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A Visibility-Based Lower Bound for Android Unlock Patterns∗

Jinwoo LEE†, Jae Woo SEO††, Kookrae CHO†††, Pil Joong LEE†, Nonmembers,
and Dae Hyun YUM††††a), Member

SUMMARY The Android pattern unlock is a widely adopted graphical
password system that requires a user to draw a secret pattern connecting
points arranged in a grid. The theoretical security of pattern unlock can be
defined by the number of possible patterns. However, only upper bounds of
the number of patterns have been known except for 3×3 and 4×4 grids for
which the exact number of patterns was found by brute-force enumeration.
In this letter, we present the first lower bound by computing the minimum
number of visible points from each point in various subgrids.
key words: user authentication, graphical password, Android unlock pat-
terns, lower bound

1. Introduction

The Android pattern unlock is a graphical password system
that was introduced on Android version 1.0 as an alternative
to traditional text-based password systems. A pattern pass-
word consists of a sequence of four or more contact points
arranged in a grid and the security level of the pattern pass-
word is determined by the size of the pattern space. While
CyanLockScreen [1] provides grids from 3 × 3 to 6 × 6 and
Security Lock Screen [2] up to 25 × 25, the total number of
possible patterns is only known for 3×3 and 4×4 grids that
was obtained by brute-force enumeration; there are 389,112
(� 219) patterns in a 3×3 grid and 4,350,069,823,024 (� 242)
patterns in a 4 × 4 grids [3], [4]. The brute-force enumera-
tion is not a candidate method for counting the number of
patterns in a large grid because the number of pattern grows
too fast.

For grids of large size, only upper bounds are known
for the number of patterns: permutation-based upper
bound [5] and visibility-based upper bound [6]. Upper
bounds enable people to avoid exaggerating the security of
pattern unlock but it is a lower bound that guarantees the
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Fig. 1 The Cartesian coordinates and an N-shaped pattern in G3×3.

minimum security level of pattern unlock. To answer ques-
tions such as “what size of grid should be used for 280 se-
curity level?”, a lower bound is required. In this letter, we
provide the first lower bound for Android unlock patterns by
calculating the minimum visibility of each point in subgrids
where already-visited points are removed.

2. Visibility-Based Lower Bound

2.1 Derivation of Lower Bound

In the Android pattern unlock system, a user can select a
secret pattern according to the following rules [7]:

(i) At least four points must be chosen,
(ii) No point can be used twice,

(iii) Only straight lines are allowed, and
(iv) One cannot jump over points not visited before.

Let G be a grid that is a set of points in the plane with integer
coordinates and Gα×β be a grid with α rows and β columns.
We use the Cartesian coordinate system to denote a pat-
tern p as a sequence of points 〈(x1, y1), (x2, y2), . . .〉 where
the origin is the point at the lower left corner. For exam-
ple, the N-shaped pattern in Fig. 1 can be expressed by the
sequence 〈(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (2, 1), (2, 2)〉. The
number of points in a grid G is denoted by |G|. The length
of a pattern p is the number of points in p and denoted by
|p|.

For a grid G, let N(G) be the number of patterns and
Nk(G) the number of patterns of length k. Since a pattern
should be a sequence of four or more points by rule (i), we
have

N(G) =
|G|∑

k=4

Nk(G). (1)
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Fig. 2 Visible points from (0,0) and (1,1) in G4×4.

The visibility of a point (x, y) in G is the number of
points that are directly reachable:

V((x, y); G) (2)

=

⎧⎪⎪⎨⎪⎪⎩

∣∣∣∣
{
(x′, y′) ∈ G | (x, y)� (x′, y′)

}∣∣∣∣ for (x, y) ∈ G

⊥ (undefined) for (x, y) � G

where (x, y) � (x′, y′) means that (x′, y′) is visible from
(x, y), i.e., there is a direct path from (x, y) to (x′, y′). If
the first point of a pattern is (x, y), the number of ways to
choose the second point is V((x, y); G). Figure 2 depicts
the visible points from (0, 0) and (1, 1) in G4×4, which gives
V((0, 0); G4×4) = 9 andV((1, 1); G4×4) = 12. The visibility
of a point (x, y) that does not belong to G is undefined, i.e.,
V((x, y); G) = ⊥ for (x, y) � G. The minimum visibility
v(G) is the minimum value of V((x, y); G) over the choice
of (x, y) ∈ G. That is,

v(G) = min
(x,y)∈G

V((x, y); G). (3)

After a point (xi, yi) is chosen as the ith point of a pat-
tern, it can be jumped over afterwards (by rule (iv)); hence,
the chosen (or visited) point (xi, yi) can be regarded as re-
moved from the grid. Let G−i be the set of subgrids of G
with |G−i| = |G| − i.

