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Resumo

A cápsula endoscópica é um dispositivo do tamanho de um comprimido vitamínico que é engolido
pelo paciente, gravando 8 a 10 horas de vídeo do seu trato gastrointestinal. Desde a sua introdução
em 2001, tornou-se o principal método para diagnosticar doenças no intestino delgado, uma região
de difícil acesso para métodos endoscópicos tradicionais. No entanto, estas cápsulas não são ca-
pazes de fornecer qualquer informação de localização, mesmo sendo esta vital para o diagnóstico
e acompanhamento de doenças e para intervenções cirúrgicas no intestino delgado. Atualmente,
a localização é estimada através dos escassos marcos existentes no tubo digestivo ou por métodos
que recorrem a hardware externo que causam desconforto nos pacientes e tornam o processo mais
dispendioso. Os métodos existentes baseados em software mostram grande potencial, mas ainda
apresentam algumas limitações.

Esta dissertação tem como objetivo contribuir para melhorar a localização da cápsula no in-
testino delgado através da utilização de odometria visual e assim ir ao encontro das necessidades
dos clínicos da área. Para isso, primeiro são selecionadas as imagens informativas, i.e. em que a
aproximação da homografia é possível, depois são estimadas as matrizes homografia entre pares
de imagens consecutivas e, finalmente, são estimados os deslocamentos em percentagem. Para o
cálculo da homografia foi utilizado um método supervisionado de deep learning adaptado para os
desafios das imagens de vídeos endoscópicos.

O método foi treinado num dataset com 7303680 amostras de treino com ground truths gera-
dos sinteticamente, sendo que as matrizes homografia estimadas obtiveram um erro de 1.36 píxeis
num dataset de teste com 2711040 amostras. A estimação do deslocamento foi comparada com
os resultados obtidos no Rapid Reader e resultou em erros médios absolutos de 5.00± 2.65% e
3.16±2.08%, valores que evidenciam o potencial do método para utilização em ambiente clínico.

Adicionalmente, experimentamos com um método não supervisionado de deep learning que
permite a estimação da posição tridimensional da cápsula endoscópica ao longo do intestino del-
gado.
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Abstract

Endoscopic capsules are vitamin-sized devices that leverage from a small wireless camera to cre-
ate 8 to 10 hour videos of the patients digestive tract. Since their introduction in 2001, they have
become the leading diagnosing method for the small bowel, a region not easily accessible with
traditional endoscopy techniques. However, the capsules do not provide localization information,
despite being crucial for the diagnosis, follow-ups and surgical interventions on the small intes-
tine. Currently, the capsule localization is either estimated based on scarce gastrointestinal track
landmarks or given by additional external hardware that cause further discomfort on the patient
and represent a cost increase. Current software methods show great potential, but still need to
improve in order to overcome their limitations.

This dissertation will focus on improving the endoscopic capsule localization inside the small
bowel through visual odometry, always considering the actual needs of gastroenterologists. In
this regard, we first select the informative images, i.e. where the homography approximation is
possible, then estimate the homography matrices between consecutive frame pairs and, finally,
compute the displacement between each frame in percentage. In order to estimate the homogra-
phies, a supervised deep learning method was adapted for use with the challenging endoscopic
images.

The method was trained in a dataset with 7303680 samples with synthetically generated
ground truths, obtaining homography matrices approximations with an error of 1.36 pixels in a
test dataset with 2711040 samples. The displacement computation was compared with the results
obtained in Rapid Reader, resulting in mean absolute errors of 5.00± 2.65% and 3.16± 2.08%,
values that highlight the method potential for clinical implementation.

Additionally, we experimented with an unsupervised learning method that allows us to esti-
mate the capsule 3D pose along the small bowel in an end-to-end manner.
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Chapter 1

Introduction

An endoscopy is a medical procedure in which doctors use instruments to view the internal organs

and vessels of the human body, allowing them to detect problems in a less invasive way. In

2001 the endoscopic capsule was introduced, creating a new innovative type of endoscopy. This

swallowable and vitamin-size capsule takes advantage of a battery, a light and a tiny wireless

camera to take thousands of pictures of the digestive tract in order to create a video. This camera

is notably useful to see inside the small intestine - an area that is unreachable with more traditional

endoscopic techniques, being more frequently utilized to perform follow-ups and when there is

suspicion of (Van de Bruaene et al. (2015)):

• Obscure gastrointestinal bleeding;

• Crohn’s disease;

• Hereditary polyposis syndrome;

• Small bowel tumor;

• Non-steroidal anti-inflammatory drug-induced small bowel lesions;

• Celiac disease.

Each exam produces a colour video with 8 to 10 hours of duration, which translates into a

subjective, tedious and error-prone human-based diagnosis that takes typically between 60 and

90 minutes. Capsules do not provide localization information in the gastrointestinal track, even

though their accurate localization is fundamental to identify abnormalities location, easing follow-

up examinations and surgical interventions.

1.1 Motivation

Currently, physicians often estimate the location of the capsule visually, based on scarce land-

marks, such as the duodenum and the ileocecal valve, and based on the apparent displacement that
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2 Introduction

can be perceived between video frames. Endoscopic systems can provide a more accurate capsule

localization, but the patient is required to wear an additional piece of external hardware for the

entire recording time. The most commonly used (commercially available) methods are based on

radio-frequency (RF) sensor arrays. This external hardware entails several drawbacks (Mateen

et al. (2017)):

• Patient discomfort;

• Cost increase;

• Bio-compatibility issues;

• Interference with the capsule camera sensor;

• Space limitations.

Software-only methods are also available and, despite some of them present potential to pro-

vide an accuracy comparable to that achieved by the methods exploiting external equipment, new

and improved methods are still required.

This dissertation is proposed following up on the drawbacks that derive from the use of external

hardware methods, which along with the recent improvements in most computer vision methods

due to the disruptive field of deep learning, motivated us to solve some of the limitations of the

current software-based methods.

1.2 Objectives

In this dissertation, we aim to produce software methodologies that improve the movement track-

ing of the endoscopic capsule inside the small-bowel, creating a visual odometry tool that retrieves

position information from endoscopic images. This tool should be developed according to the ac-

tual needs of gastroenterologists and considering its practical application in clinical environment.

In order to do this, we first need to develop methods to detect and deal with non-informative

frames, a crucial step when utilizing endoscopic capsules datasets.

Current software-based capsule localization methods generally rely on feature-based approaches,

which perform poorly on endoscopic capsule videos that lack on distinct features. So, in order to

improve upon this methods and overcome some of the challenges posed by endoscopic videos, we

focus on methodologies from the disruptive field of deep-learning.

It is also important to note that our work starts by gathering a research summary of the ex-

isting endoscopic capsule localization techniques, documenting the most common difficulties re-

searchers need to overcome when using a similar dataset.
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1.3 Contributions

A summary of the contributions of this dissertation to the estimation of endoscopic capsules local-

ization can be seen bellow. In this work we have:

1. Created a method that estimates the endoscopic capsule per frame displacement (in percent-

age) along the small bowel.

2. Implemented a method that estimates the endoscopic capsule 3D pose along the small bowel

and that predicts a depth map for each frame of the endoscopic video.

3. Proposed two different methods to classify a endoscopic image as informative or non-

informative for our localization algorithms.

4. Proposed a method to discard and deal with incorrect displacement predictions.

5. Successfully calibrated a PillCam SB3 endoscopic capsule camera.

1.4 Document Structure

This dissertation is composed by five chapters. Chapter 1 consist of an introduction where the

context, motivation, objectives and contributions presented.

Chapter 2 presents the necessary theoretical concepts, mainly regarding multi-view geometry.

Furthermore, classical computer vision techniques and deep learning methods are presented, as

well as a brief review of the state of the art methods in endoscopic capsules position estimation.

In chapter 3 we start by characterizing our problem. Here, we also present a general system

framework, then specifying the framework for each of both methods developed. Furthermore, we

describe the dataset at our disposal and how we treat it to suit our end goals, as well as the camera

calibration procedure.

In chapter 4 the implementation, results obtained and discussion for each of the developed

methods are displayed.

In chapter 5 a final insight on this work is given. Here, we discuss the overall level of sat-

isfaction according to the initially proposed goals and also present some recommendations and

possibilities for future work.
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Chapter 2

Literature Review

On this chapter we will mainly find information regarding multi-view geometry that we need to

acknowledge in order to understand the solution presented for the problem in question. We will

first talk about classic computer vision techniques (section 2.1.1), where we explore the basic

math behind the simplified pinhole camera model (section 2.1.1.1), depth information recovery

from images (section 2.1.1.2), feature detection, description and matching, as well as rectification

(section 2.1.1.3) and finally, the homography (section 2.1.1.4). Then, we will approach deep learn-

ing (section 2.1.2), namely topics such as supervised (section 2.1.2.1) and unsupervised learning

(section 2.1.2.2), convolutional neural networks (section 2.1.2.3) and deep homography estima-

tion (section 2.1.2.4). Finally, a brief overview of the endoscopic capsule localization problem

and methods will be presented (section 2.2).

2.1 Multiple View Geometry

Epipolar geometry is the stereo vision geometry, that is, describes the geometric relations when

two images of different perspectives of the same scene are taken from two different locations

(assuming the scene is rigid). This allows to extract 3D properties from a scene represented in

a set of 2D images in a robust way, working around the intrinsic ambiguity problem (due to lost

information) of the 2D to 3D mapping through a single image.

2.1.1 Classical Techniques

As seen in de Oliveira (2013), there are a few different ways to approach the subject of multi-

ple view stereo imaging, such as depth-map merging, volumetric-based and feature point-based

detection. Depth-map merging consists in finding correspondences between the depth-maps of

two separate images (Koch et al. (2000); Li et al. (2010)). The volumetric-based methods firstly

represent the scene as a set of 3D voxels and then proceeds to the energy minimization to decide

if those voxels should be filled (Vogiatzis et al. (2007)). The feature point-based approach extracts

and matches feature points, then reconstructing the 3D surface through geometric, photometric

or visualization constraints (Lhuillier and Quan (2005); Furukawa and Ponce (2010)). Here, our

5



6 Literature Review

focus will be on the feature point detection methods (Liu et al. (2008); Ling et al. (2012); Rafiei

and Saadatseresht (2013)), which can be generally described by the following sequence of steps,

as seen in Kien (2005) and de Oliveira (2013):

1. Feature points search (section 2.1.1.3);

2. Robustly match the highest number of those feature points (section 2.1.1.3);

3. Use the result of the previous step to find the fundamental matrix F (equation 2.12) with

the lowest inconsistency within the largest possible set of inliers (minimum error possible)

(section 2.1.1.2);

4. Compute rectification homographies and rectify both views using the F matrix and the inlier

matches (section 2.1.1.3);

5. Find the largest stereo matching possible with the highest confidence available for each

match (section 2.1.1.3);

6. If found somewhere in the F matrix estimation or rectification algorithm, camera parameters

should be used to return a quasi-Euclidean reconstruction. Else, the projective reconstruc-

tion should be returned;

This whole process is portrayed in Figure 2.1.

2.1.1.1 Camera Model

When light reflects on an object, it makes its way to our camera and is collected by our imager

(image sensor). A simple, but useful camera model can be used to explain the geometry of this

process, the pinhole camera model (Bradski and Kaehler (2008)). This is a commonly used model

in the literature, as it simplifies the math when compared to a camera model that utilizes a lens in

order to collect more light.

This model consists of a wall with a miniature hole at its center, so small that only allows a

single ray to enter in each point of the scene, being the rest of them blocked. This point is then

"projected" onto the projective plane (image plane), resulting in an always in focus image and an

image size, relative to the object, given only by the camera focal length (Figure 2.2).

In Figure 2.2, we can see that by similar triangles:

−x = f · X
Z

(2.1)

This can now be rearranged so that the math comes even easier and the image is not inverted

on our projective plane (Figure 2.3).

Where now:

x = f · X
Z

(2.2)
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Figure 2.1: General progress for 3D reconstruction (as seen in de Oliveira (2013))

In this new, simplified model we assume that the point in the pinhole is the center of projection,

that the point q=(x, y, z) is the projection of the physical world point, Q=(X, Y, Z), onto the image

plane and that cx and cy are the coordinates for the optical center. This results in a pair of equations

that represent the projection of a 3D point (X, Y, Z) onto the screen (image plane), at the pixel

location of coordinates (xscreen, yscreen):

xscreen = fx ·
X
Z
+ cx (2.3)

yscreen = fy ·
Y
Z
+ cy (2.4)
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Figure 2.2: Pinhole camera model; X is a point in space and x its projection on the image plane,
the Z axis is the optical axis and f the focal length (From Bradski and Kaehler (2008))

Figure 2.3: Rearranged pinhole camera model (From Bradski and Kaehler (2008))

If the image sensor is also not perfectly perpendicular to the optical axis, a skew (s) is created.

Now, we can create our calibration matrix K (Szeliski (2010)):

K =

 fx s cx

0 fy cy

0 0 1

 (2.5)

We can consider a square sensor (making the focal length fx = fy = f ) and s = 0 for various

practical applications (Figure 2.4), so:

K =

 f 0 cx

0 f cy

0 0 1

 (2.6)

Having found the calibration or camera matrix parameters (camera intrinsics), we can bring

it together with the camera orientation in space (camera extrinsics - characterized by a rotation



2.1 Multiple View Geometry 9

Figure 2.4: Simplified camera intrinsics - (cx, cy) is the optical center and W and H the image
width and height (From Szeliski (2010))

matrix R and translation vector t) to create the camera matrix P:

P = K ·
[
R|t

]
(2.7)

Which can also be presented as the following invertible matrix:

P̃ =

[
K 0

0T 1

]
·

[
R t

0T 1

]
(2.8)

This new matrix allows us to map 3D coordinates, Q̄=(X, Y, Z), to 2D image plane coordinates

plus disparity q̄=(xscreen, yscreen, 1, d), where:

q̄∼ P̃ · Q̄ (2.9)

being d the point’s disparity and ∼ indicating equality up to scale.

2.1.1.2 Structure from motion

As described in Szeliski (2010), structure from motion is the process to recover the 3D structure

and pose from 2D image correspondences. In order to perform this estimate, our brain assesses the

displacement objects suffer when seen through different angles. This is an analogous process to

the one used in computer vision, where the disparity of similar matched features between frames

is computed. The scene reconstruction is then possible if there is some knowledge between the

cameras or if that knowledge is inferred (detailed in section 2.1.1.3).

