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Abstract 

 

Hip surgeries affect a large number of people with reports showing up to 7 million Americans 

being submitted to hip replacement surgery by 2015 and that number is expected to rise 

continuously. Despite this fact, in the present, there is no tool in a clinical environment which 

can provide relevant mechanical information to the physician in order to reduce the need for 

a revision surgery. Some relevant work has been done academically, regarding image 

segmentation, however those methods generally apply to secondary image modalities, such as 

MRI and CT scans. As defined by the AAOS, the clinical guidelines point towards using 

radiographs as the first imaging tool in hip injuries making this image modality of greater use 

in the clinical field. 

 In this dissertation, a background of information is given regarding the femoral bone and 

its anatomical, biological, pathological and mechanical perspectives. Following that, medical 

image modalities are explored and the theoretical principles behind them are explained. This 

is followed by a survey on the state of the art of image segmentation methods related to the 

topic of the present project. Moreover, a finite element method overview is given not only 

regarding its formulation but also its history with a heavier focus on the field of orthopaedics. 

Lastly, the proposed clinical application is presented which, using femur x-ray radiographs, 

can process the femur computational model automatically and performs finite element analysis 

to assess the stress distribution in the bone. To perform this, the algorithm resorts to the 

radiograph’s gradient to attain the computational model and with the evenly spread out mesh, 

executes a finite element analysis on the stress distribution calculating effective stress and its 

ratio to ultimate stress. 

The obtained results allow the physician to assess the overall stress and damage level 

distribution if some considerations are taken when analysing the radiographs, such as the 

presence of artefacts and the presence of a meaningful contrast between trabecular and 

cortical bone. 
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Resumo 

 

Cirurgias de anca afetam milhões de pessoas em todo o mundo, com estudos a 

demonstrarem que até 2015, cerca de 7 milhões de Americanos já sofreram uma artroplastia 

de anca ou de joelho. Este número é ainda espectável que continue a subir. Apesar disto, não 

existe atualmente uma ferramenta usada em ambiente clínico que providencie informação 

mecânica relevante para que uma cirurgia de revisão não seja necessária. Apesar de algum 

trabalho ter sido desenvolvido em âmbito académico em relação a segmentação de imagem, os 

métodos desenvolvidos geralmente aplicam-se à modalidade de imagens como ressonâncias 

magnéticas, ou TC’s. A AAOS define, nas suas guidelines clínicas, que num paciente ortopédico 

a modalidade de imagem a ser usada deverá ser a radiografia e apenas em caso de dúvida se 

deve recorrer a outras modalidades. Este facto reitera a necessidade de existir mais tecnologia 

desenvolvida para a modalidade mencionada. 

Nesta dissertação, é fornecida informação de contextualização em relação ao fémur e às 

suas perspetivas anatómica, biológica, patológica e mecânica. De seguida é explorado o tema 

de modalidade de imagens médicas, em que os princípios teóricos que as regem serão 

apresentados. Posteriormente, é apresentada uma pesquisa sobre o estado de arte de métodos 

de segmentação de imagem aplicados ao projeto em questão, procurando focar em 

radiografias. Após esta apresentação, é dada uma perspetiva global sobre o Método de 

Elementos Finitos não só sobre a sua formulação, mas também abordando a sua história com 

um foco especial na área da ortopedia.  

Por último, é apresentada a aplicação clínica proposta na qual, usando radiografias de 

fémur, é possível realizar um processamento automático do modelo computacional e realizar 

análise de elementos finitos para avaliar a distribuição de tensões no osso. Para obter estes 

resultados o algoritmo recorre ao gradiente da radiografia para chegar ao modelo 

computacional, sendo capaz de gerar automaticamente uma malha uniforme e efetuar a análise 

de tensões, calculando a tensão efetiva e o seu rácio com a tensão máxima de compressão. 

Os resultados obtidos permitem ao clínico avaliar a distribuição de tensões, tendo em conta 

algumas considerações com as radiografias, como a presença de artefactos e a presença de um 

contraste significativo entre osso trabecular e osso cortical. 
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Chapter 1 

Introduction 

1.1 - Motivation 

A joint replacement surgery, particularly hip or knee replacement, is a highly complex 

procedure that affected 7 million Americans by 2015 [1]. This operation is steadily increasing 

with Canadian reports describing a 5-year increase 19.1% [2], and an expected increase of the 

number of hip replacement surgeries by 174% between 2005 and 2030 [3].  

With patients living with a hip stem or a knee prosthesis, some complications may arise and 

affect the medical device. If the problem is threatening enough, it leads to a revision surgery 

in which the prosthesis is corrected or replaced if needed. These surgeries have seen an 

increase both in Canada [2] and the UK [4]. Adding to that, the economic impact of revision 

surgeries is immense, costing the NHS over £60 million in 2000 alone [4]. Moreover, it is clear 

that these surgeries are performed on younger people [1], which have greater physical 

demands, and, therefore, require solutions that can uphold those demands. 

With the impact of these joint replacement surgeries, it is clear that something should be 

done to aid the decrease of these numbers. Thus, one possible solution is to help provide a 

subject-specific solution that diminishes the risk of a revision surgery occurrence. 

To achieve this, one can make use of the several imaging techniques available to physicians. 

According to the Clinical Practice Guideline, by the AAOS [5], advanced imaging techniques, 

such as MRI or CT scans should only be considered if a hip injury is not apparent in initial 

radiographs. Therefore, radiographs are taken much more regularly than any other form of 

medical imaging for orthopaedics. This is backed up by the NHS data, which states that in a 

year, out of approximately 40 million medical imaging scans performed, 22 million 

singlehandedly belonged to x-ray radiographs, amounting to 55.2% of all scans [6]. 

1.2 - Goal of the project 

With this project, the main goal is to help clinicians visualize and analyse patients’ femur 

radiographs. Using a transversal software with automatic segmentation and finite element 

analysis, the ambition is to provide the clinician a computational model of his patient’s femur 
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with stress and strain analyses available. As a result, the clinician should be able to more aptly 

decide on his patient’s diagnosis and treatment from then on. 

 

1.3 - Document’s structure  

This dissertation aims to introduce and describe the study performed in this year’s second 

semester. As such, in the document’s introductory chapter, the motivation and goal of the 

project are defined. Next, a contextualization of the different aspects involving the femoral 

bone, such as its anatomy, biology and mechanical properties, are explored. Following that, 

the theoretical basis of key medical image modalities is presented. Furthermore, a state of the 

art regarding medical image analysis and its segmentation methods is reported, focusing into 

femur radiograph. Moreover, a state of the art regarding the finite element method, along with 

the method’s formulation, with its applications on orthopaedics, is described with detail.  

After the contextualization component is finished this dissertation will focus on the project 

developed, giving a detailed explanation of its steps. Firstly, an introduction of the project is 

done followed by an overview of its steps employing a workflow to better understand the 

software’s behaviour. Following this, the algorithm behind the software is thoroughly analysed 

and the software’s interface is presented after that.  

The document carries on with the presentation of the results and their discussion and, 

lastly, concludes presenting some future work to be developed in this field and the conclusions 

reached.



 

 

Chapter 2 

Femoral Bone 

2.1 - Introduction 

In this project, the focus will be done on the analysis of the femoral bone. With this chapter, 

an analysis of this bone will be performed in its multiple attributes. Starting with its anatomical 

point of view of the femur, an examination will be performed describing its position and 

insertions and how it relates to its functions. Following that, a biological perspective, the focus 

will be on the constitution of bones both at a cellular and structural level. Lastly, the 

mechanical context of the femoral bone, such as the mechanical properties of the bone, is 

overviewed.  

2.2 - Anatomy [7] 

The human skeleton starts its composition with 270 bones which eventually fuse into 206 

bones, in a healthy adult body. This body framework can be divided into two categories: axial 

skeleton and appendicular skeleton, in which the axial skeleton consists of the spine, the rib 

cage and skull (accounting also for its associated bones) and the appendicular skeleton is 

constituted by the shoulder and pelvic girdle and the bone part of the upper and lower limbs. 

This set of organs has as its main functions the support and protection of the human body. 

The femoral bone is part of the appendicular skeleton. It is located inferior to the pelvis 

and it is articulated to two structures. Proximally, the femur articulates with the acetabulum 

forming the hip joint, while distally, the femur articulates with the patella and tibia forming 

the knee joint. 
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Figure 2.1 [7] – Representation of the femoral bone (anterior aspect)  
 

As visible in figure 2.1, the femur is a long bone, being the longest bone in the human 

skeleton, having its size varied according to the patient’s height. The bone itself presents 

several structures, which help the femur fulfil its supportive functions. 

The semi-spherical head performs the connection with the pelvis’ acetabulum and it 

contains a small rough area in its surface called the fovea, in which the ligamentum teres links 

the femur to the pelvis. Still in the proximal portion of the femur, two trochanters are present: 

the greater trochanter and the lesser trochanter. The greater trochanter is a large and 

quadrangular structure that projects itself in a superomedial direction. In its highest point, the 

greater trochanter reaches the midpoint of the hip joint. The lesser trochanter is a conical 

posteromedial projection which serves as an insertion for the iliacus muscle and the psoas major 

muscle. The shaft consists of the long cylindrical-shaped body of the femur. This structure is 

narrowest in its centre, having a small expansion proximally and a larger one distally and in its 

posterior surface contains a linea aspera that works as a muscular insertion for several hip and 

thigh muscles. 
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Figure 2.2 [7] – Representation of the neck-shaft angle (NSA). The angle between the long axis of the 
femoral shaft (S) and the axis of the femoral neck (N) is on average 135° (range 125–140°) 

 

 Between the shaft and the femoral head, the neck connects these two structures at an 

average angle of 135º. It is a 5 cm long, approximately, complex that enables the limb to swing 

clear from the pelvis. Distally, the femur creates the knee joint making use of the lateral and 

medial condyle, the intercondylar fossa and the patellar surface. The condyles are two smooth 

structures that, when combined with the patellar surface make an inverted U shaped articular 

surface that will contact with the tibia and patella. Both the medial and lateral condyles have 

a medial and lateral epicondyle projecting out of them, respectively. The walls of the 

intercondylar fossa function as the insertion of both the anterior cruciate ligament (ACL) and 

the posterior cruciate ligament (PCL), which has heavy importance in the stabilization of the 

knee joint. 

2.3 - Biology 

Bones have an intricate composition at the microscopic level. The mature cellular 

components of the bones are divided into 3 components: osteoblasts, osteoclasts and 

osteocytes [7]. 

Osteoblasts are bone forming cells, meaning they are responsible for the synthesis, 

deposition and mineralization of bone matrix. These cells secrete type I collagen and small 

amounts of type V collagen that will be part of the extracellular bone matrix (ECM). Osteoclasts 

are large polymorphic cells which central purpose is the removal of bone during bone growth. 

They cause the demineralization of the ECM by releasing lysosomal and non-lysosomal enzymes. 

Lastly, osteocytes constitute the major type of mature bone cell and they are scattered 

throughout the bone matrix. These cells are relatively inactive, however they do play an 

important role in the maintenance of bone as their death leads to resorption of the matrix by 

osteoclast activity. It can also occur that osteocytes are mineralized and will then be part of 

the bone’s ECM. It is also worth noting that once osteoblasts are integrated into the bone matrix 

they turn into osteocytes [7]. 
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Bone remodelling is an important activity performed by the different bone cells. The overall 

process aims to renew bone tissue through the regeneration of both the ECM and osteocytes. 

In order to perform this task, a synchronized activity of osteocytes - removing old bone tissue 

– and osteoblasts – creating new ECM – allows for the maintenance of a healthy bone [7]. 

Despite being mentioned, the ECM is not yet examined in this work and said examination 

will be executed in this paragraph. The bone’s extracellular matrix is comprised of an organic 

component – 35% - and an inorganic component – 65% [8]. The organic components consist of 

mainly type I collagen fibres, which makes up of around 90-95% of the organic portion, while 

the remaining organic component comprise of proteoglycans rich in hyaluronic acid. The 

collagen fibres have a highly ordered arrangement with changing orientations and they provide 

elasticity and tensile strength [9]. As for the inorganic components, it mainly consists of calcium 

deposits with the characteristics of hydroxyapatite [8]. These deposits grant stiffness to the 

bone along with a great compressive strength [9]. The mineral component alone, despite its 

great stiffness is a very brittle material, however when combined with the type I collagen it 

creates a material with great tenacity.  

Despite the constituents of bone being the same throughout a single bone, their distribution 

varies greatly. The distribution follows two different patterns that are divisible into two groups: 

cancellous or trabecular bone, and cortical or compact bone. 

 
 

Figure 2.3 [7] – Coronal section of the femur displaying the difference between trabecular and 
cortical bone 

 

Cortical bone is a dense organization of the bone matrix and presents itself on the exterior 

portion of bone. This type of macroscopic distribution accounts for around 80% of the human 

body and provides the bone’s strength. Trabecular bone, however, is usually located in the 

interior of bones and, while it provides some strength to the overall structure, its main function 

is supporting bone marrow and allowing for the bone to have a combination of good strength 

while maintaining a low weight, reducing the density of the bone [7]. 
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2.4 - Pathologies [10] 

Bone diseases have great impact in a patient’s life condition. By decreasing the bone’s 

condition, it presents a dangerous menace of bone fracture. These disorders, while differing in 

impact size, can occur at any age group. In this subchapter, osteoporosis will be tackled, a 

pathology that most affects patients at an advanced age, especially menopausal women (figure 

2.4), and osteosarcomas, which most frequently affect children and adolescents until the 

second decade of life, around 60% of total patients with this condition. 

 

 
 

Figure 2.4 [10] – Epidemiology of vertebral, hip, and Colles’ fractures with age for women 

 

Osteoporosis is a greatly impactful bone disease that is very common for older aged 

patients. This disease is defined as a reduction in the strength of bone that leads to an increased 

risk of fractures through deterioration in skeletal microarchitecture. In the United States, as 

many as 8 million women and 2 million men have osteoporosis and an additional 18 million 

individuals have bone mass levels that put them at increased risk of developing osteoporosis. 
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Figure 2.5 [11] – Representation of the architectural structure of normal bone compared with an 
osteoporotic bone and the most common occurrences of osteoporosis 

 

As previously stated, this disease leads to a higher risk of fracture and, depending on the 

health and age of the patient, this health condition can become a severe limitation for the 

patient’s abilities in moving and performing simple activities. 

