
data mining.

Dados médicos frequentemente carregam informação pessoal e sensível que podem levar a
dois pontos de falha de uma transmissão segura e privada. Primeiramente, porções dos dados que
podem, sozinhas ou com auxílio de outros dados, identificar um paciente; em segundo lugar, a
transmissão em si dos dados entre dois dispositivos remotos.

Configurações de infraestrutura e outros mecanismos são, então, propostos de modo a garan-
tir anonimização correta de dados, satisfazendo limites aceitáveis de risco de re-identificação e
tentado minimizar a perda de informação. Além disso, a infraestrutura permite também uma
transmissão segura de dados, incluíndo autenticação das entidades envolvidas, integridade das
mensagens trocadas e privacidade das comunicações.

Finalmente, o uso de algoritmos de data mining incrementais emergem como um bom método
capaz de lidar com grandes quantidades de dados, num contexto distribuído. Um dos objetivos é,
também, alcançar implementações de algoritmos de data mining incrementais que utilizem dados
anonimizados e seguros e que consigam, ainda, ser competitivos com técnicas de data mining
tradicionais.

A solução apresentada beneficiará investigadores ou instituições que lidem com dados médicos
com múltiplos sistemas de data mining em localizações diferentes. Alternativamente, provedores
de dados médicos podem explorar opções para, seguramente, transmitir e corretamente gerir os
riscos de re-identificação dos seus conjuntos de dados.

iii

iv

Acknowledgements

This space is dedicated exclusively to the plethora of people who have surrounded and directly
and indirectly supported the development of this work.

Firstly, it is indispensable that I mention both my supervisors, whom I hold in a very high
regard. Professor José Magalhães Cruz for the availability and immaculate diligence to guide,
correct and push this work into higher standards, and Professor Rui Camacho for all the high-
spirited meetings and messages exchanged.

My family, who has been the corner stone of all my achievements.
And all the friends that I hold dear, with whom I have shared countless hours and days and

nights, reminiscing on what was done, talking about what is being done and dreaming about what
is to be done.

Gustavo de Castro Nogueira Pinto

v

vi

“Odi et amo. quare id faciam fortasse requiris.
nescio, sed fieri sentio et excrucior”

Catullus

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 Dissertation Structure . 3

2 Bibliographic Review 5
2.1 Introduction . 5
2.2 Data Anonymization . 5

2.2.1 Types of attributes . 5
2.2.2 Standard de-identification techniques 6
2.2.3 Risk Assessment . 7

2.3 Data Transfer Security . 8
2.3.1 Symmetric and Asymmetric Cryptography 8
2.3.2 Digital Certificates . 9
2.3.3 Data Integrity . 10
2.3.4 SSL/TLS . 10
2.3.5 Testing tools and guidelines . 12

2.4 Data Mining . 12
2.4.1 Standard Process for Data Mining . 12
2.4.2 Data Mining Tasks . 13

2.5 Incremental Learning . 16
2.6 Conclusions and Considerations . 17

3 Overview of Methodologies and Architecture 19
3.1 Use cases and architecture . 19
3.2 Data analysis and preprocessing . 21
3.3 Data Anonymization . 21

3.3.1 Tools . 22
3.4 Data Transfer Security . 22
3.5 Data Mining . 24

4 Data Anonymization 25
4.1 Dataset Selection . 25
4.2 Preparation . 26

4.2.1 Direct Identifiers . 26
4.2.2 Indirect Identifiers . 27
4.2.3 Attack scenario and Risk thresholds . 28

4.3 Dataset analysis . 28

ix

CONTENTS

4.3.1 Attribute analysis . 29
4.3.2 Re-identification risk calculation and problematic combinations identifi-

cation . 32
4.3.3 Algorithmic approach . 32

4.4 Anonymization iterations . 36
4.5 Process evaluation . 39
4.6 Considerations . 40

5 Data Transmission Security 41
5.1 Certification Infrastructure . 41

5.1.1 Creating a Certificate Authority . 42
5.1.2 Generating Digital Certificates . 44

5.2 Server side . 45
5.2.1 Setup . 45
5.2.2 File structure . 46
5.2.3 Security mechanisms . 47

5.3 Implementation Evaluation . 49
5.3.1 Experimental Setup . 49
5.3.2 Experiments Results . 50

5.4 Considerations . 53

6 Data Mining Application Workflow 55
6.1 Machine Learning Algorithms . 55

6.1.1 Classification: Linear Support Vector Machine 55
6.1.2 Classification: Online/Incremental Random Forest 56

6.2 Experiments and Results . 57
6.2.1 Non-Incremental SVM . 57
6.2.2 Incremental SVM . 58
6.2.3 Online/Incremental Random Forest . 59

6.3 Security of data transmissions . 60
6.4 Conclusions . 61
6.5 Considerations . 61

7 Conclusions and Future Work 63

References 65

A Scripts output 69
A.1 Execution times . 69

A.1.1 Normal iteration with tabu dictionary 69
A.1.2 Set implementation . 70

A.2 Iterative anonymization analysis outputs . 71
A.2.1 Example analysis during anonymization process 71
A.2.2 Iteration 2 analysis . 72
A.2.3 Iteration 3 analysis . 72
A.2.4 Iteration 3.1 analysis . 73
A.2.5 Iteration 4 analysis . 73
A.2.6 Iteration 4.1 analysis . 73
A.2.7 Iteration 5 analysis . 74

x

CONTENTS

A.2.8 Iteration 7 analysis . 74
A.2.9 Iteration 8 analysis . 74
A.2.10 Iteration 9 analysis . 75
A.2.11 Iteration 10 analysis . 75

A.3 Server security related . 76
A.3.1 Usage help on adding new authorized entity 76

B Security Configuration and Implementation 77
B.1 Configuration files . 77

B.1.1 Hosts file . 77
B.1.2 OpenSSL configuration file . 77
B.1.3 .htaccess file - forcing HTTPS connection 78
B.1.4 Authorized entities validation file . 78

B.2 Certificate and key generations . 79
B.2.1 Root certificate . 79
B.2.2 SubjectAltName compliance . 79
B.2.3 Signing of a CSR . 80
B.2.4 Generating PKCS archive . 82

B.3 Experiments output . 82
B.3.1 TLS version verification . 82
B.3.2 Experimental scenario 1 . 86
B.3.3 Experimental scenario 3 . 86
B.3.4 Experimental scenario 4 . 88
B.3.5 Data Mining process - model transmission 89

C Data Mining Processes 91
C.1 File server status after workflow . 91

C.1.1 Datasets . 91
C.1.2 Models . 92

C.2 Intermediate incremental results . 92
C.2.1 Original dataset . 92
C.2.2 Anonymized dataset . 92

C.3 Online Random Forest . 93
C.3.1 Dataset description . 93
C.3.2 Intermediate distributed result . 95

xi

CONTENTS

xii

List of Figures

2.1 SSL/TLS Handshake with mutual authentication (simplified) 11
2.2 CRISP-DM cyclical behavior . 14
2.3 Different clusters (squares) of 12 records (dots) 15
2.4 Decision tree for the iris dataset . 16

3.1 Use Case 1 - Anonymized dataset sharing . 20
3.2 Use Case 2 - Data mining model sharing . 20
3.3 Trusted authority providing certificates and mutually authenticated TLS commu-

nications between client and server . 23

4.1 Age attribute values frequency . 29
4.2 Education attribute values frequency . 30
4.3 Marital Status attribute values frequency . 31
4.4 Occupation attribute values frequency . 32
4.5 Race attribute values frequency . 33
4.6 Sex attribute values frequency . 34
4.7 Two most frequent native country attribute values 34

5.1 Mozilla Firefox Certificate Authorities list . 42
5.2 Server’s file tree. 47
5.3 Client browser: invalid tuxSV2 certificate . 50
5.4 Client browser: invalid tuxCLI certificate . 51
5.5 Network packet analysis: No client certificate presented 51
5.6 Browser requesting client certificate selection 52
5.7 Successful access to server’s landing page . 53
5.8 Client not authorized to access the server . 53

6.1 Local ORF results . 59
6.2 Final distributed ORF results . 60

B.1 Scenario 1 Wireshark logs. 86
B.2 Scenario 3 Wireshark logs. 88
B.3 Scenario 4 Wireshark logs. 89
B.4 Secure Data Mining model transmission . 89
B.5 Packet 664: Encrypted application data . 90

C.1 Post Data Mining application: shared datasets on douro machine 91
C.2 Post Data Mining application: shared models on douro machine 92
C.3 Original adult dataset: tux1 intermediate increment. 92

xiii

LIST OF FIGURES

C.4 Original adult dataset: tux2 intermediate increment. 93
C.5 Anonymized adult dataset: tux1 intermediate increment. 93
C.6 Anonymized adult dataset: tux2 intermediate increment. 93
C.7 Final distributed ORF results . 95

xiv

List of Tables

2.1 Hierarchy-based generalization. 7

4.1 Adult dataset’s attributes . 26
4.2 Indirect identifiers and hierarchic generalization levels 28
4.3 Generalization grouping of Occupation values 38
4.4 Loss Metrics for the different indirect identifier attributes. 40

5.1 Experimental scenarios, valid certificates and expected outcomes. 49

6.1 Non-incremental SVM: Original adult dataset 57
6.2 Non-incremental SVM: Anonymized adult dataset 58
6.3 Incremental SVM: Original adult dataset . 58
6.4 Incremental SVM: Anonymized adult dataset 59

xv

LIST OF TABLES

xvi

Abbreviations

BEAST Browser Exploit Against SSL/TLS
CA Certificate Authority
CRIME Compression Ratio Info-leak Made Easy
CRISP-DM CRoss Industry Standard Process for Data Mining
CSR Certificate Signing Request
DM Data Mining
EHR Electronic Health Record
FQDN Fully-Qualified Domain Name
HTTP Hyper Text Transfer Protocol
HTTPS Hyper Text Transfer Protocol Secure
LM Loss Metric
MAC Message Authentication Code
NTP Network Time Protocol
ORF Online Random Forest
OSSTMM Open Source Security Testing Methodology Manual
PKI Public Key Infrastructure
RFC Request For Comments
SSL Secure Socket Layer
SVM Support Vector Machine
TLS Transport Layer Security
VLBW Very Low Birth Weight
VPT Very PreTerm

xvii

Chapter 1

Introduction

In current days information is being created in amounts never seen before, quantities that can

swiftly overshadow the information left on records throughout centuries. Specifically, medical

data follows the same trend with the ongoing developments on integrating automation into medical

practices allied with the growing accessibility to health care. Access to large sets of data brings a

potential to extract more information from them, such as identifying patterns and relations between

elements. Data Mining is an area that attempts to identify all kinds of interesting meta information

and apply them to useful processes, such as attempting to predict outcomes of future situations.

Nonetheless, even with the assistance of machines, the resources on a single location may

be scarce to successfully match the processing rate of the data with its creation rate. Therefore,

distributed data mining systems may be applied, where different locations or entities join efforts

to attempt to harmoniously extract useful information from the data.

Alternatively, different entities, located in different places and with different resources may

want to access the same information or share results or ongoing processes between their partners,

even if the ultimate goal of the entities does not align. This presents another scenario where a

distributed data mining setting can exist.

Scenarios with information transfers happening over a plural number of entities brings some

different concerns with special relevance on the confidentiality and privacy issues, magnified when

the transfered information is medical data which is considered to be highly sensitive, many times

with laws dictating the security assurances that must be applied to this kind of data, as well as the

liability in the case of any malpractice [MT14]. As a consequence, proper security implementa-

tions in a distributed setting are pivotal for a law abiding and responsible development.

1.1 Context

At this date there is an ongoing project on an European scale that attempts to develop a platform for

conducting multiple operations, structuring and collecting data from children and adults born very

1

Introduction

preterm (VPT) or born with a very low birth weight (VLBW). The information will be gathered

from various different national and European cohorts of VPT/VLBW births.

Globally, the aim is improving the overall health of individuals who were born VPT/VLBW by

developing a platform that aggregates relevant information which is very geographically diverse

and not trivial to obtain (VPT/VLBW births account for less than 2% of births across Europe).

Also, the platform must contain solid mechanisms that can facilitate access and transmission of

this data to different kinds of research, such as in the health care area, within legal boundaries.

The European project is divided into different work plans, ranging from matters such as legal

implications of the governance of this sort of data, up to development of a data platform with

correct web portals and accesses, and going through statistical methods (such as some used in data

mining) to analyze the data that was collected and demonstrate its usefulness.

Consequently, the solution here described comes as an approach to the transmission of data

between the different parties involved, providing a prototypical approach to the correct anonymiza-

tion of data for a (usually remote) requester without access to the original dataset, or an approach

that does not share sensitive data at all, and demonstrating preserved value to data mining methods

that can be applied in this distributed setting.

1.2 Objectives

The goal of the dissertation work is the design and prototyping of a secure architecture contain-

ing distributed data mining applications and different data sources. To expand, this distributed

architecture must contain processes able to assure three different aspects:

• Medical data anonymization: Under some established risk, the data must be properly

anonymized in a way that impedes occurrence of re-identification, while still attempting to

minimize information loss. For example, an anonymized Electronic Health Record (EHR)

should not be able to be re-identified to the individual it corresponds to. Alternatively, the

medical datasets must not be unduly shared and only be applied locally, by the entity who

has the correct permissions to hold them.

• Secure data transfer: When transferring information between points or entities, the trans-

fer must be protected against different attack vectors or vulnerabilities, preventing unautho-

rized access or corruption of the information in transit.

• Useful data mining applications: Even with a distributed setting and properly anonymized

sets of information, the data mining applications in the architecture shall remain with a

considerable degree of utility by still being able to extract useful meta information.

The evaluation of the resulting architecture must be divided in area specific metrics, in an

attempt to evaluate the results on each of the tasks the architecture encompasses, i.e.:

• Data anonymization processes will measure the information that was lost to achieve scien-

tifically consensual re-identification risk thresholds for medical data, in an example dataset.

2

Introduction

• The security of the data transfers shall be evaluated by implementing state of the art mech-

anisms and by performing security testing following standard and proven guidelines and

including the assistance of well established tools.

• Different Data Mining processes utilize different methods for its own performance evalua-

tion and the same metrics will be used to perform comparisons between a local process with

distributed incremental processes, while utilizing anonymized and non-anonymized data.

The last item describes a metric that may be used as a measure of performance for the whole

architecture, since it evaluates the performance of data mining application in a standard local en-

vironment against data mining applications after undergoing all the processes that the architecture

enforces on the data.

1.3 Dissertation Structure

This introductory chapter is followed by chapter 2, where state of the art mechanisms for the

different areas involved in the dissertation are presented.

A third chapter will introduce an overview of the solution, including different use cases and

how different components of the developed work interact.

Chapter 4 describes methods used to correctly anonymize a medical dataset and includes some

empirical information about the achieved result.

Following, another chapter presents the utilized methods relative to data transmission security

and experimental setups to assure a successful implementation.

Throughout chapter 6, all data mining mechanisms implemented and their performances are

evaluated and compared within the different inputs and scenarios they were applied in.

Conclusions and future work will be presented in a final chapter.

3

Introduction

4

Chapter 2

Bibliographic Review

2.1 Introduction

This chapter is divided in three sections that represent the three main areas involved in the project,

data anonymization, data transfer security and data mining, and a final one addressing incremental

machine learning.

2.2 Data Anonymization

Data anonymization attempts to protect data in a way that if anyone has access to the data, the

privacy of the information is protected. In other words, a record in a dataset should not be able to

be traced back (re-identified) to the original individual or entity to which it belongs to, under some

acceptable risk threshold.

To accomplish this, different types of variables in a dataset have to be identified and studied

and methods to anonymize a specific dataset, while attempting to minimize data loss, have to be

applied.

2.2.1 Types of attributes

In a medical dataset there will be different attributes that will be studied and possibly operated

over different processes of data anonymization.

Although [EE11] specifies a rather detailed taxonomy for the classification of the attributes, in

a more general sense they can be divided in just two groups of variables:

• Direct Identifiers: These consist of attributes who can single-handedly identify the pa-

tient or individual to whom, for instance, an Electronic Health Record (EHR) belongs to.

This information is extremely sensitive and these identifiers rarely are unaltered by data

anonymization techniques. Even in a situation where a direct identifier occurs multiple

5

Bibliographic Review

times in a dataset, its unaltered existence makes it very dangerous for other information to

be included, because it can be cross-referenced with other attributes to identify the individ-

ual. As an example, even if there are plenty of records with the same name in the dataset,

matching the name with an area, or an e-mail address, can present a big re-identification

risk. Other examples of direct identifier would be a social identification number or a credit

card number, which are unique and correspond to a single individual.

• Indirect Identifiers: Unlike the direct identifiers, indirect identifiers (sometimes called

quasi-identifiers) alone would not be able to directly identify an individual. Nonetheless,

when cross-referenced with other identifiers or in a specific dataset they can be able to do

so probabilistically. For instance, the age of a patient is usually harmless, but if the dataset

of an hospital has only one patient who is over 100 years old, the age attribute could be

enough to determine the individual to whom the EHR corresponds to. The same logic can

be applied to a set of indirect identifiers instead of a single one: if there is only one record of

a 30 year old female from a specific area who was admitted in the hospital in a particular day,

those 4 identifiers (age, gender, day of admission and area) in conjunction can re-identify

the patient.

2.2.2 Standard de-identification techniques

[EE11] documents the existence of three major de-identification methods, each of which can be

applied in different situations.

• Masking: this method is applied to direct identifiers and the underlying techniques can

vary. Depending on the dataset, on the direct identifier and on the context of the application,

(reversible) encryption may be applied so information can — with a proper request to the

the entity that performed the masking — be decrypted in an authorized re-identification

situation (for example in a judicial case). Other techniques such as pseudonymization can

be used, where direct identifiers are replaced by irreversible unique numbers or strings.