G−i = {G\D | D ⊂ G, |D| = i}. (4)

where G\D = G − D is the subgrid consisting of points in
G that are not in D. We define the minimum visibility of
G−i as the minimum number of ways to choose the (i + 2)th
point of a pattern, over the choice of the (i+ 1)th point, after
i points have been chosen (or removed) as follows:

v(G−i) = min
D⊂G,|D|=i

v(G\D), (5)

v(G0) = v(G). (6)

The minimum visibility of G−i for a point (x, y) is defined
by

v((x, y); G−i) = min
D⊂G,|D|=i

V((x, y); G\D). (7)

v(G−i) of Eq. (5) can be expressed in terms of v((x, y); G−i)
of Eq. (7).

v(G−i) = min
D⊂G,|D|=i

v(G\D)

= min
D⊂G,|D|=i

min
(x,y)∈G\D

V((x, y); G\D)

= min
(x,y)∈G

min
D⊂G,|D|=i

V((x, y); G\D)

= min
(x,y)∈G

v((x, y); G−i) (8)

where the third equality follows because V((x, y); G\D) =
⊥ for (x, y) � G\D by Eq. (2).

Consider patterns p = 〈(x1, y1), . . . , (xi−1, yi−1)〉 and
p′ = 〈(x1, y1), . . . , (xi−1, yi−1), (xi, yi)〉 in G, where the pat-
tern p′ of length i extends p of length i − 1. Since a pat-
tern is a sequence of points where order matters, the number
of patterns p′ that extends p is V((xi−1, yi−1); G\D) where
D = {(x1, y1), . . . , (xi−2, yi−2)}. From v((x, y); G−(i−2)) =
minD⊂G,|D|=i−2V((x, y); G\D) of Eq. (7), we can get the re-
lation between the number of patterns of length i and that of
length i − 1 as follows:

Ni(G) ≥ Ni−1(G) · v(G−(i−2)), (9)

which gives

Ni(G)
Ni−1(G)

≥ v(G−(i−2)). (10)

Now, we can derive the visibility-based lower bound as
follows:

N(G) =
|G|∑

k=4

Nk(G)

=

|G|∑

k=4

N1(G) · N2(G)
N1(G)

· N3(G)
N2(G)

· · · Nk(G)
Nk−1(G)

≥
|G|∑

k=4

|G| · v(G) · v(G−1) · · · v(G−(k−2))

= |G|
|G|∑

k=4

k−2∏

i=0

v(G−i) (11)

where the inequality follows from Eq. (10) andN1(G) = |G|.

2.2 Computation of Lower Bound

To calculate the lower bound of Eq. (11), we need the val-
ues v(G−i) for i = 0, 1, . . . , |G| − 2. By Eq. (8), we can
compute v(G−i) = min(x,y)∈G v((x, y); G−i) by first computing
v((x, y); G−i) for all (x, y) ∈ G and then finding the minimum
value. We present an algorithm for computing v((x, y); G−i)
for a point (x, y) and i = 0, 1, . . . , |G| − 2 as follows:

(a) Compute the multiset of angles S = {θ | θ = atan2(y′ −
y, x′ − x) for (x′, y′) ∈ G and (x′, y′) � (x, y)}.

(b) Sort the elements of the multiset S .
(c) Count the multiplicity m of each (distinct) element θ

of the sorted multiset S in (b) and make a list L =
〈(θ1,m1), (θ2,m2), . . . , (θτ,mτ)〉 in order of increasing
multiplicity, where mj ≤ mj+1 for j = 1, 2, . . . , τ − 1.

(d) For i = 0, 1, . . . , |G| − 2, set v((x, y); G−i) = τ − � where
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∑�
j=0 mj ≤ i <

∑�+1
j=0 mj with m0 = 0.

In step (a), we compute the angle θ between (x, y) and (x′, y′)
by θ = atan2(y′ − y, x′ − x). In a variety of programming
languages, the function atan2(·, ·) is the arctangent function
with two arguments [8]. The purpose of using two argu-
ments instead of one is to gather information on the signs
of the inputs in order to return the appropriate quadrant of
the computed angle. For any real number arguments a and
b not both equal to zero, atan2(b, a) ∈ (−π, π] is the angle in
radians between the positive X-axis of a plane and the point
given by the coordinates (a, b) on it.

