
Optimizing Shelf Space Allocation under
Merchandising Rules

Luís Fernando Moreira Souto

Master’s Dissertation

Supervisor: Prof. José Fernando Oliveira

Mestrado Integrado em Engenharia e Gestão Industrial

2018-07-25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/160238969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Abstract

The allocation of products to shelves is a challenging problem that retailers are faced with on
a regular basis. With retail being an industry known for its strong competitiveness and low profit
margins, a proper placement of products becomes of paramount importance, as it may constitute
a source of competitive advantage.

In retail environments, it is common for products to be grouped into product families (blocks),
according to a particular criterion. Additionally, a set of merchandising rules specifies how the
different product families should be arranged on the shelves, which gives rise to a complex multi-
level hierarchical structure that reflects the retailer’s preferences. The purpose of these rules is to
improve in-store experience by trying to reproduce the way consumers search for products while
shopping, thus enhancing the shelves’ attractiveness.

These rules lead to a highly constrained Shelf Space Allocation Problem (SSAP), as the lo-
cation of a particular product on the shelf is not independent from the location of other products
belonging to the same product family. This dissertation proposes a heuristic approach to this
problem, consisting of a constructive and an improvement stage.

The constructive procedure is comprised of problem-specific heuristics that explore the prob-
lem’s inherent hierarchical nature, with the actual allocation of products only taking place after all
product families have been assigned a specific place on the existing set of shelves. The initial solu-
tion is then improved by applying the Iterated Local Search (ILS) metaheuristic, which combines
local search techniques with perturbation mechanisms. While the former explore a specific region
of the solution space, the latter are employed in order to escape from locally optimal solutions.

The developed algorithms were tested on a set of benchmark instances from a European gro-
cery retailer. When compared with state-of-the-art methods, this approach led to an increase in the
number of feasible solutions and shorter computation times. The methods proposed in this thesis
could be used by retailers to increase both the efficiency and the effectiveness of their planogram
generation processes.

i



ii



Resumo

A alocação de produtos nas prateleiras é um problema complexo com o qual os retalhistas são
regularmente confrontados. Atendendo a que o retalho é um mercado extremamente competitivo
e com baixas margens de lucro, um posicionamento adequado dos produtos torna-se ainda mais
importante, uma vez que poderá constituir uma vantagem competitiva.

Em ambientes de retalho, é frequente agrupar os diferentes produtos em famílias de produtos
(blocos), de acordo com um determinado critério. Além disso, existe um conjunto de regras de
merchandising que especifica como é que as diferentes familias de produtos deverão estar dispostas
nas prateleiras, o que dá origem a uma estrutura multi-nível complexa que reflete as preferências
do retalhista. Estas regras visam melhorar a experiência do consumidor, tentando reproduzir o
modo como este procura por um determinado produto enquanto faz as suas compras, e desta
forma tornar as prateleiras mais atrativas.

Estas regras conduzem a um Problema de Alocação dos Produtos nas Prateleiras (SSAP) al-
tamente restringido, uma vez que a localização de um determinado produto na prateleira não é
independente da localização dos outros produtos pertencentes à mesma família. Esta dissertação
propõe uma abordagem heurística a este problema, com uma fase construtiva e uma fase de mel-
horamento.

A fase construtiva é composta de heurísticas específicas ao problema em causa, que exploram
a natureza hierárquica que lhe é inerente. A alocação dos produtos só é efetuada depois de atribuir
a cada família de produtos um espaço específico no conjunto de prateleiras disponíveis. A solução
inicial é depois melhorada através da utilização da meta-heurística Iterated Local Search (ILS),
que conjuga métodos de busca local (Local Search) com mecanismos de perturbação. Enquanto
que os primeiros exploram uma região específica do espaço de soluções, os segundos são usados
com o intuito de escapar de ótimos locais.

Os algoritmos desenvolvidos foram testados num conjunto de instâncias de referência de um
retalhista alimentar Europeu. Quando comparada com os métodos mais avançados na área, esta
abordagem conduziu a um aumento do número de soluções admissíveis e tempos de computação
mais reduzidos. Os métodos propostos nesta tese podem ser utilizados por retalhistas por forma a
aumentar a eficiência e eficácia dos seus processos de geração de planogramas.

iii



iv



Acknowledgments

I would like to start by thanking my supervisor Prof. José Fernando Oliveira, whose guidance
and insights greatly improved the quality of this dissertation.

I also want to thank Dr. Teresa Bianchi de Aguiar, who introduced me to the topic and closely
followed the progress of this work. Not only were her suggestions always very pertinent, but also
her constant enthusiasm and encouragement were definitely a source of inspiration for me, for
which I cannot thank enough.

I am extremely grateful for the opportunity of working at LTPlabs. It is for sure an amazing
company, made up of amazing people, to whom I owe most of my personal and professional
development over the last few months.

To all my lifelong friends from my hometown, and to the incredible friends I made during
these five years of university, thank you for your everlasting support and for all the great moments
that we shared together and that I so fondly remember.

Finally, I owe a very special "thank you" to my family, particularly to my parents and my
brother. Your invaluable advice and infinite patience are completely irreplaceable. Thank you for
believing in my capabilities and for always pushing me to do my best. This thesis would have
never been possible without you.

v



vi



"Man is not infallible. He searches for truth – that is, for the most adequate comprehension of
reality as far as the structure of his mind and reason makes it accessible to him. Man can never

become omniscient. He can never be absolutely certain that his inquiries were not misled and that
what he considers as certain truth is not error. All that man can do is to submit all his theories

again and again to the most critical reexamination."

Ludwig von Mises

vii



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Dissertation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Retail Shelf Space Management 5
2.1 Current practices in Shelf Space Management . . . . . . . . . . . . . . . . . . . 6
2.2 The Shelf Space Allocation Problem . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Key definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Literature Review 11
3.1 Empirical and qualitative approaches . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Shelf Space Allocation problems . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Related planning problems . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Problem formulation 19
4.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 A heuristic for optimizing Shelf Space Allocation 25
5.1 Constructive procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Target facings calculation . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Block allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Product allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Iterated Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.1 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Perturbation mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Acceptance criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.4 Overall procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Computational results 43
6.1 Problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Evaluation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Constructive heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



x CONTENTS

6.3.1 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Iterated Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4.1 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Visualization of planograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusion 55
7.1 Discussion and main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Implications for practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Notation of the SSAP formulation of Bianchi-Aguiar et al. (2018b) 63

B SSAP Heuristic: additional notation 65

C Horizontal allocation algorithm: practical example 67

D Problem instances 69



Acronyms and Symbols

BAP Block Allocation Problem
BKP Bounded Knapsack Problem
DAG Directed Ayclic Graph
DP Dynamic Programming
ILS Iterated Local Search
ILS-B Iterated Local Search using the Better acceptance criterion
ILS-RW Iterated Local Search using the Random walk acceptance criterion
ILS-LSMC Iterated Local Search using the LSMC acceptance criterion
KP Knapsack Problem
MINLP Mixed Integer Nonlinear Programming
SA Simulated Annealing
SKU Stock Keeping Unit
SSAP Shelf Space Allocation Problem
SSRP Shelf Space Replication Problem
SWO Squeaky-Wheel Optimization
TS Tabu Search

xi



xii Acronyms and Symbols



List of Figures

2.1 Retail demand and supply chain planning framework proposed by Hübner et al.
(2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Effect of shelf space on product demand . . . . . . . . . . . . . . . . . . . . . . 6
2.3 A planogram with the products highlighted by type . . . . . . . . . . . . . . . . 7
2.4 Number of facings wide, high, and deep on a planogram . . . . . . . . . . . . . 9

4.1 Product and shelf widths and heights . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Example of a planogram highlighting the arrangement of product families on the

shelves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Two-level hierarchical structure of product families . . . . . . . . . . . . . . . . 21

5.1 Main phases of the constructive heuristic . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Adjusting the width of a block in a particular shelf level: comparison between

vertical and horizontal blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Final planogram after product allocation . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Example of a local search move . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Distribution of the instances according to the number of products (a) and blocks (b) 44
6.2 Running time as a function of the instance size . . . . . . . . . . . . . . . . . . 46
6.3 Solution improvement as a function of λ . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Relative difference between the results yielded by the ILS, H-BAP-IF, and H-BAP-

IE methods and the upper bound Zlr obtained via linear relaxation of the BAP model 49
6.5 Solution representation and corresponding planogram . . . . . . . . . . . . . . . 53
6.6 Planogram corresponding to instance AI_1 . . . . . . . . . . . . . . . . . . . . . 53

xiii



xiv LIST OF FIGURES



List of Tables

2.1 Important concepts in shelf space allocation problems . . . . . . . . . . . . . . . 8
2.2 Typical constraints in shelf space allocation problems . . . . . . . . . . . . . . . 9

3.1 Constraints of the Shelf Space Allocation model of Corstjens and Doyle (1981) . 13

5.1 Possible courses of action after Algorithm 4 . . . . . . . . . . . . . . . . . . . . 32

6.1 Ranges tested for each component of maximum tightness . . . . . . . . . . . . . 45
6.2 Summary of the results obtained for the constructive procedure and the ILS . . . 49
6.3 Results and performance of the heuristic method . . . . . . . . . . . . . . . . . . 50
6.4 Comparison of the best obtained result with the results reported by Bianchi-Aguiar

et al. (2018b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xv



xvi LIST OF TABLES



Chapter 1

Introduction

The present chapter serves as the starting point for this dissertation and is divided into four

sections. Section 1.1 sets up the motivation for this work, Section 1.2 defines the scope of the

problem under analysis, and Section 1.3 presents an overview of the methodology that was fol-

lowed to tackle the problem. Finally, Section 1.4 provides a brief description of each chapter of

the present dissertation.

1.1 Motivation

The retail industry, whose total global sales are expected to amount to $27.7 trillion (USD)

in 2020 (eMarketer, 2018), is well-known for its fierce competitive environment and constantly

changing dynamics. As a result, retailers are always seeking for new ways of staying ahead of

their direct competitors and thus maximize their profits. The recent years’ trend towards the use of

analytical techniques to support both strategic and operational decision-making stemmed precisely

from this tireless effort of obtaining new sources of competitive advantage (Fisher, 2009).

The allocation of products to shelves is a challenging problem that retailers face on a regu-

lar basis. With shelf space being a scarce resource in retail stores and given the trend towards

the increase in the number of products included in the assortment (Hübner and Kuhn, 2012), the

importance of making appropriate allocation decisions becomes clearer. Furthermore, a clever ar-

rangement of products may also increase demand, as customers’ purchase decisions are frequently

influenced by in-store factors (Bianchi-Aguiar, 2015). This is particularly the case in situations

where products are low-priced and impulse purchases are frequent (e.g. grocery stores). In those

cases, assigning the right amount of space and finding the best location for each product on the

shelf is of crucial importance, since the impact of these decisions may constitute a differentiat-

ing factor for choosing one particular product over another. Finally, shelf space planning has a

strong impact on in-store operations and, in particular, on the efficiency of shelf replenishment

processes, as explained by Hübner and Schaal (2017c). Hence, good shelf space management

practices, assisted by decision support systems and software applications, can enhance the store’s

overall profitability.

1



2 Introduction

1.2 Scope

In retail environments, it is common to differentiate between two different levels of planning:

the store (macro) level, where each product category is assigned a particular space in the store

(long-term planning horizon); and the category (micro) level, in which individual products are

allocated on the shelves (mid-term planning horizon) (Bianchi-Aguiar, 2015). The present disser-

tation focuses exclusively on micro space planning. Hence, within each product category, our goal

is to find the optimal allocation of a set of products on a set of shelves. This implies deciding the

appropriate shelf space to assign to each product, as well as its horizontal and vertical location. In

the literature, this problem is normally referred to as the Shelf Space Allocation Problem (SSAP).

1.3 Methodology overview

In this thesis, a particular formulation of the SSAP that was introduced by Bianchi-Aguiar et al.

(2018b) is tackled. In their approach, the arrangement of products on the shelves is contingent on

a set of merchandising rules that specify that certain groups of products must be placed together

on the shelves while forming rectangular shapes, which can either be vertically or horizontally

arranged.

To first address the problem, a problem-specific constructive heuristic was designed and im-

plemented. As it will be shown in the following chapters, this is a highly constrained problem,

which stresses the importance of obtaining high quality initial solutions. To improve the initial so-

lution, an Iterated Local Search (ILS) framework was applied, combining local search techniques

with perturbation mechanisms that are employed to escape from locally optimal solutions. By

using this procedure, we are able to stop its execution at any time and obtain a solution which is,

in the vast majority of the cases, of satisfactory quality.

Finally, our method was tested on a set of benchmark instances and the results were compared

with the ones obtained using state-of-the-art methods.

1.4 Dissertation structure

This dissertation is divided into seven chapters, the first of which being the present chapter,

which presented an introduction to the topic of shelf space allocation. The remainder can be

outlined as follows.

Chapter 2 provides a contextualization of the challenges that arise within the context of shelf

space management in retail environments, as well as a brief high-level perspective on the Shelf

Space Allocation Problem, including some important definitions that will be used throughout this

thesis.

In Chapter 3, a literature review is conducted. First, some empirical and qualitative approaches

to shelf space management are presented. Then, a clear focus is given to works that make use of



1.4 Dissertation structure 3

optimization methods to solve the SSAP, including a few number of studies that integrate shelf

space allocation decisions with other planning problems that frequently emerge in retail.

Chapter 4 presents the formulation of the problem under analysis and constitutes the starting

point for the heuristic approach.

Chapter 5 provides a comprehensive description of the heuristic methods that were imple-

mented to solve the SSAP, including both the algorithms that make up the constructive procedure

and the ILS framework.

Chapter 6 contains the set of computational experiments that were performed in order to assess

the performance of the methods described in the previous chapter.

Finally, Chapter 7 unveils the main conclusions that can be drawn from the present dissertation

and indicates opportunities for improvement in future works that deal with the SSAP.



4 Introduction



Chapter 2

Retail Shelf Space Management

Decision-making processes within the retail industry can be highly complex, given the strong

interdependencies that exist between decisions that are made at different hierarchical levels of

planning. Despite this, however, most businesses have adopted a functionally-oriented perspective,

dividing the company into the so-called "functional silos" (Ensor, 1988), each of which being

typically associated with a particular business function. Hübner et al. (2013) indicate the pitfalls

of such an approach and propose a comprehensive framework for integrating the different planning

challenges within retail, which is presented in Figure 2.1.

Figure 2.1: Retail demand and supply chain planning framework proposed by Hübner et al. (2013)

As indicated by the authors, the problem of allocating products to shelves falls into the cat-

egory of Master category planning, which is sales-oriented and generally considers a mid-term

planning horizon. Category management has become an increasingly relevant topic since the late

1980s, when retailers started to group similar products into categories that were managed as sepa-

rate business units (Kurtuluş and Nakkas, 2011). Hübner and Schaal (2017a) emphasize the close

5



6 Retail Shelf Space Management

relationship between shelf space planning and other category planning processes, namely, assort-

ment planning (where the decision of which products should be displayed on the shelves is made)

and in-store replenishment planning (which determines the appropriate shelf refilling policies).

Provided this initial contextualization, Section 2.1 will present the current practices of shelf

space management, while Section 2.2 provides an overview of the Shelf Space Allocation Problem

and the challenges that it presents to retailers.

2.1 Current practices in Shelf Space Management

In the retail environment, shelf space allocation is usually preceded by the assortment plan-

ning. As previously mentioned, there are strong interdependencies between these two decisions,

as providing a broader assortment may hinder product availability due to the limited space that

can be attributed to each item. Besides determining how much space should be allocated to each

of the products in the assortment, retailers must also decide their vertical and horizontal location

on the shelves. It should be stressed that these decisions are far from being trivial, for the reasons

that will be detailed next.

At first, it could appear reasonable for retailers to allocate shelf space according to the sales

contribution of each item (i.e. the items with the highest amount of sales would be assigned the

largest space, and vice versa). However, as noted by Within (1957) over half a century ago, this is a

simplistic approach that neglects the fact that inventory (in this case, the inventory that is displayed

to the customer) and sales are not independent from each other. In the decades that followed,

several authors presented empirical evidence that supported Within’s statement, showing that an

increase in the amount of shelf space that is allocated to a particular product (which consequently

causes an increase in the displayed inventory) could stimulate consumer demand for that product

(e.g. Wolfe (1968), Curhan (1972), Drèze et al. (1994), Desmetab and Renaudinb (1998), Koschat

(2008), and Eisend (2014)). Consistent with this idea, Larson and DeMarais (1990) introduced

the concept of "psychic stock" as being the display inventory that is specifically carried for the

purpose of stimulating demand. To account for diminishing returns, Drèze et al. (1994) used an

S-shaped curve when modeling demand as a function of shelf space, as shown in Figure 2.2.

Shelf Space

D
em

an
d

Figure 2.2: Effect of shelf space on product demand

In addition to shelf space, the location of a product may also influence its demand (Bai, 2005),

as shelves that are located at the eye level are more easily noticeable by customers. In fact, Drèze



2.1 Current practices in Shelf Space Management 7

et al. (1994) concluded that the vertical location of an item had a significantly higher impact on its

demand than the attributed space. Despite also having studied the impact of the horizontal loca-

tion, the authors reach no consensus as to which location is the best for capturing the customers’

attention.

Apart from the aforementioned two-way relationship between shelf space allocation and de-

mand, there is an additional factor that increases the complexity of the problem. As Bianchi-

Aguiar (2015) mentions, the arrangement of products on shelves is not arbitrary, as it is common

practice for retailers to define merchandising rules that specify that certain groups of products

should be placed together on shelves. These groups are typically composed of products that share

one or more attributes (such as color, brand, or type). These rules can also assign specific locations

to some products or establish a given sequence. Ebster and Garaus (2011) described visual mer-

chandising as being the "language of the store", since it serves as a means for communicating with

the customer through product presentation. Grouping products according to a particular criterion

facilitates the search for an item on the shelf and may even boost the store’s total profit, either by

encouraging the purchase of complementary products or by displaying premium brands in more

attractive locations (Varley, 2006).

Planograms are an indispensable tool for an effective shelf space planning. They consist in a

visual representation of the products’ placement on the shelves. Figure 2.3 shows an example of a

planogram, with the products highlighted according to their type.

Figure 2.3: A planogram with the products highlighted by type

For large retailers, generating planograms for each store may be an overwhelming task, as vari-

ations in assortment and available shelf space between different stores are always to be expected.