Considering Figure 2.5, we can develop a mathematical model that describes the relation be-

tween views (as seen in Szeliski (2010) and de Oliveira (2013)). We will not specify how we got

those relations, but the fully detailed mathematics can be examined in Szeliski (2010).

Having that x̂ j = K−1
j · x j are the local ray directions (which cross the image plane at x or

x1) and knowing R and t, it is possible to arrive at a matrix that expresses the relation between
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Figure 2.5: Two-view geometry based on the pinhole camera model (section 2.1.1.1). The camera
centers are represented by c0 and c1; x and x1 the projections of point p; e0 and e1 the epipoles; l0
and l1 the epipolar lines, located at the epipolar plane; finally, the translation (t) and rotation (R)
between both cameras are highlighted (From Szeliski (2010))

corresponding points in the image plane (equation 2.10). It is a 3× 3, rank 2 matrix named

essential matrix and represented by E:

x̂T
1 ·E · x̂ = 0 (2.10)

where

E = [t]×R (2.11)

and with [t]× being the skew-symmetric matrix.

However, this approach poses a problem if we rely on free-moving cameras for which we do

not have any calibration information, as we do not know the values of R and t. The solution is to

define the fundamental matrix F :

x̂T
1 ·E · x̂ = xT

1 ·K−T
r ·E ·K−1

l · x = xT
1 ·F · x = 0 (2.12)

As described in de Oliveira (2013), the matrix defined above (in equation 2.12) is usually

calculated with at least 8 point correspondences between two different image frames, employing

Singular Value Decomposition (SVD) (Golub and Van Loan (2012)) to solve a system of equations.

With more than 8 correspondences we can minimize the error of the estimation. It can also be

calculated with only 7 matches, solving a non-linear system. Finally, there is the possibility of

the existence of false-positive matches (outliers), which should be discarded, e.g using RANSAC

(Fischler and Bolles (1981)) or even the method exposed in Olsen (1992) in case we have two

rectified images (refer to section 2.1.1.3).



2.1 Multiple View Geometry 11

2.1.1.3 Local Features

As seen in Tuytelaars et al. (2008), local features (Figure 2.6) are image points or patterns, such

as edges or even small image patches, that differ from its immediate neighborhood, being usually

associated with a change of one, or more, image properties (e.g. intensity, color and texture).

Figure 2.6: Features from a contour image, on the left, and a grayscale image, on the right, respec-
tively (From Tuytelaars et al. (2008))

This interest points identification, together with feature descriptors, present, indeed, the po-

tential to encapsulate the content of a frame. The feature descriptors convert the detected points

into numerical descriptors, that provide a unique, condensed representation of these local features

(Salahat and Qasaimeh (2017)). This process proved to be a powerful tool for a wide array of

computer vision tasks, such as object detection, object tracking (Gauglitz et al. (2011)) and image

features matching (Vincent and Laganiere (2001)).

Feature Detection

The literature is filled with different detection and description algorithms, as well as surveys com-

paring their performance and different qualities (Tuytelaars et al. (2008); Liu et al. (2016); Lee

and Park (2014); Mikolajczyk and Schmid (2005); Salahat and Qasaimeh (2017)). With that be-

ing said, there are still no ideal feature detectors, which means the decision of each one to use

is based on the application needs. So, for instance, in an environment where it is impossible to

know, a priori, the transformations that the scene might be exposed to, the ideal qualities for the

features (and, consequently, feature detector algorithm) should be (de Oliveira (2013); Salahat and

Qasaimeh (2017)):

• Distinctiveness: features should be distinctive enough, providing a useful amount of infor-

mation;

• Locality: reduces the probability of features being blocked and allows simple geometrical

model approximations (as seen in section 2.1.1.1);
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• Accuracy: the features localization should be accurate through different scale and shapes;

• Quantity: the number of features detected should be large enough to represent the image

content;

• Repeatability: the majority of the features detected in one view should be detected in an-

other;

• Invariance: the algorithm should precisely model image deformations (e.g. rotation and

scale) in order to minimize their effect on its detection task;

• Robustness: the sensitivity to small deformations, e.g. noise and blur, should be as small as

possible.

Tables 2.1 and 2.2 show summarized information about state-of-the-art feature detectors and

feature detection algorithms.

Table 2.1: Feature detectors (From Salahat and Qasaimeh (2017))

Table 2.2: Feature detection algorithms (From Salahat and Qasaimeh (2017))

1. Edge-based Detectors

Edges take place at borders between regions with different color, intensity or texture. They

tend to vary widely between different image views or even lighting condition changes, mak-

ing them possibly undetectable after a rotation and/or a transformation, turning them not

ideal for feature matching (Szeliski (2010)).
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2. Corner-based Detectors

The most common definition of a corner in computer vision is given by Harris and Stephens

(1988), being the Harris corner detector one of the most canonical algorithm for corner

detection. This detector relies on the second-order derivatives matrix of the image pixel

intensities, defined in two dimensions as the Hessian matrix around a point (Bradski and

Kaehler (2008)):

H(p) =

[
∂ 2I
∂x2

∂ 2I
∂x∂y

∂ 2I
∂y∂x

∂ 2I
∂y2

]
(2.13)

If a big change in the derivatives signal is found in both directions in a certain location, there

is a high probability of it being a corner. So, basically, a corner is where we have two edges

in at least two different directions centered around a point.

This algorithm was then modernized to a be invariant to scale changes and, later, invariant

to affine transformations (Tuytelaars et al. (2008)).

Another well-established algorithm is SUSAN (Smallest Univalue Segment Assimilating

Nucleus), detailed in Smith and Brady (1997). This detector concept is simple: A circular

mask with a fixed radius is defined around every pixel of the image, being the center pixel

considered the nucleus; then, the intensity of the pixels inside the mask are compared to the

intensity of the nucleus; those with brightness values identical to the nucleus are grouped,

resulting in an area referred as USAN (Univalue Segment Assimilating Nucleus); finally, a

corner is found at points where the amount of pixels in the USAN area drops below a defined

threshold value.

Based on the algorithm mentioned above, emerged FAST (Features from Accelerated Seg-

ment Test) (Rosten and Drummond (2005)), which brings much more computational effi-

ciency. While SUSAN needs to compute all the pixels inside a defined circle and compare

them to the nucleus, FAST only needs to compare the pixels on the circumference (the

highlighted squares in Figure 2.7). Denoting Ip by the center pixel intensity and T as a

threshold value, the principle is: if the intensities of all the contiguous pixels in the men-

tioned circumference are superior to Ip + T our inferior to Ip− T , then p is considered a

corner (Hassaballah et al. (2016)).

As it is mentioned in Rosten and Drummond (2006), this high performance approach still

has considerable limitations. These flaws were counteracted through machine learning

(method detailed in Hassaballah et al. (2016)).

3. Blob Detectors

Three prominent blob-based algorithms are MSER (Maximally Stable Extremal Regions),

SIFT (Scale Invariant Feature Transform) and SURF (Speeded Up Robust Features). As

we can see in the surveys Tuytelaars et al. (2008), Miksik and Mikolajczyk (2012) and
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Figure 2.7: p is the center of a candidate corner; the highlighted squares represent the pixels used
for the detection process; the dashed line represents the circumference of contiguous pixels; (From
Rosten and Drummond (2006))

Mikolajczyk and Schmid (2004), the three of them show great promise regarding invariance

and other qualities, as shown in Table 2.2.

SIFT (Lowe (2004)) is an interest point-based blob feature detection algorithm. It starts by

collecting interest points by applying the Difference-of-Gaussian (DoG) and then selecting

the local extrema (maxima and minima). These keypoints are represented as vectors that

indicate scale, orientation and location (Figure 2.8).

Figure 2.8: (a) original image; (b) interest points vectorial representations; (c) interest points
remaining after the application of a contrast threshold; (d) final interest points after a threshold
employment on the ratio of principal curvatures; (From Lowe (2004))

Due to its proliferation, a great deal of improvements on the SIFT algorithm were made,

resulting in several derivative versions, such as PCA-SIFT (Ke and Sukthankar (2004)), n-

SIFT (Cheung and Hamarneh (2007)), CSIFT (Abdel-Hakim and Farag (2006)) and SURF

(Bay et al. (2006)).
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SURF detector, when compared to SIFT, offers two big advantages, its speed and robustness.

Its method consists in approximating Gaussian derivatives of second order (Hessian matrix)

in a fast way, by means of integral images (or summed area table) using box filters. The

approximated Hessian matrix determinant produces the blob response in a certain location

in the image, which are stored in a blob response map. Finally, the keypoints considered

are the local maxima that are detected and processed using quadratic interpolation. (Spyrou

and Iakovidis (2012); Hassaballah et al. (2016); Tuytelaars et al. (2008))

MSER (Matas et al. (2004)) is a region-based blob detector that is invariant to affine trans-

formations. In order to detect maximally stable extremal regions, binary regions are found

by applying a threshold to the image in question at all the possible intensity levels - which

implies the algorithm only works for grayscale images. The variations of the regions area

size are measured between different intensity threshold values, being those with the minimal

rate of change the regions considered as maximally stable. This is what confers them with

affine geometric and photometric invariance.

As with the SIFT algorithm, MSER was also the base for different, extended and enhanced

versions, e.g. MSER N-Dimensional Extension (Donoser and Bischof (2006); Vedaldi

(2007); Forssén (2007)), Linear-Time MSER Algorithm (Nistér and Stewénius (2008);

Alyammahi et al. (2015)), X-MSER (Salahat et al. (2015a); Salahat et al. (2017)) and The

Parallel MSER Algorithm (Salahat et al. (2015b); Salahat et al. (2016)).

Feature Descriptors

The step after feature detection is feature matching, which determines the features that are in

analogous locations in different views. This can be robustly done by defining a descriptor for each

detected feature and then searching for descriptors correspondences through the different views

captured. Typically, the image can suffer from some transformations in the form of translation and

rotation, existing also the possibility of affine transformations occurrence. So, it is important that

feature description algorithms are invariant to these changes. (Szeliski (2010);de Oliveira (2013))

Below we present some examples of feature descriptors found in the vast literature on the

subject, as seen in Szeliski (2010):

MOPS (Multi-Scale Oriented Patches) (Brown et al. (2005)) is a descriptor that consists of

simple bias and gain normalized 8× 8 patches, sampled at a spacing of five pixels relative to the

detection scale. It is this low sample frequency that allows the small sensitivity to feature point

location error. The normalization turns the patch intensities mean to zero and their variance to

one, making the features invariant to intensity affine changes.

In the SIFT descriptor algorithm (Lowe (2004)), features are obtained by calculating the gra-

dient of each pixel in a 16× 16 window around the detected interest point location, using the

suitable level of Gaussian filter (on the left in Figure 2.9). Then, with a Gaussian fall-off function

(blue circle in Figure 2.9), the gradient magnitudes are weighted, reducing the influence of those

far from the center. To form the keypoint descriptor, gradient orientation histograms are created
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over 4×4 sample regions of the previously calculated window, by softly adding the weighted gra-

dients to one of eight histogram bins (intervals), being trilinear interpolation used. This results in

a 4×4 array of orientation histograms with 8 orientation bins each, which are the constituents of

the descriptor, a 4×4×8 = 128 dimension vector (on the right in Figure 2.9).

Finally, this vector is normalized to unit length, its values capped to 0.2 and re-normalized to

unit length.

Figure 2.9: SIFT feature descriptor creation; This figure shows a 2×2 descriptor array calculated
from a 8×8 pixel patch, although Lowe’s experimental implementation uses a 16×16 pixel patch
to calculate a 4×4 descriptor array (From Lowe (2004))

The PCA-SIFT descriptor (Ke and Sukthankar (2004)) - inspired by SIFT - presents a simpli-

fied way to compute the keypoint descriptors. It calculates the x and y gradients of a 39x39 pixel

patch, resulting in a vector with a 3042 dimension. This vector has its dimensions reduced to 36

through principal component analysis (PCA, which is detailed in Szeliski (2010)).

SURF descriptor (Speeded Up Robust Features) represents the distribution of intensities around

the keypoints. It creates a square area around those points and along their orientation, with the size

of twenty times the scale at which each point detection occurred. Next, this area is divided into

4x4 smaller areas, which the Harr wavelet responses will be computed for, using integral images.

Finally, to achive rotation invariance, a dominant orientation is found, that occurs when the ag-

gregated value of the Harr wavelet responses is maximum. (Hassaballah et al. (2016); Spyrou and

Iakovidis (2012))

Rectification

Stereo systems configurations are rarely completely aligned, as both cameras hardly have fully

co-planar and row-aligned image planes. That being said, it is when this condition is verified (as

seen in Figure 2.10) that the computation of the stereo disparity is simpler, reducing also the stereo

matching problem to a one-dimension search.

Taking Figure 2.10, it is possible to limit the search for point matches between the two images

to the x-dimension, facilitating the disparity calculation. Considering a point in the real world that

corresponds to one point on the left image plane, with horizontal coordinates xl , and another on
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Figure 2.10: Disparity (d) calculation assuming a low baseline T (T << Z), assuming row-aligned
image planes and that both cameras have the same focal length f . Z is the depth; T the displace-
ment between cameras; the lines that go through the centers of projection (Ol and Or) and the
points of both image planes (cl and cr) are the principle rays of the imagers (From Bradski and
Kaehler (2008))

the right image plane, with horizontal coordinates xr, the disparity can be calculated between these

two views (Bradski and Kaehler (2008)):

d = xl− xr (2.14)

Also, by using similar triangles:

T − (xl− xr)

Z− f
=

T
Z

=⇒ Z =
f ·T

xl− xr
(2.15)

Now that we are aware of the importance of having the different views pre-aligned, we are

going to introduce rectification, the process that makes it possible. In Loop and Zhang (1999),

image rectification is described as the process of implementing homographies (explored further in

section 2.1.1.4) to a couple of images whose epipolar geometry is known, such that the original

image epipolar lines correspond to horizontally aligned lines in the transformed image. Loop and

Zhang break down each of these homographies into three type of transforms: similarity, shearing

and projective.

First, lets consider the homography H, given by:

H = Ha ·Hp (2.16)

Being Ha a affine transform and Hp a projective transform. Then:

Ha = Hs ·Hr (2.17)

where Hs is a shearing transformation and Hr a similarity transformation.
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These transformations are done considering possible distortions, minimizing them through a

distortion minimization criterion. This process, as well as its result, can be visualized in Figure

2.11. For a further detailed and complete description of this method please consult Loop and

Zhang (1999).

