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Abstract— We consider a downlink cellular network where
multi-antenna base stations (BSs) transmit data to single-antenna
users by using one of two linear precoding methods with limited
feedback: 1) maximum ratio transmission (MRT) for serving
a single user or 2) zero forcing (ZF) for serving multiple
users. The BS and user locations are drawn from a Poisson
point process, allowing expressions for the signal-to-interference
coverage probability and the ergodic spectral efficiency to be
derived as a function of system parameters, such as the number
of BS antennas and feedback bits, and the pathloss exponent.
We find a tight lower bound on the optimum number of feedback
bits to maximize the net spectral efficiency, which captures the
overall system gain by considering both of downlink and uplink
spectral efficiency using limited feedback. Our main finding is
that, when using MRT, the optimum number of feedback bits
scales linearly with the number of antennas, and logarithmically
with the channel coherence time. When using ZF, the feedback
scales in the same ways as MRT, but also linearly with the
pathloss exponent. The derived results provide system-level
insights into the preferred channel codebook size by averaging
the effects of short-term fading and long-term pathloss.

Index Terms— MIMO, Limited feedback, cellular network,
stochastic geometry.

I. INTRODUCTION

IN MULTI-ANTENNA cellular systems, particularly assum-
ing frequency division duplex (FDD), two fundamental

obstacles limit the gains in spectral efficiency:
• Inter-cell interference (ICI): In a cellular network that

uses universal frequency reuse, ICI is unavoidable.
Severe ICI leads to low signal-to-interference plus noise
ratio (SINR) of the downlink users, an operating regime
where the spatial multiplexing gain vanishes [1].

Manuscript received November 23, 2015; revised March 17, 2016; accepted
May 4, 2016. Date of publication May 17, 2016; date of current version
August 10, 2016. This work was supported in part by the National Science
Foundation under Grant NSF-CCF-1514275 and in part by the Huawei
Technologies Company, Ltd. The associate editor coordinating the review of
this paper and approving it for publication was W. Gerstacker.

J. Park, J. G. Andrews, and R. W. Heath, Jr., are with the Wireless
Networking and Communication Group, Department of Electrical and
Computer Engineering, The University of Texas at Austin, Austin,
TX 78701 USA (e-mail: jeonghun@utexas.edu; jandrews@ece.utexas.edu;
rheath@utexas.edu).

N. Lee is with the Department of Electrical Engineering, Pohang Uni-
versity of Science and Technology, Pohang 37673, South Korea (e-mail:
nylee@postech.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2016.2569089

• Limited feedback: The finite rate of the feedback link
restricts the precision of channel quantization, which
leads to inaccurate channel state information at the trans-
mitter (CSIT). In the multi-user scenario, inaccurate CSIT
causes the inevitable inter-user interference (IUI).

In spite of extensive research over a few decades, sys-
tem level performance considering both ICI and limited CSI
feedback has been challenging to characterize in a common
framework. The major difficulty has been the deficiency of a
tractable model that suitably captures the both effects of the
ICI and limited CSI feedback. In this paper, we adopt two ana-
lytical tools to resolve the challenge: (i) network modeling by
stochastic geometry [2] for calculating the amount of ICI, and
(ii) quantization cell approximation [3]–[6] for analyzing the
channel quantization error. Using these tools, we characterize
the coverage probability and the ergodic spectral efficiency
of a multi-antenna downlink system with limited feedback,
considering full ICI in the network. Based on the characteri-
zation, we attempt to reveal the complicated interplay between
the downlink performance, limited CSI feedback, and the ICI.

A. Related Work

There has been extensive prior work on the downlink
transmission rate as a function of a finite CSI feedback rate.
In toy setups where a base station (BS) serves a single user
in a single cell by ignoring ICI, downlink transmission rates
were characterized as a function of the codebook size and the
SNR. For example, in [6] and [7], a channel codebook design
method for a single-user transmission was proposed by using
Grassmannian line packing. By employing random vector
quantization (RVQ), the rate loss of a point-to-point MIMO
system caused by using finite rate feedback was characterized
in [8]. In [9], by applying RVQ, the performance of conjugate
beamforming was analyzed in a MISO system. In [10], the
performance of the finite rate CSI feedback was characterized,
assuming temporally correlated channel and a principle of
designing a channel codebook for this particular condition was
proposed. The main limitation of [6]–[10] is that it assumed
only a single pair of a BS and a user, in which important
features of a cellular network, e.g., ICI are missing.

