
578
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

LETTER

A Visibility-Based Lower Bound for Android Unlock Patterns∗

Jinwoo LEE†, Jae Woo SEO††, Kookrae CHO†††, Pil Joong LEE†, Nonmembers,
and Dae Hyun YUM††††a), Member

SUMMARY The Android pattern unlock is a widely adopted graphical
password system that requires a user to draw a secret pattern connecting
points arranged in a grid. The theoretical security of pattern unlock can be
defined by the number of possible patterns. However, only upper bounds of
the number of patterns have been known except for 3×3 and 4×4 grids for
which the exact number of patterns was found by brute-force enumeration.
In this letter, we present the first lower bound by computing the minimum
number of visible points from each point in various subgrids.
key words: user authentication, graphical password, Android unlock pat-
terns, lower bound

1. Introduction

The Android pattern unlock is a graphical password system
that was introduced on Android version 1.0 as an alternative
to traditional text-based password systems. A pattern pass-
word consists of a sequence of four or more contact points
arranged in a grid and the security level of the pattern pass-
word is determined by the size of the pattern space. While
CyanLockScreen [1] provides grids from 3 × 3 to 6 × 6 and
Security Lock Screen [2] up to 25 × 25, the total number of
possible patterns is only known for 3×3 and 4×4 grids that
was obtained by brute-force enumeration; there are 389,112
(� 219) patterns in a 3×3 grid and 4,350,069,823,024 (� 242)
patterns in a 4 × 4 grids [3], [4]. The brute-force enumera-
tion is not a candidate method for counting the number of
patterns in a large grid because the number of pattern grows
too fast.

For grids of large size, only upper bounds are known
for the number of patterns: permutation-based upper
bound [5] and visibility-based upper bound [6]. Upper
bounds enable people to avoid exaggerating the security of
pattern unlock but it is a lower bound that guarantees the

Manuscript received September 22, 2016.
Manuscript revised November 6, 2016.
Manuscript publicized December 1, 2016.
†The authors are with the Department of Electrical Engineer-

ing, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea.
††The author is with the Software R&D Center, Samsung Elec-

tronics Co., Seoul, 06765, Republic of Korea.
†††The author is with the IoT and Robotics Research Division,

DGIST, Daegu, 42988, Republic of Korea.
††††The author is with the Department of Information and Com-

munication Engineering, Myongji University, Yongin, Gyeonggi-
do, 17058, Republic of Korea.

∗This work was supported by the DGIST R&D Program of the
Ministry of Science, ICT and Future Planning (16-IT-04).

a) E-mail: dhyum@mju.ac.kr
DOI: 10.1587/transinf.2016EDL8196

Fig. 1 The Cartesian coordinates and an N-shaped pattern in G3×3.

minimum security level of pattern unlock. To answer ques-
tions such as “what size of grid should be used for 280 se-
curity level?”, a lower bound is required. In this letter, we
provide the first lower bound for Android unlock patterns by
calculating the minimum visibility of each point in subgrids
where already-visited points are removed.

2. Visibility-Based Lower Bound

2.1 Derivation of Lower Bound

In the Android pattern unlock system, a user can select a
secret pattern according to the following rules [7]:

(i) At least four points must be chosen,
(ii) No point can be used twice,

(iii) Only straight lines are allowed, and
(iv) One cannot jump over points not visited before.

Let G be a grid that is a set of points in the plane with integer
coordinates and Gα×β be a grid with α rows and β columns.
We use the Cartesian coordinate system to denote a pat-
tern p as a sequence of points 〈(x1, y1), (x2, y2), . . .〉 where
the origin is the point at the lower left corner. For exam-
ple, the N-shaped pattern in Fig. 1 can be expressed by the
sequence 〈(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (2, 1), (2, 2)〉. The
number of points in a grid G is denoted by |G|. The length
of a pattern p is the number of points in p and denoted by
|p|.

For a grid G, let N(G) be the number of patterns and
Nk(G) the number of patterns of length k. Since a pattern
should be a sequence of four or more points by rule (i), we
have

N(G) =
|G|∑

k=4

Nk(G). (1)

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/160231343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LETTER
579

Fig. 2 Visible points from (0,0) and (1,1) in G4×4.