• Generalization: a method used upon indirect identifiers. One of the most common tech-

niques, named hierarchy-based generalization, consists of predefining a hierarchy with an

increasingly broad range of an attribute and the hierarchy will iteratively be climbed until

re-identification risk thresholds are achieved. Table 2.1 contains an example of a predefined

hierarchy for a date that could be something such as an admission date on a hospital.

• Supression: used on records that are marked for deletion, often discovered while evaluating

the dataset for masking. Supression may be executed in different ways, going as broad as

removing the whole record while sometimes removing a single attribute from a specific row

can suffice.

6

Bibliographic Review

Precision Example

Day 10 Jul 2016

Month Jul 2016

Year 2016

Decade 2010-2019
Table 2.1: Hierarchy-based generalization.

2.2.3 Risk Assessment

2.2.3.1 Attack Types

As documented by [EED08], an attack on a dataset may fall into two different categories. The first

one is named the prosecutor scenario and the second one being the journalist scenario.

On the prosecutor scenario, an attacker will search the dataset for a particular record. So,

in a EHR dataset, the prosecutor will know the individual he is looking for and try to recognize

distinguishing features or identifiers (see 2.2.1), that may identify the EHR as belonging to the

targeted individual.

Differently, the journalist scenario will indiscriminately try to re-identify any individual in the

dataset. Instead of searching for a particular individual, an attacker in a journalist scenario may

have access to some demographic information about all individuals in an area and try to match

that information he possesses with the dataset, singling out as many individuals as possible.

2.2.3.2 K-Anonymity

K-anonymity was originally proposed by [SS98] and consists of a property that a dataset may

contain. It dictates the minimum number (k) of records in a dataset that have similar indirect

identifiers, for any set of indirect identifiers.

Both [SS98] and [EED08] describe approaches to enforcing this property on a dataset and they

mostly rely on the techniques described in 2.2.2, with special attention to the attempt to minimize

the information lost in these processes. Also with this data loss minimization goal in mind, some

optimization algorithms have been developed to attempt to solve the problem, such as [KT12].

2.2.3.3 Risk quantification

A set that shares the same values for any combination of indirect identifiers is named equivalence

class. Thus, the size of an equivalence class will be determined by the number of records that

share the same values for a set of indirect identifiers.

Relating with k-anonymity, the size of the smallest equivalence class of a dataset with a cor-

rectly enforced or natural k-anonymity will be k.

7

Bibliographic Review

With the concept of equivalence class and as proposed by [EED08], the risk associated with

the re-identification of a dataset can be calculated for the two different attack scenarios described

in 2.2.3.1.

On a prosecutor scenario, since the attacker will be searching for a particular individual, the

risk will be 1
min(se)

, where min(se) is the size of the smallest equivalence class to whom the indi-

vidual belongs to.

Meanwhile, on a journalist scenario, the risk quantification logic is very similar but since the

attacker is looking to re-identify any individual in the database, the equivalence classes with the

lowest size will be the most vulnerable targets. The risk will be given by the expression 1
min(s) ,

where min(s) is the size of the smallest class in the whole dataset.

2.3 Data Transfer Security

2.3.1 Symmetric and Asymmetric Cryptography

There have been well documented approaches to secure communication mechanisms which vary

in complexity, in system setting and in limitations. [KGNK16] presents some methods on how

to handle authentication and part of the communication in large systems with many machines in-

volved by describing important concepts used in authentication and communication mechanisms.

Among them exists public key encryption, which allows two parties with no prior agreement

to safely communicate with each other. [Hel02] explained how the inability for this to happen was

a big hindrance in the development of many systems and documents the mathematical foundations

of these types of algorithms.

Public key encryption (sometimes also called asymmetric cryptography) mechanisms generate

two different keys, a public key and a private key that operate as a pair. Each one of the keys of the

pair can encrypt a message that only the other key can decrypt. The role of each key will depend

on the type of protective usage. A public key can be freely distributed and obtained by anyone. On

the other hand, the private key must be kept a secret that only the generator of the pair can access.

This is the main assumption of the whole mechanism.

With this knowledge, and under that assumption, there are different cases of use of these keys:

• When a message is encrypted with a public key of an entity A, it is guaranteed that only A

can decrypt the message, for only A possesses the required private key to do so.

• When a message is encrypted with entity A’s private key, it can serve as a proof that A was

who wrote the message. To confirm this, the message must be attempted to be decrypted by

A’s public key. If successfully done, A’s authorship of the message can be confirmed. Using

8

Bibliographic Review

this to encrypt what is usually a hash1 of the message being sent (for performance reasons)

is the basis of a digital signature [CGI04].

There are other well established types of encryption techniques which are symmetric key
encryption techniques. In [KS14] it is provided an overview of these techniques which consist

of a shared secret between two or more entities, that can use that shared secret (shared key) to

communicate securely. With a secure algorithm, it is very highly assured that only someone with

access to the key can decrypt the message.

Two noteworthy aspects are that sharing the symmetric shared key over a network between two

entities with no prior arrangement can pose to be a problem and that the computational demand of

asymmetric cryptography techniques is usually considerably higher compared to the demands of

symmetric techniques [PNNM16].

One way to approach both problems is to to utilize public key encryption techniques to share

symmetric keys and then the remainder of the communication will be performed using symmetric

key methods.

2.3.2 Digital Certificates

Digital certificates consist of digital records that can be transmitted as a proof of an entity’s own

identity. Therefore, obtaining a digital certificate is pivotal for many systems, with special rele-

vance to entities that have to ensure their identity to their communication partners, such as banking

websites. At the core of the whole digital certificate infrastructure there are Certificate Authorities

(CA) which are entities that are trusted by all the parties in the communication.

To obtain a digital certificate, an entity has to request it to a CA. After verifying the identity

of the requester, if successful, the CA will generate a digitally signed certificate (see digital signa-

ture in 2.3.1) that contains the requester’s public key and other supplementing and administrative

information such as serial number, validity period and requester’s name.

Therefore, on the core assumption that the CAs are trusted by all the parties involved, a digital

certificate can be used to prove an entity’s identity, through an ensuing authentication protocol (i.e.

challenge-response type). If the signature of the certificate can successfully be verified as said in

2.3.1.

Information in this section about digital certificates was extracted from [Pit03].

There are some standard formats for digital certificates, being one of the most common ones

the X509v3 standard, defined in RFC 5280 [HFPS08].

1A hash in this context is the result of a cryptographic hashing function, where an input is mapped into fixed size
data (the hash). A good hashing function will feature some properties, such as determinism, which states that the same
input for the same hashing function must always output the same hash. Furthermore, a cryptographic hashing function
must also guarantee low collision probability — high unlikeliness that different inputs result in the same hash. Lastly,
non-reversibility — a property that states that one cannot obtain the input from its hash. [AA13]

9

Bibliographic Review

2.3.3 Data Integrity

Prevention of any data corruption, especially during its transmission, falls under the area of data

integrity protection.

Different approaches to this type of protection exist, such as Message Authentication Codes

which add to the message a digital signature (see 2.3.1) given a key and a message. One of the most

well established Message Authentication Code mechanism is Hash-based Message Authentication

Code [KCB97]. Nonetheless, other strong mechanisms also exist, such as Cipher Block Chaining

Message Authentication Code, with very similar performances [DHV03].

In a simple manner and as an example, a message authentication code mechanism using hashes

can work as such:

Existing a key that is shared between two entities, a message’s hash can be computed. Then,

that hash is attached to the message that one entity wants to send. Using the same hashing algo-

rithm and the same shared key, the receiver can compute the hash of the message he received. If

it matches the hash that arrived, it can be assumed that the message was unaltered and therefore

maintained its integrity.

How robust this process is depends on the robustness of the underlying algorithms. Com-

mon algorithms historically used for HMAC include MD5, SHA1 and SHA256. It is relevant to

point out that some of the hashing algorithms may no longer be secure, since some have been

demonstrated as vulnerable, such as MD5 and SHA1, demonstrated in [WY05].

2.3.4 SSL/TLS

[DR08] is the corresponding Request For Comments (RFC) for TLS 1.2, which is the most recent

stable version of SSL/TLS. Version 1.3 is under development but it is not yet widely available, so

the focus will remain on 1.2.

SSL/TLS is a mechanism that attempts to assure data integrity and privacy in the communica-

tion between two applications, using mechanisms such as the ones referred in sections 2.3.1, 2.3.2

and 2.3.3. This process is also able to, under some assumptions such as the ones in 2.3.2, authenti-

cate at least one of the parties in the communication, usually the server in a client-server scenario.

SSL/TLS also supports mutual authentication, where the client can also be authenticated, but this

is seldom used.

On a mutual authentication scenario, a typical SSL/TLS handshake would follow the steps

outlined in figure 2.1. Please note that some messages in a standard handshake were suppressed

because they can be either optional, or too technical for a conceptual understanding.

The most relevant aspects of each message are:

• Client Hello: Specifying the highest SSL/TLS version that the client can support as well as

some supported cipher algorithms.

• Server Hello: Chooses, from the above Client Hello, the algorithms and versions to be used.

• Server Certificate: Server sends its digital certificate to prove its identity (see 2.3.2)

10

Bibliographic Review

Figure 2.1: SSL/TLS Handshake with mutual authentication (simplified)

• Certificate: Client’s Certificate (usually sent when explicitly requested, in order to hand-

shake a mutual authentication session).

• Key Exchange: Define a key to be used in the communications. The way key exchanging is

performed varies depending on the algorithm being used and may include previous server

messages that were omitted. Consistently, this message will be encrypted with the public

key of the server that is declared on the server’s certificate. Thus, an approach as the one

suggested by the end of section 2.3.1 is applied.

• Finish + Message Authentication Code (e.g. HMAC): Both client and server confirm the

end of the handshake, and send a message authentication code of the messages sent before.

The receiving end will use this message to confirm data integrity and as a confirmation of

the successful exchanging of the keys and agreeing of the algorithms to be used (see 2.3.3).

2.3.4.1 SSL/TLS Vulnerabilities

In [ESM+15], different vulnerabilities of the SSL/TLS protocol that were discovered over the

time are documented. Being such a core protocol in so many instances of over-the-wire commu-

nications, it is under heavy scrutiny and requirements to evolve and adapt are being consistently

made.

Examples of attacks are the old cipher suites rollback, where a man-in-the-middle alters the

Client Hello’s supported cipher algorithms to some outdated and vulnerable ones, allowing for

subsequent messages to be decrypted by the attacker; other more recent attacks, are the BEAST

and CRIME attacks. All of them are presented in the mentioned document.

11

Bibliographic Review

This constantly changing landscape serves as a good indicator that updated versions of the

protocols must be generally enforced, especially in scenarios where the security of communica-

tions is of utmost importance, such as Payment Card Industry (PCI) or medical data scenarios.

PCI’s Security Standards Council even recommends in [Gra15] that by June 2018 servers should

be fully supporting TLS version 1.1 or higher.

These recommendations and threats are the reasoning behind the focus on TLS version 1.2 or

1.1, the best suited versions of the protocol to be implemented in the project.

2.3.5 Testing tools and guidelines

Open Source Security Testing Methodology Manual (OSSTMM) [Her10] and Open Web Appli-

cation Security Project (OWASP)’s testing guide v4 [MM14] present very detailed standards and

guidelines to testing different security scenarios, including communications security in a process

such as SSL/TLS. OSSTMM presents great theoretical guidelines and OWASP’s testing guide

goes as far as to suggest some different tools specifically for SSL/TLS testing like SSLScan2.

These may prove very helpful for an efficient and thorough examination of the SSL implementa-

tion, which can often be a point of failure in an otherwise very strong protocol.

2.4 Data Mining

Data mining is defined by [HMS01] as a set of processes that are able to extract from usually great

amounts of data different perspectives on its visualization that may prove useful. This includes

simple statistical studies accompanied by enlightening data visualization techniques, or character-

istics of the data such as interesting patterns and even inference of models that can be used for

tasks such as predictive ones.

The context of the dissertation work lies heavily on data mining and this area will shape the

security methods implemented by defining the shapes and types of information being transmitted

as well as the threats that have to be addressed. Therefore, a solid understanding of the techniques

that are used or can potentially be implemented in the applications is fundamental. In this section,

different sorts of proposed techniques and overviews will thus be expressed.

2.4.1 Standard Process for Data Mining

[WH00] documents a CRoss Industry Standard Process for Data Mining (CRISP-DM) and is one

of the standard guidelines for the development of data mining applications of many sorts.

As its core, CRISP-DM recommends some steps that should be followed for an efficient data

mining development process:

• Business Understanding: Should be the first phase of the project and consists in under-

standing in what businesses or areas the project belongs to and in obtaining a solid grasp of

2available at https://code.google.com/archive/p/sslscan-win/

12

https://code.google.com/archive/p/sslscan-win/

Bibliographic Review

the objectives and hardships specific to the determined areas, often in the perspective of the

end user.

• Data Understanding: This is a step where the data available is analyzed in a strictly ob-

servational way. Data is not altered, but important statistics are extracted, and relations

between data, such as differences between different tables, are also identified. Identifying

data quality problems that may exist, such as missing values, can also be useful in this step.

• Data Preparation: Here, the initial unaltered data suffers different operations such as hand-

ling of missing values, readjustments of the dataset structure and even addition of new data

or metadata, in order to solve problems identified during the Data Understanding step

and as preparation for the phases yet to come that may require some specific formats or

characteristics of the data.

• Modeling: During modeling phase, different algorithms and techniques can be applied to

try and extract models from the prepared data that can prove useful in tasks such as predic-

tion.

• Evaluation: In this step, there must be methods to evaluate the performance of the process

so far. For example, evaluating the quality by accuracy of the predictive model created

during the previous phase and — in a contractual scenario — presenting the results to the

product owner to evaluate the achievement of the defined objectives.

• Deployment: Deployment is always the last part of the process and should not be disre-

garded. Here, the results of the whole process have to be delivered to the product owner and

integrated, for instance, on the product owner’s systems.

The phases of CRISP-DM can and often will have some cyclical behaviors as, for example,

new modeling techniques may demand additional data preparation or the results feedback during

evaluation step by the product owner may be negative and mandate an improved business under-

standing. Figure 2.2 displays the different steps with common cyclical connections.

2.4.2 Data Mining Tasks

[HMS01] divides the data mining tasks in 5 different ones: density estimation and clustering,

classification, regression, pattern discovery and retrieval by content.

Among them, two of them will be expanded here: clustering and classification.

2.4.2.1 Clustering

Clustering as defined by [JD88] consists in defining an abstract structure for a given dataset that is

able to group different records of the data in different parts (clusters). This means that all records

contained by a cluster are somehow similar to each other, while records from a different cluster are

13

Bibliographic Review

Figure 2.2: CRISP-DM cyclical behavior

not similar to them. Sometimes this abstract structure may not necessarily be on the same plane

and may have a hierarchical shape.

Exemplifying, let there be a dataset of 12 individuals with information about their weight in

kilograms and height in centimeters. Using a distance-based clustering algorithm such as k-means

detailed in [KMN+02], and setting the value of k to 4, parameterizing the algorithm to search for

4 different clusters, the resulting clusters can be the rectangles represented in figure 2.3.

Interpreting the resulting clusters, 4 different groups of individuals are quite distinguishable

in the dataset: less heavy and shorter individuals, less heavy and taller individuals, heavier and

shorter individuals and, finally, heavier and taller individuals.

14

Bibliographic Review

Figure 2.3: Different clusters (squares) of 12 records (dots)

2.4.2.2 Classification

Classification processes usually come along with predictive modeling. As opposed to clustering

that tries to create descriptive models of the data that present useful or interesting information

about the data, predictive models are models that allow forecasting of future events. The concept

of classification comes when, by resorting to a predictive model as basis, a class is attributed to

a new record. Which classes can be applied vary with each problem and may consist of a binary

scenario where only two classes exist (e.g. in a context of bank transactions, a transaction being

classified as one of two classes: fraudulent or non fraudulent) or may consist of a multi-class

scenario (e.g. classifying the species of a flower, where the species are the classes).

The construction of the predictive models is made by analyzing a training set, i.e., a dataset of

past records. These historical records may have an attribute that indicates which class they belong

to (called label) in the case of supervised learning. When the label does not exist, the concept is

named unsupervised learning3.

An example of a supervised learning algorithm is decision tree learning, detailed in [Dob09],

where the predictive model formed is a simple binary tree with the leaves being the classes. Figure

2.4 displays a decision tree as a predictive model used to attempt to predict the species of a flower.

It was trained in a supervised setting with the iris dataset (a very commonly used dataset for

demonstrations introduced in [Fis36]) containing information about a flower’s sepal and petal

width and length. The classes, i.e., the species that a flower can belong to, are iris-setosa, iris-

versicolor and iris-virginica.

As it is observable in the decision tree, the above mentioned attributes of a flower can be used

to attribute a species (or class) to it, simply by following the conditions set by the decision tree

starting from the root node, until a leaf is reached.

3Clustering and outlier detection techniques are examples of unsupervised learning.

15

Bibliographic Review

Figure 2.4: Decision tree for the iris dataset

In an identically supervised scenario, evaluation of the performance of the model is often

done through splitting the original data into a training set, which is used to create the predictive

model and a testing set (not included in the training set), solely for the purpose of evaluating its

performance by inputting the attributes of each record into the model and comparing if the classes

predicted by the model match the classes that were on the (omitted when input) labels of the

training set.

2.5 Incremental Learning

Incremental learning (sometimes called online learning) introduces a new paradigm that tries to

tackle the huge amounts of data available that may turn its simultaneous storage in memory at

one given time unfeasible, as well as handling scenarios where data may not be simultaneously

available.

Instead of a training dataset being readily available, and input into an algorithm so that, after

training time, a model is created, incremental learning algorithms work on streams of data, learn-

ing from successive small batches of records or even individual records, and thus creating new

models.

[DC03] proposes an adaptation of the standard Support Vector Machine (SVM) classification

algorithm to support incremental learning and [Z+16] demonstrates that unsupervised learning

methods can also support incremental learning, by proposing an incremental clustering method.