In a collaboration with the leading Portuguese food retailer, Bianchi-Aguiar et al. (2016) devel-

oped a methodology to handle the inherent complexity of generating store-specific planograms.

In their approach, stores were aggregated into clusters according to their similarities in terms of

assortment, sales, and space patterns. Then, role planograms were automatically generated for

each cluster of stores and then validated by the space managers, that could perform small man-

ual adjustments if necessary. Finally, these role planograms were replicated into store-specific

planograms, that attended to each store’s specific characteristics while following the products’ ar-

rangement dictated by the corresponding role planogram. This process of creating two different

"layers" for the planogram generation process can prove itself useful for large retailers to enhance

compliance with the designed planograms.



8 Retail Shelf Space Management

Regarding software applications that support shelf space management, Hübner and Kuhn

(2012) reported a fair degree of IT adoption among retailers, with only 30% of respondents stat-

ing that they did not possess any IT support, nor were they planning to invest in that area in a

near future. Among the advantages of these applications, the authors refer the creation of re-

alistic planograms within reasonable computation times. Notwithstanding the efficiency of the

planogram generation processes, commercial software solutions also have their limitations. As

some authors point out (e.g. Hansen et al. (2010), Hübner and Kuhn (2012), Irion et al. (2012)),

these solutions do not serve as optimization tools, as they mainly rely on simplistic heuristics in

order to generate planograms, thus leading to suboptimal solutions in terms of shelf space alloca-

tion. Hence, there is still room for improvement in this field, particularly with respect to bridging

the gap between shelf space theory and retail practices.

2.2 The Shelf Space Allocation Problem

The Shelf Space Allocation Problem consists in finding the optimal placement of a set of

products on a set of shelves. It is a combinatorial optimization problem which is, in general,

NP-Hard (Bianchi-Aguiar, 2015). It bears a close relationship with other combinatorial problem

that are frequently addressed in the literature, such as the knapsack problem and the bin packing

problem (Bai, 2005).

2.2.1 Key definitions

In the present section, some concepts that are related with shelf space allocation problems will

be introduced. These definitions are mainly based on the works of Janeiro (2014) and Bianchi-

Aguiar (2015) and are summarized in Table 2.1.

Table 2.1: Important concepts in shelf space allocation problems

Stock Keeping
Unit (SKU)

Unique identifier that refers to a given product which is kept on stock. The terms SKU,
product, and item will be used interchangeably throughout the present dissertation

Product family Group of products that share a particular attribute

Merchandising
rules

Set of rules that products must follow when placed on the shelves for visual merchan-
dising purposes. These rules may define, for instance, specific product groupings, se-
quencing, or special display locations

Facing
Unit of a given product which is placed on the shelf. The multiplication of the number
of facings wide, high, and deep yields the total inventory that is displayed on the shelf,
as suggested by Figure 2.4

Shelf level Horizontal surface where the items are placed. The terms shelf level and shelf will be
used interchangeably throughout the present dissertation

Space elasticity For a given product, measures the corresponding sales sensitivity to a change in the
allocated shelf space

Location elas-
ticity

For a given product, measures the corresponding sales sensitivity to a change in its
placement (horizontal and/or vertical) on the shelves

Cross-space
elasticity

For a given product, measures the corresponding sales sensitivity to a change in the
space allocated to adjacent product(s)

Master
planogram

Planogram that applies to a cluster of stores that share strong similarities in terms of
assortment, sales, and space patterns

Store-specific
planogram

Planogram that applies only to a specific store, considering its assortment, sales, and
available shelf space



2.2 The Shelf Space Allocation Problem 9

Figure 2.4: Number of facings wide, high, and deep on a planogram

2.2.2 Decisions

In the SSAP, the most important decisions correspond to the number of facings (wide) to

attribute to each product and its vertical and horizontal location on the shelf (Bianchi-Aguiar,

2015). The horizontal location can be modeled as a continuous variable, whereas the vertical

location is generally limited to a fixed (discrete) number of shelf levels. However, if there is

the flexibility to adjust the fixtures’ vertical location, an additional decision regarding the vertical

location of each fixture can be made (see, for instance, Tongsari (1995)). The number of facings

deep is generally not treated as a relevant decision in the SSAP, since it has no impact on the

inventory that can be directly seen by the customer.

2.2.3 Objective

A profit maximization objective is often chosen for the SSAP, since the problem is normally

seen from the retailer’s perspective, that tries to make the most out of the available shelf space.

The profit function usually takes into account the elasticity considerations described in Section

2.2.1. Notwithstanding that a cost minimization approach may also be followed, Bai (2005) points

out that it may lead to a decline in profit due to conflicting goals.

2.2.4 Constraints

The SSAP is typically subject to a variety of constraints, which can vary according to the

context of the problem and the specificities of the retailer. Janeiro (2014) and Bianchi-Aguiar

(2015) divided the most common constraints into four different groups, as presented in Table 2.2.

Table 2.2: Typical constraints in shelf space allocation problems

Integrality
Constraints The number of facings to attribute to each product must be an integer value

Physical
Constraints The capacity of each shelf (in terms of length and, if considered, height) must not be exceeded

Control
Constraints

It is common for retailers to define lower and upper bounds to the number of facings, so as to
ensure limits for the level of exposure that a product may have

Family
Constraints

Merchandising rules specify which products should be placed together on the shelves, ac-
cording to their corresponding product families



10 Retail Shelf Space Management



Chapter 3

Literature Review

This chapter provides a literature review on the subject of shelf space allocation. Section

3.1 presents empirical and qualitative approaches to shelf space management, while Section 3.2

focuses solely on the application of optimization methods to solve the SSAP.

3.1 Empirical and qualitative approaches

Effectively managing shelf space is crucial for every retailer. In a qualitative study, Buttle

(1984) presents a holistic perspective on space allocation in retail stores. The author highlights five

different aspects that managers should pay attention to: (1) fixture location in the store; (2) product

category location; (3) product allocation within each category; (4) off-shelf displays; and (5) point-

of-sale promotional support. Regarding product allocation, a number of pertinent managerial

insights are provided. The sequencing of items on the shelves should attend to the direction of

traffic flow, by placing products in such a way that the most profitable items are the first to be

found by customers. Furthermore, the notion of product families is implicitly addressed, by stating

that retailers may choose to group different product brands vertically or horizontally – consumers

generally prefer the former, as it facilitates price comparisons between competing brands. The use

of commercial software applications is also addressed in this paper, with the author mentioning

the rise in popularity of this type of applications among retailers, which allocate shelf space on the

basis of simple rules.

As mentioned in Section 2.1, there is a wide range of studies that attempt to empirically mea-

sure the relationship between shelf space and sales. Eisend (2014) presents a meta-analysis that

considers over 1,200 estimates of shelf space elasticities, which allowed for some interesting con-

clusions to be drawn. These conclusions were then translated into a list of practical recommen-

dations for retailers. The author reports an average shelf space elasticity of 0.17, but the values

vary considerably across product categories. As one would expect, commodities have a lower than

average shelf space elasticity and, conversely, impulse buys have higher elasticity coefficients. An-

other valuable insight, particularly for large supermarket chains, is the fact that elasticity estimates

may be sensitive to the size of the store. Additionally, the sales increments that are due to shelf

11



12 Literature Review

space increases appear to be less significant for large shelf space variations, which validates the

idea of diminishing returns (that are translated into an S-shaped demand curve, as in Figure 2.2).

In an important study, Drèze et al. (1994) measure the impact of the products’ location and

number of facings on sales. They find that, after a certain threshold is reached, benefits from an

increased number of facings are practically non-existent. Interestingly, they also conclude that

the impact of location on sales is far stronger than the impact of the number of facings, with the

vertical location having a more noticeable effect on sales than the horizontal location. In addition,

although it is clear that the best vertical location lies approximately at the eye level (except for the

refrigerated section), the best horizontal location varies substantially across product categories.

Experimental studies on cross-space elasticities are scarce in the literature. In fact, these val-

ues are very difficult to estimate and are often disregarded in shelf space allocations (Bianchi-

Aguiar, 2015). Schaal and Hübner (2017) combine an empirical approach with the application of

a stochastic shelf space optimization model to investigate whether it is economically justified to

develop and implement shelf space allocation models with cross-space elasticity considerations.

They conclude that, under normal circumstances, the effect of cross-space elasticity is practically

meaningless and adds little value to the shelf space optimization models, since its impact on the

retailer’s profit is very limited. As empirically measuring this effect may be particularly costly, it

is probably more advantageous for retailers to direct their efforts towards other, potentially more

meaningful, investigations.

3.2 Optimization methods

Bianchi-Aguiar et al. (2018a) review the major streams of research that have emerged within

shelf space optimization since the problem first became relevant for the Operations Research com-

munity. Their work is the first to systematize published research in the area, also including a clas-

sification framework and a proposal of a unique modeling approach for the Shelf Space Allocation

Problem. Their study focuses exclusively on papers that make use of quantitative models, which is

also the focus of the present section. Subsection 3.2.1 covers papers that focus exclusively on shelf

space-related decisions, while Subsection 3.2.2 provides a brief overview of works that integrate

other planning areas in these decisions, namely, assortment selection, in-store replenishment, and

pricing.

3.2.1 Shelf Space Allocation problems

Corstjens and Doyle (1981) were among the first authors to propose a mathematical model to

optimize shelf space allocation. Their paper can certainly be regarded as influential, as it was a

major reference for most of the research works that followed. The demand for product i, qi, is

modeled in terms of a multiplicative function, which includes both space and cross-space elastici-

ties, as presented in Equation (3.1).



3.2 Optimization methods 13

qi = αi sβi
i

K

∏
j=1
j 6= i

sδi j
j (3.1)

In this demand function, the factor sβi
i estimates the impact of shelf space on the demand of product

i, with si corresponding to a unit of shelf space and βi being the space elasticity of product i, which

assumes values between 0 and 1, in order to account for diminishing returns. It is important to

note that there is no relationship between a unit of shelf space and the number of facings of the

corresponding product, as integrality constraints are not imposed, which is a clear limitation of

the model. Moreover, the factor ∏
K
j=1
j 6= i

sδi j
j measures how the demand of product i is affected by the

space that is attributed to the other products (indexed by j). Here, K denotes the number of items

in the assortment, while δi j refers to the cross-space elasticity between products i and j, which

may be positive or negative, depending on whether the products are complementary or substitute,

respectively. Finally, αi is used as a scale parameter.

The only decision variables that are present in the mathematical model correspond to the space

that is attributed to each product (si), with the objective being the maximization of the total profit.

Hence, for each product i, demand (qi) is first multiplied by the corresponding margin, wi. Then,

the associated costs are deducted using a cost function that depends on the shelf space that is

attributed to the product, Ci(si). Concerning the model’s constraints, it is possible to group them

into four categories, as suggested by Janeiro (2014), which are presented in Table 3.1.

Table 3.1: Constraints of the Shelf Space Allocation model of Corstjens and Doyle (1981)

Capacity The total space that is attributed to the products cannot exceed the store’s capacity in
terms of available shelf space

Availability Demand fulfillment is subject to a production (or availability) limit
Control Lower and upper bounds for the space that is allocated to each product must be respected
Non-negativity The space allocated to each product must be a non-negative value

The authors tested their model using the data that were provided by a retailer, with the goal

of optimizing space allocation of 5 product categories. Their approach led to profit increases of

around 19.8% for small stores and 3.7% for large stores. The fact that they were able to show that

the use of analytical methods could substantially outperform allocations based on rules of thumb

set the stage for further research in this field.

One of the most evident drawbacks of Corstjens and Doyle’s approach is the fact that it dis-

regards the products’ location on the shelves, as the only decision that is made is the space that

ought to be allocated to each product. Yang and Chen (1999) took into consideration the con-

clusions presented by Drèze et al. (1994), which pointed towards the location decision having a

markedly higher impact on demand than the allocated shelf space, and were the first authors to

introduce location decisions into shelf space allocation models. The decision variables, xik, denote

the number of facings of product i that should be allocated to shelf k. These variables are required

to be integer, leading to a much more precise space allocation. Similarly to Corstjens and Doyle



14 Literature Review

(1981), they propose a multiplicative function for the purpose of demand modeling, with the possi-

bility of adding new marketing variables that may be relevant for the problem, and incorporate the

constraints that were mentioned in Table 3.1. To avoid having to solve a nonlinear programming

problem, the authors propose an alternative model, with a linear objective function, as displayed

in Equation (3.2). By assuming that the retailer has an effective logistic system, they also neglect

the availability constraints that had been previously considered.

Maximize P =
n

∑
i=1

m

∑
k=1

pik xik (3.2)

Regarding the notation, n and m denote the number of products in the assortment and the number

of shelves, respectively, while pik corresponds to the profit per facing of product i on shelf k. By

using this model, the authors are implicitly assuming that the profit associated with each product

varies linearly with the number of facings, provided that the number of facings is contained in the

interval defined by the control constraints. It is important to note that only the vertical location of

items is considered in the objective function, with the horizontal location being disregarded.

Acknowledging the strong similarities between multi-constraint knapsack problems and the

SSAP, Yang (2001) developed a heuristic algorithm that adapts a commonly used procedure in

knapsack problems to solve the SSAP. First, a constructive procedure is implemented. It con-

sists of three main stages: (1) preparatory phase, that checks whether the problem is feasible; (2)

allocation phase, that allocates the available space to the products according to a priority rank-

ing; and (3) termination phase, where the solution is evaluated according to the objective function

presented in Equation (3.2). Despite this constructive procedure being sufficient to obtain satis-

factory results, three options are considered for an improvement phase. Not only did the improved

heuristic provide excellent results, it also proved out to be extremely efficient. In order to have a

benchmark for evaluating the obtained results, the model of Yang and Chen (1999) (without avail-

ability constraints, which was the basis for the development of this heuristic approach) was solved

to optimality, using complete enumeration. One of the improvement options yielded an average

ratio of the heuristic solution to the optimal solution of 99.6%.

Despite its promising results, Lim et al. (2004) point out some limitations of this approach. To

begin with, the data set that was used to test the heuristic may not have been the most appropriate,

as there was enough shelf space to allocate all products even when the number of facings that was

introduced for each item coincided with the upper bound. Hence, the upper bound constraint did

not have any real impact on the solution that was obtained. Additionally, some problems are iden-

tified in the heuristic itself. Firstly, in the constructive procedure, each of the considered products

is first allocated so as to satisfy its minimum display requirement, and only then is the remaining

shelf space filled, which may lead to suboptimal allocations. Secondly, in the improvement stage,

the designed neighborhood structures severely restrict the search space, thus not ensuring a proper

search over the entire solution space. Lim et al. (2004) address all these issues in their paper. First,

they implement three new neighborhood structures, in an attempt to diversify the search after an

initial solution is generated. Then, they present a method that adapts the SSAP into a network flow



3.2 Optimization methods 15

model. Finally, two metaheuristics, Tabu Search (TS) and Squeaky-Wheel Optimization (SWO),

are also implemented. In order to test the different algorithms and compare them with the heuris-

tics presented by Yang (2001), they consider small and large instances, placing more emphasis

on the large instances, as they could provide a more accurate depiction of a real-world scenario.

They conclude that the new implementations outperformed Yang’s heuristic approaches, with the

network flow model and the SWO algorithm yielding the best results for large instances.

In the works that have been presented so far, the choice of the products’ horizontal location

has not been included in the mathematical formulation. In fact, this decision has been neglected

in the vast majority of mathematical models than can be found in the literature (Bianchi-Aguiar

et al., 2018a). In an innovative paper, van Nierop et al. (2008) propose a two-fold approach to

shelf space optimization, considering the horizontal location of the items as a relevant decision.

They start by providing a statistical model that attempts to measure the impact of shelf layout

on sales, recurring to Bayesian hierarchical modeling. Then, by applying Simulated Annealing

(SA), they optimize shelf space allocation, using the sales model that was built in the previous

stage. Hwang et al. (2009) also tackle the decision of determining the horizontal location of the

products on the corresponding shelves. They present a novel approach, viewing the problem in a

geometric fashion, that tries to determine how to optimally partition a rectangular shelf space into

smaller rectangles (that correspond to the space that should be allocated to each product) using

genetic algorithms. However, their test set is very limited, consisting of only 4 products (which

are referred to as "brands of items" in the article). As a result, the conclusions that can be drawn

from this work are fairly vague. A geometric perspective is also the one that inspired the two-

dimensional study of shelf space allocation of Geismar et al. (2015). Their formulation attempts

to maximize the total weighed revenue of a given two-dimensional display, considering that each

vertical location has a specific degree of effectiveness at generating revenue, and may be applied

to areas other than shelf space allocation, such as retail flyer design and web page advertising

layouts. The problem is decomposed into two smaller sub-problems, each of which is solved

using a method that combines integer programming with an algorithm for the maximum-weight

independent set problem.

The fact that retailers, due to aesthetic considerations, try to "allocate shelf space to product

items or brands as uniform and complete columns" (Zufryden, 1986) had remained practically

absent from the literature until the work of Russell and Urban (2010) was published. Despite Lim

et al. (2004) having proposed an extension to the profit function that favors the placement of certain

types of items on adjacent locations, the notion of product families (as defined in Subsection

2.2.1) was only introduced by Russell and Urban (2010). In their case, product families may be

based on a variety of characteristics, even though they are normally determined by the product

brand. In their formulation of the SSAP, the goal is to find the optimal number of facings and

location (vertical and horizontal), while maintaining the integrity of product families (i.e. products

belonging to same family are placed together). The objective function that is used is the total profit,

as in Equation (3.2). The expression used to calculate the expected demand for each product is

based on the research of Drèze et al. (1994), who indicated that demand tended to vary according



16 Literature Review

to a quadratic function in the horizontal dimension and to a cubic function in the vertical direction.

As for the impact of the number of facings on the demand, a quadratic formulation is chosen both

for the sake of consistency and to reflect diminishing returns. Two different mathematical models

are developed. The first one, best suited towards smaller-sized instances, treats each product’s

location as a continuous variable and therefore enables the determination of the precise location

of the items on the shelves, while ensuring the integrity of product families. The second one,

developed to handle larger problems, despite still making sure that each family is kept on adjacent

shelves, does not allow for the determination of the exact location of each item. Nevertheless, a

post-processing procedure was developed in order to convert the generated solution into one that

indicates the precise shelf location of the items. This second model has the additional drawback

of not guaranteeing the vertical alignment of product families (at least not to the extent to which

this constraint is enforced in first model).