The visibility of a point (x, y) in G is the number of
points that are directly reachable:

V((x, y); G) (2)

=

⎧⎪⎪⎨⎪⎪⎩

∣∣∣∣
{
(x′, y′) ∈ G | (x, y)� (x′, y′)

}∣∣∣∣ for (x, y) ∈ G

⊥ (undefined) for (x, y) � G

where (x, y) � (x′, y′) means that (x′, y′) is visible from
(x, y), i.e., there is a direct path from (x, y) to (x′, y′). If
the first point of a pattern is (x, y), the number of ways to
choose the second point is V((x, y); G). Figure 2 depicts
the visible points from (0, 0) and (1, 1) in G4×4, which gives
V((0, 0); G4×4) = 9 andV((1, 1); G4×4) = 12. The visibility
of a point (x, y) that does not belong to G is undefined, i.e.,
V((x, y); G) = ⊥ for (x, y) � G. The minimum visibility
v(G) is the minimum value of V((x, y); G) over the choice
of (x, y) ∈ G. That is,

v(G) = min
(x,y)∈G

V((x, y); G). (3)

After a point (xi, yi) is chosen as the ith point of a pat-
tern, it can be jumped over afterwards (by rule (iv)); hence,
the chosen (or visited) point (xi, yi) can be regarded as re-
moved from the grid. Let G−i be the set of subgrids of G
with |G−i| = |G| − i.

G−i = {G\D | D ⊂ G, |D| = i}. (4)

where G\D = G − D is the subgrid consisting of points in
G that are not in D. We define the minimum visibility of
G−i as the minimum number of ways to choose the (i + 2)th
point of a pattern, over the choice of the (i+ 1)th point, after
i points have been chosen (or removed) as follows:

v(G−i) = min
D⊂G,|D|=i

v(G\D), (5)

v(G0) = v(G). (6)

The minimum visibility of G−i for a point (x, y) is defined
by

v((x, y); G−i) = min
D⊂G,|D|=i

V((x, y); G\D). (7)

v(G−i) of Eq. (5) can be expressed in terms of v((x, y); G−i)
of Eq. (7).

v(G−i) = min
D⊂G,|D|=i

v(G\D)

= min
D⊂G,|D|=i

min
(x,y)∈G\D

V((x, y); G\D)

= min
(x,y)∈G

min
D⊂G,|D|=i

V((x, y); G\D)

= min
(x,y)∈G

v((x, y); G−i) (8)

where the third equality follows because V((x, y); G\D) =
⊥ for (x, y) � G\D by Eq. (2).

Consider patterns p = 〈(x1, y1), . . . , (xi−1, yi−1)〉 and
p′ = 〈(x1, y1), . . . , (xi−1, yi−1), (xi, yi)〉 in G, where the pat-
tern p′ of length i extends p of length i − 1. Since a pat-
tern is a sequence of points where order matters, the number
of patterns p′ that extends p is V((xi−1, yi−1); G\D) where
D = {(x1, y1), . . . , (xi−2, yi−2)}. From v((x, y); G−(i−2)) =
minD⊂G,|D|=i−2V((x, y); G\D) of Eq. (7), we can get the re-
lation between the number of patterns of length i and that of
length i − 1 as follows:

Ni(G) ≥ Ni−1(G) · v(G−(i−2)), (9)

which gives

Ni(G)
Ni−1(G)

≥ v(G−(i−2)). (10)

Now, we can derive the visibility-based lower bound as
follows:

N(G) =
|G|∑

k=4

Nk(G)

=

|G|∑

k=4

N1(G) · N2(G)
N1(G)

· N3(G)
N2(G)

· · · Nk(G)
Nk−1(G)

≥
|G|∑

k=4

|G| · v(G) · v(G−1) · · · v(G−(k−2))

= |G|
|G|∑

k=4

k−2∏

i=0

v(G−i) (11)

where the inequality follows from Eq. (10) andN1(G) = |G|.