Consider (x, y) = (0, 0) in G4×4 (Fig. 2). The angle
θ = atan2(y′ − y, x′ − x) is 0 for (x′, y′) = (1, 0), (2, 0), (3, 0),
π
4 for (x′, y′) = (1, 1), (2, 2), (3, 3), and π

2 for (x′, y′) =
(0, 1), (0, 2), (0, 3), which shows that S is a multiset. We
sort the angles in step (b) and count the multiplicity of each
angle in step (c); the multiplicity m of an element θ in a mul-
tiset S is the number of instances of θ in S . For example,
(θ,m) = ( π4 , 3) indicates that there are three points (x′, y′)
satisfying θ = atan2(y′ − y, x′ − x) = π

4 for (x, y) = (0, 0).
The list L = 〈(θ1,m1), (θ2,m2), . . . , (θτ,mτ)〉 is arranged in
order of increasing multiplicity, i.e., mj ≤ mj+1. Since all
points (x′, y′) � (x, y) are counted in the list L, the sum of
the multiplicities is |G| − 1, i.e.,

∑τ
j=1 mj = |G| − 1.

From the list L = 〈(θ1,m1), (θ2,m2), . . . , (θτ,mτ)〉, we
can compute v((x, y); G−i) for i = 0, 1, . . . , |G| − 2. First, we
have v((x, y); G0) = τ because the angles of visible points
from (x, y) are θ1, θ2, . . . , θτ. For G−1, the number of visi-
ble points from (x, y) does not change if we remove a point
(x′, y′) ∈ G with multiplicity m > 1 and decreases by one
if we remove a point with multiplicity m = 1. In general,
the number of visible points decreases by one only if we
remove mj points having the same angle θ j. Since we are
interested in the minimum visibility of G−i for (x, y), we re-
duce the number of visible points as fast as possible by re-
moving points in order of increasing multiplicity. If points
of angel θ1 (with multiplicity m1) are removed, the visibility
becomes τ − 1. If points of angel θ1 and θ2 are removed,
the visibility becomes τ − 2. Generally, if points of angle θ j

for j = 1, 2, . . . , � are removed, the visibility becomes τ − �.
Therefore, we have

v((x, y); G−i)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ for 0 ≤ i < m1

τ − 1 for m1 ≤ i < m2
...

τ − � for
∑�

j=0 mj ≤ i <
∑�+1

j=0 mj

...

1 for
∑τ−1

j=0 mj ≤ i <
∑τ

j=0 mj

(12)

where m0 = 0 and
∑τ

j=0 mj = |G| − 1.
We can compute v(G−i) = min(x,y)∈G v((x, y); G−i) by

finding the minimum value of v((x, y); G−i) for (x, y) ∈ G.
The visibility-based lower bound can be computed by plug-
ging the values of v(G−i) into Eq. (11). Table 1 presents nu-

Table 1 Visibility-based bounds for Android unlock patterns

Grid Lower bound (Eq. (11)) Upper bound [6]

3 × 3 2.48E+4 9.86E+05
4 × 4 1.03E+9 3.60E+13
5 × 5 4.01E+15 1.48E+25
6 × 6 3.33E+26 9.24E+40
7 × 7 5.71E+37 1.08E+62
8 × 8 4.47E+56 2.99E+87
9 × 9 1.13E+76 5.60E+118

10 × 10 9.40E+100 5.68E+154
11 × 11 2.49E+127 3.13E+197
12 × 12 6.57E+165 2.18E+244
13 × 13 6.44E+196 1.84E+299
14 × 14 1.65E+246 3.45E+358
15 × 15 2.69E+291 4.74E+425
16 × 16 7.84E+339 2.61E+497
17 × 17 1.58E+394 1.86E+577
18 × 18 1.01E+467 2.50E+661
19 × 19 1.76E+526 2.47E+755
20 × 20 1.18E+611 6.90E+852
21 × 21 1.23E+680 2.20E+960
22 × 22 1.56E+761 9.17E+1071
23 × 23 1.43E+850 6.37E+1192
24 × 24 2.56E+961 7.52E+1317
25 × 25 1.16E+1046 2.55E+1454

merical data of the visibility-based lower bound and upper
bound, from which the security of Android unlock patterns
can be estimated. The total time to compute the lower bound
in Table 1 (e.g., G25×25) was less than one second with a
desktop PC.