In [LHW18], a review and comparison between several state of the art incremental learning

algorithms is made, where some metrics and properties are measured and documented, such as

16

Bibliographic Review

accuracy, convergence speed, training time, ability for endless learning and viability for concept

drifting4.

Amongst the compared algorithms in [LHW18], incremental SVM was the best performer in

terms of accuracy and convergence speed but displayed long training times, inability to endlessly

learn, inability to adapt to a possible concept drifting and is inherently a complex model. Differ-

ently, Stochastic Gradient Descent displayed fast training times and the ability to endlessly learn

and adapt to concept drifting, at the cost of its accuracy when compared to the other state of the

art algorithms.

The same document provides a link to the implementations of the algorithms, including some

provided by the package Scikit-learn for the programming language Python presented in [PVG+11].

2.6 Conclusions and Considerations

A careful evaluation of the dataset to be anonymized enables a correct selection of the methods

to be used during its anonymization which minimizes the loss of data. High maintenance of

the value of the data will boost the potential usefulness of data mining processes that thrive on

big amounts of data, especially on incremental algorithms that are able to handle those amounts,

through streams of data.

Finally, the secure transmission of data must serve as a very solid property of the developed

platform. This is to be achieved by using highly established and proven methods such as TLS,

while keeping its implemented version up to date, in order to tackle novel vulnerabilities.

4Concept drifting is the possible shifting over time of the relation between the attributes of a record and its target
class that is attempted to be predicted

17

Bibliographic Review

18

Chapter 3

Overview of Methodologies and
Architecture

The solution consists of a prototype that serves as a proof of concept for the techniques imple-

mented. This chapter will present an overview of the methodologies and explain the architectural

setting, when relevant.

In short, the proposed solution revolves around dataset analysis and anonymization, implemen-

tation of secure conditions for data transmission between different machines and implementation

of incremental machine learning techniques. Some processes are accompanied by appropriate

testing and results evaluation.

3.1 Use cases and architecture

The actors of the solution are peers in a distributed setting. They can all act as client or servers,

depending on if they intend to fetch some information like an anonymized dataset or data mining

model (client), or if they intend to make either of them available to other authorized peers (server).

The first use case (illustrated in 3.1) addresses the scenario where a dataset is to be shared be-

tween the peers. In this situation, proper anonymization techniques must be applied to the dataset

before it is made available. After the peer has anonymized the dataset, it must store the dataset in

its server – usually divided in ideally-sized batches – and add to the server’s configuration a list of

the allowed entities that can fetch the information.

The second use case (illustrated in 3.2) behaves similarly but the shared information consists

of a data mining model. All the sensitive information is used locally, by each peer’s own local

processes, thus it is always utilized by a peer-entity that is presumed to have permissions to hold

and handle that information. Through this process, dataset privacy concerns are not relevant and

incremental data mining techniques are at the core of this whole architectural setting.

19

Overview of Methodologies and Architecture

Figure 3.1: Use Case 1 - Anonymized dataset sharing

Figure 3.2: Use Case 2 - Data mining model sharing

Relevantly, all the data transmissions between the peers are performed under secure channels,

as described throughout the secure data transmission categories of the dissertation.

20

Overview of Methodologies and Architecture

3.2 Data analysis and preprocessing

Given that the usage of incremental data mining has the distinguishing feature of dealing with big

amounts of data in a streaming format, the utilized datasets should be of a sizeable dimension, to

fully take advantage of the algorithms being used.

After selecting the dataset to be utilized, it is analyzed and well documented to give sufficient

knowledge as basis for future decisions, such as what anonymization steps should be taken or any

further preprocessing.

There is a focus on descriptive statistics that can illustrate the generated dataset, which is a

good way to summarize large amounts of data. Additionally, the identification of different types of

attributes, including relevant direct or indirect identifiers for data anonymization purposes should

be performed as well as appropriate correction of some values that may not be aligned with the

desired format.

As a final note, implementations of data mining techniques could suggest some underlying

additional revisiting of the data analysis and preprocessing. This aligns with the guidelines for the

development of data mining applications suggested by CRISP-DM, presented in the bibliographic

review.

3.3 Data Anonymization

A good analysis of the dataset proves to be pivotal in order to minimize the data loss in the process

of anonymization.

As reviewed in the literature, the identification of the types of attributes that can serve as direct

or indirect identifiers determines the techniques that can be applied to anonymize the dataset.

The goal of this portion of the work is to achieve an anonymized dataset through the usage

of generalization, suppression and masking techniques that output a resulting dataset which meets

acceptable risk thresholds.

After identification of the relevant attributes, direct identifiers have to be handled through

masking or suppression techniques, with a preference for masking since it usually provides the

least amount of data loss. Sporadically, some identifiers or records may prove too revealing,

making them suitable candidates for suppression.

Handling indirect identifiers must be an iterative task, either manually or through computa-

tional iterations. Being generalization the main technique applied to indirect identifiers (that also

provides the least amount of data loss), progressively stronger generalizations must be applied on

each iteration while evaluating the resulting risk estimate.

For the risk metric, k-anonimity property reviewed in the literature will be used as a measure-

ment of the risk of re-identification of the dataset. Acceptable risk thresholds for medical data can

range between probabilities of re-identification of 0.05 and 0.33, as suggested by [EERM15].

Also during data anonymization, a more careful data analysis can be again performed. For

instance, by studying the smallest equivalence classes in the dataset, it is possible to find that often

21

Overview of Methodologies and Architecture

a single or a small set of records are inflating the risk estimation, and suppression of these records,

or some of its attributes, may provide a much more data conserving anonymization than other

alternatives such as going up on the hierarchy of a hierarchy-based generalization approach, while

meeting the risk thresholds.

3.3.1 Tools

For most data handling purposes, the Python programming language is suitable for an efficient

and flexible development.

Software applications such as RapidMiner (with documentation of its operators in [AH+12])

can be useful for some agile data visualization and analysis.

3.4 Data Transfer Security

The transmission of data will follow a client-server structure, where the client will be a machine

that is requesting access to some given information, for instance the dataset that was anonymized

earlier.

It is important that both client and server are authenticated, even if the client only provides

some authentication after the initial handshake is made. Authentication of both parties is important

so that the information origin is guaranteed, preventing false or corrupted information to be spread

by malicious entities and authenticating the client guarantees that only authorized entities can

receive the information.

For either the server authentication or both client and server authentications, digital certificates

are created, with a fictional certificate authority as their provider. Since the scenario is setup as

a proof of concept, the client and the server are to be configured so that this third entity is to be

trusted as if it was truly a certificate authority. A scenario with mutual authentication in the TLS

process is illustrated in Figure 3.3.

22

Overview of Methodologies and Architecture

Figure 3.3: Trusted authority providing certificates and mutually authenticated TLS communica-
tions between client and server

As implied, TLS (versions 1.2 or 1.1, as justified in the bibliographic review chapter) will

be the protocol used to guarantee the secure communications between client and server. As for

implementation, the renowned library OpenSSL, further detailed in [VMC02], allows for effi-

cient implementations of the SSL/TLS protocols and is under heavy scrutiny and well maintained,

with relatively frequent updates. Although [AG07] portrays some other libraries as more efficient

in terms of performance, OpenSSL shows portability and time efficiency in the implementation,

while still being overall the most efficient in the group of the more flexible libraries. It is notewor-

thy that flexibility is an important trait when developing a proof of concept as is this dissertation

work.

Certificates used in TLS processes contain information about the owner of the certificate, that

can serve as basis for the ensuing authentication mechanism. Correspondingly, this sort of infor-

mation will be the method to authorize other entities to access a server’s model or anonymized

dataset, as the client provides its certificate to present its identity and it is then matched against the

allowed entities.

As for evaluation of the implementation, tools and guidelines presented in the literature re-

view and other analysis tools should be used as they provide processes that can be very meticulous

in the communications security testing, providing assurances of protection against the common

attack vectors and assuring that the implementation of TLS protocol was executed under recom-

mended and standard practices. Testing should be performed under a controlled environment as to

minimize unexpected interferences and as to provide for an ideal attack scenario.

23

Overview of Methodologies and Architecture

3.5 Data Mining

The final phase of the work consists in the implementation of different incremental machine learn-

ing techniques, focused on classification, as to provide a functional proof of concept, demonstrat-

ing that incremental learning processes can be integrated with the underlying implemented secu-

rity and anonymization methods, maintaining meaningful results, when compared with standard

processes.

Since the incremental algorithms handle as input a stream of data or small batches, the data is

appropriately reformatted.

After the implementations of the algorithms (with assistance of different mentioned or re-

viewed tools and implementations such as scikit-learn package for Python language, RapidMiner

and open-source implementations provided in [LHW18]), an empirical evaluation process has to

occur.

This process of empirical evaluation revolves mainly around the comparison between the per-

formance of the machine learning algorithms with the data stream consisting of the original data,

stored locally in a single batch, and the performance of the same algorithms with data stream con-

sisting of data after undergoing anonymization, possibly divided in small separated batches, and

transmission processes.

A common evaluation method for classification algorithms has been described during biblio-

graphic review. In short, a training dataset, where the class to which each record belongs to

is known, is used as input for the predictions. Then, for each record, the model’s prediction

is matched against its known class, thus obtaining the total number of correct predictions, false

negatives and false positives.

24

Chapter 4

Data Anonymization

Anonymization of datasets can be very useful in order to share information in a way that respects

privacy between different entities. Motivated by the increasing awareness and legislation around

data privacy – especially with medical data – this process gains relevance as a way to allow science

to progress and continue its studies on these sorts of datasets, while respecting identities and

other sorts of sensitive information. Furthermore, refinement and developments of anonymization

processes and techniques may motivate or further reassure patients and other providers to allow

their information to be used for research. It is noteworthy that, more than ever, considerable

amounts of data can be used quite effectively, through the usage of computation and methods such

as the ones used in Data Mining processes.

An important goal of data anonymization is to minimize the information loss of a dataset,

while maintaining re-identification risks under an acceptable threshold. Because of it, some work

has been done that phrases this goal as an optimization problem. Some algorithms have been

developed, such as [SS98], that attempt to anonymize datasets while preserving the maximum

amount of information. However, for this dissertation work, the process will be organic and itera-

tive. This is to provide a more practical understanding of the decisions made and what steps were

taken, that can empower further research with a better understanding of the techniques used by

those optimization algorithms, and also to allow some more freedom on data loss selection, as it is

not always true that minimizing the amount of data loss equals minimizing the loss of information

value inside the context.

4.1 Dataset Selection

Searching for a usable medical dataset that was not yet anonymized – even if partially – proved

to be a difficult task to accomplish on a public domain. Generating an artificial dataset was also

considered but discarded since the anonymized dataset was to be later used for a predictive data

mining task, which without real information can be devoid of value. Consequently, a more generic

dataset was selected, that had demographic information about individuals, trying to resemble a

record that, for example, an hospital would have about its patients. Much of the information

25

Data Anonymization

specific to the health domain such as cardiac frequency or blood pressure measures can usually be

disregarded as identifiers, because most of this information is not apparent and can be quite hard

for an attacker to obtain. Nevertheless, they must also be taken into account in medical datasets.

The chosen dataset was the popular Adult dataset, which gathers demographic information

about over 32,000 individuals. This information is labeled, i.e., each record has a class attribute

that associates it with either an annual salary equal or under 50,000, or over 50,000. Traditionally,

this dataset is used in data mining exercises for a predictive classification task of exactly that:

whether an individual earns more or less than 50,000 annually. Table 4.1 presents an overview

of the several attributes of the dataset, including each attribute’s type and example domain. Two

fields have been omitted, since they are either redundant or meta information from data mining

processes.

Attribute Type and Example Domain
Age Numerical: continuous
Workclass Nominal: (Private, Federal-gov, etc.)
Education Nominal: (Bachelors, Masters, 1st-4th, etc.)
Marital Status Nominal: (Separated, Widowed, Never-married, etc.)
Occupation Nominal: (Tech-Support, Armed-Forces, etc.)
Relationship Nominal: (Wife, Own-child, Other-relative, etc.)
Race Nominal: (White, Amer-Indian-Eskimo, etc.)
Sex Nominal: (Female, Male)
Capital-gain Numerical: continuous
Capital-loss Numerical: continuous
hours-per-week Numerical: continuous
Native country Nominal: (United-States, Portugal, China, etc.)

Table 4.1: Adult dataset’s attributes

All the records on the dataset were collected in [Koh96] and it was obtained from the UCI

Machine Learning Repository, available at [DKT17], where the complete domain of the each

attribute can be found.

4.2 Preparation

Reviewing, there are two different types of identifiers: direct and indirect (or quasi-) identifiers.

4.2.1 Direct Identifiers

Direct identifiers, by nature, directly identify the individual to whom a record belongs to, hence

they should not be obtained in any publicly available dataset. Adult dataset is no exception, being

in public domain, and does not contain any direct identifier (such as name, social security number,

etc.). Nonetheless, it is relevant to mention how such types of attributes could be handled:

26

Data Anonymization

• Supression: Consists of completely removing the attributes that are direct identifiers. It is

a simple approach as it does not include any other security concerns, but also implies the

absolute loss of this information. Partial suppression can sometimes be applied — suppres-

sion of a portion of an e-mail address can sometimes suffice to remove that attribute off the

category of direct identifier.

Supression should be used when there is no interest in recovering the information or is cru-

cial for security and privacy reasons that the information is never reaccessed or reobtained.

• Masking or Pseudonymization: At its core, masking features replacing the data with a

random set of characters. It can come in several forms, for example through the usage

of encryption, so that only an owner of a decryption key can access the original direct

identifiers. Pseudonymization works similarly, by replacing direct identifiers with random

codes. In the source, when pseudonymization occurs, pairs can be stored that record the

original value of the pseudonym, allowing for recovery by contacting the original owner of

the dataset, while also raising some security concerns regarding the storage and handling of

these de-pseudonymization tuples.

Masking or Pseudonymization should be used when it can be relevant to reaccess the orig-

inal data of the direct identifiers. It may also raise some security concerns (whether in

storage, key sharing and generation or true randomness of the characters generated) that

should not be overlooked, to maintain the security and privacy of the whole process.

4.2.2 Indirect Identifiers

Since the Adult dataset is already void of direct identifiers, the anonymization process will revolve

around handling indirect identifiers. Over these identifiers, two methods described in section 2.2.2

have been applied: Generalization and Suppression. Generally, generalization will account for

the bulk of the changes on the dataset. More rarely, suppression is used for some problematic

records, as removing a field of a small number of records may lead to less information loss than

forcing all attributes of the dataset to broaden their meaning, incurring in a general loss of infor-

mation throughout the whole dataset.

To finalize the preparation, it is necessary to identify the indirect identifiers and define a hier-

archy for their generalization. The selected attributes and corresponding hierarchies are presented

in table 4.2. Some of the chosen generalization hierarchy levels are based on analysis made to the

dataset that is presented in section 4.3.

Although the field Relationship could be argued to be an indirect identifier, it contains either

intelligible or redundant information, as combinations of other fields like Marital Status, Occupa-

tion and Sex already provide the same information (e.g. ’Wife’ relationship is already indicated by

Married’ marital status and ’Female’ sex).

27

Data Anonymization

Attribute Level 1 Level 2 Level 3
Age Round to 5 Decade Round to 20
Education ENUM(Basic, HighSchool, Superior) - -

Marital status
ENUM(Married, Divorced,
Never-Married, Widowed)

ENUM(Married,
Never-Married, Married-before)

-

Occupation
ENUM(Adm-manag,
Technical labour, Care-oriented, Manual)

- -

Race ENUM(White, Amer-Indian-Eskimo, Other, Black) - -
Sex - - -
Native Country ENUM(America, Asia, Europe) - -

Table 4.2: Indirect identifiers and hierarchic generalization levels

4.2.3 Attack scenario and Risk thresholds

In section 2.2.3.1 two different re-identification attack scenarios have been described: Journalist

and Prosecutor scenarios. Since the context of the dissertation involves healthcare related data

and it is deemed as very sensitive, the Journalist scenario — where an attacker indiscriminately

attempts to re-identify any record — will be the attack type that this anonymization process will

attempt to prevent. This has implications in how the risk of re-identification of the dataset is

calculated. Using the k-anonimity property and the concept of equivalence class where each class

consists of a combination of indirect identifiers (see sections 2.2.3.2 and 2.2.3.3), in a journalist

scenario, the risk of re-identification is given by equation 4.1, where min(s) is the size of the

smallest equivalence class in the whole dataset.

Re-identificationRisk =
1

min(s)
(4.1)

Reiterating, section 3.3 mentions the acceptable re-identification risk for medical data as rang-

ing between 0.05 and 0.33. This dissertation is selecting a middle ground of 0.20 as the acceptable

risk threshold.

4.3 Dataset analysis

Statistical studies of the dataset were mainly performed with the help of Rapid Miner Studio1, a

tool for swift analysis of datasets and also used for data mining processes. The statistics in this

chapter were, thus, produced with that software.

Analysis lays under the category of data understanding and is advised by CRISP-DM’s method-

ologies (section 2.4.1) so this has been extrapolated to data anonymization context. In order for

the analysis to be relevant, it should be centered mainly around the indirect identifiers, as they will

be the subjects of generalization and suppression techniques.

1available at https://rapidminer.com/, last reviewed in 12 June 2018

28

https://rapidminer.com/

Data Anonymization

4.3.1 Attribute analysis

4.3.1.1 Age attribute

Observable in figure 4.1, is an uneven distribution of ages between the individuals of the dataset.

Although age ranges from 17 years old to 90 years old, ages over 67 account for a considerably

small portion of the records. Since that range above 67 years old is so relatively unique, it may

lead to equivalence classes that occur very rarely combined with other indirect identifiers, thus

increasing the risk of re-identification of the dataset, as given by equation 4.1. Consequently, this

age range may have to be handled, for example by grouping in a single value, to prevent it.

Figure 4.1: Age attribute values frequency

4.3.1.2 Education attribute

The frequency of several values of the Education attribute is considerably low (see figure 4.2). For

similar reasons as mentioned in section 4.3.1.1, education column seems to be a good candidate

for a generalization, given how it has a sparse distribution of values.