The appearance of tumours in bone tissue can also pose a serious threat to bone health and 

its ability to execute its functions. When the tumour is cancerous, it is called osteosarcoma. 

The malignant cells will form a tumorous mass that will commonly appear in the extremities of 

long bones and will corrode its matrix, which severely decreases its mechanical properties and 

increases the fracture risk. 

2.5 - Mechanical properties [12] 

As stated in previous chapters, bone can be classified into two categories according to its 

macroscopic architecture as cortical or trabecular bone with contrasting apparent densities. 

The mechanical properties of bone depend therefore of the composition of each bone type and 

its porosity. 

Apparent density, 𝜌𝑎𝑝𝑝, can be defined as the division of the wet mineralised mass of bone 

sample, 𝑤𝑠𝑎𝑚𝑝𝑙𝑒, over the volume occupied by the same sample, 𝑉𝑠𝑎𝑚𝑝𝑙𝑒, as seen in equation 

(2.1). 

 

𝜌𝑎𝑝𝑝 = 
𝑤𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝑠𝑎𝑚𝑝𝑙𝑒
 

(2.1) 

 

The apparent density of cortical compact bone is of around 2.1 g/cm3. Knowing the 

porosity, 𝑝, see equation (2.2), of a certain bone, it is possible to obtain the apparent density 

of said bone by correlating to its porosity, as shown in equation (2.3), in which 𝜌0 corresponds 

to the compact bone apparent density. 
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𝑝 =  
𝑉ℎ𝑜𝑙𝑒𝑠
𝑉𝑠𝑎𝑚𝑝𝑙𝑒

 (2.2) 

 
𝜌𝑎𝑝𝑝 = 𝜌0  ∙ (1 − 𝑝) 

(2.3) 

 

In 1991, Lotz [13] proposed a phenomenological material law to estimate the elasticity 

modulus for both trabecular and cortical bone along with ultimate compressive stress. This was 

a pioneering work, allowing to determine the mechanical properties using different laws for 

cortical and trabecular bone and considering the anisotropic nature of bone. The equations for 

determining the Young’s modulus and the ultimate compressive stress are expressed in 

equations (2.4) and (2.5), respectively, with the coefficients presented in table 2.1. 

 

Bone 
Tissue 

Direction  𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

Cortical 
Axial 2.065E+03 3.090E+00 7.240E+01 1.880E+00 

Transversal 2.314E+03 1.570E+00 3.700E+01 1.510E+00 

Trabecular 
Axial 1.904E+03 1.640E+00 4.080E+01 1.890E+00 

Transversal 1.157E+03 1.780E+00 2.140E+01 1.370E+00 

 

Table 2.1 [12] – Coefficients of Lotz’s Law 
 

𝐸𝑖 = 𝑎1  ∙ (𝜌𝑎𝑝𝑝)
𝑎2 (2.4) 

 
𝜎𝑖
𝑐 = 𝑎3  ∙ (𝜌𝑎𝑝𝑝)

𝑎4 
(2.5) 

 

More recently, in 2008, Zioupos [14] has published an experimental study in which the 

results show that the relation between 𝐸𝑖 and 𝜌𝑎𝑝𝑝 is not an increasing monotonic function as 

demonstrated with Lotz’s law, but instead has a boomerang-like pattern. Later, using the data 

from Zioupos, Belinha [12] proposed that the law determining the mechanical behaviour of 

bone tissue is the same for both cortical and trabecular bone. Thus, following the results and 

conclusions obtained in Zioupos’ work, Belinha [12] proposed a new mathematical model for 

determining the Young’s modulus and ultimate compression stress, found in equations (2.6) and 

(2.7), for axial directions with the coefficients found in table 2.2. 

 

 

 

 

 

 

 

 

 

 

 



 

Femoral Bone  10 

10 

 

Coefficient 𝒋 = 𝟎 𝒋 = 𝟏 𝒋 = 𝟐 𝒋 = 𝟑 

𝒂𝒋 0.000E+00 7.216E+02 8.059E+00 0.000E+00 

𝒃𝒋 -1.770E+05 3.861E+05 -2.798E+05 6.836E+04 

𝒄𝒋 0.000E+00 0.000E+00 2.004E+03 -1.442E+02 

𝒅𝒋 0.000E+00 0.000E+00 2.680E+01 2.035E+01 

𝒆𝒋 0.000E+00 0.000E+00 2.501E+01 1.247E+00 

 

Table 2.2 [12] – Coefficients of the proposed bone tissue phenomenological model 
 

𝐸𝑎𝑥𝑖𝑎𝑙 =

{
 
 

 
 ∑𝑎𝑗 ∙ (𝜌𝑎𝑝𝑝)

𝑗

3

𝑗=0

 𝑖𝑓 𝜌𝑎𝑝𝑝 ≤ 1.3 𝑔/𝑐𝑚
3

∑𝑏𝑗 ∙ (𝜌𝑎𝑝𝑝)
𝑗

3

𝑗=0

 𝑖𝑓 𝜌𝑎𝑝𝑝 > 1.3 𝑔/𝑐𝑚3

 (2.6) 

 

𝜎𝑎𝑥𝑖𝑎𝑙
𝑐 =∑𝑑𝑗 ∙ (𝜌𝑎𝑝𝑝)

𝑗

3

𝑗=0

 
(2.7) 

 

In figures 2.6 and 2.7, the relation between elasticity modulus and apparent density and 

the relation between ultimate compression stress and apparent density are displayed, 

respectively, both in the axial direction. In addition, it compares the model proposed in 

Belinha’s [12] work with the Lotz’s [13] model. 

 

 
 

Figure 2.6 [12] – Relation between elasticity modulus in the axial direction and apparent density 
following the proposed law and Lotz’s law with Zioupos’ [14] experimental data 
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Figure 2.7 [12] – Relation between compression stress in the axial direction and apparent density 
following the proposed law and Lotz’s law 

 

 

As figure 2.6 shows, the law proposed by Belinha correlates better with the experimental 

data than the two proposed Lotz’s curves (for trabecular and cortical bone). 
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Chapter 3 

Medical Imaging 

3.1 - Introduction and History 

Medical imaging refers to several different techniques that are used to observe the human 

body in order to diagnose, monitor or treat medical conditions [15]. These techniques have 

shown an incredible utility in its use for the aforementioned objectives with over 5 billion 

investigations worldwide up until 2004 and with visible growth in its use [16]. 

 The discovery of medical imaging modalities began in 1895 with Wilhelm Röntgen seeing 

the bones in his hand on a photographic plate on the other side of an electron beam tube [17]. 

With this fortunate accident, radiography was born and made way for several other image 

modalities to be researched in its future. 

 In March of 1973, Paul Lauterbur [18] published a theoretical paper on how one object 

could be visualized by taking advantage of its local interactions. By applying a static magnetic 

field, the interactions within a sample object can provide us with an image of itself and, with 

this paper the theoretical basis for magnetic resonance imaging was found. This work was later 

on validated with Herman Carr providing a 1D nuclear magnetic resonance spectrum in its PhD 

thesis [19]. 

 Concerning computed tomographies, its mathematical foundation was found in 1917 with 

the Radon transform [20]. With this integral transform, one is able to find the original density 

of a certain object from its project data in a tomographic scan. Despite its early theoretical 

support, solely in 1963 was the first primitive CT scan machine developed with its patent 

attributed to William H. Oldendorf [21]. 

Though several other techniques exist, such as ultrasound or even infrared spectroscopy, 

the three mentioned techniques will be focused on, explaining its mechanism and use in 

medical situations. 
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3.2 - Magnetic Resonance Imaging – MRI [22] 

Magnetic Resonance Imaging is an imaging method based principally upon sensitivity to the 

presence and properties of water, which makes up 70% to 90% of most tissues. In each tissue, 

the amount of water and its properties can alter dramatically with disease and injury.  

 

 
 

Figure 3.1 [22] – Coronal scan of a brain indicating a tumour (arrow)  

 

The mechanism of this image modality relies on the polarity of the water molecule and its 

interaction with magnetic fields. Energy from an oscillating magnetic field is applied to the 

patient at an appropriate resonance frequency. The energy is absorbed by the protons of the 

water molecules (H+) affecting their natural spin. After the magnetic field pulse is switched 

off, the protons begin to relax and obtain their natural spin. The dephasing between relaxation 

times generates the contrast visible in the MRI scans. 

The properties that most affect the scan contrast are proton density – PD – and two 

characteristic times called spin-lattice relaxation time and spin-spin relaxation time, denoted 

T1 and T2 respectively. Proton density refers to the number of hydrogen atoms a certain tissue 

has; while fluids such as blood have higher PD (due to its higher water percentage) other tissues, 

such as tendons or bones, have smaller PD due to its lower water presence. 

This imaging technique is a highly sophisticated one and requires expensive and complex 

machinery to run. This explains the fact that it was the 4th most used imaging technique 

between January of 2016 and January of 2017, in the UK, with approximately 3.2 million scans 

performed [23]. Nonetheless, it has great utility and is a highly relevant medical imaging 

modality. 
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3.3 - Computed Tomography – CT [24]-[25] 

Computed Tomography comes in many different forms. From single-photon emission 

computed tomography – SPECT – to simple X-ray CT. In this chapter the focus will be on X-ray 

CT since it is the most commonly used form of this image modality, especially in the orthopaedic 

field. 

This image modality is operated by using an X-ray generator that is rotated around a 

patient, with an X-ray detector on the opposite side retrieving several scans (the mechanism 

behind the X-ray scan will be explained in the coming subchapter). Since the machine knows 

the positioning for each scan taken, it can use the 2D scans to create a series cross-sectional 

images. Once the slice thickness is taken into account, a 3D representation of the series is 

easily achievable. 

In each 2D scan, the image modality is measuring the X-ray attenuation of the tissue. 

Therefore in each pixel, the darker it gets, the lower the attenuation is. This is measured with 

Hounsfield units that ranges from +3071 (most attenuating) to -1024 (least attenuating). This 

image modality can also rely on injected contrasts to provide a clearer image of a tissue. As 

long as the contrast has a meaningful difference in attenuation, it should provide a clearer 

image to the physician. 

 

 
 

Figure 3.2 [25] – Cross-sectional CT scan of the neck of a patient 

 

CT scans are currently widely used, with reports showing numbers up to 13.2 million scans 

in France (in 2015) and 11.6 million scans in Germany (in 2014) performed [26]. Being a state 

of the art technology that provides 3D information on a patient, makes it a very attractive 

solution. However, due to its cost in use, it is not recommended as a first line diagnostic tool, 

as seen in the first chapter [5]. 
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3.4 - X-ray Radiographs [27] 

As mentioned in the introductory chapter, this image modality has frequent use, being the 

main image modality used in the orthopaedic field. 

For this image modality, a series of excited photons are projected onto the patient’s body 

by an X-ray generator. These photons can then either be interact with tissue or pass through 

it. In either instance, its result is captured by an X-ray detector placed on the other side of the 

body portion aimed to be evaluated. 

A photon can interact with matter in several forms. The predominant three interactions are 

the photoelectric absorption, Compton scattering and Rayleigh scattering. In the first 

interaction, the photon’s energy is absorbed by an electron leading to its ejection with or 

without kinetic energy depending on the energy absorbed. Compton scattering occurs if the 

photon’s energy is well above the ionization energy required for an electron to be removed 

from an atom. In this case, only part of that energy is transferred to an electron while the 

photon remains with energy following a different direction. Lastly, regarding Rayleigh 

scattering, despite having a low energy interaction, this interaction is still significant when it 

comes to lower energy scans, such as mammograms. In it, a photon is absorbed by an atom and 

is immediately released with the same energy but with different direction. 

These interactions cause the photons to lose their energy which is in store absorbed by the 

tissue, creating the contrast in the image. However, being an ionizing radiation it is quite 

harmful for living tissue, with radiation overexposure being linked to the appearance of 

cancerous tumours, with the World Health Organization classifying X-rays as carcinogen [16]. 

Since bone has a high amount of calcium, which is a high atomic number atom, bones easily 

absorb X-ray waves, which makes them stand out from remaining tissues in this image modality, 

also making it perfect to use in an orthopaedic environment. The result of a projectional 

radiograph can be seen in figure 3.3, in which the bone clearly stands out from the remaining 

tissue. 

 

 
 

Figure 3.3 – Hip X-ray radiograph displaying bone in a much brighter colour than its surrounding 
tissue 



 

 

Chapter 4 

Image Segmentation 

4.1 - Introduction 

Image segmentation is one of the primary steps in to build a patient-specific finite element 

model of a bone. After performing image acquisition, the segmentation step allows for the 

creation of an accurate geometric model of the bone domain, femur in this particular instance. 

In this chapter, an overview of segmentation techniques applied to different fields and image 

modalities previously delineated will be presented, increasingly funnelling to the situation at 

hand. A special focus will be given to techniques that apply to femur using radiographs. 

4.2 - General overview 

With the evolution of computer-aided diagnosis — CAD — and overall technologic influence 

in medicine, image segmentation has shown to be a crucial stage and has gained great advances 

in its medical application, especially in the last 30 years with the improvement of the several 

image modalities. 

Several articles mark significant advances in medical image segmentation. Vincent et al. 

[28] first introduced, in 1991, the watershed method for image segmentation, practice which 

is now commonly used in image segmentation of different modalities. Another example is given 

to us by Yezzi et al. [29] who implemented active shape models, commonly known as snakes, 

to medical images and that method attracted the attention of the research community, having 

at least 262 paper citations, according to IEEE. 

Despite the examples presented having applicability across multiple modalities, in some 

situations it is better to accommodate the segmentation method to the image modality in 

question. Noble and Boukerroui [30] presented an influent review paper on image segmentation 

methods on ultrasound. Despite presenting some methods that either could be generalised to 

different modalities, such as Chalana and Kim’s [31] and Mitchell et al.’s [32] techniques, most 

methods are specific to ultrasound and its applications. Considering cardiac ultrasound, 

Friedland and Adam [33] presented a pioneering work allowing the detection of cavity 

boundaries using simulated annealing, which is an optimisation algorithm with a Markovian 

spatio-temporal regularisation. At the same time, Mulet-Parada and Noble [34] proposed a 

local-phase-based approach to spatio-temporal endocardial border detection, arguing that local 

phase is a better basis for ultrasound-based feature detection and segmentation because local 
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phase is theoretically invariant to intensity magnitude. Alternatively, if breast cancer is 

considered, the work developed by Stavros et al. [35] greatly influenced the design of 

algorithms for breast mass detection as is seen in later publications, such as Drukker et al. [36], 

where mass detection is performed by first filtering the images with a radial gradient index 

filtering technique and, with it, thresholding occurs to delineate lesions. 

