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Abstract 

Each year, a critical number of people is affected by healthcare-associated infections due 

to implantation of total hip and total knee prostheses and trauma implants. These last have 

an increased tendency for infection, mainly due to the fact that they are applied to repair 

complex injuries and open fractures. Infection together with the eventual loosening of an 

orthopaedic implant explains the limited lifespan of an orthopaedic device.  

Research over the years focused on finding the best materials to develop a range of 

implant coatings with the ability to improve implant binding to the host bone tissue and avoid 

infection.  

Hydroxyapatite based coatings are still one of the most frequently used implant coatings 

in the field of orthopaedic surgery and trauma, resulting in improved implant ingrowth and a 

longer lifespan of the prosthesis. 

A great number of technologies are currently used to deposit implant coatings. While 

some of them require high temperatures that can alter coating crystallinity and compromise 

coating bioactivity, others act under room temperatures to apply coatings with limited 

thermal stability. Nevertheless coating delamination and cracking are still frequent. 

Plasma-spray is the most used and accepted method for Hydroxyapatite coating 

application. This deposition process frequently affects coating crystallinity due to the high 

temperatures used in processing. Phase transformations tend to occur, what will enhance the 

resorption process of coating leading to implant instability. 

Therefore, it is urgent for innovative and effective coating technologies, that do not 

require high temperatures, to reach the market of medical coatings, since those may help to 

accomplish a combined situation of a coating with both antimicrobial and osteoconductive 

properties. 

It is crucial for the market of medical coatings to understand this urgency and to provide 

time, attention and investment to research and development of new technologies with 

industrial applicability. An insightful way of doing this is picking existing technologies with 

basic principles reported, observed and characteristic proof-of-concept demonstrated and seek 

their implementation in industrial production.  

Ceramed S.A. is a Portuguese company with ten years of history, specialized in medical 

devices coatings, which counts on great number of partnerships focused on research and 

development of new concepts and technologies for the sector. This company comprehends 

the sector and market needs and is interested in making the industrial validation of an 

innovative technology for Hydroxyapatite coating application.   
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 CoBlast is a cleaning, roughening, and coating technology that works under room 

temperature and pressure, with minimal substrate alteration developed by a co-founder of a 

company named Enbio Limited, which can offer the solution this field is waiting for. 

This master thesis contributes to this by providing a Master Validation Plan for CoBlast 

process and performing the major Validation steps of this new coating technology.  

Process validation is a key part of the Quality Management System for medical device 

manufacturers. It intends to establish by objective evidence that a process consistently 

produces a result or a product meeting its predetermined specifications. 

On the course of this master thesis, the different phases of process validation were 

carried out. Installation Qualification was successfully accomplished, the objectives proposed 

for Operational Qualification have been meet, and a study of Performance was developed. 

Further works should focuses on going where this work had no time to go: process mass flow 

rate optimization.  

 

 

Keywords: CoBlast, Medical device coating processes, Process Validation, Bioactive 

coatings,  Hydroxiapatite. 
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Resumo 

Todos os anos, um número significativo de pessoas é afetado por infeções relacionadas 

com a assistência médica de aplicação de próteses de substituição total de anca e joelho e 

implantes de traumatologia. Estes apresentam uma tendência superior para a infeção, devido 

ao facto de serem aplicados para reparar lesões complexas e fraturas expostas. A infeção 

somada à eventual rejeição do implante ortopédico explica o tempo de vida útil limitado 

deste tipo de dispositivos.    

Ao longo do tempo, a investigação científica tem vindo a focar-se em encontrar os 

melhores materiais para desenvolver um leque de revestimentos para implantes com a 

capacidade de melhorar a fixação destes ao tecido ósseo do paciente e evitar infeções. 

Os revestimentos baseados em Hidroxiapatite continuam a ser os mais frequentemente 

aplicados em implantes médicos na área da cirurgia ortopédica e de trauma, resultando numa 

melhor aceitação do implante e num aumento do seu tempo de vida útil. 

Atualmente, um número considerável de tecnologias são usadas na aplicação de 

revestimentos em implantes. Enquanto algumas utilizam temperaturas altas que podem 

alterar a cristalinidade do revestimento e comprometer a sua bioatividade, outras atuam à 

temperatura ambiente de forma a aplicar revestimentos com baixa estabilidade térmica. 

Apesar disso, a delaminagem e fratura do revestimento continuam a ser frequentes. 

A deposição por plasma continua a ser a tecnologia mais bem aceite e utilizada para 

aplicação de revestimentos de Hydroxiapatite em dispositivos médicos. Este método afeta 

frequentemente a cristalinidade do revestimento devido às altas temperaturas envolvidas no 

processo, o que pode levar a uma rápida reabsorção do mesmo provocando instabilidade na 

zona do implante. 

Por este motivo, é urgente que tecnologias inovadoras e eficientes que não necessitem de 

altas temperaturas cheguem ao mercado dos revestimentos de dispositivos médicos. Estas 

podem ajudar a atingir o objetivo de combinar num só revestimento tanto características 

antimicrobianas como osteocondutoras.  

É crucial que este mercado entenda esta urgência e aja no sentido do investimento em 

investigação e desenvolvimento de novas tecnologias com aplicabilidade industrial. Uma 

forma perspicaz de o fazer, é trabalhar tecnologias promissoras com os seus princípios básicos 

já reportados e provas de conceito feitas e procurar a sua implementação na produção 

industrial. 

A Ceramed S.A. é uma empresa Portuguesa com dez anos de existência, especializada na 

aplicação de revestimentos em dispositivos médicos, que conta com um número de parcerias 

focadas em investigação em desenvolvimento de novos conceitos e tecnologias no sector. A 
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Ceramed entende as necessidades do mercado e está empenhada em fazer a validação 

industrial de uma tecnologia inovadora para a aplicação de revestimentos de Hidroxiapatite 

em dispositivos médicos. 

O CoBlast é uma tecnologia que limpa, cria rugosidade e reveste a uma temperatura e 

pressão ambiente, com mínima alteração do substrato, desenvolvida pelo cofundador da 

empresa Enbio Limited, que pode oferecer a solução que este sector espera.  

Esta tese de mestrado contribui para isto ao fazer um Plano piloto de Validação para o 

processo de CoBlast e ao concluir os passos chaves dessa Validação de processo. 

A Validação de Processos é uma parte chave dos Sistemas de Gestão da Qualidade em 

empresas de aplicação de revestimentos médicos. O seu intuito é provar com base em 

evidências objetivas que o processo é capaz de atingir um resultado ou produto de acordo 

com as suas especificações predeterminadas. 

No decorrer desta dissertação de mestrado, as diferentes fases de Validação do Processo 

foram levadas a cabo. A Qualificação da Instalação foi bem sucedida, os objetivos propostos 

para a Qualificação Operacional foram cumpridos, e um estudo de Performance do processo 

foi feito. 

Os trabalhos futuros deverão focar-se em fazer a otimização do fluxo de massa do 

processo. 

 

 

Palavras-chave: CoBlast, Processos de aplicação de revestimentos em dispositivos 

médicos, Validação de processo, Revestimentos bioativos, Hidroxiapatite. 
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Chapter 1  

Introduction 
 

After the implantation of a medical device (e.g. orthopaedic device), a race for the 

surface takes place with bacterial colonization and tissue integration competing in order to 

conquer the surface of the implant (Gristina, 1987, Busscher et al., 2012). Bacterial biofilm 

may occur if the bacteria have the opportunity to adhere to the surface, divide and 

encapsulate themselves in a protective matrix that shields the bacteria from the effect of the 

systemically administered antibiotic. Subsequently, bacteria start to form colonies and the 

biofilm internal pressure may increase to a point where it bursts releasing the bacteria. This 

can cause infection of the surrounding tissue or expansion of the biofilm on a different 

location. When the infection persists local bone resorption takes place, leading to bone loss 

and implant loosening. On the other hand, eukaryotic cell adhesion (e.g. adhesion of 

osteoblasts) can lead to implant ingrowth followed by cell division and collagen matrix 

production. At last, subsequent calcification of the matrix allows bone apposition on the 

implant surface. Taking this into consideration, coatings that promote early tissue integration 

alone can be seen as a strategy to reduce infection. 

 

 

1.1  Motivation 
 

Each year, over six hundred million people are affected by healthcare-associated 

infections (HAI) worldwide with approximately 2% of the HAI being due to implantation of 

total hip and total knee prostheses, without taking trauma implants into account (WHO, 

2012, ECDC, 2007). Trauma implants (e.g. plates, screws and stabilizing frames) have an even 

increased tendency for infection, mainly due to the fact that they are applied to repair 

complex injuries and open fractures. Infection together with the eventual loosening of an 

orthopaedic implant explains the limited lifespan of an orthopaedic device. HA-based 

coatings are still one of the most frequently used implant coatings in the field of orthopaedic 

surgery and trauma, resulting in improved implant ingrowth and a longer lifespan of the 

prosthesis (Capello et al., 2006).  

Coatings may vary from releasing (e.g. RGD1 or antibiotic-containing coatings) to non-

releasing coatings (e.g. hydroxyapatite). Releasing coatings, are mostly applied to the surface 

                                                 

 

1 Extracellular matrix domain of three aminoacids, arginine (R), glycine (G) and asparagine (D), that 
play an important role in cell adhesion, cell proliferation and differentiation. 
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by dip or spin coating, due to their limited thermal stability, while non-releasing are normally 

applied using high temperatures which may damage crystallinity and create unwanted or 

amorphous phases. Sol-gel technologies or electrophoretic deposition can be used to coat 

porous alloys (e.g. titanium), but still the production of crack free coatings remains 

challenging (Boccaccini et al., 2010).  

Therefore, it is urgent for innovative and effective coating technologies, that do not 

require high temperatures, to reach the market of medical coatings, since those may help to 

accomplish a combined situation of a coating with both antimicrobial and osteoconductive 

properties. CoBlast is a cleaning, roughening, and coating technology that works under room 

temperature and pressure, with minimal substrate alteration developed by a co-founder of a 

company named Enbio Limited, which can offer the solution this field is waiting for. 

 

1.1.1. Ceramed 

 

Ceramed is a Portuguese company created in 2005 after four years of incubation with the 

support of the Center for Technical Support to Metalworking Industry (CATiM). The company 

is specialized in medical devices coatings and its services comprise plasma-spray coating with 

titanium and hydroxyapatite, surgical instruments coating with Physical Vapour Deposition, 

and titanium anodizing. Ceramed was the first European company to be ISO 13485:2003 

certified, and is also ISO 9001:2008 certified for medical devices coating services (2015a).  

Partnerships of this company include several Portuguese and Spanish institutes and 

universities, Massachusetts Institute of Technology (MIT) Portugal, Enbio Limited Ireland, 

Medovent Germany, Institute for Support to Small and Medium Enterprises and Investment 

(IAPMEI) Portugal, Flemish Institute for Technological Research (VITO Belgium) and Veterinary 

Hospital of São Bento Portugal (2015b). 

Recently, Ceramed premises were moved to Loures, and equipment from Enbio for the 

production of CoBlast coatings was acquired. The company intends to optimize and validate 

the process in order to make the coatings deposited with this innovative room temperature 

technology a new service available to its clients. 

 

1.1.2. Enbio Limited 

 

Enbio Limited is a partnership established by Ceramed in 2007. This company was founded 

in 2006 to exploit the CoBlast concept (2015c). Currently, Enbio focuses the production, 

research and development on coatings for aviation and aerospace industries made using 

CoBlast. The company is achieving great successes in this field, having recently developed a 

partnership with the European Space Agency (ESA) to develop thermal control coatings for 

the Solar Orbiter mission in 2017 (2015f).  

 

 

1.2  Objective 
 

This work intends to provide a solid review on the existing medical implant coating 

techniques and the basic principles observed and reported in the development of an 

innovative coating technique called CoBlast. 
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Furthermore, the aim of this dissertation is to elaborate a Master Validation Plan for 

CoBlast technology and perform the validation of this innovative coating process and its 

further implementation as a new service to be provided by Ceramed within the scope of 

medical devices coating. 

 

 

1.3  Contributions 
 

A review on calcium orthophosphates used in medical device coatings, coating processes 

frequently adopted in medical device industry and CoBlast invention and principles. 

A thorough explanation on how and why a Process Validation of a manufacturing process 

for medical devices should be carried out, and a compilation of the regulatory specifications 

needed to be taken into account to successfully validate a process to produce HA coatings. 

A Validation Plan for CoBlast technology, the protocols and the results of all the tests 

performed at Ceramed. An economical appraisal of the process and future recommendations. 

 

 

1.4  Document Structure 
 

This dissertation is organized in seven major chapters: Introduction, Bioactive coating 

materials, Overview of medical device coating processes, CoBlastTM, Process Validation, 

CoBlast Validation Plan and CoBlast Process Validation.  

The present chapter, Introduction, brings out the motivations, objectives and 

contributions of this dissertation. 

Chapter 2 clarifies the importance of bioactive coatings in the medical field with a wide-

ranging analysis of the use of calcium orthophosphates in orthopaedic prosthesis. 

Chapter 3 provides an overview on the most frequently adopted medical device coating 

processes in medical industry in order to understand their properties, their weaknesses and 

strengths, and the global landscape where CoBlast will be inserted. 

Chapter 4 presents the state-of-the-art of CoBlast technology since its invention until 

nowadays. It summarizes CoBlast processing principles and provides a small review of 

publications. 

Chapter 5 reveals Process Validation within the Quality Management System requirements 

and its applicability to manufacturing processes for medical devices. A synopsis of statistical 

concepts, important considerations, and steps of process validation is made.  

Chapter 6 focuses on the planning of CoBlast validation conducted at Ceramed and 

discloses the Validation Protocol implemented in the first validation of CoBlast. An overview 

on the equipment installed, raw materials used, parameters studied, requirements of the 

process and a clarification to the strategy adopted is made here. 

Chapter 7 reveals the results obtained during the implementation of CoBlast validation 

protocol and infers about the state of validation of this process. This chapter is a validation 

report itself. Furthermore this chapter includes an economic analysis of the process in order 

to infer about the costs involved in a situation of production with the equipment and 

parameters in place. 
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Chapter 2  

Bioactive coating materials 

Most metals used in medical implants lack biologically active surface that promote 

osteointegration or wards off infection. Research over the years focused on finding the best 

materials to develop a range of coatings with the ability to improve implant binding to the 

host bone tissue. 

Bioceramics, extracellular matrix proteins, biological peptides or growth factors have 

been used to enhance bioactivity and biocompatibility to the metallic surface of conventional 

orthopaedic prosthesis (Zhang et al., 2014). Coatings must be biocompatible in order not to 

trigger significant immune or foreign-body response, osteoconductive to promote osteoblasts 

adhesion, proliferation and growth on the surface of the implant to form a secure bone-

implant bonding and osteoinductive to recruit various stem cells from surrounding tissue and 

circulation and induce differentiation into osteogenic cells (Albrektsson and Johansson, 

2001). Furthermore the coating must have sufficient mechanical stability to withstand 

stresses associated with locomotion without detaching from the implant surface. Ultimately, 

addition of silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides, can 

improve anti-microbial properties minimizing the risk of prosthetic infection (Zhang et al., 

2014). 

 

 

2.1. Calcium orthophosphates 
 

Calcium orthophosphates became known in history due to their great chemical similarity 

to the inorganic part of bones and teeth of mammals (Dorozhkin, 2013). All calcium 

orthophosphates (listed in Table 2.1) consist of three major chemical elements: calcium 

(oxidation state +2), phosphorus (oxidation state +5), and oxygen (oxidation state −2). The 

chemical composition may include hydroxyl ions as an acidic orthophosphate anion such as 

HPO4
2− or H2PO4−, and/or incorporated water as in dicalcium phosphate dihydrate (CaHPO4 · 

2H2O) (Dorozhkin, 2007). Most calcium orthophosphates are moderately soluble in water, but 

all dissolve in acids. Calcium to phosphate molar ratio (Ca/P) and solubility are important 

parameters to distinguish between the phases (i.e. phase purity and crystallinity have major 

influence on solubility) (Wang and Nancollas, 2008). 

Hydroxyapatite (HA), one of the least soluble calcium orthophosphate, is a bioactive 

material that in a dense state dissolves slightly, but promotes the formation of a biological 
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apatite layer before interfacing directly with the tissue at the atomic level resulting in the 

formation of a direct chemical bond with bone. Less dense composites of tricalcium 

phosphate (TCP) and HA (i.e. β-TCP+HA and α-TCP+HA) or calcium-deficient hydroxyapatite 

(CDHA) and/or amorphous calcium phosphates (ACP) appear to be the good bioresorbable 

materials that dissolve and allow a newly formed tissue to grow into any surface irregularities 

but may not necessarily interface directly with the material (Dorozhkin, 2007).  

Due to their poor mechanical properties (i.e. brittleness), bulk calcium orthophosphates 

bioceramics have limited load-bearing applications. The application of calcium 

orthophosphates coatings on metals, which support high loads but do not form mechanically 

stable links between the implant and bone tissues, allows the implant to participate in bone 

remodelling responses similar to natural bones. Phase purity and crystallinity of such coatings 

will have major influence on coating solubility, influencing coatings stability and bone 

response (Dorozhkin, 2012, 2009, 2011, 2013, Wang and Nancollas, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plasma-spray is the most used and accepted method for HA coating application. Due to 

the high temperatures achieved during this deposition process, coating crystallinity 

decreases, and phase transformations may occur. Plasma-sprayed HA-coated implants are 

essentially composed of a mixture of crystalline, amorphous, and non-apatite phases such as 

Ca3(PO4)2 (TCP), Ca4(PO4)2O (TTCP) or even CaO. The presence of TCP and TTCP phases may 

enhance the resorption process of HA coating leading to implant instability (Klein et al., 

1994, Radin and Ducheyne, 1992). Therefore, it is important to explore other coating 

Table 2.1 - Existing calcium orthophosphates and their major properties. From Dorozhkin 
(2009) and Dorozhkin (2011) cited in Dorozhkin (2012). 
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techniques that do not require high temperatures for the application of HA bioactive coatings 

that promote osteogenesis and prevent infections.   

 

Requirements and regulations for HA coatings are described in the Food and Drug 

Administration (FDA) guidelines as well as in the ISO standards and European Medical 

Regulations (Veselov et al., 2012).   
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Chapter 3  

 

Overview of medical device coating processes 
 

 

Surface modification of medical devices has been adopted over the years to retain key 

bulk properties of the device material while modifying the surface to improve 

biocompatibility. These surface engineering strategies tailor chemical and structural 

properties in a thin surface layer of the substrate in order to meet with design and functional 

requirements. This chapter gives an insight on the most commonly applied surface 

modification processes used in the medical field.  

 

 

3.1 Abrasive blasting 
 

Techniques such as grit blasting, shot blasting, sand blasting, shot peening and micro 

abrasion generally involve the mixing of an abrasive material with a fluid and delivery at high 

velocity to impinge the surface to be treated, and are here stated as abrasive blasting 

techniques. The delivery of the abrasive material can be classified as wet or dry depending on 

the fluid medium used to deliver the abrasive to the surface, gaseous or liquid. 

Abrasive blasting techniques have many applications like metal cutting, cold working 

metallic surfaces and pre-treatment of surfaces to create surface roughness to improve 

further coating materials adhesion. In the biomedical sector, titanium implants are regularly 

grit blasted with alumina or silica to create a level of surface roughness that maximizes the 

adhesion of plasma sprayed HA coatings on the surface of the implants (Yang et al., 2009). 

 

 

3.2 Thermal spraying techniques 
 

Thermal spraying comprises a group of processes in which metallic and non-metallic 

materials are deposited in a molten or semi-molten state on a prepared substrate (Pawlowski, 

2008). It uses a concentrated heat source to melt feedstock materials and process jets to 

propel the molten particles toward a prepared surface. The heat source can be generated 

chemically through combustion of fuels with oxygen or air, or electrical heating of industrial 

gases. Devices used to achieve this work are called guns or torches (Davis and Committee, 

2004). 
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3.2.1. Plasma spray 

 

In plasma-spray processing, powder materials are injected into a high temperature 

plasma2 (i.e. radio frequency discharges) or plasma jets (i.e. direct current arc) being rapidly 

heated and accelerated before they flatten and solidify onto the substrate. Conventional 

direct current (DC) arc spray torch is represented in Figure 3.1. Temperatures over 8000K at 

atmospheric pressure are normally reached allowing the melting of any material. In order to 

avoid low deposition efficiency, the melting temperature must be at least 300K lower than 

the vaporisation or decomposition temperature (Fauchais, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic coatings of HA deposited using plasma spray are 20-300 µm thick and 3-6 

µm rough (Sun et al., 2001). It was verified an increased cell proliferation on plasma-sprayed 

HA-coatings when compared with simply HA-grit-blasted surfaces (Borsari et al., 2005). 

Oxide formations are frequent in air plasma spray (APS) processing. An option to avoid 

those is plasma-spray process conducted under controlled-environment spraying like low 

pressure or vacuum plasma spray (VPS). It is able to produce clean coatings with virtually no 

oxide inclusions (Davis and Committee, 2004). 

 

3.2.2. Flame spray 

 

Conventional flame spray requires combustion of a jet of fuel and oxygen in front of the 

torch, external to nozzle. Fuel and oxygen rates and ratio can be adjusted to induce the 

desired thermal output. Oxyacetylene torches are the most common, using acetylene as fuel 

in combustion with oxygen to generate high combustion temperatures. During processing the 

jet gas speed is below 100 m/s, and particles reach 80 m/s before impact. Open-flame (i.e. 

externally combusted) jet temperatures are generally above 2900K, and are controlled by 

mixing patterns of the combustion gases with the surrounding air as well as by the combustion 

                                                 

 

2 Plasma is the term used to describe gas which has been raised to such a high temperature that it 
ionizes and becomes electrically conductive (Birka et al., 2012). 

Figure 3.1 – Schematic of a conventional DC arc spray torch with a nozzle composed by a 
stick type thoriated tungsten cathode (+) and a anode (-); 1 – Plasma forming gas injection, 2 
– Cold boundary layer ate the anode wall, 3 – Arc column, 4 – Connecting arc column, 5 – 
Plasma jet exiting the nozzle, 6 – Large scale eddies, 7 – Surrounding atmosphere bubbles 
entrained by engulfment process, 8 – Plasma plume. Adapted from Fauchais (2004). 
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temperatures of the fuel/oxygen mixture. Powder is fed into these spray torches either by 

carrier gases or by gravity (Davis and Committee, 2004).  

 

3.2.3. High velocity oxygen fuel (HVOF) 

 

High velocity oxygen fuel (HVOF) requires extended internal-confined combustion and 

operates on a continuous, steady-state basis. High volume combustible gases are fed into a 

combustion chamber, like a long confining nozzle or barrel, through which the combustion 

gases exit the device with velocities ranging from 1525 to 1825 m/s, at the nozzle exit. High 

velocity combustion spray devices can be divided into two distinct classes according to their 

combustion chamber pressure: high velocity (i.e. pressure exceeding 241 kPa and heat inputs 

of 527 MJ) and hypervelocity (i.e. pressure ranging from 620 to 827 kPa and heat inputs of 

approximately 1GJ). These last use normally kerosene as fuel and air or oxygen to support 

combustion. The HVOF guns are air or water cooled where fuel/oxygen mixtures under 

pressure accelerate the gas stream down a confined cooled tube or nozzle. Powder materials 

are fed into the nozzle borne by a carrier gas, and become entrained into the confined high 

pressure flame/jet (Davis and Committee, 2004). 