2.2 Computation of Lower Bound

To calculate the lower bound of Eq. (11), we need the val-
ues v(G−i) for i = 0, 1, . . . , |G| − 2. By Eq. (8), we can
compute v(G−i) = min(x,y)∈G v((x, y); G−i) by first computing
v((x, y); G−i) for all (x, y) ∈ G and then finding the minimum
value. We present an algorithm for computing v((x, y); G−i)
for a point (x, y) and i = 0, 1, . . . , |G| − 2 as follows:

(a) Compute the multiset of angles S = {θ | θ = atan2(y′ −
y, x′ − x) for (x′, y′) ∈ G and (x′, y′) � (x, y)}.

(b) Sort the elements of the multiset S .
(c) Count the multiplicity m of each (distinct) element θ

of the sorted multiset S in (b) and make a list L =
〈(θ1,m1), (θ2,m2), . . . , (θτ,mτ)〉 in order of increasing
multiplicity, where mj ≤ mj+1 for j = 1, 2, . . . , τ − 1.

(d) For i = 0, 1, . . . , |G| − 2, set v((x, y); G−i) = τ − � where

580
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

∑�
j=0 mj ≤ i <

∑�+1
j=0 mj with m0 = 0.

In step (a), we compute the angle θ between (x, y) and (x′, y′)
by θ = atan2(y′ − y, x′ − x). In a variety of programming
languages, the function atan2(·, ·) is the arctangent function
with two arguments [8]. The purpose of using two argu-
ments instead of one is to gather information on the signs
of the inputs in order to return the appropriate quadrant of
the computed angle. For any real number arguments a and
b not both equal to zero, atan2(b, a) ∈ (−π, π] is the angle in
radians between the positive X-axis of a plane and the point
given by the coordinates (a, b) on it.

Consider (x, y) = (0, 0) in G4×4 (Fig. 2). The angle
θ = atan2(y′ − y, x′ − x) is 0 for (x′, y′) = (1, 0), (2, 0), (3, 0),
π
4 for (x′, y′) = (1, 1), (2, 2), (3, 3), and π

2 for (x′, y′) =
(0, 1), (0, 2), (0, 3), which shows that S is a multiset. We
sort the angles in step (b) and count the multiplicity of each
angle in step (c); the multiplicity m of an element θ in a mul-
tiset S is the number of instances of θ in S . For example,
(θ,m) = (π4 , 3) indicates that there are three points (x′, y′)
satisfying θ = atan2(y′ − y, x′ − x) = π

4 for (x, y) = (0, 0).
The list L = 〈(θ1,m1), (θ2,m2), . . . , (θτ,mτ)〉 is arranged in
order of increasing multiplicity, i.e., mj ≤ mj+1. Since all
points (x′, y′) � (x, y) are counted in the list L, the sum of
the multiplicities is |G| − 1, i.e.,

∑τ
j=1 mj = |G| − 1.

From the list L = 〈(θ1,m1), (θ2,m2), . . . , (θτ,mτ)〉, we
can compute v((x, y); G−i) for i = 0, 1, . . . , |G| − 2. First, we
have v((x, y); G0) = τ because the angles of visible points
from (x, y) are θ1, θ2, . . . , θτ. For G−1, the number of visi-
ble points from (x, y) does not change if we remove a point
(x′, y′) ∈ G with multiplicity m > 1 and decreases by one
if we remove a point with multiplicity m = 1. In general,
the number of visible points decreases by one only if we
remove mj points having the same angle θ j. Since we are
interested in the minimum visibility of G−i for (x, y), we re-
duce the number of visible points as fast as possible by re-
moving points in order of increasing multiplicity. If points
of angel θ1 (with multiplicity m1) are removed, the visibility
becomes τ − 1. If points of angel θ1 and θ2 are removed,
the visibility becomes τ − 2. Generally, if points of angle θ j

for j = 1, 2, . . . , � are removed, the visibility becomes τ − �.
Therefore, we have

v((x, y); G−i)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ for 0 ≤ i < m1

τ − 1 for m1 ≤ i < m2
...

τ − � for
∑�

j=0 mj ≤ i <
∑�+1

j=0 mj

...