Bianchi-Aguiar et al. (2018b) build on and extend the notion of product families to present

their formulation of the SSAP. By organizing the different products into families, retailers can then

establish an appropriate set of merchandising rules (as defined in Subsection 2.2.1), which aim to

reproduce the way customers look for products while shopping. These rules determine how the

different product families should be arranged on the shelves. In order to attract customers’ atten-

tion and interest, retailers normally want product families to be organized in rectangular shapes.

However, as aforementioned above, most of the shelf space-related literature completely disre-

gards this crucial aspect of shelf space management. It is this misalignment between theory and

practice that sets the motivation for their novel approach to the SSAP. They propose a mixed in-

teger programming formulation for the SSAP, using single commodity flow constraints to model

product sequencing. The decision variables include the number of facings to attribute to each

product and their horizontal and vertical location on the shelves. To solve the problem, the authors

developed a mathematical programming-based heuristic (matheuristic) which makes use of the

existing hierarchy of product families to decompose the problem into smaller sub-problems. Pro-

cedures for improving the matheuristic’s efficiency and for recovering from infeasible solutions

are also implemented. A series of computational experiments were then conducted to assess the

performance of the exact mathematical formulation and the matheuristic, and promising results

were obtained. This work served as the starting point for the development of the heuristic that

is presented in Chapter 5. Taking into consideration the specificities of the problem that were

presented in the described paper, that provide a more accurate depiction of real-world retail env-

iornments, a new heuristic method for the SSAP will be proposed. Given the central role of this

paper in the motivation of this dissertation, the details of its formulation will be more thoroughly

presented in Chapter 4, where a formal mathematical description of the problem is introduced.

3.2.2 Related planning problems

In the shelf space planning literature, it is common to find integrative approaches that com-

bine shelf space allocation with other planning problems. Borin et al. (1994) present one of such

approaches, proposing a joint optimization of shelf space allocation and assortment planning. To



3.2 Optimization methods 17

solve the problem, they apply a Simulated Annealing algorithm and compare its performance

with a commonly used rule of thumb, which allocated space to an SKU in direct proportion to

its historical sales share. They conclude that SA leads to a substantially better performance, even

when the proportional shelf allocation rule is applied to the optimal assortment. In a recent paper,

Hübner and Schaal (2017b) propose an integrated assortment and shelf space optimization model

that considers stochastic and space-elastic demand, out-of-assortment and out-of-stock substitu-

tion effects. By applying a specialized heuristic on two real data sets containing perishable and

non-perishable items, they report profit increases of up to 25%.

Space management decisions also have a clear impact on inventory control and in-store replen-

ishment processes. Hübner and Schaal (2017c) explain that "keeping more shelf stock of an item

increases the demand for it due to higher visibility, permits decreased replenishment frequencies

and increases inventory holding costs". Nonetheless, as shelf space is limited, it will necessar-

ily trigger the opposite effect for other products in the assortment that will be assigned a smaller

space. In a case study in collaboration with a German grocery retailer, they present an optimiza-

tion model for profit maximization that determines the number of facings that each product should

have on the shelves, the corresponding display orientation, and the order frequencies, while con-

sidering space-elasticity effects and limited shelf and backroom capacity at the stores. They report

a significant profit potential of about 29%.

The work of Bianchi-Aguiar et al. (2015) also describes a shelf space management approach

that is inventory-oriented. Here, they introduce the notion of planogram replication, which consists

in translating a master planogram into a store-specific planogram (the corresponding definitions

can be found in Subsection 2.2.1), accounting for the particular characteristics of each store. As

they assume that the maximization of space effectiveness was already considered when generating

the master planogram, the creation of store-specific planograms is based on a mathematical model

that has the goal of balancing the products’ inventory levels (more precisely, the days-supply

indicator) in order to favor joint in-store replenishments. This problem is defined as the Shelf

Space Replication Problem (SSRP).

Regarding the incorporation of other decisions when allocating products to shelves, the article

presented by Murray et al. (2010) is particularly noteworthy, proposing an innovative approach that

optimizes not only the location and space assigned to each product, but also the display orientation

and the price that is charged to the customer. The problem is formulated as a mixed integer

nonlinear problem (MINLP) and solved using a branch-and-bound algorithm.



18 Literature Review



Chapter 4

Problem formulation

In the present chapter, the formulation of the SSAP is provided. In Section 4.1, the problem is

described from a formal point of view. Given that the formulation of the problem is based on the

work of Bianchi-Aguiar et al. (2018b), their mathematical optimization model, which proposes a

novel network flow approach, is broadly presented in Section 4.2. For the purpose of consistency,

the same notation is used.

4.1 Problem description

In the Shelf Space Allocation Problem, the goal is to find the optimal allocation of a set of N

products (indexed by i, j ∈ N ) on a set of K shelves (indexed by k ∈ K). As indicated in Figure

4.1, each product i, of width ai and height bi, must be placed on a particular shelf k, which has a

total width of wk and a height of hk. The total number of facings of product i must be contained in

the interval [li,ui], which denote the lower and upper bounds, respectively.

Figure 4.1: Product and shelf widths and heights

Product grouping considerations are also integrated in the formulation of the problem under

analysis. As introduced in Section 2.1, retailers typically specify a set of merchandising rules that

determine the arrangement of product families on the shelves. We consider a set of M product

families (indexed by u ∈ M), each with its corresponding set of products, Nu. For modeling

purposes, merchandising rules can be seen as a set of hierarchical relationships between different

product families. While shopping, consumers make their purchase decisions according to the

19



20 Problem formulation

products’ attributes. For a given product category, some attributes have a stronger influence on the

customers’ decisions than others. Retailers try to understand the relative impact of each attribute in

order to know how to group products into families and organize them on the shelves accordingly.

In this way, retailers attempt to capture the behavior of their customers and enhance their in-store

experience and overall satisfaction, as less time is spent searching for specific products on the

shelves.

The planograms that are shown in Figure 4.2 are representative of the multi-level hierarchical

structure of product families that stems from the retailer’s set of merchandising rules. Firstly, as

seen in the planogram on the left, products are divided into two families, A and B, according to

their type. Then, within each of these two families, the products are further differentiated with

respect to their brand, as depicted in the planogram on the right. This leads to families A1, A2,

and A3 (which belong to family A) and families B1, B2, and B3 (which belong to family B).

As illustrated by both planograms, products are placed on the shelves in such a way that their

corresponding families form rectangular and uniform shapes. For this reason, product families

will also be referred to as blocks, and both terms will be used interchangeably in the remainder of

this dissertation.

Figure 4.2: Example of a planogram highlighting the arrangement of product families on the
shelves

Bianchi-Aguiar et al. (2018b) show that this hierarchy of product families can be translated

into a directed acyclic graph (DAG). Figure 4.3 contains the DAG that represents the hierarchical

structure of product families from the previous example. A dummy node (equivalent to a product

family containing all the products in the planogram) connects with the product families from the

first level, A and B. Moving downstream, each of the product families from the first level connects

with the corresponding second level families. Even when considering only these two levels, the

graph could still be extended such that each of the last level blocks would be connected with its

corresponding products, with each product being represented by a node. Such an extension would

allow for the full representation of the problem, but was omitted for the sake of simplicity. Here-

after, when considering any given block, we will refer to the immediately upstream block to which



4.2 Mathematical formulation 21

it is connected as its parent block, while the immediately downstream blocks to which it connects

will be referred to as its child blocks. This conceptualization of the problem is particularly useful

for the mathematical formulation of the problem, which will be detailed in Section 4.2.

0

A

B

A1

A2

A3

B1

B2

B3

Figure 4.3: Two-level hierarchical structure of product families

Another important aspect that derives from the specification of merchandising rules and was

emphasized in Figure 4.2 is the display orientation (direction) of product families. In the right

planogram of the referred figure, it is clearly noticeable that blocks A1, A2, and A3 are arranged

vertically, whereas blocks B1, B2, and B3 are displayed in a horizontal fashion. It is a requirement

of the problem that blocks that share the same parent block must be displayed in the same direction.

As aforementioned, all blocks must form rectangular shapes (hence, no L shapes are allowed). As

a result, vertically implemented blocks must occupy all shelf levels of the corresponding parent

block. On the other hand, notwithstanding that horizontally oriented blocks tend to occupy the full

width of the parent block, this need not always be the case. In fact, they may share the same shelf

level with other horizontal blocks, insofar as each of these other blocks are also restricted to the

referred shelf level, so that the rectangular shapes of all blocks are preserved.

Provided this description of the problem, there are three types of decisions to be made: (1) the

number of facings to allocate to each product; (2) the shelf level on which each facing should be

placed; and (3) the horizontal location of each facing within the shelf.

4.2 Mathematical formulation

With regard to the objective function, and similarly to Yang and Chen (1999), a linear profit

function is used. A small nuance exists in the present formulation, nonetheless, which consists in

expressing pik (the profit per facing of product i on shelf k) as the product of two factors: the profit

per facing of product i (pi) and the attractiveness of shelf k (γk), with the latter being an estimate

of how effective shelf k is at stimulating consumer demand. Generally speaking, eye level shelves

have the highest attractiveness coefficients. Equation (4.1) presents the objective function of the

mathematical model, with Wik representing the number of facings of product i on shelf k. Note



22 Problem formulation

that the objective function does not incorporate any horizontal elasticity effects.

Maximize Z = ∑
i∈N

∑
k∈K

pi · γk ·Wik (4.1)

The profit function is then subject to a series of constraints that will now be briefly presented.

Constraints (4.2) impose a minimum and maximum number of facings for each product, whilst

the set of constraints in (4.3) prevents the shelf capacity from being exceeded.

li ≤ ∑
k∈K

Wik ≤ ui, ∀ i ∈N (4.2)

∑
i∈N

ai ·Wik ≤ wk, ∀k ∈ K (4.3)

To determine the sequencing of the products on the shelves, Bianchi-Aguiar et al. (2018b) explored

the hierarchical nature of the problem, rather than directly defining the sequence of products on the

shelves. For each shelf, blocks that share the same parent block are sequenced, in a process that is

performed one hierarchical level at a time. By continuing to move downstream until the product

level is reached, all products can then be placed on the shelf according to a specific order, which

provides an overall product sequence (which was the initial goal), while ensuring that products

that belong to the same block are placed in consecutive locations of the shelf.

For modeling purposes, a network is considered for each parent block, with the nodes repre-

senting the corresponding blocks from the downstream level. For this purpose, individual products

can be seen as blocks containing only one item. Before presenting the next sets of constraints,

some additional notation must first be introduced. The set Vu contains the child blocks of block

u ∈M and the set V =M∪N aggregates all of the blocks (including the blocks which contain

only one product). Finally, in each of the referred networks, a dummy node (0) associated with the

source (initial) and sink (final) nodes is considered. As a consequence of this network formulation,

two new sets of binary decision variables are introduced: Tmnk, which takes the value of 1 if block

m is displayed immediately after block n on shelf k, and Ymk, which assumes the value of 1 when

block m is present on shelf k.

Constraints (4.4) to (4.7) guarantee that when a block is present on a shelf, a sequence is

defined for the corresponding child blocks, starting and ending at the source and sink nodes, re-

spectively. In addition, constraints (4.8) ensure that a block is only present on a particular shelf

if its parent block is also present on the same shelf, while constraints (4.9) provide the necessary

connection with the allocation part of the problem, stating that a given product may only be placed

on a shelf on which the blocks that contain that specific product are present.

∑
m∈Vu

T0mk = Yuk, ∀ u ∈M, k ∈ K (4.4)

∑
m∈Vu

Tm0k = Yuk, ∀ u ∈M, k ∈ K (4.5)



4.2 Mathematical formulation 23

∑
n∈Vu∪{0}

Tnmk = Ymk, ∀ u ∈M,m ∈ Vu, k ∈ K (4.6)

∑
n∈Vu∪{0}

Tmnk = Ymk, ∀ u ∈M,m ∈ Vu, k ∈ K (4.7)

Ymk ≤ Yuk, ∀u ∈M, m ∈ Vu, k ∈ K (4.8)

Wik ≥ Yik, ∀ i ∈N , k ∈ K (4.9)

In order to guarantee that the sequencing decisions are fully completed, single commodity flow

constraints are defined, with the commodity being associated with the length of the corresponding

upstream block. This leads to the addition of two new sets of decision variables to the model:

Fmnk, which corresponds to the continuous flow (i.e. the cumulative shelf length) from block m to

block n on shelf k, and Lik, which represents the shelf length assigned to product i on shelf k.

Constraints (4.10) impose a null initial flow, constraints (4.11) state that the total flow must be

equal to the length of the upstream block on the shelf, and constraints (4.12) ensure flow balance.

The flow is required to be null between blocks that are not connected, as indicated in (4.13).

Finally, the sum of all shelf lengths Lik assigned to products on shelf k must be equal to the total

shelf width wk (4.14), and the length assigned to each product i on a particular shelf k, Lik, must

be sufficient to accommodate all facings of that product on that specific shelf (4.15).

∑
m∈Vu

F0mk = 0, ∀u ∈M, k ∈ K (4.10)

∑
m∈Vu

Fm0k = ∑
i∈Nu

Lik, ∀u ∈M, k ∈ K (4.11)

∑
n∈Vu∪{0}:

m 6=n

Fnmk + ∑
i∈Nm

Lik = ∑
n∈Vu∪{0}:

m 6=n

Fmnk, ∀u ∈M, m ∈ Vu, k ∈ K (4.12)

Fmnk ≤ wk ·Tmnk, ∀u ∈M, m,n ∈ Vu∪{0} : m 6= n, k ∈ K (4.13)

∑
i∈N

Lik = wk, ∀k ∈ K (4.14)

ai ·Wik ≤ Lik, ∀ i ∈N , k ∈ K (4.15)

With the constraints that have been introduced so far, there is no guarantee that the different blocks

will form rectangular shapes when the corresponding products are placed on the shelf, as their

precise horizontal location is yet to be determined. For that purpose, four new sets of decision

variables are introduced: X s
m and Xe

m indicate the left and right coordinates of block m, and FLmk

and LLmk are binary variables that take the value of 1 if shelf k is the first or last shelf of block m,

respectively.

Constraints (4.16) and (4.17) define the left coordinate of each block, whereas constraints

(4.18) and (4.19) establish the corresponding right coordinate, allowing for a small horizontal

deviation v between the different shelves on which a given block is present. Constraints (4.20) and

(4.21) define the first and last shelves of each block, and constraints (4.22) to (4.24) ensure that

any given block is kept on adjacent shelves.



24 Problem formulation

X s
m ≥ X s

u + ∑
n∈Vu∪{0}:

n6=m

Fnmk, ∀u ∈M, m ∈ Vu, k ∈ K (4.16)

X s
m ≤ X s

u + ∑
n∈Vu∪{0}:

n6=m

Fnmk +W · (1−Ymk), ∀u ∈M, m ∈ Vu, k ∈ K (4.17)

Xe
m−X s

m ≥ ∑
i∈Nm

Lik, ∀m ∈ V, k ∈ K (4.18)

Xe
m−X s

m− v≤ ∑
i∈Nm

Lik +W · (1−Ymk), ∀m ∈ V, k ∈ K (4.19)

∑
k∈K

FLmk = 1, ∀m ∈ V (4.20)

∑
k∈K

LLmk = 1, ∀m ∈ V (4.21)

FLm,k+1 +Ymk = Ym,k+1 +LLmk, ∀m ∈ V, k ∈ K : k 6= K (4.22)

FLm0 = Ym0, ∀m ∈ V (4.23)

LLmK = YmK , ∀m ∈ V (4.24)

Lastly, it is necessary to impose the proper display orientation (horizontal or vertical) to each

block. Let SV and SH denote the sets of product families that should have their child blocks

arranged vertically and horizontally, respectively. While vertical blocks must be present on the

same shelves of their parent block (4.25), horizontal blocks can only occupy more than one shelf

level if the first one is completely occupied by the block (4.26).

Ymk = Yuk, ∀u ∈ SV , m ∈Mu, k (4.25)

∑
n∈Vu:n6=m

Ynk ≤M · (2−Ymk−Ym,k+1), ∀u ∈ SH , m ∈Mu, k ∈ K : k 6= K (4.26)

The full notation of the mathematical model can be consulted in Appendix A. For a complete

description of the model and a proposal of a mathematical programming-based solution approach

to the SSAP, please refer to Bianchi-Aguiar et al. (2018b).



Chapter 5

A heuristic for optimizing Shelf Space
Allocation

The heuristic approach to the SSAP that was followed in the present work is detailed in this

chapter. Section 5.1 describes the constructive procedure that allows us to obtain an initial solution.

Section 5.2 presents the implementation of the Iterated Local Search metaheuristic in the context

of the problem under analysis. The additional notation that will be introduced in this chapter can

be consulted in Appendix B.

5.1 Constructive procedure

In this section, the constructive heuristic is presented. The main objective of this procedure

is to generate an initial solution to the Shelf Space Allocation Problem. Before proceeding, we

need to introduce the concept of target facings of a given product i ∈ N , denoted by T Fi, which

corresponds to the number of facings (wide) that would be attributed to the product if no merchan-

dising rules were defined. This notion of target facings was also introduced by Bianchi-Aguiar

et al. (2016), but in a different context, in which the goal was to balance in-store replenishment

frequencies among the different products.

As depicted in Figure 5.1, the heuristic is comprised of three main steps that are performed

sequentially: (1) target facings calculation; (2) block allocation; and (3) product allocation. In the

referred figure, arrows pointing to a given stage represent an input of data. Each of the heuristic’s

stages will be explained separately in Subsections 5.1.1, 5.1.2, and 5.1.3.

5.1.1 Target facings calculation

In this stage, the goal is to obtain the number of target facings of each product i ∈ N , which

will allow for the estimation of the amount of space that should be allocated to each block (further

details will be provided in Subsection 5.1.2). If we completely disregard the retailer’s set of mer-

chandising rules, the problem’s complexity decreases substantially, as constraints (4.4) to (4.26)

would no longer be necessary. Hence, one can interpret a model for calculating the target facings

25



26 A heuristic for optimizing Shelf Space Allocation

Figure 5.1: Main phases of the constructive heuristic

as a best case scenario – ideally, the number of facings to attribute to each product would be equal

to the corresponding number of target facings, in order to maximize the total profit.

The target facings model is as follows. Equation (5.1) presents the considered objective func-

tion, ZT F , which is very similar to the objective function that was already presented in (4.1) for the

SSAP model, where we attempt to maximize a total profit function. In this case, however, since no

actual allocation occurs, space and location elasticity considerations can be disregarded. For each

i∈N , T Fi corresponds to a decision variable of the model. Since the goal of this stage is to obtain

a broad estimate of the number of facings to attribute to each product, there are no location deci-

sions to be made, as these will only be introduced in the next stages of the constructive heuristic.