(a)
(b)

(c) (d)

Figure 2.11: Results from the rectification algorithm presented by Loop and Zhang. (a) original
images with a few epipolar lines superimposed; (b) The projective transformations (Hp and H

′
p)

result in the epipolar lines being parallel to each other in each image; (c) the similarity transfor-
mations (Hr and H

′
r) resulting in horizontally aligned epipolar lines in both images; (d) the final

image is the result of the shearing transformation (Hs and H
′
s), which minimizes the horizontal

distortion maintaining the images rectified; (From Loop and Zhang (1999))

In Isgro and Trucco (1999) a different approach is taken. Here, the algorithm proposed does

not require the epipolar geometry and, more specifically, the fundamental matrix to be explicitly

calculated. Instead, it takes advantage from the known form of the F matrix in a pair of recti-

fied images (equation 2.18), in order to set up a cost function, minimizing it and obtaining the

rectification homographies straight from image correspondences.

F =

0 0 0

0 0 −1

0 1 0

 (2.18)

Being H1 and H2 the homographies that rectify each image, we have that for each correspon-

dent point p1 and p2:

(H2 · p2)
t ·F ·H1 · p1 = 0 (2.19)
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In order to identify two matrices H1 and H2 that satisfy equation 2.19 and given N point

correspondences (p1i, p2i) with i = 1, . . . ,N, the following cost function is then minimized:

F(H1,H2) =
N

∑
i=1

[(H2 · p2i)
t ·F ·H1 · p1i]

2 (2.20)

As equation 2.19 is not a full rank matrix due to the null vector on the first row of F , there is

still the need to find the first row of H1. This is achieved the minimization of the sum of square

distances:

N

∑
i=1

[(H1 · p1i)x− (H2 · p2i)x]
2 (2.21)

Figure 2.12: Results from the rectification algorithm presented by Isgrò and Trucco. We can see
the original image pair on the top and the rectified image pair on the bottom (From Isgro and
Trucco (1999))

Feature Matching

Feature matching is a stereo matching process vital for a vast array of computer vision applica-

tions, such as image alignment, object recognition, motion tracking, 3D reconstruction, camera

calibration and robot navigation (Hassaballah et al. (2016)). Its function is to establish correspon-

dences between two image frames of the same scene or object. That being said, it is an error-prone

procedure, mostly due to its ill-posed nature, which can be explained by the uncertainty caused

by repetitive structures or patterns and by the match similarity measure randomness (Šára (2002)).

This process, depicted in Figure 2.13, is initialized after the features are extracted, their descriptors

computed and, optionally, the images rectified. It can also be expressed in a generalized way, as

seen in Hassaballah et al. (2016):
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Figure 2.13: Feature matching between two images (From Szeliski (2010))

Considering p as point detected by a feature detector with an associated description φk(p)

provided by a feature descriptor,

Φ(p) = {φk(p) | k = 1,2, . . . ,K} (2.22)

which for all descriptors k,

φk(p) = ( f k
1p, f k

2p, . . . , f k
nk p) (2.23)

the goal is to define the most accurate correspondence q, a point in a different image from the

group of N interest points detected Q= {q1,q2, . . . ,qN}, by correlating the description vector φk(p)

with the description φk(q) of the points in Q. For this, the distance between the two descriptors is

measured with equation 2.24,

dk(p,q) = |φk(p)−φk(q)| (2.24)

then, for each k descriptor, the points in Q are arranged in ascending order, resulting in the

following set

Ψk(p,Q) = {ψk(p,Q) | k = 1,2, . . . ,K} (2.25)

where

ψk(p,Q) = {(ψ1
k ,ψ

2
k , . . . ,ψ

N
k ) ∈ Q | dk(p,ψ i

k)≤ dk(p,ψ j
k ),∀i > j} (2.26)

The brute-force algorithm is the most classical algorithm to solve the feature matching prob-

lem. It is fundamentally simple: it takes a descriptor from a feature in image one and compares it

to each and every feature descriptor in image two, returning the closest one by determining their

distance through some distance calculation function; this is repeated for all the pixels in image

one.

It is clear that the brute-force method suffers from computation efficiency problems, as well

as problems in similar textured images, where a unique optimal match is not possible (de Oliveira
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(2013)). That being said, we can conclude that it is truly important to also determine efficient al-

gorithms to match the features as swiftly as possible. Bearing this in mind and considering vector-

based features, nearest-neighbor matching can be used. Adversely, the best nearest-neighbor al-

gorithm and corresponding parameters rely upon the dataset attributes and the distance between

the nearest-neighbor distance ratio must be bellow some defined threshold in order to prevent am-

biguous matching candidates. For the job of matching high dimensional features in large datasets,

FLANN (Fast Library for Approximate Nearest Neighbors) (Muja and Lowe (2009)) is one of the

most efficient and commonly used implementation, providing a collection of multiple algorithms

optimized for nearest-neighbor search. (Hassaballah et al. (2016))

Additionally, if the features are binary the previously described algorithms are not suited.

For this type of features, the comparison is done through the Hamming distance, implementing

a bit counter on the result of a XOR operation on the bits. In the case of the involvement of

large datasets, an approximate matching algorithm can be used in order to speed up the process.

(Hassaballah et al. (2016))

Finally, in order to remove outliers from matched features groups, statistically robust methods

such as RANSAC (Fischler and Bolles (1981)) can be implemented during the fundamental matrix

estimation as seen in Yang and Li (2013).

In conclusion, the performance of the different feature-based approaches that can be employed

in order to solve the feature matching problem will greatly vary depending on some factors, such

as the detected points properties and the chosen feature descriptor (Lindeberg (2015)). So, in order

to maximize the potential of the matching algorithms it is of utter importance that the appropriate

detectors and descriptors are used for each individual application. (Hassaballah et al. (2016))

2.1.1.4 Classical Homography Estimation

Homography

Homography has varied meanings throughout different sciences. The homography that concerns

the field of Computer Vision, the planar homography, describes a projective mapping from an

image plane to another (Bradski and Kaehler (2008)). Furthermore, the homography defines the

relation between any two images of the same planar surface (assuming no distortion, using the

pinhole camera model, detailed in section 2.1.1.1). That being said, it is present in numerous

computer vision application, including image mosaicing (Brown et al. (2003), virtual touring (Pan

et al. (2004); Tang et al. (2007)), monocular SLAM (Shridhar and Neo (2015)) and 3D camera

pose reconstruction (Zhang and Hanson (1996)). (Nguyen et al. (2017))

Usually, they are represented by a 3×3 matrix with 8 parameters:

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 (2.27)
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where the value of 1 is usually attributed to h9, due to the fact that the matrix has 9 elements,

while the homography is represented only by 8.

Summing up, the mapping of a reference image point, p, into a corresponding target image

point, p′, is given by the following expression:

p′ = H · p (2.28)

considering that the two points p =

u

v

1

 and p′ =

u′

v′

1

 are two dimensional and have homo-

geneous coordinates.

Homography Estimation Methods

There are two traditional approaches when it comes to homography estimation methods, direct

and feature-based (Szeliski (2006)).

Direct methods, like the influential Lucas-Kanade algorithm (Lucas et al. (1981)), try to match

each pixel by warping one image towards the other and comparing the pixel intensity through an

error metric, e.g. the sum of squared differences. They begin with a guess for the homography

parameters and then refine the values using a search or optimization techniques to minimize the

cost function (e.g. gradient descent) (Baker and Matthews (2004)). The main obstacles with direct

methodologies are the limited range of convergence and computational low efficiency due to the

search procedure.

Following the direct methodology disadvantages, the most commonly used methods are, in

fact, the feature-based. In these methods, the feature points are detected and described using a

locally invariant feature detector and descriptor, such as SIFT (see section 2.1.1.3) or ORB (Rublee

et al. (2011)), being the first one the benchmark algorithm and the second one a computationally

faster approach. Then, the feature points that were detected are used to find at least 4 feature

points matches across the image pair, being commonly used methods Fast Library for Approximate

Nearest Neighbors (FLANN) based search and brute-force search (as seen in section 2.1.1.3).

Random Sample Consensus (RANSAC) (section 2.1.1.3)) is usually used to exclude the outliers

and improve the matching process accuracy. As each match provides 2 degrees of freedom (DoF),

we can calculate the homography 8 DoF given 4 matches using the Direct Linear Transform (DLT)

(Hartley and Zisserman (2003)), which will now be presented as seen in Dubrofsky (2009):

Through the expansion of the equation 2.28, we haveu′

v′

1

=

h1 h2 h3

h4 h5 h6

h7 h8 h9

 ·
u

v

1

=

h1u+h2v+h3

h4u+h5v+h6

h7u+h8v+h9

 (2.29)

we then divide the first and second row by the third row, to obtain

−h1u−h2v−h3 +u′(h7u+h8v+h9) = 0 (2.30)
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−h4u−h5v−h6 + v′(h7u+h8v+h9) = 0 (2.31)

Equations 2.30 and 2.31 can also be written as a matrix

Ai ·h = 0 (2.32)

where

Ai =

[
−u −v −1 0 0 0 u′u u′v u′

0 0 0 −u −v −1 v′u v′v v′

]
(2.33)

and

h =
[
h1 h2 h3 h4 h5 h6 h7 h8 1

]T
(2.34)

As stated earlier, each point correspondence produces two equations, so only four of this

correspondences are necessary in order to find all eight parameters of the homography. Thus,

given four point matches, we can stack their matrices A1, A2, A3 and A4 to get a 8× 9 matrix A.

Finally, taking into account that no 3 points can be collinear, the result of the homography can be

found by solving the following equation:

A ·h = 0 (2.35)

If the points correspondences used are exact, we will always get a matrix of rank 8, even

if more than four correspondences are used. That being said, in practice, the points will not

be exact and there will always be some uncertainty associated with the process, which can be

minimized with a fitting cost function. Several cost functions can be used for this purpose, such as

Algebraic Distance, Geometric Distance, Reprojection Error and Sampson Error, each described

in Dubrofsky (2009).

To conclude, although feature-based methods show a big advantage when it comes to perfor-

mance, they can also be inaccurate when they fail to find a satisfactory number of keypoints as a

a result of poor lighting conditions, substantial viewpoint differences between frames or images

with a lack of distinct features. A full, generic feature-based algorithm is depicted in Figure 2.14.

Figure 2.14: Generic feature-based algorithm (From Nguyen et al. (2017))
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4-Point Homography Parameterization

Previously, the classical and simplest way to parameterize the homography was described, with a

3×3 matrix and a fixed scale (equation 2.27).

In Baker et al. (2006), new ways of parameterizing the homography are investigated in pursue

of the maximization of plane estimation performance. One of the proposed solutions is the 4-point

homography parameterization, which according to the authors shows not only more robustness, as

well as improved accuracy. This different parameterization method is based on one single type of

location variable, the corner location, instead of separating the rotational and translational aspect

of the transformation, as in the traditional approach (DeTone et al. (2016)).

The concept of this parameterization method is simple. Taking equation 2.28, each corner

pixel (u,v,1) can be transformed by the 3×3 homography to calculate (u′,v′,1). Concurrently, if

at least four points are available to calculate ∆u = u′−u and ∆v = v′− v, it is possible to rebuild

the 3×3 homography matrix used (Figure 2.15). This reconstruction can be achieved by utilizing

the DLT algorithm described above.

Figure 2.15: One-to-one mapping of the 4-point homography matrix to the 3x3 homography ma-
trix (From DeTone et al. (2016))
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2.1.2 Deep Learning Approach

As described in LeCun et al. (2015), the impact of machine-learning technology in our modern

society has been growing rapidly, marking its presence on an increasing number of consumer

products, such as smart-phones. It has been adopted in a broad number of application: web

searches, advertising, content filtering on social networks, object detection and classification in

images, speech recognition, among many others.

In recent years, the applications mentioned above have been shifting to a different class of

techniques, labeled deep learning, which is becoming the state-of-the-art approach to most of this

problems. This is due to the fact that conventional machine-learning systems are not capable of

taking natural raw data (not previously processed and prepared) as an input.

Deep learning exploits representation-learning methods with multi-level representation. This

methods allow the automatic detection of representations with raw data as the input starting point.

Succinctly, it brings the representation from a low level (starts with raw input data) into a more

abstract, higher level representation. This is achieved through the composition of simple, though

non-linear modules, that if in enough quantity, open the possibility to learn very complicated

functions and perform very intricate tasks. (LeCun et al. (2015))

Lastly, a list of general advantages and disadvantages of this new method, comparing to tradi-

tional computer vision methods, is presented in Table 2.3:

Advantages Disadvantages

• State of the art method in many Computer
Vision tasks

• Automatic feature extraction, eliminating
the need for hand-crafted features and reduc-
ing the heuristics on this problem

• Flexible architectures allow an easy adapta-
tion for different applications

•Most successful method for solving large-
scale problems

• Usually requires a considerable amount of
training data

• Generally requires substantial computing
power to train

• Neural networks are challenging to analyze
and debug, still being too much of a black
box

• Training difficulties (local minima problem,
tuning hyper-parameters)

Table 2.3: Advantages and disadvantages of Deep learning in Computer Vision

Although we still need, generally speaking, a big amount of computational power to train big

and deep neural networks, the tendency is for this to become less of an issue in the long run, as the

computational power is an ever-growing resource that is becoming more accessible at the same

time.

In the following sections we will briefly discuss the two different formats of machine and deep

learning, then explore Convolutional Neural Networks (CNNs) and, finally, present the existing

deep homography estimation methods.
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2.1.2.1 Supervised Learning

The most frequent approach to machine and deep learning is, definitely, supervised learning. This

approach can be divided into two main categories of problems: classification and regression. In

classification problems a class label is the output, whereas in regression problems the output is a

real number.

Now, assume that we have a set of images, containing, e.g. houses, dogs and persons. We want

to classify each image, according to what they depict, putting them in one of the three categories

mentioned above. As seen in LeCun et al. (2015), the following sequence shows the necessary

steps to achieve the desired end result:

1. Collect a large and labeled dataset of images of dogs, houses and persons;

2. Feed the network with images and it outputs scores, one for each category;

3. We calculate a cost function that measures the error between the output scores and the

desired scores (labeled data);

4. According to the mentioned above function results, the network internal parameters (weights)

are modified in order to decrease the error;

5. Repeat steps 2 to 4 according to the number of epochs of training specified;

6. Feed the image to classify to the network and it will predict its category;

The process described from point 2 to 5 is called training. The fundamental idea behind

training a network, while considering a dataset that contains labeled training examples, is rather

simple. Basically, the objective is to minimize a cost function and to update the network internal

parameters (weights) through the backpropagation algorithm (Figure 2.16), so that we get the

actual output closer to the target output. These weights are used to calculate the representation in

each present layer, based in the representation in the previous layer to that, that is, they define the

input-output function. This is the process that allows networks to discover complex structures in

some given data.