4.3.1.3 Marital status attribute

On the marital status attribute, some of its possible values presented in figure 4.3 have a low to

very low rate of occurrence. This attribute is a suitable candidate for a generalization that can

29

Data Anonymization

Figure 4.2: Education attribute values frequency

group these rare values into a more general one. As an example, Level 1 generalization hierarchy

of table 4.2 of the Marital Status attribute replaces occurrences of the least occurring "Married-

spouse-absent" (1,3% of the dataset) and "Married-AF-spouse"2 (0,1% of the dataset) values and

groups them into "Married", together with the most frequent "Married-civ-spouse"3 (46% of the

dataset).

4.3.1.4 Occupation attribute

Apart from a couple of values at the tail of figure 4.4, Occupation attribute seems fairly distributed.

Suppression or a soft-generalization of the two problematic values may be due. Else, the attribute

should only be affected if necessary by a big generalization step, because there is a considerable

number of different possible values, even if evenly distributed in frequency.

4.3.1.5 Race attribute

Race can prove to be a difficult field to handle, given the huge predominance of ’White’, making

other Race values seem like outliers, with low frequency (support by figure 4.5). Also, at a seman-

2AF = Armed Forces
3civ = civilian

30

Data Anonymization

Figure 4.3: Marital Status attribute values frequency

tic level it is hard to label a superset (or generalization hierarchy level) that incorporates multiple

Race values. A possible solution is to aggregate one of the outlier values into the "Other" nominal

value.

4.3.1.6 Sex attribute

This attribute is very evenly distributed and both possible values (Male, Female) have considerably

high frequencies (see figure 4.6). Hence, table 4.2 contains no predicted generalization hierarchy

level as this attribute is not expected to suffer any generalization.

4.3.1.7 Native country attribute

Native country should prove to be another problematic attribute. There is a big presence of

"United-States" values, but all other countries have a very low frequency, as Figure 4.7 shows

that Mexico, the second most frequent country, has a relative frequency of 2%, compared to the

overwhelming 89,6% of the United-States. This attribute should be the target of a considerably

radical generalization, as suggested by table 4.2, where the first level reduces a big amount of

possible values (countries) into a simple set of three possible values (continents America, Asia

and Europe, where all the countries belong to).

31

Data Anonymization

Figure 4.4: Occupation attribute values frequency

4.3.2 Re-identification risk calculation and problematic combinations identifica-
tion

Section 4.2.3 defined the method to calculate the re-identification risk of a dataset in equation 4.1

and the acceptable risk threshold of 0.20 was selected (exact acceptable risk value is subjectively

decided by each entity, as long as it is within the scientific consensus of the acceptable range of

0.05 to 0.30, for medical data). An interpretation of the equation and the risk threshold, is that the

dataset meets the acceptable conditions when the following statement holds true:

"All possible combinations for the different values of each indirect identifier (each combina-

tion being an equivalence class) must occur at least 5 times in the dataset, when the combination

occurs at least once."

So, the core goal of this entire process is to identify which equivalence classes occur less than

5 times and handle them either through generalization or suppression.

4.3.3 Algorithmic approach

Utilizing Python programming language and the well-known pandas library4, the first challenge

was to determine all the combinations of the indirect identifiers that occurred less than 5 times
4Available at https://pandas.pydata.org/, last reviewed in 12 June 2018

32

https://pandas.pydata.org/

Data Anonymization

Figure 4.5: Race attribute values frequency

throughout the dataset.

For this, several approaches were tested:

1. Iterating over all possible equivalence classes and counting their occurrences in the
dataset: This first tentative approach demonstrated that the process of going through all the

combinations and over 32,561 rows of the dataset could be a time consuming process. Let

the number of combinations from 2 to 7 elements of all the possible values for each indirect

identifier be n and the size of the dataset be m: the time complexity of this approach is

O(nxm). In this particular scenario, especially in the original unaltered Adult dataset, both

n and m are quite large, resulting in a gigantic time complexity. Even when dividing the

dataset into chunks or even if multiple threads were to be applied, this standard approach is

too computationally demanding and, consequently, unfeasible.

2. Standard iteration with tabu dictionary: Iterating each element of the dataset, finding the

differently sized (from 2 to 7) equivalence classes existing in each row and, finally, for each

of the classes check the remaining elements of the dataset for the existence of this particular

combination, until 5 occurrences are found or the dataset ends. To shorten this process, a

combination is skipped if it already exists in the resulting "tabu" dictionary (meaning the

occurrences of the combination have already been counted). This approach is still not ideal

33

Data Anonymization

Figure 4.6: Sex attribute values frequency

Figure 4.7: Two most frequent native country attribute values

as shown by Annex A.1.1, where little over 1000 rows have been iterated over 10 minutes

of runtime. The pseudo-code for this approach is represented in algorithm 1.

3. Set intersection: Sets are data structures that are very efficient by nature. For instance,

both adding a new element and checking if an element already exists in a set have average

time complexities of O(1). Since, so far, the bottleneck has been time complexity in the

implementations, sets come as a tempting solution.

Furthermore, at the core of this solution is the knowledge that an equivalence class with

frequency equal or higher than 5 is cleared as non problematic.

Assembling these two pieces, at its core, this method relies on firstly creating 5 different

sets, stored in a list, followed by iterating over each row of the dataset and each equivalence

class (from size 2 to 8) that each row has. Then, for each equivalence class, the class will

34

Data Anonymization

Algorithm 1 Iterate over dataset and combinations in each record, with tabu dictionary
1: tabu = {} . Dictionary
2: for each index, row in dataset do
3: for each integer i in range(2,7) do . Combination size 2 to 7
4: combinations = get-size-i-combs(row, i)
5: for each comb in combinations do
6: number-of-occurrences = 1
7: if comb in tabu.keys then . Combination already counted, proceed
8: continue
9: end if

10: for each remaining-row in dataset do . Rows not yet iterated over
11: if comb is-subset-of remaining-row then
12: number-of-occurrences += 1
13: end if
14: if number-of-occurrences >= 6 then
15: break
16: end if
17: end for
18: tabu[comb] = number-of-occurrences
19: end for
20: end for
21: end for

be added to the first set of the set list that does not yet contain that class. If all 5 sets contain

that equivalence class, execution will proceed normally.

After the main iteration is over, some set operations will be performed, in order to return the

classes that exist at least in one of the 5 sets, but not on all 5.

The pseudocode for this approach is presented in Algorithm 2 and its "EXTRACT-RESULT-

FROM-SETS" procedure can help in providing a better understanding of the set operations

done to extract the equivalence classes that do not occur at least 5 times in the dataset.

As seen in Appendix A.1.2, the execution time on the unaltered Adult dataset is a bit over

11 seconds, with the main iteration taking only around 9 seconds. This implementation is,

then, viable and can help do relevant analysis of the dataset in a very acceptable time frame.

In summary, the third implementation presented was the only one that was viable, timewise.

Even after this result, some more pruning can be made. It is known that the superset of a set

can never have higher frequency than the set. Or, in a different prism, let A and B be two sets

and C be any other set; A∩B∩C can never be greater in size than A∩B. Contextualizing, if an

equivalence class is a superset of another equivalence class with less elements, the bigger one can

be pruned, as the superset is just an extension of the core problem that is the smaller equivalence

class.

35

Data Anonymization

Algorithm 2 Approach using Sets and Set theory
Output: result-set set with the combinations that occur less than 5 times on the dataset

1: set-list = [set(), set(),set(), set(),set()]
2: procedure MAIN-ITERATION:
3: for each index, row in dataset do
4: for each integer i in range(2,7) do . Combination size 2 to 7
5: combinations = get-size-i-combs(row, i)
6: for each comb in combinations do
7: for each c-set in set-list do
8: if comb not in c-set then
9: c-set.add(comb)

10: break
11: end if
12: end for
13: end for
14: end for
15: end for
16: end procedure
17: procedure EXTRACT-RESULT-FROM-SETS

18: set-union = set()
19: for each c-set in set-list do . get the union of all 5 sets
20: set-union = set-union.union(c-set)
21: end forset-intersection = set-union.copy()
22: for each c-set in set-list do . Get set with elements that occur in all c-sets
23: set-intersection = set-intersection.intersection(c-set)
24: end for
25: return set-union.difference(set-intersection)
26: end procedure
27: MAIN-ITERATION()
28: result-set = EXTRACT-RESULT-FROM-SETS()

The selected implementation does come with a limitation: its output is only a set with equiv-

alence classes with frequency smaller than 5 and greater than 0. Even after pruning, more infor-

mation is necessary to properly judge the dataset and to take an informed decision on what the

next anonymization step should be. To do so, information described and exemplified in Appendix

A.2.1 is collected by a Python script, allowing for better decision making on what process to use

(generalization, suppression) and over which attributes or values.

4.4 Anonymization iterations

The process of applying generalizations and some suppressions is an iterative process. More

relevant iterations will be described, along with the rationale behind each iteration’s decision.

The first few iterations will only analyze and attempt to solve equivalence classes that occur

less than 5 times with a size of 2. After some iterations, size of 3 will be handled and with due

announcement all sizes will finally begin being handled.

36

Data Anonymization

Unless mentioned otherwise, generalizations applied will have been defined in table 4.2.

1. Iteration 1: The first analysis performed by the methods described in section 4.3 revealed a

massive number of different equivalence classes that do not occur the minimum of 5 times,

thus being below the acceptable re-identification risk.

A big number of problematic equivalence classes warrants also a big generalization to be

made. Since Age attribute has the biggest number of unique values (all integers between 17

and 90), it was selected to undergo the planned level 1 generalization.

2. Iteration 2: Annex A.2.2 displays the analysis result after iteration 1. It is clearly observ-

able that the number of occurrences of problematic equivalence classes that contain a value

from the Native Country is considerably higher than all other attributes. Furthermore, there

is no country or small group of countries particularly more frequent in these problematic

equivalence classes — except for the extremely common "United-States", all other coun-

tries occur fairly even (and low) amount of times.

Also supported by Native Country being the attribute with more different values after itera-

tion 1, it is justifiable to apply the specified level 1 generalization for this attribute.

3. Iteration 3: The number of occurrences of each attribute seems quite evenly distributed on

Annex A.2.3, so level 2 generalization for Age attribute was selected, given that it was one

of the softest generalizations that should amount for the least loss of information, mainly

due to its numeric nature.

Nevertheless, an immediate analysis after this generalization, documented on Annex A.2.4,

displayed low effectiveness on this choice, so the generalization suffered an immediate roll-

back.

It was then decided to go for the second attribute with most occurrences, which was the

Education attribute. Further study revealed that there was no particular set of values that

was especially problematic, so level 1 generalization for this attribute was applied.

4. Iteration 4: Although age level 2 generalization was reverted in iteration 3, Annex A.2.5

suggests that this generalization is indeed necessary, as Age is still a problematic field. An-

nex A.2.6 displays immediate results and further analysis reveals that, as predicted in section

4.3.1.1, ages over 60 were very unique and a big portion of what was disabling some equiv-

alence classes to meet the 5 occurrences threshold. In consequence, ages over 60 were

grouped into 60, with the meaning of "60+".

5. Iteration 5: Special attention on the counters of each value of Annex A.2.7 exposes a

problematic value of ’Married-AF-spouse’, in the Marital Status attribute. The value is

an outlier among all other analyzed values, as predicted a priori, during analysis of the

distribution of values of this attribute. The relatively soft Level 1 generalization for Marital

Status was applied.

37

Data Anonymization

6. Iteration 6: This iteration consisted of some trimming, as few problematic equivalence

classes of size 2 remained. ’Armed-Force’ occupation only occurred 9 times throughout the

whole dataset, so it was soft-generalized into ’protective-serv’ occupation.

Then, all the other problematic pairs of values were identified and manually handled by

suppressing (swapping with missing data value ’?’) the most cells of the dataset that would

minimize the number of cells affected, i.e., when a row has two problematic pairs, check if

there is an element that exists in both pairs. If this holds true, replace that common element,

thus solving two problematic pairs at once.

Iteration 6 successfully solved all equivalence classes of size 2 and further iterations will

account for pruned equivalence classes of size 3.

7. Iteration 7: With the sets of size 3 that do not meet the thresholds, Occupation attribute was

revealed by the output in Annex A.2.8 as the the most occurring attribute in these sets. Level

1 generalization was applied. The different new values where each old value was grouped

to is presented in table 4.3.

Group Value Value Value Value
Tech-labour Tech-support Craft-repair Machine-op-inspct Transport-moving
Care-oriented Other-service Sales prof-specialty Protective-serv
Manual Farming-fishing Priv-house Handlers-cleaners -
Adm-manag Exec-managerial Adm-clerical - -

Table 4.3: Generalization grouping of Occupation values

8. Iteration 8: Even though Race is a more frequently problematic attribute than Marital

Status (see Annex A.2.9), values of Race are semantically hard to generalize, so, since the

difference in frequency is negligible, Marital Status was chosen for a level 2 generalization.

9. Iteration 9: Given a small number of occurrences of size 3 after iteration 8, from this

iteration onwards, all sizes of equivalence classes will now be handled. The total number of

sets that still have to be handled is now 1293. Out of those, 1024 contain a value from the

Age attribute. Even if incurring in considerable information loss, it is necessary to protect the

privacy of the dataset to generalize the attribute into level 2 of the generalization hierarchy.

10. Iteration 10: The output in Annex A.2.10 reveals a problematic value of ’Asian-Pac-

Islander’ in the attribute Race. Level 1 generalization where this value is grouped with

the ’Other’ value is applied.

11. Iterations 11-15: These final iterations will revolve around substituting key problematic

cells with missing value sign ’?’.

Firstly, all the problematic sets are stored and will be iterated over. If a problematic set

exists in a row of the dataset, a dictionary with the index of the row as key will store the

38

Data Anonymization

set’s elements as value. If this row already had one or more elements as value, the new

values will be appended to the list (even if repeating).

Secondly, for each entry of the dictionary, the most frequent element of each row of the

dataset will be defined, along with all elements that occur the same amount of times.

Finally, one of the determined more frequent problematic elements on a row will be re-

placed, depending on which attribute they belong to, abiding by the following priority:

Native Country > Race > Marital Status > Education > Occupation > Age > Sex

Being Native Country the first option to be replaced and Sex the least preferable one 5.

After some iterations (since each iteration conservatively only suppresses the most frequent

problematic elements), the anonymization process has been concluded and all equivalence

classes now feature a frequency of at least 5 on the dataset.

4.5 Process evaluation

[[CKLM09], chapter 3, Utility Metrics] proposed a Loss Metric (LM) to evaluate the information

lost in a generalization. LM works as follows:

Let A be an attribute, tA be a tuple of values of A and x be the generalization value to which

members of tA were transformed to.

If |A| is the size of the domain of A, i.e., the number of all possible pre-generalization values,

and M the number of values in tA, then the LM for a generalization tA -> x is given by equation

4.2.

LMx =
(M−1)
(|A|−1)

(4.2)

In [CKLM09], LM for each attribute A, LMA, is given by the average of all LMx for all gener-

alizations x performed for each tuple tA.

Although this average presents a very interesting metric that can easily be applied to general-

ization processes in data anonymization, it only accounts for the number of different values that

were grouped into new generalization values, with equivalent relevance. Meanwhile, it does not

take into account the amounts of data that were altered, i.e., how many rows of the dataset were

affected by a generalization x. So, to proportionally change the relevance of information losses of

generalizations that affect more or less rows, the weighted mean is used to determine LMA.

5Since the context of the dissertation is inserted in a medical scenario, this priority order was defined by attempting
to predict which information would be the most relevant for medical purposes, but the relative value of each attribute is
not absolute and is subject to different interpretations depending on the exact final purpose of the information.

39

Data Anonymization

Let xi be a generalization for tuples belonging to attribute A, let R be the number of rows in

the dataset and Rxi be the number of rows affected by a generalization xi, equation 4.3 determines

the weighted LMA, wLMA.

wLMA = ∑
i=1

LMxi ∗
Rxi

R (4.3)

After all the iterations described in section 4.4, the weighted loss metric for each attribute has

been calculated and is represented in table 4.4.

Attribute Loss Metric
Age 0.318
Education 0.254
Marital Status 0.132
Occupation 0.204
Race 0.013
Sex 0.0 (no generalizations)
Native Country 0.566

Table 4.4: Loss Metrics for the different indirect identifier attributes.

As expected, Race attribute did not incur in a big information loss, using weighted Loss Metric

as a measurement, because only one possible value with a low number of occurrences throughout

the dataset was generalized.

Native country seems to have taken a considerable amount of information loss and it can

be justified by the great disparity of sizes of the domains of the attribute before and after its

generalizations. Coincidently, it was also the first attribute to be removed on the default priority

of the applied suppressions.

Overall, the Loss Metric values achieved are acceptable, while applying some intuitive gener-

alizations to the data, maintaining its ease of understanding.

4.6 Considerations

Organically optimizing the anonymization of a dataset requires a good amount of experience,

understanding of the data and of the context, and solid processes to obtain the information to

support the best decisions. When reapplying this process, a version control environment is advised,

to swiftly allow for some possible rollbacks to previous states.

Any future attempts to automate the data anonymization process require solid understanding

of the techniques and decisions made during an organic process, as well as being accompanied

by careful and gradual evaluation of the state of the dataset because, as seen during the organic

process, sometimes the best decisions or the next steps may have not been predicted a priori, as

was the case with some soft-generalizations or occasional suppressions that were not established

during the preparation phase.

40

Chapter 5

Data Transmission Security

For the purpose of sharing information either of an anonymized dataset or of a data mining model

to be used in a distributed setting, most if not all of the peers in the system must be able to behave

as a server to propagate their information and simultaneously as a client, to be able to obtain in-

formation from the other peer/sources. These channels of transmission must be secure, as medical

information is quite sensitive and in many situations must not be made publicly available. Accessi-

bility to the data is also important and adding it to the concern of only some selected entities being

able to access the information that these channels can transmit, a secure authentication mechanism

is also a necessity. When possible, it must also swiftly allow for new entities to request or access

the data.