Constraints (5.2) impose lower and upper bounds to the number of target facings, and constraints

(5.3) ensure that the total capacity (considering all shelves) is not exceeded. Finally, constraints

(5.4) restrict the domain of the decision variables to the set of natural numbers including zero.

Maximize ZT F = ∑
i∈N

pi ·T Fi (5.1)

Subject to: li ≤ T Fi ≤ ui, ∀ i ∈N (5.2)

∑
i∈N

ai ·T Fi ≤ ∑
k∈K

wk (5.3)

T Fi ∈ N0, ∀ i ∈N (5.4)

This formulation is tantamount to a Bounded Knapsack Problem (BKP), with the slight caveat

that each product i ∈ N must be selected at least li times. Hence, transforming our problem

into a BKP is straightforward: to each product i ∈ N , we attribute a number of facings equal

to the corresponding lower bound li, and then reduce the total knapsack capacity by ∑i∈N ai · li.
Considering a similar set of decision variables T F ′i (= T Fi− li, ∀ i ∈N ) and replacing constraints



5.1 Constructive procedure 27

(5.2) and (5.3) with (5.5) and (5.6), we obtain the exact formulation of a BKP.

0≤ T F ′i ≤ ui− li, ∀ i ∈N (5.5)

∑
i∈N

ai ·T F ′i ≤ ∑
k∈K

wk− ∑
i∈N

ai · li (5.6)

Additionally, we can convert a BKP into an equivalent 0/1 Knapsack Problem (KP) by creating

ui− li copies of each product i and consider each of them as a distinct item to be inserted in the

knapsack (Kellerer et al., 2004). To solve the KP, a greedy algorithm will be used. It is clear that

such an approach does not necessarily lead to the optimal solution – in fact, in certain instances,

it may even lead to poor solutions. Nevertheless, a greedy heuristic suffices our purposes in the

present stage for two main reasons. Firstly, as stated previously, we are only interested in obtaining

a broad estimate of the number of facings to allocate to each product, and a greedy algorithm

provides an efficient way of quickly obtaining those estimates. Secondly, given that the average

width of a product is significantly smaller than the total shelf space available, it is more likely that

a greedy algorithm will lead to a reasonable solution.

Algorithm 1 provides the pseudocode of the greedy heuristic. We start by attributing to each

product its corresponding minimum number of facings (line 3) and update the available shelf space

accordingly (line 4). The greedy component of the heuristic relies on the profit-to-width ratio of

each product, which we designate as score (line 5). Then, we add facings to the products until

there are no products that fit in the remaining shelf space or the upper bound has been reached for

all products (lines 8–24). When that is the case, the auxiliary variable f lag becomes false, which

signals that the allocation is complete, as indicated in line 22. The product i∗ to which a facing

is added is selected based on its corresponding score. Since we are dealing with a pure greedy

implementation, the product with the highest score is selected (lines 18 and 19) and we subtract

its width from the available space (line 20). To make sure that the obtained solution is feasible, it

is ensured that the products that can no longer be assigned any additional facings have a null score

(line 12).

5.1.2 Block allocation

After the target facings of each product are computed, the different blocks are allocated. Al-

locating a block u implies defining its width, the shelf levels on which it is located, and the left

coordinate (with the right coordinate being obtained by adding the width of the block to its left

coordinate). Considering that the blocks’ shapes are required to be rectangular, as discussed in

Section 4.1, the width of a block is constant (i.e. does not depend on the particular shelf level we

are considering). For any given block u, Lu will denote its width and Ku will represent the set of

shelves on which it is present (with Ku corresponding to the cardinality of the set Ku). Regarding

the left and right coordinates of each block, the notation that was introduced in Section 4.2 will be

kept: X s
m (left coordinate) and Xe

m (right coordinate). In addition, we consider a total of C hierar-

chical block levels (indexed by c), which include an initial level containing a dummy block and a



28 A heuristic for optimizing Shelf Space Allocation

1 emptySpace← ∑k∈K wk
2 for i← 1 to N do
3 T Fi← li
4 emptySpace← emptySpace−ai · li
5 scorei← pi/ai
6 end
7 allocationComplete← f alse
8 while allocationComplete = false do
9 f lag← f alse

10 for i← 1 to N do
11 if ai > emptySpace or T Fi = ui then
12 scorei← 0
13 else
14 f lag← true
15 end
16 end
17 if flag = true then
18 i∗← argmaxi∈N (scorei)
19 T Fi∗ ← T Fi∗ +1
20 emptySpace← emptySpace−ai∗

21 else
22 allocationComplete← true
23 end
24 end

Algorithm 1: Greedy heuristic for calculating the target facings

final level in which each block is associated with a single product. Finally, it is useful to introduce

the set Gc, which includes the blocks in hierarchical level c.

The allocation of blocks constitutes a challenging geometrical problem. First, the two dimen-

sions of a planogram are of different nature: while the horizontal location can be treated as a con-

tinuous variable, the vertical location is confined to a discrete number of shelf levels. Additionally,

product families have different predefined display orientations. Due to the fact that vertical and

horizontal block allocations are fundamentally different, they require distinct approaches, which

will be explained in detail in 5.1.2.1 and 5.1.2.2, respectively.

Algorithm 2 provides a high-level picture of the block allocation process. We start by al-

locating the block that aggregates all products (line 1), which is assigned the total width of the

planogram and all of the existing shelf levels. Then, for each hierarchical level c (until C−2), and

for each each block u∈ Gc, we check whether its corresponding child blocks are implemented ver-

tically (i.e. u ∈ SV ) or horizontally (i.e. u ∈ SH) and perform the allocation process accordingly

(lines 2–10). We end the loop at C− 2, since the child blocks of the blocks at level C− 1 corre-

spond to the products themselves. The part regarding the allocation of products will be treated in

Subsection 5.1.3.

5.1.2.1 Vertical allocation

When allocating blocks that must be arranged vertically, the set of shelf levels in which each of

the blocks will be present is automatically determined a priori, since they are required to occupy

the same shelf levels as their parent block, whose allocation has already taken place. Moreover,



5.1 Constructive procedure 29

1 Allocate dummy block
2 for c← 1 to C−2 do
3 foreach u ∈ Gc do
4 if u ∈ SV then
5 Allocate blocks vertically(Vu)
6 else
7 Allocate blocks horizontally(Vu)
8 end
9 end

10 end
Algorithm 2: Block allocation overview

given that no horizontal elasticity effects are taken into consideration in the problem under anal-

ysis, the sequence of blocks has no impact on the objective function and therefore an arbitrary

sequence can be chosen. Notwithstanding that these conditions greatly simplify the problem at

hand, we still need to decide on the width that should be assigned to each block, which will have

a substantial impact on the subsequent allocation stages.

A straightforward approach to estimate the width of each block could be based on the number

of facings computed in the previous stage. Considering that each product i occupies an expected

linear space of ai ·T Fi, we can obtain the total expected linear space of a block u by calculating

the sum ∑i∈u ai · T Fi (it is worth keeping in mind that the linear space of a block can be larger

than its width, provided that it is present in more than one shelf level). Then, each block could

be attributed a width in direct proportion to its expected linear space, and considering that the

sum of the widths of the considered block must be equal to the width of the parent block. Despite

appearing to be a fair approximation, this represents a naive strategy in the sense that it neglects the

fact that a product cannot be physically broken into smaller parts whenever the remaining space

on a shelf is not sufficient to accommodate an additional facing of that particular product. This

can be problematic, especially for narrower blocks, as their assigned space may not be enough to

place one facing of each product on the shelves.

Under these conditions, we need, in some way, to ensure a minimum width to each block so

that we do not compromise the allocation of products that will take place in the final stage of the

heuristic. In order to guarantee a certain flexibility in the algorithm, this minimum width should

be specific to each block (attending to its characteristics), rather than just being a fixed percentage

of the width of the parent block, as this latter approach could potentially lead to very ineffective

allocations. To tackle this issue, we first need to introduce the concept of tightness of a block

u, denoted by τu, which corresponds to the ratio between the total linear space occupied by the

products that belong to block u (considering, for each product i ∈ u, a number of facings equal to

the lower bound li) and the block’s attributed linear space, and is calculated according to Equation

(5.7). The higher the value of τu, the more likely it is that block u will not have enough space

to incorporate at least li facings of each product i ∈ u during the product allocation stage. By

imposing a maximum value to the block’s tightness, τmax
u , we can control its width based on the

specific products that belong to it. The values of τmax
u are an input to the constructive heuristic and

can be fine-tuned by recurring to computational experiments.



30 A heuristic for optimizing Shelf Space Allocation

τu =
∑i∈u ai · li

Ku ·Lu
, ∀u ∈M (5.7)

Let p ∈M denote the parent block of u ∈ Vp and αu the proportion of the width of p that

should be allocated to u. With this notation, we can rewrite Ku Lu as αu Kp Lp. If we replace τu

with τmax
u in (5.7) and rearrange the terms, we can obtain the minimum width proportion to assign

to block u, αmin
u , as indicated in Equation (5.8).

α
min
u =

∑i∈u ai · li
τmax

u ·Kp ·Lp
, ∀p ∈M, u ∈ Vp (5.8)

We will now formulate a very simple goal programming model for adjusting the blocks’ widths

proportions considering a particular parent block p. Our goal is that αu is as close as possible to

α
target
u =

∑i∈u ai ·T Fi

∑ j∈p a j ·T Fj
, which is the value that best reflects what should be the proportion of the

parent block’s width to allocate to u, given the previously computed target facings. Hence, the

objective function is as expressed in (5.9), with αu corresponding to the set of decision variables.

However, αu must be at least equal to the minimum width proportion calculated according to

(5.8), which gives rise to the set of constraints expressed in (5.10). Constraints (5.11) and (5.12)

guarantee that all values of αu are expressed in percentage terms. Note that if ∑u∈Vp αmin
u > 1, no

feasible solutions exist.

Minimize ∑
u∈Vp

|αu−α
target
u | (5.9)

Subject to: αu ≥ α
min
u , ∀u ∈ Vp (5.10)

∑
u∈Vp

αu = 1 (5.11)

0≤ αu ≤ 1, ∀u ∈ Vp (5.12)

This problem is solved using a heuristic that is presented in Algorithm 3. For each block, we

calculate the difference between the target and minimum proportions, ∆u (line 1). When the sum

of those differences is positive or null, the problem is feasible (lines 5 and 6), since we can reduce

the width proportion of blocks which have a positive ∆u and increase the size of blocks with a

negative ∆u in a way that complies with constraint (5.10). That is not the case when ∑u∈Vp ∆u < 0

(lines 8 and 9) – in this situation, we reduce the space of blocks with positive ∆u to a minimum

(αmin
u ) and increase the remaining blocks’ width proportionally to how far each block is from its

corresponding minimum value. After executing the algorithm, obtaining the actual width of each

block u is trivial: Lu = αu ·Lp, ∀u ∈ Vp.



5.1 Constructive procedure 31

1 ∆u← α
target
u −αmin

u , ∀u ∈ Vp
2 addedProp =−∑u∈Vp:∆u<0 ∆u
3 removedProp = ∑u∈Vp:∆u>0 ∆u
4 if ∑u∈Vp ∆u ≥ 0 then // Problem is feasible

5 αu← αmin
u , ∀u ∈ Vp : ∆u ≤ 0

6 αu← α
target
u − ∆u

removedProp
·addedProp, ∀u ∈ Vp : ∆u > 0

7 else // Problem is infeasible

8 αu← α
target
u − ∆u

addedProp
· removedProp, ∀u ∈ Vp : ∆u ≤ 0

9 αu← αmin
u , ∀u ∈ Vp : ∆u > 0

10 end
Algorithm 3: Width proportions adjustment heuristic

5.1.2.2 Horizontal allocation

Allocating blocks in a horizontal fashion requires a different approach, due to the distinct

nature of the problem. In this case, we have to decide on both the widths and the shelf levels on

which a given block will be present. These two decisions are interrelated: the width of a block

depends on whether or not it shares the same shelf with other block(s). If there is only a single

block on a particular shelf level, that block’s width will be equal to the width of its parent block. In

the present approach, we start by determining the shelf levels on which each of the blocks should

be present, and then decide on their widths.

The initial stage of the procedure for assigning horizontal blocks to specific shelf levels is

presented in Algorithm 4. We start by calculating the adjusted width proportions of each block u∈
Vp (line 2) using the procedure described in Algorithm 3, which will act as a mere reference point

for defining the amount of space that ought to be allocated to each block. It is therefore pertinent

to clarify the rationale behind the choice of these adjusted proportions over the target proportions

(α target
u ), as the latter constitute a seemingly more intuitive reference point. However, note that the

target proportion of a given block is based on the target facings of the products that comprise that

same block which, in its turn, are calculated using a deterministic greedy heuristic. Hence, if we

were to use the target proportions, the horizontal allocation would become highly sensitive to the

characteristics of a particular instance (since they determine the target facings of each product),

and be more likely to lead to infeasible solutions. By using the adjusted proportions, we can

make use of the maximum tightness parameters (τmax
u ) to fine-tune the constructive heuristic when

necessary. The remainder of the vertical allocation algorithm then tries to define an intuitive

assignment, taking into consideration the referred proportions.

The expected number of shelf levels of a given block u ∈ Vp can be expressed as KEXP
u =

αu ·Kp. Let [x] denote the number x rounded to the nearest integer value. We accumulate blocks

on a given shelf until the rounded cumulative expected number of shelf levels (represented by

Kcumulative) is greater than 1. Then, we move to the next shelf and repeat a similar process (lines

9–21). The rounding operator is justified by the fact that it prevents smaller blocks from occupying

an excessive number of shelf levels. There are three factors that can break this main loop: (1) if

all blocks for which [KEXP
u ] ≤ 1 have already been allocated; (2) if there are no more shelves



32 A heuristic for optimizing Shelf Space Allocation

available; or (3) if there no blocks left to allocate.

1 foreach u ∈ Vp do
2 αu← Calculate adjusted width proportions (α target

u ,αmin
u )

3 end
4 Sort all αu by ascending order
5 Kavailable

p ←Kp
6 n← 1 // Index of first element of Vp, sorted by αu
7 k← 1 // Index of first element of Kp

8 while [αn ·Kp]≤ 1 and Kavailable
p 6= /0 and n≤ |Vp| do

9 Kcumulative← αn ·Kp
10 Assign block n to shelf k
11 n← n+1
12 while [Kcumulative]≤ 1 and n≤ |Vp| do
13 Kcumulative← Kcumulative +αn ·Kp

14 if [Kcumulative]≤ 1 then
15 Assign block n to shelf k
16 n← n+1
17 else
18 Remove k from Kavailable

p
19 k← k+1
20 end
21 end
22 end

Algorithm 4: First stage of the procedure for assigning horizontal blocks to shelves

Note that this first stage alone may not be sufficient to generate a complete assignment of a

set of blocks to a set of shelf levels. In fact, when the procedure described in Algorithm 4 ends, a

total of six different possible situations can arise, associated with six different courses of action,

which are summarized in Table 5.1. By following the proper course of action, the procedure for

horizontally assigning blocks to shelf levels is completed.

Table 5.1: Possible courses of action after Algorithm 4

1 There are no remaining empty shelves

(a) There are no blocks left to allocate – allocation is finished (Situation #1)
(b) There are still blocks left to allocate – assign remaining blocks to the last shelf level (Situation #2)

2 There are still empty shelves

(a) There are no blocks left to allocate – assign largest block to the remaining shelf/shelves (Situation
#3)

(b) There are still blocks left to allocate
i. Number of empty shelves = Number of remaining blocks – assign a single block to each of the

remaining shelves (Situation #4)
ii. Number of empty shelves > Number of remaining blocks – assign blocks in such a way that the

largest blocks get the highest number of shelves (Situation #5)
iii. Number of empty shelves < Number of remaining blocks – assign the smallest among the

remaining blocks to the last shelf which is not empty until the number of remaining blocks is
equal to the number of empty shelves (Situation #6)

If a block u is the only one on a given shelf level, its width will be equal to the total width of

the parent block p. On the other hand, if it shares the same shelf level with other blocks, the width

is obtained by multiplying the width of the parent block by the ratio of αu over the sum of all αm

(considering all blocks m that are also assigned to that shelf and belong to the same parent block).



5.1 Constructive procedure 33

This step concludes the horizontal allocation procedure. To the extent to which this is possible,

this method tends to yield a fair arrangement of blocks, which is a complicated task given the

constraints of the problem. A practical example of the application of the algorithm that was just

described is present in Appendix C.

5.1.3 Product allocation

The allocation of products to shelves bears a close resemblance with the horizontal allocation

of blocks, as the arrangement of products themselves cannot be L-shaped. As a result, having a

separate block for each product in the last hierarchical level proves itself useful in this stage, as we

can extend the outer loop of Algorithm 2 so as to include c =C−1 and apply the same procedure

as in 5.1.2.2 to the last level blocks. By doing this, we get to know which products go into each

shelf. Note that, when a single product i is assigned more than one shelf level, the minimum (li)

and maximum (ui) number of facings are evenly divided between each of the shelf levels on which

the product is present, so that the overall lower and upper bound constraints of the problem are not

violated.

After assigning the products to the planogram’s shelf levels, it is necessary to ensure that the

width that was previously attributed to each block is enough to accommodate its corresponding

products. If this is not a case, blocks need to be resized, in a process described in 5.1.3.1. Then,

the target facings of each product are recalculated so as to account for the blocks’ dimensions, and

products are allocated on the shelves accordingly. The recalculation of target facings is performed

using a dynamic programming (DP) algorithm, which is explained in 5.1.3.2.

5.1.3.1 Block resizing

While it is crucial for vertical blocks to be resized before products are placed on the shelves,

that is not the case with horizontal blocks. This becomes easier to grasp with the example provided

by Figure 5.2. In each implementation direction (vertical and horizontal), the left planogram

depicts the result of the block allocation stage, with three blocks being considered. Let us assume

that after products are assigned a particular shelf level, allocating the minimum number of facings

for each product of block A on the top shelf leads to the block’s original width being exceeded. The

referred figure makes it clear that vertical blocks would have to be resized in such a situation, as the

allocation of products causes a misalignment of blocks between the bottom and top shelves, thus

compromising the required uniform rectangular shape. On the other hand, this situation would not

be problematic for horizontal blocks, as their uniform rectangular shape would still be preserved.