 

3.2.4. Electrical arch spray 

 

Electrical arch spray, also called twin wire arc, arc spray or wire arc spray, uses a DC 

electric arc between two consumable electrode wires performing direct melting of particles. 

Molten particles are sprayed through the surface by a high-velocity air jet located behind the 

intersection of the wires, as the wires are fed into the arc and melted. The airflow ranges 

from 0.8 to 1.8 m3/min at up to 690 kPa, as the power supply design of the arc limits most 

systems to operating above 50A DC. Since the wires are melted directly by the arc in this 

technique, higher thermal efficiency is registered when compared with other thermal spray 

processes. However, the droplets are already molten when picked up and entrained in the 

jet, and, unlike other processes, the particles begin to cool immediately after leaving the arc 

zone. In order to minimize this effect combined with the effect of oxidation, short standoff 

distances and high atomizing air flows can be used (Davis and Committee, 2004). 

 

 

3.3 Electrodeposition 
 

Electrodeposition is a useful process for applying thin films to electrically conductive 

surfaces. In its simplest form, also known as electroplating, there is an electrodeposition bath 

containing metal ions, an electrode or substrate on which the deposition is desired, and a 

counter electrode. When a current flows through the electrolyte, the cations and anions 

move, according to their charges, toward the cathode and the anode, and may deposit on the 

electrodes after undergoing a charge transfer reaction. This process is directly related with 

Faraday’s laws of electrolysis. Faraday’s second law relates the mass (∆m) deposited over a 

unit area to the current density j flowing for a time t: 

 

      (3.1) 
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An important implication of Faraday’s second law is that the ratio of the mass of the 

electrodeposit to its gram-equivalent weight is a constant equal to 96,500 coulombs. The 

amount of material electroplated depends directly upon the current on the substrate, and 

thus, a uniform current distribution is compulsory to generate a uniform film.  Most materials 

that can be deposited through electrodeposition can roughly be delivered using other physical 

or chemical methods (e.g. thermal-spray, chemical vapour deposition, physical vapour 

deposition), nevertheless, electrodeposition can be more cost-effective in some applications 

(Pandey et al., 1996).   

 

 

3.4 Sputtering 
 

Sputtering is known as a deposition process capable of grow thin films of material on a 

substrate that uses irradiation of energetic species. The phenomenon occurs when a solid 

surface is bombarded with energetic ions and surface atoms of the solid are scattered 

backward due to collisions between the surface atoms and the energetic particles. Typical 

sputtering systems include DC diode, radiofrequency diode, magnetron diode and ion bean 

sputtering. The simplest model is the DC diode sputtering system composed by a pair of 

planar electrodes, a cathode and an anode, inside a sputtering chamber. The front surface of 

the cathode is conveniently covered with target materials to be deposited, as the substrates 

are placed on the anode. The sputtering chamber is filled with gas (e.g. Argon) at 1 to 5 Pa. 

Under the application of DC voltage between the electrodes, a glow discharged is maintained 

and Ar+ ions formed in it are accelerated at the cathode fall and sputter the cathode target 

resulting in the deposition of thin films of the cathode target on the substrates (Wasa, 2012). 

Conventional sputtering techniques have shown some advantages over the commercially 

available plasma spraying method, the most utilized technique to deposit HA. However, 

sputtered films are usually amorphous which can cause some serious adhesion problems when 

post-deposition heat treatment is needed (Hong et al., 2007). 

 

 

3.5 Chemical vapour deposition (CVD) 
 

Every chemical vapour deposition (CVD) process involves reactions that create a solid 

from gases in a synthesis process in which the chemical constituents react in the vapour phase 

near or on a heated surface. The material to be deposited is vaporized and is injected into 

the CVD chamber to make their way to the substrate. When the gaseous compounds react the 

solid deposit is formed as well as by-products gases which are removed by gas flow through 

the reaction chamber. In CVD the absolute temperature varies from 300K to 1200K, and 

pressure varies from few 0.1 Pa (i.e. low pressure chemical vapour deposition) to 100 kPa 

(i.e. atmospheric pressure chemical vapour deposition). The use of precursor chemicals 

almost always introduces impurities in the solid films (Dobkin and Zuraw, 2003). 
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3.6 Physical vapour deposition (PVD) 
 

Physical vapour deposition (PVD) is a process in which a material to be deposited is 

vaporized from a solid or liquid source and transported in the form of a vapour through a 

vacuum or low pressure gaseous or plasma environment to the substrate, where it condenses 

(Mattox, 2010). The vacuum deposition comprises evaporating the source material in a 

vacuum chamber below 1x10-4 Pa. Kinect energies of evaporating source material atoms are 

1000-3000K and can be attained by resistive heating or electron beam deposition. PVD rate of 

condensation of vapour depends on the evaporation rate of the source material, source 

geometry and its position relative to the substrate, and condensation coefficient. The method 

allows the treatment of substrates with complex geometries and very small to very large size 

(Wasa, 2012). 

 

 

3.7 Pulsed laser deposition (PLD) 
 

A pulsed laser deposition (PLD) system is composed by three essential parts: substrate, 

solid target and laser source (Figure 3.2). The principles of action are similar to the ones 

explored in other processes herein explored, where the material of the target experiences 

evaporation and subsequent condensation on the substrate. The evaporation occurs as 

consequence of the incidence of laser pulses. There are many classes of high-power 

ultraviolet pulsed lasers, being Nd:YAG and KrF excimer (1 J/cm2) the most successfully used 

in HA deposition (Kurella and Dahotre, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 - Typical pulsed laser deposition (PLD) system. Laser pulses, irradiated though a 
quartz window, evaporate the target materials which condense on the substrate. From Zeng 
and Lacefield (2000). 
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3.8 Sol-gel immersion technique 
 

Sol-gel processing requires colloidal suspensions (i.e. sols) conversion to viscous gels and 

drying. A wide range of inorganic and organic/inorganic composite materials can be prepared 

using this approach. Sol-gel thin layers can be applied to substrates using both spin coating 

and dip coating. In spin coating process the film is applied and dried in a few seconds, 

whereas in dip coating the film is applied at a rate of few centimeters per minute. Both 

techniques result in an inverse relation between the thickness of the film and its density: thin 

films are denser than thick films. These techniques allow the preparation of composite 

coatings which cannot be obtained by other methods, such as organic-inorganic hybrid 

materials (Wright and Sommerdijk, 2000). 

 

 

3.9 Sintering 
 

Sintering processing comprises the application of thermal energy to a powder compact, 

densifying it and increasing the average grain size (Kang, 2004). It aims to produce sintered 

parts with reproducible and designed microstructure through control of sintering variables 

(e.g. powder shape, size, composition, sintering temperature, time and pressure). Sintering is 

a process that leads to a reduction of the total interfacial energy of the powder compact. 

Ceramic coating sintering can result in considerable coating thermal conductivity and elastic-

modulus increase, but can also lead to shrinkage-cracking, eventually causing spallation of 

the coating (Xu and Guo, 2011). 

 



 

 

Chapter 4  

CoBlastTM 

CoBlastTM is a one-step metal transformation technology developed by John O’Donoghue, 

co-founder and current co-director of Enbio Limited. This technology is commercially applied 

to remove a metal’s oxide layer and replace it with a desired functional coating. (2015d) It 

uses conventional grit-blasting or micro-blasting equipment, and is performed at room 

temperature and pressure. These properties allow it to be applied to sensitive substrates 

without damage, preserving properties that are easily destroyed by heat treatment processes. 

Simultaneous roughening, chemical activation and coating adhesion achieved with this 

technique are great for substrates that normally surfer poor coating adhesion. Currently, 

CoBlast is a surface treatment with its basic technology research complete in respect to 

biocompatibility, lubrication and hydrophobicity in the medical field (Figure 4.1) (2015e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Technology readiness levels (TRLs) are used as the metric to assess the maturity of a 

technology. It consists in a scale developed firstly by National Aeronautics and Space 

Administration (NASA) in the 70s, that was lately approved by the Department of Defense 

Figure 4.1 – CoBlast technology readiness level concerning properties like thermo-optical 
control, biocompatibility, corrosion resistance, lubrication, hydrophobicity in the fields of 
space, aerospace, oil and gas, oceanic, industrial, and medical. From 2015c). 
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(DOD) of the United States of America (USA) and adopted world-wide (Mankins, 2009). TRL 

scale ranges from one to nine with definitions as followed (DOD and (DUSD(S&T)), 2003) :  

TRL 1: Basic principles observed and reported; 

TRL 2: Technology concept and/or application formulated; 

TRL 3: Analytical and experimental critical function and/or characteristic proof-of-concept; 

TRL 4: Component and/or breadboard validation in a laboratory environment; 

TRL 5: Component and/or breadboard validation in a relevant environment; 

TRL 6: System/subsystem model or prototype demonstration in a relevant environment; 

TRL 7: System prototype demonstration in an operational environment; 

TRL 8: Actual system completed and qualified through test and demonstration; 

TRL 9: Actual system proven through successful mission operations. 

 

 

4.1 Invention 
 

CoBlast is the trade name for a method of doping surfaces patented by O'donoghue and 

Haverty (2008), that comprises the removal of the oxide layer from a metal’s surface and 

provision of dopant particles in fluid jet that impregnates the surface with the dopant.  

Invention background lies in surface treatment techniques of bombardment of metal 

surfaces with abrasive materials, e.g. abrasive blasting techniques. Knowing that during the 

blasting some of the abrasive metal becomes impregnated in the surface of the metal, 

attempts of using abrasive blasting techniques as a means of putting a hydroxyapatite layer 

directly onto titanium surfaces were made (Ishikawa et al., 1997). Still, since the deposited 

layer could be removed under ultra-sonication with water after few minutes, it seems like no 

proper bond with the surface of the metal is achieved. 

In this method, the metal oxide layer is removed by abrasively blasting the metal oxide 

surface with an abrasive material – e.g. silica, alumina, zirconia, barium titanate, calcium 

titanate, sodium titanate, titanium oxide, glass, biocompatible glass, diamond, silicon 

carbide, calcium phosphate, calcium carbonate, metallic powders, metallic wires, carbon 

fiber composites, polymers, polymeric composites, titanium, stainless steel, hardened steel, 

chromium alloys – by the same means used on the exploited abrasive blasting techniques 

described in section 3.1. This process focuses on the intentional addition of a material of 

choice to the surface – the dopant – that can be a polymer, metal, ceramic and combinations 

thereof. Respecting biomedical applications the dopant can be hydroxyapatite, modified 

calcium phosphates, therapeutic agents, silica, zirconia, biocompatible glass, carbon, 

chitosan/chitin, and others. These last can induce desirable chemical, physical and biological 

properties on the surface of biomedical implants. The addition of the dopant happens prior to 

reoxidation of the newly formed oxide layer. To prevent its early formation the removal of 

the oxide layer can be performed under an inert atmosphere. This procedure takes, thus, 

advantage of the inherent reactivity of metals to modify their surface. By having an abrasive 

impacting with sufficient energy (i.e. a material with sufficient particle size, density and 

hardness) to break the oxide layer and feeding the surface simultaneously with a dopant 

material, this last may be taken up while the oxide layer reforms around it. Thereof, the 

dopant material can become strongly bound within the oxide layer of the surface.  

Different approaches can be adopted to achieve this. In one embodiment there is an 

almost synchronously delivery of a first set of particles containing a dopant and a second set 
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of particles with an abrasive from one fluid jet to a surface of an article to impregnate the 

surface of the article with the dopant (Figure 4.2).The energy dissipated at the impact site of 

the abrasive may be sufficient for the dopant to become ceramicised or otherwise bonded to 

the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dopants and abrasives can be either contained in the same reservoir and delivered to the 

surface from the same jet (nozzle) or separated in different reservoirs and delivered by 

multiple jets. Three different nozzle configurations can be implemented to deliver dopant 

particles and abrasive particles to the surface (Figure 4.3). A single nozzle can be used as 

previously stated (Figure 4.3, A) or a combination of multiple nozzles (Figure 4.3, B and C) 

where two or more streams of particles are used where at least one stream abrasively blasts 

the oxide surface to expose the new metal surface and another stream bombards the new 

metal surface with dopant. 

Concerning multiple jets, the particles of each jet can have the same (Figure 4.3, B) or 

different incident angles hitting the same spot on the surface simultaneously (Figure 4.3, C). 

To sum up, the final variables that must be considered in order to apply this technology are 

the abrasive particle, the abrasive particles size, the dopant, the dopant particles size, the 

stream carrier fluid (i.e. gaseous, liquid, basic etching liquid, acidic etching liquid), the 

number of nozzles used, incident angle(s) (ranging from 10 to 90º) power feeder pressure 

(ranging from 50 to 10000 kPa), deposition direction,  speed of the movement of the nozzles 

over the surface, distance of the nozzles to the surface and raster offset. This topic is further 

explored in the following section 4.2.  

 

 

 

 

Figure 4.2 - CoBlast application approach using fluid jet (nozzle) (2) to bombard the surface 
(10) of the substrate (8) with abrasive (4) and dopant particles (6) almost simultaneous in the 
same stream (3). During the impact of the abrasive particles a new surface (10a) of the 
substrate is exposed. From O'donoghue and Haverty (2008). 
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The working ability of these systems is related with the use of converging-diverging 

nozzles, commonly known as De Laval nozzles. Converging-diverging characteristic design of 

the De Laval Nozzle allows the generation of supersonic gas exit flow velocity after a subsonic 

entry velocity. It was named after Karl Gustaf Patrik de Laval by the end of the 19th century 

and is often employed in propelling equipment like rockets and high-pressure jet engines. 

 

 

4.2 Deposition conditions and parameters  
 

CoBlast pre-deposition processing can include steps like mechanical polishing of substrates 

(e.g. using 1200 grit size silicon carbide paper) to provide uniform surface roughness (Barry 

and Dowling, 2012, Tan et al., 2012, Barry et al., 2013). Frequently, metal substrates are 

washed with 1M HCl (O'Hare et al., 2010, Keady and Murphy, 2013) and ultrasonically cleaned 

using isopropanol (O'Hare et al., 2010, Fleming et al., 2011, Keady and Murphy, 2013) to 

remove any contaminants. When metal polish is preformed, methanol and acetone ultrasonic 

wash is generally applied to remove loosely adherent particles (Barry and Dowling, 2012, Tan 

et al., 2012, Barry et al., 2013). 

CoBlast processing is regularly applied using twin nozzles to deliver one stream of dopant 

and one stream of abrasive to a common area on the substrate surface (i.e. “blast-zone”) 

(Keady and Murphy, 2013, Byrne et al., 2013, Barry et al., 2013), or using a single nozzle 

where dopant and abrasive are part of a mix media sprayed at the substrate in the same 

stream (O'donoghue and Haverty, 2008, Dunne et al., 2013). The angle of deposition can be 

adjusted, and it is common to be adopted an angle ranging from 75º to 82º when two nozzles 

are used with different nozzle angle for the abrasive and the dopant (Tan et al., 2011, 

Fleming et al., 2011) or the same angle for the abrasive and the dopant (Tan et al., 2012), or 

Figure 4.3 – Schematic diagrams of three different nozzle configuration to deliver the 
dopants and abrasives of CoBlast to a surface at a distance D: single nozzle (A), multiple 
nozzles with dopants and abrasives delivered from separate reservoirs where one nozzle is 
within another nozzle (B), and multiple separate nozzles with dopants and abrasives 
delivered from separate reservoirs (C). Elements: 20 – single nozzle; 23 – single stream; 24 – 

abrasive particles; 26 – dopant particles; 28 – substrate; 30 – one nozzle; 33 – stream of 
abrasive particles; 40 – another nozzle; 43 – stream of dopant particles. From O'donoghue and 
Haverty (2008).   
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90º when a single nozzle is used (Dunne et al., 2013, Dunne, Twomey, and Stanton, 2015, 

Dunne, Twomey, Kelly, et al., 2015).  

Figure 4.4 presents in red the deposition parameters that according Tan et al. (2012) are 

essential to acquire HA coatings and in black the core components of a CoBlast processing 

system with two nozzles. Nozzles height (i.e. distance to the surface), nozzles speed over the 

surface, and feed pressure are often settled to a range between 8 and 23 mm, 12 and 15 

mm/s (Fleming et al., 2011, Tan et al., 2012, Keady and Murphy, 2013), and approximately 

414 to 620 kPa (Fleming et al., 2011, Tan et al., 2012) respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When a single nozzle is used, it is held at 90º to the surface (O'donoghue and Haverty, 

2008). Its height is settled at 50 mm and pressure of the feeder ranges approximately from 

500 to 550 kPa (O'donoghue and Haverty, 2008, Dunne et al., 2013).  

The perfect combination of such parameters will be always dependent on the type of 

substrate, powder particles, and fluid carrier used. Nevertheless, the implementation of such 

standards is based on the experience of research teams that work directly and repeatedly 

Figure 4.4 – Schematic of CoBlast deposition system with two nozzles. Θ stands for the 
deposition angle and D for the distance to the substrate. MCD is a commercial granular 
apatitic abrasive made of sintered apatite (sHA). Black texts represent the core components 
of the system while red texts are the essential parameters to acquire the coatings. Adapted 
from Tan et al. (2012). 
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with CoBlast and, thus, has its intrinsic value. Unanimously, compressed air was used as fluid 

carrier by all of the groups mentioned herein.  

Substrates are bombarded to ensure that the area of interest is covered. When more 

complex shapes pieces are processed by CoBlast, several strategies can be adopted. Keady 

and Murphy (2013) performed a three passes process applying 120º rotations to completely 

coat a wire. The same team coated stents by placing them in a mandril, rotating the mandril 

and coating the stent with a helical pattern.  

Post-deposition processing  may include air-cleaning of the samples using compressed air 

(O'Neill et al., 2009, O'Sullivan et al., 2010) sonication in isopropanol (Tan et al., 2011), 

storage in a desiccator and autoclave processing at 121ºC for 20 minutes prior to packaging 

and use. Samples may also be simply ultrasonically washed in de-ionized water (O’Sullivan et 

al., 2011, Barry and Dowling, 2012), to remove any loose powder from the surface, followed 

by autoclave prior to use.  

 

 

4.3 Reviewed Publications 
 

O'Neill et al. (2009) reported on the capability of CoBlast process to deposit substituted 

apatites. Water contact angle of Ti-6Al-4V surface treated sheets with HA, Fluoro apatite 

(FA), Magnesium apatite (MgA) and Carbonate apatite (CO3A) revealed significant surface 

modification for each material.  XPS analysis showed that all surfaces exhibit minimal levels 

of titanium and high amounts of Ca, P, O and C after treatment consistent with complete 

treatment of the accessible surface. EDX revealed otherwise, finding significant levels of 

titanium in samples pointing to a limited depth of treatment. Adventitious carbon was also 

found in the XPS analysis. Coating thickness was estimated between 7 and 10 µm and SEM 

images unveiled roughening by the abrasive blasting and regions of titanium which appear to 

be folded in the outer HA layer in the metal-HA interface. Such apatite adhesion was 

attributed to the combination of kinetic energy resulting tribochemical bonding with 

mechanical interlocking due to substrate surface disruption. Standard tape adhesion test 

(ASTM D3359-02) lead to no evidence of coating delamination on each coated sample. The 

present study exposed also that substituted apatites had higher ion release likely attributed 

to the lower level of crystallinity determined by XRD. Finally, MTT assay showed comparable 

levels of MG-63 osteosarcoma-derived cell proliferation after 24h and significant enhanced 

cell proliferation on the carbonate samples after 72h. The authors conclude by saying that 

the combination of ion elution and XRD analysis suggests that the crystallinity of the dopant is 

conserved in the coating process as expected in a non-thermal processing method like 

CoBlast. 

 

A year later, O'Hare et al. (2010) characterized the difference between surfaces produced 

by simple HA surface blasting and surfaces treated with CoBlast using alumina (Al) as abrasive 

and HA as dopant. In vitro response of osteoblast-like cells and bone growth in an in vivo 

animal model were observed. XPS surface analysis revealed the chemistry of the outermost 

surface region with significant levels of Ca, P and O on both samples (i.e. HA-microblast and 

CoBlast), and no significant level of titanium, suggesting effective deposition of HA into the 

surface and good surface coverage with both techniques. Differences between the two 

surfaces were found using EDX and Secondary Ion Mass Spectroscopy (SIMS): a smooth 
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interface occurs between HA and Titanium on HA-microblast surfaces and on the other hand a 

significantly roughened metal surface is created when CoBlast is used leading to the presence 

of Ti particles in the sampling depth of analysis (10 µm) of EDX. Transmission electron 

microscopy (TEM) detected no signal of alumina on the CoBlast samples, revealing no 

significant levels of contamination from Al abrasive particles after CoBlast processing. Scratch 

testing of HA-micoblast samples suggested that the HA layer was only superficially adhered to 

the underling metal. As opposite CoBlast coating proved to be very well adhered. CoBlast 

samples were rougher than HA-microblast. After HA removal by immersion in HCl and 

ultrasonic washing, roughness of pristine titanium was found in HA-microblast samples as 

CoBlast titatium surface retained the same surface roughness. This indicates that the 

topography of the metal surface was significantly modified by the CoBlast process. In vitro 

tests clearly demonstrated significantly greater MG-63 cell activity on CoBlast samples after 

24h and 48h. After cell staining and observation under confocal laser scanning microscopy 

(CLSM) MG-63 cells were found to align with titanium polishing striations on both the control 

(i.e. polished titanium) and the HA-microblast surfaces. MG-63 cells were observed to be 

randomly distributed on the CoBlast surface suggesting that cells were proliferating on the 

bioactive HA surface. The analysis of this images on day 3 and 7 discovered a greater number 

of cells on CoBlast HA surface. In vivo results showed no adverse tissue response in any of the 

histopathology sections. The formation of new lamellar bone after 7 days on the CoBlast 

samples occurred all along the implant surface. In contrast, the untreated control surface 

samples had a woven morphology in the new bone around the implant. At this early time 

point, CoBlast surface seemed to have a greater amount of newly deposited bone. Both 

surfaces continued to be positive for new bone formation at 14 days. These data suggest that 

the CoBlast surface may provide for early stage osseointegration of metallic implants.  

 

The potential of doped apatites as non-colonizing osteoconductive coatings deposited 

onto titanium surfaces using CoBlast was evaluated by O'Sullivan et al. (2010). Zinc 

substituted apatite (ZnA), silver substituted apatite (AgA) and strontium substituted apatite 

(SrA) were the dopants in study and HA was used to produce a positive control surface. 

Surface characterization revealed treated samples rich in Ca, P and O, and a dopant ion level 

of less than 5%. Silver samples had the lowest level of dopant ion incorporation and Zn 

produced the highest levels. Based on the low levels of Ti on the EDX analysis and 

gravimetrical analysis of the coating mass, Sr doped surfaces seemed to have a higher depth 

of surface treatment. By using Inductively Coupled Plasma Optical Emission Spectroscopy 

(ICP-OES) SrA and ZnA were determined to contain the greatest amount of the respective 

dopant present in each coating and ion release into PBS buffer of each coating was accessed. 