To ensure state-of-the-art mechanisms, section 2.3.4 justifies the usage of at least version 1.1

of the TLS protocol, to match current high security standards, together with a stable version of

OpenSSL (oldest version tested in the dissertation work was 1.0.1t) for the certification infrastruc-

ture to be developed.

Additionally, being TLS a protocol under such heavy scrutiny, it can be considered quite

sturdy, thus vulnerable contexts where faults can occur lie on both configuration and implementa-

tion of the protocol, that must be duly inspected for a good evaluation of mechanisms applied.

5.1 Certification Infrastructure

The usage of digital certificates usually relies on an agreement that one or a set of Certificate

Authorities (CA) are trusted between all the users involved and can indirectly attest the identity

of another entity. Since this dissertation work involves a prototypical implementation of different

mechanisms, a CA has been created (named CAmed) and all machines will be configured in

order to accept CAmed as a trustworthy authority. In a real world scenario, this CA would be

a specialized company that is trusted world wide. A list of common CAs can be found in most

browsers security configurations, as is exemplified in figure 5.1, displaying a portion of a list of

CAs of Mozilla’s browser Firefox (version 58.0 64-bit).

41

Data Transmission Security

Figure 5.1: Mozilla Firefox Certificate Authorities list

After CAmed’s creation, entities that want to obtain a digital certificate (both as client and

server, since TLS with mutual authentication was applied) signed by CAmed must create a Cer-

tificate Signing Request (CSR) and send it to CAmed. Usually, this is where a CA verifies the

claimed identity of the entity by verifying and confirming CSR’s fields (such as Organization,

Common Name or Country). Finally, if everything is validated, the CA sends a signed certificate

generated from the CSR to the requester. Further details about the cryptographic mechanisms used

to validate certificates were reviewed in chapter 2, more specifically in section 2.3.2, addressing

Digital Certificates.

5.1.1 Creating a Certificate Authority

All commands and instructions described have been performed in a machine running Ubuntu 16.04

operating system.

1. Machine preparation

The first step on creating a CA is proper configuration, starting by verifying or setting the

hostname and the Fully Qualified Domain Name (FQDN) of the machine. Usually this is

done by a DNS entry, or locally by editing an entry on the ’hosts’ file usually located in

/etc/hosts with the local permanent IP address (127.0.1.1), followed by FQDN and simple

hostname (see Appendix B.1.1 for the file used during the implementation). Hostname and

FQDN configuration should be followed by adjusting the time/date of the machine. The

usage of Network Time Protocol (NTP) is recommended to automate this process.

42

Data Transmission Security

2. OpenSSL configuration

Some OpenSSL configuration is now required, starting by indicating the root directory of

where CA’s files will be stored. It is recommended that this is stored under /root/ folder
together with the following command:

> chmod -R 600 /root/<ca_directory>

This makes it so that superuser privileges are necessary to even access the directory of where

sensitive files such as keys will be stored. Relevant sections of OpenSSL’s configuration file

that should be edited are described in Annex B.1.2.

3. Root directory creation and composing

With sudo access, the root folder specified in OpenSSL’s configuration file should be cre-

ated, along with some sub-folders: newcerts, certs, crl, private, requests. These sub-folders

will store newly generated certificates, any certificates found fit, hold certificate revocation

list information, store private files such as private keys and store CSRs, respectively.

Furthermore, empty ’index.txt’ and ’serial’ files should be created in the base directory. The

first file will store information about generated certificates, while the second, initialized with

an integer, will assign a serial number to each certificate and automatically update it to the

next serial number, every time a new certificate is created.

4. Private key generation

A private key, within the context of Public Key Infrastructure (PKI), is under the assumption

that only the entity that has generated it can access it. Loss or embezzlement of this key
can lead to the inability to continue operations without a reset of the whole process or
lead to another entity faking its identity as if it was the owner of the private key.

Given these concerns, OpenSSL can generate a private key, appropriate to the RSA algo-

rithm. Since this key and its security is pivotal, a considerably great key size is recom-

mended, of at least 4096 bits. Another secure step that should be added is the generation

of a password, to be used with AES algorithm in the protection of access to the private key

file. Commands for generating the key with these parameters are (on CA’s root directory):

> openssl genrsa -aes256 -out private/cakey.pem 4096

The command will then generate a 4096 bit long private key stored in ’private/cakey.pem’.

Access to the file is password protected, so a prompt should appear for password creation,

using AES256 algorithm.

43

Data Transmission Security

Generation a public key, pairing with this private key, can be easily done at any moment,

provided access to the private key is granted.

5. Root certificate creation

A CA must itself possess a digital certificate, named a Root Certificate, usually self-signed,

to allow the distribution of its public key.

A possible command to create this Root Certificate, storing it in ’cacert.pem’ file, with 10

years of validity can be:

> openssl req -new -x509 -key private/cakey.pem \

-out certs/cacert.pem -days 3650 -set_serial 0

X509 is a standard for certificate file formats and the key used for (self-)signing the cer-

tificate is the private key generated above, that should prompt a password insertion request.

Upon using this command, some information about the entity (CAmed) will have to be

filled. Fields added to that prompt during dissertation work are specified in Annex B.2.1.

5.1.2 Generating Digital Certificates

In order for a peer or any entity to obtain a digital certificate, they must produce a Certificate

Signing Request (CSR). In short, the entity claims who the entity is in the CSR and sends it to the

CA for validation.

In traditional SSL/TLS mechanisms, the server is frequently the entity who must own a cer-

tificate to prove its identity. However, this scenario uses mutual authentication, where the client

must also provide a valid digital certificate for client-server communications to go through.

First, any entity must possess its own private key. Refer to ’Private key generation’ in section

5.1.1 above on how to do so and for some security concerns 1. While naming the file where the

private key is held ’peer_private_key.pem’, a CSR can be created with the terminal command:

> openssl req -new -key peer_private_key.pem -out peer_req.csr

Some situations, like some use cases in the Google Chrome browser, may require the Subjec-

tAltName field to be specified as well. Creation of a CSR with this field is exemplified and further

detailed in Annex B.2.2.

Access to ’peer_private_key.pem’ must once again require the password that protects the file.

Created CSR file should now be sent over to the CA that will produce a corresponding signed

digital certificate. To do so, the CA must input the following command:
1Since in this case the private key is of a standard server or client and not as sensible as a CA’s private key, it is

currently tolerable for the key to have a smaller size, such as 2048 bits, instead.

44

Data Transmission Security

> openssl ca -in peer_req.csr -out peer_cert.pem

Standard output of this command features is demonstrated in Annex B.2.3 and features a

prompt to insert CA’s private key password to access the file, display of the information of the

entity that generated the CSR and a confirmation generating a new digital certificate and signing

it. Again, this is where a process should be initiated by the CA to verify the information stated on

the CSR by the requesting entity.

If the process went smoothly, after transmission of the generated certificate, the requester now

holds a digital certificate that can be used to transmit its public key to other users that trust the

same CA, and perform an authentication protocol.

5.1.2.1 PKCS12: Importing certificate into a browser

PKCS12 is an archive file format to store several cryptographic files into a single bundle. A

PKCS12 archive is usually required to import a client’s digital certificate into a browser. Specif-

ically, both client’s private key and client’s digital certificate are bundled. Annex B.2.4 describes

the commands and prompts to generate one of these bundles.

Most browsers should provide a graphical interface (usually in security / certificates settings)

that makes importing this bundle into the browser a trivial task.

5.2 Server side

The server was built with the assistance of Apache 2 2. Scripts for operations regarding file manip-

ulation were developed, including some configuration files editing and distribution of data between

different directories of the file server.

A premise of this process is that the server already possesses a digital certificate, in this sce-

nario validated and signed by the local CA, CAmed, that is trusted by all the peers.

5.2.1 Setup

Apache2 is required for the development of the server, so the first action should consist in using a

package manager (either graphic of command line based) to install apache2.

Enabling and properly setting up SSL/TLS in apache2 requires some additional commands

and steps, described below.

1. Enabling Apache’s SSL module.

> sudo a2enmod ssl

2Documentation available at https://httpd.apache.org/docs/2.4/

45

https://httpd.apache.org/docs/2.4/

Data Transmission Security

2. Creating a symbolic link for the default-ssl configuration file.

> sudo ln -s /etc/apache2/sites-available/default-ssl.conf \

/etc/apache2/sites-enabled/000-default-ssl.conf

3. Adding key and certificate to default-ssl configuration file.

> sudo nano /etc/apache2/sites-enabled/000-default-ssl.conf

*Edit the following values:

SSLCertificateFile <absolute path to certificate>

SSLCertificateKeyFile <absolute path to private key>

4. Restarting apache server

> sudo service apache2 restart

Since the private key is now used by Apache, the password to access its file should be

requested upon restart.

Apache server’s default ’it works’ landing page should now be accessible through a standard

browser both when using standard HTTP and when using HTTP with SSL/TLS (HTTPS), under

the assumption that the machine that accesses the client trusts the CA that signed the certificate.

5.2.2 File structure

The way files are distributed in the server depends on what is the use case that was suggested in

section 3.1, i.e., depends on if an anonymized dataset or a data mining model is being stored in the

server.

Starting from the root directory of the server, data mining models are stored under it in the

models/ folder. Meanwhile, anonymized datasets are under datasets/ folder, where a folder with

the name of dataset is created and the dataset is divided in batches, each under a sequentially

numbered folder, with the file name ’batch<sequence_number>.csv’.

An exemplifying file tree is displayed in figure 5.2.

While storing and making a data mining model available is a straightforward task, placing

an anonymized dataset correctly divided in batches raises some concerns. The developed Python

script can take the approximate size (in kB) of a batch and divides and stores the information in

such a way that a batch does not end in between a row of the dataset.

46

Data Transmission Security

Figure 5.2: Server’s file tree.

5.2.3 Security mechanisms

5.2.3.1 Enabling mutual authentication

In a similar way a server can use its digital certificate to prove its identity to the client, the client

can also send its own digital certificate to prove its identity to the server (again, with the core

assumption that both trust the CAs that signed the digital certificates). With TLS, this process is

called mutual authentication.

Enabling mutual authentication in apache2 requires editing fields of the default-ssl configura-

tion file of the server. The necessary editions are listed below:

1. Uncommenting SSLCACertificateFile and adding the absolute path to the trusted CA’s cer-

tificate (in the developed scenario, CAmed’s digital certificate file).

2. Uncommenting SSLVerifyClient require.

3. Uncommenting SSLVerifyDepth and editing its value to ’2’.

5.2.3.2 Authentication forcing and managing

As client authentication is a required step to allow access to the data in the server, HTTPS access

to the server has to be forced. HTTPS forcing is achieved by adding or editing a .htaccess file in

47

Data Transmission Security

the server’s root directory to match the contents in Annex B.1.3 together with adding the following

to the virtual host in the default (non-secure) site configuration file (usually in Apache folder/sites-

available/000-default.conf):

<Directory /var/www/html>

AllowOverride All

</Directory>

"/var/www/html" should be replaced by the server’s root directory. Finally, enabling of Apache’s

rewrite mod and restarting of the Apache server may be necessary. These are the two commands

necessary to do so:

> sudo a2enmod rewrite

> sudo service apache2 restart

Now that the client is forced to share its own digital certificate, the server can match its in-

formation to a list of entities that can access server data — after verification of the certificate’s

validity through standard initial TLS communications. Information that can be matched is any of

the fields about the subject of a X509 certificate:

• Country

• State

• Location

• Organization

• Organizational Unit

• Common Name

• Email

For a quick addition of new allowed entities, the default-ssl configuration file has been altered

so that a Python script can easily alter the contents of a separate file. This includes:

1. Removing SSLVerifyClient and SSLVerifyDepth lines

2. Replacing it with

48

Data Transmission Security

<Directory "/var/www/html">

SSLVerifyClient require

SSLVerifyDepth 2

SSLRequireSSL

Include valid_expressions.list

</Directory>

where "/var/www/html" is the root directory of the Apache server and ’valid_expressions.list’

is the file being altered by the Python script, on the root folder of apache (usually /etc/a-

pache2).

With this configuration, the script will receive information about different fields of the entity

to be added and edit ’valid_expressions.list’. Help about the usage of the script and an example

file that matches some fields of a client certificate (valid_expressions.list) can be found in Annexes

A.3.1 and B.1.4, respectively.

5.3 Implementation Evaluation

5.3.1 Experimental Setup

Three different machines were used to verify the implementation of SSL/TLS: a client machine

(tuxCLI) and two server machines, porto.fe.up.pt and douro.fe.up.pt (tuxSV1 and tuxSV2, respec-

tively). tuxSV1 and tuxSV2 had their servers setup as described above, throughout section 5.2.

tuxCLI also has a digital certificate of its own that can be used for client authentication.

Each scenario is matched against its expected behavioral outcome. Scenarios, parameters and

predicted outcomes are documented in Table 5.1

Scenario Client Certificate Server Certificate Expected Outcome
1 - Handshake terminated by client.
2 - Handshake terminated by server.
3 Successful access.

4
but not authorized

Rejection by server.
(403 unauthorized)

Table 5.1: Experimental scenarios, valid certificates and expected outcomes.

Note: On scenario 4 the client has a valid certificate, but client’s identity does not match any

authorized identity on the server’s allowed entities list.

49

Data Transmission Security

5.3.2 Experiments Results

Results displayed have been gathered with the assistance of Firefox browser version 60.0.2 and

network packet information through Wireshark 3 — adding to the previous technologies already

mentioned such as OpenSSL and Python language.

Some preliminary steps have been taken before undergoing the different experiment scenar-

ios, such as verifying Apache’s server status, correct placement of digital certificates, keys and

PKCS12 bundles and versions of the frameworks used. Most relevant preliminary information

gathered was confirmation that the server supports the currently most recent TLS version (v1.2),

with the commands and outputs on Annex B.3.1.

1. Experimental scenario 1:

Even with tuxCLI having a proper digital certificate, communications with a server that

possesses a non valid certificate should be closed by the client. For example, having tuxCLI

not trusting the CA that signed the certificate of tuxSV2 (CAmed), the browser displayed an

error message and blocked access to the server (Figure 5.3).

Figure 5.3: Client browser: invalid tuxSV2 certificate

Further network packet analysis can be found in Annex B.3.2.

2. Experimental scenario 2:

In this scenario, the browser should validate communications and a normal use case of TLS

would allow access to the server, but since mutual authentication is being used, the server

will reject client access when either no client certificate is provided or the CA that signed it

is not trusted by the server.

3Available at https://www.wireshark.org/

50

https://www.wireshark.org/

Data Transmission Security

Figure 5.4 displays an error, ’SSL_ERROR_HANDSHAKE_FAILURE_ALERT’, meaning

that the initial TLS handshake was not successful. Further investigation of the network

packets in figure 5.5 confirm that the server tuxSV2 sent the first ’Encrypted Alert’ message

that prompts termination of the TLS handshake.

Figure 5.4: Client browser: invalid tuxCLI certificate

Figure 5.5: Network packet analysis: No client certificate presented

3. Experiment 3:

Client’s digital certificate and private key bundled into a PKCS12 archive were loaded into

tuxCLI’s browser.

51

Data Transmission Security

On tuxSV1, the Python script mentioned by the end of section 5.2.3.2 was executed, adding

a new entry to a list of entities authorized to access the server. Exact command used (identi-

fying the new identity), a snapshot of the file that contains the list of authorized entities and

some information about the used client certificate’s subject are expressed in Annex B.3.3.1.

Since information to be matched on tuxSV1’s authorized entities list match information in

the client certificate, access to the server was successful as expected. Browser requesting

which client certificate should be used from the available ones can be seen in figure 5.6.

Figure 5.6: Browser requesting client certificate selection

After selection of the correct certificate, successful access through tuxCLI’s browser is dis-

played in figure 5.7.

Annex B.3.3.2 contains network packet analysis, displaying and describing the successful

TLS handshake and successful transmission of application data.

4. Experiment 4:

Final experiment’s setup is similar to the previous ones and the only preparation needed is

removing any entity expression from the servers’ authorized entities list that would match

the client certificate.

tuxCLI’s browser will once again request a client certificate like figure 5.6, although this

time since client certificate’s subject information does not match the specified authorized

expression, an error message will be displayed on the browser, as seen in figure 5.8.

52

Data Transmission Security

Figure 5.7: Successful access to server’s landing page

Figure 5.8: Client not authorized to access the server

A final instance of network packets analysis is in Annex B.3.4, that shows tuxSV1 sending

a forbidden response, right after tuxCLI sent his certificate, which was deemed an invalid

match and therefore not authorized.

5.4 Considerations

Apache server, OpenSSL and TLS process itself are very well tested frameworks and mechanisms

and have earned widespread trust between different users, developers and administrators. Solid

mechanisms like these require careful implementation and equally important are the versions of

the software being used. Existence of updated versions is justified by the discovery of vulnera-

bilities at a conceptual level targeted at SSL/TLS mechanisms (reviewed in section 2.3.4.1) and

implementation flaws in libraries such as OpenSSL. As robustness is a core value of any security

process, software must be kept updated to acceptable standards.

Another consideration regarding some cryptography concerns, details such as the size of a

private key can and probably will change over time, because often how vulnerable a key is to some

attack vectors depends on the capability of contemporaneous computation power and techniques.

State of the art on key generations, viability of the algorithms used and other issues should be

periodically reviewed to assure the continued security of the system.

Lastly, although this dissertation work used a local CA (CAmed) as a trusted entity by all the

peers involved, a real scenario — where reaching a consensus on a fictional trusted CA by all the

peers can prove too complex — should require digital certificates to be signed and validated by a

professional and specialized entity.

53

Data Transmission Security

54

Chapter 6

Data Mining Application Workflow

The ultimate goal of the entire set of processes in this dissertation is allowing for distributed Data

Mining (DM) applications to run in a secure manner, within a set of authorized entities. Processes

in previous chapters allow for either sharing a (medical) dataset, that before the process contained

unacceptable privacy risks, or sharing a data mining model to be used by another peer. Both these

shares are done under state-of-the-art secure environments.