Considering a single-cell and multi-user transmission
scenario, it was shown in [11] that the sum spectral effi-
ciencies can increase without bound with the transmit power,
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provided that the CSI feedback rate linearly scales with SNR
in decibels. In [4], by leveraging multi-user diversity gain, it
was shown that a semi-orthogonal user selection method [12]
with finite rate feedback for zero-forcing (ZF) beamforming
achieves the same throughput gain with the case in perfect
CSIT. In [13], the achievable spectral efficiency was character-
ized by considering not only the finite rate feedback, but also
the channel estimation error via downlink channel training.
In [14], multi-mode MIMO transmission depending on the
users’ channel conditions was proposed. In another line of
research, in [15]–[17], the cost of the CSI feedback was con-
sidered. Specifically, the downlink spectral efficiency obtained
by using limited CSI feedback was normalized by the uplink
spectral efficiency spent by sending the feedback. Similar
to [6]–[10] and [18], the major limitation of the afore-
mentioned work [4], [11]–[17] is the use of over-simplified
network model that only captures the effect of the channel
quantization error, ignoring ICI; thereby, the results do not
necessarily apply to cellular systems where ICI is significant.

The effect of ICI on limited feedback has been addressed in
prior work assuming deterministic BS locations. In [19], the
the impact of ICI and delay on single user limited feedback
was characterized. In [20]–[22], feedback bit allocation meth-
ods were proposed to balance resolution between intra-cluster
interference channels for multi-user multi-cell coordinated
beamforming. The results presented in [19]–[22] only holds
for specific user locations, making it difficult to provide a
system level analysis over many user locations and system
parameters.

An approach to model ICI is to leverage stochastic geome-
try, where spatial locations of BSs and users were modeled by
using a homogeneous Poisson point process (PPP). Analytical
expressions of the downlink cellular SIR performance were
characterized by averaging the BSs’ and the users’ loca-
tions [2]. Using the random network model based on PPP
to model an ad hoc network, the transmission capacity was
obtained when a multi-antenna transmission technique is used
with limited CSI feedback in [23] and [24]. In [25] and [26],
BS cooperation methods with limited feedback were proposed
and the SIR performance was analyzed. There is also prior
work [27]–[31] that investigated the performance of MIMO in
a network model built upon stochastic geometry, especially in
a heterogeneous network [27], [28], [31]. This work, however,
did not consider limited feedback which is the main subject of
this paper. In a network modeled by PPP, how the feedback
rate scales with which system parameters is still a question
in a fundamental cellular system where one BS serves one or
multiple users through a linear precoding. The relevant results
under the previous assumptions do not hold since the SNR of
the individual user is averaged by tools of stochastic geometry.
This paper proposes an answer for such a question.

B. Contributions

In this paper, we characterize the downlink performance of
a multi-antenna cellular system with limited CSI feedback.
We consider two cases of interest, (i) single-user maximum
ratio transmission (MRT) and (ii) multi-user ZF where the

number of users is equal to the number of BS antennas.
First we establish exact expressions for the SIR coverage
probability and the ergodic spectral efficiency in integral forms
as a function of the relevant system parameters: the pathloss
exponent, the number of BS antennas, and the number of
feedback bits. Subsequently, we obtain a lower bound on the
optimum number of feedback bits that maximizes the net
spectral efficiency, which measures the normalized downlink
gain for one channel coherence block. The specific definition
of the net spectral efficiency is provided in (15). Our key
findings are summarized as follows.

Assume that N is the number of BS antennas, B is the
number of feedback bits, β is the pathloss exponent, and
Tc is the channel coherence time, specifically defined as the
number of downlink symbols that experience the same channel
fading. In single-user MRT with limited CSI feedback, for
large enough Tc, the optimum number of feedback bits is
approximately

B�MRT ≈ (N − 1) log2 (Tc), (1)

whereas in multi-user ZF with limited CSI feedback, for large
enough Tc,

B�ZF ≈ (N − 1)
β

2
log2 (Tc). (2)

In both (1) and (2), the optimum number of feedback bits
scales linearly with the number of antennas and logarithmi-
cally with the channel coherence time, while it also scales
linearly with the pathloss exponent for multi-user ZF. Neither
expression is a function of the instantaneous SIR because all
the randomness affecting SIR, e.g., short-term fading and long-
term pathloss effects are averaged into the derived forms.