When the focus is shifted to femur, several segmentation techniques can be found with 

high-end imaging techniques. Yan Kang et al. [37] suggested an adaptive region-growing method 

for femur segmentation on CT scans. Following the first region-growing step, some adjustments 

were performed in order to obtain a closed and smooth boundary. Along with this work, several 

others were based on CT scans to obtain a femur model, such as Saha and Wehril [38], who 

used a fuzzy distance transform based thickness to segment a femur, and Kaus et al. [39], who 

used a priori knowledge to build a 3D point distribution model of a femur. 

For this work 2D radiographs will be used, therefore looking for segmentation methods that 

are adapted to that reality is vital. 

4.3 - 2D x-ray segmentation techniques 

As previously mentioned, X-ray is a frequently used image modality, but of which few 

segmentation methods exist in literature. To gather information on diverse methodologies 

required an extensive search activity, whose epitome will now be presented. 

Baka et al. [40] presented a reconstruction of the distal femur using a statistical-shape 

model. In it, they use CT scans as training data to build an average point distribution 3D femur 

model. For each radiograph, the 3D model is projected in two dimensions, and using Canny 

edge detection, the model’s landmarks are adapted to the nearest edge. For each projected 

landmark, the 3D distance and angle is calculated between the 2D edge point and the original 

3D landmark point. These two values become part of the energy value, and it is precisely this 

value which the method aims to minimize. To calculate it, the authors use the equation 

represented in (4.1), in which 𝑢𝑖(𝑝𝑗) serves as a mask for points that fall on projection 𝑖 or not, 

𝑤𝑖(𝑝𝑗) determines the orientation weighing term, which is equal to cos (𝛼) for every calculated 

angle below 90º, and, lastly, 𝐷𝑖(𝑝𝑗) establishes the distance term. Its calculation is visible in 

equation (4.2), where 𝑣 controls the smoothness of the exponential. An overview of this method 

is seen on figure 4.1. 

 

Θ𝑖(𝑝𝑗) = 1 − 𝑢𝑖(𝑝𝑗) ∗ 𝑤𝑖(𝑝𝑗) ∗ 𝐷𝑖(𝑝𝑗) (4.1) 

  

𝐷𝑖(𝑝𝑗) = exp (−
𝑑𝑖(𝑝𝑗)

𝑣
) 

(4.2) 
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Figure 4.1 [40] -  Overview of the steps taken to generate the model and calculate its energy value 
 

 

Since a database of CT scans is not available, it is not possible to replicate this method. 

However, some techniques such as the Canny edge detection show great usefulness in the 

attainment of a 2D femoral model.  

Bandyopadhyay et al. [41], more recently, presented an approach for long-bone fracture 

detection, tested on femoral bones, in which the segmentation is a pivotal initial step. In this 

study, the authors, after studying different segmentation methods opted to select an entropy-

based algorithm. With it, local entropy is calculated in a 9x9 window, and in the biggest 

transitions the largest entropy should be identified due to varied local intensities. The outcome 

can be seen in figure 4.2. From this pre-processed image, the contour generation is done by 

using adaptive thresholding in an 8-neighbouring window. If a pixel has a value higher than the 
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adaptive threshold suggested, it will be part of the contour. This final contour is exemplified 

in figure 4.2. 

 

 
 

Figure 4.2 [41] -  (a) Original digital x-ray of broken femur, (b) pre-processing using local entropy 
computation and (c) contour generation based on the image obtained in (b) 

 

To correct the contour obtained, the authors introduce a method they named relaxed 

digital straight line segments — RDSS. In this approach, Bandyopadhyay et al. [41] use chain 

code to characterize a close-ended digital curve and define 2 properties it must follow: 

 

• R1 - The runs have at most two directions, differing by 45º. 

• R2 - Both directions can have at-most three run lengths, which are consecutive 

integers. 

 

By applying these properties to the contour, they create a simplified version of the 

generated contour. After using this technique, the algorithm is able to amend any 

discontinuities present due to the parallel property in consecutive line segment. The final result 

is seen in figure 4.3. 

 
 

Figure 4.3 [41] -  (a) Generated contour with discontinuities at A and B, (b) contour with RDSS applied 
and (c) contour with RDSS and no discontinuities 
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This work has a closer proximity to the conditions of the work to be developed and 

therefore, a lot more information can be recovered and used in the future. 

One last work with high relevance is the one developed by Chen et al. [42]. In this work, 

Chen et al. present a method for segmenting the femur from hip x-rays with access to a set of 

training data. To do this, the authors try to identify three features: the femoral shaft, the 

femoral head and the turning point at the great trochanter. For each feature, they retrieve 

several candidates, which later on will be selected by the best fit. For the femoral shaft, the 

horizontal gradient is measured and scanned horizontally. The regions with a local maximum 

horizontal gradient will be selected as possible borders of the femoral shaft. The contour 

following method allows for the generation of each line. After obtaining several line candidates, 

the lines are paired by having the width closest to the training sample. For each pair of lines a 

probability value is attributed following the equation in (4.3), in which 𝑃𝑖 is the probability 

value, 𝑀𝑖 is the mean intensity gradient magnitude along the line and 𝐺(𝑤𝑖| 𝜇, 𝜎) is the Gaussian 

of the width 𝑤𝑖 in a distribution with 𝜇 average and 𝜎 standard deviation. 

 

𝑃𝑖 = 𝑀𝑖  ∙  𝐺(𝑤𝑖| 𝜇, 𝜎) (4.3) 

 

The pair of lines with the highest probability value is selected. For the femoral head, the 

vertical and horizontal gradients are computed, since the femoral head has a round shape both 

gradients should have a high value. From the top left region, a circular Hough transform is 

fitted over the points with higher gradient to obtain circles shaping the femoral head. To fit 

the best candidate, a different probability value is calculated through equation (4.4), in which 

it equals to the Gaussian of the ratio between each candidate radius and the width of the 

previously selected shaft. 

 

𝑃𝑖 =  𝐺(𝑟𝑖/𝑤| 𝜇, 𝜎) (4.4) 

 

In order to detect the turning point at the great trochanter, the femoral shaft outside 

border is extended upward continuing the border using the contour following method. After 

this, the second derivative is computed and the point with the highest second derivative is 

defined. In figure 4.4, a representation of this method applied to a single radiograph is 

presented. 
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Figure 4.4 [42] – (a) Candidate femoral shafts, (b) candidate femoral heads and (c) turning point 
(white point) at the great trochanter 

 

After these features are extracted, an average model generated from the training samples 

is superimposed in the image. With it, a piecewise registration is performed. Using the features 

obtained above, the average model selects five feature points: the most top and the most left 

point in the femoral head border, the turning point, and the bottom two points in the femoral 

shaft. The piecewise registration is calculated according to equation (4.5), in which 𝒒 

represents the image feature point, 𝒑 represents the model’s feature point, 𝑠 represents a 

scaling factor, 𝑹 represents a rotation matrix and, lastly, 𝑻 represents a translation vector. 

 

𝒒 =  𝑠 𝑹 𝒑 + 𝑻 (4.5) 

 

As the last step, in order to adapt the model to each individual femur, an active contour, 

commonly known as snakes, is applied. This better adjusts the model to the image at hand, as 

it is visible in figure 4.5. 

 

 
 

Figure 4.5 [42] – (a) Model femur contour divided into five segments, (b) piecewise registered femur 
model used as the initial configuration of the snake algorithm and (c) Extracted femur contour after 

running the snake algorithm 
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This work proposed in 2005 [41] has great relevance for the work to be developed here 

since both have similar conditions. The geometric approach to the femur segmentation seems 

adequate, since this particular bone has several unique geometric features, which, as it is 

perceptible in Chen et al.’s work, can be exploited to benefit this work. 

From the work developed by Chen et al. [41], a lot was used. The use of the vertical and 

horizontal gradients was applied further on to the detection of femoral borders which allowed 

for the creation of a computational model. 
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Chapter 5 

Finite Element Method 

5.1 - Origins 

Finite element analysis has its origins in 1940’s. With the emergence of digital computation, 

a conceptual approach to finite element analysis arose with Courant’s article [43]. However to 

put it in practice was a long and shared effort, that culminated in the paper written by Turner, 

Clough, Martin, and Topp [44], henceforth known as TCMT, in which the term finite element 

analysis was first coined. This method has great utility since it allows for modelling and 

discretization of several physical phenomena and history showed its eclectic application range. 

FEA was firstly used in physics in 1957 [45], however its big leap was when Argyris published a 

book on the use of FEM in aerospace engineering [46]. This development of finite element 

analysis was a consequence of a combination of several ingredients, one of which was digital 

computing. This technology was only affordable to this industry through mainframe computers 

[47]. 

From this start, the application of FEM began to branch out to several different fields. The 

piecewise analysis allowed it to be applied to fluid mechanics, electromagnetic fields and 

thermal and mass transport analysis [48], but most importantly the strain and stress analysis 

was applied in orthopaedics, starting in the early 1970’s [49]. 

 

5.2 - Formulation [50]–[52] 

The FEM is characterized for modelling complex situations in discrete equations and points. 

From those defined solutions it is possible to interpolate any given point and obtain the chosen 

property. Therefore, this method allows for the accurate approximation, depending on the 

elements and the number of elements chosen, of a set of differential equations into discrete 

equation system in a finite number of points. 

 When FEA is applied to solid mechanics there are 4 main steps to follow: 

 

• Mesh creation, and the elements forming it 

• Formulation, where the node-dependent interpolation functions are defined 
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• Assembly, where the element-specific equations are combined 

• Boundary conditions and external forces applications 

 

After these steps are followed, the equations can be obtained for strain and stress, which 

are, in our case, the desired results. 

For the first step, the physical domain is divided into elements, which are in turn 

interconnected through their nodes. The aggregate of the different elements and its nodes 

constitutes a mesh. In order to obtain a representative model of the chosen object, one must 

divide it into a certain number of elements (for orthopaedic members is usually of the order of 

thousands) while considering its computational costs. 

The second stage of the finite element method requires that, for each element, the shape 

functions are defined. These shape functions should describe the element’s behaviour and its 

variation across its structure and nodes.  

Taking into consideration a determined 𝑢 function, it can be represented through an 

approximated function 𝑢ℎ. This function will be defined as a linear combination of basic 

functions. 

 

𝑢 ≃ 𝑢ℎ (5.1) 

𝑢ℎ =∑𝑢𝑖𝜓𝑖 (5.2) 

 

𝜓𝑖 represents the basic functions and 𝑢𝑖 the coefficients that approximate 𝑢ℎ to 𝑢. Figure 

5.1 illustrates a 1D representation of the approximation of the 𝑢 function. At any given point, 

the 𝑢ℎ function defined through the sum 𝜓𝑖  ×  𝑢𝑖, as defined in equation (5.2). The basic 

functions will define how much impact a coefficient will have in determining the 𝑢ℎ function 

throughout the element. In the case described in figure 5.1, 𝜓𝑖 is defined as linear basic 

functions where its value is 1 for the respective node and 0 in every other node. This is true for 

any shape function as well, what can alter are the values between the nodes. In figure 5.1, it 

is possible to observe how the problem can be represented if the nodes are uniformly 

distributed or not. An irregular node distribution can be applicable in cases where 𝑢 has a 

greater variation, so it remains better represented in the 𝑢ℎ approximation. 

 

 

 

 

Figure 5.1 [53] - The function 𝑢, solid line blue, is approximated by 𝑢ℎ, dotted red line, which is 
calculated through a linear combination of 𝜓𝑖 linear basis functions and the 𝑢𝑖 coefficients. In the left a 

set of uniformly distributed is represented and in the right an irregular node distribution. 
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Considering a 2D finite element with 𝑛 number of nodes, a vector of nodal displacements 

(in a 2D representation) is defined by: 

 
{𝛿𝑒} = {𝑢1 𝑣1  𝑢2 𝑣2  … 𝑢𝑛 𝑣𝑛} (5.3) 

 

For any given point in the element, the displacements can be calculated based on the nodal 

displacement vector {𝛿
𝑒
} and the element’s shape functions, defined by 𝑁𝑖: 

 

𝑢 =∑𝑁𝑖 𝑢𝑖 (5.4.1) 

𝑣 =∑𝑁𝑖 𝑣𝑖 (5.4.2) 

 

In a solid mechanics FEA problem the displacements caused by the applied loads are 

unknown. The known variables are the body geometry, the physical parameters and the applied 

loads, which in turn are transformed in forces applied to the nodes. To obtain the nodal 

displacements caused from these nodal forces, a relationship between them should be defined 

taking into account the geometry and the physical characteristics of the body. For each 

element, the potential energy state can be represented as 𝜋𝑒 and its computation is 

represented in equation (5.5). 

 

𝜋𝑒 = 
1

2
 ∫ [𝛿𝑒]

𝑇[𝑩]𝑇𝑫𝑩𝛿𝑒 𝑑𝑉
𝑉𝑒

−∫ [𝛿𝑒]
𝑇[𝑵]𝑇𝒑 𝑑𝑉

𝑉𝑒

− ∫ [𝛿𝑒]
𝑇[𝑵]𝑇𝒒 𝑑𝑆

𝑆𝑒

 (5.5) 

 

In equation (5.5), 𝛿𝑒 represents the element’s nodal displacements, 𝑵 the shape functions, 

𝒑 the body forces per unit volume and 𝒒 the applied surface tractions. Other unexplained 

variables will be explored in detail afterwards. For a system in equilibrium, the potential energy 

is minimum. To reach this minimum, the derivative of equation (5.5) in respect to the element’s 

displacements, equation (5.6), should be equal to 0. 

 

 
𝜕𝜋𝑒
𝜕𝛿𝑒

= ∫ ([𝑩]𝑇𝑫𝑩)𝛿𝑒 𝑑𝑉
𝑉𝑒

− ∫ [𝑵]𝑇𝒑 𝑑𝑉
𝑉𝑒

− ∫ [𝑵]𝑇𝒒 𝑑𝑆
𝑆𝑒

 (5.6) 

 

This equation can be rewritten in a simpler manner when it is equated to 0, as is seen in 

equation (5.7). 