The findings that over a 30-day period over 90% of the Sr and Zn still remained in the coatings 

whereas 90% of the Ag was released were linked directly to the antimicrobial properties of 

the treated surfaces: Ag apatite coating out-performed the other two surfaces in biofilm 

inhibition at days 7 and 14 (i.e. approximately 90% and 20% of biofilm inhibition respectively) 

and reached a antimicrobial performance against Staphylococcus aureus (S.aureus) of 57% 

when freshly prepared. MG-63 cell proliferation revealed that the surfaces were as 

osteoconductive as the well characterized HA surface and that no cytotoxicity was observed 

on any of the samples. The study also found that the deposition of substituted apatites 

significantly increased the surface roughness when compared to the HA control. Ion release 

rates of every sample was <1 ppm over the duration of the study which is less than all the 
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known exposure thresholds of these materials as stated in the article. Conclusions point to 

direct surface-bacteria interaction as the mechanism control of colonization process through 

effects exerted by the dopant ion over any surface topography or ion elution effects. Further 

optimization of the antimicrobial coating performance can be made by varying the loading of 

the dopant ion, tailoring the elution profile and controlling surface morphology.     

 

In the same year, a different research team explored the possibility of using CoBlast 

process to apply bioactive glass (BG) onto Ti-6Al-4V alloy substrates (Tan et al., 2011). 

Different approaches were used and compared: BG as dopant and MCD-180 as abrasive, HA as 

dopant and BG as abrasive (HA/BG), HA as dopant and MCD-180 as abrasive (Osteozip). MCD is 

the trade name for a series of apatitic abrasives (sintered CaP, sHA) commercialized in 

different sizes by Himed, US. All the coatings were found to be hydrophilic (i.e. water contact 

angle <90º), with BG being significantly the most hydrophilic and Osteozip least hydrophilic. 

Surface roughness does not differed significantly, but Osteozip was slightly rougher than 

HA/BG. Total amount of adsorbed protein was quantified by a bicinchoninic acid (BCA) 

protein assay and demonstrated significant differences with a sequence: BG>HA/BG>Osteozip. 

BG and HA/BG differences were attributed to their hydrophilicity differences, while HA/BG 

and Osteozip seemed to differ as a net result of roughness (i.e. higher surface roughness, 

larger surface area) and hydrophilicity. Cell attachment followed the same trend as protein 

adsorption after 25, 100 and 200 minutes, except that at 200 min a similar amount of cells 

were attached to BG and HA/BG. Differences in cell morphology were also reported, with 

cells on BG being the first to loosen their base by creating early lamellipodia at 25 min, and 

Osteozip cells possessing a spherical body at 100 min while BG cells had extensive 

lamellipodia and fairly flattened architecture. Cell attachment on BG-derived surfaces 

stabilized within 200 min and occurred faster than on the Osteozip surface. Besides, 

differences in the vinculin focal adhesion revealed that cell adhesion was better on BG-

derived surfaces. ICP-OES ion release analysis over a 7 days period showed that Ca and P 

levels released by Osteozip samples were maintained around the baseline during this period, 

with a slight increase on day 1. This behaviour was attributed to the near 100% crystallinity of 

the HA surface deposited by CoBlast process, by the authors. Bioglass-derived surfaces have 

significant release of Ca and Si and a slight drop of P after 1 day of immersion. Regarding cell 

proliferation no significant difference was found in cell number between each surface after 

24h, but from 3 days onwards , cell number on BG and HA/BG surfaces was significantly 

higher than Osteozip. After two weeks of differentiation, there was no significant difference 

in alkaline phosphatase (ALP) levels, while collagen production on BG was significantly lower 

than on HA/BG and Osteozip. Osteocalcin expression revealed that osteogenic differentiation 

was most advanced on the HA/BG surface. The authors inferred that BG surface is not as 

supportive as Osteozip in terms of osteogenic differentiation, though, HA/BG surpasses 

Osteozip in most aspects of osteoconductivity. In agreement with the collagen production 

results, cell detachment by AccutaseTM led to faster detachment of cells on BG than HA/BG 

and Osteozip surfaces. SEM images confirmed that BG cell layers contained less collagen 

content within the extracellular matrix (ECM). Basic fibroblast growth factor (bFGF)3 levels 

                                                 

 

3 bFGF is an autocrine growth factor that controls in vitro bone formation by stimulating bone cell 
replication and inhibiting differentiation related markers (Bodo et al., 2002, Bilezikian et al., 2008). 
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were higher at day 3 than at day 15 for all surface, and more abundant in BG than Osteozip, 

with HA/BG surfaces changing from paralleling to BG at day 3 to parallel to Osteozip at day 

15. Higher bFGF is consistent with better proliferation, whereas lower bFGF is consistent with 

advanced osteogenic differentiation, which was in accordance with the results found. 

Angiopoietin (Ang) and inducible nitric oxide synthase (iNOS), proteins that can be linked to 

aseptic implant loosening, study, revealed that HA/BG has the best angiogenic potential 

among the three surfaces with Osteozip more likely to have better peri-prosthetic 

vascularization than BG, and BG-coated implants are more likely to loosening from the host. 

Nonetheless, the authors postulated that by working on maximizing the beneficial clinical 

features and minimizing adverse stimuli the reported Bioglass coatings are significant boosts 

to the current clinical standards. 

 

The effect of the abrasive particle size on the surface properties for both microblast and 

CoBlast treatments was studied by O’Sullivan et al. (2011). MCD-106, MCD-180 and MCD-425 

abrasive powder with different particle sizes (approx. 44, 124 and 355 µm respectively) were 

used as abrasive in microblast processing and as abrasive as well in CoBlast processing of 

samples. HA (approx. 40 µm) was used as dopant in CoBlast. EDX analysis of the powders 

revealed O, P and Ca in both MCD and HA as expected. Stoichiometric HA had a Ca/P ratio of 

1.67. Increased Ca/P was found in MCD-106 and MCD-180, and was attributed to the presence 

of impurities such as tricalcium phosphate (TCP) as determined by powder x-ray diffraction 

(PXRD). PXRD results unveiled highly crystalline HA, and relative lower crystallinity of MCD 

apatites. MCD PXRD patterns demonstrated the more amorphous nature of this CaP material. 

EDX analysis of the coatings (i.e. microblast MCD-106, MCD-180, MCD-425, and CoBlast 

HA/MCD-106, HA/MCD-180, HA/MCD-425) showed that microblast samples had a thin coating 

of Ca/P successfully deposited but a higher amount of Ti indicating a lower degree of coating 

coverage than CoBlast samples. CoBlast samples displayed a Ca/P ratio of between 1.53 and 

1.61, which was relatively close to the value for stoichiometric HA. It was verified that the 

smaller the particle size of the MCD abrasive used, the more HA was deposited. Coating 

thickness of all CoBlast samples was < 10 µm. Surface roughness measurements and SEM 

images denoted increased roughness in the resultant surfaces, for both microblast and CoBlast 

samples, as MCD abrasive size increased, resulting in a reduced coating thickness. A large 

standard error was observed for MCD-425 microblasted surfaces roughness pointed as a 

feature of the crude microblast process. XDR CoBlast pattern showed no evidence of TCP 

phase, indicating no compositional or crystallographic changes on HA powder during the 

blasting process and negligible uptake of the abrasive. FTIR analysis also suggested minimal 

uptake of the abrasive powders on CoBlast HA coatings during sample preparation. Regarding 

MG-63 cell proliferation, CoBlast surfaces exhibited excellent osteoblast attachment and 

proliferation compared with untreated Ti surfaces. MCD-106 and HA/MCD-106 surfaces were 

compared, showing significant higher cell proliferation on CoBlast coated substrate over 

uncoated titanium and microblast sample at day 5, without evidence of cytotoxicity on any of 

the samples evaluated. Cell morphology, after 24h, on microblast samples, was similar that 

observed on the untreated titanium surfaces: a small number attached with fibroblastic 

morphology, polarized in one direction with an average cell length 60-80 µm, with 

lamellipodia and filopodia extensions, and a larger number spherical indicating that not all 

the cells were involved in spreading and migration. MG-63 cells cultured on CoBlast surfaces 

had a polygonal shape rather than a polarized fibroblastic morphology indicating cell 
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spreading, with abundance of lamellipodia and filopodia. The research team concluded by 

saying that employing MCD abrasives offers an alternative to alumina as abrasive in CoBlast 

process.   

 

Dunne et al. (2013) operated, for the first time, a single nozzle configuration to assess the 

influence of two blast media on the deposition of HA onto a titanium substrate. HA was 

sprayed, at the surface of commercially pure titanium (cp-titanium), conjugated with Al2O3 or 

sHA and compared with plasma-sprayed samples. HA powder with a particle size of 25-60 µm 

was used as the dopant or coating medium, while Al2O3 and sHA sintered apatite were used as 

the blast media with size particles of <150 µm and <180 µm respectively. 

XRD analysis of as-received powder and deposited HA coatings revealed that there was a 

minimal change to the precursor HA during process. XRD analysis was also performed on the 

substrates after removal of HA coating and results achieved demonstrate that samples blasted 

with alumina and the plasma-coated samples both present peaks associated with alumina 

which is related to the Al2O3 particles embedded in the substrate during the surface 

treatment, or pre-treatment of plasma-sprayed samples. The intensity of the alumina peaks 

was higher for the plasma-coated sample when compared to the samples blasted with Al2O3 

particles, which indicates a greater amount of alumina embedded in the plasma sample that 

the CoBlasted sample, result confirmed by EDX analysis. CoBlast samples exhibit peaks 

associated with titanium attributed to the very thin HA layer deposited (<10 µm) that covers 

the underlying titanium substrate. The reduction in grain size and/or an increase in strain of 

the treated substrates resulted in a broadening of the titanium peaks in the XRD analysis. For 

the plasma coating no titanium peaks were found due to the ticker coating of HA present (≈70 

µm). 

SEM imaging results of the surfaces before and after removal of HA coating demonstrate 

that plasma-coated samples produced a significantly higher surface roughness when compared 

with CoBlasted samples. This greater value for plasma samples is due to the difference in 

processing route once to provide sufficient surface area for attachment of the HA, the 

plasma-coated need to be submitted to a grit blasting process using an alumina grit with 

mean particle size >350 µm prior to coating. Roughness analysis showed that CoBlast 

processing increased titanium substrates Ra values by factors of 4.8 and 5.4 for the sHA and 

alumina blast media, respectively.  

Coating adhesion determination was performed according to a modified version of the 

method presented in ASTM F1147 Bond strength was determined by measuring the force 

required to remove the stud from the surface. Additional, EDX analysis was performed on 

studs and titanium surfaces to examine the levels if coating removal using SEM and EDX 

analysis. Results showed that the coating adhesion increased from 50MPa for sHA-treated 

samples to 60MPa for the alumina treated samples. This increase in coating adhesion may be 

due to the increasing surface roughness produced by the alumina blast medium, which gives 

rise to a greater degree of mechanical interlock between the HA and the titanium substrate. 

On the other hand, an increase in roughness provides more surface area for tribo-chemical 

bond formation between the titanium surface and the HA. Tensile bond strength results 

achieved for CoBlasted treated samples were significantly greater than the plasma deposited 

in HA coating (5MPa). These differences in tensile bond strength results between both 

processes can be attributed to the method of adhesion.  
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Microstructural characterisation of the samples was performed using a Leica MEF4M 

(Wetzlar, Germany). Results showed that CoBlast and plasma process influence the substrate 

microstructure in different ways (Figure 4.5). CoBlast processing results in a severely 

deformed surface layer, a region characterised by gross deformation of the grains and the un-

deformed substrate consisting of equiaxed α-grains, three different regions previously 

identified for sandblasted cp-titanium. In the region characterized by gross deformation, the 

grains exhibited twinning, effect previously observed in shot peened cp-titanium by Thomas 

et al. (2012). The depth of this three layers change was identified as 25 µm and 35 µm for 

substrates blasted with sHA and Al2O3 as blasting media, respectively. The formation of the 

severely deformed surface layer is beneficial as the associated compressive strength in the 

surface layer improves fatigue performance, a key material property for medical device 

implants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 – Etched cross-sections of titanium substrates: as supplied cp Ti, CoBlast treated 
Ti with HA/sHA, CoBlast treated Ti with HA/Al2O3, and plasma-sprayed Ti. From Dunne et al. 
(2013). 
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In contrast, plasma processing resulted in the formation of a heat affected zone (HAZ) at 

the surface of the titanium substrate. Back transformed α-grains were identified within the 

HAZ. According to the authors, in previous studies where the formation of back transformed α 

-grains has been identified, α-case titanium has also been identified; α-case is a hard, brittle 

layer that forms when titanium is heat-treated in the atmosphere and the presence of brittle 

α-case titanium at the surface can result in delamination of the coating from the substrate.  

As conclusion, the authors consider that the choice of blast medium is a key parameter in 

the CoBlast process. The choice of abrasive significantly influences the adhesive strength of 

the coating, surface roughness of both the substrate and coating and the microstructure of 

the substance. The authors consider that various blast media can be used in the CoBlast 

process to produce highly adhesive coatings with uniform crystallinity, although the study 

indicates that sHA is the most suitable candidate for use as a blast media in the coating of 

medical devices using CoBlast process. 

 

 

 

 

 

   



 

 

Chapter 5  

Process Validation 

Process validation is a key part of the Quality Management System for medical device 

manufacturers. It is regulated by ISO 13485:2012 in European Union and defined by FDA Code 

of Federal Regulations (CFR) 21 in U.S. as establishing by objective evidence that a process 

consistently produces a result or a product meeting its predetermined specifications. Process 

validation is a vital process if the predetermined requirements of the product can only be 

verified by destructive testing (e.g. verifying sterilization requires the opening of all packages 

in order to ensure each one is sterile). 

Nevertheless, although in some cases process validation is a regulatory requirement, 

companies may decide to validate or revalidate a process to improve overall quality, reduce 

costs, improve costumers’ satisfaction and reduce time to market for new products. In other 

words, process development and optimization may lead directly to the process validation, 

since the manufacturers will look for fulfilment of the requirements. Manufactures should 

seek out technology-specific guidance on applying process validation to their particular 

situation, and some regulatory clauses place the responsibility on the manufacturer to specify 

those processes that require validation. Irrespective of the method used, a final report should 

be elaborated and records should be kept by the manufacturer (GHTF, 2004). 

 

 

5.1 Purpose  
 

One of the purposes of process validation is to guarantee traceability and reproducibility 

of the manufacturing results. It is important to identify the key process input variables and 

control them to ensure the outputs are in accordance with the requirements.  

 

5.1.1. Process Validation Decision 

 

According to ISO 13485:2012 section 7.52, the organization shall validate any processes 

for production provision where the resulting output cannot be verified by subsequent 

monitoring or measurement. This includes any processes where deficiencies become apparent 

only after the product is in use or the service has been delivered.   



 

28 

 

28 

 

FDA 21 CFR 820.75 claims the same and adds that the process shall be validated with a 

high degree of assurance and approved according to established procedures, topic further 

discussed in sections 5.1.2 and 5.2, respectively.  

The decision of when to validate or not validate a process is summarized in the decision 

tree of Figure 5.1. Briefly, after specifying process parameters and the outputs desired, the 

manufacturer should consider if the output can be verified by monitoring or measurement 

after manufacturing (Figure 5.1, A). If so, manufacturer should consider if the verification is 

sufficient to eliminate unacceptable risk and if it is cost effective (Figure 5.1, B). If considers 

so, the output should be verified and the process should be controlled (Figure 5.1, C).  

On the other hand, if the output of the process is not able to be verified, then the 

decision should be to validate the process (Figure 5.1, D). Redesign the product or the process 

is also an option that can lead to improvement of the process and reduced variation (Figure 

5.1, E), and ultimately lead to a point where simple verification is a possibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four conditions, thus, arise: 

- Process validation is unavoidable and mandatory; 

- Verification is sufficient and cost effective; 

- Verification is sufficient but is not cost effective so validation is the best option; 

- Process validation is currently unavoidable, but the manufacturer chooses to redesign 

the product or process to a point where verification is acceptable. 

 

When the manufacturer considers verification sufficient and cost effective, he must 

consider what he is subscribing. A public FDA Warning Letter sent to Hammill Manufacturing 

Company in Ohio US − a manufacturer of orthopedic implants, spinal implants, surgical 

instruments, and implantable medical devices − clarifies the perspective of FDA about 

verification and process validation concerning medical equipment: We have concluded that 

your response is inadequate because you are not testing every device to assure it meets 

Figure 5.1 – Process Validation decision tree. Adapted from GHTF (2004). 
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specifications, and the results are not fully verified. All of these processes must be validated 

to ensure the specifications are consistently met or you must test all devices (2009). In short, 

FDA was telling Hammill Manufacturing to either perform 100% inspections on their products 

(i.e. every device) or validate all the processes involved in its manufacturing. Thus, an 

isolated acceptance sampling plan, where a sample of a product is used to make an accept or 

reject decision, is not considered verification of all products (i.e. confirmation by 

examination and provision of objective evidence that specified requirements have been 

fulfilled). 

 

5.1.2. Statistical Principles 

 

Process Validation relies on statistical principles that support the design of capable, 

stable and robust processes. A manufacturing process should be capable and stable to assure 

continued safe products that perform adequate, while robust design depends on selecting 

optimal targets for the inputs that make the outputs less sensitive (i.e. more robust) to the 

variation of the input. A process is considered stable when it produces a consistent level of 

performance where the variation and average of the response parameters measured over 

time are constant, leading to a reduced total variation. Contrariwise, an unstable process is 

constantly changing (i.e. average shifts, variation increases or variation decreases over time) 

increasing total variation (Figure 5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Process capability is a concept largely implemented in statistical quality control. When a 

response parameter of a process is measured (i.e. value X), it must fit between lower and 

upper specification limits (i.e. LSL, USL respectively). Values of X outside these limits are 

considered nonconforming. Two indexes are frequently adopted to infer about process 

capability: Cp and Cpk. Process Capability index (Cp) indirectly measures the capability of a 

process to meet the requirement LSL<X<USL, with a response parameter with a standard 

deviation σ (Equation (5.1). 

 

 

           (5.1) 

 

Figure 5.2 – Illustration of a stable and unstable process. Normal distributions are used to 
illustrate the averages and variations of a response parameter over time. From GHTF (2004). 
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Large Cp values are desirable (i.e. large standard deviation is undesirable), and some 

recommend a Cp ≥ 1.33 for an existing process and Cp ≥ 1.50 for a new process (Kotz and 

Johnson, 1993). Large Cp values alone do not guarantee acceptability due to the absence of 

information about the process mean (ξ), therefore Cpk index was introduced to give the value 

of ξ some influence on the extrapolation of capability ((5.2)).   

 

 

(5.2) 

 

 

A process with a high degree of assurance of producing a conforming product will have a 

Cpk ≥ 1.33 (Kotz and Johnson, 1993). Visually, a process capability study will involve collecting 

samples over a period of time and evaluate process capability and stability (Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding robust design theory, it attempts to reduce variation of the outputs caused by 

the variation of the inputs. The manufacturer must identify the key input variables, 

understand the effect of its variability on the outputs, understand how the inputs vary, and 

use all of these information to establish targets and tolerances (i.e. window) for the inputs. 

This approach establishes operating windows or control schemes that ensure that the output 

conforms to requirements. Taguchi and Clausing (1990) concluded that variation can be 

reduced by selection of the targets over the use of tighten tolerances. When nonlinear 

relationships exist between the input and the output, the manufacturer is able to select 

inputs targets that will make the outputs less sensitive to the inputs. 

 

 

5.2 Phases of process validation 
 

When the decision to validate is made, a plan of approach to be adopted and a definition 

of the process requirements should be made. Output parameters (e.g. product specifications) 

must be established as well as the methods and tools that will be employed in their 

Figure 5.3 – Process capability study possible results illustration. ξ – Mean; LSL – Lower 
Specification Limit; USL – Upper Specification Limit. Adapted from GHTF (2004). 
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evaluation. All this information can be organized in a detailed validation protocol, essential 

to ensure that the process is adequately validated (GHTF, 2004). When more than one process 

is involved in the manufacturing of a final product, the company can conceive a master 

validation plan which identifies those processes to be validated, the schedule for validations, 

interrelationships between processes requiring validation, timing for revalidations and the 

protocol for each process validation. This protocol will embody the strategy to obtain, record 

and interpret data. These activities can be performed in three phases: Installation 

Qualification (IQ), Operational Qualification (OQ) and Performance Qualification (PQ) (FDA, 

2011). 

 

5.2.1 Installation Qualification (IQ) 

 

The manufacturer is responsible for evaluating, challenging and testing the equipment in 

order to determine if it is appropriate for manufacturing a specific device.  

At this stage the manufacturer shall obtain and document evidences that the equipment 

has been provided and installed in accordance with its specification and suits the required 

conditions (e.g. wiring, functionality, design features like materials cleanability, calibration, 

safety features, supplier documentation, spare parts list and environmental conditions). 

 

5.2.2 Operational Qualification (OQ) 

 

Operational qualification is a phase of process validation where the robustness of the 

process is determined.  A worst case testing should be made to challenge process parameters, 

and prove that the resultant product meets all the defined requirements. Process control 

limits like time, temperature, pressure, linespeed and setup conditions must be tested, and a 

short term stability and capability of the process should be determined. At this stage, if 

applicable, software parameters and raw materials specifications must be checked also. An 

approach to process optimization is something that the manufacturer should apply at this 

stage. 

 

5.2.3 Performance Qualification (PQ) 

 

Performance Qualification is the process of obtaining and documenting evidence that the 

equipment, as installed and operated in accordance with operational procedures, consistently 

performs in accordance with predetermined criteria and thereby yields product meeting its 

specification. PQ intends to prove a long term stability of the process. 

Process and product data should be analysed to determine the normal range of variation 

of the process output. PQ establishes process sensitivity to controllable cause like light, 

vibration, humidity, temperature, purity of process water (if applicable), and determines 

measures to eliminate them. OQ and PQ together must develop attributes for continuous 

monitoring and maintenance of the process. 

 

A final report should be prepared summarizing all the protocols, requirements to be 

fulfilled (including reference to all regulatory specifications followed and standard tests 

performed) and results. It must be clearly conclusive about the validation status of the 
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process. Revalidation requirements must be defined. This records shall be maintained (FDA 21 

CFR 820.75, ISO 13485:2012). 

 

 

5.3 Monitor, Control and Revalidation 
 
After validation a process must be monitored. During routine production, the attributes 

established by OQ and PQ must be checked and if any negative trend is found, the cause 

should be investigated and corrective actions must be taken. This is called maintaining a 

state of control. Control charts like the one presented in Figure 5.4 may be employed. 

Depending on the severity of the irregularities revalidation must be considered. 

Revalidation is strongly advised when: 

- Changes in the actual process are made, including procedures, equipment and 

production personnel that may affect quality or its validation status; 

- Negative trends in quality indicators are found; 

- Changes in the product design which affects the process are made; 

- Processes are transferred from one facility to another; 

- Change of the application of the process is introduced; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Regulatory specifications 
 

Regulatory specifications define the limits within which the process should occur. ISO and 

ASTM standards and FDA Guidelines clear specify the requirements to be fulfilled by the 

manufacturer in respect to the validated process. 

The manufacturer must ensure, by performing destructive testing in previously 

established periods of time, that the products are within standard specifications and 

therefore the process is controlled during routine production.  

Process Validation according to ISO standards for HA coatings must be performed in order 

to ensure that the final product is within specification limits. Good Manufacturing Practices 

according to FDA Guidelines after process validation will allow manufacturer to have the 

process under control and easily identify any deviation that might occur.    

Figure 5.4 – Control Chart. From GHTF (2004). 