In order to make this weight vector adjustment, it is computed, for each weight, a gradient

vector, which expresses by how much the error would increase or decrease if the weights were

increased by a very small amount. The weight update is then carried through the opposite direction

of the gradient vector, as the negative gradient indicates the steepest descent, i.e. taking the cost

function closer to a minimum where the average error is lower. (LeCun et al. (2015))

Admitting that it is not the only procedure to accomplish this task, the most common among

practitioners is the stochastic gradient descent (SGD). This algorithm can be briefly described in

a few steps:

1. For a few examples of the input vector, the outputs and the error associated with them are

computed, also calculating the average gradient for those randomly picked examples;
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2. Adjust the weights appropriately;

3. Repeat this process for many small set of examples until the average of the cost function

stops decreasing;

This is a rather simple method that quickly and consistently finds a good collection of weights

when compared to other, more complex, optimization techniques. For a further detailed explana-

tion please refer to Goodfellow et al. (2016) or Bottou (2010).

Usually, after the training process, the system is evaluated with a test dataset, different than

the one we used to train the network. This helps to assess the level of generalization of the system,

that is, how accurate are the network predictions when faced with inputs that were not used in the

training process.

(a) (b)

Figure 2.16: Forward and backpropagation in neural networks with multiple layers. (a) Forward
pass computation in a neural network with two hidden layers (H1 and H2) and one output layer,
each being a component where one can backprogragate gradients: at each layer level, the input (z)
for each neuron is calculated, being given by a weighted sum of outputs of the neurons in the layer
bellow (in this case, bias terms are omitted for the sake of simplicity); then, to compute the output,
a non-linear function f is applied to z. the most common non-linear function are the rectified linear
unit (ReLU) f (z) = f (max(0,z), the hyperbolic tangent f (z) = ez−e−z

ez+e−z and the logistic function
f (z) = 1

1+e−z . (b) Backward pass computation: at each hidden layer level, we calculate the error
derivative concerning the output of each unit through a weighted sum of the error derivatives
respecting the total input of the neurons in the upper layer; then, the error derivative concerning
the input is obtained by multiplying the error derivative concerning the output by the gradient of
f (z); finally, at the level of the output layer, the error derivative respecting the output neuron is
obtained by calculating the gradient of the cost function; assuming this cost function is (yl−tl)2

2 , by
its differentiation we get yl− tl , being tl the target value. (From LeCun et al. (2015))

2.1.2.2 Unsupervised Learning

As we saw above, in supervised learning, the machine is given not only a set of inputs, but also a

sequence of desired outputs (the data is labeled). Then, the objective is to learn to predict results

accurately, given a new input, outputting either a class label or a real number.
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Unlike in supervised learning, in unsupervised learning the focus is not to find an accurate

prediction. Instead, the objective is to find compact data descriptions. In this different method,

the machine simply receives inputs, not having access to supervised target outputs. Two classi-

cal examples of this unsupervised way of learning are clustering and dimensionality reduction.

(Ghahramani (2004))

2.1.2.3 Convolutional Neural Networks

Since 2012, when Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton won the ImageNet Chal-

lenge (Russakovsky et al. (2015)) for a considerable margin by training a convolutional neural

network (otherwise known as CNN or ConvNet), it steadily became mainstream and was acknowl-

edged as the state of the art for many computer vision applications, such as image classification

(Krizhevsky et al. (2012)) and semantic segmentation (Long et al. (2015)).

In LeCun et al. (1998), the authors presented not only a CNN for handwriting recognition

(LeNet-5), but also exposed the problems related to the use of fully connected networks, also

known as multilayer perceptrons (MLPs) for image classification. Unlike CNNs, MLPs have

weights associated with every input, which becomes unmanageable for images with usable res-

olution, due to complexity and overfitting. Another problem is that they do not consider spatial

distance between the input pixels, that is, it treats in the same ways pixels that are close and far

from each other, making local features detection unfeasible. Concurrently, CNNs are architec-

tured to handle data that comes in the form of multiple arrays, such as 2D images containing pixel

intensities represented in each of the three color channels. This exploitation of natural signals

properties is based on four pillar ideas: local connectivity, shared weights, subsampling (pooling)

and the use of many layers (LeCun et al. (2015), LeCun et al. (1998)).

Figure 2.17: LeNet-5, an example of a convolutional neural network. Each plane represents a
feature map (From LeCun et al. (1998))

As we can see in the example ConvNet shown in Figure 2.17, CNNs are based on four main

ideas:

1. Convolutional layers;

2. Non linearity;

3. Subsampling or pooling layers;
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4. Fully connected layers;

In each convolutional layer we have a set of filters that consist of trainable weight vectors

(Figure 2.18). All of those filters are spatially small in height and width, but extend through the

entire volume of the input layer (that is, in a 128× 128× 3 color image we can use 3x3 filters,

corresponding to 3×3×3= 27 weights for each neuron). During the forward-propagation process

described in section 2.1.2.1 we convolve each filter (hence the network name) over the complete

width and height of the input layer, being the output given by the dot products between the filter

values and input layer values at all positions. This process will produce 2D feature maps, which

provide the responses of each filter at every position. Regarding local connectivity, it is possible to

say that each neuron will only be connected to a certain region of the input layer, being the spatial

scope of this connection defined by the receptive filed, which in turn is determined by the filter

size. Finally, we can also add that the subsequent layers can combine previous layers detected

features in order to detect higher level features.

Furthermore, the same detected features or patterns can appear in different regions of the input,

being that the reason why filter weights are shared across different locations (weight sharing).

Figure 2.18: Example of filters learned by the first convolutional layer of ImageNet (From
Krizhevsky et al. (2012))

The convolution result is then passed through a non-linearity. In the past, the standard non-

linear activation function was the sigmoid, although the most common choice today is the simpler

ReLU, as it does not saturate and also benefits from an increase of the learning rate (Krizhevsky

et al. (2012)). For further detail refer to Figure 2.16.

Periodically and subsequently to the convolutional layers passed through a non-linearity, we

have pooling layers performing the subsampling task. Concurrently to convolutional layers, that

detect local features from the previous layer, pooling layers combine those features into one.

Nowadays, the most popular type of pooling is max pooling (Figure 2.19), although some early

works adopted mean pooling, e.g. in LeCun et al. (1998)). In the case of max pooling, we de-

fine a specific neighborhood and we take the largest value from each defined window, sliding that

window through each feature map in order to create a new output map. There are three great

advantages that come from this downsampling:

• It reduces the number of parameters and, consequently, lessens overfitting problems;

• Creates an invariance to small shifts and distortions;
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• Creates an almost invariant to scale image representation. The fact that we can detect objects

independently from their location is truly relevant, as an object can be located anywhere in

the input image.

Figure 2.19: Max pooling operation example (From Wu and Gu (2015))

Finally, at the end of the network, we generally have fully connected (FC) layers. Their neu-

rons are completely connected to the preceding layer activations and they output the desired pre-

dictions. In classification problems, they output the probability of belonging each class for the

initial input. In regression problems they output N real numbers, being N the number of predic-

tions we intend to make.

2.1.2.4 Deep Homography Estimation

As discussed in section 2.15, the homography estimation is vital in a multitude of computer vision

tasks. We also saw that the traditional approaches for homography estimation are either slow or

require a lot of complex feature matching, being under the risk of being inaccurate when certain

conditions are not met. That being said, we will now present the most relevant work done to esti-

mate the homography directly through deep learning methods, both supervised and unsupervised.

Supervised Learning Methods

When it comes to supervised learning methods, the most significant contribution comes from

DeTone et al. (2016). Here, the authors propose two models of a convolutional neural network: a

Classification HomographyNet and a Regression HomographyNet (Figure 2.20), both being archi-

tecturally similar to VGG networks (Simonyan and Zisserman (2014)).

As seen in Figure 2.20, these networks take two stacked gray-scale images as input (hence the

128×128×2 input dimensions) that are related by a homography matrix. They work with 3×3

filters with Batch-Norm (Ioffe and Szegedy (2015)) and ReLUs (Figure 2.16) and are composed

of 8 convolutional layers and two fully connected layers. After each two convolutions, a 2×2 max

pooling takes place with a stride of 2. The first four convolutional layers include 64 filters each,

whereas the last four include 128. A dropout is also applied with a probability of 50% before the

first fully connected layer. Both networks remain comparable until the final layers. The regression

network displays a 8× 1 final layer (outputting the 4-point homography parameters discussed in

section 2.1.1.4) and uses the Euclidean (L2) loss during training (Figure 2.20b):

Euclidean (L2) :
1
2
· ||p(x)−q(x)||2 (2.36)
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(a)

(b)

Figure 2.20: (a) HomographyNet - a deep convolutional neural network for homography estima-
tion; (b) Classification HomographyNet head on the left and Regression HomographyNet head on
the right (From DeTone et al. (2016))

The classification instance utilizes a quantization scheme, a Softmax activation function as the

final layer and cross-entropy loss during training (Figure 2.20b):

Crossentropy : −∑
x

p(x) · log(q(x)) (2.37)

being capable of generating a confidence score for each of the potential corners, due to the quan-

tization error introduced by the use of 21 quantization bins for each of the output 8 dimensions

(8× 21 output). This is exemplified in Figure 2.21, where we can see how each 2D corner dis-

placement can be represented as a distribution.

Figure 2.21: Corner Confidences Measure as a result of the Classification HomographyNet (From
DeTone et al. (2016))

Inspired by DeTone et al. (2016), the github user Darwin Bautista proposed a MobileNet-based
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architecture1 (Howard et al. (2017)). MobileNets are light-weight models useful for a wide array

of mobile and embedded vision applications, bearing an efficient architecture that leverages from

depth-wise separable convolutions. They also dispose of two hyper-parameters that allow to size

the model according to the problem demands.

A depth-wise separable convolution factorizes a standard convolution into a depth-wise convo-

lution and a point-wise convolution. The first one applies only one filter to the each input channel

and then the second one performs a 1×1 convolution to combine the first operation outputs.

(a)

(b) (c)

Figure 2.22: (a) Standard Convolutional Filters; (b) Depth-wise Convolutional Filters; (c) Point-
wise Convolutional Filters (From Howard et al. (2017))

This technique brings great advantage in terms of computational cost:

A traditional convolutional layer outputs a feature map (assuming stride one and padding) that

can be calculated as

Gk,l,n = ∑
i, j,m

Ki, j,m,n ·Fk+i−1,l+ j−1,m (2.38)

which leads to a computational cost of

DK ·DK ·M ·N ·DF ·DF (2.39)

being F the DF ·DF ·M input feature map, G the DF ·DF ·N output feature map and K the

convolutional kernel of DK ·DK ·M ·N.

On the other hand, a depth-wise convolution output feature map can be calculated as

Ĝk,l,m = ∑
i, j

K̂i, j,m ·Fk+i−1,l+ j−1,m (2.40)

which turns into a reduced computational cost of

DK ·DK ·M ·DF ·DF (2.41)

1https://github.com/baudm/HomographyNet
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The traditional MobileNet architecture is shown in Table 2.4. That being said, in the Homog-

raphy estimation MobileNet-based architecture proposed by Darwin Bautista, the Fully Connected

and Softmax layers were replaced by 4 convolutional layers, which are concatenated together and

introduced to a Fully Connected layer (as seen in Figure 2.23)

Table 2.4: MobileNet architecture (From Howard et al. (2017))

Figure 2.23: Homography estimation MobileNet-based architecture head

Unsupervised Learning Methods

To the best of our knowledge, the only work that treats the homography estimation problem as

an unsupervised learning method is by Nguyen et al. (2017). Being unsupervised, it performs a

pixel-wise intensity error metric minimization, that presents the great advantage of not requiring

label data.
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Inspired by direct methods (refer to section 2.1.1.4), Nguyen et al. (2017) devised a loss func-

tion, as follows:

LPW =
1
|pi|
·∑

pi

|IA(H(pi))− IB(pi)| (2.42)

being IA and IB an image pair with pixels of homogeneous coordinates pi = (xi,yi,1)T and

H(pi) pixel coordinates warped by the 4-point homography (H̃4point) seen in section 2.1.1.4. The

goal is to output the H̃4point that minimizes the L1 photometric loss described in equation 2.42.

Alike the supervised method described in section 2.1.2.4, a VGG-like architecture was chosen

for the regression model. This is depicted in the first segment of Figure 2.24. That being said, the

big contribution of this work comes from the differentiable layers in the second segment of Figure

2.24, that must remain differentiable in order to allow training through backpropagation. Also,

as the error depends on pixel intensities differences, instead of differences on the H̃4point values

as in the supervised method in section 2.1.2.4, training is not as easy and stable. Furthermore,

the use of a pixel-wise photometric loss presuppose an invariance of intensity and contrast values

between images. In order to counteract this problem, Nguyen et al. (2017) standardize the images

by the mean and variance of the pixel intensities and inject random illumination shifts across all

the dataset.

The inputs for the unsupervised model consist in two 128×128 stacked patches (PA and PB)

cropped from images IA and IB, four corners of image IA represented by CA
4pt and image IA itself.

The second segment of Figure 2.24 starts with a Tensor Direct Linear Transform (Tensor DLT)

that allows the calculation of the mapping from the 4-point homography representation (H̃4point)

to the 3× 3 homography representation (H̃). A Tensor DLT is a regular DLT applied to a tensor

so that it remains differentiable (refer to section 2.1.1.4 for a detailed DLT explanation). CA
4pt and

C̃B
4pt are the inputs and H̃ the output.

Then, a Spatial Transformation Layer (inspired by Jaderberg et al. (2015)) is introduced, ap-

plying H̃ to the pixel coordinates (pi) of image IA in order to obtain warped coordinates (H(pi)),

while still being differentiable. To achieve this, a three-stage inverse warping process is performed:

1. The normalized inverse H̃inv is computed

2. Parameterized Sampling Grid Generator (PSGG)

3. Differential Sampling (DS)

In the first step, we start by normalizing the pixel coordinates of IA and IB, such that they stay

in a range between [−1,1]. Therefore, to obtain H̃inv:

H̃inv = M−1 · H̃−1 ·M (2.43)
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being M:

M =


W ′
2 0 W ′

2

0 H ′
2

H ′
2

0 0 1

 (2.44)

where W ′ and H ′ are IB with and height, respectively.