The paper is organized as follows. Section II introduces
the models and the performance metrics. In what follows,
we characterize the performance and find a lower bound on
the optimum number of feedback bits for single-user MRT in
Section III and for multi-user ZF in Section IV, respectively.
Section V shows simulation results for verifying the obtained
results and Section VI concludes the paper.

II. MODELS AND METRICS

A. Network Model

A downlink cellular network model is considered, where
BSs equipped with N antennas are distributed according
to a homogeneous PPP, � = {di , i ∈ N} with density λ.
In this network model, single antenna users are distributed
as an independent homogeneous PPP, �U = {ui , i ∈ N} with
density λU. Each BS in the network has a coverage region
characterized by a Voronoi tessellation.

B. Signal Model

In each cell, K users are selected to be served. For
λU � λ, at least K users are in each Voronoi region with high
probability, therefore each BS is able to choose K users out
of users located in each cell. We analyze performance for the
user located at the origin, denoted as user k, 1 ≤ k ≤ K , per
Slivnyak’s theorem [32]. User k is served by the BS located
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at d1, which is the nearest BS to the origin in�. Other users k ′,
k ′ ∈ {1, . . . , K }\k are also served by the BS located at d1. The
BS located at d1 sends K information symbols to its respective
K associated users through a precoding matrix V1 ∈ C

N×K ,
so the received signal at user k is given by

yk = ‖d1‖−β/2 h∗
k,1V1s1 +

∞∑

i=2

‖di‖−β/2 h∗
k,i Vi si + zk , (3)

where hk,i ∈ C
N×1 is the channel coefficient vector from the

BS at di to user k, Vi = [vi
1, . . . , vi

K

] ∈ C
N×K and

∥∥vi
k

∥∥ = 1
for k ∈ {1, . . . , K } is a precoding matrix of the BS at di ,
si = [

si
1, . . . , si

K

]T ∈ C
K×1 is an information symbol vector

transmitted from the BS at di , and zk ∼ CN (0, σ 2
)

is additive
Gaussian noise. The pathloss exponent is β > 2. We assume
that E

[
si s∗

i

] = P/N · I for i ∈ N and I is the identity matrix.
Each entry of the channel coefficient vector hk,i is drawn
from independent and identically distributed (IID) complex
Gaussian random variables, i.e., CN (0, 1). Depending on the
number of users, we consider two cases of interest: single-
user MRT when K = 1 and multi-user ZF when K = N .
While the case of 1 < K < N is also of interest, it is
less tractable and left to future work. Henceforth, we drop
the BS index 1 for simplification. For instance, we will write
the channel coefficient vector hk,1 as hk , the precoding matrix
V1 = [v1

1, . . . , v1
K

]
as V = [v1, . . . , vK ].

C. Feedback Model

Before data transmission, user k learns downlink CSI hk by
using predefined pilot symbols sent from the BSs, and sends
it back to the associated BS via a finite rate feedback link.
To do this, a user quantizes the channel direction informa-
tion (CDI) by using a predefined codebook that is known to
both of the associated BS and user k. Assuming that feedback
link capacity is B bits, the cardinality of the codebook C
is 2B , where each entry of the codebook is selected from
N-dimensional unit norm vectors, i.e., C = {

w1, . . . ,w2B

}

and ‖wi‖ = 1 for i ∈ {1, . . . , 2B
}
. By measuring the inner

products between the channel direction vector h̃k = hk/ ‖hk‖
and the codeword vectors wi for i ∈ {1, . . . , 2B}, a user
chooses an index that provides the maximum inner product
value,

imax = arg max
i=1,...,2B

∣∣∣h̃∗
k wi

∣∣∣. (4)

The chosen index imax is sent to the BS. Since the BS has
the same codebook as user k, it acquires quantized channel
direction information ĥk = wimax from imax. The quantized
channel information ĥk is used for designing a precoding
matrix V.