 

 

Chapter 6  

CoBlast Validation Plan  

According to the revised literature, CoBlast HA coatings have high mechanical resistance, 

and coating crystalline content, and can provide high implant fatigue strength. It seems that 

highly resistant metallic implants can be created using CoBlast with a highly adherent coating 

at the implant surface leading to the possibility of an increased implant lifespan. These are 

important attributes, essential in several metallic implants sectors. 

Choosing the best product to enter the market using CoBlast HA coatings, may be a crucial 

step for the success of this new coating technology in the medical field. Having this in mind, 

the list of products and clients of Ceramed was checked and the reported features of CoBlast 

HA coatings were carefully studied. Pedicle screws end up being chosen as the first product to 

be launched to the market with CoBlast HA coating (Figure 6.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pedicle screws are employed to rectify spinal deformities, trauma fractures, degenerative 

conditions of the lumbar spine and reconstruct the spine after a tumour resection by 

transpedicular screw fixation. Screw loosening is a very common complication at the post-

operatory period in this kind of surgeries, especially in osteoporotic patients (Upasani et al., 

A B 

Figure 6.1 - Spinal fixation screw system (A). Pre-operatory and post-operatory x-rays of 

a patient with a transpedicular screw fixation applied to solve a scoliosis between T5 and T11 

(B). From Maruyama and Takeshita (2008). 
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2009, Hasegawa et al., 2005). The probability of need of removal from the body of this 

implant is low, and the need for highly fatigue resistant implant material is a reality due to 

the constant spinal loads. 

When HA coating is applied over pedicle screws usually a coating layer of plasma-sprayed 

HA with a width of 60 µm is requested by Ceramed’s clients. Plasma spray process is most 

often employed for commercial HA coatings on orthopaedic and dental implants and the same 

goes for pedicle screws. 

Henceforth, the present process validation shall be conducted with the purpose of 

confirming the capability of CoBlast process to coat pedicle trauma screws, with HA, 

according to the FDA requirements and ISO standards. Furthermore, a comparison between 

CoBlast and Plasma-spray coated pedicle screws may be established in order to encourage 

clients to test CoBlast coatings. 

 

6.1  Raw materials and substrate 
 

Raw materials for this validation were chosen according to literature previously revised 

(section 4.3). Tests were conducted in order to evaluate the conditions to validate CoBlast for 

pedicle screws HA coating using two sets of coating/blast medium: HA/ Al2O3 and HA/MCD. 

Particle size was maintained in accordance with the studies so that they could support the 

technology in case of need for in vitro and in vivo evidences. Al2O3 with a FEPA grit 120 

(medium particle size of approximately 100 µm) was ordered from Blasqem, Lda.,  MCD180 

from Himed, USA, with a mean particle size of approximately 120 µm, was kindly offered by 

Enbio technical team, and a batch of HA with a size between 20-60 µm was kindly asked to 

Altakitin to exceptionally produce it. Since Altakitin is an affiliated company of Ceramed 

there is a natural interest that the HA used for CoBlast processing can be produced at 

Altakitin. For this reason this HA was produced, analysed, and used in this validation. 

Since pedicle screws sent by Ceramed clients are mostly made of Ti-6Al-4V, the substrate 

for evaluation in this validation should be made of Ti-6Al-4V. In this particular case, flat 

coupons 25 x 25 x 1.6 mm of Ti-6Al-4V were used as substrate for coverage, chemical and 

crystallinity evaluation, and cylindrical specimens of the same material with dimensions 25 

mm of diameter and 24.5 mm of height were used for adhesion tests (Figure 6.2). 

 

 

 

 

 

 

 

 

 

 

 

A B 

Figure 6.2 - Ti-6Al-4V substrates used for CoBlast validation tests: (A) flat coupons 25 x 25 x 

1.6 mm and (B) cylindrical specimens with 25 mm of diameter and 24.5 mm of height. 
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Alongside with CoBlast samples, plasma-sprayed samples were prepared using the same 

type of substrates with plasma-sprayed coating corresponding to most common Ceramed’s 

client requirements, so that a comparison between the results of the two company processes 

could be clearly presented to Ceramed’s clients when asked. In order to do that, HA powder 

for plasma-spraying with a particle size of 60-160 µm (forCOAT, Altakitin) from the same 

batch of the HA used on CoBlast validation procedures was ordered. 

 

 

6.2  Equipment 
 

In order to implement CoBlast processing at Ceramed a set of equipment was acquired 

and gathered. This work started by a receiving the equipment at the new Ceramed facilities 

and perform a study of correct and safe installation of the equipment.  

 

6.2.1 _Advanced Lathe  

 

Surface blasting is provided by an automated microblasting system from Comco Inc. – 

Comco LA3250 Advanced Lathe (Figure 6.3). This system supports up to four axes of motion, 

X, Y, Z and W for rotation, and comes with different part tooling allowing the blasting of 

multiple surface geometries (Figure 6.4).   

 

 

The lathe works on electrical and pneumatic energy. The apparatus requires about 400 

watts of electric power at 115 volts in alternating current (VAC), single phase, 50/60Hz. Since 

the voltage of the electrical grid is 220 VAC, it was concluded that an external transformer 

should be installed to allow connection to a 220-240 VAC supply. 

Concerning air supply, this equipment demands compressed air for numerous purposes: 

bellows purge, spindle purge, blow off gun and electronics chamber purge. When all are 

active the maximum lathe air consumption is 198 liter/minute. The lathe’s internal pressure 

regulator is set to 620 kPa, so the air supply must be between 620 – 965 kPa, regardless of 

consumption. All the system requires very clean and very dry air. The lathe was equipped 

Figure 6.3 – Comco LA3250 Advanced Lathe exterior frame (A) and inside chamber (B) 
furnished with a single nozzle configuration. 

A B 
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with the Comco AD5300 continuous duty membrane air drier to provide additional oil and 

moisture removal. 

 

 

 

 

 

 

 

 

 

 

 

This lathe offers an intuitive user interface where the worker can chose the piece to coat 

and select when to start coating. A countdown starts on the screen indicating the time left 

for the coating procedure to end (Figure 6.5). All Part tooling have and identical base that 

make mates with the lathe’s spindle. An O-ring on the spindle seals it while vacuum is pulled 

through the center of the spindle stud to secure the tool. Each tool has an unique permanent 

pin and seven removable setscrews at the base, allowing the lathe software to identify which 

tool is being vacuumed in to the spindle. 

 

   

Figure 6.5 - Comco LA3250 Advanced Lathe user interface. The user can select the piece to 
coat on the right side of the pane (A), after selecting the coating program if the part tooling 
is not correctly detected or is not the correct part tooling for the program about to start an 
alert in yellow is displayed (B) when the problem is solve the user can start the coating 
program and the countdown starts (C).  
 

Different programs to coat different pieces can be developed by programming in industry-

standard G-code. G-code is a widely used computer numerical control (CNC) programing 

language in which computerized machine tools can be programed movement oriented. This 

lathe reads special G-Codes and M-codes. G-codes will make the machine do something with 

an axis or the coordinate system, while an M-code will control other miscellaneous items such 

Figure 6.4 – Comco LA3250 Advanced Lathe part tooling. Two mandril pieces and a platform 
are provided to coat different piece geometries.  
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as blast control, subroutines and others. Table 6.1 holds a Programming quick reference for 

CoBlast using with the set equipment in place. 

 

Table 6.1 – Programming quick reference for CoBlast using (adapted from Comco Inc. 

Operating and service instructions, 2008)  
 

G00 Fast Move R Arc Radius (used with G02 or G03) 

G01 Vector Move S Set Rotational Speed 

G02 Clockwise Arc, Circle or Helix F Set Feed Rate 

G03 Counter clockwise Arc, Circle or Helix X X-Axis Value 

G04 Hold Position Y Y-Axis Value 

G10 Define Position Z Z-Axis 

G28 Home Axes W W-Axis 

G90 Use Absolute Coordinates P Parameter Value (used with G02, G03, G04 and M98) 

G91 Use Relative Coordinates I Circle Center Axis 1 (used with G02 or G03) 

M03 Start Rotational Axis Clockwise  J Circle Center Axis 2 (used with G02 or G03) 

M04 Start Rotational Axis Counter clockwise N Line number 

M05 Stop Rotational Axis () Comment 

M30 End Program ^ Scaling (used with G00, G01, G02 and G03) 

M98 Call Subroutine    

 

Multiple nozzle configurations can be adopted with this system. It was decided that the 

acquired lathe should be installed according to the latest studies on CoBlast: with a single 

nozzle configuration. Single nozzle set-up provides a simplified blasting procedure, with a 

reduction of the number of robots and a more effective control of the powder flow reaching a 

certain point of the surface. 

 

6.2.2 _Powder feeder 

 

Powder feeder Single 10-C from Sulzer Metco was brought from CATiM with the equipment 

kept by Ceramed. This device was previously used by the company to feed powders for 

plasma-spraying and was installed at the new facilities as a feeder to preform CoBlast. It is 

able to supply a given amount of powder at a constant rate by using the principle of 

volumetric powder feeding. The powder insert contains a rotating disk with powder groove, a 

spreader and a suction head that together release a certain volume of powder per unit of 

time (Figure 6.6). The powder hopper has a capacity of 1100 cm3 of powder. 

The system contains a pressure regulator up to 4 bar, and the revolution regulator of the 

rotating disk up to 10 revolutions per minute (rpm). The air consumption of the feeder is 

dependent of the revolutions per minute of the rotating disk and the air pressure used. The 

maximum air consumption is estimated in 10 l/min for a 4 bar pressure and 10 rpm. This 

equipment requires about 250W of electric power at 230 volts in alternating current (VAC), 

single phase, 50/60Hz. 

 

 

 

 



 

38 

 

38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The feeder system was studied in order to attain a mathematical relation between the 

input parameters (i.e. pressure and rpm) and the amount of powder fed (i.e. mass flow rate). 

Powder groove dimensions were measured and calculations were made to get its volume: 

Vgroove = 5.78 cm3. In optimal conditions, one revolution of the plate will make the powder 

groove expel all the powder it can carry in its volume through the suction head exit. Thus, 

5.78 cm3 will be the volume of expelled in one revolution. By knowing the density of bulk 

used, the mass flow rate can be determined according to equation 6.1. 

 

      (6.1)  

This control will be important to deduce the amount of powder spent to coat each surface 

according to the time the lathe is spending in a certain coating program. 

 

6.2.3 _Vacuum cleaner 

 

In order to collect spent powder and abrasive to and prevent it from reaching the 

operator, a dust collector must be connected to the lathe collar on its bottom designed for 

that purpose. A Sablex Universal Vacuum cleaner with an aspiration capacity of 600 m3/h was 

used to this end. Sablex universal vacuum cleaner requires about 550 watts of electric power 

at 230 VAC, three phase, 50/60Hz.  

 

6.2.4 _Blender 

 

Powder mixing as a technique of dry particle blending, is a subject of research motivated 

by several industrial sectors like pharmaceuticals, food, ceramics, metals and polymers 

manufacturing. Mix uniformity can be affected by powder stream flow properties, poor 

A 

Figure 6.6 – Powder feeder Single-10C from Sulzer Metco with an 1100 cm3 powder insert 
(A). The powder insert (B) consists of a powder hopper with a stirrer motor, coupling, 
dampener and stirrer, and a powder feed drive that consists of a rotating powder disk with 
groove powder, a spreader and a suction unit. 

B 
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A 

equipment design or inadequate operation, particle segregation or particle agglomeration 

driven by electrostatics, moisture and other factors. Some blenders have a limited mixing 

ability to improve upon component segregation typically caused by differences in particles 

characteristics like size, shape and density (Brone et al., 1998, Singhai et al., 2010).  

When a microblasting system is installed with a single nozzle configuration, a mixture of 

powders (i.e. dopant and abrasive) is used for CoBlast processing. In order to mix the dopant, 

HA, with the abrasives, Al2O3 or MCD, a V-blender was chosen as suitable equipment.  

V-blender, also known as a twin shell blender, has a remarkable blending performance 

with short blending times and efficient blending. This type of blender is used when precise 

blend formulations are required. An ingredient may be as low as 5% of the total blend size 

and still, its mechanism of diffusion, characterized by small scale random motion of solid 

particle, will produce uniform results. Blending made with this type of equipment can be 

influenced by the method by which materials are initially loaded into the blender (e.g. top to 

bottom, left to right), the filling level (i.e. volume of the material loaded into the blender, 

usually 50-60% of the total volume of the blender) and blending speed (Singhai et al., 2010). 

Blending rotation rate studies in a 1 liter 90º V-blender model using particles of dozens µm 

size show that, when the blender is filled properly, rotation rates between 8 and 24 rpm 

exert little influence on the mixing process: the key factor is the number of revolutions 

preformed (Brone et al., 1998). The same as saying that with a rotation rate near 24 rpm the 

appropriate number of revolutions to mix a set of powders will be accomplished faster. 

A V-blender experimental prototype made of polytetrafluoroethylene (PTFE) machined 

according to the dimensions preconized elsewhere (Brone et al., 1998) with an inner volume 

of 1L was kindly sent by Enbio Technical team (Figure 6.7, A). After reception, the blender 

was assembled and installed in a structure with a three phase motor (IM B14A GL56-160, 

Guanglu, 230 VAC, 0.09 kW) and a gear reducer (RI 28, Line), bought from Siepi – Sociedade 

Industrial de Equipamentos para indústria, LDA., to create a rotational movement of 20 rpm 

over the horizontal axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 6.7 – Model of the inner structure of the machined PTFE V-blender made of two hollow 
cylindrical shells joined at an angle of 90º (A), adapted from (Brone et al., 1998). Final look 
of the apparatus for mixing powders (B).  
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Together with the V-blender, a Retsch Vibratory feeder for uniform, continuous feeding 

and conveyance of pourable bulk materials and fine powders was installed to collect the 

powders from the exit of the V-Blender. The apparatus for mixing of powders was then 

complete (Figure 6.7, B). 

 

6.3  Static Parameters & Parameters under Evaluation 
 

CoBlast is characterized by a set of parameters that can be changed in order to control 

the process: blast medium and coating medium (i.e. abrasive used to abrade the surface and 

dopant used to coat the surface), powders particle size, ratio dopant/abrasive, angle of the 

nozzle, speed of the nozzle, height of the nozzle, raster offset, blast pressure and the mass 

flow rate of powders. Since a single nozzle configuration was chosen at the installation of 

Comco Advanced Lathe, another parameter can influence CoBlast processing results: the time 

of powders blending. 

Some of these parameters can be kept static based on previous works reported on the 

literature, company needs and equipment restrictions, and some of these can be studied in 

order to achieve better coating coverage, coating adhesion and crystallinity with less 

expenses (i.e. less energy involved in the process and less powder raw material spend). 

Regardless this work perspective based on process optimization, the focus of reaching first a 

situation of capability, and thus, stability of the process cannot be lost. Some parameters 

must remain static, and some must be studied towards this state of capability that will lead 

to a state of process validation, that over time can be optimized. 

An approach for CoBlast validation of Ti-6Al-4V surfaces of pedicle screws with HA was 

thought carefully leading to the list of parameters that should be assumed as static and under 

evaluation on the first CoBlast validation for medical applications at Ceramed. This list is 

presented below: 

 

Static Parameters 

 

Coating medium: Altakitin HA with a particle size in the range of 20-60 µm must be used 

as coating medium.  

 

Dopant/abrasive ratio: HA/Al2O3 ratio and HA/MCD ratio must be maintained in 

accordance with the studies reviewed at 50%/50% (w/w) for both. 

 

Blast pressure: Blast pressure should be held at 400 kPa since it is the upper limit 

admitted by the feeder and is a value with a good safety margin to the pressure value of 

the compressed air system of Ceramed. 

 

Nozzle angle: Single nozzle configuration was adopted based on the recent studies made 

and, thus, the nozzle angle shall be kept in accordance to the revised literature for this 

type of configurations − 90º from the surface. 
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Nozzle speed: Nozzle speed shall be kept at 13 mm/min according to the latest studies 

using single nozzle (Dunne et al., 2013, Dunne, Twomey, and Stanton, 2015, Dunne, 

Twomey, Kelly, et al., 2015). 

 

Mass flow rate: Coating and blast medium powder mixing mass flow rate was maintained 

at 50 g/min. A direct inquiry was addressed to the authors of the articles using CoBlast 

about this issue. This value was used so that in a first study the mass flow rate was a not a 

varying parameters that could cause significant differences in coating coverage at least. 

 

 

Parameters under Evaluation 

 

Blasting medium: The two blasting media used in the proof-of-concept studies for HA 

coatings with CoBlast shall be used separately to infer the possibility of validating the 

process for both. Thus, Al2O3 with a particle size <180 µm and MCD with a particle size of 

180 µm should be studied separately.  

 

Time of powders blending: The time of blending is a specific parameter that shall be 

studied for each combination of powders, since it may vary according to particles 

electrostatics size, weight and geometry. 

 

Nozzle height: In order to accomplish a suitable value of particle impact energy at the 

surface of the material the hypothesis of lowering the nozzle height was planned. This 

was considered because of the adopted static value of 400 kPa as blast pressure is inferior 

to the one used in previous CoBlast studies as stated at section 4.2. Three different 

nozzles heights were studied − 50 mm, 40 mm and 30mm. 

 

Raster Offset: Raster offset depends on the track width shaped by the type of particles in 

use and the blast pressure applied. A value of 3.3 mm was visually adjusted for the height 

of 50 mm which was in accordance with the latest study using CoBlast (Dunne, Twomey, 

and Stanton, 2015). Calculations were made to predict the raster offsets needed for other 

heights based on the geometry of De Laval Nozzle, and were assigned at 2.9 mm for a 

nozzle height of 40 mm and 2.6 mm for a nozzle height of 30 mm. Calculations that led to 

this values can be found in 
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Appendix A. 

 

 

6.4  Process requirements 
 

Regulatory specifications define the legal limits in which the process should occur. 

CoBlast process validation shall be conducted to produce HA coatings within the requirements 

for HA coatings, without the need of verification of each device coated by the quality control 

department of Ceramed. The actual regulatory specifications for HA coatings and HA powders 

as raw materials must be taken into consideration when the optimization and validation of 

CoBlast for HA coating occurs (Table 6.2). 

 

Table 6.2 – Regulatory specifications for HA coatings.  

 

 Characteristic Specification Standards Illustration 

Powder 

Chemical 

Requirement 

(wt% máx.) 

As < 3 

Cd < 5 

Hg < 5 

Pb < 30 

Total 

Heavy 

Metals 

< 50 

 

ASTM F1185-

03 

ISO 13779-1 

According to the specific requirements 

of the standards applied for HA used in 

medical applications, the raw material 

must be in conformity with the 

standards ASTM F1185-03 “Standard 

Specification for Composition of 

Ceramic Hydroxyapatite for Surgical 

Implants” and ISO 13779-1 – "Implants 

for Surgery - Hydroxyapatite – Part 1: 

Ceramic Hydroxyapatite” 

Ratio Ca/P 1,65 – 1,82 ISO 13779-1 
According to the specific requirements 

of the standards applied for HA used in 

medical applications, the powder must 

be in conformity with the standards 

ASTM F1185-03 “Standard Specification 

for Composition of Ceramic 

Hydroxyapatite for Surgical Implants” 

and ISO 13779-1 – "Implants for Surgery 

- Hydroxyapatite – Part 1: Ceramic 

Hydroxyapatite” 

Crystalline 

Content 

HA > 95% 

Other 
Crystalline 
phases (α 

and β 
TCP; 

TCPM and 
CaO) 

< 5% 

 

ISO 13779-1 

Coating 

Chemical 

Requirement 

(wt% máx.) 

As < 3 

Cd < 5 

Hg < 5 

Pb < 30 

Total 

Heavy 

Metals 

< 50 

 

ISO 13779-2 

According to the specific requirements 

of the standards applied for HA used in 

medical applications, the coating must 

be in conformity with the standard ISO 

13779-2 - "Standard Specification for 

Implants for surgery- Hydroxyapatite – 

Part 2: Coatings of hydroxyapatite".  
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Ratio Ca/P 1,67 – 1,76 
 

Crystalline 

Content 

HA > 45% 

Other 
Crystalline 
phases (α 

and β 
TCP; 

TCPM and 
CaO) 

< 5% 

 

Mechanical 

Resistance 

(MPa) 

> 15 ISO 13779-2 

ISO 13779-4 

The test is performed according to ISO 

137794 – “Implants for Surgery – 

Hydroxyapatite: Determination of 

coating adhesion strength” The aim of 

this test is to assess the tensile 

adhesive strength of coating layer to 

the substrate. Coated 25mm diameter 

specimens are linked to uncoated 

coupons with FM1000 or 3M-2214 

structural adhesive. A tensile stress is 

applied to separate the coating and the 

substrate. The maximum tensile 

adhesive stress is recorded. Usually 

this test is performed on at least five 

coated coupons. 

 

ISO 13779-2 standardizes the chemical content, ratio Ca/P and crystalline content of HA 

coatings. ISO 13379-3 establishes analytical methods such as XRD for crystalline content 

analysis and suggests ICP-MS for chemical analysis. Moreover, this standards outlines a sample 

preparation for analysis that comprises the detachment of coatings from the surface (e.g. by 

scraping it) with negligible contamination of the sample, asserting also that bulk samples 

shall be reduced to powder with less than 40 µm. With a thickness of < 10 µm, CoBlast 

coatings are virtually impossible to scrap in a viable amount for analysis with this techniques. 

Thus, the study here developed was conducted to meet the requirements of this standard, 

but the analytical methods used were adjusted to the type of coating produced, so that an in 

loco analysis of the samples and controls could be performed.  

 

6.5  Validation Protocol 
 

Building a strong and grounded validation protocol is one of the most important steps for 

process validation. Since, this is the first attempt to validate CoBlast for medical industry 

applications, this protocol must cover all the details that can influence the final results and 

study them thoroughly. 

First analysis of CoBlast processing show that it can be put in place through two 

microblasting equipment configurations: single nozzle set up or double nozzle set up. 

Ceramed chose the single nozzle set up to be the one implemented in its facilities. This 
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configuration requires a process of mixture of powders to be carried out so they can be 

blasted at the same time. Therefore, the mixture of powders is also a process that needs 

proof of its stability and capability. CoBlast process validation will comprise the validation of 

two processes – coBlasting of the surfaces and powders blending.  

An approach plan was made according to the process requirements stated in section 6.4. 

Limits for specific output parameters not set out in standards (e.g. roughness limits, thickness 

limits) shall be established as a result of OQ procedures to allow the creation of a monitoring 

plan for HA coating deposition on Ti-6Al-4V using CoBlast, and to infer about process 

capability on PQ procedures. Methods and tools that were employed in this evaluation were 

first organized in a protocol structured by Installation Qualification (IQ), Operational 

Qualification (OQ) and Performance Qualification (PQ) as required by FDA (2011). 

 

6.5.1 Installation Qualification 

 

IQ is preformed after equipment’s installation in order to evaluate machine’s status, 

document the installation and confirm that the unit is set up according to the operating 

instructions and manual. The following checklists were created to guide these procedures on 

CoBlast process validation IQ: 

 System identification checklist 

 Components identification checklist  

 Consumables identification checklist 

 Documentation of conformity checklist 

 System damages checklist 

 System installation checklist 

 User interface checklist 

 Overall result of the IQ checklist 

System verification must end with a final checklist of the overall results of IQ, a report of 

the differences or errors found, and a final deliberation about the state of IQ for this process. 