 

 𝑭𝑒 = 𝑲𝑒 𝛿𝑒 (5.7) 

 

𝑭𝑒 represents the external forces applied in the nodes of the element, equation (5.8), and 

𝑲𝑒 denotes the element’s stiffness matrix. 

 

𝑭𝑒 = ∫ [𝑵]𝑇𝒑 𝑑𝑉
𝑉𝑒

− ∫ [𝑵]𝑇𝒒 𝑑𝑆
𝑆𝑒

 (5.8) 
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Having the nodal forces 𝑭𝑒 determined as part of the conditions for the considered problem, 

it is still necessary to define the stiffness matrix of the element. It can be calculated through 

equation (5.9). 

 

 

𝑲𝑒 = ∫ [𝑩]𝑇𝑫𝑩𝑑𝑉
𝑉

 (5.9) 

 

The stiffness matrix depends on two factors: one physical and other geometrical. The 

physical factors of the elements are introduced in the 𝑫 matrix. This matrix is characterised 

by a 3 × 3 matrix, for 3D plane stress assumptions, that correlates local stresses with local 

strains through the Young’s modulus (𝐸) and the Poisson’s coefficient (𝑣). Both of these physical 

quantities are independent and experimentally obtained and depend solely of the material and 

its mechanical properties. To calculate the 𝑫 matrix the equation (5.10) is used, applied for 

plane strain: 

 

𝑫 =

[
 
 
 
 
 
 

(1 − 𝑣)𝐸

(1 + 𝑣)(1 − 2𝑣)

𝑣𝐸

(1 + 𝑣)(1 − 2𝑣)
0

𝑣𝐸

(1 + 𝑣)(1 − 2𝑣)

(1 − 𝑣)𝐸

(1 + 𝑣)(1 − 2𝑣)
0

0 0
𝐸

2(1 + 𝑣)]
 
 
 
 
 
 

 (5.10) 

 

The 𝑩 matrix incorporates the geometrical factors. This matrix relates the element’s 

deformation with its nodal displacements. The calculation relies upon the shape functions  𝑁𝑖. 

This matrix will differ in size depending on the amount of nodes that the element has, having 

a 3 × 2𝑛 size, considering a 2D element and 𝑛 number of nodes. This matrix can be calculated 

through equation (5.11). 

 

𝑩 = 

[
 
 
 
 
 
 𝜕𝑁𝑖
𝜕𝑥

0

0
𝑑𝑁𝑖
𝑑𝑦

𝑑𝑁𝑖
𝑑𝑦

𝜕𝑁𝑖
𝜕𝑥

|

|

𝑖=1,2,…,𝑛]
 
 
 
 
 
 

 (5.11) 

 

 

As seen in equation (5.9), the FEM requires a volume integral. Depending on the element 

chosen this can be of varied levels of difficulty. For a linear element, the estimation of the 

integral should easily feasible. However, for a more complex element with curve lines, for 

example, the computation of the volume integral can become of severe difficulty. To ease this 

step, isoparametric elements are usually applied by defining the element in natural 

coordinates. The natural coordinate system is defined according to the element’s geometry, 

making it simpler to work with the volume integral. Since the natural coordinates system do 

not vary according to the Cartesian geometry of the element, the element in its natural 
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coordinates will be represented in the same way regardless of its Cartesian geometry. In figure 

5.2, a representation of the transformation of an element is presented in its natural 

coordinates. 

 

 
Figure 5.2 - Linear and quadratic elements represented in their Cartesian coordinates with the natural 
coordinates system superimposed over it and, in the right, the representation of both elements in their 

natural coordinates. 
 

After the element is represented in its natural coordinates, it is necessary to define the 

shape functions according to this system. The way the shape functions are defined depends on 

the number of element nodes. Considering the example displayed in figure 5.2, the shape 

functions for a 4 node element can be define through equation (5.12) for all nodes, and the 

shape functions for an 8 node element can be defined through equations (5.13.1) to (5.13.3), 

considering that 𝜉 and 𝜂 represent the nodes’ natural coordinates 

 

𝑁𝑖 =
1

4
(1 + 𝜉)(1 + 𝜂) (5.12) 

𝑁𝑖 =
1

4
(1 + 𝜉)(1 + 𝜂) − 

1

4
(1 − 𝜉2)(1 + 𝜂) −

1

4
(1 + 𝜉)(1 − 𝜂2),

𝑖 = 1, 3, 5, 7 
(5.13.1) 

𝑁𝑖 =
1

2
(1 − 𝜉2)(1 + 𝜂), 𝑖 = 2, 6 (5.13.2) 

𝑁𝑖 =
1

2
(1 + 𝜉)(1 − 𝜂2), 𝑖 = 4, 8 (5.13.3) 

 

Consequently, the elements of the 𝑩 matrix, which have to be obtained through derivatives 

of the Cartesian coordinates, can be obtained from the natural coordinates following equation 

(5.14). 

 

{
 

 
𝜕𝑁𝑖

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦 }
 

 
= [𝑱]−1

{
 

 
𝜕𝑁𝑖

𝜕𝜉
𝜕𝑁𝑖

𝜕𝜂 }
 

 

 (5.14) 

 

The Jacobian matrix is defined by the equation (5.15), however, another way of obtaining 

it, through the data available is using equation (5.16). 
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𝑱 =

[
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂]
 
 
 

 (5.15) 

 

𝜕𝑥

𝜕𝜉
= ∑

𝜕𝑁𝑖

𝜕𝜉
 𝑥𝑖 ,

𝜕𝑥

𝜕𝜂
= ∑

𝜕𝑁𝑖

𝜕𝜂
 𝑥𝑖

𝜕𝑦

𝜕𝜉
= ∑

𝜕𝑁𝑖

𝜕𝜉
 𝑦𝑖 ,

𝜕𝑦

𝜕𝜂
= ∑

𝜕𝑁𝑖

𝜕𝜂
 𝑦𝑖

 (5.16) 

 

With this method the derived shape functions can be easily transformed from their natural 

coordinates to their Cartesian coordinates, which allows for the construction of the 𝑩 matrix 

presented in equation (5.11).  

Taking into account that the FEM is an approximation method, the computation of the 

volume integral for 𝑲𝑒 is a complex operation that can be simplified by using the Gauss-

Legendre quadrature. In this work, only triangular elements will be used and its application to 

this method will be explained through that point of view. 

For this approximation method, integration points are defined inside the element where 

the integration values are calculated and to each point a weight is attributed. The number of 

integration points can vary, but with that change, so does the weight of each point. In figure 

5.3, examples of a different number of integration points, applied to triangular elements, are 

presented. In table 5.1, the natural coordinates of each integration point, and the 

corresponding weight assigned to each point, are shown. 

 

 
 

Figure 5.3 [52] – Gaussian-Legendre quadrature applied on a triangular element with (a) 1 integration 
point, (b) 3 integration points and (c) 4 integration points 
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Element Points 𝝃 𝜼 Weight 

(a) a 
1

3
 

1

3
 

1

2
 

(b) 

a 
1

6
 

1

6
 

1

6
 

b 
2

3
 

1

6
 

1

6
 

c 
1

6
 

2

3
 

1

6
 

(c) 

a 
1

3
 

1

3
 −

27

96
 

b 
1

5
 

1

5
 

25

96
 

c 
3

5
 

1

5
 

25

96
 

d 
1

5
 

3

5
 

25

96
 

 

Table 5.1 – Gaussian-Legendre quadrature applied on a triangular element with (a) 1 integration point, 
(b) 3 integration points and (c) 4 integration points 

 

From this the complex volume integral can be replaced by a more simple calculation, using 

the right-hand side of the equation (5.17), being 𝑤𝑖 the weight of the corresponding integration 

point 

 

𝑑𝑉 =  𝜕𝑥𝜕𝑦 = det(𝑱) 𝜕𝜉𝜕𝜂 = det(𝑱)𝑤𝑖 (5.17) 

 

The final computation for the stiffness matrix will then be represented by the equation 

(5.18). 

 

𝑲𝑒 = [𝑩]𝑇 𝑫 𝑩 det(𝑱)𝑤𝑖 (5.18) 

 

After 𝑲𝑒 is determined for each element, the assembly of elements’ matrices is performed 

and a global stiffness matrix is created, containing the values from the elements’ specific 

stiffness matrix. It is important to note that for overlapped nodes, in the global stiffness matrix, 

the values must be added. In figure 5.4 is presented a 1D bar divided into 3 elements, each 

with 3 nodes, where some of the nodes belong to more than one element. 

 

 
 

Figure 5.4 [50] – 1D bar with 3 different elements (I, II, and III) each with 3 nodes, 2 of them 
overlapping different elements 
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Each element has a stiffness matrix associated, represented in equations from (5.19.1) to 

(5.19.3). When the global matrix is generated, the assembly process must follow the procedure 

portrayed in equation (5.20). 

 

𝑲𝐼 = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] (5.19.1) 

𝑲𝐼𝐼 = [

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] (5.19.2) 

𝑲𝐼𝐼𝐼 = [

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

] (5.19.3) 

𝑲 =

[
 
 
 
 
 
 
𝑎11 𝑎12 𝑎13 0 0 0 0
𝑎21 𝑎22 𝑎23 0 0 0 0
𝑎31 𝑎32 𝑎33 + 𝑏11 𝑏12 𝑏13 0 0
0 0 𝑏21 𝑏22 𝑏23 0 0
0 0 𝑏31 𝑏32 𝑏33 + 𝑐11 𝑐12 𝑐13
0 0 0 0 𝑐21 𝑐22 𝑐23
0 0 0 0 𝑐31 𝑐32 𝑐33]

 
 
 
 
 
 

 (5.20) 

 

After the assembly of the global stiffness matrix is performed, the essential boundary 

conditions (displacement constrains) and natural boundary conditions (external forces) must be 

defined. The essential boundary conditions are imposed using the Penalty Method.  The term 

to be constrained, corresponding to the specific node and direction, is penalized by multiplying 

that term by a constant 𝛼 which should be a large enough number, usually 𝐸 × 1032. This penalty 

method is also applied to the force vector, in the same directions applied in the stiffness matrix, 

exemplified in equation (5.21). 

 

𝑭𝒊
𝒑𝒆𝒏

= {
𝛼𝐾𝑖𝑖 𝑢̅𝑖 , 𝑖𝑓 𝑖𝑡 𝑖𝑠 𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 

𝐹𝑖,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.21) 

 

From the penalized stiffness matrix, 𝑲𝑝𝑒𝑛, and the penalized force vector, 𝑭𝑝𝑒𝑛, the 

displacement vector, 𝛿, is obtained through equation (5.22). 

 

𝛿 =  [𝑲𝑝𝑒𝑛]−1 𝑭𝑝𝑒𝑛 (5.22) 

 

Using equation (5.23), the reaction forces vector, 𝑭𝑅, are obtained by using the unpenalized 

stiffness matrix, equation (5.20), and the displacement vector. Through equation (5.24), the 

strain values, 𝜀, are calculated and with equation (5.25), the stress values, 𝜎, are computed. 

 

𝑭𝑅 =  𝑲 𝛿 (5.23) 

 

𝜀 = 𝑩 𝛿 (5.24) 

 

𝜎 = 𝑫 𝜀 (5.25) 
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Using the demonstrated equations, the Finite Element Method is used in order to perform 

the mechanical analysis, concluding with the determination of the stress and strain, shown in 

last two equations presented. 
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Chapter 6 

Finite Element Method in Orthopaedics 

6.1 - The start 

As mentioned in the previous chapter, FEM in its early stages showed to have several 

applications and one of those examples was in orthopaedics. The seminal article on the topic 

was Brekelmans’ paper, which proposed a new mathematical model to better study the 

mechanical behaviour of skeletal parts [54]. With this paper, Brekelmans proved that FEA was 

far superior to the existing mathematical and experimental techniques. In this article, 

Brekelmans studied an entire femur and found that forces applied from the abductor muscles 

substantially determined mid-diaphyseal stresses. 

 

6.2 - The first decade 

The early developments of FEM in orthopaedics is accurately described in a review paper 

written by Huiskes and Chao [55]. In it, it is stated that since the discovery of the application 

of FEA, this method was considered as a magical tool to all problems without the necessary 

capabilities and knowledge of its limitations [55]. What allowed for the growth of FEA was the 

thorough method-oriented work that was developed in order to enhance this method of 

analysis. In the great majority of these, a study of the femur is performed since, besides being 

the longest bone in the body, it has historical developments and it is commonly involved in 

orthopaedic treatments, one of those being the prosthetic replacement of the hip joint. 

After the 2D model proposed by Brekelmans, several articles arose proposing 3D models in 

order to compare results between 2D and 3D models. Articles such as Scholten’s [56] and 

Olofsson’s [57], proved that FEA was effective for 3D analyses despite demanding a more 

rigorous analysis with more sophisticated models; Scholten’s model was an exceptionally 

refined one, with a mesh density allowing as much as 10,000 degrees of freedom, 

approximately. 

Work in a problem-oriented point of view began to be developed few years later and it can 

be divided into three categories, in which only the first two will be focused here: stress analyses 

of bones, artificial joint design and fixation and fracture of bones.  
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From the first category, several articles focused on the mechanical properties in different 

bones or regions of the same bone. For example, Brown and Ferguson, in 1978, built a 2D model 

of a femoral head, which included trabecular bone in order to study its influence on the femur’s 

mechanical properties [58]. However, it considered that the bone was formed by a continuous 

material, just with different mechanical properties. Hayes et al., in an ongoing study, 

developed a study to investigate bone growth and remodelling. Using a 2D FE model, it was 

found that high Von Mises effective stress correlates with regions of high trabecular density 

[58],[59]. 