In the second step, a grid of the same size as IB is created (G= {Gi}), such that each element of

this grid (Gi) is represented by a set of image IB pixel coordinates. Then, the inverse homography

(H̃inv) is used to these coordinates a new grid (Hinv(G)) with pixels of image IA is obtained:

ui

vi

1

= H̃inv ·

u′i
v′i
1

 (2.45)

Finally, in the last step, utilizing the points of the newly obtained grid, a sampled warped

image V (H ′,W ′) with C channels is formed:

VC
i =

H

∑
n

W

∑
m

IC
nm · k(ui−m;Φu) · k(vi−n;Φv),∀i ∈ [1...H ′W ′],∀c ∈ [1...C] (2.46)

being W and H the width and height of image IA, k the sampling kernel with Φu and Φv as

the image interpolation parameters, IC
nm the value of the pixel located at (n,m) in channel C of the

input image. The output of this equation (VC
i ) is the value new image pixel located at (ui,vi) in

channel C. As bilinear interpolation is used, equation 2.46 turns into:

VC
i =

H

∑
n

W

∑
m

IC
nm ·max(0,1−|ui−m|) ·max(0,1−|vi−n|) (2.47)

Figure 2.24: General view of the homography estimation unsupervised model (as seen in Nguyen
et al. (2017))

2.1.2.5 Depth and Ego-Motion Estimation

The visual odometry problem can be tackled directly and in an end-to-end fashion by training

a network that consists in the combination of a depth prediction network and a pose prediction

network. This combo has been proposed several times and in different forms in the literature:
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in supervised/unsupervised approaches and using monocular/stereo datasets. For example, Um-

menhofer et al. (2017) presented DeMoN, where a network is trained in a supervised way and

with monocular videos in order to predict depth and motion from sequential image pairs. Another

method that allies this two type of predictions is UnDeepVO by Li et al. (2017), where stereo

videos are used to train a network that can predict depth and camera pose from monocular videos.

Then, Zhou et al. (2017) proposed a method that can be trained with monocular videos in a com-

pletely unsupervised way in order to infer depth and camera pose. This last technique is going to

be detailed in section 2.1.2.5.

Unsupervised Learning Method

The work by Zhou et al. (2017) titled SfMLearner, trains a model (seen in Figure 2.25) that ob-

serves image sequences to predict probable camera motion in the form of 6-DoF transformation

matrices and scene structure in the form of per-pixel depth maps (Figure 2.26a). As said before, it

is trained in a completely unsupervised manner and with monocular image sequences. Although

the depth and pose networks need to be trained simultaneously, depth and pose can be later inferred

separately (Figure 2.26b).

Figure 2.25: General SfMLearner training pipeline based on view synthesis. The DepthNet takes
in the target-view RGB image (It) and outputs a per-pixel depth map (D̂t). The PoseNet takes
not only It , but also a specified number of source views (e.g. It+1 and It−1), outputting the cor-
responding camera transformation matrices (e.g. T̂t→t+1, T̂t→t−1). Finally, both networks outputs
are used to inversely warp the source-views into the target-view in order, being the photometric
reconstruction loss used to train the networks in a completely unsupervised way (From Nguyen
et al. (2017))

The major supervision signal in Zhou et al. (2017) work stems from the task of novel view

synthesis (Flynn et al. (2016); Xie et al. (2016)), that is, the task to create synthetic images of

a scene from different camera poses given a reference view input. This method innovates by

removing the necessity to obtain labels, proposing an approach to view-synthesis that does not

require any pose groundtruths. That being said, in order to synthesize a target view we need a

per-pixel depth map of the target image, alongside with camera pose and visibility in nearby views

(e.g. previous and next frame). Finally, having an image sequence with N frames with one of
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(a)

(b)

Figure 2.26: (a) The training data consists of video frames sequences; (b) Both depth and pose
networks can be tested separately; (From Zhou et al. (2017))

them being the target view (It) and the rest of them source views (Is), we can formulate the view

synthesis as:

Lvs = ∑
s

∑
p
|It(p)− Îs(p)| (2.48)

where p denotes pixel coordinates, Îs is the source-view (Is) warped to the target-view (It)

coordinate frame. This warping transformation requires the predicted target frame depth (D̂t), the

predicted 4×4 camera transformation matrix (T̂t→s) and the source-view frame. So, we can obtain

the projection of a target-view pixel (pt) onto the source view (pS) as follows:

ps ≈ K · T̂t→s · D̂t(pt) ·K−1 · pt (2.49)

being K the camera intrinsic matrix and D̂t and T̂t→s the predicted depth map and predicted

relative camera pose, respectively. It is also extremely important to notice that the computed

ps coordinates are continuous values. So, in order to be able to compute the pixel values in a

differentiable manner, Zhou et al. (2017) used the differentiable bilinear sampling mechanism

presented in Jaderberg et al. (2015), as so:

Îs(pt) = Is(ps) = ∑i∈{t,b}, j∈{l,r}wi· j · Is(pi· j
s ) (2.50)

with wi· j being linearly proportional to the distance between ps and pi· j
s and with ∑i, j wi· j = 1.

This warping mechanism is clearly illustrated in Figure 2.27.
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Figure 2.27: Differentiable warping process. First, pt is projected onto the source-view based on
the predicted depth map and camera pose; then, the biliniear interpolation is used to compute the
value of the warped image Îs at coordinates pt (From Nguyen et al. (2017))

It is also important to notice that when this synthetic view is exercised on monocular videos

or image sequences it is implicit that:

1. The scene is static;

2. There is no occlusion or disocclusion between the target and the source-views;

3. The captured surface is Lambertian (appears uniformly bright from all viewing directions),

so that the photo-consistency is relevant;

With this limitation in mind, Zhou et al. (2017) proposed to improve the robustness of their

training method by also training a explainability prediction network in simultaneous with the other

two CNNs. This new network outputs a per-pixel soft mask (Ês) for each target and source training

pair in order to express the network belief in the success of the view synthesis prediction for each

target pixel, resulting in the following view-synthesis objective:

Lvs = ∑
<I1,...,IN>∈S

∑
p

Ês(p)|It(p)− Îs(p)| (2.51)

As there is no direct supervision for the explainability task, the predicted Ês would always be

zero, perfectly minimizing the loss in equation 2.51 and inhibiting training. So, in order solve this

problem, a regularization term Lreg(Ês) is added, stimulating non-zero predictions by minimizing

the cross-entropy loss with a constant label of 1 for each pixel. Several illustrative examples can

be seen in Figure 2.28.

The last problem found in the training method is that being the gradients mainly obtained by

deriving pixel intensity differences between I(pt) and the four neighbours of I(ps), training would

be very challenging if the correct ps is found in low-texture area or even far from the current

estimation. The proposed strategy to reduce this issue is to define a multi-scale and smoothness

loss (Garg et al. (2016); Godard et al. (2017)), allowing gradients to be derived from larger spatial

areas directly. So, for smoothness, the L1 norm of the second-order gradients of the predicted
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Figure 2.28: Explainability masks examples where highlighted pixels are branded unexplainable.
From rows 1 to 3 motion occurs and from rows 4 to 5 occlusion or disocclusion occurs (as seen in
Zhou et al. (2017))

depth-maps was chosen to be minimized, encouraging smoothly changing depth values. Finally,

all of this results into the following final loss function:

L f inal = ∑
l
Ll

vs +λs ·Ll
smooth +λe ·∑

s
Lreg(Ê l

s) (2.52)

where l is the index of different image scales a s the index for for source images, while λs and

λe are the parameters to control the weight of the depth smoothness loss and the explainability

regularization loss.

For the depth network the DepthNet architecture from Mayer et al. (2016) was adopted, es-

tablishing an encoder-decoder with skip connections and multi-scale side predictions, as shown

in Figure 2.29a. This module is capable of outputting a per-pixel depth map given a single RGB

image frame. Every convolutional layer is followed by the ReLU activation function with the ex-

ception of prediction layers, where the activation function is given by 1/α · sigmoid(x)+β with

α = 10 and β = 0.01 in order to obtain a predicted depth always positive and in a acceptable

range.

Unlike DepthNet, PoseNet and the Explainability network (seen in Figure 2.29b) take as input

a concatenation of the target-view and the source-views along the color channels. The pose-only

part of the module consists of 2 convolutional layer with a stride of 7 followed by a convolutional

layer with a 1×1 kernel that outputs 6 ·(N−1) channels (3 translation values for each source view

and 3 Euler angles for each source-view, being N the number of input frames for only one training

sequence). In the end, a global average pooling is used to aggregate the prediction from all spatial
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locations. The last convolutional layer has no nonlinear activation applied, being the rest followed

by a ReLU activation function.

The explainability-only part of the prediction module depicted in Figure 2.29b is composed

by 5 deconvolutional layers with multi-scale side predictions. The prediction layers have no non-

linear activation applied, being applied to the rest of deconvolutional layers a ReLU activation

function. It present 2 ·(N−1) output channels for each prediction layer, being every other channel

normalized by a softmax function in order to compute the explainabilty prediction for each source

and target-view pair.

(a) (b)

Figure 2.29: (a) DepthNet architecture. The width of each rectangular block indicates the number
of output channels and the height indicates the dimension of each feature map in the respective
layer. Also, a reduction or increase in the rectangular blocks indicate a change by the factor of 2.
The kernel size for the first four convolutional layers is, in order, 7, 7, 5, 5, being for the rest of
size 3. Finally, the number of output channels in the first convolutional layer is 32; (b) PoseNet
and Explainabilty architecture. The first layers are commonly shared between both architectures,
although they are then divided in two so that each of them can predict what is meant to predict. The
kernel size for the first two convolutional layers and the last two deconvolutional and prediction
layers is, in order, 7, 5, 5, 7, being for the rest of size 3; (From Zhou et al. (2017))

2.2 Endoscopic Capsules Position Estimation

Since its initial development by Given Imaging and its approval in Western countries in 2001,

capsule endoscopy (CE) has suffered substantial improvements, still being in a continuous state

of development (Nakamura and Terano (2008)). Different from traditional endoscopy it is non-

invasive and pain-free, and thus is more convenient for long duration gastrointestinal screening

(Turan et al. (2017b)). Although it is more commonly used for obscure gastrointestinal (GI)

bleeding, it presents great potential for other diseases diagnosis or follow-up applications, such

as Crohn’s disease, small bowel tumor, hereditary polyposis syndromes and celiac disease; this is

given to its ability to access difficult body parts (e.g. small intestines) when compared to standard

endoscopy (Van de Bruaene et al. (2015)).



2.2 Endoscopic Capsules Position Estimation 41

One crucial aspect in order to ensure the progression and wider adoption of this medical in-

strument is the development of endoscopic capsule localization methods, which can be explained

by the following factors:

• The resulting video duration is usually between 8 and 10 hours. With only a few landmarks

available in the entire gastrointestinal (GI) track, even obtaining a very general, organ-wise

localization is challenging. This leads to a lengthy and error-prone manual reviewing pro-

cess;

• If any abnormality is found during the GI track screening, a precise capsule localization is

of vital importance, not only for the medical diagnosis but also for any necessary surgical

interventions;

• A few different groups have suggested endoscopic capsules prototypes with remote control

abilities and some additional features, such as biopsy and local drug delivery (Goenka et al.

(2014); Munoz et al. (2014); Carpi et al. (2011); Keller et al. (2012); Mahoney et al. (2013);

Yim et al. (2014); Petruska and Abbott (2013)). That being said, capsule motion control

heavily relies on a precise real-time localization (Turan et al. (2017b)).

2.2.1 Capsule Localization Methods Overview

In the literature we can find several proposed methods that try to solve the endoscopic capsule

localization problem. We will now present a summarized evolution of those methods as seen

in Turan et al. (2017b), Sitti et al. (2015), Iakovidis and Koulaouzidis (2015) and Mateen et al.

(2017), showing some of the most relevant work done in this field.

Ultrasonic imaging (Fluckiger and Nelson (2007); Rubin et al. (2007); Kim et al. (2008)), flu-

oroscopy (Carpi et al. (2011); Than et al. (2012)), magnetic resonance imaging (MRI) based tech-

niques (Than et al. (2012); Krieger et al. (2011)), positron emission tomography (PET) based tech-

niques (Than et al. (2012)), radio transmitter based techniques (Umay (2015); Dey et al. (2017))

and magnetic field based techniques (Yim and Sitti (2013); He et al. (2015); Hu et al. (2005);

Pham and Aziz (2014)) are all methods that require extra hardware implementations beyond the

basic camera sensor. Most commonly, commercially available methods are based on external

radio-frequency sensor arrays that receive the signals broadcasted by the endoscopic capsule, with

an average error of the 3D localization of 13.26 cm3 (2.00± 1.64 cm in x axis, 2.64± 2.39cm in

y axis and 2.51± 1.83 cm in z axis (Marya et al. (2014)). An example of the results produced

by the Given Imaging RF system can be seen in Figure 2.30. More recent and accurate position

estimation techniques are performed through magnetic sensors, despite being still experimental-

only setups (Iakovidis et al. (2013)). With these hardware-based methods, not only the overall

localization method cost increases, but there are also potential limitations in design and space,

bio-incompatibility and even interference problems of the sensor with the device.

Following up on these issues, a series of vision-based methods were proposed. As an initial

endeavor, structure from motion methods were developed (e.g. Fan et al. (2010) and Iakovidis et al.
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Figure 2.30: Given Imaging PillCam Reader Software v9 showing the small bowel map, progress
bar and thumbnails. The map is only shown when external sensors are used and after the first
duodenal and first cecal images are manually marked landmarks

(2013)), although they were incapable of real-time processing. Visual simultaneous localization

and mapping (VSLAM) in the medical field has been investigated in Mountney et al. (2006),

being applied to endoscopic capsule localization in Grasa et al. (2009) and Grasa et al. (2014).

Then, several VSLAM-based techniques were developed. In Lin et al. (2013) parallel tracking

and mapping (PTAM) was advanced, allowing to build a denser 3D map than previous EKF-based

SLAM methods. Another breakthrough VSLAM method was proposed in the form of ORB-

SLAM, that was adjusted to endoscopic capsule localization in Mahmoud et al. (2016).

The exposed vision-based capsule localization algorithms rely on feature-based methods, search-

ing for distinct features and tracking them across different frames to obtain an estimated position.