Exemplifying possible workflows of DM applications that make use of the architecture devel-

oped can add value. Focusing mainly on comparative performances between different scenarios

provides concrete measurements on the proportion of maintained effectiveness in a standard use

case against utilizing processes developed during the dissertation.

6.1 Machine Learning Algorithms

For a distributed setting, incremental Machine Learning (reviewed in section 2.5) has plenty of

potential. Not only it fits a scenario with several peers working simultaneously in the same model

or process, but it allows for considerable quantities of data that cannot be stored locally simulta-

neously to be used as training set. Furthermore, it can adjust to concept drifting where the model

changes over time to match real world concept altering.

6.1.1 Classification: Linear Support Vector Machine

6.1.1.1 Libraries

Python’s package scikit-learn provides a classifier that, with correct parameters, behaves as an

incremental linear kernel Support Vector Machine (SVM) 1.

Scikit-learn also provides a non-incremental linear SVM2.

1More information at http://scikit-learn.org/stable/modules/sgd.html (Last reviewed in 24 Jun
2018)

2Documentation at http://scikit-learn.org/stable/modules/generated/sklearn.svm.
LinearSVC.html (Last reviewed in 24 Jun 2018)

55

http://scikit-learn.org/stable/modules/sgd.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

Data Mining Application Workflow

Another Python package, pickle3, is usually used to convert an object (such as a DM model)

into another format that can be stored, such as a file. This process is known as serialization and

the reverse process, deserialization, should also be possible.

Although pickle is a common approach, it comes with some security concerns where malicious

code can be executed during deserialization. Because of this, only data from trusted sources should

be deserialized.

Since in this context only scikit-learn models are handled, joblib library is used, working

similarly as pickle but with a better performance (suggested in scikit-learn Model Persistence

documentation).

As a final note, it is recommended that scikit-learn versions match between the users, to avoid

any unforeseen complications.

6.1.1.2 Implementation

For training and testing, the Adult dataset was used, both in its original state and the version

anonymized by the processes in Chapter 4.

Only conversion from nominal values to numerical values, when relevant, was applied on the

dataset preprocessing. Reiterating, the comparison between results in different scenarios is more

relevant that the absolute value of the results, so data preprocessing was not extensive.

1. Non-Incremental SVM: Unable to load a preexisting model.

The number of iterations (attempts at generating a model) can be specified, and after pre-

processing, performance metrics will be output.

2. Incremental SVM: Accepts an argument that specifies if it should generate a new model or

if it should load a pre-existing SVM model as default.

After data preprocessing, training will occur, followed by the output of some performance

metrics.

The number of different models to be generated can also be given as an argument and the

best performing one out of the created or incremented models will be stored.

6.1.2 Classification: Online/Incremental Random Forest

Original implementation for this algorithm is present in [Szt17].

This implementation works smoothly with the dataset, even outputting confusion matrices and

other performance metrics. A small caveat is that the implementation is of an online algorithm,

so while it supports learning from a stream or successive small batches of training data, it is not

prepared to store or share the model, nor initiating a new continuation execution after some time,

or even in another machine.

To address these issues, adaptations made to the algorithm consist of:

3Documentation at https://docs.python.org/2/library/pickle.html (Last reviewed in 24 Jun 2018)

56

https://docs.python.org/2/library/pickle.html

Data Mining Application Workflow

1. Splitting the training set, allowing for the model to be incrementally trained in different

locations / executions of the algorithm, each time with portions of the training data.

2. Serialization of the generated Random Forest model, so that the model can be output

into a file and shared with other entities, for instance for a new incremental iteration.

3. Loading of an existing model, another execution case where a preexisting model is loaded

and incremented over.

6.2 Experiments and Results

Metrics used for the results consist mainly of prediction accuracy and confusion matrices.

Confusion matrices cross match the predicted value against the actual value of record. For a

quick analysis, it is important to note that frequencies in the main diagonal of the matrix account

for the correct predictions, while frequencies outside of it were wrongful predictions.

6.2.1 Non-Incremental SVM

Being non-incremental, the script that trains this model is executed in a single machine, over 100

iterations attempting to find the best model.

6.2.1.1 Original adult dataset

Results obtained by non-incremental SVM with the original dataset are presented in table 6.1.

Interpretation of the results will be done further on during this section’s conclusions.

Confusion Matrix Predicted <= 50K Predicted >50K
Actual <= 50K 3949 4247
Actual >50K 1242 1308

Mean accuracy 0.267
Maximum accuracy 0.489
Minimum accuracy 0.237

Table 6.1: Non-incremental SVM: Original adult dataset

6.2.1.2 Anonymized adult dataset

Table 6.2 contains the output of the best model generated for this scenario, with the anonymized

Adult dataset. A relevant note is that not all models generated had zero predictions on ’>50K’,

although coincidentally it happened in the best performing one. Accuracy results variation through

all models is small, too; so, results are consistent.

57

Data Mining Application Workflow

Confusion Matrix Predicted <= 50K Predicted >50K
Actual <= 50K 8171 0
Actual >50K 2573 0

Mean accuracy 0.761
Maximum accuracy 0.776
Minimum accuracy 0.750

Table 6.2: Non-incremental SVM: Anonymized adult dataset

6.2.2 Incremental SVM

6.2.2.1 Setup

Dataset to be used was divided into 4 different parts. Firstly, random 30% of the dataset is to be

used as test set. The other 70% is the training set, which will be divided again into 3 more or less

equally sized parts.

Three different machines will be involved in the process, tux1 (douro), tux2 (porto) and tux3

(gp). All three machines have access to the test set (which are shared by hosting in any of the tux

machines and the other ones can fetch it securely) and each one of them contains one of the 3 parts

that the training set was divided into. Resulting file server on tux1 is demonstrated in Annexes

C.1.1 and C.1.2, for shared datasets and models, respectively.

A tux that wants to request a model or dataset from other tux uses Python’s requests library to

HTTPS request it, with the correct secure properties, such as digital certificates4.

6.2.2.2 Original adult dataset

Confusion matrix and accuracy statistics in table 6.3 show the final results in tux3, after the model

has been incremented by both tux1 and tux2 with each of their respective datasets. Intermediate

steps can be observed in the Appendix, in section C.2.1.

Confusion Matrix Predicted <= 50K Predicted >50K
Actual <= 50K 7095 1101
Actual >50K 2422 128

Mean accuracy 0.310
Maximum accuracy 0.672
Minimum accuracy 0.241

Table 6.3: Incremental SVM: Original adult dataset

4Advanced usage of the library available at http://docs.python-requests.org/en/master/user/
advanced/ (Last reviewed in 24 Jun 2018)

58

http://docs.python-requests.org/en/master/user/advanced/
http://docs.python-requests.org/en/master/user/advanced/

Data Mining Application Workflow

6.2.2.3 Anonymized adult dataset

Same process is repeated as the original adult dataset for incremental SVM, only using the anonymized

dataset, instead. Once more, intermediate results in both tux1 and tux2 can be seen in section C.2.2

of the appendix.

Confusion Matrix Predicted <= 50K Predicted >50K
Actual <= 50K 7759 412
Actual >50K 2398 175

Mean accuracy 0.551
Maximum accuracy 0.738
Minimum accuracy 0.331

Table 6.4: Incremental SVM: Anonymized adult dataset

6.2.3 Online/Incremental Random Forest

Implementation of Online Random Forest (ORF) has its own dataset, with 8 different possible

classes that each record can belong to. The gist of this prediction task is trying to predict the type

of motion (climbing up, climbing down, walking, running, sitting, etc) of an individual given some

different features. Headers of the dataset and full possible class/label list is given in Annex C.3.1.

Only local and distributed incremental use of the algorithm will be tested, between tux3 and

tux1.

6.2.3.1 Local ORF

Results for local execution are displayed in figure 6.1.

Figure 6.1: Local ORF results

59

Data Mining Application Workflow

6.2.3.2 Distributed incremental ORF

Final results in tux1 for distributed incremental execution are displayed in figure 6.2.

Results of the first increment performed in tux3 can be viewed in Annex C.3.2.

Figure 6.2: Final distributed ORF results

The only difference between a local and distributed ORF application is an intermediate serial-

ization of the Random Forest model, its transmission and resuming of the normal process, which

should not affect the results obtained. Thus, as expected, differences between results in local and

distributed ORF applications are negligible and can be associated with inherent randomness of the

algorithm.

6.3 Security of data transmissions

Transmission of the data was monitored the same way as the different scenarios in chapter 4.

Since all three machines were correctly configured, TLS handshakes took place as expected

and transmitted data could not be understood without the proper session key, agreed during the

handshake.

Annex B.3.5 once more shows the transmission of a data mining model during the process,

demonstrating standard TLS handshakes and the model’s information unintelligibleness, unless

the proper TLS session key is known.

60

Data Mining Application Workflow

6.4 Conclusions

Regarding a direct comparison between the value of the used datasets with a non incremental

SVM, surprisingly the anonymized dataset had superior results overall, by a considerable margin.

However, this can possibly be attributed to a lack of correct preprocessing. While the original

Adult dataset contains more detailed information, that may also hinder the ability of a classification

machine learning algorithm to withdraw generalizations and rules for records. So, even though

reasonable deviations were expected, the underachieving results of a linear SVM with the original

dataset are, most likely, an outlier that could be corrected with further feature engineering and data

preprocessing.

On comparing incremental and non-incremental SVM’s performances, the results seem quite

similar, over some iterations. The minimum and mean accuracies of these incremental approaches

show that they can be less reliable. Nevertheless, since incremental SVM supports learning over

small quantities of data at a time, while standard SVM must be trained with a single batch, it is

possible that the former can afford to try more iterations to find a good classifier than the latter.

The second algorithm used, ORF, presents very similar results when used locally or distribu-

tively, with negligible variations associated with inherent randomization in the ORF algorithm.

Adaptations to include serialization and deserialization processes seem to have been successful.

Data transmission between entities was also made under the proposed secure processes in this

dissertation, allowing for the complete application workflow to be kept exclusively within the three

peers involved.

6.5 Considerations

Some research on the privacy dangers that may exist when sharing data mining models and ac-

cesses to models has been made. For instance, [KJC04] presents some scenarios where the output

of a DM model could violate privacy, including the most straightforward scenario where public

data can be input into the model and the output is a sensitive attribute about the individual. Al-

though reverse engineering the utilized dataset from a model may be unfeasible, full access to

models and to some partial information about some individuals may lead to privacy leaks.

Given how this behavior can change depending on the model being shared, it is hard to gener-

alize rules. Best course of action should be to maintain access to these distributed DM applications

between trusted entities. The developed architecture allows for managing of the entities that can

partake in an application and to guarantee maximum privacy, but this access must be handled with

careful selection.

Processes in the dissertation allow for secure channels of communication and privacy-preserving

methods of dataset sharing. Even so, not only should the entities that can access resources be con-

trolled, the entities themselves must follow secure practices to avoid situations of data theft, social

engineering or exploits that may grant, for instance, unauthorized accesses to their own machines.

61

Data Mining Application Workflow

62

Chapter 7

Conclusions and Future Work

This dissertation work has a main goal of tackling security concerns in the area of medical Data

Mining applications. These concerns gain importance as the area expands with the amount of data

available and the number of entities involved.

Distributed medical Data Mining applications thus become a powerful method to handle this

expanding context. With a mostly distributed setting, secure channels must be created to contain

and transmit sensitive (here, medical) information between authorized entities. Also, anonymiza-

tion of datasets allows more entities to handle the information, supporting further research in a

possibly life-saving area.

Incremental Data Mining applications also provide means for different entities to cooperate in

a single Data Mining application and improve the value of a Data Mining model, simultaneously

benefiting all peers involved.

Data anonymization was developed while complying to acceptable re-identification risk thresh-

olds for medical data. The process developed was intentionally organic to provide a deep under-

standing of the decisions to be made. Results in organic anonymization measured by the loss of

information were acceptable or good on most of the attributes, while still leaving room for more

experienced intermediate decisions or generalization hierarchies that could wield better results.

Secure transmission of data was implemented according to state-of-the-art mechanisms. This

implementation features an intuitively organized distribution of files in a server and the ability to

efficiently grant new entities access to the files on a server. As long as an entity can provide proper

authentication and is authorized through the proposed mechanisms, access to the data should be

possible and security assured during data transmission.

Incremental Data Mining algorithms were expanded on, since most open-source implementa-

tions available do not allow for transmission of the model generated. Prototypical implementations

of Data Mining applications revealed that the proposed distributed architecture can securely and

conveniently transmit data with minimal or non existent impact on the performance of the algo-

rithms. Further preprocessing of the utilized datasets could increase the reliability of the results

extracted, by simulating a more realistic Data Mining application.

63

Conclusions and Future Work

Some crucial concerns have been presented for the maintenance of the secure properties of the

architecture, and must be abided.

Overall, the proposed solution assures a privacy-preserving and secure environment to develop

further research on medical Data Mining applications.

As the initial goals have been met, the only foreseeable future work lies on the automation

of data anonymization by phrasing it as an optimization problem, exclusively for convenience

purposes. All other future work is left for researchers in distributed medical Data Mining.

64

References

[AA13] Mohammad A AlAhmad and Imad Fakhri Alshaikhli. Broad view of cryptographic
hash functions. International Journal of Computer Science Issues, 10(4):239–246,
2013.

[AG07] Ashraf Abusharekh and Kris Gaj. Comparative analysis of software libraries for
public key cryptography. Software Performance Enhancement for Encryption and
Decryption, SPEED, pages 11–12, 2007.

[AH+12] Fareed Akthar, Caroline Hahne, et al. Rapidminer 5. Operator Reference. www.
rapid-i. com, 2012.

[CGI04] CGI. Public key encryption and digital signature: How do they work? Available
at https://www.cgi.com/files/white-papers/cgi_whpr_35_pki_e.
pdf, last reviewed in 19 Jan 2018, 2004.

[CKLM09] Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, and Ashwin Machanavajjhala.
Privacy-preserving data publishing. Found. Trends databases, 2(1–2):1–167,
January 2009.

[DC03] Christopher P Diehl and Gert Cauwenberghs. Svm incremental learning, adaptation
and optimization. In Neural Networks, 2003. Proceedings of the International Joint
Conference on, volume 4, pages 2685–2690. IEEE, 2003.

[DHV03] Janaka Deepakumara, Howard M Heys, and R Venkatesan. Performance compari-
son of message authentication code (mac) algorithms for internet protocol security
(ipsec). In Proc. Newfoundland Electrical and Computer Engineering Conf, 2003.

[DKT17] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository. Available at
https://archive.ics.uci.edu/ml/datasets/adult, last reviewed in 10
Jun 2018, 2017.

[Dob09] Alin Dobra. Decision Tree Classification, pages 765–769. Springer US, Boston, MA,
2009.

[DR08] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version 1.2.
Technical report, August 2008.

[EE11] Khaled El Emam. Methods for the de-identification of electronic health records for
genomic research. Genome medicine, 3(4):25, 2011.

[EED08] K. El Emam and F.K. Dankar. Protecting privacy using k-anonymity. Journal of the
American Medical Informatics Association, 15(5):627–637, 2008.

65

https://www.cgi.com/files/white-papers/cgi_whpr_35_pki_e.pdf
https://www.cgi.com/files/white-papers/cgi_whpr_35_pki_e.pdf
https://archive.ics.uci.edu/ml/datasets/adult

REFERENCES

[EERM15] Khaled El Emam, Sam Rodgers, and Bradley Malin. Anonymising and sharing indi-
vidual patient data. bmj, 350:h1139, 2015.

[ESM+15] Abeer EW Eldewahi, Tasneem MH Sharfi, Abdelhamid A Mansor, Nashwa AF Mo-
hamed, and Samah MH Alwahbani. SSL/TLS attacks: Analysis and evaluation. In
Computing, Control, Networking, Electronics and Embedded Systems Engineering
(ICCNEEE), 2015 International Conference on, pages 203–208. IEEE, 2015.

[Fis36] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals
of human genetics, 7(2):179–188, 1936.

[Gra15] Laura K. Gray. Date change for migrating from SSL and early
TLS. Available at https://blog.pcisecuritystandards.org/
migrating-from-ssl-and-early-tls, last reviewed in 28 Jan 2018,
December 2015.

[Hel02] Martin E Hellman. An overview of public key cryptography. IEEE Communications
Magazine, 40(5):42–49, 2002.

[Her10] P Herzog. Osstmm 3–the open source security testing methodology manual. last re-
viewed in 07 Feb 2018 at http://www.isecom.org/mirror/OSSTMM.3.pdf,
2010.

[HFPS08] Russell Housley, Warwick Ford, W Polk, and David Solo. Rfc 5280: Internet x. 509
public key infrastructure certificate and crl profile, 2008.

[HMS01] David J Hand, Heikki Mannila, and Padhraic Smyth. Principles of data mining (adap-
tive computation and machine learning). MIT press Cambridge, MA, 2001.

[JD88] Anil K Jain and Richard C Dubes. Algorithms for clustering data. 1988.

[KCB97] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. Hmac: Keyed-hashing for message
authentication. 1997.

[KGNK16] Venkata SreeKrishna Koganti, Lavanya K Galla, Nagarjuna Nuthalapati, and
Anil Varma Kakarlapudi. Authentication protocols using encryption techniques. In
Control, Instrumentation, Communication and Computational Technologies (ICCI-
CCT), 2016 International Conference on, pages 74–80. IEEE, 2016.

[KJC04] Murat Kantarcioǧlu, Jiashun Jin, and Chris Clifton. When do data mining results
violate privacy? In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 599–604. ACM, 2004.

[KMN+02] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth
Silverman, and Angela Y Wu. An efficient k-means clustering algorithm: Analysis
and implementation. IEEE transactions on pattern analysis and machine intelligence,
24(7):881–892, 2002.

[Koh96] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hy-
brid. In KDD, volume 96, pages 202–207. Citeseer, 1996.