2.3 Time-Precision Tradeoff

By spending more computation time, we can improve the
lower bound of Eq. (11). If one is willing to computeNγ(G)
where γ ≤ 3 (e.g., by brute-force enumeration), Eq. (11) can
be rewritten as follows:

N(G) =
|G|∑

k=4

Nk(G)

=

|G|∑

k=4

Nγ(G) · Nγ+1(G)

Nγ(G)
· · · Nk(G)
Nk−1(G)

≥
|G|∑

k=4

Nγ(G) · v(G−(γ−1)) · · · v(G−(k−2))

= Nγ(G)
|G|∑

k=4

k−2∏

i=γ−1

v(G−i) (13)

For example, the lower bound for G3×3 can be improved to
4.42E+4 by Eq. (13) with N3(G3×3) = 320.

Remark 1. If one is willing to spend even more computing
power to calculate N j(G) for all j ∈ [4, γ] where γ ≥ 4,
then Eq. (13) can be extended to N(G) ≥ ∑γj=4N j(G) +

Nγ(G)
∑|G|

k=γ+1

∏k−2
i=γ−1 v(G

−i). nfortunately, this extension
does not seem to be applicable to a large grid because brute-
force enumeration is currently the only way to compute
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Nj(G).

2.4 Discussion

When we compare N(G3×3) = 389, 112 (or N(G4×4) =
4, 350, 069, 823, 024) with the visibility-based upper bound
of [6] and the visibility-based lower bound of Eq. (11), it
is the upper bound that is more accurate. This is partially
because the event of the minimum visibility seems to hap-
pen with a relatively low probability. In step (c) of Sect. 2.2,
the list L is computed for each point (x, y) in a grid. For
example, consider the list L = 〈(θ1,m1), . . . , (θτ,mτ)〉 =
〈(26.6◦, 1), (63.4◦, 1), (0◦, 2), (45◦, 2), (90◦, 2)〉 for the point
(x, y) = (0, 0) in G3×3 where angles are expressed in de-
grees. From the list L, we have v((0, 0); G0

3×3) = τ = 5. To
compute the minimum visibility v((0, 0); G−1

3×3), we remove
the point having the smallest multiplicity, i.e., the point cor-
responding to (26.6◦, 1), which leads to v((0, 0); G−1

3×3) = 4.
Note that the list L tells us that two angles have multiplic-
ity 1 and three angles have multiplicity 2, i.e., removing
one of 2 points corresponding to θ = 26.6◦, 63.4◦ decreases
the visibility but removing one of 6 points corresponding to
θ = 0◦, 45◦, 90◦ does not decrease the visibility. Therefore,
the probability that the visibility actually decreases is only
25% but we assume this event of 25% probability to com-
pute the minimum visibility. On the contrary, the event of
75% probability is assumed to compute the maximum visi-
bility in [6] and thus the upper bound tends to provide more
accurate approximation of the security level.†

Even though the upper bound of [6] is a more accu-
rate approximation (at least for N(G3×3) and N(G4×4)), it is
not known how fast the gap between the upper bound and
N(Gn×n) grows as n increases. In addition, people do not
choose a pattern uniformly at random and have some bias
in the pattern selection process [7]. Therefore, we recom-
mend that one should be as conservative as possible when
estimating the security level of the Android pattern unlock;
the lower bound of Eq. (11) is less accurate but provides a
guaranteed security whereas the upper bound of [6] is more
accurate but provides an overestimated security.

Remark 2. In [6], the multiset of angles S was mistakenly
defined by S = { y′−yx′−x | (x′, y′) ∈ G and (x′, y′) � (x, y)}. Note

that y
′−y

x′−x cannot distinguish between upward directions and
downward directions; e.g., for (x, y) = (1, 1) in G3×3, we
have y

′−y
x′−x = 1 for both (x′, y′) = (2, 2) and (x′, y′) = (0, 0).

Therefore, the multiset S in [6] should be defined by S =
{θ | θ = atan2(y′ − y, x′ − x) for (x′, y′) ∈ G and (x′, y′) �
(x, y)}.

3. Conclusion

Theoretically, the exact security level of the Android pattern
†We do not claim that the event of the minimum visibility al-

ways happens with a smaller probability. We just want to give a
possible reason for the large gap between the lower bound and the
exact value by explaining typical cases.

unlock system can be computed by counting the number of
patterns in a grid. However, a mathematical formula for the
exact number of patterns is not known even for the simplest
case of the 3 × 3 grid [5]. Instead, the security level can
be roughly estimated by using the lower bound of Eq. (11)
and the upper bound of [6]. According to the numerical
data in Table 1, there is still a considerable gap between the
lower and upper bounds. We invite readers to the research
on tighter bounds for the security of unlock patterns.
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