Such methods generally perform poorly on endoscopic images, as these images show, most of the

time, an absence of distinct landmarks. Also, with VSLAM-based algorithms the translation in

the z axis direction is mathematically impossible to determine up to a scale with only one camera.

Furthermore, most of the methods in present literature were developed with standard handheld

endoscopy in mind. This can be problematic as endoscopic capsules display different character-

istics: lower camera quality and resolution, space availability and limited energy source. (Turan

et al. (2017b))

Bearing in mind all the issues posed by hardware-based and vision-based methods, a few

methods that resort to deep learning techniques were recently presented. To our knowledge, the

only work done in this field that makes usage of deep learning techniques was presented in Turan

et al. (2017b), Turan et al. (2017a) and Turan et al. (2018).
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Visual Odometry Framework

3.1 Problem Characterization

The endoscopic capsule is already recognized as the main method to screen the entire small bowel.

However, there are still some challenges to solve in order to release its full potential. In this work

we will focus on the challenge of endoscopic capsule localization in the small intestine. Due to

the 8 to 10 hours duration of the produced videos and the lack of landmarks throughout the small

bowel, it is exceptionally difficult to make an estimation of the capsule position without additional

information. So, it is important to develop methods that can provide this additional and valuable

information to physicians performing a diagnosis and surgeons performing a surgery.

This localization information can be provided in terms of percentage of travelled distance

inside the small bowel, which combined with the user medical experience can be very helpful

when locating the capsule on the human body. Another option is to provide the capsule three

dimensional position in each frame.

When trying to solve the endoscopic capsule localization problem, it is important to consider

the following challenges:

1. Reduced frame rate can lead to no superimposition between consecutive frames.

2. There are large sequences of non-informative image frames that preclude any possibility of

obtaining useful information. In this case, we consider an image non-informative when it

contains a substantial amount of green residues or air bubbles. This phenomenons appear

often in endoscopic images and they occlude any relevant feature.

3. It is not an easy task to obtain a capsule position groundtruth in an environment like the small

intestine. Without a groundtruth, it is only possible to use unsupervised learning methods

and supervised learning methods with artificially generated labels. Additionally, this makes

the work validation much harder to obtain, as labeled data is necessary to compare against

the obtained results.
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4. Peristalsis, a radial contraction and relaxation of muscles that propagates via a wave-like

motion, occurs throughout the gastrointestinal tract. This means that the movement detected

might not correspond to real camera movement but to a change in the environment itself.

3.2 System Overview

In order to fulfill the physicians needs and to overcome the challenges posed by this type of dataset,

we propose the framework presented in Figure 3.1. Our system requires four inputs: endoscopic

images, the camera matrix, topographic landmarks and some capsule and small bowel information.

The endoscopic images are the data our system will learn from and the data our system will be

tested on. The topographic landmarks are used to determine in which frame the small bowel starts

(duodenum) and in which frame it ends (ileocecal valve), as we are only interested in finding the

capsule position in the small intestine. The intrinsic matrix is necessary for the system to obtain

the characteristics of the camera used to record the endoscopic videos. The capsule information

necessary is mainly the average and maximum capsule per frame displacements inside the small

bowel. The small bowel information necessary is the minimum length, maximum length and

average diameter.

Figure 3.1: System framework overview

To obtain position information from these inputs we chose to apply a visual odometer, which

has the great advantage of freeing the patient from uncomfortable additional external hardware.

Two completely different types of deep learning based visual odometers were developed. One is

based on the prediction of the homography between frames, performed by a HomographyNet, a

convolutional neural network detailed in section 2.1.2.4 (DeTone et al. (2016)). Other is based

on a depth and ego-estimation method (Zhou et al. (2017)), detailed in section 2.1.2.5. The first

outputs a per frame displacement in percentage and the second a 3D capsule pose, a depth map for

each frame and a small bowel 3D reconstruction.

Deep learning techniques have been setting new state-of-the-art results across different fields

of computer vision, being this type of methods more robust to distortion effects, noise, occlusions,

vignetting and deficiency of distinguishable features. It was mainly based on these properties and

in the nature of the endoscopic datasets that we developed our methods.
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3.2.1 Displacement Estimation - HomographyNet

In Figure 3.2 we can see the full framework that describes this method. What this visual odometry

method seeks to accomplish is a per frame capsule displacement (in percentage) throughout the

small bowel - similar to what is seen in Figure 2.30 - without any additional hardware components.

In sum, it does not aim to be a tool that provides an exact three-dimensional localization, but one

that can give useful information when combined with the physicians experience and knowledge.

Figure 3.2: Displacement estimation framework

Firstly, the dataset needs to be prepared in a specific way in order to be fed to the Homogra-

phyNet. The HomographyNet outputs a 4-point homography prediction (section 2.1.1.4) that is

then used to compute the displacement between frames. Then, this displacement information is

fused with other capsule and small bowel information (average and maximum capsule per frame

displacement inside the small bowel, small bowel minimum and maximum length and diameter)

to provide a final per frame displacement in percentage. This fusion of information is necessary

in order to detect abnormal displacement predictions and to fill in the gaps left by discarded non-

informative frames.

The HomographyNet (detailed in 2.1.2.4) was chosen as the homography estimator for this

framework because it performs better than previous state-of-the-art methods (as seen in DeTone

et al. (2016)).

3.2.2 Depth and Pose Estimation - SfMLearner

The framework that combines pose and depth estimation, as well as a small bowel 3D reconstruc-

tion, can be seen in Figure 3.3. Here, we obtain a 3D localization with an end-to-end method that

estimates depth and ego-motion and that can be trained in an unsupervised manner (Zhou et al.

(2017)). The procedure consists in training two networks in the task of view-synthesis, which

compels them to learn the transitional steps of image depth and camera 3D pose. Then, the 3D

pose is refined with capsule and small bowel information (average and maximum capsule speeds

inside the small bowel and small bowel diameter). This additional information allows us to detect

and replace abnormal measures and to fill in the gaps of discarded non-informative frames. From

the depth maps predicted for each frames is possible to extrapolate a 3D reconstruction.
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Figure 3.3: 3D pose and depth map estimation framework

There are two main reasons why this method is very well suited to solve an endoscopic capsule

localization problem. First, the fact that it can be trained in a completely unsupervised way is

truly important, due to the great level of difficulty and cost to obtain positioning labels in the

gastrointestinal track. Second, a explainability network (see section 2.1.2.5) is trained to prevent

phenomenons which commonly occur on endoscopic videos, such as:

• Extremely common occlusions due to fluid or even solid particles.

• Non-Lambertian surfaces due to the reflections caused by the capsule illumination system.

• Gastrointestinal track deformation due to the non-rigid nature of the human organs.

3.3 Dataset

The anonymized dataset available to us consists of 449 endoscopic capsule videos, 338 from the

PillCam SB2 endoscopic capsule and 111 from the PillCam SB3 endoscopic capsule. With that

said, the dataset used in our work is only composed by the PillCam SB3 videos. This decision

was based on the fact that this capsule is the latest iteration of PillCam SB capsules, which trans-

lates into an improved image quality with superior resolution and an increase in the frame rate.

Furthermore, some of the videos captured by this capsule have a unitless displacement attached,

which is based on landmarks marked by the physician (duodenum and ileocecal valve) and a radio-

frequency (RF) sensor array. Even though this displacement can not be used as groundtruth to train

a neural network (there is no easy way to export this information from the PillCam Reader Soft-

ware1), it can be used to validate our methods. The majority of the videos are medically annotated

in terms of topographic landmarks (first duodenal, ileocecal valve and cecal image), as well as the

identified lesions and abnormalities. Both capsules characteristics can be seen in Table 3.1 and a

comparative example of their captured frames can be seen in Figure 3.4.

It is also important to notice that in order to transform the videos into a compatible format for

our system, we converted them into image sequences using Sensarea (Bertolino (2014)).

1http://medtronicsolutions.medtronic.com/rapid-reader-9-0-download
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PillCam SB2 PillCam SB3

• 26mm×11mm

• weight 3.7g

• 7−8h battery life

• resolution 256×256

• 2 f ps

• AOV 156◦

• 26.2mm×11.4mm

• weight 3.0g

• 8h or longer

• resolution 320×320

• 2−6 f ps AFR

• AOV 156◦

Table 3.1: PillCam SB2 and PillCam SB3 characteristics

(a) (b)

Figure 3.4: (a) PillCam SB2 captured frame example; (b) PillCam SB3 captured frame example;

We can see the traditional endoscopic dataset challenges (section 3.1) depicted in our dataset

in Figures 3.5 and 3.6. Besides the typical endoscopic dataset characteristics, our dataset demon-

strates another peculiarity that is important to note. The video software used to compile the raw

data recorded by the endoscopic capsules (PillCam Reader Software) utilizes a smart video com-

piler, which greatly reduces the number of frames in the video, eliminating those it considers

redundant. Those removed frames could potentially reduce the lack of superimposition between

frames in some cases. To put this into perspective, the capsule frame rate can go as low as 0.7

after this technique is applied.
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(a) (b)

Figure 3.5: PillCam SB3 consecutive frames without superimposition.

Figure 3.6: PillCam SB3 captured frames with noise. We consider noise the green residues and
bubbles that occlude the features.

3.3.1 Treated Dataset

In order to solve the problem of non-informative images we propose two methods to create a new

treated dataset. The first is a simpler approach, which is based on the dominant color of the dataset

images and the other is a deep learning approach, which utilizes a convolutional neural network to

predict if the images are informative or not.

The first method starts with the detection of the dominant color in RGB for each frame in

the endoscopic dataset. Then, after getting the dominant color, we change the RGB results into

the HSV color space, where it is easier to identify the characteristic green tones of most non-

informative frames (e.g. Figure 3.6). Finally, the frame is considered non-informative and dis-

carded if the hue value of the dominant color is between 21 and 80, a space interval which we

found empirically to represent the green tone in non-informative images. With this threshold we

found out that around 17% to 28% of each small bowel endoscopic video frames are consid-

ered non-informative. By visually inspecting the different videos analyzed, we concluded that

the values should have been slightly higher. With that said, this method can still provide a good

approximation of the amount of non-informative frames.

There are two big disadvantages when it comes to this method: the algorithm becomes com-

putationally heavier (taking much more time to run) and its accuracy is not as good as desired
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(e.g. it might detect mainly green frames that are still informative or fail to detect some frames

with bubbles that do not show a green color but still occlude most features). This means that a

dominant color only approach might not be sufficient.

In this sense, we propose the creation of a second alternative method to classify the usefulness

of the frames. A convolutional neural network based on the MobileNet architecture, exposed in

section 2.1.2.4), would be trained on a new dataset to predict if an endoscopic image belongs to

the informative or non-informative class. As our dataset frames were not labeled as informative or

non-informative, the first solution was used to create our new treated dataset.

3.3.2 Camera Calibration

In order to perform camera calibration, we applied MATLAB Single Camera Calibrator App (Fig-

ure 3.7). The procedure starts with the capture of multiple images of a checkerboard with the

camera we wish to calibrate, in our case, the PillCam SB3 endoscopic capsule. We then need

to give the size of the checkerboard squares (2 mm in our case) and finally select the threshold

to eliminate the outliers based on the reprojection error. The obtained intrinsic matrix (K) (see

section 2.1.1.1 for more details) and distortion coefficients are:

K =

160.7178 0 165.6875

0 161.2810 161.1860

0 0 1

 (3.1)

distortion coe f f icients =
[
−0.0218 −0.2353 7.3532e−4 −0.0069 0.0914

]
(3.2)

Figure 3.7: MATLAB Single Camera Calibrator App framework
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Chapter 4

Results

4.1 Displacement Estimation - HomographyNet

As seen in the framework in Figure 3.2, there are two main processes to obtain the capsule dis-

placement across the frames of an endoscopic capsule video. The first process, performed by the

HomographyNet (DeTone et al. (2016)), is the prediction of the homography that describes the

transformation between frames. Then, with the second process we translate the obtained homog-

raphy into displacement information.

As we do not dispose of any dataset labeled with the homography transformations between

frames, we need to create a synthetic dataset with artificial known distortions in order to train the

networks.

4.1.1 Network Architectures

Our tests were conducted with two different models, the Regression HomographyNet and the

MobileNet-based HomographyNet, both supervised learning methods that were explored in de-

tail in section 2.1.2.4.

The Regression HomographyNet has an input shape of 128× 128× 2, that is, two grayscale

images stacked. It is composed of 8 convolutional layers followed by a ReLU activation function,

batch normalization (convolutional block) and sometimes a max pooling layer. Finally, the result

is flattened and put through two fully connected layers with dropout layers in between, to output a

vector of size 8. This vector is composed by real numbers that represent the 4-point homography

that describes the transformation between the input images. There are 8 values because, as detailed

in section 2.1.1.4, the 4-point homography is composed by the offsets between each coordinate of

each corner. A model summary can be seen in Table 4.1.

The MobileNet-based HomographyNet has the same two grayscale images stacked input as

the Regression HomographyNet. It starts with a convolutional block composed by a convolutional

layer with 32 filters with a 3× 3 kernel and a stride of 2, followed by batch normalization and a

ReLU activation function. Then, 13 depth-wise convolutional blocks take place, which consist of

a depth-wise convolution, batch normalization, ReLU activation, a point-wise convolution, batch

51
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normalization and another ReLU activation. Finally, it concatenates 4 convolutional layers, each

with 2 filters with a 4× 4 kernel and a stride of 1, then flattening the result to output a vector of

size 8. This outputted vector is also composed by real numbers and also represents the 4-point

homography between the input images. A model summary can be seen in Table 4.2.