Since orthopaedics requires heavy use of prosthetics, it is also important to focus on some 

research work dealing with that topic. The first works on this subject consisted of 2D models 

for total hip replacement (THR). Articles published by Andriacchi et al. [61], Kwak et al. [62] 

and Sih et al. [63] reported on several different prosthesis, varying in size and geometry, with 

distinct loadings applied. This divergence made it impossible to compare the different studies 

in a quantitative sense. 3D models of the same prosthesis were later on developed by studies 

such as Roehrle et al. [64], Valliapan et al. [65] and Lewis et al. [66]. For the same reasons as 

the aforementioned, no quantitative comparison was able to be performed. Studies started to 

investigate further into problems related to artificial joints. On articles submitted by Anand et 

al. [67] and Ducheyne et al. [68], the influences of bone ingrowth in porous coatings was studied 

with the conclusion that the value of the elastic modulus of the porous coating has no major 

influence on the interfacial shear stress occurring in the porous coating spongy bone (upon 

compression and bending). Lastly, analysis on the acetabular cup were also performed using 

FEA, both in 2D models – Vasu et al. [69] and Carter et al. [70] – and 3D models – Oonishi et al. 

[71] and Goel et al. [72].  

6.3 - Problem-oriented development 

From the earliest developments, it was obvious that when applied correctly FEA was 

extremely helpful in orthopaedics. After its initial exploration and progress, largely due to the 

method-oriented work developed, the work leaned increasingly more towards the application 

the FEM could have in this field. In a reputed review article published by Prendergast [73], the 

author reports on the great achievements carried out by FEA studies on biomechanics until 

1997. In it, Prendergast splits the bibliography in three different groups: the FEM applied to 

skeletal parts, the FEM applied to prosthesis and other orthopaedic devices and the FEM applied 

in tissue adaptation studies.  

In the studies regarding FEA applied to skeletal parts, several analyses stand out. Hogan 

[74] studied the effect of microcracking in bone. In it, the conclusion was reached that the 

predicted variation in the elastic modulus with porosity was observed, however not as sensitive 

as observed experimentally. A big step was taken with Beaupré’s article [75], in which the first 

3D model of trabecular bone was built with its trabecular architecture. Brown and Hild [76], in 

1983, used a 3D model of a femoral head to prove that development of osteonecrosis causes 

stress increase which predisposes a mechanical collapse of the femoral head. And lastly, in 

1991, Lotz [77] showed that the von Mises stress best predicts a fracture site of the femoral 

bone. 

Regarding the FEM applied to prosthesis and more orthopaedics devices, several projects 

worked on different angles approaching the same global problem. In 1983, Rohlmann et al. [78] 
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presented the first large 3D model of hip replacement, calculating stresses in the prosthesis, 

cement and bone showing the effect of musculature. Several different parts of hip prosthesis 

were evaluated in distinct articles. In Fagan’s [79] and Prendergast’s [80] work, the effect of a 

collar on the prosthesis stem was evaluated, with the conclusion that the structure can create 

more physiological calcar stress if it remains in contact with the excised surface. Little et al. 

[81] used a 2D finite element model of the medial plateau, cement and bone to establish 

suitable sites for implantation 3D strain gauges. In a particularly relevant paper, Huiskes and 

Vroemen [82] introduced the concept of preclinical evaluation by predicting maximum normal 

and shear stresses at the interfaces of prostheses with different designs. 

Equally important was the work developed on tissue adaptation when FEA was applied. As 

regards to this particular field, one paper stands out. Huiskes et al. [83] studied the interface 

stresses increase and remodelling rate decreases with a decreasing Young’s modulus of the 

prosthesis. 

It is also important to mention that with the state of development at the time, researchers 

had some concerns. For instances, Viceconti et al. [84] suggested that an over-emphasis on 

visual similarity of the model and reality has occurred because clinicians are trained to rely on 

observation rather than modelling, which can hinder the results obtained. 

6.4 - Recent developments 

In recent years, FEA has been used as a patient-specific tool with different objectives. With 

the latest evolution of faster computers and more advanced imaging modalities, the possibility 

of producing a model that closely represents the bones of an individual person is well within 

reach. Whether it is to perform a simple stress analysis of bone, evaluate an injury or analyse 

prosthesis conditions, this technique is very useful for orthopaedists and surgeons by providing 

extra information allowing the medical doctor to perform a better informed analysis. 

There are two main approaches to obtain a patient-specific model.  

In the first, one makes use of current imaging models to obtain a base image where, using 

image segmentation, it is possible to outline the bone. Afterwards, a FE mesh is created on the 

bone outlined. To assert the mechanical properties, a two-step procedure is conducted: firstly, 

the literature for the core values is assessed and after, correlating with the grey level of the 

image, the mechanical values are attributed accordingly. After associating the loading and 

boundary conditions, FEA can be performed to assess stress and strain.  

For the second approach, a statistical shape intensity model (SSIM) can be built. For it, the 

model is built considering a population of bones and simply requires a 2D image to generate a 

3D model. This technique has several advantages, starting from simpler image acquisition to 

allowing for more complex calculations. However, it is still in early stages of development with 

not a lot of work performed with it [85].  

Recent work has shown the versatility of FEM. Little et al. [86] studied bone stress 

distribution using a patient-specific model while Abdul-Kadir et al. [87] studied how 

interference fit could affect implant micromotion. In addition, when combined with 

quantitative image modalities, such as qCT, FEA can provide supplementary information which 

can enhance interpretation of data [85]. This is proven with articles written by Cody et al. [88] 

and Tanck et al. [89] where both authors concluded that FEA produced better results than 

quantitative image modalities, as qCT and DXA. 
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What comes to light, however, is the majority of work developed with patient-specific FE 

models resorting to high end image modalities, such as CT or MRI, to create a 3D model. 

However, as mentioned in the first chapter, these imaging modalities are not as frequently 

used as radiographs. With that said, the project to be developed aims to correct that 

shortcoming using X-ray radiographs to produce 2D FE models.



 

 

 

Chapter 7 

Femur Analysis Tool 

7.1 -  Introduction 

Trying to answer the needs previously presented, the project to develop the Femur Analysis 

Tool was started. With this, the goal was to create a tool that, using single femur X-ray 

radiographs, would be able to segment the femoral bone generating a computational femur 

model. From this model, a mesh is created, allowing to perform a qualitative FEM analysis and 

understand the structural influence of the applied external forces. 

Despite the existence of a wide variety of published articles showing an interest in the  

research of the propagation of stress and its effects on bone (several examples have been 

discussed before in chapter 6), few commercial solutions have been found that can apply this 

knowledge to the clinical practice. One software developed by the Computational Mechanics 

Laboratory – CMECH-Lab (cmech.webs.com), Tool, was able to perform this mechanical analysis 

[90]. However, it required the physician to manually trace the model of the femur, making use 

of reference points. With the Femur Analysis Tool, herein presented, the goal is to have the 

process as automatized as possible, including the creation of the femoral head. 

7.2 -  Software Workflow 

This software follows the workflow presented in figure 7.1. 
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Figure 7.1 – Femur Analysis Tool workflow 
 

The developed software starts by requiring an image input of a femur X-ray radiograph. 

After that step, the user has to input information regarding the patient, namely the patient’s 

age, height, weight and gender, followed by a step in which the user can crop the image (if the 

radiograph doesn’t have the appropriate content). Afterwards, the algorithm itself runs starting 

by determining the orientation in which the femur is presented, rotating it, if needed. This 

operation is required so that the femoral head is pointing towards the top right corner. If that 

orientation is undetermined, the user selects the orientation. From the rotated image, the 

horizontal and vertical gradients are computed and subsequently thresholded. The threshold is 

defined by the user in order to obtain a clearer binary image. These gradients aid the detection 

of the borders of the femur which is the next step. From these borders, some reference points 

are established and these said points will guide the creation of the femoral model. If the 

femoral model provided by the software has some inaccuracies, the next step allows for the 

correction of the reference points which leads to a new and improved computational model. 

The following step, mesh creation, sets the nodes for the femoral model and from these nodes, 

triangular elements will be generated. The images coordinates are transformed into physical 

coordinates, a valuable step to ensure the correct values are calculated further on. From then 

on, the FEM is applied and all the nodes’ and elements’ properties and matrices are computed. 

This allows for the strain and stress for each element to be calculated and, from this result, 

related physical quantities are displayed. The user then has the choice to zoom in to see the 

result in intended regions, affecting the display at hand or select a different property to be 

displayed. 

These are the main activities carried out by the software. However, for each step several 

subtasks are being performed by the algorithm. Such subtasks will be described in the following 

subchapters. 
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7.3 -  Software Algorithm 

7.3.1 -  Determining the image orientation 

As previously mentioned, the standard chosen orientation for the femur radiograph contains 

the femoral head pointing towards the top right corner. To assess the orientation of the 

radiograph, the weighted average centre of intensity of the image is calculated, following 

equation (7.1), in which 𝐼𝐶 represents the calculated centre of intensity, 𝑥 is the x coordinate 

for each iteration, 𝑦 the y coordinate and 𝑖(𝑥, 𝑦) corresponds to the pixel intensity for 

coordinates x and y. 

 

𝐼𝐶 = (
∑(𝑥 ∙ 𝑖(𝑥, 𝑦))

∑ 𝑖(𝑥, 𝑦)
,
∑(𝑦 ∙ 𝑖(𝑥, 𝑦))

∑ 𝑖(𝑥, 𝑦)
) (7.1) 

 

From this equation, it is possible to calculate where the centre of intensity of the image is 

located. The expected result, if the femoral head is aiming towards the top right corner, should 

show the centre of intensity in the first quadrant of the image – the top-right one. This happens 

due to the presence of the hip in the image. As it is a voluminous bone and with great thickness, 

it pulls the centre of intensity towards its position, which is correspondent to the position of 

the femoral head. For this determination, to avoid noisy images, a window of 10% of width and 

height was set in which if the centre of intensity was placed within 10% of each image dimension 

from the centre of the image the user determines the orientation of the image. 

After this orientation is set, the image is then flipped accordingly, or not, to match the 

desired orientation. If the centre of intensity falls on top right corner, nothing happens. 

However, if the centre of gravity falls on the top left corner, the image is flipped horizontally, 

if it falls on the bottom right corner, the image is flipped vertically and if the centre of gravity 

is placed on the bottom left corner, the image is flipped both horizontally and vertically. 

 

 
(a)                                              (b) 

 
Figure 7.2 – (a) Femur radiograph displaying the centre of the image (red dot) and the intensity 

centre (green dot) with the 10% window (yellow lines) (b) Femur radiograph after the appropriate 
flipping  
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In figure 7.2, this is represented where in figure 7.2a the centre of intensity is detected in 

the bottom left quadrant of the image and therefore requires a horizontal and vertical flip to 

obtain figure 7.2b. 

7.3.2 -  Gradient computation and thresholding 

Prior to calculating the gradients, the image is pre-processed. This step was performed in 

order to better mimic the test conditions. Therefore, the average pixel intensity was calculated 

and its difference to 0.23 was subtracted to all pixels, as demonstrated in equations (7.2) to 

(7.4). 𝑎𝑣𝑔 represents the average intensity of the image, 𝑖(𝑥𝑖 , 𝑦𝑖) represents the intensity of a 

pixel with coordinates (𝑥𝑖 , 𝑦𝑖), 𝑑𝑖𝑓𝑓 stands for the difference between 

 

𝑎𝑣𝑔 =
∑ 𝑖(𝑥𝑖, 𝑦𝑖)
𝑁
𝑖=1

𝑁
 

 

(7.2) 

 

𝑑𝑖𝑓𝑓 = 𝑎𝑣𝑔 − 0.23 
 

(7.3) 
 

𝑖(𝑥𝑖, 𝑦𝑖) = 𝑖(𝑥𝑖, 𝑦𝑖) − 𝑑𝑖𝑓𝑓 (7.4) 

 

It is important to note that in equation (7.4) any value below 0 is automatically adjusted 

to 0. 

Following the decrease of luminosity of the image, a contrast adjustment is performed. To 

perform this step, the intensities are rescaled to occupy the full range of intensities, from 0 to 

1. To execute this, the maximum and minimum intensities are calculated and a linear 

correlation between the current intensities and the contrast-enhanced ones was established 

using equations (7.5) and (7.6). In equation (7.7), the contrast adjustment step is performed. 

For these equations, 𝑚𝑎𝑥 represents the maximum intensity of the image while 𝑚𝑖𝑛 represents 

the minimum intensity of the image. 𝑚 represents the slope of the linear correlation and 𝑏 

describes the intersection of the linear regression with x=0. 

 

𝑚 =
1 − 0

𝑚𝑎𝑥 −𝑚𝑖𝑛
 

 

(7.5) 

 

𝑏 = 0 −𝑚 ∙ 𝑚𝑖𝑛 
 

(7.6) 
 

𝑖(𝑥𝑖, 𝑦𝑖) = 𝑚 ∙ 𝑖(𝑥𝑖, 𝑦𝑖) + 𝑏 (7.7) 

 

The result of these transformations can be seen in figure 7.3. 
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(a)                                                (b) 

 
Figure 7.3 – (a) Original femur radiograph (b) Femur radiograph after pre-processing steps of 

brightness decrease and contrast adjustment 
 

 

After the image has the suitable orientation, the gradient is computed to aid with the 

detection of the femur borders. This is possible due to the characteristics of the femoral 

radiographs. Since the foreground of the femur is much brighter than the surrounding 

background, by calculating the horizontal and vertical gradient we can define the borders for 

the femoral bone. To compute the vertical and horizontal gradient, equations (7.8) and (7.9) 

were used, respectively. 

 

𝑔𝑉(𝑥, 𝑦) = {

𝑖(𝑥, 2) − 𝑖(𝑥, 1), 𝑖𝑓 𝑦 = 1
1

2
 ∙ (𝑖(𝑥, 𝑦 + 1) − 𝑖(𝑥, 𝑦 − 1)), 𝑖𝑓 𝑦 ≠ 1 ∨  𝑦 ≠ 𝑦𝑁

𝑖(𝑥, 𝑁) − 𝑖(𝑥, 𝑁 − 1), 𝑖𝑓 𝑦 = 𝑦𝑁

 (7.8) 

 

𝑔𝐻(𝑥, 𝑦) = {

𝑖(2, 𝑦) − 𝑖(1, 𝑦), 𝑖𝑓 𝑥 = 1
1

2
 ∙ (𝑖(𝑥 + 1, 𝑦) − 𝑖(𝑥 − 1, 𝑦)), 𝑖𝑓 𝑥 ≠ 1 ∨  𝑥 ≠ 𝑥𝑁

𝑖(𝑁, 𝑦) − 𝑖(𝑁 − 1, 𝑦), 𝑖𝑓 𝑥 = 𝑥𝑁

 
 

(7.9) 

 

From this gradient calculation, an enhancement is applied, shown in equations (7.10) and 

(7.11). 