1 for
∑τ−1

j=0 mj ≤ i <
∑τ

j=0 mj

(12)

where m0 = 0 and
∑τ

j=0 mj = |G| − 1.
We can compute v(G−i) = min(x,y)∈G v((x, y); G−i) by

finding the minimum value of v((x, y); G−i) for (x, y) ∈ G.
The visibility-based lower bound can be computed by plug-
ging the values of v(G−i) into Eq. (11). Table 1 presents nu-

Table 1 Visibility-based bounds for Android unlock patterns

Grid Lower bound (Eq. (11)) Upper bound [6]

3 × 3 2.48E+4 9.86E+05
4 × 4 1.03E+9 3.60E+13
5 × 5 4.01E+15 1.48E+25
6 × 6 3.33E+26 9.24E+40
7 × 7 5.71E+37 1.08E+62
8 × 8 4.47E+56 2.99E+87
9 × 9 1.13E+76 5.60E+118

10 × 10 9.40E+100 5.68E+154
11 × 11 2.49E+127 3.13E+197
12 × 12 6.57E+165 2.18E+244
13 × 13 6.44E+196 1.84E+299
14 × 14 1.65E+246 3.45E+358
15 × 15 2.69E+291 4.74E+425
16 × 16 7.84E+339 2.61E+497
17 × 17 1.58E+394 1.86E+577
18 × 18 1.01E+467 2.50E+661
19 × 19 1.76E+526 2.47E+755
20 × 20 1.18E+611 6.90E+852
21 × 21 1.23E+680 2.20E+960
22 × 22 1.56E+761 9.17E+1071
23 × 23 1.43E+850 6.37E+1192
24 × 24 2.56E+961 7.52E+1317
25 × 25 1.16E+1046 2.55E+1454

merical data of the visibility-based lower bound and upper
bound, from which the security of Android unlock patterns
can be estimated. The total time to compute the lower bound
in Table 1 (e.g., G25×25) was less than one second with a
desktop PC.

2.3 Time-Precision Tradeoff

By spending more computation time, we can improve the
lower bound of Eq. (11). If one is willing to computeNγ(G)
where γ ≤ 3 (e.g., by brute-force enumeration), Eq. (11) can
be rewritten as follows:

N(G) =
|G|∑

k=4

Nk(G)

=

|G|∑

k=4

Nγ(G) · Nγ+1(G)

Nγ(G)
· · · Nk(G)
Nk−1(G)

≥
|G|∑

k=4

Nγ(G) · v(G−(γ−1)) · · · v(G−(k−2))

= Nγ(G)
|G|∑

k=4

k−2∏

i=γ−1

v(G−i) (13)

For example, the lower bound for G3×3 can be improved to
4.42E+4 by Eq. (13) with N3(G3×3) = 320.

Remark 1. If one is willing to spend even more computing
power to calculate N j(G) for all j ∈ [4, γ] where γ ≥ 4,
then Eq. (13) can be extended to N(G) ≥ ∑γj=4N j(G) +

Nγ(G)
∑|G|

k=γ+1

∏k−2
i=γ−1 v(G

−i). nfortunately, this extension
does not seem to be applicable to a large grid because brute-
force enumeration is currently the only way to compute

LETTER
581

Nj(G).

2.4 Discussion

When we compare N(G3×3) = 389, 112 (or N(G4×4) =
4, 350, 069, 823, 024) with the visibility-based upper bound
of [6] and the visibility-based lower bound of Eq. (11), it
is the upper bound that is more accurate. This is partially
because the event of the minimum visibility seems to hap-
pen with a relatively low probability. In step (c) of Sect. 2.2,
the list L is computed for each point (x, y) in a grid. For
example, consider the list L = 〈(θ1,m1), . . . , (θτ,mτ)〉 =
〈(26.6◦, 1), (63.4◦, 1), (0◦, 2), (45◦, 2), (90◦, 2)〉 for the point
(x, y) = (0, 0) in G3×3 where angles are expressed in de-
grees. From the list L, we have v((0, 0); G0

3×3) = τ = 5. To
compute the minimum visibility v((0, 0); G−1

3×3), we remove
the point having the smallest multiplicity, i.e., the point cor-
responding to (26.6◦, 1), which leads to v((0, 0); G−1

3×3) = 4.
Note that the list L tells us that two angles have multiplic-
ity 1 and three angles have multiplicity 2, i.e., removing
one of 2 points corresponding to θ = 26.6◦, 63.4◦ decreases
the visibility but removing one of 6 points corresponding to
θ = 0◦, 45◦, 90◦ does not decrease the visibility. Therefore,
the probability that the visibility actually decreases is only
25% but we assume this event of 25% probability to com-
pute the minimum visibility. On the contrary, the event of
75% probability is assumed to compute the maximum visi-
bility in [6] and thus the upper bound tends to provide more
accurate approximation of the security level.†