Blocks/Layers Filters Kernel Strides Pool Size
Convolutional Block 64 3×3 1×1
Convolutional Block 64 3×3 1×1

Max Pooling Layer 2

Convolutional Block 64 3×3 1×1

Convolutional Block 64 3×3 1×1
Max Pooling Layer 2

Convolutional Block 128 3×3 1×1
Convolutional Block 128 3×3 1×1

Max Pooling Layer 2
Convolutional Block 128 3×3 1×1
Convolutional Block 128 3×3 1×1

Flatten
Dropout

Fully Connected = 1024
ReLU

Dropout
Fully Connected = 8

Total Parameters 34,195,336
Table 4.1: HomographyNet Regression architecture
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Blocks/Layers Filters Kernel Strides
Convolutional Block 32 3×3 2×2

Depth-wise Convolutional
Block

64 pw 3×3 dw 1×1 dw

Depth-wise Convolutional
Block

128 pw 3×3 dw 2×2 dw

Depth-wise Convolutional
Block

128 pw 3×3 dw 2×2 dw

Depth-wise Convolutional
Block

256 pw 3×3 dw 2×2 dw

Depth-wise Convolutional
Block

256 pw 3×3 dw 1×1 dw

Depth-wise Convolutional
Block

512 pw 3×3 dw 2×2 dw

Depth-wise Convolutional
Block

512 pw 3×3 dw 1×1 dw

Depth-wise Convolutional
Block

512 pw 3×3 dw 1×1 dw

Depth-wise Convolutional
Block

512 pw 3×3 dw 1×1 dw

Depth-wise Convolutional
Block

512 pw 3×3 dw 1×1 dw

Depth-wise Convolutional
Block

512 pw 3×3 dw 1×1 dw

Depth-wise Convolutional
Block

1024 pw 3×3 dw 2×2 dw

Depth-wise Convolutional
Block

1024 pw 3×3 dw 1×1 dw

Convolutional Layer 2 4×4 1×1
Convolutional Layer 2 4×4 1×1
Convolutional Layer 2 4×4 1×1
Convolutional Layer 2 4×4 1×1

Concatenate Layer
Flatten Layer

Total Parameters 3,359,656
Table 4.2: MobileNet-based HomographyNet architecture

4.1.2 Synthetic Dataset

Both HomographyNet architectures we will implement for our first method are supervised learning

methods, thus requiring labeled data. As we only possess an unlabeled dataset (see section 3.3),

we need to artificially create our groundtruth. As we can create as many artificial transformations

as we want, this will also allow us to have a seemingly infinite amount of data.

The networks were designed to take as input two 128×128 stacked grayscale images that are

labeled with a homography matrix that relates them. These images are called patches because
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they are a crop from 320× 320 images. So, we created 3 labeled image pairs for each existing

frame of the treated dataset described in section 3.3.1, which is the dataset used as basis. This

synthetic dataset was created to mimic real transformations that occur between two consecutive

frames, by randomly generating a great variety of transformations and by randomly introducing

noise artifacts.

We will now describe the algorithm that allowed us to generate our synthetic dataset with

an artificial 4-point homography (section 2.1.1.4) groundtruth for every created image pair. This

algorithm takes a 320×320 RGB frame and outputs two stacked 128×128 grayscale patches.

1. Convert the original image to grayscale.

2. Crop a 128×128 square patch from the 320×320 grayscale image (blue square from Fig-

ure 4.1a). The patch vertexes coordinates are randomly generated between defined values,

always maintaining the 128×128 size. This allows us to include different features for each

image pair created from the same image.

3. Add a random perturbation to each of the patch vertexes coordinates (green square from

Figure 4.1a). A perturbation is no more than the sum of a random value to each coordinate

of each patch vertex.

4. Based on the original and perturbed points obtained from step 3, we calculate the homog-

raphy matrix that maps the original image pixels to the perturbed image pixels with a per-

spective transformation function. We then proceed to compute the inverse of this matrix and

warp the grayscale 320× 320 image according to it in order to obtain a new 320 warped

image.

5. Use the unperturbed generated vertexes to crop a new 128×128 patch of the newly warped

320 image (green square from Figure 4.1b).

6. Introduce different artifacts with random levels of intensity and with a certain probability,

such as Gaussian blur with 30% of probability and increase or decrease in pixel intensity

with 40% of probability (two possible examples can be seen in Figure 4.2a and Figure 4.2b).

7. Return the perturbed 128× 128 patch stacked on top of the original 128× 128 patch in

order to create a 128×128×2 image pair and return the offset between the perturbed patch

vertexes and original patch vertexes coordinates. This offset will be our 4-point homography

(see section 2.1.1.4) used as label.

The process described above is repeated 3 times for each image sample in our treated dataset

(section 3.3.1), representing a threefold increase in our data size. This process was done for 75%

of our treated dataset to create our train dataset and for the others 25% to create our test dataset,

which translates to 7303680 training samples and 2711040 test samples.
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(a) (b)

Figure 4.1: (a) Original patch and perturbed points; (b) Perturbed patch;

(a) (b)

Figure 4.2: (a) Perturbed patch augmentation example 1; (b) Perturbed patch augmentation exam-
ple 2;

4.1.3 Train and Synthetic Data Tests

The training process for both proposed architectures utilizes the synthetic train dataset described

in section 4.1.2 and minimizes the loss function shown in equation 2.36 (as mentioned in DeTone

et al. (2016)). Also, the following metric was used:

Mean Corner Error (MCE) :
1
n
·

n

∑
i=1

√
4

∑
k=1

(pi,k−qi,k)2 (4.1)

being n the number of image pairs, pi,k the predicted values and qi,k the true values for each

corner of each image pair. This metric is an intuitive way to verify the network success because,

as the name suggests, it represents the average of the error of the predicted corner offsets of each

image, in pixels.

The final hyper-parameters chosen to train the networks were:

• Batch size of 64

• 9 epochs

• Stochastic Gradient Descent optimizer with a learning rate of 0.005 and a momentum of 0.9
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In Figures 4.3 and 4.4 we can see the results obtained in the train dataset and test dataset along

the 9 training epochs. We can conclude that the regression HomographyNet performs considerably

worse, showing a lot of difficulty to minimize the error, especially in our test dataset. Empirically,

we found that although the MobileNet-based model always presented better results, the regression

model converged correctly before we added noise artifacts (in form of pixel intensity changes and

Gaussian blur) to our synthetic dataset. The MobileNet-based model not only performs better, but

also presents a much smaller size than its counterpart, being faster to train and to make predictions.

So, the best achieved results were obtained after 9 epochs of training the MobileNet-based

model, with an average loss of 0.0029 and a mean corner error of 1.3590 pixels on the test dataset.

Taking into consideration the input image sizes of 320×320, a mean corner error of 1.3590 pixels

is practically negligible.

[Graphical representation of the regression HomographyNet results]

Figure 4.3: Graphical representation of the regression HomographyNet results. From left to right
we have represented the Euclidean L2 loss and the Mean Corner Error (MCE) metric in pixels. In
blue we have the results in the training set and in orange in the test set.

Figure 4.4: Graphical representation of the MobileNet-based HomographyNet results. From left
to right we have represented the Euclidean L2 loss and the Mean Corner Error (MCE) metric in
pixels. In blue we have the results in the training set and in orange in the test set.
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A visual representation of the accuracy of the obtained results can be seen in Figure 4.5.

Figure 4.5: Multiple examples showing the predictions accuracy. The blue line represents the dis-
torted patch and the green line the predicted patch. The blue line is barely visible as the prediction
and groundtruth are almost superimposed.

4.1.4 Real Data Tests

In this section we will display and discuss the results obtained when using the synthetically trained

MobileNet-based model (section 4.1.3) to make predictions on real data only (from the treated

dataset described in 3.3.1). Testing this model on real data means evaluating the 4-point homog-

raphy prediction for two consecutive endoscopic video frames. Here, the main challenge is to

accurately evaluate the outcome, as there is no available groundtruth to use as a baseline. So, the

only way to verify the precision of our work is to warp the first frame in an image pair according

to the predicted 4-point homography between them, then comparing their similarity.

As we are now using full images instead of centered patches (where the distortion is mini-

mum), it is important to address the big distortion (normal in any wide-angle lens) that occurs at

the borders of our images. In that sense, we use the intrinsic matrix (K) and the distortion coef-

ficients of our camera (obtained in section 3.3.2) in order to undistort our images. We can see in

Figure 4.6 that this further improves the network predictions. This improvement can probably be

explained by the added spatial consistency across the image that the undistortion provides.

Although we obtained great results predicting the homography in synthetic data by feeding

only two 128× 128 cropped patches to the network, that is not as efficient when testing on real

data. This is expected if we admit that in the first case the transformation is always controlled,

almost assuring that there will be a big enough superimposed area on both patches, as opposed

to a real data test, where there might be a great enough camera shift that the overlapped areas

might be too far apart. So, instead of feeding a pair of cropped 128×128 patches to the network,

we resize each 320× 320 frame from an image pair to a smaller size of 128× 128. This way,

when stacking two consecutive frames, the (128×128×2) format required by the network is still

maintained, while maximizing the number of features that can be detected. In Figure 4.7, we can

see a comparison between both approaches, where the superiority of the resizing approach is clear.
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(a)

(b)

Figure 4.6: Comparison between predictions with distorted and undistorted images. From left
to right: first frame, second frame and first frame warped to the second frame perspective. (a)
Prediction using regular consecutive frames; (b) Prediction using undistorted consecutive frames;

In Figure 4.7 we also display the transformation obtained when using a SIFT + RANSAC

approach (section 2.1.1.3), a classical computer vision feature-based approach. As endoscopic

datasets lack on distinct features, feature-based methods generally perform poorly. SIFT poor

performance can be seen in Figure 4.7, only being able to find 7 inlier feature matches between

both frames. This shows how efficient our deep-learning method is on datasets of this nature.

In Figure 4.8 we can see multiple examples where the first frame in a pair is warped to the

second frame perspective according to the predicted homography. In order to interpret this results

we need to inspect the scale on the three images given that compose each example. In the first

example it is especially noticeable how the bottom of the image is transformed in order to match

the second frame view. On the second and third examples we can clearly notice that the predictions

reflect the overall zoom-in that occurs between the first and second frames of the image pairs. In

the last example, even though a more complex situation is depicted, we can clearly see the shift in

the y axis and the slight zoom-out being correctly reflected in the prediction.

We concluded that our method performs well in real data, especially when compared with

feature-based approaches like SIFT. With that said, this method alone is still flawed (Figure 4.9)

and, a failed prediction will probably be caused by one of these issues:

1. Lack of distinct features caused by a small superimposed are between frames.
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(a)

(b)

(c)

Figure 4.7: Comparison between three alternative homography estimation approaches. From left
to right: first frame, second frame and first frame warped to the second frame perspective. (a)
HomographyNet with centered single-patch approach; (b) HomographyNet with image resize ap-
proach; (c) SIFT + RANSAC approach.

2. Lack of context. There are some transformations trivial to a human inspector that might be

a difficult task to our network, which might be explained by the absence of memory in our

model.
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Figure 4.8: Multiple examples showing the homography predictions in real data. From left to
right: first frame, second frame and first frame warped to the second frame perspective.
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Figure 4.9: Unsuccessful homography prediction between two consecutive frames

4.1.5 Displacement Computation

The overview framework of the algorithm used to compute a displacement between a frame pair is

depicted in Figure 4.10. The dataset used as basis was the treated dataset detailed in section 3.3.1.

We start by verifying if both frames we are analyzing are informative. If they are, we start the

frames processing. Each frame is converted to grayscale, undistorted (with the values obtained in

section 3.3.2)) and resized from 320×320 to 128×128. Then, the processed images of the frame

pair are stacked together in order to be fed into the MobileNet-based HomographyNet.

The HomographyNet then predicts a 4-point homography (detailed in section 2.1.1.4), which

is then transformed into a 3× 3 homography matrix that relates both frames and describes the

camera movement between them. Now we can multiply the 2D coordinates of the previous camera

position by the obtained homography in order to get the current camera position. The capsule

positions based on this coordinates are depicted as black dots in Figure 4.11.

As these coordinates are obtained in pixels, we need to scale them to meters. This is done by

multiplying them by 0.023
128 , being 128 the testing images size and 0.023 an average diameter of the

small intestine diameter in adults (Haworth et al. (1967)).

We then calculate the uni-dimensional displacement (dx in Figure 4.11) based on the computed

camera coordinates (p and p′ in Figure 4.11). The displacement along the x axis is the only

displacement that is interesting for a medical diagnostic. So, we can compute this displacement as

follows:

dx = p′x− px (4.2)

We can disregard the movement on the z axis (up and down) without losing much information

because the small bowel is a tube of small diameter (an average diameter of 0.023 meters in adults

Haworth et al. (1967)), limiting the amount the capsule can move along this axis.

Then, in order to filter nonsensical displacement computation, we define a maximum threshold

of 4.7565mm. According to Bao et al. (2014), for a capsule that records at a frame rate of 2,

10mm/s is the speed limit to detect common features between consecutive frames. With an average
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Figure 4.10: Displacement computation framework

frame rate of 0.7, the speed limit for our capsule is 3.5mm/s. With a frame rate of 0.7 we get that
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Figure 4.11: Top view for the capsule motion inside the small intestine

a frame is captured every 1.429 seconds:

1
0.7
≈ 1.429 s (4.3)

So, in order to detect enough features to make a prediction, the maximum displacement per

frame in our endoscopic videos should be:

3.5×1.429 = 5.0015 mm (4.4)

If we detect that a displacement estimation is nonsensical, we need to make a new displacement

approximation. Although we might think that using the last successful displacement estimation

would be a good approximation, this is actually not true, especially for long non-informative se-

quences that commonly appear in our endoscopic videos. Keeping that in mind, we propose the

use of an average per frame displacement of the endoscopic capsule in the small bowel. So, as-

suming that the capsule has an average speed of 0.48 mm/s (Bao et al. (2014)) and that our capsule

captures a frame every 1.429 seconds (equation 4.4), we can calculate our average displacement

per frame as follows:

0.48×1.429≈ 0.686 mm (4.5)

Displacement Results

The dataset used as base to test our results will be an altered version of the treated dataset detailed

in 3.3.1, that only contains the frames that depict the small bowel passages. In order to perform this

frame selection we used the duodenum and ileocecal valve topographic annotations (the beginning

and ending of the small intestine) to crop the videos (section 3.3).
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We will start by testing our method on small controlled frame sequences that only contain clean

frames with plenty of overlapping area between them. With small frame sequences it is possible

to visualize the state of the capsule progression and, in this way, compare it to our displacement

results.

In Figure 4.12, we present a frame sequence where the capsule is clearly moving backwards.

If we apply our algorithm to this frame sequence, the result also shows a backward motion (Figure

4.13). Even though the distance travelled from the first to the second frame appears to be the

largest when looking at the frame sequence, it is difficult to justify a so accentuated difference

when compared with the rest of travelled distances. As we have no precise scale reference it is

not easy to evaluate it, but taking into consideration the scale of the small bowel environment, a

travelled distance of 7mm along the frame sequence in Figure 4.12 seems correct.

Figure 4.12: Frame sequence where the PillCam SB3 capsule is going backwards. The chrono-
logical order is from left to right and from top to bottom.