The first six check lists listed were prepared separately for each set of equipment: the 

equipment that acts directly on CoBlast of surfaces and the equipment that is used for 

powders blending. These documents can be found in Appendix B. 

By the end of IQ, results shall be kept on file and the differences or variations that were 

verified during the procedures must be documented. A clear conclusion about the state of IQ 

must be made indicating one of three case scenarios possible: 

 No differences or errors were found during IQ. IQ was successful, and according to 

the reported results the system is approved. 

 Small differences or errors were found during IQ. Differences and errors are 

documented, and despite its occurrence the system is approved. 

 Considerable differences or errors were found during IQ. According to the 

reported results the system is not approved. Necessary modifications or repairs 

will be made and IQ corresponding tests have to be repeated and documented. 

 

 

6.5.2 Operational Qualification  
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By the time the equipment was acquired, tolerance testing of Comco Advanced Lathe was 

performed and approved by Enbio technical team. The tolerance test report was revised and 

filed in the internal documentation of Ceramed of CoBlast. Equipment operational tolerances 

were within the recommended values allowing this validation to start towards the 

identification of optimum operational parameters without interference of erratic Advanced 

Lathe equipment behaviour.  

Blending equipment operational rotation rate shall be evaluated at this stage, on order to 

verify if the value of 20 rpm is in fact achieved for a 50%−60% blender filling conditions. 

Furthermore, OQ procedures are planned to test additional operational parameters like 

time, temperature, pressure, linespeed and setup conditions. An effort to determine 

parameters’ limits that will guarantee a short term stability and capability of the process 

shall be made at this stage. As explained later, crucial parameters that require evaluation at 

this stage are powders blending time and nozzle height with an individual raster offset. These 

parameters will be studied for two sets of coating/blasting medium: 50/50 (w/w) HA/Al2O3 

and 50/50 (w/w) HA/MCD. 

Before any test, raw materials specifications must be checked for compliance with the 

standards. Raw materials manufacturers’ declarations of compliance shall be reunited, 

analysed and accepted by the team that is leading the validation process. 

 

6.5.2.1 _Blending OQ 

 

Blending OQ procedures were planned based on the concept of powders apparent density 

(i.e. bulk density) defined by ISO 60 and ISO 697. The main purpose of blending operational 

qualification was to determine the blending time for which the final mix of HA with the 

abrasive (i.e., Al2O3 or MCD) was in fact 50%/50% (w/w) in all its extension. 

Apparent density is the weight per unit volume of a material, including voids that exist in 

the tested material. One cup of 50 mL was used to measure apparent density for a controlled 

powders fall. Powders fall was controlled using the vibratory feeder from Retsch, with a 

vibration rate set to 50% of its capacity. A schematic drawing of the apparatus used is shown 

in Figure 6.8. The idea is that, when used with stable parameters, this vibratory feeder 

equipment can reproduce powders’ “packaging”. In order to confirm this thought, controls of 

simple powders HA, Al2O3, MCD were made. 
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As stated in section 6.2.4, several factors that can influence blending process in a V-

blender. Therefore it important to reproduce all the steps exactly the same way in each test 

made. The following protocol was conceived: 

1. Weight the 50 ml receiving cup; 

2. Weight the necessary amount of each powder to fill 550 ml of the blender; 

3. Pour the abrasive powder into the blender through the back exit of the v-blender; 

4. Pour the HA powder into the blender through the back exit of the v-blender; 

5. Close the blender and turn it on; 

6. When the desired time of blending is over, turn off the v-blender; 

7. Open the back exit of the v-blender and pour the bulk into the hopper of the vibratory 

feeder; 

8. Turn on the vibratory feeder at 50% of its vibration capacity and collect the amount of 

powder necessary to overflows the 50 ml receiving cup; 

9. Level the top of the receiving cup with a spatula such that it is completely full. Be 

careful not to compress or shake the powder; 

10. Re-weight the receiving cup and its content; 

11. Calculate the bulk density in g/ml by dividing the weight of the powder by the volume 

of the cup.  

 

The number of cups weighted were the required to sample all the 550 ml of bulk present 

in the V-blender. The results obtained were presented as mean ± standard deviation (SD) and 

statistical analysis was carried out by means of one-way ANOVA with Tukey post hoc tests 

using software GraphPad Prism 6.  

 

 

6.5.2.2 _Blasting OQ 

 

After blending OQ procedures determination of the expected optimal operational 

parameters for powders blending conformity, blasting OQ took place. Samples routine 

preparation was designed to be as close as possible to the production procedures already 

implemented in Ceramed (Figure 6.9). HA/Abrasive was prepared using the V-Blender, 

Figure 6.8 – Schematic drawing of the set up put in place for powders blending OQ. (A) is the 
V-blender, (B) is the vibratory feeder and (C) is the 50 ml cup. 

Figure 6.9 - CoBlast Process Flow for test pieces. Process flow is intended to replicate the 
regular process flow of an orthopaedic implant that will undergo coating deposition. 
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compressed air and chemically pure methanol (José Manuel Gomes dos Santos, LDA) were 

used to pre-clean and post-clean samples before and after coating deposition, and finally 

samples were tested. 

 

CoBlast of samples was made using two different abrasive media (i.e. Al2O3 and MCD), and 

three different nozzle heights (i.e. 50 mm, 40 mm and 30 mm from the surface) with 

appropriate raster offset (i.e. 3.3 mm, 2.9 mm, and 2.6 mm respectively). For each situation 

the following resulting features were evaluated: 

 

 Coating morphology using SEM technology and optical microscopy  

 Coating thickness using optical microscopy  

 Coating roughness using profilometry 

 Coating crystallinity using XRD analysis 

 Coating heavy metals content using X-ray fluorescence (XRF) technology 

 Coating adhesion using Pull-off test 

 

Scanning electron microscopy (SEM) observations were carried out using a Carl Zeiss 

AURIGA CrossBeam (FIB-SEM). Prepared samples have been previously coated with an Ir 

conductive film for avoiding charge effects. Normal mode, and backscattered mode were 

used to access coating morphology. 

Coating thickness evaluation was made using cross sections of samples mounted in a 

polyester resin, then ground and polished. Mounted samples were examined using a Zeiss 

inverted optical microscope. Coating thickness was measured using AxioVision software. 

Results’ statistical analysis was carried out using two-way ANOVA test (p<0.05) with Tukey 

post hoc test. 

Coating roughness values (i.e. Ra values) were obtained according to ISO 4287:1997 – 

Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, 

definitions and surface texture parameters. Ra roughness was measured in two directions 

(e.g. x and y) using a Mitutoyo SJ-410 profilometer for both coated samples and acid etched 

samples in nitric acid 65% (AppliChem, Panreac), Six measurements were made for each 

conditions evaluated. Results values were presented as mean ± SD, and statistical analysis 

was made using using Two way ANOVA test (p<0.05) with Tukey post hoc test. 

Coating crystallinity was evaluated according to ISO 13779-3 – Implants for surgery – 

Hydroxyapatite – Part 3: Chemical analysis and characterization of crystallinity and phase 

purity. An X-Ray Diffractometer Philips X'Pert PRO MRD equipped with a Cu tube was used 

over the angular range of 20 to 60º (2θ). All XRD scans were carried out with a resolution of 

0.02º (2θ) and a sampling time of 50s per step. Origin 2015 software was used to integrate 

mean full peak values. 

Samples heavy metals content was determined using XRF technology. Semi-quantitative 

elemental chemical analysis by fluorescence X-ray wavelength dispersion, was carried out 

using a sequential XRF spectrometer PANalytical WDS-4 kW AXIOS (PANalytical BV, Almelo, 

The Netherlands). The spectrometer uses a rhodium ampule for producing X-rays and the 

samples which were measured as helium flow. Spectra were deconvoluted by the least 

squares method and a semi-quantitative chemical analysis based on the approach of the basic 

parameters using the SuperQ IQ + program (PANalytical BV, Almelo, The Netherlands). Further 

correction was applied for medium so that titanium was not detected. 
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Adhesion procedures were handled according to ISO 13779-4. Ti-6Al-4V cylindrical 

specimens with dimensions 24.5 mm of height and 25 mm of diameter were coated. 

Polyamide epoxy FM1000 was the adhesive used to link a coated specimen with a non-coated 

one. The assembly was placed in an oven at 180º for two and half hours to cure FM1000. A 

tensile load at a constant rate of cross-head speed was applied using an Instron 4507 with a 

load cell of 100 kN. Adhesion cylindrical test specimens were coated using Adhesion CNC 

program (Appendix E). 

 

 

6.5.3 Performance Qualification 

 

IQ and OQ are successful act together demonstrating that the equipment is installed 

properly and that when operated in accordance with the defined operational procedures 

conform products can be obtained. PQ is preformed after to demonstrate a key feature of 

process validation: Process capability. It indents to prove a long term stability of the process, 

showing that it consistently performs in accordance with predetermined criteria and thereby 

yields product meeting its specifications. 

 

6.5.3.1 _Blending PQ 

 

Samples for the first five analyses listed above on Blasting OQ were coated at the same 

time as samples for blending PQ were being prepared. PQ intends to demonstrate long term 

capability of the process: a good process performance. Since posteriorly to the blending 

procedure with optimized operational parameters, bulk undergoes handling to transfer it from 

the vibratory feeder mechanism to the powder feeder single 10-C of CoBlast equipment, 

segregation is likely to occur, and the 50/50 (w/w) bulk condition as bulk is being spread may 

not be verified over time. Therefore, the following CNC program was written so as this effect 

could be studied as soon as possible, since it could endanger the whole analysis. 

 

TestSamples CNC code 

 

[Filename] 

name=TestSamples 

 

[Requirements] 

PartTooling=COUPON_TRAY 

 

[Parameters] 

units=mm 

 

[ProgramData] 

N10   F.125     (set the feedrate) 

N20   G91 

N25   G01 y55.0 F33.0   (use relative coordinates) 

N30   G04 P.9    (hold position) 

N40   G91 
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N50   M98 SUB_STEPA 

N51   G91 

N55   G00 y-8.5 

N60   G91 

N70   M98 SUB_STEPB 

N80   G91 

N90   G00 y-8.5 

N100  G91 

N70   M98 SUB_STEPC 

 

N270  G04 P1 

 

N300  G28           (finish homing, slowly) 

N310  M30                 (end of program) 

 

 

Subroutines SUB_STEPA, SUB_STEB and SUB_STEPC are responsible to coat each one of the 

three lines of 4 samples positioned on part tooling recognised by the system as COUPON_TRAY 

and can be found in Appendix E. The final looks of the blasting TestSamples CNC code result 

is represented in Figure 6.10. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 6.10 – Schematic drawing of the result of TestSamples CNC code. OM stands for 
Optical microscopy, XRD stands for x-ray diffraction, XRF stands for x-ray fluorescence, and 
SEM stands for scanning electron microscopy. Samples labelled with these abbreviations were 
used for those analysis. Samples represented with dashed lines only were used for blending 
PQ and were coated with a nozzle height of 40 mm. 
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Samples represented with dashed lines with nothing written over them were used for 

roughness measurements as a parameter that could indicate if the impact, and thus, particles 

size and distribution, was unvarying over time.  

The risk is that powders handling during regular production, and the action of stirring 

them inside the feeder hopper can cause powders segregation and lead to non-uniform results 

across time. These non-conformities can be spotted by analysing surface roughness profile per 

example. If in a given time the amount of abrasive that is being expelled is reduced, the 

effect of surface roughness will be different. By positioning control samples across the robot 

coating route and performing enough coatings so that the feeder content can be all expelled, 

the preconized roughness analyses, before and after etching, should be enough to spot 

significant differences on HA/abrasive ratio that is being expelled.   

 

6.5.3.2 _Blasting PQ 

 

Blasting PQ will focuses on the results over time. PQ indents to prove a long term stability 

of the process. After defining the best operational parameters, samples must be prepared 

over time to study the influence of light, vibration, humidity, temperature, purity of the raw 

material, particle distribution of the previous (i.e. different batches with different particle 

distributions) and determine measures to eliminate them. This work needs to be done over 

time so that multiple factors that can influence the process can arise (e.g. differences in air 

humidity, on ambient temperature that can influence enormously the temperature of the 

compressed air, vibration of Ceramed’s equipment and near companies over different week 

days). It is necessary to examine to what extent these factors can influence the results and 

define changes in operational parameters to operate CoBlast in all situations. 

The extent of analysis and the time required to go through all conditions where outside 

varying factors that can affect the results of CoBlast arise is outside the enclosed time of this 

master thesis.  

Even though, short term stability and capability of the process will be inferred with a 

OQ/PQ perspective after gathering the results of the analysis made.  

At the end the CNC program that will be used to coat pedicle screws shall be developed 

and tested. 

 

6.5.3.3 _Process monitoring plan 

 

When a process is validated there is no need for verification of 100% of the production 

results. Still, control of monitoring parameters with calibrated monitoring equipment shall be 

performed in order to identify possible states of processing non-conformity. Deciding 

representative parameters of the overall process that allow monitoring it and its state of 

validation is very important. Some of these features shall be measurable without destroying 

the actual product. 

Coating thickness and coating roughness are good candidates for monitoring attributes. 

During OQ/PQ procedures the hypothesis of using these two parameters, on final product, as 

monitoring criteria was studied. Maintaining a state of control of the overall process (i.e. 

blending and blasting) might be complex, thus, a mid monitoring point between the two steps 

shall be thought. 
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Chapter 7  

CoBlast Process Validation 

 

 

CoBlast Process Validation was conducted to validate the deposition of HA coating over Ti-

6Al-4V pedicle screws using CoBlast processing. Validation was executed according to the 

Validation Plan developed previously in Chapter 6. 

Results disclosed in this chapter help to conclude about the type of analysis that can be 

made on HA coatings thin as 5-10 µm with remarkable adhesion properties in order to validate 

its process of deposition. 

Moreover, the final goal of this validation is to ultimately contribute to launching to the 

market an innovative coating service with Ceramed brand on it. 

 

 

7.1  Installation Qualification 
 

All equipment was received at Ceramed’s new facilities and installed according to 

suppliers and manufacturers’ instructions.  

Installation qualification for CoBlast comprises the qualification of the installation of two 

sets of equipment: equipment that performs CoBlast of surfaces and equipment that acts on 

the blending of the two powders (i.e. abrasive Al2O3 and dopant HA, or abrasive MCD and 

dopant HA).  

 

7.1.1 CoBlast equipment IQ_ 

 

CoBlast equipment was installed according to the instruction of the suppliers and 

manufacturers of the systems. IQ of this set of equipment was registered in the following 

checklists: System identification, Components identification, Consumables identification, 

Documentation of conformity, System damages, System installation and User interface. 
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System identification checklist 

 

Purpose: List all system specifications and check them. 

 

    

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Model LA3250 - 29   − 

Serial No. ---   − 

Pressure min-max. 620 – 965 kPa (6.2 - 9.6 bar)   − 

Electrical connection 115 VAC, 50/60 Hz   − 

Transformer 220-240 VAC   − 

Power Input 400 W   − 

Air Input 198 l/min   − 

Software Version 

Comco User Interface V 12.2   − 

Comco Galil Service V 10.2   − 

Comco Serial Service V 2.0   − 

Comco Axis Control Utility V 7.0   − 

Comco Bus Control Utility V 1.3   − 

 Sulzer Metco Powder Feeder Single 10-C   

Model Single 10-C   − 

Serial No. ---   − 

Pressure min-max. 0 – 400 kPa (0 – 4 bar)   − 

RPM min-max. 0 – 10 rpm   − 

Flow rate 0 – 10 l/min   − 

Electrical connection 230 VAC, 50 Hz   − 

Power Input 250 W   − 

 Sablex Universal Vacuum Cleaner   

Model Sablex Universal   − 

Serial No. ---   − 

Flow rate 600 m3/h   − 

Electrical connection 220 VAC, 50/60 Hz   − 

Power Input 550 W   − 

 

Declaration: 

 

Systems are identified and specifications verified. Yes  No 

Remarks: No additional remarks.  
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Components identification checklist 

 

Purpose: Identify and verify the availability of the equipment components. 

 

  Available? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Air drier AD5300   − 

Mandril part tooling size 1   − 

Mandril part tooling size 1 (2)   − 

Mandril part tooling size 2   − 

Platform part tooling   − 

 Sulzer Metco Powder Feeder Single 10-C   

Powder hopper of 1100 cm3   − 

 

Declaration: 

 

The components are identified and available. Yes No 

Remarks: No additional remarks.  

 

 

Consumables identification checklist 

 

Purpose: Identify and verify the availability of the consumable components. 

 

  Available? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Inside chamber halogen lamp   − 

Air filter   − 

 Sulzer Metco Powder Feeder Single 10-C   

Spreader   − 

Suction unit   − 

 Universal Vacuum Cleaner   

Air filter   − 

 

Declaration: 

 

The consumables are identified and available. Yes No 

Remarks: No additional remarks.  
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Documentation checklist 

 

Purpose: To ensure that the necessary documentation for production with this equipment 

is correct and complete. 

 

  Available? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Operating instructions   − 

Declaration of conformity by the manufacturer   − 

 Sulzer Metco Powder Feeder Single 10-C   

Operating instructions   − 

Declaration of conformity by the manufacturer   − 

 Universal Vacuum Cleaner   

Operating instructions   − 

Declaration of conformity by the manufacturer   − 

 

Declaration: 

 

System documentation required is correct and available. Yes No 

Remarks: 
Declarations of conformity by the manufacturers were revised and filed with 

CoBlast Ceramed’s internal documentation. 

 

 

System damages checklist 

 

Purpose: To report any type of system damage. 

 

  Damaged? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Is there any component or consumable damaged in this item? −   

 Sulzer Metco Powder Feeder Single 10-C   

Is there any component or consumable damaged in this item? −   

 Universal Vacuum Cleaner   

Is there any component or consumable damaged in this item? −   
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Declaration: 

 

The equipment, components and consumables are free of visible damage? Yes No 

Remarks: No additional remarks.  

 

 

System installation checklist 

 

Purpose: To determine if the system is placed properly with correct wiring and utilities 

available. 

 

  Specification fulfilled? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Is the equipment properly connected to company’s air system 

without any visible defect? 
  − 

Is the electrical connection made using a 220-240V transformer?   − 

Is the pressure regulator working properly from 0 to 1000 kPa?   − 

 Sulzer Metco Powder Feeder Single 10-C   

Is the equipment properly connected to company’s air system 

without any visible defect? 
  − 

Is the single phase electrical connection correctly made?   − 

Is the powder connection made between the powder exit and 

Comco LA 3250 Advanced Lathe single nozzle entry? 
  − 

Is the pressure regulator working properly from 0 to 400 kPa?   − 

 Universal Vacuum Cleaner   

Is the three phase electrical connection correctly made?   − 

Is the air connection with the Comco LA 3250 Advanced Lathe 

collar made, and using an appropriate duct? 
  − 

 

Declaration: 

 

Installation of CoBlast equipment is complete and correct. Yes No 

Remarks: No additional remarks.  
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User Interface Menu Settings Checklist 

 

Purpose: To ensure the user interface comes with the specified settings. 

 

  Setting fulfilled? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Does the software language is English?   − 

Does the user interface exhibits a time countdown when a coating 

program is at work?  
  − 

Does the STOP button stops the program and returns the axis to 

home position? 
  − 

Does the START button re-starts the coating program?   − 

 

Declaration: 

 

All user interface important features are implemented properly. Yes No 

Remarks: No additional remarks.  

 

 

7.1.2 Blending equipment IQ 

 

In order to qualify the installation of the V-blender, additional careful procedures were 

adopted. The V-blender was machined by Enbio technical team and neither this construction 

nor the structure where it has been assembled were CE certified, or others.  Tests like visual 

inspection, volume test of the hollow cylindrical shells of the V-blender horizontality of the 

axis of rotation confirmation were made. The results attained are presented below.  

IQ of this set of equipment was finally registered in the following checklists: System 

identification, Components identification, Consumables identification, Documentation of 

conformity, System damages, System installation and User interface. 

 

7.1.2.1 _Visual inspection, angle between shells and volume verification 

 

The V-blender was clean and without any scratches on its inner surface. In order to test 

its volume, compressed air at 600 kPa was used to assure cleanliness and void volume was 

filled with deionized water. The water was poured into a graduated measuring cylinder of 1 

liter and the volume was verified. The volume of water was confirmed at 1 liter, and thus, 

the V-blender was classified as V-blender with a total volume (VTotal) of 1 liter.  

 

7.1.2.2 _Horizontality testing 

 

Horizontality of the V-blender installation was successfully verified using a calibrated 

level tool (Figure 7.1). 
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System identification checklist 

 

Purpose: List all system specifications and check them. 

 

    

Equipment  Yes No 

 V-Blender   

Model 90 º V-blender   − 

Serial No. ---   −   

Speed 20 RPM   − 

Electrical connection 230 VAC, 50/60 Hz   − 

Power Input 90 W   − 

 Retsch Vibratory Feeder   

Model DR 15/40   − 

Serial No. ---   − 

Frequency 50 – 60 Hz   − 

 

Declaration: 

 

Systems are identified and specifications verified. Yes No 

Remarks: 

Although the blender system has no serial number, the motor used to create 

rotation over its horizontal axis has it and the assembly was identified internally 

following Ceramed’s internal procedures.  

 

Figure 7.1 – V-blender horizontality testing made using a level tool. Horizontality of the 
installation was successfully confirmed. 
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Components identification checklist 

 

Purpose: Identify and verify the availability of the equipment components. 

 

  Available? 

Equipment  Yes No 

 Retsch Vibratory Feeder   

Chute    − 

Hopper   − 

 

Declaration: 

 

The components are identified and available. Yes No 

Remarks: No additional remarks.  

 

 

Documentation checklist 

 

Purpose: To ensure that the necessary documentation for production with this equipment 

is correct and complete. 

 

  Available? 

Equipment  Yes No 

 V-Blender   

Operating instructions −   

 Retsch Vibratory Feeder   

Operating instructions   − 

Declaration of conformity by the manufacturer −   

 

Declaration: 

 

System documentation required is correct and available. Yes No 

Remarks: 

V-Blender has no operating instruction. An internal work instruction was to create 

the possibility for Ceramed’s workers to use the V-Blender easily, according to 

Ceramed’s internal procedures (Appendix C). Retsch Vibratory Feeder declaration 

of conformity by the manufacture was nowhere to be found. 
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System damages checklist 

 

Purpose: To report any type of system damage. 

 

  Damaged? 

Equipment  Yes No 

 V-Blender   

Is there any visible damage in this item? −   

 Retsch Vibratory Feeder   

Is there any component damaged in this item? −   

 

Declaration: 

 

The equipment and components are free of visible damage? Yes No 

Remarks: No additional remarks.  

 

System installation checklist 

 

Purpose: To determine if the system is placed properly with correct wiring and utilities 

available. 

 

  Specification fulfilled? 

Equipment  Yes No 

 V-Blender   

Is the system placed on a horizontal and planar surface?   − 

Is the horizontal axis drilled in the correct central position?   − 

Is the three phase electrical connection correctly made?   − 

Does the blender cover insulates it efficiently?   − 

 Retsch Vibratory Feeder   

Is the system placed on a horizontal and planar surface?   − 

Is the single phase electrical connection correctly made?   − 

Does the power button and switchers work properly?   − 

 

Declaration: 

 

Installation of Blending equipment is complete and correct. Yes No 

Remarks: No additional remarks.  
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7.1.3 _Result and report of installation qualification  

 

IQ results were assembled in an overall result of IQ checklist. 