Even though the upper bound of [6] is a more accu-
rate approximation (at least for N(G3×3) and N(G4×4)), it is
not known how fast the gap between the upper bound and
N(Gn×n) grows as n increases. In addition, people do not
choose a pattern uniformly at random and have some bias
in the pattern selection process [7]. Therefore, we recom-
mend that one should be as conservative as possible when
estimating the security level of the Android pattern unlock;
the lower bound of Eq. (11) is less accurate but provides a
guaranteed security whereas the upper bound of [6] is more
accurate but provides an overestimated security.

Remark 2. In [6], the multiset of angles S was mistakenly
defined by S = { y′−yx′−x | (x′, y′) ∈ G and (x′, y′) � (x, y)}. Note

that y
′−y

x′−x cannot distinguish between upward directions and
downward directions; e.g., for (x, y) = (1, 1) in G3×3, we
have y

′−y
x′−x = 1 for both (x′, y′) = (2, 2) and (x′, y′) = (0, 0).

Therefore, the multiset S in [6] should be defined by S =
{θ | θ = atan2(y′ − y, x′ − x) for (x′, y′) ∈ G and (x′, y′) �
(x, y)}.

3. Conclusion

Theoretically, the exact security level of the Android pattern
†We do not claim that the event of the minimum visibility al-

ways happens with a smaller probability. We just want to give a
possible reason for the large gap between the lower bound and the
exact value by explaining typical cases.

unlock system can be computed by counting the number of
patterns in a grid. However, a mathematical formula for the
exact number of patterns is not known even for the simplest
case of the 3 × 3 grid [5]. Instead, the security level can
be roughly estimated by using the lower bound of Eq. (11)
and the upper bound of [6]. According to the numerical
data in Table 1, there is still a considerable gap between the
lower and upper bounds. We invite readers to the research
on tighter bounds for the security of unlock patterns.

Acknowledgements

The authors would like to thank the IEICE reviewer for in-
sightful comments.

References

[1] CyanLockScreen. http://repo.xposed.info/module/
com.conceptualideas.cyanlockscreen, 2014.

[2] Security Lock Screen. https://apkpure.com/security-lock-screen/
com.lsh.kwj.secure.lock.screen, 2014.

[3] A.J. Aviv, K.L. Gibson, E. Mossop, M. Blaze, and J.M. Smith,
“Smudge Attacks on Smartphone Touch Screens,” WOOT’10, Proc.
4th USENIX Conference on Offensive Technologies, pp.1–7, 2010.

[4] A.J. Aviv, D. Budzitowski, and R. Kuber, “Is Bigger Better? Com-
paring User-Generated Passwords on 3x3 vs. 4x4 Grid Sizes for An-
droid’s Pattern Unlock,” ACSAC’15, Proc. 31st Annual Computer Se-
curity Applications Conference, pp.301–310, 2015.

[5] G.C. Kessler, “Technology Corner: Calculating the Number of An-
droid Lock Patterns: An Unfinished Study in Number Theory,”
JDFSL, vol.8, no.4, pp.57–64, 2013.

[6] J. Lee, J.W. Seo, K. Cho, P.J. Lee, J. Kim, S.H. Choi, and D.H.
Yum, “A Visibility-Based Upper Bound for Android Unlock Patterns,”
IEICE Trans. Inf. & Syst., vol.E99-D, no.11, pp.2814–2816, 2016.

[7] S. Uellenbeck, M. Dürmuth, C. Wolf, and T. Holz, “Quantifying the
Security of Graphical Passwords: The Case of Android Unlock Pat-
terns,” CCS’13, Proc. 2013 ACM SIGSAC Conference on Computer
& Communications Security, pp.161–172, 2013.

[8] Wikipedia, atan2. https://en.wikipedia.org/wiki/Atan2, 2016.

http://dx.doi.org/10.1145/2818000.2818014
http://dx.doi.org/10.1787/comms_outlook-2013-graph229-en
http://dx.doi.org/10.1145/2508859.2516700