As a result of this, it is necessary to verify whether the width that was previously attributed

to each of the vertically implemented blocks (considering the dummy block as a vertical block) is

sufficient to accommodate its corresponding products and, if not, have a mechanism that is able to

adjust the blocks’ widths. We start by calculating the minimum necessary width for each vertical

block u, Lmin
u in accordance with Equation (5.13), where PSik is an auxiliary binary variable which

takes the value of 1 if the last level block that corresponds to product i has been allocated to shelf



34 A heuristic for optimizing Shelf Space Allocation

Figure 5.2: Adjusting the width of a block in a particular shelf level: comparison between vertical
and horizontal blocks

k (and 0 otherwise). For each of the shelves on which block u is present, we calculate the width

occupied by the minimum number of facings of the products of that block that are present on that

specific shelf. By taking the maximum of those values, we get the minimum width that is required

to ensure a uniform rectangular shape for block u.

Lmin
u = max

k∈Ku

{
∑

i∈Nu

ai · li ·PSik

}
(5.13)

Then, we adjust the blocks’ widths by applying the procedure that was described in Algorithm

3, mutatis mutandis. In this case, α
target
u denotes the current width proportion, whereas αmin

u

is equal to Lmin
u /Lp, ∀u ∈ Vp. In the cases where ∑u∈Vp Lmin

u > Lp, the adjustment will lead to

certain blocks not having enough space for their corresponding products in some shelves and, as

a consequence, it is highly likely that the algorithm will yield an infeasible solution. In this case,

it is necessary to modify the τmax
u parameters and restart the block allocation process. After a

block’s width is adjusted, all widths of its corresponding downstream blocks are also corrected

proportionally.

5.1.3.2 Product placement

With the blocks’ widths adjusted, it is now possible to start allocating products, in a process

that is performed one shelf level at a time. As seen in Figure 5.2, the allocation of products must

not lead to the vertical blocks’ widths being exceeded. For each shelf k ∈ K, we consider a set

of reference blocks, Rk, which consists of vertical blocks that are present on shelf k, that together

contain all products that are placed on shelf k. When a vertical block is upstream from other

vertical blocks that are present on the same shelf level, only the blocks at the lowest hierarchical

level are considered as reference blocks, so as to avoid having overlapping blocks inRk. The width

of each of these blocks corresponds to the space that is available, in each of the shelf levels on

which the block is present, for placing its corresponding products. This capacity limit guarantees



5.1 Constructive procedure 35

that the reference blocks are aligned across all shelves, and that therefore their uniform rectangular

shapes are maintained.

For each reference block on each of the shelves of the planogram, we will have a separate

allocation problem which is equivalent to recalculating the target facings for each product. As

seen in Subsection 5.1.1, after ensuring a minimum number of facings to each product, a Bounded

Knapsack Problem is obtained. The BKP is then converted into an equivalent Knapsack Problem,

as described in the referred subsection. To address it, however, a different approach is needed:

given the significantly smaller knapsack capacity, a greedy heuristic is very likely to lead to poor

allocation decisions. Considering the relatively small size of each KP, a dynamic programming

method was used. With this approach, we get an optimal allocation of products for any given

block configuration determined in the previous step. DP is a technique that can be successfully

applied to problems whose optimal solution is a combination of optimal solutions to sub-problems

(Kellerer et al., 2004) – the so-called optimal substructure property. As the authors point out, that

is the case with the KP, which can therefore be solved using DP. In order to successfully implement

a DP algorithm and solve the corresponding sub-problem for each reference block, it is necessary

to multiply the block’s width and each item’s profit and width by a large enough value (denoted

by A), such that all of these values are converted into integer values.

Given that a conventional DP algorithm is implemented and that the mathematical formulation

of the problem is, mutatis mutandis, the same as in Subsection 5.1.1, we present a broad overview

of the method that is described by Kellerer et al. (2004). For any given reference block p ∈
Rk, let KPpk

j (d) represent the corresponding Knapsack Problem with total capacity d (with d =

0,1, ... , A · Lp) and with the set of items {1, ... , j}. In this case, each item that is added to the

knapsack represents an additional facing of a particular product on that shelf, with the number of

facings of each product being limited by the corresponding upper bound. Let spk
j (d) denote the

optimal solution value of problem KPpk
j (d), with spk

0 (d) = 0 for all considered values of d. Given

the optimal substructure of the KP, if spk
j−1(d) is known for all values of d, we can consider one

additional item (i.e. product facing) and compute the corresponding optimal solutions spk
j (d) using

recursion (5.14).

spk
j (d) =

{
spk

j−1(d) if d < A ·a j

max{spk
j−1(d), spk

j−1(d−A ·a j)+A · p j} if d ≥ A ·a j
(5.14)

This recursion yields a table spk (with the values of j and d as rows and columns, respectively),

which is why this method is commonly referred to as the tabulation method. Considering J to be

the last value of j to be considered (i.e. last row of the table), the optimal solution value is given

by spk
J (A ·Lp). However, this recursion does not explicitly provide the items that were selected to

obtain that value. To achieve that, we store, for every value of d in iteration j, whether item j was

added to the knapsack or not. For that purpose, we define the binary variable Fj(d) as in (5.15).

Fj(d) =

{
1 if spk

j (d) = spk
j−1(d−A ·a j)+A · p j

0 if spk
j (d) = spk

j−1(d)
(5.15)



36 A heuristic for optimizing Shelf Space Allocation

This variable takes the value of 1 whenever item j is added to the knapsack in iteration j.

Hence, if FJ(A ·Lp) = 1, item J is included in the final solution to the KP and we then proceed

by checking the value of FJ−1(A(Lp− a j)). On the other hand, if FJ(A ·Lp) = 0, then item J is

excluded from the optimal solution and we proceed with FJ−1(A ·Lp). This method computes both

the optimal solution to the KP and its corresponding value in pseudo-polynomial time and space,

which is acceptable given the small size of the sub-problems.

Having determined the number of facings of each product, it is possible to place them on

their corresponding shelves. The left and right coordinates of each reference block delimit the

interval of horizontal locations where its products can be placed. As referred above, the horizontal

sequence of products is arbitrary, since no horizontal elasticity effects are taken into consideration,

with the only constraint being that two facings of the same product are always placed on adjacent

locations. Finally, for aesthetic purposes, for each reference block, we spread the items over

the available shelf space such that the space between two adjacent items is constant. With this

procedure repeated for each reference block in each shelf level, the product allocation stage is

complete and we obtain a fully defined planogram, as in Figure 5.3. In this example, a total of

four knapsack problems are solved during the product allocation stage, given that there are two

reference blocks in each of the two shelf levels.

Figure 5.3: Final planogram after product allocation

5.2 Iterated Local Search

Iterated Local Search is a metaheuristic proposed by Lourenço et al. (2010) that applies per-

turbation mechanisms to locally optimal solutions that were previously obtained by applying a

local search mechanism. The procedure is conceptually simple and is depicted in Algorithm 5.

Three main stages comprise the ILS metaheuristic: (1) local search, where any search procedure

can be used (including other metaheuristics); (2) perturbation, where we modify a specific incum-

bent solution to a reasonable extent, in an attempt to escape from local optima; and (3) acceptance



5.2 Iterated Local Search 37

criterion, in which a rule, that can be either deterministic or stochastic, is used to determine which

solution should be subject to the next perturbation. Subsections 5.2.1, 5.2.2, and 5.2.3 will illus-

trate each of this steps in the context of the present Shelf Space Allocation Problem and Subsection

5.2.4 presents an overview of the method that was implemented, given the previously described

steps.

1 s0← Generate Initial Solution
2 s∗← Local search (s0)
3 repeat
4 s′← Perturbation(s∗, history)
5 s∗ ′← Local search (s′)
6 s∗← Acceptance Criterion(s∗, s∗ ′, history)
7 until Termination condition is met

Algorithm 5: Iterated Local Search (Lourenço et al., 2010)

5.2.1 Local search

As aforementioned, the problem under analysis is highly constrained, which leads to a very

narrow space of feasible solutions. Hence, local search mechanisms should make use of a limited

number of moves so as to avoid spending the majority of the time evaluating infeasible solu-

tions. In our local search phase, we do not alter the blocks’ widths, which are assumed to be

fixed throughout the procedure. Such modifications are performed exclusively on the perturbation

phase. Furthermore, as the placement of products on the space allocated to each of the reference

blocks in each shelf level is known to be optimal, it is pointless to have mechanisms that modify

the number of facings of the products in each shelf, as they cannot, on their own, improve the

current solution. As a consequence, the only local search mechanism will consist in modifying

the sequence of blocks that belong to the same parent block, as depicted in Figure 5.4. These

modifications will only take place in horizontally implemented blocks, since horizontal elasticity

effects are disregarded.

A local search move starts by randomly selecting a block p∈ SH that will have its correspond-

ing sequence of child blocks modified. Blocks with larger sequences will have a correspondingly

higher probability of being selected, in order to reduce the number of cases in which the exact

same move is applied multiple times. Given that horizontal blocks can only swap places in a given

sequence if they have the same width, blocks that share a shelf level with other block(s) will be

temporarily treated as a single temporary block. There may be occasions in which an infeasi-

ble solution is reached, as certain moves may lead to products being placed on shelves on which

they do not fit due to their height. In those cases, a strong negative penalization is applied to the

corresponding objective function, to ensure that that solution is discarded.

The total number of iterations in each local search is limited to a maximum value. After

each iteration, two criteria for accepting a new solution as the incumbent solution are considered:

(1) better criterion, in which we only accept a given solution as the incumbent if there is an

improvement in the objective function (stronger intensification); and (2) random walk criterion,



38 A heuristic for optimizing Shelf Space Allocation

Figure 5.4: Example of a local search move

in which we accept the most recent solution as the incumbent, regardless of the differences in the

objective function (stronger diversification).

5.2.2 Perturbation mechanism

The perturbation mechanism is responsible for modifying the current solution to an extent that

allows it to escape from local optima. To allow for the necessary diversification of the search

space, the blocks’ dimensions must be changed. Rather than directly redefining the blocks’ widths

or placement, a perturbation alters the number of target facings of each product. Then, the different

blocks and products are allocated according to the algorithms described in Subsections 5.1.2 and

5.1.3. Note that, as indicated in Figure 5.1, the block allocation methods depend on the output

of the target facings calculation stage. Hence, a direct manipulation of this output will lead to a

different block arrangement and, consequently, to a different planogram. In this case, however, no

constraints on the blocks’ maximum tightness are posed, which allows the algorithm to explore a

higher range of block configurations. Thus, τmax
u is a parameter that is only considered during the

constructive procedure.

Algorithm 6 describes the process for modifying the target number of facings. Since each

product must comply with its minimum display requirements, we can remove up to a total of

∑i∈N (T Fi− li) target facings from the incumbent solution. The strength of the perturbation is

determined by the parameter β , which represents the proportion of target facings that is removed

from the current solution (line 1). Accordingly, a β of 0 implies keeping the current solution

unchanged, whereas a β of 1 implies discarding the current solution altogether. With the value

of β defined, the corresponding number of target facings is removed (lines 2–5). Finally, facings

are added until the shelf capacity is reached (lines 8–22). The main difference between the proce-

dure described in Algorithm 1 (which corresponds to the greedy heuristic used for calculating the

initial target facings) and the one under analysis is the fact that while the former is deterministic,

the latter is stochastic. The element of randomness is incorporated when selecting products for

removal (line 3) and insertion (line 16) of facings. This selection can be made using two different

methods: (1) blind selection, in which each product has the same probability of being selected

for removal/insertion of facings; and (2) biased selection, in which, for each product i, the higher



5.2 Iterated Local Search 39

the ratio pi/ai, the lower the probability of being selected for removal and, conversely, the more

likely it is to be selected for insertion. Whenever it is not possible to select a particular product for

insertion or removal, the corresponding selection probability is set to 0.

1 f acingsToRemove← [β ×∑i∈N (T Fi− li)]
2 for i← 1 to f acingsToRemove do
3 i∗← Select product to remove target facing
4 T Fi∗ ← T Fi∗ −1
5 end
6 allocationComplete← f alse
7 emptySpace← ∑k∈K wk−∑i∈N ai ·T Fi
8 while allocationComplete = false do
9 f lag← f alse

10 for i← 1 to N do
11 if ai ≤ emptySpace and T Fi < ui then
12 f lag← true
13 end
14 end
15 if flag = true then
16 i∗← Select product to add target facing
17 T Fi∗ ← T Fi∗ +1
18 emptySpace← emptySpace−ai∗

19 else
20 allocationComplete← true
21 end
22 end

Algorithm 6: Perturbation mechanism: modify target facings

Using the target facings to perturb the incumbent solution brings two main advantages: (1) we

are automatically ensuring compliance with the defined set of constraints (except in the cases in

which the block allocation stage leads to infeasible arrangements); and (2) we can easily control

the strength of the perturbation by changing the parameter β , which can be useful to diversify the

search after several number of iterations without improvement.

5.2.3 Acceptance criteria

The acceptance criteria procedure determines when to accept a new solution as the incumbent

solution to which the perturbation mechanism will be applied. In the present approach, three dif-

ferent acceptance criteria are considered. The first two are the better and the random walk that

are analogous to the ones described in the local search phase, with the corresponding acceptance

functions being as defined in (5.16) and (5.17), where s∗ denotes the incumbent solution (i.e. the

solution that was subject to a perturbation), s∗ ′ represents the newly obtained solution, and Z cor-

responds to the objective function. The third one uses a stochastic acceptance function that is

commonly used in Simulated Annealing algorithms, with better solutions being always accepted

and worse solutions being accepted with a certain probability, as in Equation (5.18). Following

Stützle (2006), we denote this acceptance criterion as LSMC(s∗,s∗ ′,T,X), which stands for large

step Markov chains (this was the designation that was commonly attributed to early ILS algo-

rithms). Here, X represents a random variable that follows a uniform distribution over [0,1] and

T corresponds to the temperature parameter of the SA framework. T is updated according to a

geometric cooling schedule, as in T (n) = T0 ·ρn, where T0 corresponds to the initial temperature,



40 A heuristic for optimizing Shelf Space Allocation

ρ denotes a constant in the interval (0,1), and n indicates the current iteration.

Better(s∗,s∗ ′) =

{
s∗ ′ if Z(s∗ ′)> Z(s∗)

s∗ otherwise
(5.16)

RandomWalk(s∗,s∗ ′) = s∗ ′ (5.17)

LSMC(s∗,s∗ ′,T,X) =

{
s∗ ′ if Z(s∗ ′)> Z(s∗) or X ≤ e

s∗ ′−s∗
T

s∗ otherwise
(5.18)

5.2.4 Overall procedure

Having described each of the main stages of the ILS framework, a holistic, high-level per-

spective of the method that was implemented in the context of the present work is now provided.

Algorithm 7 describes the overall procedure when better and random walk acceptance criteria are

being used. After generating the initial solution and performing a search over its neighborhood

(lines 1 and 2), the parameter β is set to an initial value, β0, (line 5) which will determine the

strength of the first perturbations. After executing each of the three main stages of ILS that were

presented in the previous subsections (lines 7–9), the new incumbent solution, s∗, is compared

the best solution found so far, sbest (lines 10–13). After a given number of iterations without im-

provement, the strength of the perturbation is increased by a value of step (lines 16–19). The

procedure stops when β can no longer be increased (line 20). Algorithm 8 presents the method

when LSMC is used as acceptance criterion, whose main difference is the introduction of the

temperature parameter. After a certain number of perturbations (maxIterPerTemperature), the

temperature decreases (lines 23–27).

1 s0← Generate Initial Solution
2 s∗← Local search(s0)
3 sbest ← s∗
4 nIterWithoutImprovement← 0
5 β ← β0
6 repeat
7 s′← Perturbation(s∗, β , strategy)
8 s∗ ′← Local search(s′)
9 s∗← Acceptance Criterion(s∗, s∗ ′)

10 if Z(s∗)> Z(sbest) then
11 sbest ← s∗
12 nIterWithoutImprovement← 0
13 else
14 nIterWithoutImprovement← nIterWithoutImprovement +1
15 end
16 if nIterWithoutImprovement = maxIterWithoutImprovement then
17 β ← β + step
18 nIterWithoutImprovement← 0
19 end
20 until β > 1

Algorithm 7: Overall procedure (better and random walk acceptance criteria)



5.2 Iterated Local Search 41

1 s0← Generate Initial Solution
2 s∗← Local search(s0)
3 sbest ← s∗

4 β ← β0
5 n, countIterSA, nIterWithoutImprovement← 0
6 T ← T0 ·ρn

7 repeat
8 s′← Perturbation(s∗, β , strategy)
9 s∗ ′← Local search(s′)

10 X ← Random(0,1)
11 s∗← Acceptance Criterion(s∗, s∗ ′, T , X)
12 if Z(s∗)> Z(sbest) then
13 sbest ← s∗
14 nIterWithoutImprovement← 0
15 else
16 nIterWithoutImprovement← nIterWithoutImprovement +1
17 end
18 if nIterWithoutImprovement = maxIterWithoutImprovement then
19 β ← β + step
20 nIterWithoutImprovement← 0
21 end
22 countIterSA← countIterSA+1
23 if countIterSA = maxIterPerTemperature then
24 n← n+1
25 countIterSA← 0
26 T ← T0 ·ρn

27 end
28 until β > 1

Algorithm 8: Overall procedure (LSMC acceptance criterion)



42 A heuristic for optimizing Shelf Space Allocation



Chapter 6

Computational results

This chapter is dedicated to the set of computational experiments that were performed in order

to test the quality of the generated solutions via the heuristic procedure. All algorithms described

in the previous chapter were implemented in C++. The tests were conducted on an Intel® Xeon®

E5-2640 v3 2.60GHz processor and 16GB of RAM were available.

The structure of the present chapter is as follows. Section 6.1 provides a short description of

the instances that were used to test our approach. In Section 6.2, the evaluation function used to

assess the quality of the obtained solutions is presented. Sections 6.3 and 6.4 provide additional

information regarding the computational tests that were performed using the constructive proce-

dure and the Iterated Local Search metaheuristic and present the corresponding results. Lastly,

Section 6.5 explains how the output of the heuristic is converted into a planogram.

6.1 Problem instances

The developed algorithms were tested on a set of benchmark instances provided by Bianchi-

Aguiar et al. (2014), for which a brief overview will be given in the present section. For a more

detailed description, we refer to Bianchi-Aguiar et al. (2018b). A total of 54 instances were con-

sidered, all of which were originally obtained from a European grocery retailer. Each of these

instances provides the necessary input information (with respect to the sets of products, shelves,

and merchandising rules) to solve the problem under analysis, given the formulation that was in-

troduced in Chapter 4. Key information regarding each of the considered instances is summarized

in Appendix D.