 

𝑔𝐻𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑(𝑥, 𝑦) = (200 ∙ 𝑔𝐻(𝑥, 𝑦))
3 

 

(7.10) 

 

𝑔𝑉𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑(𝑥, 𝑦) = (50 ∙ 𝑔𝑉(𝑥, 𝑦))
3 (7.11) 

 

The values for the enhancement were determined by a trial and error method. However, 

the goal was to enhance bigger values of the gradients and, therefore, using a cubic function 

guarantees these higher values will be enhanced, while smaller values are not. 

Following the enhancement step, the gradients are thresholded to create binary images. 

The thresholds are determined by the user using the provided interface, in a step explained 
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further on. For now however, the thresholds will be defined as 𝑡ℎ for the horizontal threshold 

and 𝑡𝑣 for the vertical threshold. The enhanced horizontal gradient is then thresholded at 𝑡ℎ 

and also at −𝑡ℎ. While the first threshold allows for the detection of dark-to-white transitions, 

the second threshold detects the opposite white-to-dark transitions. The enhanced vertical 

gradient, on the other hand, has its absolute value thresholded at 𝑡𝑣. For the vertical gradient, 

the information of which transition occurs is not so relevant, hence, the absolute value is 

thresholded instead of the signed value. 

This step is followed by a verification of meaningful or non-meaningful points. To achieve 

this, the neighbourhood of each positive pixel is verified. If the positive pixel does not have 

two other positive pixels within a distance of 2 pixels, the point is ruled out. The resultant 

binary image can be seen in figure 7.4b. 

 

                   
(a)                                                (b) 

 
Figure 7.4 – (a) Femur radiograph with contrast adjustment (b) Binary image with the union of 

thresholded points for the horizontal and vertical gradient 
 

In figure 7.4b, despite presenting some noise regarding the pelvis and the inner structure 

of the femur, it is clearly seen the borders of the femur well defined. From this image a model 

for the femur can be generated. 

7.3.3 -  Defining the femoral head 

The detection of the femoral shaft is intuitive when the gradient is well defined, however 

a region that takes more time to be found is the femoral head. 

Since the femoral head is placed in the acetabulum, which has all the other pelvis’ 

structures surrounding it, this requires an intricate algorithm to detect the position of the 

femoral head. To perform this, some relationships between the femur’s structures, mentioned 

before in chapter 2, are taken into consideration. The two relationships used in this work are: 

the angle between the shaft and the neck is, in average, 135º [7], and the highest point of the 

great trochanter has the same height as the centre of the femoral head [7]. Having both 

structures defined, the intersection of these conditions gives an approximate location of the 

centre of the femoral head. 
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Figure 7.5 – Femur radiograph demonstrating the relationships between the femoral inner structures 
with the femoral shaft axis (blue line), the neck axis (red line), the highest detected point of the 
greater trochanter (yellow point) and the perpendicular line to the shaft axis (green line). The 

intersection of the perpendicular line to the shaft axis and the neck axis determines the head centre 
(black point) 

 

As it is seen from figure 7.5, the intersection between the two mentioned relationships 

allow for the approximate detection of the femoral head centre. 

Delving deeper in this process, the shaft axis is determined since the knowledge of the 

borders of the shaft is obtained from the gradient image. From the same image, the femoral 

neck borders are retrieved. The two closest opposing points in the femoral neck warrants the 

definition of the neck midpoint. With the neck-shaft angle – 135º - and the defined neck 

midpoint, the neck axis can be determined. In this figure, it is perceivable that the trochanter 

highest point established is not correct, as the greater trochanter projects itself to the back 

and that portion of the structure achieves a greater height. However, the difference is not 

significant since the neck axis can also vary slightly. It is important to note that to make out 

the height of which the centre of the femoral head should have, stipulated by the green line, 

we should look at the perpendicular of the femoral shaft axis since the inclination of both the 

bone and also the scan itself can heavily impact that measurement. 

From this approximate head centre, a window 50x50 pixels is set around the set head 

centre. A range of radii is set around a relationship found by Kazemi et al. [91]. In this work it 

was found that the ratio between the femoral head diameter and the femoral neck diameter is 

averaged at 1.33. Hence, the neck diameter was averaged out and a mean head diameter was 

calculated. Halving this diameter the range of radii was set from the average radius minus 5 

pixels to the average radius plus 5 pixels with 0.2 pixels as the step. From these ranges of 

possible head centres and radii, an iterative process was carried out. In each iteration, the 

resulting circumference verified for the presence of positive pixels regarding the binary 

thresholded image obtained previously. For each pixel found, a point would be added to its 

score. In the end of the iterative process, the circumference with the highest score would be 



 

Femur Analysis Tool  46 

46 

 

selected and consequently its centre and radius was saved. The result can be seen in figure 

7.6. 

 

 
 

Figure 7.6 – Femur radiograph with the selected head centre and the circumference resulting 
in the femoral head 

 

7.3.4 -  Establishing the reference points and defining the 

model 

From the defined borders, reference points are defined. These points are exhibited in figure 

7.7 
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Figure 7.7 – Reference points displayed on the femoral radiograph labelled with an identifying letter 
 

The aforementioned points will help define the femoral model. Six points, three for each 

border, will define the shaft – points A, B, C, O, P and Q in figure 7.7. Point E is defined as the 

most left point in the greater trochanter. Point F, on the other hand, is defined as the top point 

of the greater trochanter. Point G is characterized by its lowest y coordinate on the top border. 

Points H and M are determined by being the opposing points in the femoral neck with the lowest 

distance between them. Points J and K determine the diametrically opposite points in the 

femoral semi-circle. The remaining points, points D, I, L and N, serve as auxiliary points to fit 

the model to the true shape of the femur. 

These reference points act as guides to outline the femur model. In the shaft, a straight 

line is determined between consecutive points. Since the curvature is negligible, the 

approximation of the shaft to a pair of polygons does not cause a significant error. Between 

points J and K, a semicircle will define the femoral head. Also, between points E and F a straight 

line is also determined, for the same reasons as mentioned previously – low curvature between 

these two points. Between the remaining points, however, a spline curve must be defined to 

follow the border of the femur. The result generates a model that can be seen in figure 7.8. 
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Figure 7.8 – Femoral model (blue line) represented on top of the femur radiograph 
 

The process of generation of spline curves will be explained in the following subchapter. 

7.3.5 -  Spline curves  

To compute the spline curves needed for the femur model, the cubic spline interpolation 

method is applied. Given some reference points, the cubic spline interpolation method creates 

a polynomial curve up to the third degree which best fits the reference points given. In this 

subchapter, a simple explanation of cubic spline interpolation will be given as a starting point 

for the algorithm applied to obtain the spline curves. 

Given 𝑛 number of points, 𝑛 − 1 curves are created between these points. An example is 

shown in figure 7.9. 
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Figure 7.9 – Example of spline curve between 4 points 
 

Between each point the equation of a curve is defined, which is represented in its general 

coefficients in equations (7.12) to (7.14). 

 

𝑠0(𝑥) = 𝑎0  +  𝑏0(𝑥 − 𝑥0) + 𝑐0(𝑥 − 𝑥0)
2 + 𝑑0(𝑥 − 𝑥0)

3 

 

(7.12) 

 

𝑠1(𝑥) = 𝑎1  +  𝑏1(𝑥 − 𝑥1) + 𝑐1(𝑥 − 𝑥1)
2 + 𝑑1(𝑥 − 𝑥1)

3 
 

(7.13) 
 

𝑠2(𝑥) = 𝑎2  +  𝑏2(𝑥 − 𝑥2) + 𝑐2(𝑥 − 𝑥2)
2 + 𝑑2(𝑥 − 𝑥2)

3 (7.14) 
 

The coordinates of each point are known, the unknown variables in these equations are the 

coefficients of the equation for each curve. In this case we have 12 unknown variables, and 

therefore we need 12 equations that can give us the solution. To get these values there are 

several conditions that need to be computed and these conditions will be outlined here.  

For each curve, the starting point is known and for the last curve, the finishing point is 

known. Therefore, it is possible to determine equations (7.15) to (7.18) 

 

𝑠0(𝑥0) =  𝑦0 

 

(7.15) 

 

𝑠1(𝑥1) =  𝑦1 

 
(7.16) 

 

𝑠2(𝑥2) =  𝑦2 

 
(7.17) 

 

𝑠2(𝑥3) =  𝑦3 

 
(7.18) 
 

Between each curve, there is also an equality in the point that separates both curves. In 

those, matching conditions which are represented in equations (7.19) to (7.20), it is achieved, 

 

𝑠0(𝑥1) = 𝑠1(𝑥1) (7.19) 
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𝑠1(𝑥2) = 𝑠2(𝑥2) (7.20) 
 

 

So far, there are a total of 6 equations for 12 unknown variables, meaning there still needs 

to be 6 conditions to be uncovered. 

Between consecutive curves, the transition should be smooth. In mathematical terms 

smoothness, this is defined by equating the first and second derivative of both curves. These 

relations are presented in equations (7.21) to (7.24). 

 

𝑠0′(𝑥1) = 𝑠1′(𝑥1) 
 

(7.21) 

 

𝑠1′(𝑥2) = 𝑠2′(𝑥2) (7.22) 
 

𝑠0′′(𝑥1) = 𝑠1′′(𝑥1) 
 

(7.23) 
 

𝑠1′′(𝑥2) = 𝑠2′′(𝑥2) (7.24) 

  

In both ends boundary conditions can also be defined. In this case, and in the example 

applied in the algorithm, the ends are defined as a natural boundary. To follow this condition 

equations (7.25) to (7.26) are applied, which determine the last two equations required to 

obtain the coefficients. 

 

𝑠0′′(𝑥0) = 0 

 

(7.25) 

 

𝑠2′′(𝑥3) = 0 (7.26) 
 

The computation of set of equations (7.15) to (7.26) will determine the coefficients of the 

curves shown in the example. 

The number of coefficients will vary depending on the number of points defining the spline 

curve. However, in the same amount, the number of conditions can be defined making the 

problem solvable. 

Regarding the computational femoral model, three separate spline curves were computed, 

each one having different curves between each consecutive point. Resorting to figure 7.7, one 

spline curve was defined from points C to E, another between point F and point J, and the last 

one from point K to point O. Using the method described before with the same conditions, the 

algorithm is able to determine the coefficients for the spline curves and defining it so that the 

model is complete. 

7.3.6 -  Mesh creation 

Following the determination of the femur computational model a node mesh is defined by 

the algorithm. After an input by the user determines the density of the mesh, the first patch 

to be populated is the femoral head patch. The head’s semicircle is divided into radial divisions 

and circumferential ones. However, to maintain the mesh density, a linear regression is done 

between the perimeter of each radial division to calculate how many circumferential divisions 

should be performed. From this starting patch, the entire model is populated with nodes always 
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aiming to maintain the node density using the same linear regression applied to the femoral 

semicircle. The other remaining patches follow the same principle. First the number of divisions 

in each longitudinal border is defined and, after that, the inside of the patch is populated with 

nodes, building the resultant mesh. 

The complete nodal mesh can be seen in figure 7.10. 

 

 
 

Figure 7.10 – Nodal mesh displayed of the femoral computational model 
 

7.3.7 -  Triangular elements 

The step following the nodal mesh creation is the formation of the triangular elements that 

are established using the created nodes. To perform this, the MATLAB function delaunay is 

used. 

This function creates triangles between a set of points assuring no other points are inside 

each triangle. Despite the function’s utility, it still generates unwanted elements. To rule out 

the undesired elements, two verification methods were applied. 

For the first one, each element’s angles were analysed. Even though the triangular elements 

inside the model are not perfectly equilateral, their angles don’t have exceedingly high or 

exceedingly low values. This is not true for the elements formed outside the model. Therefore 
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the first verification method is represented in equation (7.27) and it was applied to all three 

angles in each triangular element. 

 

𝑎𝑛𝑔𝑙𝑒 >  
𝜋

9
 ∧  𝑎𝑛𝑔𝑙𝑒 <  𝜋 −

𝜋

9
 

 

(7.27) 

 

The second verification method relates to the element’s area. Since the nodal mesh density 

is approximately constant throughout the model, the elements’ area should be relatively equal 

through the model. This, however, fails to occur in elements appearing outside the element in 

which they have either an incredibly large area or incredibly small. To rule out the elements 

outside the model, the area is calculated for every element. After that, the average and 

standard deviation is computed and the verification method is applied using equation (7.28), 

in which 𝑎𝑣𝑔𝑎𝑟𝑒𝑎 represents the average, 𝑠𝑡𝑑𝑎𝑟𝑒𝑎 describes the standard deviation and 𝑎𝑟𝑒𝑎 

relates to each element’s area. 

 

𝑎𝑟𝑒𝑎 >  𝑎𝑣𝑔𝑎𝑟𝑒𝑎 − 2 ∙ 𝑠𝑡𝑑𝑎𝑟𝑒𝑎  ∧  𝑎𝑟𝑒𝑎 <  𝑎𝑣𝑔𝑎𝑟𝑒𝑎 + 2 ∙ 𝑠𝑡𝑑𝑎𝑟𝑒𝑎 
 

(7.28) 

 

In figure 7.11 the elements generated are represented, both before and after the 

verification methods are applied. 

 

 
(a)                                       (b) 

 
Figure 7.11 – Elements generated using the delaunay function before applying the 

verification methods – (a) – and after applying the verification methods – (b) 
 

7.3.8 -  From coordinates to dimensions 

After having defined the elements and the nodal mesh, one last step is required before 

performing the finite element analysis. This step is the conversion of image coordinates to 

physical dimensions. To do this, a relation found in Polishchuk et al’s work [92] was enforced. 
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In an article from 2013, Polishchuk et al. aims to predict the femoral head size given the 

patient’s age, height, gender and race, following equation (7.29). 

 

𝐹𝐻𝑆(𝑚𝑚) = 10.5 + 3 ∙ 𝐺 + 0.53 ∙ 𝐻 + 0.0015 ∙ 𝐴 − 1 ∙ 𝑅 
 

(7.29) 

 

In this equation, 𝐹𝐻𝑆 stands for the femoral head size which is measured, in turn, through 

its diameter and this measurement is predicted in millimetres. 𝐺 represents the gender and it 

takes the value of 1 for men and 0 for women. 𝐻 is the height of the patient in inches. 𝐴 

expresses the patient’s age in years and lastly, 𝑅 describes the patient’s race taking the value 

of 0 for Caucasian and 1 for others. Using this equation, the authors obtained an intra-class 

correlation coefficient (ICC) of 0.9 between predicted and implanted femoral head size. 