 

Overall result IQ check list 

 

Purpose: List all the parameters evaluated in IQ. Confirm that all were executed and 

conclude about its success. 

 

IQ result 

Check carried out 

successfully? 

Yes No 

System identification checklist   − 

Components identification checklist   − 

Documentation of conformity checklist −   

Consumables identification checklist   − 

System damages checklist   − 

System installation checklist   − 

User interface checklist   − 

 

 

Small differences from what expected during IQ were found in what concerns 

Documentation of conformity of the equipment. The absence of conformity declaration by the 

manufacturer for the V-Blender and Vibratory Retsch Feeder may require detailed equipment 

study report to guarantee its conformity with Machines Directive 98/37/CE. Preliminary tests 

made with the equipment in place point to everything working as anticipated. Though, this 

study is considered something advisable in a near future. Meanwhile, differences are 

documented, and despite its occurrence the system is considered approved. 

 

 

7.2  Operational Qualification 
 

Before any test or sample preparation, raw materials specifications were checked for 

compliance with the standards. HA was in accordance with ISO 19779-1:2008 as required. Raw 

materials manufacturers’ declarations of compliance were joined up, analysed and accepted 

for this process validation (Appendix D). 

 

7.2.1 _Blending OQ 

 

RPM of the V-blender were verified by measuring the time it takes for the 55% filled V-

blender to perform 10 revolutions. This time was 28.59 ± 0.09 s, which means that the 55% 

filled V-blender is operating with a rotation rate of approximately 19 rpm. This value is within 

the values of capable rotation rate for 1 liter V-Blender as exposed in section 6.2.4.  

First control curves data was collected by performing a starting point analysis where as-

supplied powders were tested under the same conditions as the future bulk form. All the 

procedure lines were followed using 600 mg of HA, MCD and Al2O3. After, a 300g of each 
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powder were tested as protocoled for a blending time of zero minutes. Blank curves were 

drawn (Figure 7.2, Figure 7.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum value and the minimum value of the HA/MCD and HA/Al2O3 apparent 

density were considered limit values for the apparent density results of blending after 3 and 5 

minutes. They were both 1.017 and 1.315 for minimum and maximum apparent density of 

HA/MCD and 1.080 and 1.466 for minimum and maximum of HA/Al2O3 apparent density. 

After this first procedure value of apparent density of each one of the simple powders 

could be accurately calculated with negligible standard deviation: 

 

ρHA = 0.85 g/cm3 

ρMCD = 1.47 g/cm3 

ρAl2O3 = 1.72 g/cm3 

 

Figure 7.3 - HA, Al2O3 and HA/Al2O3 apparent density curves after 0 minutes of blending on a 
1 liter V-blender. 

Figure 7.2 - HA, MCD and HA/MCD apparent density curves after 0 minutes of blending on a 1 
liter V-blender. 
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Since powders blending shall be performed with the V-blender filled at 50-60% of its total 

volume, the mass of each powder required to fill the blender up to approximately 550 ml was 

calculated by performing the following deduction: 

 

 

 (7.1) 

 

 

(7.2) 

  
 

(7.3) 

 

 

(7.4) 

 

 

 

 

After calculating, a final mass of 300g of HA and 300g of abrasive were set as protocol 

values since they represent a 50/50 (w/w) HA/Abrasive value and the condition of 50-60% 

filling is fulfilled when these mass values are used for both HA/MCD and HA/Al2O3 bulk. 

By placing first abrasives and after HA inside the V-blender and mixing for 3 and 5 minutes 

following results were obtained (Figure 7.4, Figure 7.5, Figure 7.6 and Figure 7.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 - HA, MDC and HA/MCD apparent density curves after 3 minutes of blending on a 1 
liter V-blender. *, ** indicate a significant difference between the assigned conditions 
(p<0.05, p<0.01 respectively). 
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Figure 7.7 - HA, Al2O3 and HA/Al2O3 apparent density curves after 3 minutes of blending on a 
1 liter V-blender. *, ** indicate a significant difference between the assigned conditions 
(p<0.05, p<0.01 respectively). 

Figure 7.5 - HA, MDC only and HA/MCD apparent density curves after 5 minutes of blending 
on a 1 liter V-blender. No significant differences were found. 

Figure 7.6 - HA, Al2O3 and HA/Al2O3 apparent density curves after 5 minutes of blending on a 
1 liter V-blender. No significant differences were found. 
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Results show that for both bulks (e.g. HA/MCD and HA/Al2O3), blending powders for 5 minutes 

on a V-blender of 1 liter results in a bulk of 50/50 (w/w) in all its extension when poured  

over a vibratory chute (Figure 7.5 and Figure 7.7). 

SEM imaging of the powders may help to explain the obtained results (Figure 7.8). 

Abrasive powders were cuboid shaped, very angular and far bigger than HA particles as 

expected. Among the abrasive particles, Al2O3 were clearly smother than MCD. This might be 

attributed to the distinct route of manufacturing process of these two particles. HA particles 

were up to 4x times smaller than the abrasive particles and were perfectly round shaped. 

HA/Abrasive bulk powders lack of segregation, even when poured over a vibratory chute, 

may be attributed to particles geometry. When in bulk, a perfect mix of HA/Abrasive 

particles may lead to a situation where HA particles become trapped within the interstices 

formed between the abrasive particles. 

 

 

7.2.2 _Blasting OQ 

 

Blasting OQ was performed based on the tests made to assess the influence of the 

parameters under evaluation (e.g. two different blast media, 3 different nozzle heights with 

individual raster offset) on the following features: 

 

1. Coating morphology evaluated using SEM and optical microscopy 

2. Coating thickness evaluated using optical microscopy  

3. Coating roughness evaluated using profilometry 

4. Coating crystallinity evaluated using XRD analysis 

5. Coating heavy metals content evaluated using XRF 

6. Coating adhesion evaluated using Pull-off test 

 

Test 1, 2, 3 and 4 can help to decide which operational parameters are better to achieve 

great HA coating surface coverage. Furthermore, XRD analysis is also useful to understand 

how coating crystallinity may vary with the operational parameters under evaluation and 

understand which one(s) better serve the limits defined by ISO 13779-2. Heavy metals content 

may also help to decide which operational parameters can and cannot be adopted. After all 

these prepositions are clear, coatings prepared with parameters that were not excluded by 

previous tests analysis shall be tested for coating adhesion compliance with ISO 13779-4.  

 

Figure 7.8 – SEM imaging of hydroxyapatite (HA) and blast media MCD (sHA) and Al2O3.  
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7.2.2.1 _Coating morphology  

 

Coating morphology was assessed using SEM technology and optical microscopy (Figure 

7.9, Figure 7.10). HA blasted surfaces presented a flakelike appearance, as if the HA particles 

had been crushed into the substrate surface. Visually no differences were found between the 

samples prepared with the three different blasting nozzle heights. 

HA/MCD blasted surfaces appeared to be morphologically smoother than single HA 

surfaces but a small scale topographical variation was present. It seemed as if these were 

uniformly roughened highly regular surfaces. Apparently no big differences were present 

when the three nozzle heights conditions were compared, although for the height of 40 mm a 

smother surface was detected. 

HA/Al2O3 blasted surfaces seemed to be more irregular than HA/MCD blasted ones, 

especially for 40 mm nozzle height. This condition seemed to have led to a denser coating 

layer with apparent roughness peak to peak higher than the other two. On the contrary, for a 

nozzle height of 30 mm, SEM image revealed a smoother coating than the other two nozzle 

heights for the HA/AL2O3 condition. 

One plasma-sprayed HA coated sample was also observed. This HA coating was porous 

with spherical shapes and bulge valleys. It was visibly cracked. This cracks can be attributed 

to thermal shock after the high temperature plasma coating application. These are common 

features of coatings that underwent rapid cooling. 

Cross-sections observations revealed that when blasted with HA only a smooth interface 

between Ti-6Al-4V substrate and the coating arose (Figure 7.10). A thin layer of HA is 

noticeably deposited. When using a nozzle height of 30 mm, some coating narrowed sections 

are created. 

HA/MCD blasted samples were well coated, without narrowed sections for all nozzle 

heights. Apparently thicker coatings are created when using MCD as blast media than for 

samples blasted with only HA. Furthermore, the underlying titanium has slightly jagged. 

When HA/Al2O3 mixtures were used to blast substrate surfaces a very irregular layer of HA 

was deposited, and Ti-6Al-4V substrate surface is undoubtedly more jagged. Some coating 

narrowed sections were found with this blasting media for all three nozzle height conditions. 

Apparently, there is no variation in coating coverage when the nozzle height used in 

blasting varies from 50 mm to 30 mm for the conditions HA/MCD and HA/Al2O3 blasted 

surfaces. However, when coatings using HA/MCD and HA/Al2O3 are compared, less pronounced 

jagged features are visible on the first ones. This can be attributed to the softer nature and 

less angular shape of MCD when compared to Al2O3. 

Plasma-sprayed samples presented thicker coatings since they were prepared according to 

the requirements made for pedicle screws HA plasma-sprayed (e.g. 60 µm thick). The 

underlying titanium was undoubtedly more grooved than all other tested samples. This can be 

attributed to the grit-blasting pre-treatment with corundum abrasive (i.e. Al2O3) of 

approximately 400µm and 900 µm applied to substrates that have undergone plasma-spray 

coating. 
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Figure 7.9 - Scanning Electron Microscopy images of Ti-6Al-4V as received, HA blasted 
samples and CoBlast samples prepared using HA as dopant media and Al2O3 or MCD as blasting 
media. Samples were blasted using 400 kPa of pressure and three different nozzle heights (50 
mm, 40 mm and 30 mm). 

Ti-6Al-4V 
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Figure 7.10 - Cross-sections of the Ti-6Al-4V coupons blasted with HA, HA/MCD and HA/Al2O3 

for three different nozzle heights (50 mm, 40 mm and 30 mm). Plasma-sprayed HA coating 

with approximately 60 µm cross-section and Ti-6Al-4V substrate without coating were also 

observed. 
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7.2.2.2 _Coating thickness 

 

Coatings’ thickness of HA coated samples was evaluated using optical microscopy and 

measured using AxioVision microscopy software (Table 7.1). Results show that there is no 

significant difference between coatings thickness when applied with the same blast media but 

with three different nozzle heights.  

 

Table 7.1 – Coatings thickness evaluation (µm) 

  

 50 mm 40 mm 30 mm 

HA 3.98 ± 0.78 4.41 ± 0.45 4.32 ± 1.01 

HA / MCD 6.50 ± 1.08 5.96 ± 1.21 5.72 ± 1.65 

HA / Al2O3 8.55 ± 4.74 9.43 ± 3.83 8.67 ± 3.47 

Plasma 70.91 ± 9.84 

 

When different abrasive media are compared, coating thickness tends to increase from HA 

< HA/MCD < HA/Al2O3 regardless of the nozzle height used during blasting process. When this 

comparison is statistically analysed (Figure 7.11) no significant difference is found in coating 

thickness of surfaces blasted with HA and HA/MCD for all three different nozzle heights. 

Furthermore, when a nozzle height of 50 mm is employed, there is no difference between 

coatings’ thickness of surfaces blasted with HA/MCD and HA/Al2O3. These results must be 

analysed carefully. Although in terms of coating thickness, HA/MCD and HA/Al2O3 deposited 

HA coatings, can have similar results, HA/Al2O3 thickness values are very uneven, resulting in 

a large standard deviation. These results may be attributed to the narrowed and jagged 

features together, observed on HA/Al2O3 blasted coatings cross-sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11 – Coating thickness evaluation results. **, *** indicate a significant difference 
between the assigned conditions (p<0.01, p<0.001 respectively). 
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7.2.2.3 _Coating roughness  

 

Coatings’ roughness was registered using a Mitutoyo SJ-410 profilometer according to ISO 

4287:1997. Roughness was measured before and after samples acid etching. 

HA only blasted surfaces’ roughness before acid etching was similar to HA/MCD surface 

roughness before acid etching for the three different nozzle heights used in blasting (Figure 

7.12, Table 7.2). Both conditions resulted in coatings that were significantly different in 

roughness for a nozzle height of 50 mm when compared with a nozzle height of 30 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HA/Al2O3 blasted surface presented differences in roughness when the nozzle height of 50 

mm was compared with both 40 mm and 30 mm. When this blast medium is compared with 

the others, for all the three nozzles heights used in blasting, the roughness was significantly 

higher. This may, once again, be attributed to the increased hardness and angular shape of 

alumina when compared with MCD or the absence of blast medium.  

 

Table 7.2 – Surface roughness (Ra, µm) before acid etching 

 

 50 mm 40 mm 30 mm 

Ti G5 0.58 ± 0.09 

HA 1.03 ± 0.10 1.21 ± 0.12 1.29 ± 0.04 

HA / MCD 1.02 ± 0.11 1.19 ± 0.04 1.28 ± 0.13 

HA / Al2O3  2.75 ± 0.22  2.87 ± 0.23 3.09 ± 0.07 

Plasma 7.85 ± 0.53 

 

Figure 7.12 – Coating roughness evaluation before acid etching. *, **, ***, **** indicate a 
significant difference between the assigned conditions (p<0.05, p<0.01, p<0.001, p<0.0001 
respectively). 
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 After etching the coated substrates with nitric acid at 65%, no differences in surfaces 

roughness were found between the three nozzle heights used to blast the surfaces for HA, 

HA/MCD and HA/Al2O3 surface blasting conditions (Figure 7.13, Table 7.3). Results revealed 

that after coatings’ dissolution, HA and HA/MCD blasting conditions were now significantly 

different in terms of surface roughness for all the three nozzle heights used in blasting. These 

results show that coating the surface with HA is quite different than coating with HA using 

MCD blast medium. After coatings’ dissolution, HA/MCD blasted surfaces still have a 

roughness profile that could improve mechanical interlocking between bone and implant 

surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once again HA/Al2O3 blast condition stands out. Blasting surfaces with HA/Al2O3 produces 

significantly higher surface roughness for all applied nozzle heights when compared with the 

other two coating/blast media even after acid etching. 

 

 

Table 7.3 – Surface roughness (Ra, µm) after nitric acid at 65% etching 

 

 50 mm 40 mm 30 mm 

Ti G5 0.59 ± 0.14 

HA  0.59 ± 0.13 0.66 ± 0.22 0.72 ± 0.23 

HA / MCD  1.08 ± 0.18 1.20 ± 0.11  1.21 ± 0.20 

HA / Al2O3 3.13 ± 0.16  3.33 ± 0.47 3.43 ± 0.45 

Plasma 5.11 ± 1.06 

 

Figure 7.13 - Coating roughness evaluation after acid etching. *, **** indicate a significant 

differences between the assigned conditions (p<0.05, p<0.0001 respectively). 
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Figure 7.14 - Normalized XRD patterns of HA powder (e.g. raw material), G5 Ti substrate, HA 
only blasted G5 Ti, HA/MCD blasted G5 Ti, HA/Al2O3 blasted G5 Ti with 50 mm, 40 mm and 30 
mm nozzle height blasting condition. An HA coated plasma sample was also analysed for 
comparison. 

Furthermore, a tendency for surface roughness to increase after surfaces etching is 

noticed for both HA/MCD and HA/Al2O3 condition. Unlikely, when only HA is applied, after 

etching, the surface roughness significantly dropped (p<0.001). The same happened for 

plasma-sprayed samples (p<0.05). When surface roughness decreases, the amount of surface 

area available for osteoblast adhesion decreases. This may be deleterious for long term 

surface-bone interlocking. 

 

7.2.2.4 _Coating crystallinity   

 

XRD analysis was carried on a compressed tablet of HA, blasted HA coatings using two 

different blasting media (i.e. MCD and Al2O3) and on a HA plasma-sprayed sample. 

Before any coating crystallinity calculation, XRD patterns were normalized at relative 

intensity in order to determine the ratio of HA (211) to Ti (101) which can be faced as a HA 

coating coverage index (Figure 7.14,  

Table 7.4). 
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Table 7.4 – Ratio between the normalised intensity of 211 characteristic reflection of HA and 

101 reflection of Ti corresponding to 31.5º and 40.2º (2θ), respectively.  

 

Ratio HA (211) 

to Ti (101) 
HA HA/MCD HA/Al2O3 

h=50mm 2.51 1.00 0.42 

h=40mm 2.26 1.08 0.47 

h=30mm 1.79 1.15 0.50 

 

Coating degree of crystallinity has been accessed through two methods of XRD data 

treatment. Its calculation was performed following two accepted approaches: 

1. Detection of the 10 peaks preconized by ISO 13779-3 for Hydroxyapatite, 

measurement of the integrated intensity of these ten line and comparison with a 

crystalline standard; 

2. Detection of intensity of (300) diffraction peak (I300) and intensity of the hollow 

between (112) and (300) diffraction peaks (V112/300) of hydroxyapatite and evaluation 

of the  percentage of crystalline phase (Xc) using the flowing equation (Landi et al., 

2000) 

 

 

 

 

   

Blasted samples exhibit peaks associated with titanium which are present due to the thin 

nature of these coatings (i.e. < 10 µm) combined with the presence of the underlying Ti-6Al-

4V substrate. The XRD signal obtained for these coatings contained an increased number of 

peaks present and variations in their intensity for different conditions studied. Origin 

software was used to integrate the 10 peaks preconized by ISO 13779-3 when found (Table 

7.5). For conditions HA/MCD and HA/Al2O3 the 40.2º (2θ) titanium peak was so intense and 

broad that 39.8ª (2θ) peak of HA was almost covered (Table 7.6). 

 

Table 7.5 – D-spacing (m) of the ten peaks used for HA coating crystallinity evaluation 
according to ISO 13779-3. 

D-spacing (m) 2θ 

3.44 x 10-10 25.879242 

3.17 x 10-10 28.126931 

3.08 x 10-10 28.966514 

2.81 x 10-10 31.820082 

2.78 x 10-10 32.172726 

2.72 x 10-10 32.902348 

2.63 x 10-10 34.062034 

2.26 x 10-10 39.856152 

1.94 x 10-10 46.789193 

1.84 x 10-10 49.497605 

(7.1) 
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Table 7.6 – Integrated intensity of the peaks found in the XRD analysis of HA, Plasma, HA 

only, HA/MCD, HA/AL2O3 samples from the ones referenced in ISO 13779-3 for HA coating 
crystallinity determination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HA powder - fully crystallized 
reference compound 

Plasma sprayed sample 

Peak Area 2θ Peak Area 2θ 

1 2497.3654 25.9589 1 1090.2097 25.6581 

2 569.0688 28.1982 2 723.3473 27.9308 

3 940.9781 29.0338 3 994.4709 28.8332 

4 4605.8262 31.8412 4 2017.3676 31.6741 

5 2251.1249 32.2757 5 1091.2291 32.0418 

6 3029.3519 32.9776 6 1519.1379 32.8105 

7 1092.7331 34.1474 7 826.9738 33.9134 

8 1072.9971 39.8961 8 537.4177 39.7290 

9 1327.8774 46.7811 9 814.5239 46.6141 

10 1460.0468 49.5552 10 756.8199 49.3547 

Total 18847.3698  
 10371.4979  

HA (h = 50 mm) HA (h = 40 mm) HA (h = 30 mm) 

Peak Area 2θ Peak Area 2θ Peak Area 2θ 

1 985.1460 25.7918 1 1037.7363 25.8586 1 621.4587 25.8252 

2 415.6093 28.0645 2 462.6682 28.0645 2 215.5921 28.1313 

3 777.2244 28.9001 3 699.6339 28.9335 3 555.3656 28.9001 

4 1428.6129 31.7410 4 1432.9745 31.7410 4 1603.8306 31.7410 

5 447.9789 32.1086 5 465.1581 32.1086 5 467.1635 32.1421 

6 1065.8112 32.8439 6 1092.1315 32.8773 6 746.1080 32.8773 

7 358.4734 33.9803 7 379.2789 33.9803 7 362.3672 34.0471 

8 550.9204 39.7958 8 604.9479 39.7624 8 428.5104 39.7624 

9 278.4766 46.6809 9 317.6979 46.6809 9 236.1135 46.6809 

10 282.1698 49.4549 10 305.8162 49.4549 10 191.4109 49.4883 

Total 6590.4230 
 

Total 6798.0438  Total 5427.9203  

HA/MCD (h = 50 mm) HA/MCD (h = 40 mm) HA/MCD (h = 30 mm) 

Peak Area 2θ Peak Area 2θ Peak Area 2θ 

1 1196.8444 25.8587 1 1170.2901 25.7918 1 1199.0001 25.8252 

2 502.2739 28.0645 2 479.3795 27.9977 2 504.0286 28.0979 

3 994.0698 28.9335 3 993.8693 28.8667 3 1039.3239 28.8666 

4 2333.4613 31.7410 4 2513.7591 31.7076 4 2622.0148 31.6741 

5 445.1046 32.1755 5 437.11665 32.1088 5 455.4489 32.1086 

6 1433.2921 32.8439 6 1471.6277 32.8439 6 1587.3031 32.8439 

7 676.3050 34.0138 7 701.7563 33.9469 7 704.6641 33.9469 

9 405.8666 46.6474 9 410.8799 46.5806 9 448.5973 46.6141 

10 366.7287 49.4883 10 370.5724 49.3881 10 411.9996 49.3881 

Total 8353.94647 
 

Total 8549.2511  Total 8972.3804  



 

75 

75 

 

 

 

 

After integration of the present peaks, the calculated peaks areas were used to determine 

coating crystallinity in relation to the adopted standard crystalline standard (i.e. HA powder 

tablet), (Table 7.7). 

 

 

Table 7.7 – Crystallinity (%) according to ISO13779-3. Values were calculated by summing the 

areas of the found peaks for each sample and diving this value for the sum of the same peaks 

area of the crystalline reference.  

 

Crystallinity (%) HA  HA/MCD HA/Al2O3 HA powder Plasma 

h=50mm 34% 47% 29% 
(Reference 

as if 100%) 
55% h=40mm 36% 48% 29% 

h=30mm 29% 50% 30% 

 

 

Intensity of I300 and intensity of the hollow between V112/300, were easily detected for all 

XRD patterns. Crystallinity values obtained with this method are presented in Table 7.8. 

 

 

Table 7.8 – Crystallinity values obtained according to equation (7.1).  

 

Crystallinity (%) HA HA/MCD HA/Al2O3 HA powder Plasma 

h=50mm 69% 59% 58% 

94% 76% h=40mm 67% 58% 63% 

h=30mm 65% 61% 62% 

 

 

 

HA/Al2O3 (h = 50 mm) HA/Al2O3 (h = 40 mm) HA/Al2O3 (h = 30 mm) 

Peak Area 2θ Peak Area 2θ Peak Area 2θ 

1 678.7950 25.4910 1 704.1293 25.5578 1 700.2356 25.4910 

2 415.1748 28.0311 2 413.7376 28.0645 2 413.5705 27.9977 

3 581.0508 28.7998 3 585.5963 28.9001 3 599.4332 28.8666 

4 1295.7751 31.6741 4 1265.3438 31.7410 4 1368.5693 31.7076 

5 235.6790 32.1086 5 278.9445 32.1420 5 276.4712 32.1420 

6 730.1320 32.8439 6 775.0352 32.8773 6 808.5079 32.8439 

7 678.9956 34.8827 7 628.3269 34.8827 7 654.5469 34.8827 

9 259.2753 46.6140 9 277.8916 46.6809 9 288.3362 46.6474 

10 244.4190 49.4215 10 257.6711 49.4549 10 275.4686 49.4549 

Total 5119.2966 
 

Total 5186.6765  Total 5385.1395  
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Identification of the crystallized phases was conducted by means of the largest peak for 

each expected phase.  Five phases are identified in the standard ISO 13779-3 and the relevant 

d-spacing for the highest peak of each phase referenced (Table 7.9) 

 

Table 7.9 – Highest peak of each phase to be identified if present in the samples analysed.   