The histograms in Figure 6.1 are illustrative of the size of the instances that we are dealing

with. While in most cases the number of considered products (6.1(a)) and blocks (6.1(b)) is

moderate (with nearly 50% of the instances containing less than 40 products and less than 60

blocks), there are some examples which are substantially larger. Hence, this set of instances will

allow for the evaluation of the algorithm’s performance on a wide range of scenarios. In Figure

6.1(b), we are considering the last level blocks (which correspond to individual products) in the

total number of blocks, as they add to the problem’s complexity.

43



44 Computational results

0 40 80 120 160 200 240

(a) Number of products

0 60 120 180 240 300 360

(b) Total number of blocks

Figure 6.1: Distribution of the instances according to the number of products (a) and blocks (b)

6.2 Evaluation function

In order to allow for a fair comparison, the objective function from Bianchi-Aguiar et al.

(2018b) was used, as in Equation (4.1). However, the referred equation alone does not account

for the infeasibilities that may arise from the application of the method. For that purpose, it is

necessary to introduce a penalty function so that infeasible solutions can be discarded.

The procedure that was described in Section 5.1 can lead to infeasible solutions under three

different situations: (1) when a product is placed on a shelf whose height is smaller than the

product’s height; (2) when the length of all products that are placed on a given shelf exceeds the

shelf’s length; and (3) when there are reference blocks which are not aligned across all shelf levels

on which they are present. Let e1, e2, and e3 denote the excess height (in case 1) or width (in cases 2

and 3) that is associated with each of these situations, which are calculated as shown in Equations

(6.1) – (6.3), with (x)+ denoting the positive part of x. The total penalization P is calculated

according to (6.4), with φs corresponding to the weight attributed to each deviation s ∈ {1,2,3}.
The deviation values are squared so that a greater emphasis is placed on stronger deviations, which

will be useful to guide the search towards better solutions during the improvement stage. Finally,

the total penalization is deducted from the objective function, with the final objective function of

the heuristic procedure (ZH) being computed as ZH = Z−P.

e1 = ∑
k∈K

∑
i∈N

Wik · (bi−hk)
+ (6.1)

e2 = ∑
k∈K

[(
∑

i∈N
ai ·Wik

)
−wk

]+
(6.2)

e3 = ∑
k∈K

[(
∑

u∈Rk
i∈Nu

ai ·Wik

)
−Lu

]+
(6.3)

P = φ1 e2
1 +φ2 e2

2 +φ3 e2
3 (6.4)

6.3 Constructive heuristic

One of the main challenges of the present dissertation was to design a constructive heuristic

that was able to generate a good initial solution within reasonable running times. Having out-



6.3 Constructive heuristic 45

lined the procedure, it was necessary to test the algorithms in order to find whether the developed

approach was viable.

6.3.1 Parameter tuning

The constructive heuristic takes one input parameter for each block u, which corresponds to

its maximum tightness, τmax
u . In order to test the performance of the constructive heuristic on its

own, it was necessary to find appropriate values for such parameters. Given the extent of existing

possibilities, individually setting τmax
u for each block would be impractical. Thus, we divided τmax

u

into a sum of three separate components, as in (6.5), and then performed a simple parameter search

on these three parameters. The base component corresponds to a baseline value. Then, if the block

is horizontally implemented, horizontalu is added to τmax
u . Finally, the last component to be added

is proportional to the block’s hierarchical level. From this formulation, one can easily conclude

that blocks that are on the same hierarchical level and have the same display orientation will have

the same values of τmax
u .

τ
max
u = base+horizontalu +(c−1) · levelu, ∀u ∈M∪N (6.5)

To obtain appropriate values for each of the three parameters, we conducted a random search. This

procedure was selected given its simplicity and the fact that the impact of the parameters on the

objective function is unclear and therefore hard to predict beforehand. Furthermore, as Bergstra

and Bengio (2012) point out, a random search is able to find parameter configurations which are as

good or even better than the ones obtained by grid search within substantially smaller computation

times. The ranges of the values tested for each component are indicated in Table 6.1.

Table 6.1: Ranges tested for each component of maximum tightness

base∼Uni f orm(0.15, 0.85)
horizontal ∼Uni f orm(−0.05, 0.50)
level ∼Uni f orm(−0.05, 0.15)

6.3.2 Summary of results

Summary statistics of the results obtained using the constructive procedure alone are listed

on the left column of Table 6.2. For comparison purposes, the third scenario of Bianchi-Aguiar

et al. (2018b) (which is the only one that considers product families to their full extent) is used

as reference. A total of five models are presented in the referred work: the main model for the

block allocation problem (BAP); the linear relaxation of the BAP model (BAP-LR), which can

be seen as a theoretical upper bound; the matheuristic that solves BAP hierarchically (H-BAP);

and the model extensions designed to improve feasibility and efficiency (H-BAP-IF and H-BAP-

IE, respectively). For each instance, the relative difference (abbreviated by "Diff (%)") between

the results obtained using the heuristic procedure and a particular model is computed. As an

example, the relative difference to BAP-LR can be calculated as (ZH−Zlr)
Zlr , with Zlr denoting the

result obtained via linear relaxation.



46 Computational results

Concerning computational efficiency, Figure 6.2 graphically depicts the running time (in sec-

onds) of the constructive heuristic as a function of the total number of blocks (including last level

blocks, i.e. |M∪N|), which serves as a proxy for the size of an instance. In most cases, the

method runs relatively fast, with 80% of the solutions being generated in less than 2 seconds.

However, as the instance sizes get larger, computation times start to increase in what appears to

be a non-linear fashion. While this can get problematic, the impact will only become clear on

sufficiently large instances (with |M∪N|> 200), which constitute only 11% of all cases.

A total of 50 (out of 54) feasible solutions were generated, which is already an improvement

compared to the results of Bianchi-Aguiar et al. (2018b), which reported 40, 42, 47, and 49 fea-

sible solutions for the BAP, H-BAP, H-BAP-IF, and H-BAP-IE models, respectively (disregarding

solutions that lead to negative objective function values). Moreover, the average solution is around

8.0% worse than the ones obtained using the H-BAP-IE (their most efficient model with respect

to computation time, thus allowing for fairer comparisons) while requiring, on average, just 4.8%

of the computation time, which indicates significant efficiency gains when only the constructive

stage is applied. Additionally, the average difference with respect to the upper bound (BAP-LR)

is of -19.2%.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

|M∪N|

Ti
m

e
(s

)

Figure 6.2: Running time as a function of the instance size

The full set of results concerning the constructive phase be found in Table 6.3, in which, for

each instance, the running time of a single run of the constructive procedure is shown.

6.4 Iterated Local Search

6.4.1 Parameter tuning

The ILS metaheuristic, as described in Algorithms 7 and 8, requires the definition of a number

of input parameters. To begin with, it is important to define the number of consecutive iterations

without improvements in the objective function that must be performed before increasing the per-

turbation strength (maxIterWithoutImprovement). Rather than specifying a fixed value for the

parameter, we wanted the parameter to be instance-specific, as larger instances will likely need

more iterations to allow for a proper search over the solution space. Hence, for each instance,



6.4 Iterated Local Search 47

we wanted the maximum number of iterations without improvement to be a function of the total

number of blocks (including last level blocks), |M∪N|, as in (6.6).

maxIterWithoutImprovement =
⌈

λ ×|M∪N|
⌉

(6.6)

Where λ is a positive constant and dxe corresponds to the ceiling function applied to x. In or-

der to find an appropriate value for λ , we first selected five instances with a good potential for

improvement (using the results published in Bianchi-Aguiar et al. (2018b) as a reference point):

AB_1, AI_3, AI_4, FL_1, and SM_5. Then, we applied the ILS method considering different

values for λ . We tested λ for all values in the set {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. For this

specific purpose of fine-tuning the parameter λ , the perturbation strategy at each iteration was

chosen randomly between blind and biased, with the acceptance criterion being also picked at

random between better and random walk. The results are presented in Figure 6.3. While in some

cases (namely, AB_1 and AI_4), a substantial improvement is obtained even for small values of

λ , some instances (particularly AI_3 and SM_5) require a larger number of iterations in order

to reach significant improvements to the initial solution. As a result, the value of λ = 0.2 was

selected for the ILS procedure, given that no substantial improvements take place for larger values

of λ in any of the considered situations (there is only a slight increase from λ = 0.20 to λ = 0.25

in SM_5).

0 0.05 0.1 0.15 0.2 0.25 0.3
0 %

10 %

20 %

30 %

40 %

λ

So
lu

tio
n

Im
pr

ov
em

en
t(

%
)

AB_1
AI_3
AI_4
FL_1
SM_5

Figure 6.3: Solution improvement as a function of λ

The ILS method considered an initial perturbation strength β0 = 0.20 and stepped increases of

0.20. Each of the three acceptance criteria (better, random walk, and LSMC) was tested separately.

Using the LSMC criterion, however, implies establishing a cooling schedule, T (n), which is

a function that specifies how the temperature parameter T varies with the number of iterations

n. As indicated in Algorithm 8, the temperature varies according to a geometric progression

T (n) = T0 ·αn. The initial temperature T0 was selected such that, after the first perturbation (i.e.

n = 0), the probability of accepting a solution which was 25% worse than the best solution found

so far (which would be, in the first iteration, the initial solution) would be 75%. Additionally, α

was obtained by defining a final temperature and a number of different temperatures to be tested



48 Computational results

(30). The final temperature was computed considering a 0.5% probability of accepting a solution

which was 25% worse than the best one found so far. For each temperature T , 5 iterations were

performed (i.e. maxIterPerTemperature = 5).

Regarding the perturbation strategy, three possibilities were tested. Apart from the afore-

mentioned blind and biased strategies, a mixed strategy that randomly selected one of these two

alternatives at each perturbation was also considered. As for the local search acceptance function,

we only used the random walk criterion. Given that the local search procedure is already very

restrictive by itself, using a better criterion would not be a very effective strategy.

Finally, to avoid excessively large computation times, two measures were undertaken: (1) the

maximum number of iterations without improvement was restricted to a maximum value of 15 (as

in Equation (6.7)); and (2) a time limit of 10 minutes was imposed.

maxIterWithoutImprovement =

{ ⌈
λ ×|M∪N|

⌉
if
⌈
λ ×|M∪N|

⌉
≤ 15

15 otherwise
(6.7)

6.4.2 Results

Table 6.2 summarizes the results that were obtained by applying the Iterated Local Search

algorithm, where ILS-B, ILS-RW, and ILS-LSMC indicate the ILS method that uses the better,

random walk, and LSMC acceptance criterion, respectively. The random walk criterion is the one

that most often leads to the best solution (for 14 instances) and yields the highest average improve-

ment to the initial solution, of 4.8%, which appears to be an indication that strongly diversifying

the search can be an effective strategy for solving our problem. Nevertheless, not only are the

results very similar to the ones obtained using other acceptance criteria, but also Random walk

has the longest average running time. When compared with the constructive procedure alone, an

additional feasible solution was found for all considered criteria, thus leading to a new total of 51

feasible solutions.

As expected, the average relative differences to the models of Bianchi-Aguiar et al. (2018b)

become smaller after applying Iterated Local Search to the initial solution. Compared with H-BAP,

the average difference (in absolute terms) is slightly above 6%, which reduces to less than 4% for

the H-BAP-IE model. It is therefore possible to conclude that our approach, when compared with

state-of-the-art methods, leads to solutions of similar quality.

With the configuration of parameters that was used for the ILS procedure, the average running

times are still substantially smaller than the average running time of the BAP (2249.9 seconds),

H-BAP (559.6 seconds), and H-BAP-IF (517.6 seconds) models, but are higher than the average

running time reported for the H-BAP-IE model (which was of 105.5 seconds). However, this

computation time increase from H-BAP-IE to ILS may not be very meaningful on its own, as

it may be the case that a good solution is found rather quickly when using the ILS procedure,

with the remainder of the time being spent without actually improving the solution. In this case,

reducing the maximum number of iterations without improvement would reduce computation time

and would probably have little or no impact on the quality of the obtained solution.



6.4 Iterated Local Search 49

Table 6.2: Summary of the results obtained for the constructive procedure and the ILS

Constructive ILS-B ILS-RW ILS-LSMC

Average running time (s) 5.1 205.5 232.3 202.8
# Best result – 9 14 12
# Feasible solutions 50 51 51 51
Average improvement – 4.5% 4.8% 4.7%
Average diff (%) to BAP-LR -19.2% -15.6% -15.4% -15.5%
Average diff (%) to BAP -9.2% -4.2% -3.9% -3.9%
Average diff (%) to H-BAP -10.9% -6.5% -6.2% -6.4%
Average diff (%) to H-BAP-IF -10.4% -6.1% -5.8% -5.9%
Average diff (%) to H-BAP-IE -8.0% -3.9% -3.6% -3.7%

Figure 6.4 indicates, for each instance, the relative difference (in percentage terms) between

the results obtained using Iterated Local Search (considering the best solution out of the three

acceptance criteria), H-BAP-IF, and H-BAP-IE and the upper bound Zlr, which is obtained via

linear relaxation of the BAP model (BAP-LR). The points of H-BAP-IF and H-BAP-IE situated

above the ILS line correspond to situations in which these models yield better solutions (i.e. closer

to the upper bound) than the heuristic approach and, conversely, points below the referred line

correspond to worse solutions.

A
I_

4
SM

_2
SM

_4
A

B
_2

A
B

_1
A

Z
_2

A
Z

_1
SM

_6
V

V
_1

FL
_1

B
H

_1
V

G
_2

SP
_1

A
I_

2
V

V
_2

C
P_

1
A

Z
_3

B
H

_2
L

C
_1

L
O

_1
C

P_
3

L
C

_2
SM

_1
V

G
_4

C
H

_1
C

P_
2

A
G

_1
V

G
_5

SM
_3

L
S_

1
A

I_
1

C
R

_2
A

G
_4

V
N

_1
C

R
_6

A
G

_2
A

G
_3

O
M

_1
SM

_5
V

G
_3

V
G

_1
C

R
_4

A
I_

3
D

E
_1

O
M

_3
C

P_
4

PT
_1

L
O

_2
C

R
_1

C
R

_5
B

C
_1

−50 %

−40 %

−30 %

−20 %

−10 %

0 %

ILS
H-BAP-IF
H-BAP-IE

Figure 6.4: Relative difference between the results yielded by the ILS, H-BAP-IF, and H-BAP-IE
methods and the upper bound Zlr obtained via linear relaxation of the BAP model

The detailed resulted of the Iterated Local Search procedure are displayed in Table 6.3. For

each acceptance criterion, we display the best result out of the three that were obtained (one for

each perturbation strategy). As for the penalty function, we considered the coefficients φ1, φ2, and

φ3 to be equal to 100,000. Hence, the cases in which the objective function is negative correspond

to infasible solutions. In the referred table, the last column indicates the best improvement (in

percentage terms) with respect to the initial solution. The average best improvement was 5.0%,

with a markedly high dispersion (CV = 1.67) in the considered values.

Finally, in Table 6.4, the best result obtained after applying the ILS metaheuristic is compared

with the results published by Bianchi-Aguiar et al. (2018b) (Scenario 3). Only feasible solutions

were compared.



50
C

om
putationalresults

Table 6.3: Results and performance of the heuristic method

Instance
Constructive

ILS
ILS-B ILS-RW ILS-LSMC Best

ZH Time (s) ZH Time (s) ZH Time (s) ZH Time (s) improvement (%)
AG_1 2349.7 1.8 2349.7 102.2 2406.6 250.3 2349.7 180.1 2.4%
AG_2 2011.2 0.2 2139.5 25.1 2139.5 47.3 2139.5 38.7 6.4%
AG_3 27267.5 3.2 27371.9 390.0 27433.9 TLR 27416.8 507.4 0.6%
AG_4 4760.7 1.9 4932.0 230.6 4914.8 472.8 4925.2 317.7 3.6%
AI_1 3443.1 0.8 3445.6 76.7 3449.0 123.0 3444.6 90.0 0.2%
AI_2 6150.0 0.7 6317.1 138.0 6492.2 230.0 6391.5 160.6 5.6%
AI_3 1930.0 0.8 2425.6 131.3 2478.7 173.5 2486.4 165.2 28.8%
AI_4 15619.9 0.6 19644.2 92.4 19761.6 260.0 19664.3 155.5 26.5%
AB_1 386.5 0.2 514.4 32.3 514.4 51.3 514.4 50.8 33.1%
AB_2 -393367.0 15.4 6940.8 TLR 6890.6 TLR 6943.5 TLR
AZ_1 4375.4 0.5 4697.3 89.3 4697.3 127.1 4697.3 150.2 7.4%
AZ_2 48839.7 0.7 49609.3 84.3 49710.1 174.2 49722.6 120.0 1.8%
AZ_3 61923.4 0.1 61923.4 10.2 64219.4 17.6 61923.4 14.6 3.7%
BH_1 39791.9 4.3 39809.3 TLR 39791.9 TLR 39791.9 TLR 0.0%
BH_2 66641.2 8.7 67717.1 TLR 67700.3 TLR 67709.8 TLR 1.6%
BC_1 34587.6 65.2 34840.0 TLR 34587.6 TLR 34683.8 TLR 0.7%
CA_2 -781582000.0 1.6 -638609000.0 234.6 -611308000.0 224.4 -618112000.0 224.9
CR_1 2169.6 3.1 2194.6 502.4 2209.8 252.6 2202.4 271.2 1.9%
CR_2 872.2 0.3 872.2 39.8 872.2 38.1 872.2 37.5 0.0%
CR_3 -224640.0 0.1 -224635.0 14.2 -224635.0 13.3 -224635.0 13.2
CR_4 442.6 0.1 442.6 13.4 442.6 13.1 442.6 13.2 0.0%
CR_5 616.7 0.1 632.1 7.4 632.1 7.1 632.1 8.6 2.5%
CR_6 581.9 0.1 581.9 5.0 581.9 4.8 607.9 5.7 4.5%
CH_1 1183.4 35.1 1206.1 TLR 1201.9 TLR 1202.2 TLR 1.9%
CP_1 429.9 0.7 429.9 234.3 429.9 139.4 431.8 150.0 0.4%
CP_2 690.2 0.0 690.2 4.3 690.2 2.6 690.2 2.7 0.0%
CP_3 8864.9 1.4 9040.0 207.8 9048.3 181.2 8946.1 198.6 2.1%
CP_4 2129.4 1.9 2151.3 541.9 2157.7 264.7 2155.4 262.9 1.3%
DE_1 4937.6 38.2 4937.6 TLR 4937.6 TLR 4938.3 TLR 0.0%
FL_1 7309.2 0.1 9536.6 17.0 9533.2 19.0 9534.3 18.2 30.5%
LS_1 6370.1 0.3 6486.0 77.0 6484.1 72.6 6483.5 92.9 1.8%
LC_1 18895.0 0.7 18943.9 122.2 19019.4 122.5 18944.0 121.1 0.7%
LC_2 7095.4 1.3 7510.9 174.7 7380.2 164.6 7479.7 172.8 5.9%
LO_1 3901.6 50.8 3901.6 TLR 3901.6 TLR 3901.6 TLR 0.0%
LO_2 41.3 0.1 41.3 4.4 41.3 5.0 41.3 4.4 0.0%
OM_1 681.9 1.8 758.6 247.8 756.6 218.5 761.8 169.1 11.7%
OM_2 -9649740.0 1.7 -9024740.0 263.7 -9024740.0 262.2 -9024740.0 269.3