Figure 4.13: Backward displacement results from running our method on the frame sequence in
Figure 4.12

In Figure 4.14, we have a frame sequence where the endoscopic capsule describes a forward

motion. Applying our algorithm to this sequence will also show a forward motion (Figure 4.15.

Once again, the distance travelled between frames seems correct, expect for the distance travelled

between the last two frames. Here, we can see that our algorithm detects that the displacement was
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too high, marking it as a faulty detection and replacing it with the average capsule displacement

of 0.686mm (equation 4.6).

Figure 4.14: Frame sequence where the PillCam SB3 capsule is going forward. The chronological
order is from left to right and from top to bottom.

Figure 4.15: Forward displacement results from running our method on the frame sequence in
Figure 4.14

We will now move on to validate our method on full small bowel endoscopic videos. As

stated in section 3.3, even though we can not use our per frame displacement percentage labels to

easily train a neural network, we can still use them to validate our results. We will only show our

results in percentage because it is the only type of displacement that a physician needs in order to

make a capsule position assessment, being easier to estimate a capsule position by interpreting a

displacement result in percentage than in meters.

In Figure 4.16 we display the results (in percentage) obtained by running our algorithm on

two different endoscopic capsule videos that capture the entire small bowel. While computing

the displacement in Figure 4.16a video, 9933 out of 17019 displacement measures were discarded

(≈ 58.36%), whereas in Figure 4.16b video, 9095 out of 16659 were discarded (≈ 54.95%). These

measures were discarded as defined in the displacement computation framework (Figure 4.10).

To validate our results we compared them with the displacement (in percentage) obtained with

Given Imaging proprietary software and hardware (Figure 4.17). As Given Imaging displays its
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(a) (b)

Figure 4.16: Per frame displacement (in percentage) in two examples of small bowel PillCam SB3
endoscopic capsule videos

results in a lower resolution of 101 (0% to 100%), we need to sub-sample our results for the

methods resolutions to match. Then, considering the Given Imaging results as the reference value,

we calculated the Mean Absolute Error (MAE) and its Standard Deviation (SD) for the computed

displacements in Figure 4.16a video:

error = 5.00±2.65% (4.6)

and Figure 4.16b video:

error = 3.16±2.08% (4.7)

Considering the challenges of the endoscopic capsule localization problem and the accuracy

of the methods currently used by physicians to determine the capsule position, we can conclude

that the obtained errors are within the expected values. The bigger error in the first video might be

explained by the bigger percentage of discarded measurements (which are replaced by an average

displacement) and by undetected incorrect homography predictions. Ultimately, it is possible to

conclude that our displacement computation method can provide truly useful information for a

physician performing a diagnostic or even a surgery, without resorting to external equipment that

would further disturb the patient. With that being said, there is still room for improvement, which

will be address in section 5.2.
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(a) (b)

Figure 4.17: Comparison between our sub-sampled results and the results obtained in Given Imag-
ing software. Our results are depicted in blue and the Given Imaging results in orange.

4.2 Depth and Pose Estimation - SfMLearner

As seen in the framework in Figure 3.3 and explained in section 3.2.2, this method is an end-

to-end approach to the problem of the capsule position estimation. With this method we intend

to estimate not only a three-dimensional position, but also a depth map for each frame. The 3D

reconstruction, although proposed in our original framework, is not yet implemented.

This method consists in a model (detailed in section 2.1.2.5) composed by three neural net-

works that need to be trained in an unsupervised way. In order to train this model the data needs

to be formatted in a specific manner. For this reason a new dataset was created.

4.2.1 SfMLearner Dataset

The creation of this new dataset uses as basis the original dataset detailed in section 3.3. The

treated dataset detailed in section 3.3.1 (without non-informative images) was not utilized because

we have not yet implemented a replacement for the discarded images. If in a one-dimensional en-

vironment, as in section 4.1, we can use an average displacement to replace discarded predictions,

in a three-dimensional environment this problem becomes much more complex as we also need to

deal with the capsule 3D orientation.

We started by cropping the videos to only depict the passages in the small bowel, by selecting

the frames between the duodenum and the ileocecal valve. This is done because we are only

interested to predict the capsule position inside the small bowel. The inclusion of the rest of the

video in the training process could be problematic due to this reasons:

• Before the duodenum the capsule travels much faster, so consecutive frames often do not

have overlapped areas.

• After the ileocecal valve, most of the image frames are usually non-informative due to green

residues.
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Then, we divide all the data into snippets of two or more consecutive frames (Figure 4.18),

in a way that between snippets there is always a shift of one frame. That is, if the first snippet is

composed by frames 1, 2 and 3, this means the second one is composed by frames 2, 3 and 4 and

so on. Each snippet is composed by a target view frame and two or more nearby view frames (see

details in section 3.2.2).

Figure 4.18: Example of three frames generated snippet

For each snippet, a text file with the camera intrinsic matrix (K) (section 2.1.1.1) is also cre-

ated. The calibration process necessary to obtain the matrix K was already described previously

in section 3.3.2. Finally, two other text files are created, one containing the directory paths for the

snippets destined to training and the others destined to testing. These are randomly divided and

represent 89% and 11% of the dataset, respectively.

4.2.2 Training

The hyper-parameters chosen for training this model were:

• Snippet length of 3

• Adam optimizer with a learning Rate of 0.0002 and momentum of 0.9

• Smoothness weight of 0.2

• Explainability regularization weight of 1.0

• 6 epochs

We experimented with various number of frames per snippet, but we could only train our

network with a combination of 3 frames, which means that the information might be too disparate

between five sequential frames.

According to its function of preventing phenomenons such as occlusions (more details in sec-

tion 3.2.2) and due to the nature of our dataset, the explainability is set to a high value of 1. The

rest of the hyper-parameters were found in a purely empirical way.

It should be noted that while loading the images for training, a process of data augmentation

takes place, consisting of random cropping and random scaling the images, which also implies a

intrinsic matrix scaling in order to maintain the consistency. This will increase the effective size
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of the training data and will help the network learn to cope with all the different distortions that

can occur.

The total loss throughout the training process can be seen in Figure 4.19. As we can notice,

the total loss does not actually converge. This is due to the fact that the photometric loss is not

directly correlated with depth map quality. So, in order to evaluate how the training is progress-

ing, TensorBoard (Abadi et al. (2016)) can be used to visualize the quality of depth maps being

predicted during the process.

Figure 4.19: Total loss (equation 2.52) across the 200000 training iterations, equivalent to 6 epochs

4.2.3 3D Pose and Depth Results

In this section we will display the predictions obtained with this method on our dataset. We will

show examples of depth predictions on several images and then present pose predictions on short

frame sequences. Also, the quality of the results and our thoughts on how to improve them will be

discussed. With that said, we have no available depth or camera poses ground-truths, so we can

only validate our results in a manual and visual way.

In Figures 4.20a and 4.20b we display the depth results obtained for the frame sequences in

Figures 4.12 and 4.14, respectively. We can verify that the depth results were not satisfactory,

not depicting the images depth in an accurate way. The obtained results of the estimated 3D

poses for the same sequences (Figure 4.21) were also not satisfactory, being difficult to justify the

accentuated curvatures that occur on both examples. With that in mind, we can at least conclude

that, in the shown examples, the predicted capsule motion directions are correct, as the capsule is

predicted to be moving backwards for the sequence in Figure 4.12 and forwards for the sequence

in Figure 4.14.

As this method is not yet prepared to deal with non-informative images, we will not apply

it to full small bowel endoscopic videos. Even though our implementation was not successful,

unsupervised methods like this one might be the future for the endoscopic capsule localization

problem. They show a lot of potential to handle the challenges posed by a dataset of this nature

and can help overcome the lack of labeled data in this field. Our thoughts on how to improve the

obtained results will be exposed in 5.2.
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(a)

(b)

Figure 4.20: (a) Depth result from Figure 4.12 frame sequence; (b) Depth result from Figure 4.12
frame sequence;

Figure 4.21: (a) 3D pose estimation for the frame sequence in figure 4.12; (b) 3D pose estimation
for the frame sequence in figure 4.14;



Chapter 5

Conclusions and Future Work

The capsule endoscopy is now the main method for the diagnostic of the entire small bowel, an

unreachable area by the traditional handled endoscopy and colonoscopy. Although it is crucial

to identify abnormalities localization, easing follow-up examinations and surgical interventions,

these capsules do not provide a localization. In order to track them along the small intestine,

commercially available hardware methods such as radio-frequency sensor arrays can be used,

although they entail several drawbacks. Developed software solutions show great potential, but

still require improvements.

In this dissertation we developed two novel visual odometry solutions for the endoscopic cap-

sule localization problem. The first method presents a solution where the displacement per frame

is calculated (in percentage) throughout the small bowel. On the other hand, the second method

intends to predict three-dimensional camera pose coordinates in each frame, as well as the corre-

sponding depth map.

Both methods utilize deep learning techniques as their basis. The first one utilizes a convolu-

tional neural network (DeTone et al. (2016)) in order to predict the homography that relates two

consecutive frames, then translating it into displacement. The second one is an unsupervised and

end-to-end approach that leverages from the from the task of novel view synthesis to obtain the

intermediate steps of 3D pose and depth (Zhou et al. (2017)).

In order to further refine our results, we propose two different methods to classify frames as

informative or non-informative. The first method was implemented and tested, being based on

the frames dominant color. The second was only theorized, being based on a MobileNet-based

convolutional neural network.

5.1 Objectives Satisfaction

The main objective for this dissertation was to create a visual odometry tool for the problem

of endoscopic capsule localization in the small bowel. To accomplish this, we proposed and

implemented two different frameworks based on deep-learning techniques: one that estimates

the capsule displacement and other that estimates its three-dimensional pose. Also, methods to

71
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deal with non-informative frames and nonsensical displacements where developed with success,

although there is still space for improvement.

With the testing done to the displacement computation method (section 4.1), we can conclude

that our method can provide vital capsule position information for the physicians performing a di-

agnostic or a surgery. The results obtained in synthetic datasets validated that the HomographyNet

could successfully predict homography transformations between endoscopic capsule images, with

a small average mean corner error of 1.3590 pixels. Then, with the predicted homographies on a

real dataset, we visually validated that it could deal with real transformations between frames. To

test the displacement computation, we first experimented with controlled frame sequences, hand-

picking a series of informative frames with considerable overlapping areas between them. The

results corresponded with the visually perceived motion in the frame sequences, validating our

displacement computation. Then, we successfully validated the usefulness of our method on a

clinical environment by testing it on full small bowel frame sequences and comparing our results

to those obtained via radio-frequency methods. For the two tested videos we obtained mean ab-

solute errors of 5.00±2.65% and 3.16±2.08%, values within the expected when considering the

currently used methods and the outlines of the proposed challenge.

With the tests conducted with the depth and ego-estimation method (section 4.2), we concluded

that this implementation does not perform in a satisfactory way when applied to our problem,

failing to predict accurate depth and camera poses on small frame sequences. We did not test

with full small bowel frame sequences, as the implementation was not equipped to deal with

non-informative frames yet. Even though the implementation failed to perform accurately, we

are still convinced of its potential to solve this problem in the future, as its unsupervised nature

and explainability mask are tools that, theoretically, are ideal to overcome some of the biggest

challenges posed by a dataset of this nature.

When it comes to general knowledge related to the problem, we gathered a research summary

of the existing endoscopic capsule localization techniques. Not only that, but we also documented

the common difficulties researchers faced when using a similar dataset. Furthermore, a summa-

rized research on the state-of-the-art motion estimation algorithms was developed.

To be done, was the implementation of a process to deal with non-informative frames and

nonsensical displacements for the depth and ego estimation method and to further validate our

frameworks on a labeled endoscopic dataset.

We consider that this dissertation has positively contributed to the problem of endoscopic

capsules localization by studying and making use of state-of-the-art deep learning techniques in

order to develop and explore new visual odometry methods. In our opinion, the application of such

techniques show great potential and can definitely be disruptive in this field. Naturally, being this

project still at its infancy, there is still a lot of fine-tuning and experimenting left to do in order to

fully take advantage of the deep learning techniques at our disposal. Considering this, in section

5.2 we will briefly expose the main issues to be solved, as well as some possible solutions and

future work to be done in this area.
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5.2 Future Work

We will start by presenting possible solutions to the general issues that are still unsolved by our

methods and also possible improvements to what we developed:

• Implement the proposed convolutional neural network (section 3.3.1) to improve the detec-

tion of non-informative. In order to do that, it would be necessary to create a new dataset,

manually dividing several images into informative and non-informative.

• With the smart video compiler used to compile the endoscopic capsule videos in Given

Imaging software, the frame rate is drastically reduced (to around 0.7 f ps). With that in

mind, it would be truly important to start cooperating with Given Imaging in order to be

able to decrypt and read the raw uncompiled videos. In case that is not possible, a method

to detect when there is not enough superimposition between two frames might need to be

developed.

When it comes specifically to the displacement estimation framework:

• In order to further validate the displacement results obtained with our method, it would be

important to create a few more fully labeled videos. This labeling could be done by manually

associating the displacement percentages obtained with the Given Imaging hardware to each

individual image frame throughout the small intestine.

• Alternatively to the displacement method we proposed, a recurrent neural network could

be trained to obtain the per frame percentage displacement in an end-to-end manner (e.g.

LSTM network). In order to accomplish this task we would need to create a considerably

sized dataset, which could also be manually created by attaching the percentages obtained

with the Given Imaging hardware to each individual image frame in several endoscopic

videos.

Finally, for the second, 3D pose and depth estimation framework:

• Once a method to identify non-informative frames is defined, we need to determine a value

to replace the discarded measures with. We suggest the use of the average capsule per frame

displacement (calculated in equation 4.6) with the last valid predicted capsule direction.

• In order to obtain better results from the training process, it is critical to eliminate most of the

non-informative frames. For this, a new dataset generation process needs to be developed.

Each time a non-informative frame is detected and discarded, the video needs to be divided

in order to maintain only consecutive frames. This new process will need to ensure that the

newly created excerpt is at least as long as the defined snippet size (section 4.2.1).

• The results would probably improve if we multiplied the photometric loss of the pixels we

want to dismiss by zero. This would be important so that the optimizer does not compare

pixels in the black borders with informative pixels.
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• In order to further evaluate our method, it would be crucial to have access to an endoscopic

video with an attached hardware-based accurate 3D localization. Ideally, this would be

done in a real environment, but, due to obvious limitations, the possibility of using a small

intestine model with similar properties is definitely not rejected.

• Implement a 3D reconstruction from depth maps method.
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