Climate change alters disease severity in the *Endoconidiophora polonica*-Norway spruce pathosystem

<u>Riikka Linnakoski^{1,2}, Junko Sugano³, Samuli Junttila², Michael J.</u> Wingfield⁴, Fred O. Asiegbu², Pertti Pulkkinen⁵, Kristian M. Forbes⁶

¹Natural Resources Institute Finland (Luke), Helsinki, Finland; ²Department of Forest Sciences, University of Helsinki, Finland; ³Department of Microbiology, University of Helsinki, Finland^{, 4}Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa; ⁵Natural Resources Institute Finland (Luke), Läyliäinen, Finland; ⁶Department of Virology, University of Helsinki, Finland

Introduction

- Climate change is having significant impacts on forest ecosystems and forestry.
- In addition to direct negative impacts on tree health, climate change has the potential to impair plant responses to other environmental stressors, such as pathogens and pests.
- Few rigorous experimental studies have focused on interactions between biotic agents and climate change-associated environmental perturbations.

Materials and methods

- 2-year-old Norway spruce (*Picea abies*) seedlings were inoculated with different strains of *E. polonica* isolated from *I. typographus* or mock-inoculated (control).
- In the first experiment¹, seedling performance was compared under ambient temperatures and CO₂ levels with those predicted for the years 2030 and 2100 in Finland.
- The second experiment² compared seedling performance under high and low water availability treatments.
- In total 450 (the first experiment) and 737 (the second experiment) seedlings were inoculated.
- Seedling mortality was monitored at monthly intervals, and seedling growth and lesion length indices were measured at the end of

Conclusions

- We show that predicted climate changes have the potential to alter the damage caused to Norway spruce by *E. polonica*.
- Our results highlight the importance
 for a strain-specific level of
 understanding of the disease
 agents.
- There is an urgent need for
 systems-based research to better
 understand the impacts of
 interactions between biotic agents
 and climate change.
- For more information, visit our special issue in *Frontiers in Plant*

 To shed light into these implications, we conducted two powerful inoculation experiments^{1,2} to test *in vivo* the effects of changed growing environment on Norway spruces seedlings infected with *Endoconidiophora polonica*, a pathogenic fungus commonly vectored by *Ips typographus*, a major forest pest insect in Europe.

the experiments.

Fig. 2. Seedling mortality counts when (A) all fungal strains combined and (B) between the fungal strains under different climate change scenarios, and under high (W+) and low (W-) water availability treatments during the first (C) and second (D) month of the experiment.

Results

• Increased temperatures coupled with

Science for outstanding research addressing the multifaceted effects of climate changes on forest pests and pathogens and their interactions.

Acknowledgements

This study was financially supported by the University of Helsinki and the Natural Resources Institute Finland (Luke). Travel and participation (RL) to IMC11 was funded by LukeLEADS MushValue-project.

Fig. 1. Norway spruce (*Picea abies*) seedlings infected by an ophiostomatoid fungus *Endoconidiophora polonica*. The majority of seedling mortality occurred during the initial two months of the experiments.

elevated CO₂ concentration¹, and reduced water availability² can both enhance disease severity in *P. abies*.

- Higher temperature increases are likely to be most detrimental to tree health.
- Disease severity was not universally greater under the most distant climate change expectations or for water restricted seedlings, but varied markedly among the fungal strains (Fig. 2b-d).

References

¹ Linnakoski R, Forbes KM, Wingfield MJ, Pulkkinen P, Asiegbu F (2017) Testing projected climate change conditions on the *Endoconidiophora polonica* / Norway spruce pathosystems shows fungal strain specific effects. *Front Plant* Sci 8:883, doi:10.3389/fpls.2017.00883

² Linnakoski R, Sugano J, Junttila S, Pulkkinen P, Asiegbu F, Forbes KM (2017) Effects of water availability on a forestry pathosystem: fungal strainspecific variation in disease severity. *Sci Rep* 7:13501. doi:10.1038/s41598-017-13512-y