6.4
Iterated

L
ocalSearch

51

OM_3 300.3 0.1 358.3 11.5 358.3 15.7 358.3 13.2 19.3%
PT_1 56112.2 0.9 56182.9 190.3 56182.9 186.7 56182.9 191.3 0.1%
SP_1 8610.5 0.6 8895.1 109.6 8921.9 130.5 8901.3 116.5 3.6%
SM_1 116251.0 15.9 118826.0 TLR 121297.0 TLR 118470.0 TLR 4.3%
SM_2 27086.1 0.3 27370.3 58.8 27313.0 71.6 27222.8 44.0 1.0%
SM_3 50851.1 0.5 50851.1 65.5 50851.1 111.6 50852.3 65.8 0.0%
SM_4 21600.8 0.2 22087.6 33.7 22093.0 53.9 22091.9 29.1 2.3%
SM_5 7237.8 0.3 8608.8 40.3 8482.2 78.2 8639.2 47.1 19.4%
SM_6 15263.9 0.1 16441.1 10.7 16683.8 28.4 16714.8 15.6 9.5%
VG_1 8927.1 0.9 8934.9 245.2 8937.2 409.8 8939.1 241.3 0.1%
VG_2 129369.0 0.3 130105.0 41.1 130105.0 57.7 129593.0 53.8 0.6%
VG_3 14900.3 0.1 15035.7 3.4 15035.7 6.2 15035.7 3.3 0.9%
VG_4 16012.7 0.2 16012.7 30.1 16018.6 47.1 16019.1 30.2 0.0%
VG_5 59496.3 1.5 60766.3 203.2 61434.6 339.5 60568.2 224.9 3.3%
VN_1 15595.0 0.9 15605.5 155.9 15605.5 237.8 15605.5 155.3 0.1%
VV_1 57695.9 5.3 57695.9 514.5 57695.9 TLR 57695.9 488.4 0.0%
VV_2 2978.2 1.9 2978.2 363.0 2978.2 513.9 2978.2 341.2 0.0%

TLR = Time limit (600 seconds) reached Average 5.0%

Table 6.4: Comparison of the best obtained result with the results reported by Bianchi-Aguiar et al. (2018b)

Instance ILS (Best)
BAP-LR BAP H-BAP H-BAP-IF H-BAP-IE

Zlr Diff (%) Z Diff (%) Z Diff (%) Z Diff (%) Z Diff (%)

AG_1 2406.6 2730.3 -11.9% -142247.9 2558.7 -5.9% 2558.8 -5.9% 2351.8 2.3%
AG_2 2139.5 2539.9 -15.8% 2154.0 -0.7% 2132.8 0.3% 2132.8 0.3% 2132.8 0.3%
AG_3 27433.9 33598.4 -18.3% * 32094.6 -14.5% 32087.0 -14.5% 31793.4 -13.7%
AG_4 4932.0 5762.3 -14.4% -148264.8 5505.3 -10.4% 5505.3 -10.4% 5184.0 -4.9%
AI_1 3449.0 3938.1 -12.4% 3748.6 -8.0% 3760.7 -8.3% 3760.7 -8.3% 3686.5 -6.4%
AI_2 6492.2 7080.8 -8.3% 6474.0 0.3% 6805.2 -4.6% 6805.2 -4.6% 6465.4 0.4%
AI_3 2486.4 3234.4 -23.1% 2120.6 17.2% 2616.8 -5.0% 2616.8 -5.0% 2598.6 -4.3%
AI_4 19761.6 20267.6 -2.5% 19831.4 -0.4% 19805.5 -0.2% 19805.5 -0.2% 19235.3 2.7%
AB_1 514.4 538.5 -4.5% 500.7 2.7% 500.4 2.8% 500.4 2.8% 500.4 2.8%
AB_2 6943.5 7213.3 -3.7% 6222.8 11.6% * 6944.2 0.0% 6953.4 -0.1%
AZ_1 4697.3 4934.3 -4.8% 4746.4 -1.0% * 4743.1 -1.0% 4723.9 -0.6%
AZ_2 49722.6 52107.9 -4.6% 51107.5 -2.7% 50758.2 -2.0% 50758.2 -2.0% 50504.1 -1.5%
AZ_3 64219.4 70535.7 -9.0% 64203.2 0.0% 64203.2 0.0% 64203.2 0.0% 61907.8 3.7%
BH_1 39809.3 42876.6 -7.2% 40820.1 -2.5% 40807.2 -2.4% 40807.2 -2.4% 38246.0 4.1%
BH_2 67717.1 74591.3 -9.2% * -218294000.0 -218294000.0 73174.9 -7.5%
BC_1 34840.0 65517.9 -46.8% * 51320.0 -32.1% 50416.3 -30.9% *
CA_2 -611308000.0 290.4 243.2 243.5 243.5 239.2
CR_1 2209.8 3762.7 -41.3% 3124.6 -29.3% 3165.9 -30.2% 3165.9 -30.2% 3022.6 -26.9%



52
C

om
putationalresults

CR_2 872.2 1017.3 -14.3% 872.2 0.0% 872.2 0.0% 872.2 0.0% 872.2 0.0%
CR_3 -224635.0 641.0 460.6 460.6 460.6 460.6
CR_4 442.6 571.6 -22.6% 442.6 0.0% 442.6 0.0% 442.6 0.0% 442.6 0.0%
CR_5 632.1 1162.6 -45.6% 632.1 0.0% 632.1 0.0% 632.1 0.0% 632.1 0.0%
CR_6 607.9 718.4 -15.4% 608.3 -0.1% * 608.3 -0.1% 541.2 12.3%
CH_1 1206.1 1361.2 -11.4% * -393847.0 -393847.0 -53232.5
CP_1 431.8 472.3 -8.6% 453.6 -4.8% 453.6 -4.8% 453.6 -4.8% 439.7 -1.8%
CP_2 690.2 782.8 -11.8% 690.2 0.0% 690.2 0.0% 690.2 0.0% 690.2 0.0%
CP_3 9048.3 10082.7 -10.3% -355477.4 -18659500.0 -18659500.0 -705417.0
CP_4 2157.7 3167.3 -31.9% * -47366100.0 -47366100.0 2638.0 -18.2%
DE_1 4938.3 6719.7 -26.5% * * -27167400.0 -2249420.0
FL_1 9536.6 10112.4 -5.7% 9761.0 -2.3% 9761.0 -2.3% 9761.0 -2.3% 9718.7 -1.9%
LS_1 6486.0 7393.2 -12.3% 7124.2 -9.0% 7124.2 -9.0% 7124.2 -9.0% 7118.7 -8.9%
LC_1 19019.4 21061.5 -9.7% 20281.9 -6.2% 20276.0 -6.2% 20276.0 -6.2% 20184.8 -5.8%
LC_2 7510.9 8410.7 -10.7% 7626.1 -1.5% 7696.7 -2.4% 7696.7 -2.4% 7519.8 -0.1%
LO_1 3901.6 4343.3 -10.2% * -11239700.0 -11239700.0 -481437.0
LO_2 41.3 69.1 -40.2% 51.3 -19.5% 51.3 -19.5% 51.3 -19.5% 51.3 -19.5%
OM_1 761.8 938.3 -18.8% -24368.6 889.8 -14.4% 889.8 -14.4% 795.7 -4.3%
OM_2 -9024740.0 299.5 259.1 259.1 259.1 257.8
OM_3 358.3 519.4 -31.0% 358.3 0.0% 307.4 16.5% 307.4 16.5% 300.7 19.1%
PT_1 56182.9 90074.2 -37.6% 62034.9 -9.4% * 62035.0 -9.4% 56182.9 0.0%
SP_1 8921.9 9719.7 -8.2% 9332.0 -4.4% 9321.3 -4.3% 9321.3 -4.3% 9216.7 -3.2%
SM_1 121297.0 135908.5 -10.8% * 131061.0 -7.4% 131207.0 -7.6% 129632.0 -6.4%
SM_2 27370.3 28394.2 -3.6% 27804.1 -1.6% 27672.1 -1.1% 27672.1 -1.1% 27763.7 -1.4%
SM_3 50852.3 57901.9 -12.2% 53382.4 -4.7% 54013.8 -5.9% 54013.7 -5.9% 52799.9 -3.7%
SM_4 22093.0 22926.9 -3.6% 22303.1 -0.9% 22156.8 -0.3% 22156.8 -0.3% 22098.1 0.0%
SM_5 8639.2 10734.4 -19.5% 10246.5 -15.7% 10002.6 -13.6% 10002.6 -13.6% 10130.1 -14.7%
SM_6 16714.8 17646.6 -5.3% 16784.5 -0.4% 16469.9 1.5% 16469.9 1.5% 16431.2 1.7%
VG_1 8939.1 11323.1 -21.1% 10421.8 -14.2% 10411.8 -14.1% 10411.8 -14.1% 10399.4 -14.0%
VG_2 130105.0 140699.9 -7.5% 135736.8 -4.1% 135737.0 -4.1% 135737.0 -4.1% 135265.0 -3.8%
VG_3 15035.7 18901.9 -20.5% 17431.5 -13.7% 17409.1 -13.6% 17409.1 -13.6% 16878.1 -10.9%
VG_4 16019.1 18006.0 -11.0% 16040.5 -0.1% 16040.6 -0.1% 16040.6 -0.1% 16000.1 0.1%
VG_5 61434.6 69752.5 -11.9% 68151.0 -9.9% 67996.4 -9.7% 67996.4 -9.7% 66622.1 -7.8%
VN_1 15605.5 18269.9 -14.6% 15605.5 0.0% * 15596.8 0.1% 15481.3 0.8%
VV_1 57695.9 61016.7 -5.4% * -69175900.0 -69175900.0 60209.9 -4.2%
VV_2 2978.2 3252.9 -8.4% * 3204.8 -7.1% 3204.9 -7.1% 3230.3 -7.8%

Average Diff (%) -15.2% -3.7% -6.0% -5.5% -3.3%

* No feasible solution was found
We assumed the results of AI_2 and AI_3 to be switched in Bianchi-Aguiar et al. (2018b)



6.5 Visualization of planograms 53

6.5 Visualization of planograms

The present work would have no practical significance if we could not translate the final output

of the heuristic into an actual planogram, which is the main tool that supports retailers in their in-

store replenishment processes. To facilitate the task of converting the heuristic’s outcome into a

planogram, an intuitive solution representation was used. For each shelf level, we considered a

vector in which each element is a pair (i.e. 2-tuple) that contains a product and its continuous

horizontal (left) location on that shelf level. Such a representation can easily be converted into a

planogram, as depicted in Figure 6.5.

Figure 6.5: Solution representation and corresponding planogram

A script converts the obtained solution into a format that can be read by a planogram visualiza-

tion tool and outputs the corresponding file. In our case, we output a .psa file, which can be opened

using most of the space planning tools that are commonly used in retail. Figure 6.6 provides an

example of a planogram that was obtained using the heuristic procedure for instance AI_1. In this

instance, both first and second level blocks are vertically oriented. The planogram is also useful in

the sense that it allows us to validate the procedure and the generated solutions.

(a) Highlight: first level blocks (b) Highlight: second level blocks

Figure 6.6: Planogram corresponding to instance AI_1



54 Computational results



Chapter 7

Conclusion

This chapter presents the concluding remarks on the work that was developed and presented

in the preceding chapters. In Section 7.1, the obtained results are discussed and the corresponding

findings are summarized. Then, Section 7.2 clarifies the relevance of this dissertation with respect

to real-world retail environments. Finally, in Section 7.3 some limitations of the present approach

are indicated and suggestions for future work are made accordingly.

7.1 Discussion and main findings

The present dissertation proposed a heuristic approach for solving the Shelf Space Allocation

Problem under merchandising rules, which can be divided into a constructive and an improvement

stage. The constructive procedure starts by exploring the problem’s inherent hierarchical nature,

which is a consequence of the established set of merchandising rules, and assigns a particular

region of the planogram to each product family. With product families allocated, the final place-

ment of products on the shelves is determined by a dynamic programming method that solves the

Knapsack Problems that arise in the context of the considered formulation of the SSAP. In the

improvement stage, the Iterated Local Search metaheuristic is applied: local search techniques are

combined with perturbation mechanisms in an iterative process, with the goal of improving the

initially obtained solution.

In order to assess the effectiveness of the proposed approach, a series of computational tests

were performed. For that purpose, a set of benchmark instances (Bianchi-Aguiar et al., 2014)

was used. The constructive heuristic yielded feasible solutions within very short computation

times in the vast majority of the cases. However, as the instance sizes increase (especially with

regard to the complexity of the structure of blocks and the number of products to be allocated),

the computational burden starts to become more noticeable. Given that the ILS makes use of the

same algorithms that were designed for the constructive phase, these conclusions also hold for the

improvement stage.

Feasible solutions were obtained for a total of 50 out of 54 instances using the constructive

heuristic alone, with an additional feasible solution being achieved after applying the ILS method,

55



56 Conclusion

which represents an improvement when compared with Bianchi-Aguiar et al. (2018b). This attests

the versatility of our approach, since the tests were conducted on a wide range of instances with

very different characteristics (to put it in perspective, the total number of products N ranged from

7 in VG_3 to 240 in DE_1). Furthermore, the heuristic procedure also compares well with state-

of-the-art approaches (Bianchi-Aguiar et al., 2018b) in terms of solution quality. An average gap

of 15.2% with respect to the linear relaxation model was obtained. Additionally, when compared

with the H-BAP-IE model (which is the one that leads to shorter computation times, thus allowing

for a fair comparison), we get an average difference of just 3.3%.

7.2 Implications for practice

The outcome of this thesis is clearly of practical significance. To begin with, it is important

to emphasize that the presented algorithms were tested on real instances from a European grocery

retailer. Moreover, our approach is realistic, as it incorporates constraints regarding the retailer’s

merchandising preferences, which substantially increases the difficulty of the problem. These

constraints are not included in the vast majority of the optimization approaches to shelf space

allocation that can be found in the literature.

The developed approach could be interesting for retailers for a variety of reasons, the first

of which being computational efficiency, particularly for smaller instances. Additionally, and as

mentioned before, the constructive procedure is able to output solutions of acceptable quality on

its own. This could be useful in contexts in which retailers are skeptical of fully automating the

planogram generation procedure. In those situations, the constructive procedure could expedi-

tiously provide a base planogram (that followed all of the established merchandising rules) on top

of which small manual adjustments would be performed. Bianchi-Aguiar et al. (2016) described

the case of a retail company in which planograms were manually designed in a time-consuming

process (an average of three hours were spent in a single planogram) due to the necessity of com-

plying with a complex set of merchandising rules. The method proposed in this dissertation would

substantially increase the efficiency of the processes associated with the creation of planograms,

thus allowing managers to dedicate more of their time to other important activities within space

management.

An additional advantage of the presented method is the fact that it makes it possible to interrupt

the procedure at any point in time and obtain a feasible solution (provided that an initial feasible

solution is available), which can be convenient in some situations. This may not be possible with

a mathematical programming-based approach.

At this point, one might argue that the reported computational efficiency is attained at the

expense of the quality of the generated solutions. It is possible, however, to counter such a per-

spective. First, in the majority of the cases, the loss of quality is negligible or even non-existent.

In addition, it is worth noting that a solution with a higher objective function value does not nec-

essarily translate into a more effective planogram (i.e. a planogram which leads to an increase in

consumer demand), given the subjectiveness which is inherent to the chosen objective function.



7.3 Future work 57

Hence, the most crucial attribute of an automated planogram generation tool would be its abil-

ity to efficiently generate realistic planograms. Besides, when the retailer’s merchandising rules

are complex and therefore lead to a high number of constraints, there is not much room left for

optimization anyway.

Finally, a significant advantage of an heuristic approach is the fact that it does not require the

use of optimization software, which would constitute an additional cost to the retailer.

7.3 Future work

The main limitation of the procedure that was described in this dissertation is the fact that it

tends to scale poorly as the instance sizes increase. This limitation could be tackled by divid-

ing those instances into smaller ones and solving each of these smaller instances independently.

This is exactly the case with the SM instances, where instances SM_2 to SM_6 correspond to

sub-instances of the SM_1 instance. While generating an initial solution for SM_1 takes around

16 seconds, instances SM_2 to SM_6 are solved in less than 2 seconds (all computation times

combined). An heuristic could be developed to divide the instances according to a given criteria.

Future works could also introduce an alternative objective function for the SSAP, less prone

to subjective considerations. This could be achieved by adopting a cost minimization perspective,

considering inventory holding and in-store replenishment costs. Moreover, shelf space manage-

ment could also be enhanced by integrating other retail decisions in the SSAP, such as assortment

selection, inventory policies, and macro space planning.

Regarding the merchandising rules, a natural extension of this work would be to consider the

possibility of merging smaller blocks. Since these rules specify that blocks must form rectangular

shapes on the shelves, aggregating blocks would reduce the number of situations in which an

excessive number of facings is attributed to a particular product so that the corresponding block

conforms to a rectangular shape.

Lastly, our work was restricted to the allocation of products to shelves. However, other types

of equipment for product display (e.g. pegboards, tables, and bins) are very common in practice.

Accordingly, the present work could be further extended in that direction.



58 Conclusion



Bibliography

Bai, R. (2005). An investigation of novel approaches for optimising retail shelf space allocation.
PhD thesis, University of Nottingham.

Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal
of Machine Learning Research, 13(1):281–305.

Bianchi-Aguiar, T. (2015). The Retail Shelf Space Allocation Problem: New Optimization Methods
Applied to a Supermarket Chain. PhD thesis, Faculdade de Engenharia da Universidade do
Porto.