[KS14] J. Udhayan A K. Saranya, R. Mohanapriya. Review on symmetric key encryption
techniques in cryptography. International Journal of Science, Engineering and Tech-
nology Research (IJSETR), Volume 3, Issue 3,, March 2014.

66

https://blog.pcisecuritystandards.org/migrating-from-ssl-and-early-tls
https://blog.pcisecuritystandards.org/migrating-from-ssl-and-early-tls
http://www.isecom.org/mirror/OSSTMM.3.pdf

REFERENCES

[KT12] Batya Kenig and Tamir Tassa. A practical approximation algorithm for optimal k-
anonymity. Data Mining and Knowledge Discovery, 25(1):134–168, 2012.

[LHW18] Viktor Losing, Barbara Hammer, and Heiko Wersing. Incremental on-line learning:
A review and comparison of state of the art algorithms. Neurocomputing, 275:1261–
1274, 2018.

[MM14] Matteo Meucci and A Muller. Owasp testing guide. v4. 0,//OWASP Foundation, (s
453), 2014.

[MT14] Ltd. Milieu and Time.lex. Overview of the national laws on electronic health
records in the EU member states and their interaction with the provision of
cross-border ehealth services. Available at https://ec.europa.eu/digital-single-
market/en/news/study-national-laws-electronic-health-records-and-cross-border-
ehealth-services-eu-member, 2014.

[Pit03] Steve Pitts. An overview of digital certificates and how they are used in vpn
authentication. Available at https://www.giac.org/paper/gsec/2711/
overview-digital-certificates-vpn-authentication/104625 ;
Last reviewed in 05 Feb 2018, March 2003.

[PNNM16] Priyadarshini Patil, Prashant Narayankar, DG Narayan, and SM Meena. A compre-
hensive evaluation of cryptographic algorithms: DES, 3DES, AES, RSA and blow-
fish. Procedia Computer Science, 78:617–624, 2016.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learn-
ing research, 12(Oct):2825–2830, 2011.

[Res05] Eric Rescorla. Rfc 2818: Http over tls, may 2000. Available from World Wide Web:
ftp://ftp. rfc-editor. org/in-notes/rfc2818. txt. Status: Informational, 2005.

[SS98] Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing in-
formation: k-anonymity and its enforcement through generalization and suppression.
Technical report, Technical report, SRI International, 1998.

[Szt17] Timo Sztyler. Online random forest classifier (java). https://github.com/
sztyler/online-random-forest, 2017.

[VMC02] John Viega, Matt Messier, and Pravir Chandra. Network Security with OpenSSL:
Cryptography for Secure Communications. " O’Reilly Media, Inc.", 2002.

[WH00] Rüdiger Wirth and Jochen Hipp. Crisp-dm: Towards a standard process model for
data mining. In Proceedings of the 4th international conference on the practical
applications of knowledge discovery and data mining, pages 29–39. Citeseer, 2000.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In An-
nual international conference on the theory and applications of cryptographic tech-
niques, pages 19–35. Springer, 2005.

[Z+16] Yu Z et al. Incremental semi-supervised clustering ensemble for high dimensional
data clustering. IEEE Transactions on Knowledge and Data Engineering, vol. 28, no.
3, pages 701–714, March 2016.

67

https://www.giac.org/paper/gsec/2711/overview-digital-certificates-vpn-authentication/104625
https://www.giac.org/paper/gsec/2711/overview-digital-certificates-vpn-authentication/104625
https://github.com/sztyler/online-random-forest
https://github.com/sztyler/online-random-forest

REFERENCES

68

Appendix A

Scripts output

A.1 Execution times

A.1.1 Normal iteration with tabu dictionary

Here the script that is described in Algorithm 1 of section 4.3.3 was executed until the 1105th row

out of 32561 rows, using the original Adult dataset, before any generalization or alteration was

made.

> time python anon_study.py

0

1

2

3

4

5

[Ommited index printing]

1096

1097

1098

1099

1100

1101

1102

1103

1104

69

Scripts output

1105

^CTraceback (most recent call last):

File "anon_study.py", line 37, in <module>

for secondary_index in range(current_index+1,complete_list_size):

KeyboardInterrupt

real 10m46.324s

user 10m46.252s

sys 0m0.512s

A.1.2 Set implementation

The output of the script whose algorithm is described in Algorithm 2 of section 4.3.3, over the

unaltered Adult dataset.

time python anon_study_set.py

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

[Ommited index printing]

30000

30500

70

Scripts output

31000

31500

32000

32500

Main iteration execution time: 9.13195610046

set-union size: 374191

set-intersection size: 77182

real 0m11.158s

user 0m10.452s

sys 0m0.516s

A.2 Iterative anonymization analysis outputs

All outputs will follow the format of the example set by Annex A.2.1. Portion of the output can

be omitted, so that the presented information focuses on the data necessary to support the decision

for the actions to take on each ongoing iteration.

A.2.1 Example analysis during anonymization process

The script outputs, for the set of pruned equivalence classes, the size of the smallest equivalence

class ("smallest size"), the number of occurrences of each attribute in these problematic equiva-

lence classes, counters of the occurrence of each value and total number of problematic combina-

tions ("smallest_only_list size").

smallest size: 2

age occurrences: 24

education occurrences: 22

marital status occurrences: 21

occupation occurrences: 7

race occurrences: 18

sex occurrences: 20

native_country occurrences: 23

COUNTERS :::

Counter({’60’: 12, ’20’: 8, ’40’: 4})

Counter({’Basic’: 11, ’Superior’: 6, ’HighSchool’: 5})

Counter({’Married-before’: 10, ’Never-married’: 6, ’Married’: 5})

71

Scripts output

Counter({’adm_manag’: 4, ’tech_labour’: 2, ’care_oriented’: 1})

Counter({’Other’: 14, ’Black’: 2, ’Amer-Indian-Eskimo’: 1, ’White’: 1})

Counter({’Asia’: 12, ’America’: 7, ’Europe’: 4})

smallest_only_list size: 36

A.2.2 Iteration 2 analysis

smallest size: 2

age occurrences: 304

education occurrences: 348

marital status occurrences: 126

occupation occurrences: 317

race occurrences: 74

sex occurrences: 0

native_country occurrences: 934

Counter({’Trinadad&Tobago’: 33, ’Honduras’: 32, ’Nicaragua’: 32,

’Ecuador’: 31, ’Hong’: 30, ’Peru’: 29, ’Thailand’: 29, ’Greece’: 29,

’Vietnam’: 28, ’Yugoslavia’: 28, ’Laos’: 27, ’Columbia’: 27, ’Poland’: 27,

’Scotland’: 26, ’Cambodia’: 26, ’France’: 26, ’Haiti’: 26, ’Ireland’: 25,

’Hungary’: 25, ’Portugal’: 25, ’Italy’: 24, ’Outlying-US(Guam-USVI-etc)’: 24,

’England’: 23, ’Cuba’: 22, ’Canada’: 21, ’Guatemala’: 21, ’Iran’: 21,

’El-Salvador’: 21, ’Dominican-Republic’: 19, ’Germany’: 19, ’Jamaica’: 19,

’Japan’: 19, ’Taiwan’: 19, ’China’: 18, ’South’: 18, ’Philippines’: 16,

’India’: 16, ’Puerto-Rico’: 16, ’Mexico’: 10, ’Holand-Netherlands’: 7})

A.2.3 Iteration 3 analysis

age occurrences: 109

education occurrences: 99

marital status occurrences: 40

occupation occurrences: 89

race occurrences: 33

sex occurrences: 0

72

Scripts output

native_country occurrences: 0

A.2.4 Iteration 3.1 analysis

age occurrences: 43

education occurrences: 76

marital status occurrences: 32

occupation occurrences: 67

race occurrences: 23

sex occurrences: 0

native_country occurrences: 0

A.2.5 Iteration 4 analysis

smallest size: 2

age occurrences: 65

education occurrences: 0

marital status occurrences: 29

occupation occurrences: 49

race occurrences: 26

sex occurrences: 0

native_country occurrences: 0

A.2.6 Iteration 4.1 analysis

smallest size: 2

age occurrences: 26

education occurrences: 0

marital status occurrences: 21

occupation occurrences: 27

race occurrences: 16

sex occurrences: 0

native_country occurrences: 0

73

Scripts output

A.2.7 Iteration 5 analysis

age occurrences: 8

education occurrences: 0

marital status occurrences: 18

occupation occurrences: 20

race occurrences: 13

sex occurrences: 0

native_country occurrences: 0

>>> Counter(age_vals)

Counter({’20’: 3, ’50’: 3, ’60’: 1, ’40’: 1})

>>> Counter(marital_status_vals)

Counter({’Married-AF-spouse’: 13, ’Widowed’: 2, ’Married-spouse-absent’: 2,

’Married-civ-spouse’: 1})

>>> Counter(occupation_vals)

Counter({’Armed-Forces’: 6, ’Priv-house-serv’: 4, ’Tech-support’: 2,

’Farming-fishing’: 1, ’Craft-repair’: 1, ’Protective-serv’: 1,

’Transport-moving’: 1, ’Prof-specialty’: 1, ’Sales’: 1, ’Exec-managerial’: 1,

’Other-service’: 1})

>>> Counter(race_vals)

Counter({’Amer-Indian-Eskimo’: 4, ’Other’: 4, ’Black’: 3,

’Asian-Pac-Islander’: 2})

A.2.8 Iteration 7 analysis

smallest size: 3

age occurrences: 240

education occurrences: 0

marital status occurrences: 245

occupation occurrences: 433

race occurrences: 289

sex occurrences: 0

native_country occurrences: 0

A.2.9 Iteration 8 analysis

74

Scripts output

smallest size: 3

age occurrences: 80

education occurrences: 40

marital status occurrences: 103

occupation occurrences: 36

race occurrences: 116

sex occurrences: 0

native_country occurrences: 79

A.2.10 Iteration 9 analysis

smallest size: 3

age occurrences: 1024

education occurrences: 852

marital status occurrences: 888

occupation occurrences: 801

race occurrences: 951

sex occurrences: 0

native_country occurrences: 683

COUNTERS :::

Counter({’40’: 246, ’60’: 232, ’30’: 227, ’50’: 217, ’20’: 102})

Counter({’Married-before’: 340, ’Never-married’: 280, ’Married’: 268})

Counter({’care_oriented’: 282, ’tech_labour’: 265, ’adm_manag’: 254})

Counter({’Asian-Pac-Islander’: 348, ’Other’: 180, ’Black’: 153,

’Amer-Indian-Eskimo’: 140, ’White’: 130})

total number_of_combinations:

1293

A.2.11 Iteration 10 analysis

smallest size: 3

age occurrences: 410

education occurrences: 439

marital status occurrences: 446

occupation occurrences: 497

race occurrences: 442

sex occurrences: 0

75

Scripts output

native_country occurrences: 391

COUNTERS :::

Counter({’60’: 171, ’40’: 140, ’20’: 99})

Counter({’Superior’: 162, ’Basic’: 157, ’HighSchool’: 120})

Counter({’Married-before’: 163, ’Never-married’: 146, ’Married’: 137})

Counter({’tech_labour’: 137, ’care_oriented’: 130, ’adm_manag’: 121,

’manual’: 109})

Counter({’Other’: 211, ’Amer-Indian-Eskimo’: 82, ’Black’: 75, ’White’: 74})

Counter({’Europe’: 180, ’Asia’: 141, ’America’: 70})

total number_of_combinations:

621

A.3 Server security related

A.3.1 Usage help on adding new authorized entity

> python add_new_accepted_entity.py -h

usage: add_new_accepted_entity.py [-h] [-c COUNTRY] [-st STATE] [-l LOCATION]

[-o ORGANIZATION] [-ou ORGANIZATION_UNIT]

[-cn COMMON_NAME] [-cf CONFIG_FILE]

Add new accepted client to access the shared models or datasets, through its

certificate’s properties

optional arguments:

-h, --help show this help message and exit

-c COUNTRY Country abbreviation

-st STATE State

-l LOCATION Locality

-o ORGANIZATION Organization

-ou ORGANIZATION_UNIT

Organization Unit

-cn COMMON_NAME Common Name

-cf CONFIG_FILE Configuration file included in apache SSL

configuration (default:

/etc/apache2/valid_expressions.list)

76

Appendix B

Security Configuration and
Implementation

B.1 Configuration files

B.1.1 Hosts file

Normally located in /etc/hosts, during the creation of the Certificate Authority, it was edited to

contain the following:

127.0.0.1 localhost

127.0.1.1 gp-pc.tese.local GP-PC

where ’gp-pc.tese.local’ is the Fully Qualified Domain Name and GP-PC is the simple host-

name.

B.1.2 OpenSSL configuration file

OpenSSL’s configuration can be altered in a file named openssl.cnf, usually located in /usr/lib/ssl.

Under section [CA_default] of the file, the value ’dir’ should be set to the root directory of

where Certificate Authority’s files are to be stored, like such:

[CA_default]

dir = /root/ca

Furthermore, default policy should be looked at on the [policy_match] section, and should

be adjusted to each use case. Some more information can be obtained here: https://www.

phildev.net/ssl/opensslconf.html and on OpenSSL’s documentation.

77

https://www.phildev.net/ssl/opensslconf.html
https://www.phildev.net/ssl/opensslconf.html

Security Configuration and Implementation

B.1.3 .htaccess file - forcing HTTPS connection

GNU nano 2.2.6 File: .htaccess

RewriteEngine On

RewriteCond %{SERVER_PORT} 80

RewriteRule ^(.*)$ https://porto.fe.up.pt/$1 [R=301,L]

RewriteCond %{SSL:SSL_CLIENT_VERIFY} !=SUCCESS

RewriteRule .? - [F]

ErrorDocument 403 "You need a client side certificate issued by CAmed

to access this site or you not authorized to access this page.

If the second, please contact system administrator."

where ’porto.fe.up.pt’ in ’https://porto.fe.up.pt/$1’ must be replaced by the server’s address.

B.1.4 Authorized entities validation file

SSLRequire (%{SSL_CLIENT_S_DN_O} eq "FEUP2" \

and %{SSL_CLIENT_S_DN_CN} in {"tese.clientaa", "CaaA", "Deaav"}) \

or (%{SSL_CLIENT_S_DN_ST} eq "PORTO" and %{SSL_CLIENT_S_DN_CN} in

{"tese.asdfe", "CaaA"}) \

or (%{SSL_CLIENT_S_DN_O} eq "FEUP" and %{SSL_CLIENT_S_DN_CN}

eq "tese.clienttt") \

or (%{SSL_CLIENT_S_DN_O} eq "FEUP2" and %{SSL_CLIENT_S_DN_CN}

eq "tese.client2") \

or (%{SSL_CLIENT_S_DN_O} eq "FEUP3" and %{SSL_CLIENT_S_DN_CN}

eq "tese.client32") \

or (%{SSL_CLIENT_S_DN_O} eq "FEUP3asd" \

and %{SSL_CLIENT_S_DN_CN} eq "tese.client32") \

or (%{SSL_CLIENT_S_DN_C} eq "NL" and \

%{SSL_CLIENT_S_DN_CN} eq "nether.lands") \

or (%{SSL_CLIENT_S_DN_C} eq "NL" and %{SSL_CLIENT_S_DN_CN}

eq "nether.lands")or (%{SSL_CLIENT_S_DN_C} eq "NL" \

and %{SSL_CLIENT_S_DN_CN} eq "nether.lands") \

or (%{SSL_CLIENT_S_DN_C} eq "PT" and \

%{SSL_CLIENT_S_DN_O} eq "FEUP" \

and %{SSL_CLIENT_S_DN_CN} eq "tese.client")

78

Security Configuration and Implementation

B.2 Certificate and key generations

B.2.1 Root certificate

> openssl req -new -x509 -key private/cakey.pem \

-out certs/cacert.pem -days 3650 -set_serial 0

Enter pass phrase for /root/ca/private/cakey.pem:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:PT

State or Province Name (full name) [Some-State]:PORTO

Locality Name (eg, city) []:PORTO

Organization Name (eg, company) [Internet Widgits Pty Ltd]:FEUP

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:gp-pc.tese.local

Email Address []:up201302828@fe.up.pt

Common Name inserted matches the fully qualified domain name, that can be checked by

inputting the terminal command:

> hostname -f

B.2.2 SubjectAltName compliance

[Res05] specifies that SubjectAltName (SAN) field must be present in some situations, even

though following of this standard is not too often enforced. Nonetheless, browsers like Chrome

on its version 58 has begun to require SAN field in digital certificates. Standard methods of gen-

erating a Certificate Signing Request (CSR) are usually not sufficient to generate this field. To do

so, a configuration file may be created as below:

[req]

default_bits = 2048

79

Security Configuration and Implementation

prompt = no

default_md = sha256

req_extensions = req_ext

distinguished_name = dn

[dn]

C=PT

ST=PORTO

L=PORTO

O=FEUP

OU=DISS

emailAddress=gustavo.pinto@fe.up.pt

CN = porto.fe.up.pt

[req_ext]

subjectAltName = @alt_names

[alt_names]

DNS.1 = porto.fe.up.pt

DNS.2 = www.porto.fe.up.pt

When stored on a file named "csr_details.txt", creation of a CSR would now feature the fol-

lowing command:

> openssl req -new -key peer_private_key.pem -out peer_req.csr \

-config <(cat csr_details.txt)

B.2.3 Signing of a CSR

> openssl ca -in peer_req.csr -out peer_cert.pem

Using configuration from /usr/lib/ssl/openssl.cnf

Enter pass phrase for /root/ca/private/cakey.pem:

Check that the request matches the signature

Signature ok

Certificate Details:

Serial Number: 4668 (0x123c)

80

Security Configuration and Implementation

Validity

Not Before: Jun 19 00:46:08 2018 GMT

Not After : Jun 19 00:46:08 2019 GMT

Subject:

countryName = PT

stateOrProvinceName = PORTO

organizationName = FEUP

organizationalUnitName = DISS

commonName = porto.fe.up.pt

emailAddress = gustavo.pinto@fe.up.pt

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

Netscape Comment:

OpenSSL Generated Certificate

X509v3 Subject Key Identifier:

1C:6A:78:CF:C0:F6:52:7C:86:E8:00:EE:A2:78:55

:D8:80:DB:51:82

X509v3 Authority Key Identifier:

keyid:59:0B:A0:31:20:50:BD:DE:6A:

0E:21:8A:C1:50:A2:FA:F9:83:C5:B9

Certificate is to be certified until Jun 19 00:46:08 2019 GMT (365 days)

Sign the certificate? [y/n]:

On signing of a CSR — since CA’s password was created with password protection — the

password for ’/root/ca/private/cakey.pem’ is requested, followed by a verification that the CSR

has not been corrupted, by checking its digital signature.