 

Compound XRD Pattern D-spacing 2θ Intensity 

TTCP JCPDS 25-1137 2.995 29.806 100 

α-TCP JCPDS 09-0348 2.905 30.752 100 

β-TCP JCPDS 09-0169 2.880 31.026 100 

HA JCPDS 09-0432 2.814 31.772 100 

CaO JCPDS 04-0169 2.405 37.346 100 

 

To identify the presence of a phase the relevant d-spacing must be shown to be present. 

Straight lines were drawn for each d-spacing present on Table 7.9 on the XRD charts to detect 

the presence of each phase (Appendix F). From these, only the HA peak was present in all 

basting conditions. When plasma sample XRD pattern was carefully observed, TTCP, α-TCP, β-

TCP and CaO weak signals could be spot, in addition to the HA 31.77 (2θ) intense peak.  

MCD blasting media contains < 35% of α-TCP, β-TCP and TTCP. Since it is possible that 

some of this abrasive become impregnated into the surface during blasting, an effort was 

made to find other characteristic peaks of these phases on the HA/MCD coatings XRD signals. 

Any other characteristic peaks of these phases was found. HA/MCD coatings patterns were 

overlapped with the HA powder pattern. Apart from the Ti G5 (i.e. Ti-6Al-4V) peaks, all other 

peaks matched HA peaks (Appendix F). Even so, the intensity of the hollow between (112) and 

(300) diffraction peaks was higher than the one detected for the HA raw material powder. Β-

TCP has a characteristic peaks in this region, more precisely at 32.45 (2θ). This increased 

intensity on the valley region can be due to the presence of this β-TCP peak. Nevertheless no 

other β-TCP peak was found. Consequently, it is likely that negligible or none MCD 

impregnation happened. 

When HA/Al2O3 XRD signals were overlapped with HA powder XRD signal, Ti G5 peaks were 

highlighted. When a thorough analysis was done, peaks characteristic of Al2O3 were 

identified. This blasting media was clearly part of the coating obtained with HA/Al2O3 blasting 

for all nozzle height conditions. A stronger signal evident in the 57.49 (2θ) region for a nozzle 

height of 50 mm may indicate that this Al2O3 inclusion was higher for this condition. 

Moreover, when HA blasted surfaces XRD patterns were analysed HA and Ti G5 peaks were 

recognised. In addition, 57.49 (2θ) peak was also present. This peak, characteristic from 

Al2O3, may indicate that Al2O3 was present in these surfaces. This is possible, since the 

equipment used to blast surfaces with HA was the same used to blast surfaces with HA/Al2O3. 

Although an effort was made to clean properly the equipment, Al2O3 become easily 

impregnated in the powder feeder components. Sometimes it necessary to brush firmly the 

spreader and suction unit to remove visible Al2O3 particles. 

 XRD results show that HA/MCD blasting condition resulted in better surface coverage than 

HA/Al2O3. This is in accordance with the previous results obtained with optical microscopy, 

where HA/Al2O3 blasted surfaces presented severe coating narrowed sections. Furthermore 

the ratio HA/Ti for HA blasted surfaces, was higher than HA/MCD blasted surfaces. Blasting 

the surface with HA alone may lead to Ti-6Al-4V greater surface coverage, but this 
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deposition, as seen in section 4.3, results in a weak interaction between the coating and the 

surface causing is an easy washable film. 

Crystallinity results obtained for the XRD patterns of the samples analysed, following two 

different approaches, were different. When equation ((7.1) is used, all crystalline values 

found are above the specified limit of > 45%. On the other hand, when the integration of 

peaks intensity proposed in ISO 13779-3 was used, only HA/MCD coatings and Plasma coatings 

fulfil the required specification. 

In fact, using a HA tablet with an augmented thickness and no underlying titanium as 

crystalline reference for coatings of <10 µm thick with underlying titanium may not be the 

best approach to attain a feasible comparison between the XRD patterns of a CoBlast coating 

and a HA raw material powder. Appending to the different compaction level and thickness of 

both HA films, the noise and interference signal introduced by the presence of Ti-6Al-4V can 

help weaken and distort the HA signal. 

Aside from energy resulting from mechanical impact of particles, no other apparent 

explanation could justify a decreasing on HA crystallinity when applied via CoBlast. Further 

tests shall be made to investigate this possibility.  

Due to the thin coating layer deposited by CoBlast process (<10 µm), samples exhibit 

peaks associated with titanium which are present due to the underlying Ti-6Al-4V substrate. 

Plasma coating does not exhibit the titanium peaks due the thicker coating of HA (≈ 70 µm). 

Although only HA peaks were detected in plasma XRD plot, when overlapped with HA 

powder raw material curve, an amorphous halo in the 27º and 32º (2θ) region can be detected 

on plasma-sprayed samples.  The high cooling rate of the melted HA particles when deposited 

onto the metal substrate by plasma-spray, is once again detected. The presence of 

amorphous HA is undesirable since the amorphous HA dissolves faster in vivo when compared 

to crystalline HA phases. This can result in delamination of the coating (Ogiso et al., 1998). 
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7.2.2.5 _Heavy metals coating content 

 

Chemical analysis was carried out by XRF to spot the presence of heavy metals in the 

samples. ISO 13779-2 requires that samples content on heavy metals is less than a certain 

amount of mg/kg of Arsenic, Cadmium, Mercury and Lead and total heavy metals (Table 

7.10). 

 

Table 7.10 – Limits on heavy metals’ content as stated on ISO 13779-2 for HA coatings 

 

Element mg/kg 

As < 3 

Cd < 5 

Hg < 5 

Pb < 30 

Total 

Heavy 

Metals 

< 50 

 

 

Among the detected signals, Ti which was the strongest signal detected was promptly 

corrected and removed during XRF analysis. After its removal, % (w/w) of each element 

detected were normalized for a range of 0-100%.  XRF results can be seen on Table 7.11. 

 

Table 7.11 – Chemical elements detected using XRF analysis of samples coated using CoBlast 
with different nozzle heights. Strong grey highlighted elements appeared only on that 
condition of nozzle height. Light grey values were used to denote elements that do not 
appear in one of the neighbour nozzles heights. A plasma spray sample was analysed also. The 
indexes in brackets are the % (w/w) of that element in the sample. 

 

50 mm 40 mm 30 mm 

 

HA  

Mg (0.29) Mg (0.33) Mg (0.49) 

Al (5.25) Al (6.58) Al (5.79) 

Si (0.11) Si (0.09) P (31.8) 

P (29.7) P (31.5) Ca (60.2) 

Ca (60.5) S (0.07) Cr (0.94) 

Cr (0.75) Ca (59.3) Fe (0.40) 

Fe (0.64) Cr (1.17) Zr (0.08) 

Ni (0.07) Fe (0.59) Mo (0.03) 

Zr (2.19) Zr (0.08) Sn (0.32) 

Nb (0.01) Mo (0.04)  

Mo (0.04) Sn (0.26)  

Sn (0.39)   
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HA/MCD 

Mg (0.24) Mg (0.36) Mg (0.31) 

Al (2.28) Al (2.13) Al (1.60) 

Si (0.18) Si (0.15) Si (1.51) 

P (29.4) P (29.3) P (28.9) 

Ca (66.7) S (0.04) Ca (68.0) 

Cr (0.58) Ca (66.7) Cr (0.59) 

Fe (0.30) Cr (0.49) Fe (0.22) 

Ni (0.05) Fe (0.45) Zr (0.05) 

Zr (0.05) Cu (0.07) Nb (0.01) 

Mo (0.03) Zr (0.05) Mo (0.02) 

Sn (0.20) Mo (0.02) Sn (0.21) 

 Sn (0.20)  

 

HA/Al2O3 

Mg (0.16) Mg (0.08) Mg (0.16) 

Al (21.2) Al (21.1) Al (20.6) 

Si (0.09) Si (0.16) Si (0.09) 

P (25.3) P (25.8) P (25.5) 

Ca (51.9) S (0.04) Ca (52.5) 

Cr (0.67) Ca (51.6) Cr (0.70) 

Fe (0.31) Cr (0.64) Fe (0.32) 

 Ni (0.05)  Fe (0.24) Ni (0.06 

Zr (0.06) Cu (0.04) Zr (0.06) 

Nb (0.01) Zr (0.05) Mo (0.03) 

Mo (0.03) Nb (0.01) Sn (0.09) 

Sn (0.20 Mo (0.03)  

 Sn (0.20)  

 

Plasma 

Mg (0.13) 

Si (0.04) 

P (19.7) 

S (0.02) 

Ca (79.9) 

Zr (0.02) 

Mo (0.01) 

Sn (0.09) 

 

 

None of the analysed samples showed traces of heavy metals. The uncertainty associated 

with analytical XRF results makes the analysis of the % (w/w) values obtained a limited 

practise (Rousseau, 2001). Regardless the limited analysis of the % (w/w) of each element, 

the detection of the elements present is accurate. If any heavy metal element would be 

present in these samples it would be easily detected with this technique. As so, to assume 
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that no heavy metallic element was present in the analysed samples is a trustworthy 

assumption. 

 

7.2.2.6 _Coating adhesion 

 

Coating adhesion testing was performed in accordance to ISO 13779-4. Five coated 

specimens were tested for both HA/MCD and HA/Al2O3 blasted samples with a nozzle height of 

40 mm. Five specimens coated with a 60 µm HA plasma-sprayed layer were also tested. 

Specimens only glued with adhesive FM1000 only were used as control for the maximum stress 

that the adhesive can withstand when prepared according to this standard. Acquired results 

are presented in Table 7.12. 

 

Table 7.12 – Adhesion tests performed according to ISO 13779-4 results. Results are 

expressed in MPa.  
 

Sample number HA/MCD HA/Al2O3 Plasma 

Adhesive only 51.44 59.43 64.71 

1 >51.44 >59.43 14.11 

2 >51.44 >59.43 16.85 

3 >51.44 >59.43 18.98 

4 >51.44 >59.43 14.22 

5 >51.44 >59.43 15.89 

Average >51.44 >59.43 16.01±1.65 

 

 

Regarding the tensile bond strength of the HA layers, this experiment demonstrates that 

the coating adhesion of MCD treated samples is higher than 51.44 MPa and higher than 59.43 

MPa for the Al2O3 treated samples. All samples tested ended up breaking with remaining 

adhesive on the coating side, which means that the tensile bond strength of the HA layers 

deposited with CoBlast is higher than the tensile bond strength of the glue. Even so, when 

specimens containing only adhesive were prepared they were firstly grit blasted with the 

blast media only for each condition. The increase in coating adhesion from >51.44 to >59.43 

may be due to the increasing surface roughness produced by the alumina blast medium, which 

gives rise to a greater degree of mechanical interlock between the adhesive and titanium 

substrate.  

Although it was impossible to accurately measure the tensile bond strength of the HA 

layers CoBlast deposited, it is possible to say that the adhesion of these layers was more than 

the 15 MPa required by the standard 13779-2. 

 

Trying two films of adhesive FM1000 as suggested on ASTM 1147 for highly porous coating, 

may be something to test in the future. Another suggestion may be trying another epoxy glue, 

with higher tensile bond strength. 
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7.3  Performance Qualification 
 

Short term process capability was accessed through roughness analysis. Samples coated 

over time with a nozzle height of 40 mm were used. Samples were coated until a full powder 

feeder hopper was totally spent. Roughness measurements results can be found on the 

following tables (Table 7.13, Table 7.14). 

 

Table 7.13 – HA/MCD blasted surfaces over time roughness appraisal. 

 

 HA/MCD 

Sample Ra along x Ra along y 

N1 1.378 1.112 1.032 1.286 1.118 1.167 

N2 0.942 1.046 1.342 0.961 1.014 1.011 

N3 1.153 0.980 1.241 1.359 1.344 1.108 

N4 1.046 0.923 0.980 1.198 1.326 1.139 

N5 1.405 0.970 1.130 1.047 1.249 1.066 

N6 0.996 1.060 1.022 1.187 1.126 0.987 

N7 1.057 1.122 1.288 1.264 1.157 1.268 

N8 0.874 1.416 1.145 1.116 1.201 1.277 

 

 

Table 7.14 - HA/Al2O3 blasted surfaces over time roughness appraisal. 

 

 HA/Al2O3 

Sample Ra along x   Ra along y 

N1 2.937 3.161 3.215 3.049 2.867 3.025 

N2 2.491 2.423 3.033 2.511 2.420 2.405 

N3 2.370 2.927 2.257 2.724 2.616 2.432 

N4 2.960 2.500 2.966 2.829 2.847 3.050 

N5 2.874 2.671 3.001 3.361 2.580 3.421 

N6 3.499 2.948 3.175 3.142 3.552 3.140 

N7 3.375 2.283 3.104 3.310 2.886 2.887 

N8 2.518 3.318 2.852 2.982 3.128 2.831 

 

 

 

Coating roughness was measured along the direction of coating (i.e. along x axis) and 

against it (i.e. along y). Statistical analysis using two-way ANOVA revealed that there were no 

significant differences between surface roughness profile when measured along x and y axis. 

No roughness differences were found between the two coating directions for both HA/MCD 

and HA/Al2O3 blasted surfaces. 

When samples roughness was compared from N1 to N8, no significant differences were 

found between HA/MCD blasted surfaces roughness profile, while for HA/Al2O3 blasted 

surfaces, N2 and N3 roughness profiles were significantly different from N6 (p<0.01). 
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Although these roughness profiles are statistically different from each other, this 

difference can be an acceptable one. There is virtually no system capable of producing 

exactly the same output each time regardless of the input parameters chosen. Furthermore, 

there is always an error associated with the measurement of the evaluated features. This 

limits of tolerable differences are predicted by Statistical Process Control (SPC).  

All processes have an acceptable limit of variation that is limited by a lower control limit 

(LCP) and an upper control limit (UCL).These limits can be calculated by using a Shewhart X-

bar and R control chart for samples size with less than 10 measurements. If after building this 

chart, the process is visibly stable and consider to be in statistical control, only common 

causes of variation remain. This is evidenced on a control chart by the absence of 

data points beyond the control limits, and non-random patterns of variation.  

Control limits (i.e. LCL and UCL) should not be mistaken with Specification limits (i.e. LSL 

and USL). Specification limits are indicated by ISO and FDA standards for HA medical coating, 

or by clients in the case of a feature that is not limited by any normative standardization or 

regulatory force, or even by the manufacturer.  

Perhaps, a CoBlast coatings’ client may request a coating thickness of 8 ± 2 µm, and a 

roughness profile of no less than 1 µm and no more than 10 µm. These are two features that 

are not limited by HA coatings standards. In this case, thickness LSL is equal to 6 µm and USL 

is equal to 10 µm, while roughness profile LSL is 1 µm and USL is 10 µm. Also, when ISO 

13779-2 requires a tensile bond strength of no less or equal than 15 MPa for HA coatings, the 

manufacturer shall yield this value as a coating tensile bond LSL. 

Control limits, on other the hand, are determined using moderate complexity statistical 

tools, chosen according to the sample size, through analysis of a process products feature 

(e.g. thickness, roughness, crystalline content, heavy metals coating content, adhesion, and 

others). Sampled feature values end up being aligned in a control chart limited by calculated 

control limits, indicating which products are conform or non-conform (e.g. in or out of the 

control limits range). If all measured values are within the controls limits range and no 

random point is spotted, then the process is considered stable. 

Process capability can only be studied afterwards, when the process is considered in 

statistical control (i.e. is stable), and is calculated using Specification Limits as stated in 

section 5.1.2. 

In this study, software Minitab® 17 was used to calculate control limits, build the control 

charts, and determine process stability based on the roughness profile of samples of this 

routine production. The obtained control charts can be seen in Figure 7.15 and Figure 7.16. 
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Figure 7.16 - Shewhart X-bar and R control chart of roughness profile of samples blasted over 
time with HA/Al2O3. 
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Figure 7.15 - Shewhart X-bar and R control chart of roughness profile of samples blasted over 
time with HA/MCD. 
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Since the process is in statistical control for both X-bar and R control charts for HA/MCD 

and HA/AL2O3, process capability can be studied for both blasting conditions. Specification 

limits for roughness profile are not normative. This capability study was made using a 

roughness LSL and USL of 1 µm and 10 µm respectively (Figure 7.17, Figure 7.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17 - Minitab® process capability report for roughness profile evaluation of HA/MCD 
blasted samples over time, with a LSL and a USL of 1 µm and 10 µm, respectively. 

Figure 7.18 - Minitab® process capability report for roughness profile evaluation of HA/MCD 
blasted samples over time, with a LSL and a USL of 1 µm and 10 µm, respectively. 
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Cp is a process capability index calculated taking into account LSL, USL and standard 

deviation of the evaluated feature of samples. Cpk is another process capability index that 

requires LSL, USL, standard deviation and average value of the measured feature to be 

calculated. Both are used to evaluate process capability and the limit value from bad 

performance process to a good performance one is 1 for both. A value of 1.33 can be 

considered a reference value for which a process has a high degree of assurance of producing 

a conforming product. 

Process capability evaluation of CoBlast using HA/MCD resulted in a Cp = 10,74 and a Cpk = 

0.33. The large value found for Cp can be attributed to the small standard deviation of 

samples compared with range LSL-USL specified. This is the same as saying that the client 

allowed the manufacturer to produce a product with a broader range of roughness, but the 

controlled process is stable for a smaller one. Even so, this index fails in detecting were this 

smaller range is positioned in between the specification limits. Since some of the samples 

used to characterise and evaluate the process had roughness measurements of less than 1 µm 

(i.e. less than the specified LSL) is was expectable that the Cpk value would not be as good as 

desirable. The obtained Cpk of 0.33 reflects the proximity of the produced samples roughness 

profile average to the lower specification limit of 1 µm and, furthermore, it reflects the 

probability of a non-conform product arise from this process in terms of roughness profile 

specifications. 

Process capability evaluation of CoBlast using HA/Al2O3 resulted in a Cp = 5.13 and a Cpk = 

2.13. CoBlast process was considered capable by both indexes, with values of more than 1.33. 

Since surfaces blasted with HA/Al2O3 had a mean roughness value of 2.869 µm with a within 

standard deviation of 0.336 µm, it was expectable that a both indexes would retrieve such 

good values takin into account the speciation limits of LSL = 1 µm and USL = 10 µm. 

As a conclusion, the specification limits used in this evaluation can be different from the 

future values that the client will require, and this can alter the results of this performance 

evaluation. But more important than this, this evaluation showed that both HA/MCD and 

HA/Al2O3 CoBlast processing are under statistical control. This means that both processes are 

stable by now and that adjusting them to the specification limits required hereafter should 

not be laborious. Perchance, if the client requires exactly the studied LSL of 1 µm for 

roughness, HA/MCD processing can be worked to meet this requirements by rising slightly the 

blasting pressure and revising the needed steps of the process validation here made. 

 

 

7.3.1 _Monitoring plan 

 

A monitoring plan for CoBlast HA coated specimens of Ti-6Al-4V was made using concept 

of apparent density of bulk powders according to ISO 60 and ISO 697, roughness of surfaces 

following ISO 4287:1997 procedures and coatings thickness evaluation using an Elcometer 355 

equipment. 

Powders blending monitoring plan consists on sampling the HA/Abrasive mixture using the 

cup of 50 ml used on powders blending OQ, to sample bottom, middle and top of the 

produced bulk. Sampling involves collecting the amount of powder necessary to overflow the 

volume of the receiving cup and levelling it with a spatula such that it is completely full. Care 

must be taken not to compress or shake the powder. If the total weight of each of the three 



 

86 

 

86 

 

cups plus collected bulk system is between the range of ξ ± 3σ (i.e. control limits) considering 

the measurements taken, there is no need for process re-validation. 

Each time a new hopper is filled, three small coupons of Ti-6Al-4V must be coated using 

the same principle of action: sampling the effect of the bottom, middle and top bulk of the 

powder feeder hopper. Resultant coatings roughness shall be measured using a calibrated 

profilometer, if possible the one used to perform this study of validation, control charts shall 

be created. If this sampling still indicates that the process is in a state of control, no need for 

revising or process re-validation is needed. 

Samples that were inspected for coating thickness using optical microscopy in OQ 

procedures were analysed previously using an Elcometer equipment calibrated for 0−12.6 µm 

coating’s thickness detection. Elcometer 355 has great accuracy with a detection precision of 

± 1% or 1µm. It acts by the principle of electromagnetic induction for non-magnetic coatings 

on magnetic substrates, and by eddy current principle for non-conductive coatings on non-

ferrous metals substrates. Ninety-nine measurements performed on HA/MCD samples using 

this equipment retrieved a thickness value of 6.77 ± 1.02 µm. Analysing the data collected 

using the optical microscope, regardless of the nozzle height, HA/MCD coatings had a 

thickness of 6.06 ± 1.37 µm. Further studies shall be made using a control situation where a 

surface was only blasted with an abrasive particle, since the zero point used to calibrate the 

Elcometer at this point was smooth Ti-6Al-4V surface. The influence of the blasting effect 

(e.g. as seen before capable of creating jagged features on the substrate) shall be studied in 

order to certify in which conditions Elcometer can and cannot be used to evaluate CoBlast 

thickness. Yet, relating this preliminary results with the principle of action of the equipment, 

when calibrated within an acceptable range, Elcometer is probably a suitable equipment to 

monitor CoBlast coatings thickness. Thickness measurements shall be performed at least using 

the same principle of action described previously: sampling the effect of the bottom, middle 

and top bulk of the powder feeder hopper. A control chart shall be created. If it is under 

statistical control, there is no need for process revising or re-validation.  

 

 

7.4  Internal procedures 
 

An internal company designation for these sets of equipment was created so that they 

could take place in Ceramed’s production equipment list. COB.01 is now Ceramed’s internal 

designation for the set of equipment used to perform coBlasting of surfaces. COB.01.00 stands 

internally for Advanced Lathe LA-3250, COB.01.01 stands for Sulzer Metco Powder Feeder 

Single 10-C and PLA.06.01 stands for Sablex Universal Vacuum Cleaner. BLD.01 is the internal 

designation of the equipment used for powders blending. V-Blender is designated BLD.01.00, 

and Retsch Vibratory Feeder is BLD.01.01. These were named according to the internal 

company procedures. Productive equipment sheets were created as a result. 

Furthermore, maintenance checklists and work instruction sheets (Appendix C) were 

created so that CoBlast processing can start once all conditions are met and Ceramed’s 

management team desires. 
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7.5. Economic Evaluation 
 

Launching a new product or service involves many steps. The first is to develop an 

economic analysis to determine whether there will be a profit or loss before starting 

production. If there is a projected profit based on the best available information, then a 

business plan should be developed. 

It is important to know if there is a need or desire for the new product and if there is any 

existing alternative products already on the market. It is also good to determine the price 

range consumers will pay for the product and how this compares to the average cost to 

produce the product. 