Bianchi-Aguiar, T., Carravilla, M. A., and Oliveira, J. F. (2015). Replicating shelf space allocation
solutions across retail stores. Working paper.

Bianchi-Aguiar, T., Hübner, A. H., Carravilla, M. A., and Oliveira, J. F. (2018a). Retail Shelf
Space Planning Problems: A Comprehensive Review and Classification Framework. Working
paper.

Bianchi-Aguiar, T., Silva, E., Guimarães, L., Carravilla, M. A., and Oliveira, J. F. (2014). Problem
instances for the shelf space allocation problem with family grouping. https://fe.up.pt/
~mtbaguiar/SSAP/.

Bianchi-Aguiar, T., Silva, E., Guimarães, L., Carravilla, M. A., and Oliveira, J. F. (2018b). Allo-
cating products on shelves under merchandising rules: Multi-level product families with display
directions. Omega, 76:47–62.

Bianchi-Aguiar, T., Silva, E., Guimarães, L., Carravilla, M. A., Oliveira, J. F., Amaral, J. G., Liz,
J., and Lapela, S. (2016). Using Analytics to Enhance a Food Retailer’s Shelf-Space Manage-
ment. Interfaces, 46(5):424–444.

Borin, N., Farris, P. W., and Freeland, J. R. (1994). A Model for Determining Retail Product
Category Assortment and Shelf Space Allocation. Decision Sciences, 25(3):359–384.

Buttle, F. (1984). Retail Space Allocation. International Journal of Physical Distribution &
Materials Management, 14(4):3–23.

Corstjens, M. and Doyle, P. (1981). A Model for Optimizing Retail Space Allocations. Manage-
ment Science, 27(7):822–833.

Curhan, R. C. (1972). The Relationship between Shelf Space and Unit Sales in Supermarkets.
Journal of Marketing Research, 9(4):406–412.

Desmetab, P. and Renaudinb, V. (1998). Estimation of product category sales responsiveness to
allocated shelf space. International Journal of Research in Marketing, 15(5):443–457.

59

https://fe.up.pt/~mtbaguiar/SSAP/
https://fe.up.pt/~mtbaguiar/SSAP/


60 BIBLIOGRAPHY

Drèze, X., Hoch, S. J., and Purk, M. E. (1994). Shelf management and space elasticity. Journal
of Retailing, 70(4):301–326.

Ebster, C. and Garaus, M. (2011). Store Design and Visual Merchandising: Creating Store Space
That Encourages Buying. Business Expert Press, 2nd edition.

Eisend, M. (2014). Shelf space elasticity: A meta-analysis. Journal of Retailing, 90(2):168–181.

eMarketer (2018). Total retail sales worldwide from 2015 to 2020 (in trillion U.S. dollars). In
Statista - The Statistics Portal. Retrieved May 13, 2018, from https://www.statista.
com/statistics/443522/global-retail-sales/.

Ensor, P. S. (1988). The Functional Silo Syndrome. AME Target (p. 16). Rolling Meadows, IL:
Association for Manufacturing Excellence.

Fisher, M. (2009). OR FORUM-Rocket Science Retailing: The 2006 Philip McCord Morse Lec-
ture. Operations Research, 57(3):527–540.

Geismar, H. N., Dawande, M., Murthi, B. P. S., and Sriskandarajah, C. (2015). Maximizing
Revenue Through Two-Dimensional Shelf-Space Allocation. Production and Operations Man-
agement, 24(7):1148–1163.

Hansen, J. M., Raut, S., and Swami, S. (2010). Retail Shelf Allocation: A Comparative Analysis
of Heuristic and Meta-Heuristic Approaches. Journal of Retailing, 86(1):94–105.

Hwang, M., Choi, B., and Lee, G. (2009). A genetic algorithm approach to an integrated problem
of shelf space design and item allocation. Computers & Industrial Engineering, 56(3):809–820.

Hübner, A. H. and Kuhn, H. (2012). Retail category management: State-of-the-art review of quan-
titative research and software applications in assortment and shelf space management. Omega,
40(2):199–209.

Hübner, A. H., Kuhn, H., and Sternbeck, M. G. (2013). Demand and supply chain planning in gro-
cery retail: an operations planning framework. International Journal of Retail & Distribution
Management, 41(7):512–530.

Hübner, A. H. and Schaal, K. (2017a). A shelf-space optimization model when demand is stochas-
tic and space-elastic. Omega, 68:139–154.

Hübner, A. H. and Schaal, K. (2017b). An integrated assortment and shelf-space optimization
model with demand substitution and space-elasticity effects. European Journal of Operational
Research, 261(1):302–316.

Hübner, A. H. and Schaal, K. (2017c). Effect of replenishment and backroom on retail shelf-space
planning. Business Research, 10(1):123–156.

Irion, J., Lu, J.-C., Al-Khayyal, F., and Tsao, Y.-C. (2012). A piecewise linearization frame-
work for retail shelf space management models. European Journal of Operational Research,
222(1):122–136.

Janeiro, A. C. (2014). Optimization algorithms for the shelf space allocation problem. Master’s
thesis, Faculdade de Engenharia da Universidade do Porto.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer-Verlag Berlin
Heidelberg, 1st edition.

https://www.statista.com/statistics/443522/global-retail-sales/
https://www.statista.com/statistics/443522/global-retail-sales/


BIBLIOGRAPHY 61

Koschat, M. A. (2008). Store inventory can affect demand: Empirical evidence from magazine
retailing. Journal of Retailing, 84(2):165–179.

Kurtuluş, M. and Nakkas, A. (2011). Retail Assortment Planning Under Category Captainship.
Manufacturing & Service Operations Management, 13(1):124–142.

Larson, P. D. and DeMarais, R. A. (1990). Psychic Stock: An Independent Variable Category of
Inventory. International Journal of Physical Distribution & Logistics Management, 20(7):28–
34.

Lim, A., Rodrigues, B., and Zhang, X. (2004). Metaheuristics with Local Search Techniques for
Retail Shelf-Space Optimization. Management Science, 50(1):117–131.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2010). Iterated local search: Framework and ap-
plications. In Potvin, J.-Y. and Gendreau, M., editors, Handbook of Metaheuristics, chapter 11.
Springer, Boston, MA.

Murray, C. C., Talukdar, D., and Gosavi, A. (2010). Joint Optimization of Product Price, Display
Orientation and Shelf-Space Allocation in Retail Category Management. Journal of Retailing,
86(2):125–136.

Russell, R. A. and Urban, T. L. (2010). The location and allocation of products and product
families on retail shelves. Annals of Operations Research, 179(1):131–147.

Schaal, K. and Hübner, A. (2017). When does cross-space elasticity matter in shelf-space plan-
ning? A decision analytics approach. Omega.

Stützle, T. (2006). Iterated local search for the quadratic assignment problem. European Journal
of Operational Research, 174(3):1519–1539.

Tongsari, K. (1995). Optimization of shelf space allocation in three dimensions. Master’s thesis,
The Faculty of the Russ College of Engineering and Technology, Ohio University.

van Nierop, E., Fok, D., and Franses, P. H. (2008). Interaction Between Shelf Layout and Mar-
keting Effectiveness and Its Impact on Optimizing Shelf Arrangements. Marketing Science,
27(6):1065–1082.

Varley, R. (2006). Retail Product Management: Buying and Merchandising. Routledge, 2nd

edition.

Within, T. M. (1957). Theory of Inventory Management. Princeton University Press. Princeton,
NJ.

Wolfe, H. B. (1968). A Model for Control of Style Merchandise. Industrial Management Review
(pre-1986), 9(2):69–82.

Yang, M.-H. (2001). An efficient algorithm to allocate shelf space. European Journal of Opera-
tional Research, 131(1):107–118.

Yang, M.-H. and Chen, W.-C. (1999). A study on shelf space allocation and management. Inter-
national Journal of Production Economics, 60–61:309–317.

Zufryden, F. S. (1986). A Dynamic Programming Approach for Product Selection and Supermar-
ket Shelf-Space Allocation. Journal of the Operational Research Society, 37(4):413–422.



62 BIBLIOGRAPHY



Appendix A

Notation of the SSAP formulation of
Bianchi-Aguiar et al. (2018b)

Sets

K Shelves
N Products
M Blocks (product families)
Nu Products belonging to block u
Mu Child blocks of block u
SH Blocks that should have their child blocks aligned horizontally
SV Blocks that should have their child blocks aligned vertically
VH Downstream blocks belonging to u

Indices

k Shelf index
i, j Product index
u,m Block (product family) index

Decision Variables

Wik The integer number of facings of product i ∈N on shelf k ∈ K
X s

i The continuous horizontal location of product i ∈N , measured from the lower-left
corner of the planogram to the lower-left corner of the first facing of the product

Ymk = 1 if block m ∈M ∪ N is located on shelf k ∈ K
Tmnk = 1 if block m is displayed immediately after block n on shelf k ∈ K,

u ∈M, m,n ∈ Vu ∪ {0}
Fmnk the continuous flow from block m to block n on shelf k ∈ K, u ∈M,

m,n ∈ Vu ∪ {0},
Lik Shelf length assigned to product i ∈N on shelf k ∈ K
X s

m The horizontal location of block m ∈M ∪ N (left coordinate)
Xe

m The horizontal location of block m ∈M ∪ N (right coordinate)
FLmk = 1 if k ∈ K is the first shelf of block m ∈M ∪ N
LLmk = 1 if k ∈ K is the last shelf of block m ∈M ∪ N

63



64 Notation of the SSAP formulation of Bianchi-Aguiar et al. (2018b)

Parameters

K Total number of shelves
M Total number of blocks (product families)
N Total number of products
wk Width of shelf k
hk Height of shelf k
ai Width of product i
bi Height of product i
pi Profit per facing of product i
li Minimum number of facings of product i
ui Maximum number of facings of product i
γk Effectiveness of shelf k to generate revenue (shelf attractiveness)
v Maximum deviation of blocks between shelves
wmax

m Width of the largest product from each block m



Appendix B

SSAP Heuristic: additional notation
Constructive procedure

Variables

T Fi Target facings of product i
T F ′i Difference between the target facings of product i (T Fi) and the minimum number

of facings of product i (li)
Lu Width of block u
Ku Number of shelves on which block u is present
τu Tightness of block u
αu Proportion of the width of the parent block of block u that is attributed to u
αmin

u Minimum proportion of the width of the parent block of block u that should be
attributed to u

α
target
u Target proportion of the width of the parent block of block u that should be

attributed to u
KEXP

u Expected number of shelf levels to attribute to block u
Lmin

u Minimum necessary width to assign to vertical block u
PSik = 1 if product i is on shelf k
spk

j (d) Optimal solution value of problem KPpk
j (d)

Fj(d) = 1 if product j is added to the knapsack in iteration j of the corresponding
Knapsack Problem

Sets

Ku Shelves on which block u is present
Gc Blocks that belong to hierarchical level c
Rk Reference blocks on shelf k

Parameters and indices

c Index of a block level
C Number of hierarchical levels of blocks
τmax

u Maximum tightness of block u
KPpk

j (d) Knapsack Problem associated with reference block p in shelf level k with total
capacity d

A Integer value which is sufficiently large so as to yield an integer result when
multiplied by either a product’s profit or width

65



66 SSAP Heuristic: additional notation

Iterated Local Search
Variables

s∗ ′ Newly obtained solution
s∗ Incumbent solution
sbest Best solution found in the ILS procedure
β Perturbation strength

Parameters and indices

T Temperature (LSMC acceptance criterion)
T0 Initial temperature (LSMC acceptance criterion)
ρ Common ratio of the geometric cooling schedule (LSMC acceptance criterion)
n Index of an iteration of the ILS procedure
X Random variable following a uniform distribution over [0, 1]



Appendix C

Horizontal allocation algorithm:
practical example

In order to further clarify the algorithm for allocating blocks horizontally, which was presented
in 5.1.2.2, a practical example will now be presented. For this purpose, we consider a situation in
which four blocks have to be allocated onto four shelf levels, as depicted in Figure C.1. The blocks’
adjusted width proportions (αu) are presented in Table C.1. Note that the blocks are already sorted
according to their widths proportions (by ascending order).

Figure C.1: Shelves and blocks considered for the horizontal allocation example

Table C.1: Width proportions of the blocks considered for the horizontal allocation example

Block Width proportion
A 0.10
B 0.13
C 0.21
D 0.56

We can now begin the while loops of Algorithm 4. By allocating block A to the first shelf
level, we get Kcumulative = 0.10× 4 = 0.40. Given that [Kcumulative] ≤ 1, we can try to see if it is
possible to add an additional block to that shelf level. Thus, we enter the inner while loop (lines
12–21). After updating Kcumulative, which is now equal to 0.40+ 0.13× 4 = 0.92, we conclude
that the condition [Kcumulative]≤ 1 still holds: hence, block B is added to the first shelf level (lines

67



68 Horizontal allocation algorithm: practical example

14–16). Updating Kcumulative again, we get Kcumulative = 0.92+ 0.21× 4 = 1.76 and therefore
[Kcumulative]> 1. No more blocks will be added to the first shelf level (lines 17–19).

Then, we reinitialize Kcumulative as being equal to 0.21×4 = 0.84 (block C). By adding block
D, Kcumulative = 0.84+0.56×4 = 3.08 and thus [Kcumulative]> 1. As a result, only block C will be
present on the second shelf level.

Given that, for block D, αD×4 = 2.24(> 1), we exit the outer while loop of Algorithm 4 and
complete the first stage of the procedure for assigning horizontal blocks to shelves. Figure C.2
summarily depicts the procedure that was just described.

Figure C.2: Example of the first stage of the procedure for assigning horizontal blocks to shelves

Given that there are still two shelf levels available (1 and 2) and that one block has not yet
been allocated (D), this situation falls into Situation #5 of Table 5.1. In this case, the assignment
is trivial: block D will be present on the shelves 3 and 4. The final result of the algorithm is as
summarized in Table C.2.

Table C.2: Final assignment of blocks to shelves

Shelf Block(s)
1 A, B
2 C
3 D
4 D



Appendix D

Problem instances

Table D.1, which was retrieved from Bianchi-Aguiar et al. (2018b), summarizes important
information regarding each of the considered instances, namely: number of products (N), number
of blocks (M), number of shelves (K), number of hierarchical levels (L), and number of vertical
(MV) and horizontal blocks (MH).

Table D.1: Problem Instances (Bianchi-Aguiar et al., 2018b)

Name N M K L MV MH Name N M K L MV MH Name N M K L MV MH

FL_1 16 16 6 4 5 10 CR_2 32 13 7 3 0 12 SM_3 49 10 6 3 7 2
AZ_3 10 11 5 3 8 2 CR_1 82 44 5 4 4 39 SM_1 171 47 6 4 36 10
AZ_2 25 12 5 3 9 2 PT_1 38 22 6 5 0 21 CA_2 77 34 6 5 2 31
AZ_1 32 27 5 3 0 26 AI_1 37 22 7 4 5 16 AG_2 19 19 7 5 0 18
LS_1 26 5 8 2 0 4 AI_2 41 27 9 5 4 22 AG_1 39 6 7 2 5 0
VG_3 7 4 7 2 0 3 AI_4 47 24 9 4 7 16 AG_4 85 32 5 4 10 21
VG_2 19 18 6 4 2 15 AI_2 47 17 7 3 3 13 AG_3 113 24 8 4 17 6
VG_4 28 15 6 3 2 12 VN_1 45 32 6 3 0 31 AB_1 28 14 8 3 0 13
VG_5 42 17 6 4 10 6 SP_1 49 15 7 4 6 8 AB_2 160 42 8 4 0 41
VG_1 60 29 8 4 0 28 OM_3 22 16 5 4 2 13 VV_2 84 3 5 2 2 0
CP_2 8 11 6 3 0 10 OM_1 54 41 5 4 6 34 VV_1 121 9 5 2 8 0
CP_1 24 18 5 3 5 12 OM_2 78 17 6 3 0 16 LO_2 15 4 5 2 0 3
CP_4 47 29 8 3 28 0 LC_1 46 21 6 4 4 16 LO_1 206 128 7 3 122 5
CP_3 51 27 6 5 21 5 LC_2 59 25 6 3 4 20 BH_1 108 25 7 3 0 24
CR_6 16 8 5 2 0 7 SM_6 19 7 6 3 4 2 BH_2 131 26 5 4 17 8
CR_5 19 10 5 3 0 9 SM_2 31 8 6 3 5 2 CH_1 190 99 6 4 15 83
CR_4 22 14 5 3 0 13 SM_4 34 11 6 3 8 2 BC_1 239 121 6 5 10 110
CR_3 25 11 5 3 0 10 SM_5 38 10 6 3 7 2 DE_1 240 45 8 4 40 4

N – Number of Products, M – Number of Blocks (excluding last level blocks), K – Number of Shelves,
L – Number of Hierarchical Levels, MV – Number of Vertical Blocks, MH – Number of Horizontal Blocks

69


	Front Page
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Methodology overview
	1.4 Dissertation structure

	2 Retail Shelf Space Management
	2.1 Current practices in Shelf Space Management
	2.2 The Shelf Space Allocation Problem
	2.2.1 Key definitions
	2.2.2 Decisions
	2.2.3 Objective
	2.2.4 Constraints


	3 Literature Review
	3.1 Empirical and qualitative approaches
	3.2 Optimization methods
	3.2.1 Shelf Space Allocation problems
	3.2.2 Related planning problems


	4 Problem formulation
	4.1 Problem description
	4.2 Mathematical formulation

	5 A heuristic for optimizing Shelf Space Allocation
	5.1 Constructive procedure
	5.1.1 Target facings calculation
	5.1.2 Block allocation
	5.1.3 Product allocation

	5.2 Iterated Local Search
	5.2.1 Local search
	5.2.2 Perturbation mechanism
	5.2.3 Acceptance criteria
	5.2.4 Overall procedure


	6 Computational results
	6.1 Problem instances
	6.2 Evaluation function
	6.3 Constructive heuristic
	6.3.1 Parameter tuning
	6.3.2 Summary of results

	6.4 Iterated Local Search
	6.4.1 Parameter tuning
	6.4.2 Results

	6.5 Visualization of planograms

	7 Conclusion
	7.1 Discussion and main findings
	7.2 Implications for practice
	7.3 Future work

	A Notation of the SSAP formulation of Bianchi-Aguiar et al. (2018b)
	B SSAP Heuristic: additional notation
	C Horizontal allocation algorithm: practical example
	D Problem instances