The relevance and impact of the last parameter of race was somewhat questionable since 

no other information was found on the impact of race in determining the femoral head size, 

and it would also only impact a maximum of 1 mm. Therefore, in the algorithm developed this 

factor is not taken into consideration leaving the resultant expression to compute the femoral 

head size as demonstrated in equation (7.30). 

 

𝐹𝐻𝑆(𝑚𝑚) = 10.5 + 3 ∙ 𝐺 + 0.53 ∙ 𝐻 + 0.0015 ∙ 𝐴 
 

(7.30) 

 

With this relationship established, a simple linear correlation can determine the dimensions 

of the entirety of the nodes. 

7.3.9 -  Determination of the stiffness matrix 

To implement the finite element method the algorithm was based on the formulation 

described in chapter 5. 

To compute each element’s stiffness matrix, the definition of its 𝑩 matrix, 𝑫 matrix and 

the volume of the element – 𝑑𝑉 – is required as described in equation 5.9. Starting with the 

determination of the 𝑩 matrix, the derivatives of the shape functions for each node need to be 

established, equation (5.11). Since the algorithm works solely with triangular elements, there 

is no need to resort to the natural coordinate system. 

The shape function determines the impact of each node in the deformation or stress inside 

the element, when applied to solid mechanics. An example of its application can be found in 

equation (7.31), where 𝒖(𝑥𝐼) stands for the element’s displacement, 𝑵(𝑥𝐼) the element’s shape 

functions and 𝒖 the nodal displacements. 

 

𝒖(𝑥𝐼) = 𝑵(𝑥𝐼) ∙ 𝒖 (7.31) 

 

The element’s nodal displacements can also be defined through equation (7.32). 𝒑(𝑥𝐼) 

defines a vector with the elements coordinates, represented in equation (7.33) and 𝒂 the vector 

with coefficients correlating the element’s position with its displacement. It is important to 

highlight that the algorithm works with 2D finite element analysis. Therefore this demonstration 

will be exploring that same condition. 

 

𝒖(𝑥𝐼) = 𝒑(𝑥𝐼)
𝑻 ∙ 𝒂 (7.32) 
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𝒑(𝑥𝐼) = [1 𝑥𝐼 𝑦𝐼] (7.33) 

 

When equation (7.32) is applied to the three nodes forming the element, equation (7.34) 

arises in which the 𝑪 matrix represents the coordinates for the nodes as represented in equation 

(7.35). 

 

𝒖 = 𝑪 ∙ 𝒂  ⇒   𝒂 = [𝑪]−1 ∙ 𝒖 (7.34) 

 

𝑪 = [

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

] 
(7.35) 

 

 

Replacing the 𝒂 vector in equation (7.32), equation (7.36) is the result, and comparing it 

with equation (7.31), the equality found in equation (7.37) can be established. 

 

𝒖(𝑥𝐼) = 𝒑(𝑥𝐼)
𝑻 ∙ [𝑪]−1 ∙ 𝒖 (7.36) 

 

𝑵(𝑥𝐼) = 𝒑(𝑥𝐼)
𝑻 ∙ [𝑪]−1 (7.37) 

 

As mentioned previously, since only triangular elements are being used, the 𝒑(𝑥𝐼)
𝑻 vector 

is defined as seen in equation (7.33). Therefore, while computing the element’s shape function 

derivatives all values are constant and do not depend on the point’s position. Hence, simply 

resorting to the nodal coordinates, which are present in the 𝑪 matrix, the derivative of the 

shape function is reached and with it, the 𝑩 matrix is determined through equation (5.11). 

To estimate the elasticity matrix, 𝑫, two physical properties are required which are the 

elasticity modulus – 𝐸 – and the Poisson coefficient - 𝑣. For the problem addressed with the 

algorithm, the plane strain deformation theory is considered, thus to compute the 𝑫 matrix, 

the equation found in (5.10) is used. While the Poisson coefficient is constant throughout the 

bone [93], having a value of 0.33, the elasticity modulus depends on the apparent density of 

the bone. This was previously explored in chapter 2 and, using Belinha’s [12] proposed law, the 

Young’s modulus can be computed. To obtain the apparent density of bone for each region a 

linear correlation was created in which the maximum intensity possible - 1 - found inside the 

bone related to the highest apparent density value – 2.1 g/cm3 – while the lowest pixel intensity 

-0- corresponded to the lowest apparent density value – 0.1 g/cm3. It is worth pointing out that 

for this finite element analysis, a single integration point was used. Accordingly, the intensity 

evaluated for the centre of each element was calculated through an average of the element’s 

centre and its neighbourhood, as described in equation (7.38), in which 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛 represents 

the calculated average and 𝑖(𝑥𝑛 + 𝑖, 𝑦𝑛 + 𝑗) represents the intensity of each neighbouring pixel. 

 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛 = 
∑ ∑ 𝑖(𝑥𝑛 + 𝑖, 𝑦𝑛 + 𝑗)

1
𝑗=−1

1
𝑖=−1

9
 

 
(7.38) 

 

Due to the nature of radiographs and the computational model two main problems arose. 

If the femoral border is placed outside the bone, it considers that region as low density bone, 

since the background has a lower intensity than the bone. Also, for the femoral head, the 

acetabulum is also contributing to the increase of intensity of those pixels.  Regarding the first 

problem mentioned, the points that were part of the border of the model were identified and 

for each point the difference between the point’s computed density and the closest point of 
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the model that was not part of the border was calculated. If that difference was larger than 

0.2 g/cm3 in absolute value, the border point would have the apparent density of the point 

inside the model. With respect to the femoral head, two cumulative steps were considered in 

an attempt to solve this problem. Firstly, the average of the intensity of the femoral head 

points was calculated as was the average intensity of the femoral neck points. The difference 

between these averages was computed, as demonstrated in equation (7.39). The resulting 

difference was subtracted to all the points of the femoral head in order to obtain results closer 

to the reality, shown in equation (7.40), where 𝑔(𝑥, 𝑦) represents the previous pixel intensity 

from the femoral head points and ℎ(𝑥, 𝑦) represents the new pixel intensity for femoral head 

points. 

 

𝑑𝑖𝑓𝑓 = 𝑎𝑣𝑔ℎ𝑒𝑎𝑑 − 𝑎𝑣𝑔𝑛𝑒𝑐𝑘 (7.39) 

 

ℎ(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) − 𝑑𝑖𝑓𝑓 (7.40) 

 

While this attenuates the difference between the neck and the head there is still an obvious 

drop between densities found in the interface of the femoral head and femoral neck, as seen 

in figure 7.12. 

 

 
 

Figure 7.12 – Representation of obtained apparent densities on the femoral model with a coloured 
axis. 

 

To mitigate this issue, another method is applied. This method evaluates the distance of 

each femoral head point to the neck and calculates the differences of intensities between each 

femoral head point and the closest femoral neck point, represented in equation (7.41). 

Multiplying by a factor which depends on the distance between the two points, displayed in 

equation (7.42), each head point has the calculated difference subtracted to its intensity value 
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– equation (7.43). With this, the computation of the femoral head points’ intensities is finished 

and the apparent density can be calculated with ease. 

 

𝑑𝑖𝑓𝑓 = ℎ(𝑥, 𝑦) − 𝑛(𝑥, 𝑦) (7.41) 

 

𝑓𝑎𝑐𝑡𝑜𝑟 = −
1

𝑟
∙ 𝑑 + 1 

 

(7.42) 

 

𝑖(𝑥, 𝑦) = ℎ(𝑥, 𝑦) − 𝑑𝑖𝑓𝑓 ∙ 𝑓𝑎𝑐𝑡𝑜𝑟 

 
(7.43) 

 

 

In equation (7.41), ℎ(𝑥, 𝑦) represents the intensity of each femoral head point and 𝑛(𝑥, 𝑦) 

the intensity of the closest neck point. For equation (7.42), 𝑟 is the radius for the femoral head 

and 𝑑 stands for the distance between the femoral head point and the neck point. Lastly, for 

equation (7.43), 𝑖(𝑥, 𝑦) reproduces the new femoral head point intensity. 

The accumulation of both methods described creates a smooth and viable computation of 

apparent densities as is shown in figure 7.13 

 

 
 

Figure 7.13 – Representation of obtained apparent densities on the femoral model with a coloured 
axis after applying both correction methods 

 

Having calculated the apparent densities, the elasticity modulus can be determined with 

the equation (2.6) established by Belinha’s proposed law. From then on, the 𝑫 is calculated 

using equation (5.10). 

To finally determine the element’s stiffness matrix, the volume for each element is 

computed. Since, the mesh is composed of triangular elements, the element’s volume can be 

calculated using equation (7.44). In this equation, 𝑉 acts as the element’s volume, 𝐴 expresses 
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the area of the triangle that defines the triangular element and  𝑡 depicts the thickness of the 

element. 

 

𝑉 = 𝐴 ∙ 𝑡 (7.44) 

 

While the area of each element differs from each element, the thickness is a standard 1 

mm. This thickness is determined by the average shaft diameter. The area on the other hand 

is set by half the norm of the cross product of two vectors that define the triangle, as 

represented in equation (7.45). 

 

𝐴 =
1

2
 ‖𝒗𝟏𝟐 × 𝒗𝟏𝟑‖ 

(7.45) 

 

 

In this equation, 𝒗𝟏𝟐 serves as the vector between points 1 and 2 in a triangle, while 𝒗𝟏𝟑 

portrays the vector between points 1 and 3. 

Finally, the element’s stiffness matrix can be computed through equation 5.9, and after all 

the elementary stiffness matrices are computed they are assembled in a global matrix as 

mentioned in chapter 5 with the example shown in equation (5.20). 

7.3.10 - Forces applied and essential boundary conditions 

Following the computation of the global stiffness matrix, the applied forces and the 

essential boundaries are applied. 

Regarding the applied forces, there are two different forces which are taken into 

consideration. The mechanical case considered, as worked on by Belinha et al. [94], has a 

downward force applied in the femoral head with approximately twice the weight of the patient 

with an angle of 24º and an upward force applied in the greater trochanter with an angle of 

28º, having a magnitude of 30% of the force applied in the femoral head. This mechanical case 

is represented in figure 7.14 and mimics the situation of a patient standing on one leg where 

the force applied into the femoral head is caused by the body weight, while the applied into 

the greater trochanter is caused by the abductor muscles [94]. 
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Figure 7.14 [94] – Mechanical situation considered for the analysis  
 

In the situation presented in Belinha’s work [94], nothing is said regarding the correlation 

between the weight of the patient and the magnitude of the forces applied, because his work 

followed the suggestion proposed by Beaupré et al. [95] and Rybicki et al. [96]. In discussion, 

it was ascertained that the magnitude of the forces presented in figure 7.13 were a result of a 

patient weighing 100Kg. 

Notice that the femur is not supporting the body’s full weight, but simply the weight of the 

structures above it. To calculate this distribution, the values proposed by Törzeren [97] are 

used, which are represented in table 7.1, that distribute the body’s full weight into its 

components by a percentage. 

 

Body part Percentage 

Torso 50.8% 

Head 7.3% 

Arm 2.7% 

Forearm 1.6% 

Hand 0.66% 

Table 7.1 [97] – Body weight distribution into its upper components 

 

Totalling a percentage of approximately 68%, the femur supports the weight of around two-

thirds of our body, and this weight will be applied to the femoral head in the mechanical 

situation previously seen. 

Both forces are applied throughout a surface in bone, as is evident in the representation in 

figure 7.13. That distribution was considered as a parabolic one, in which the integral should 

add up to the total force applied, as represented in figure 7.15. 
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Figure 7.15 – Representation of the function of distribution of forces throughout a surface 
 

 

This method was applied for the developed algorithm in which the result can be seen in 

figure 7.16. 

 

 

 
 

Figure 7.16 – Representation of the distribution of forces applied in the femoral model  
 

As performed before, it is paramount that the femur is presenting itself in an upright 

position so as to have the angles properly calculating the distribution of forces in the x and y 

axis. The magnitude of the forces is projected into the x and y axis of the picture, and a force 
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vector, 𝑭, is created. This vector contains the force of all nodes in the x and y direction, having 

a dimension of 2𝑛 × 1, being 𝑛 the number of nodes existent in the model. For the nodes, in 

which the aforementioned forces are applied, the projection of the value is placed while in 

others that value is 0. 

After the creation of the force vector, the essential boundary is defined. For analysed cases, 

the essential boundary defined is the fixation of the bottom of the shaft. In this fixation, no 

movement is allowed either in the horizontal or the vertical direction. To enforce this fixation 

the penalty method is applied as mentioned in chapter 5. That penalization occurs for the nodes 

that constitute the bottom of the shaft as represented in figure 7.17 

 

 
 

Figure 7.17 – Representation of elements nodes (black points) with the fixated nodes highlighted 
(green points) 

 

 

Since, the nodes which the essential boundary is applied do not have forces applied on 

them, no penalty is enforced in those nodes in the force vector. 

With the penalised stiffness matrix, and the force vector defined, the displacement vector 

for each node can be calculated using equation (5.22). 
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7.3.11 - Stress and strain calculation 

As seen in chapter 5 with equations (5.24) and (5.25), the stress and strain tensors for each 

element can be calculated using the element’s elasticity matrix, 𝑫, and displacement 

differentiation matrix, 𝑩. This is the following step performed by the algorithm, however these 

are not the displayed properties. 

From the stress tensor, which takes the form displayed in equation (7.46), the software 

computes the effective, or von Mises, stress.  

 

𝝈 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑦
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧𝑧

] 
(7.46) 

 

 

To compute the von Mises stress, the principal stresses are computed through the 

eigenvalues of the stress tensor. This generates two values, since the considered case is a plane 

stress problem. To calculate the von Mises stress from these eigenvalues, the equation (7.47) 

is used. 

 

𝜎𝑣𝑚 = √(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 (7.47) 

 

In this equation, 𝜎1, 𝜎2 and 𝜎3 represent the calculated eigenvalues while 𝜎𝑣𝑚 refers to the 

generated von Mises stress. 