Several details are then displayed, such as tentative serial number, validity, information in-

serted by the requester that claims its identity (country, organization name, common name, etc.),

as well as some technical details such as the version of X509, the standard file format for digital

certificates.

Finally, a confirmation prompt to sign the certificate is displayed. If signed, another confirma-

tion prompt to commit the newly generated certificate in CA’s database may appear:

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

81

Security Configuration and Implementation

B.2.4 Generating PKCS archive

Once again, OpenSSL provides the necessary commands to convert a private key and a digital

certificate into a single bundle, as such:

> openssl pkcs12 -export -inkey peer_private_key.pem -in peer_cert.pem \

-out client_p12.p12

Enter pass phrase for peer_private_key.pem:

Enter Export Password:

Verifying - Enter Export Password:

This command shall output a p12 (since PKCS12 was used) archive that can be imported, for

example, into a browser.

As usual, access to a private key generated with AES password encryption will request its

password on access.

Furthermore, since the PKCS12 archive contains again sensitive information, a password must

also be used to prevent unauthorized use or access to the bundle, hence why the last 2 prompts

request an "Export password".

B.3 Experiments output

B.3.1 TLS version verification

Both nmap and OpenSSL tools can be used to verify available TLS versions. 1

Nmap’s output shows all the available ciphers under each TLS version in a file tree format:

> nmap --script ssl-enum-ciphers -p 443 porto.fe.up.pt

Starting Nmap 7.01 (https://nmap.org) at 2018-06-20 03:49 WEST

Nmap scan report for porto.fe.up.pt (192.168.101.172)

Host is up (0.00071s latency).

PORT STATE SERVICE

443/tcp open https

1TLSv1.0 was still left as legacy to allow for support of outdated clients, but as stated often throughout the disserta-
tion, it is deprecated and no longer deemed secure.

82

Security Configuration and Implementation

| ssl-enum-ciphers:

| TLSv1.0:

| ciphers:

| TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (dh 2048) - C

| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (dh 2048) - A

| TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA (secp256r1) - C

| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (secp256r1) - A

| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (secp256r1) - A

| TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 2048) - C

| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA (rsa 2048) - A

| compressors:

| NULL

| cipher preference: client

| TLSv1.1:

| ciphers:

| TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (dh 2048) - C

| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (dh 2048) - A

| TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA (secp256r1) - C

| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (secp256r1) - A

| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (secp256r1) - A

| TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 2048) - C

| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA (rsa 2048) - A

| compressors:

| NULL

| cipher preference: client

| TLSv1.2:

| ciphers:

| TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (dh 2048) - C

83

Security Configuration and Implementation

| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 (dh 2048) - A

| TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (dh 2048) - A

| TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (dh 2048) - A

| TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (dh 2048) - A

| TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA (dh 2048) - A

| TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (dh 2048) - A

| TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA (secp256r1) - C

| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (secp256r1) - A

| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (secp256r1) - A

| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secp256r1) - A

| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (secp256r1) - A

| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (secp256r1) - A

| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (secp256r1) - A

| TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 2048) - C

| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_AES_128_CBC_SHA256 (rsa 2048) - A

| TLS_RSA_WITH_AES_128_GCM_SHA256 (rsa 2048) - A

| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_AES_256_CBC_SHA256 (rsa 2048) - A

| TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 2048) - A

| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA (rsa 2048) - A

| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA (rsa 2048) - A

| compressors:

| NULL

| cipher preference: client

|_ least strength: C

Nmap done: 1 IP address (1 host up) scanned in 0.60 seconds

Meanwhile, OpenSSL s_client allows simulation of a client on the server, while forcing the

usage of a specific TLS version. The absence of error messages and a valid created SSL-session

demonstrates the server’s support.

> openssl s_client -connect porto.fe.up.pt:443 -tls1_2

CONNECTED(00000003)

84

Security Configuration and Implementation

depth=1 C = PT, ST = PORTO, L = PORTO, O = FEUP,

CN = gp-pc.tese.local, emailAddress = up201302828@fe.up.pt

verify error:num=19:self signed certificate in certificate chain

Certificate chain

0 s:/C=PT/ST=PORTO/L=PORTO/O=FEUP/OU=DISS/CN=porto.fe.up.pt/

emailAddress=gustavo.pinto@fe.up.pt

i:/C=PT/ST=PORTO/L=PORTO/O=FEUP/CN=gp-pc.tese.local/

emailAddress=up201302828@fe.up.pt

1 s:/C=PT/ST=PORTO/L=PORTO/O=FEUP/CN=gp-pc.tese.local/

emailAddress=up201302828@fe.up.pt

i:/C=PT/ST=PORTO/L=PORTO/O=FEUP/CN=gp-pc.tese.local/

emailAddress=up201302828@fe.up.pt

Server certificate

-----BEGIN CERTIFICATE-----

<truncated information>

-----END CERTIFICATE-----

subject=/C=PT/ST=PORTO/L=PORTO/O=FEUP/OU=DISS/CN=porto.fe.up.pt/

emailAddress=gustavo.pinto@fe.up.pt

issuer=/C=PT/ST=PORTO/L=PORTO/O=FEUP/CN=gp-pc.tese.local/

emailAddress=up201302828@fe.up.pt

No client certificate CA names sent

Peer signing digest: SHA512

Server Temp Key: ECDH, P-256, 256 bits

SSL handshake has read 3406 bytes and written 431 bytes

<truncated information>

SSL-Session:

Protocol : TLSv1.2

Cipher : ECDHE-RSA-AES256-GCM-SHA384

<truncated information>

Start Time: 1529463133

Timeout : 7200 (sec)

85

Security Configuration and Implementation

Verify return code: 19 (self signed certificate in certificate chain)

B.3.2 Experimental scenario 1

Figure B.1 shows TLS communications going smoothly, until packet number 52, where an en-

crypted alert is sent from the client tuxCLI to the server tuxSV2, cancelling the communications,

followed by TCP closing messages [FIN]. This behavior is justified by tuxCLI rejecting the cer-

tificate sent by tuxSV2 in packet number 48.

Figure B.1: Scenario 1 Wireshark logs.

B.3.3 Experimental scenario 3

B.3.3.1 Setup

1. Add new authorized entity script

Usage of this script can be reviewed in Annex A.3.1.

Specific command and output to authorize entities that belong to "FEUP" Organization and

have Common Name "tese.client" was:

> sudo python add_new_accepted_entity.py -o FEUP -cn tese.client

Successfully added:

config_file : /etc/apache2/valid_expressions.list

86

Security Configuration and Implementation

country : None

organization_unit : None

state : None

location : None

common_name : tese.client

organization : FEUP

Please restart apache server to apply these changes.

2. Authorized entities list

Information below located at ’/etc/apache2/valid_expressions.list’:

SSLRequire (%{SSL_CLIENT_S_DN_O} eq "NOTFEUP" \

and %{SSL_CLIENT_S_DN_CN} in {"tese.negative", "CaaA", "Deaav"}) \

or (%{SSL_CLIENT_S_DN_ST} eq "PORTO" and %{SSL_CLIENT_S_DN_CN} in

{"tese.asdfe", "CaaA"}) \

or (%{SSL_CLIENT_S_DN_O} eq "FEUP" \

and %{SSL_CLIENT_S_DN_CN} eq "tese.client")

It is visible that the last line (after the last ’or’ statement) tries to match SSL client certifi-

cate’s distinguished name organization (DN_O) with the value "FEUP" and its distinguished

name common name (DN_CN) with "tese.client", the result from the execution of the com-

mands in step 1 above.

3. Client certificate

Client certificate follows the same format approximately of all other digital certificates.

Here are only displayed the command to verify the information in the certificate. Data in

the certificate not related to the subject that owns or signed the certificate has been truncated:

> openssl x509 -in client_cert.pem -text

Certificate:

<truncated information>

Issuer: C=PT, ST=PORTO, L=PORTO, O=FEUP,

CN=gp-pc.tese.local/emailAddress=up201302828@fe.up.pt

Validity

Not Before: Apr 9 11:48:24 2018 GMT

87

Security Configuration and Implementation

Not After : Apr 9 11:48:24 2019 GMT

Subject: C=PT, ST=PORTO, O=FEUP,

CN=tese.client/emailAddress=up201302828@fe.up.pt

<truncated information>

B.3.3.2 Network packet analysis

Figure B.2 shows the network packets transmitted between tuxSV1 (192.168.101.172) and tuxCLI

(10.0.2.15), on a browser access with TLSv1.2 and mutual authentication.

Figure B.2: Scenario 3 Wireshark logs.

After the standard TLS handshake opening messages, the server requests client’s certficate on

packet number 33 ("Certificate Request").

Soon after the client replies with its certificate, TLS handshake process is completed and

HTML data and even images present in tuxSV1’s server landing page are successfully transmitted.

B.3.4 Experimental scenario 4

Network packets in figure B.3 follow a pattern similar to scenario 3 until packet number 42, where

tuxSV1 sends a Forbidden message (denying tuxCLI access). It is noteworthy that this happens

right after packet number 39 with the client’s certificate is sent, so a confident assumption that

verification and subsequent rejection of the client’s certificate is what caused that access denial.

88

Security Configuration and Implementation

Figure B.3: Scenario 4 Wireshark logs.

B.3.5 Data Mining process - model transmission

Revealed on figure B.4, standard handshake is performed on packets 641 to 662.

The Data Mining model being transferred was sent over packet number 664, using TLSv1.2

as well.

Figure B.4: Secure Data Mining model transmission

Data carried in packet 664 is unintelligible, as seen in figure B.5.

89

Security Configuration and Implementation

Figure B.5: Packet 664: Encrypted application data

90

Appendix C

Data Mining Processes

C.1 File server status after workflow

C.1.1 Datasets

Figure C.1: Post Data Mining application: shared datasets on douro machine

91

Data Mining Processes

C.1.2 Models

Figure C.2: Post Data Mining application: shared models on douro machine

C.2 Intermediate incremental results

C.2.1 Original dataset

Figures C.3 and C.4.

Figure C.3: Original adult dataset: tux1 intermediate increment.

C.2.2 Anonymized dataset

Figures C.5 and C.6.

92

Data Mining Processes

Figure C.4: Original adult dataset: tux2 intermediate increment.

Figure C.5: Anonymized adult dataset: tux1 intermediate increment.

Figure C.6: Anonymized adult dataset: tux2 intermediate increment.

C.3 Online Random Forest

C.3.1 Dataset description

Existing attributes are:

@ATTRIBUTE id NUMERIC

@ATTRIBUTE subjectID NUMERIC

@ATTRIBUTE windowID NUMERIC

@ATTRIBUTE mean_x NUMERIC

@ATTRIBUTE mean_y NUMERIC

@ATTRIBUTE mean_z NUMERIC

@ATTRIBUTE sd_x NUMERIC

@ATTRIBUTE sd_y NUMERIC

@ATTRIBUTE sd_z NUMERIC

93

Data Mining Processes

@ATTRIBUTE variance_x NUMERIC

@ATTRIBUTE variance_y NUMERIC

@ATTRIBUTE variance_z NUMERIC

@ATTRIBUTE median_x NUMERIC

@ATTRIBUTE median_y NUMERIC

@ATTRIBUTE median_z NUMERIC

@ATTRIBUTE iqr_x NUMERIC

@ATTRIBUTE iqr_y NUMERIC

@ATTRIBUTE iqr_z NUMERIC

@ATTRIBUTE mad_x NUMERIC

@ATTRIBUTE mad_y NUMERIC

@ATTRIBUTE mad_z NUMERIC

@ATTRIBUTE kurtosis_x NUMERIC

@ATTRIBUTE kurtosis_y NUMERIC

@ATTRIBUTE kurtosis_z NUMERIC

@ATTRIBUTE energy_x NUMERIC

@ATTRIBUTE energy_y NUMERIC

@ATTRIBUTE energy_z NUMERIC

@ATTRIBUTE entropyF_x NUMERIC

@ATTRIBUTE entropyF_y NUMERIC

@ATTRIBUTE entropyF_z NUMERIC

@ATTRIBUTE meanDC_x NUMERIC

@ATTRIBUTE meanDC_y NUMERIC

@ATTRIBUTE meanDC_z NUMERIC

@ATTRIBUTE cc_x NUMERIC

@ATTRIBUTE cc_y NUMERIC

@ATTRIBUTE cc_z NUMERIC

@ATTRIBUTE gravity_x NUMERIC

@ATTRIBUTE gravity_y NUMERIC

@ATTRIBUTE gravity_z NUMERIC

@ATTRIBUTE orientation_x NUMERIC

@ATTRIBUTE orientation_y NUMERIC

@ATTRIBUTE orientation_z NUMERIC

@ATTRIBUTE entropyT_x NUMERIC

@ATTRIBUTE entropyT_y NUMERIC

@ATTRIBUTE entropyT_z NUMERIC

@ATTRIBUTE orientationDZ NUMERIC

@ATTRIBUTE humanactivities STRING

@ATTRIBUTE humanpositions STRING

@ATTRIBUTE deviceposition STRING

94

Data Mining Processes

Possible labels or classes are:

@ATTRIBUTE class {climbingdown,climbingup,jumping,lying,

standing,sitting,running,walking}

C.3.2 Intermediate distributed result

Results presented in figure C.7.

Figure C.7: Final distributed ORF results

95

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Dissertation Structure

	2 Bibliographic Review
	2.1 Introduction
	2.2 Data Anonymization
	2.2.1 Types of attributes
	2.2.2 Standard de-identification techniques
	2.2.3 Risk Assessment

	2.3 Data Transfer Security
	2.3.1 Symmetric and Asymmetric Cryptography
	2.3.2 Digital Certificates
	2.3.3 Data Integrity
	2.3.4 SSL/TLS
	2.3.5 Testing tools and guidelines

	2.4 Data Mining
	2.4.1 Standard Process for Data Mining
	2.4.2 Data Mining Tasks

	2.5 Incremental Learning
	2.6 Conclusions and Considerations

	3 Overview of Methodologies and Architecture
	3.1 Use cases and architecture
	3.2 Data analysis and preprocessing
	3.3 Data Anonymization
	3.3.1 Tools

	3.4 Data Transfer Security
	3.5 Data Mining

	4 Data Anonymization
	4.1 Dataset Selection
	4.2 Preparation
	4.2.1 Direct Identifiers
	4.2.2 Indirect Identifiers
	4.2.3 Attack scenario and Risk thresholds

	4.3 Dataset analysis
	4.3.1 Attribute analysis
	4.3.2 Re-identification risk calculation and problematic combinations identification
	4.3.3 Algorithmic approach

	4.4 Anonymization iterations
	4.5 Process evaluation
	4.6 Considerations

	5 Data Transmission Security
	5.1 Certification Infrastructure
	5.1.1 Creating a Certificate Authority
	5.1.2 Generating Digital Certificates

	5.2 Server side
	5.2.1 Setup
	5.2.2 File structure
	5.2.3 Security mechanisms

	5.3 Implementation Evaluation
	5.3.1 Experimental Setup
	5.3.2 Experiments Results

	5.4 Considerations

	6 Data Mining Application Workflow
	6.1 Machine Learning Algorithms
	6.1.1 Classification: Linear Support Vector Machine
	6.1.2 Classification: Online/Incremental Random Forest

	6.2 Experiments and Results
	6.2.1 Non-Incremental SVM
	6.2.2 Incremental SVM
	6.2.3 Online/Incremental Random Forest

	6.3 Security of data transmissions
	6.4 Conclusions
	6.5 Considerations

	7 Conclusions and Future Work
	References
	A Scripts output
	A.1 Execution times
	A.1.1 Normal iteration with tabu dictionary
	A.1.2 Set implementation

	A.2 Iterative anonymization analysis outputs
	A.2.1 Example analysis during anonymization process
	A.2.2 Iteration 2 analysis
	A.2.3 Iteration 3 analysis
	A.2.4 Iteration 3.1 analysis
	A.2.5 Iteration 4 analysis
	A.2.6 Iteration 4.1 analysis
	A.2.7 Iteration 5 analysis
	A.2.8 Iteration 7 analysis
	A.2.9 Iteration 8 analysis
	A.2.10 Iteration 9 analysis
	A.2.11 Iteration 10 analysis

	A.3 Server security related
	A.3.1 Usage help on adding new authorized entity

	B Security Configuration and Implementation
	B.1 Configuration files
	B.1.1 Hosts file
	B.1.2 OpenSSL configuration file
	B.1.3 .htaccess file - forcing HTTPS connection
	B.1.4 Authorized entities validation file

	B.2 Certificate and key generations
	B.2.1 Root certificate
	B.2.2 SubjectAltName compliance
	B.2.3 Signing of a CSR
	B.2.4 Generating PKCS archive

	B.3 Experiments output
	B.3.1 TLS version verification
	B.3.2 Experimental scenario 1
	B.3.3 Experimental scenario 3
	B.3.4 Experimental scenario 4
	B.3.5 Data Mining process - model transmission

	C Data Mining Processes
	C.1 File server status after workflow
	C.1.1 Datasets
	C.1.2 Models

	C.2 Intermediate incremental results
	C.2.1 Original dataset
	C.2.2 Anonymized dataset

	C.3 Online Random Forest
	C.3.1 Dataset description
	C.3.2 Intermediate distributed result