First, a cost analysis should be developed. The information needed to determine whether 

or not the product will make a profit over several years is based on average annual production 

costs and returns, also known as economic feasibility study. To estimate income potential, 

each new product should have a technical feasibility examination completed to ensure it can 

be produced in a form and at a cost acceptable to the consumer. On the other hand, any cost 

analysis will be only as good as the information used to estimate average costs per unit. 

In this study, actual fixed and variable costs and expected production (Table 7.15) were 

used to estimate the cost per unit of a pedicle screw HA coating using HA/MCD or HA/Al2O3 to 

blast the surface . Once the market price and average cost per unit was calculated, these was 

used to estimate a cash flow analysis. This information will be useful to determine the 

feasibility of the initial investment by Ceramed and the amount of money needed for a 

successful over-the-years business continuation. 

 

Table 7.15 – Economic factors taken into consideration in the economical evaluation made. 

Fixed Costs   Variable Costs 

Depreciable Labour Wages 

Equipment Hourly rate per worker 

Non depreciable Labour Non-wages  

Rent (per square meter) Materials 

 Equipment Repairs 

Production Utilities (e.g. electricity) 

Units per year  

  

 

This study was made with Ceramed’s real production costs such as equipment investment, 

raw materials cost practised by the suppliers, current energy costs per kWh of the company, 

packaging costs, and others. In order to preserve Ceramed’s industrial privacy this data was 

not disclosed here and only major considerations and conclusions of this economical appraisal 

will be mentioned. 
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Initial investment was considered amortized after ten years. Part of the production line 

already in place at Ceramed would be used on CoBlast HA coating production (e.g. pre-clean 

pieces, quality control, post-clean pieces, packaging and expedition step). One worker and 

one auxiliary worker would be necessary to operate CoBlast and blending equipment, 

respectively. The equipment installed requires both electrical and pneumatic energy, which 

were both considered in the analysis. Furthermore, raw materials costs were taken into 

consideration, being the imported MCD the most expensive one.  

Calculated cost per unit of a CoBlast HA coating of a pedicle screw was compared with a 

plasma sprayed HA coating of the same piece at Ceramed. Results show that for the 

production parameters in place, the initial cost per unit of a HA/Al2O3 blasted pedicle screw 

would be about 2 to 3 times cheaper than a plasma-sprayed one, and HA/MCD blasted pedicle 

screw would cost almost the same as a HA plasma-sprayed pedicle screw coating. 

The economic potential of CoBlast processing against Plasma-spray lies on the energy 

necessary to put the process in place. Plasma-spray requires high amounts of energy to 

electrical heat industrial gases and to extract the inner chamber wastes and heat, while 

CoBlast works under room temperature and requires a conventional vacuum cleaner only.  

Regarding the similarity of costs between HA/MCD blasted pedicle and HA plasma-sprayed 

pedicle screws, the major conclusions are that although the costs of MCD are high, several 

production steps and energy are spared with CoBlast, and the reason why final costs of both 

products are similar lies on the high mass flow rate currently used on CoBlast processing. 

Mass flow rate optimization shall be made to search the minimum value for which coating 

coverage and features are not destructively affected. Furthermore wasted powder particles 

saving and recycling shall be considered.   
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Appendix A 

Calculations 
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Total half triangle measures can be now calculated (total height (H) is the height until 

reaching the De Laval nozzle constriction). 

 

 

 

  

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

99 

99 

 

 



 

100 

 

100 

 

Appendix B 

Equipment IQ checklists 
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CoBlast equipment IQ checklists 

 

The following checklists were created to guide IQ procedures of CoBlast equipment 

installed. 

 

System identification checklist 

 

Purpose: List all system specifications and check them. 

 

    

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Model LA3250 - 29   

Serial No. ---   

Pressure min-max. 620 – 965 kPa (6.2 - 9.6 bar)   

Electrical connection 115 VAC, 50/60 Hz   

Transformer 220-240 VAC   

Power Input 400 W   

Air Input 198 l/min   

Software Version 

Comco User Interface V 12.2   

Comco Galil Service V 10.2   

Comco Serial Service V 2.0   

Comco Axis Control Utility V 7.0   

Comco Bus Control Utility V 1.3   

 Sulzer Metco Powder Feeder Single 10-C   

Model Single 10-C   

Serial No. ---   

Pressure min-max. 0 – 400 kPa (0 – 4 bar)   

RPM min-max. 0 – 10 rpm   

Flow rate 0 – 10 l/min   

Electrical connection 230 VAC, 50 Hz   

Power Input 250 W   

 Sablex Universal Vacuum Cleaner   

Model Sablex Universal   

Serial No. ---   

Flow rate 600 m3/h   

Electrical connection 220 VAC, 50/60 Hz   

Power Input 550 W   

 

Declaration: 

 

Systems are identified and specifications verified. Yes No 
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Remarks:   

Components identification checklist 

 

Purpose: Identify and verify the availability of the equipment components. 

 

  Available? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Air drier AD5300   

Mandril part tooling size 1   

Mandril part tooling size 1 (2)   

Mandril part tooling size 2   

Platform part tooling   

 Sulzer Metco Powder Feeder Single 10-C   

Powder hopper of 1100 cm3   

 

Declaration: 

 

The components are identified and available. Yes No 

Remarks:   

 

 

Consumables identification checklist 

 

Purpose: Identify and verify the availability of the consumable components. 

 

  Available? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Inside chamber halogen lamp   

Air filter   

 Sulzer Metco Powder Feeder Single 10-C   

Spreader   

Suction unit   

 Universal Vacuum Cleaner   

Air filter   

 

Declaration: 

 

The consumables are identified and available. Yes No 
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Remarks:   

 

Documentation checklist 

 

Purpose: To ensure that the necessary documentation for production with this equipment 

is correct and complete. 

 

  Available? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Operating instructions   

Declaration of conformity by the manufacturer   

 Sulzer Metco Powder Feeder Single 10-C   

Operating instructions   

Declaration of conformity by the manufacturer   

 Universal Vacuum Cleaner   

Operating instructions   

Declaration of conformity by the manufacturer   

 

Declaration: 

 

System documentation required is correct and available. Yes No 

Remarks:   

 

 

System damages checklist 

 

Purpose: To report any type of system damage. 

 

  Damaged? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Is there any component or consumable damaged in this item?   

 Sulzer Metco Powder Feeder Single 10-C   

Is there any component or consumable damaged in this item?   

 Universal Vacuum Cleaner   

Is there any component or consumable damaged in this item?   
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Declaration: 

 

The equipment, components and consumables are free of visible damage? Yes No 

Remarks:   

 

System installation checklist 

 

Purpose: To determine if the system is placed properly with correct wiring and utilities 

available. 

 

  Specification fulfilled? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Is the equipment properly connected to company’s air system 

without any visible defect? 

  

Is the electrical connection made using a 220-240V transformer?   

Is the pressure regulator working properly from 0 to 1000 kPa?   

 Sulzer Metco Powder Feeder Single 10-C   

Is the equipment properly connected to company’s air system 

without any visible defect? 

  

Is the single phase electrical connection correctly made?   

Is the powder connection made between the powder exit and 

Comco LA 3250 Advanced Lathe single nozzle entry? 

  

Is the pressure regulator working properly from 0 to 400 kPa?   

 Universal Vacuum Cleaner   

Is the three phase electrical connection correctly made?   

Is the air connection with the Comco LA 3250 Advanced Lathe 

collar made, and using an appropriate duct? 

  

 

Declaration: 

 

Installation of CoBlast equipment is complete and correct Yes No 

Remarks:   

 

 

 

User Interface Menu Settings Checklist 

 

Purpose: To ensure the user interface comes with the specified settings. 
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  Setting fulfilled? 

Equipment  Yes No 

 Comco LA3250 Advanced Lathe   

Does the software language is English?   

Does the user interface exhibits a time countdown when a coating 

program is at work?  

  

Does the STOP button stops the program and returns the axis to 

home position? 

  

Does the START button re-starts the coating program?   

 

Declaration: 

 

All user interface important features are implemented properly. Yes No 

Remarks:   
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Blending equipment IQ checklists 
 

The following checklists were created to guide IQ procedures of Blending equipment 

installed. 

 

System identification checklist 

 

Purpose: List all system specifications and check them. 

 

    

Equipment  Yes No 

 V-Blender   

Model 90 º V-blender   

Serial No. ---   

Speed 20 RPM   

Electrical connection 230 VAC, 50/60 Hz   

Power Input 90 W   

 Retsch Vibratory Feeder   

Model DR 15/40   

Serial No. ---   

Frequency 50 – 60 Hz   

 

Declaration: 

 

Systems are identified and specifications verified. Yes No 

Remarks:   

 

Components identification checklist 

 

Purpose: Identify and verify the availability of the equipment components. 

 

  Available? 

Equipment  Yes No 

 Retsch Vibratory Feeder   

Chute    

Hopper   

 

Declaration: 

 

The components are identified and available. Yes No 

Remarks:   
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Documentation checklist 

 

Purpose: To ensure that the necessary documentation for production with this equipment 

is correct and complete. 

 

  Available? 

Equipment  Yes No 

 V-Blender   

Operating instructions   

 Retsch Vibratory Feeder   

Operating instructions   

Declaration of conformity by the manufacturer   

 

Declaration: 

 

System documentation required is correct and available. Yes No 

Remarks:   

 

System damages checklist 

 

Purpose: To report any type of system damage. 

 

  Damaged? 

Equipment  Yes No 

 V-Blender   

Is there any visible damage in this item?   

 Retsch Vibratory Feeder   

Is there any component damaged in this item?   

 

Declaration: 

 

The equipment and components are free of visible damage? Yes No 

Remarks:   
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System installation checklist 

 

Purpose: To determine if the system is placed properly with correct wiring and utilities 

available. 

 

  Specification fulfilled? 

Equipment  Yes No 

 V-Blender   

Is the system placed on a horizontal and planar surface?   

Is the horizontal axis drilled in the correct central position?   

Is the three phase electrical connection correctly made?   

Does the blender cover insulates it efficiently?   

 Retsch Vibratory Feeder   

Is the system placed on a horizontal and planar surface?   

Is the single phase electrical connection correctly made?   

Does the power button and switchers work properly?   

 

Declaration: 

 

Installation of Blending equipment is complete and correct. Yes No 

Remarks:   
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Result of IQ checklist 
 

Overall result IQ check list 

 

Purpose: List all the parameters evaluated in IQ. Confirm that all were executed and 

conclude about its success. 

 

IQ result 

Check carried out 

successfully? 

Yes No 

System identification checklist   

Components identification checklist   

Documentation of conformity checklist   

Consumables identification checklist   

System damages checklist   

System installation checklist   

User interface checklist   
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Production Internal documentation 
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Work instructions 
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Appendix D 

Raw material Certificates of Compliance 
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Ti-6Al-4V compliance certificate 
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HA compliance certificates 
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Al2O3 compliance certificate 
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MCD 180 compliance certificate 
 

 

 



 

 

Appendix E 

CNC codes  

SUB STEP A 
 

[Filename] 

name=SUB_STEPA 

 

[Parameters] 

units=mm 

 

[ProgramData] 

N10    G01 Y3.0 F13     

N20    G01 X29.0     (Blank space, height = 40 mm) 

  

N30    G01 Y-28.0 F13    (1 pass) 

N40    G01 X2.9 

N50    G01 Y25.0 F13    (3 pass) 

N60    G01 X2.9  

N70    G01 Y-25.0 F13    (4 pass) 

N80    G01 X2.9  

N90    G01 Y25.0 F13    (5 pass) 

N100   G01 X2.9  

N110   G01 Y-25.0 F13    (6 pass) 

N120   G01 X2.9  

N130   G01 Y25.0 F13    (7 pass) 

N140   G01 X2.9  

N150   G01 Y-25.0 F13    (8 pass) 

N160   G01 X2.9 

N170   G01 Y25.0 F13    (9 pass) 

N180   G01 X2.9  

N190   G01 Y-25.0 F13    (10 pass) 

N200   G01 X2.9  

N210   G01 Y25.0 F13    (11 pass) 

N220   G01 X2.9  
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N230   G01 Y-25.0 F13    (12 pass) 

N240   G01 X2.9  

N250   G01 Y25.0 F13    (13 pass) 

N260   G01 X2.9  

N270   G01 Y-25.0 F13    (14 pass) 

N280   G01 X2.9 

N290   G01 Y28.0 F13    (15 pass) 

N300   G01 X2.9  

 

N365   G04 P.3 

N370   G01 X5.0 Z10.0    (Blank space and drop down to 30mm) 

 

N380   G01 Y-28 F13 

N390   G01 X2.6     (1 pass) 

N400   G01 Y25.0 F13 

N410   G01 X2.6     (2 pass) 

N400   G01 Y-25.0 F13 

N420   G01 X2.6     (3 pass) 

N430   G01 Y28.0 F13 

N440   G01 X2.6     (4 pass) 

 

N490   G04 P.3 

N500   G01 X17.65 Z-10.0    (Blank space and drop to 40 mm) 

 

N520   G01 Y-28.0 F13 

N530   G01 X2.9     (1 pass) 

N540   G01 Y25.0 F13 

N550   G01 X2.9     (2 pass) 

N560   G01 Y-25.0 F13 

N570   G01 X0.1     (3 pass) 

 

N370  M30                  (end of progam) 

 

 

SUB STEP B 
 

[Filename] 

name=SUB_STEPB 

 

[Parameters] 

units=mm 

 

[ProgramData] 

N10    G01 X3.3 F13.0 

N15    G01 Z10     (Nozzle drop to 30 mm) 

N20    G01 Y-28.0     
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N25    G01 X-3.3 F13  

N30    G01 Y9.0 F13     (1 pass) 

N40    G01 X-2.6 

N50    G01 Y-9.0 F13    (2 pass) 

N60    G01 X-2.6  

N70    G01 Y9.0 F13     (3 pass) 

N80    G01 X-2.6 

N90    G01 Y-9.0 F13    (4 pass) 

 

N100   G01 X11.1  

 

N110   G01 Y28.0 F13 

N115   G04 P0.5  

N116   G01 Z-10     (Nozzle way up to 40 mm) 

    

N120   G01 X-3.3 

N130   G01 Y-8.0 F13    (1 pass) 

N140   G01 X-2.9  

N150   G01 Y8.0 F13     (2 pass) 

N160   G01 X-2.9 

N170   G01 Y-8.0 F13    (3 pass) 

N180   G01 X-2.9  

N190   G01 Y11.0 F13    (4 pass) 

 

N200   G01 X-8.0  

 

N201   G04 P0.5  

N202   G01 Z-10     (Nozzle way up to 50 mm)  

 

N210   G01 Y-11.0 F13    (1 pass) 

N220   G01 X-3.3  

N230   G01 Y8.0 F13     (2 pass) 

N240   G01 X-3.3 

N250   G01 Y-25.0 F13    (3 pass) 

N260   G01 X-3.3 

 

  

N270   G01 Y25.0 F13    (1 pass) 

N280   G01 X-3.3 

N290   G01 Y-25.0 F13    (2 pass) 

N300   G01 X-3.3  

N310   G01 Y28.0 F13    (3 pass) 

 

 

N340   G01 X-8.0  

N341   G04 P0.5  
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N342   G01 Z20     (Nozzle drop to 30 mm) 

  

N350   G01 Y-28.0 F13    (1 pass) 

N360   G01 X-2.6 

N370   G01 Y25.0 F13    (2 pass) 

N380   G01 X-2.6  

N390   G01 Y-25.0 F13    (3 pass) 

N400   G01 X-2.6 

N410   G01 Y25.0 F13    (4 pass) 

N420   G01 X-2.6     

N430   G01 Y-25.0 F13    (5 pass) 

N440   G01 X-2.6 

N450   G01 Y25.0 F13    (6 pass) 

N460   G01 X-2.6  

N470   G01 Y-25.0 F13    (7 pass) 

N480   G01 X-2.6 

N490   G01 Y25 F13     (8 pass) 

N500   G01 X-2.6     

N510   G01 Y-25.0 F13    (9 pass) 

N520   G01 X-2.6 

N530   G01 Y25.0 F13    (10 pass) 

N540   G01 X-2.6     

N550   G01 Y-25.0 F13    (11 pass) 

N560   G01 X-2.6 

N570   G01 Y25.0 F13    (12 pass) 

N580   G01 X-2.6  

N590   G01 Y-28.0 F13    (13 pass) 

 

N600   G01 X-15.0 

N601   G04 P0.5  

N602   G01 Z-10     (Nozzle way up to 40 mm) 

 

N610   G01 Y28.0 F13    (1 pass) 

N620   G01 X-2.9 

N630   G01 Y-25.0 F13    (2 pass) 

N640   G01 X-2.9 

N650   G01 Y25.0 F13    (3 pass) 

N660   G01 X-2.9 

N670   G01 Y-25.0     (4 pass) 

 

N370  M30                  (end of progam) 
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SUB STEP C 
 

 

[Filename] 

name=SUB_STEPC 

 

[Parameters] 

units=mm 

 

[ProgramData] 

N10    G01 X-3.3 F13.0 

N15    G01 Z10     (Nozzle drop to 30 mm) 

N20    G01 Y-28.0     

N25    G01 X3.3 F13  

N30    G01 Y9.0 F13     (1 pass) 

N40    G01 X2.6 

N50    G01 Y-9.0 F13    (2 pass) 

N60    G01 X2.6  

N70    G01 Y9.0 F13     (3 pass) 

N80    G01 X2.6 

N90    G01 Y-9.0 F13    (4 pass) 

 

N100   G01 X-11.1  

 

N110   G01 Y28.0 F13 

N115   G04 P0.5  

N116   G01 Z-10     (Nozzle way up to 40 mm) 

    

N120   G01 X3.3 

N130   G01 Y-8.0 F13    (1 pass) 

N140   G01 X2.9  

N150   G01 Y8.0 F13     (2 pass) 

N160   G01 X2.9 

N170   G01 Y-8.0 F13    (3 pass) 

N180   G01 X2.9  

N190   G01 Y11.0 F13    (4 pass) 

 

N200   G01 X8.0  

 

N201   G04 P0.5  

N202   G01 Z-10     (Nozzle way up to 50 mm) 

 

N210   G01 Y-11.0 F13    (1 pass) 

N220   G01 X3.3  

N230   G01 Y8.0 F13     (2 pass) 
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N240   G01 X3.3 

N250   G01 Y-25.0 F13    (3 pass) 

N260   G01 X3.3 

 

N270   G01 Y25.0 F13    (1 pass) 

N280   G01 X3.3 

N290   G01 Y-25.0 F13    (2 pass) 

N300   G01 X3.3  

N310   G01 Y25.0 F13    (3 pass) 

N320   G01 X3.3 

N330   G01 Y-25.0 F13    (4 pass) 

N340   G01 X3.3  

N350   G01 Y25.0 F13    (5 pass) 

N360   G01 X3.3 

N370   G01 Y-25.0 F13    (6 pass) 

N380   G01 X3.3  

N390   G01 Y25.0 F13    (7 pass) 

N400   G01 X3.3 

N410   G01 Y-25.0 F13    (8 pass) 

N420   G01 X3.3  

N430   G01 Y25.0 F13    (9 pass) 

N440   G01 X3.3 

N450   G01 Y-28.3 F13    (10 pass) 

 

N460   G01 X8.0 

N470   G04 P0.5  

N480   G01 Z10     (Nozzle drop to 40mm) 

 

N270   G01 Y28.3 F13    (1 pass) 

N280   G01 X2.9 

N290   G01 Y-25.0 F13    (2 pass) 

N300   G01 X2.9 

N310   G01 Y25.0 F13    (3 pass) 

N320   G01 X2.9 

N330   G01 Y-25.0 F13    (4 pass) 

N340   G01 X2.9 

N350   G01 Y25.0 F13    (5 pass) 

N360   G01 X2.9 

N370   G01 Y-25.0 F13    (6 pass) 

N380   G01 X2.9 

N390   G01 Y25.0 F13    (7 pass) 

N400   G01 X2.9 

N410   G01 Y-30.0 F13    (8 pass)  

 

 

N370  M30                  (end of progam) 
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ADHESION 
 

[Filename] 

name=Adhesion40 

 

[Requirements] 

PartTooling=COUPON_TRAY 

 

[Parameters] 

units=mm 

 

[ProgramData] 

N10   F.125      (set the feedrate) 

N20   G91 

N25   G01 y52.0 F33.0    (use relative coordinates) 

N27   G01 x9 z-25.0  F33.0    (nozzle def to 40 mm above sample) 

N30   G04 P.9     (hold position) 

 

N40   G91 

N50   G01 X105.0 F13    (1 pass) 

N60   G01 Y-3.3  

N70   G01 X-105.0 F13    (2 pass) 

N80   G01 Y-3.3 

N90   G01 X105.0 F13    (3 pass) 

N100  G01 Y-3.3  

N110  G01 X-105.0 F13    (4 pass) 

N120  G01 Y-3.3 

N130  G01 X105.0 F13    (5 pass) 

N140  G01 Y-3.3  

N150  G01 X-105.0 F13    (6 pass) 

N160  G01 Y-3.3 

N170  G01 X105.0 F13    (7 pass) 

N180  G01 Y-3.3  

N190  G01 X-105.0 F13    (8 pass) 

N200  G01 Y-3.3 

N210  G01 X105.0 F13    (9 pass) 

N220  G01 Y-3.3 

N230  G01 X-35.0 F13    (10 pass) 

N240  G01 Y-3.3 

N250  G01 X35.0 F13    (11 pass) 

N260  G01 Y-3.3 

N270  G01 X-35.0 F13    (12 pass) 

N280  G01 Y-3.3 

N290  G01 X35.0 F13    (13 pass) 

N300  G01 Y-3.3 

N310  G01 X-35.0 F13    (14 pass) 
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N320  G01 Y-3.3 

N330  G01 X35.0 F13    (15 pass) 

N340  G01 Y-3.3 

N350  G01 X-35.0 F13    (16 pass) 

N360  G01 Y-3.3 

N370  G01 X35.0 F13    (17 pass) 

N380  G01 Y-3.3 

N390  G01 X-35.0 F13    (18 pass) 

N400  G01 Y-3.3 

N405  G01 X35.0 F13    (19 pass) 

N410  G01 Y-3.3 

 

N480  G04 P1 

 

N490  G28            (finish homing, slowly) 

N500  M30                  (end of program) 
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SCREW 
 

[Filename] 

name=Screw 

 

[Requirements] 

PartTooling=PIN_TOOLING 

 

[Parameters] 

units=mm 

 

[ProgramData] 

N10   G91     (use relative coordinates) 

N20   G01 X150.0 Y18 Z10 F50  (move to purge position) 

 

N50   G04 P1    (hold position) 

 

 

N90   S20     (set spindle rotational speed) 

N100  M04     (start spindle counter clockwise) 

N110  G04 P2.5    (wait for spindle to spin up before blasting) 

N120  G01 Y-10 F60.0   (move to start position) 

 

N125  G04 P0 

 

N130  G01 X-50.0 F2.0   (blast the spindle part) 

N135  G04 P0 

N140  G01 Y0 F60.0    (move off spindle) 

 

N147  G04 P0 

N150  M05     (stop the spindle) 

 

N150  G90     (absolute coordinates) 

N160  G01 X0 Y20 Z0 F75.0       (head towards home) 

N170  G28           (finish homing, slowly) 

N180  M30                 (end of program) 
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Appendix F 

X-ray diffraction plots 
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