Besides the von Mises stress, the ratio between it and the ultimate compression stress is 

also calculated through equation (7.48), where 𝜎𝑐 acts as the ultimate compression stress. 

 

𝑟𝑎𝑡𝑖𝑜 =
𝜎𝑣𝑚
𝜎𝑐

 
(7.48) 

 

 

The ultimate compression stress however is not yet known, and its calculation is defined by 

Belinha’s proposed law [12] where the value for the ultimate compression stress relies on the 

apparent density of bone in the considered element. The equation demonstrating the 

computation of the apparent density can be found in equation 2.7. This ratio serves as a 

measure of endangerment of fracture risk of bone. If the ratio is above 1, this means the 

effective stress felt on the element is higher than its ultimate stress, which is an indicator for 

potential bone fracture/damage. 

7.4 -  Software Interface 

The developed software presents an interface that allows the user to navigate through the 

software and contains several valuable characteristics. In this subchapter, some screenshots of 

the software’s interface are displayed, and the functions available to the user are thoroughly 

detailed. 
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Figure 7.18 – Main menu interface 
 

The main menu interface presents three buttons. The “Help” button generates a pop-up 

window with the authors email for any questions regarding the software. “Exit” terminates the 

program and, lastly, “Analyse” proceeds to the analysis of a femoral radiograph. By pressing 

the “Analyse” button, a pop-up window opens allowing for the user to select a femoral 

radiograph to be analysed. 

After this, another window arises, in which the user inputs the patient’s information, 

namely its age, weight in Kg, height in cm and gender – figure 7.19. Additionally, this interface 

presents the selected image in the side. 

 

 
 

Figure 7.19 – Patient information interface 
 

Following the input of the patient’s information, a window is launched for the radiograph 

to be cropped, if necessary. 
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Figure 7.20 – Image cropping interface 
 

With this tool, the software can read double femoral radiographs – as frequently happens 

in hip X-rays – and crop the image at this stage. In the left-hand side an example on how the 

cropping should be performed is presented. In the case that the crop is not necessary, the user 

can simply hit the “Skip” button. 

After the orientation detection is performed, the result might be unclear, if it falls on those 

that do not meet the requirements mentioned previously. If that occurs, an interface window 

lets the user manually select the orientation of the femur – figure 7.21. 

 

 
 

Figure 7.21 – Orientation selection interface 
 

From then, the background algorithm computes de gradients and the interface window 

regarding the thresholding step appears, as shown in figure 7.22. 
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Figure 7.22 – Thresholding interface 
 

This interface allows the user to select the appropriate threshold to generate the border-

defining binary images for both the horizontal gradient and the vertical gradient. The two limits 

can be set by the user either resorting to the slider bar which ranges from 0 to 1, or using the 

writable text boxes to the side. The “Test” button applies the thresholds to the gradients and 

displays the image seen on the left of figure 7.22, which is a union of the binary image from 

the horizontal threshold and the vertical threshold. 

When the user is satisfied with the image portrayed, the “Select Threshold” button is 

pushed and the model retrieval algorithm ensues. 

The subsequent interface shows a possible model for the femur, as is represented in figure 

7.23. 
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Figure 7.23 – Femur model interface 
The interface allows the user to either proceed with the analysis or correct the model 

suggested. In figure 7.23, we see some problems with the femoral head. Thus, by pressing the 

“No” button, an interface permitting the model correction emerges, represented in figure 7.24. 

 

 
 

Figure 7.24 – Femur model correction interface 
 

This interface presents the user with the reference points in which the femoral model is 

based on. The arrangement of these points should follow the ones described in figure 7.7. To 

change any point, the user uses the point selection tool in the top left corner to select the 

correct position, and making use of the dropdown list, selects the point he wishes to change. 

The “Set Point” button confirms the change and displays the point’s new position. After all 

corrections are performed the button “Conclude Correction” is pressed and the window 

confirming the femoral model opens again with the recent femur model. The femoral model 

should look like the one demonstrated in figure 7.25. 
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Figure 7.25 – Femur model presented after corrections 
 

Having selected the “Yes” button in the interface, the algorithm performs the mechanical 

analysis on the resulting model. As soon as the calculations are executed, the results interface 

is displayed, as it is seen in figure 7.26. 

 

 
 

Figure 7.26 – Results interface displaying the calculated ratio 

 

By default, this interface first presents the ratio between the effective stress and the 

ultimate stress, however, by interacting with the analysis buttons, the user can see the von 

Mises stress, by pressing the button “Stress”, the aforementioned ratio, and the risk which 
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simply highlights points with a ratio higher than 1. In figure 7.27, the interface displays the von 

Mises stress distribution throughout the model. 

 

 
 

Figure 7.27 – Results interface displaying the von Mises stress 
 

Two important tools worth mentioning are the “Rescale” and “Save Image” buttons. The 

first one, applies a rescale to the image if the zoom tool is used. This is particularly helpful if 

the user intends to investigate specific areas such as the femoral neck and wants to see with 

better detail the distribution of the chosen property. In figure 7.28, the result is presented. 

 

 
 

Figure 7.28 – Results interface displaying the ratio with a new scale appropriate for the exhibited 
window 
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The “Save Image” button saves the image displayed on the axis into an image file on a 

chosen directory for the user. 

Lastly, the “Return to Main Menu” button sends the user to the main menu interface where 

the process can restart.



 

 

 

Chapter 8 

Results and discussion 

8.1 -  Results 

 

In this section, the results are presented for the following five cases: 

 

• 50 year-old male patient, weighing 75Kg, with 175cm 

• 50 year-old male patient, weighing 120Kg, with 175cm 

• 50 year-old male patient, weighing 75Kg, with 175cm (with a different radiograph) 

• 50 year-old male patient, weighing 75Kg, with 175cm diagnosed with a chondrosarcoma 

• 50 year-old male patient, weighing 75Kg, with 175cm diagnosed with an osteosarcoma 

 

 The results are displayed in their image form accompanied with the original scan. These 

results are presented with the original radiograph and the computed apparent density 

distribution, effective stress and ratio between the effective stress and the ultimate 

compression stress. With these outcomes, the aim is to assess the effect of weight with the 

same conditions, and also evaluate the software’s response to different radiographs. 

 The discussion of the results is present in the following subchapter. 
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Figure 8.1 – Apparent density, von Mises stress and ratio distribution (from top right to 
bottom right) with original radiograph (left) from 50 year-old male patient, weighing 75Kg, 

with 175cm 

 



 

71  Results and discussion 

71 

 

 
 

 
 

 
 
 

 
Figure 8.2 – Apparent density, von Mises stress and ratio distribution (from top right to 

bottom right) with original radiograph (left) from 50 year-old male patient, weighing 120Kg, 
with 175cm 
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Figure 8.3 – Apparent density, von Mises stress and ratio distribution (from top right to 
bottom right) with original radiograph (left) from 50 year-old male patient, weighing 75Kg, 

with 175cm 
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Figure 8.4 – Apparent density, von Mises stress and ratio distribution (from top right to 
bottom right) with original radiograph (left) from 50 year-old male patient, weighing 75Kg, 

with 175cm diagnosed with a chondrosarcoma 
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Figure 8.5 – Apparent density, von Mises stress, ratio and risk distribution (from top right to 
bottom right) with original radiograph (left) from 50 year-old male patient, weighing 75Kg, 

with 175cm diagnosed with an osteosarcoma 
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8.2 -  Discussion 

From the set of images presented, the results are displayed as images as well. This was 

chosen due to the nature of the software being the qualitative evaluation of the outcomes and 

not a quantitative evaluation. In figure 8.1, the algorithm showed a good performance in the 

determination of the model. It did have some problems with the determination of the femoral 

head, as seen in a previous chapter, demonstrated in figure 7.23. However with the adjusted 

corrections, the resulting model allows a FEA, which produces good results as shown in figure 

8.1. The apparent density obtained is congruent with the real values. The highest values are 

presented in the cortical layer of bone while the trabecular bone shows a decrease in apparent 

density. This is seen in the middle portion of the shaft, in the greater trochanter and femoral 

neck. Between the medial and lateral side of cortical bone there is some difference shown in 

apparent density which is due to the nature of the radiographs. In these, the lateral portion of 

bone is usually darker in comparison to the medial portion. When analysing the stress applied 

in the elements, the values match up to the expected values, with the cortical lateral portion 

of the shaft saturating most of the stress in the bone (with a slight value raise in the upper neck 

area). When analysing the ratio between von Mises stress and ultimate stress, this is mostly 

observed in the lateral shaft region. Due to the nature of the stress distribution, this area 

obtains the higher values. Nonetheless, these values are low and not pose a risk of fracture at 

all.  

Between figures 8.1 and 8.2, the only difference was the weight of the patient. Since the 

model is the same, and the apparent densities are too, the pattern of the stress distribution is 

the similar. However the values are increased, since the forces applied are also increased. In 

the first figure, the stress values go up to near 100 MPa and the ratio up to 0.65. However, in 

the second figure, the effective stress jumps to close to 210 MPa and the ratio up to 1.4. The 

ratio values seen in figure 8.2, show an increased fracture risk. However, the points with values 

above 1 are minor and are very close to the lateral border. This could be explained by the fact 

that the lateral border of the femoral shaft picks up lower intensity regions and, hence, displays 

a lower apparent density region. 

In figure 8.3 another radiograph is tested with the metrics for the patient of 50 years old, 

175 cm and 75 Kg. Regarding the model generation, the algorithm is capable of detecting the 

femur’s shape. However, the finite element analysis reaches contradictory results with the 

expected outcome. While the von Mises stress distribution looks coherent, the apparent density 

and ratio tell a different story. Due to the improper apparent density obtained throughout the 

model, where the femoral head with trabecular bone shows a greater density than cortical 

bone in the left side of the shaft, the calculated ratios are inconsistent with reality, showing 

the region with largest ratio on the cortical portion of the shaft. When the ultimate stresses 

are analysed, figure 8.6, it is possible to observe that where the cortical lateral portion of the 

shaft should have a higher ultimate stress it is still showing decreased values. 
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Figure 8.6 – Ultimate stress distribution for the radiograph obtained in figure 8.3 
 

The darkening of the lateral region heavily affects this model and in the bottom region this 

effect is even more obvious. Adding to this the transition between cortical bone and trabecular 

bone is not as evident as in other radiographs. The developed algorithm is not capable to 

efficiently distinguishing cortical and trabecular bone if their intensity values are close. 

Therefore, the algorithm performance increases with better contrast between these two 

regions. 

For the last two radiographs, the algorithm was not able to assert a femoral model. In 

radiograph of figure 8.4, the presence of high intensity transitions in the background did not 

allow the algorithm to detect the model. Regarding the radiograph of figure 8.5, the blurriness 

of the radiograph made it impossible to get a good detection with the gradient calculation. For 

these scans, the reference points were manually inserted and the model was developed from 

those points. The algorithm was able to execute all the remaining steps. 

In figure 8.4, the radiograph displays a femur with a chondrosarcoma. Despite the presented 

mass near the lesser trochanter region the algorithm is not able to detect said mass. In the 

apparent density distribution, a decrease is seen around that region but only a slight one. The 

biggest decreases occur in the femoral head. Upon discussion with some physicians, it was found 

that the regions marked with a low apparent density are merely artefacts produced by the 

radiograph itself. Since the overall image has a bright intensity, the values for apparent density 

are presented with high values across the model. In fact, with the model having the lowest 

value of apparent density at around 1.45, the entire bone is considered as cortical bone. 
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Clearly, this is a problem and the need for higher contrast between trabecular and cortical 

regions is reinforced. 

Lastly, regarding figure 8.5, a radiograph is presented with a massive osteosarcoma in the 

femoral neck region. This osteosarcoma is fairly well detected by the algorithm, as visible from 

the apparent density distribution presented. And it becomes even more visible when observing 

the ratio distribution on the computational model. When the radiographs show a heavy loss of 

bone mass due to a tumour, the algorithm can detect the tumours presence as is displayed in 

figure 8.5. This is further supported when figure 8.7 is observed, displaying all the regions from 

the radiograph presented in figure 8.5, with a ratio superior to 1, meaning there is a risk of 

fracture. 

 

 
 

Figure 8.7 – Representation of elements with a ratio superior to 1 presented in dark red and under 1 
presented in blue 

 

Analysing all the results attained, it is possible to arrive at some conclusion regarding the 

developed software. If the radiograph shows pronounced contrast between bone and the 

background, the algorithm is able to achieve a possible femoral model. Though it may have 

some slight errors with the model, they are easily adjustable using the software’s interface. 

Also, a meaningful contrast between cortical and trabecular regions is key to reach plausible 

results. This should also be something to consider by the user when utilizing this tool. 
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Chapter 9 

Conclusions and Future Work 

The presented software is still far from being a final product. However, it is a considerable 

stepping stone for the development of a future application to be used in a clinical environment. 

Femur Analysis Tool has some hallmarks that makes it stand out, such as the automatic 

detection of the femur and its interactivity with the physician allowing it to take control of the 

femoral model at any time. The possibilities of such application reaching the clinical 

environment are promising, especially with a well-developed product, since it brings 

information to the physician which is not available to him at the moment in the form of X-ray 

analysis, providing great benefit to the world of orthopaedics. 

The developed application showed promising results with well-defined radiographs and it 

was capable to detect prevalent osteosarcomas. However, with this study some major lessons 

were learned regarding the capabilities of the software. To provide an automatic femoral 

model, the original radiograph should provide clear distinction between bone and background, 

not display high gradient values in the background and have clear image definition. Adding to 

that, to provide adequate stress analysis, the key aspect to consider is having a good contrast 

between trabecular and cortical bone.  

This field can continue its stride to achieve a software able to provide the clinicians with 

the tools they need. To create this product some further steps can be taken to increase the 

quality in femoral model generation and stress analysis. As an example, more complex 

technique can be applied to either pre-process the image or detect the femoral border in the 

X-ray. This can also be achieved using self-learning methods, such as machine learning, in which 

the algorithm adapts as it analyses data. Regarding the stress analysis, some work can be 

performed in levelling the brightness throughout the scan in order to reach correct apparent 

densities. 

Furthermore, other implementations that can be carried out is the addition of hip prosthesis 

models and performing a stress evaluation of the femoral bone with the prosthetic.  
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