Although it is also possible to quantize the channel quality
information (CQI), i.e., ‖hk‖ and send it to the BS through
the feedback link, we only consider the CDI feedback. If user
scheduling is considered, then CQI feedback becomes more
important and the results might become different. For instance,
the CQI and the CDI can be jointly exploited to select a better
set of users by employing the semi-orthogonal user selection
algorithm [12]. Additionally, in [33], it was also shown that

the sum-rate performance is better when large portions of the
feedback bits are used for CQI. We leave this issue as future
work.

For analytical tractability in characterizing performance
of the limited feedback strategy as a function of the
codebook size, we use the quantization cell approximation
technique [3]–[6], which assumes that each quantization cell is
a Voronoi region of a spherical cap. This is a standard approach
in vector quantization [34], [35] and it is used to deal with
the irregular shape of the Voronoi quantization regions. In this
paper, we call this technique the spherical-cap approximation
of vector quantization (SCVQ). Using SCVQ, the area of
a quantization cell is 2−B when the number of feedbacks
is B . This assumption leads to the following approximation
of the cumulative distribution function (CDF) of quantization
error [4].

Fsin2θk
(x) =

{
2B x N−1, 0 ≤ x ≤ δ

1, δ ≤ x,
(5)

where sin2θk = 1 − ∣∣h̃∗
k ĥk
∣∣2 and δ = 2− B

N−1 . In [4], for
any quantization codebook that has a quantization error CDF
Fsin2θ̃k

(x), we have Fsin2θk
(x) ≥ Fsin2θ̃k

(x) . Due to this
property, SCVQ provides an upper bound performance with
limited CSI feedback. Nevertheless, the SCVQ is useful in
analyzing the quantization error effects accurately, as the
downlink rate performance with the SCVQ is known to be
tight with that using RVQ, which provides a lower bound
performance of the limited feedback strategy [4].

D. Performance Metrics

In this section, we define the SIR, the SIR complementary
cumulative distribution function (CCDF), and the ergodic
spectral efficiency for the two cases we consider in this paper,
i.e., the single-user MRT and the multi-user ZF. We focus
on the SIR instead of the SINR, since cellular systems are
usually interference limited [2]. We also assume that all the
cells in a network employ the same beamforming strategy. For
example, in single-user MRT, each cell serves a single user by
using MRT beamforming.

1) Single-User MRT: In single-user MRT, only one user is
active, i.e., K = 1. In this case, the BS designs a precoding
matrix to maximize desired channel gain. Since perfect chan-
nel information h1 is impossible to obtain, the actual channel
gain

∣∣h∗
1v1
∣∣2 cannot be used to design v1. Instead, by exploit-

ing the quantized channel direction information ĥ1 obtained
from CSI feedback, the quantized channel gain

∣∣ĥ∗
1v1
∣∣2 is used.

To maximize this, v1 is designed as v1 = ĥ1. Applying this,
the signal model (3) is rewritten as

y1 = ‖d1‖−β/2 h∗
1ĥ1s1 +

∞∑

i=2

‖di‖−β/2 h∗
1,i vi si + zk, (6)

The instantaneous SIR of the typical user is given by

SIRMRT =
P ‖d1‖−β

∣∣∣h∗
1ĥ1

∣∣∣
2

P
∑∞

i=2 ‖di‖−β
∣∣∣h∗

1,i vi

∣∣∣
2 . (7)
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With (7), we define the CCDF of the instantaneous SIR with
the target SIR γ as follows.

PMRT = P
[
SIRMRT > γ

]
. (8)

The ergodic spectral efficiency of single-user MRT is
defined as

RMRT = E
[
log2 (1 + SIRMRT)

]
. (9)

The expectation is taken over the multiple randomness includ-
ing fadings, locations of BSs and users, and the realizations
of a random codebook.

2) Multi-User ZF: In multi-user ZF, K = N ≥ 2 users
are selected for receiving information symbols. For multi-user
communication, the ZF beamformer is used. Since we only
consider the case where the number of active users is the
same as the number of BS antennas, the only objective of
the ZF beamformer is mitigating the IUI, but it is not used for
increasing the desired signal power. The more general case
K < N is also of interest, but we leave it as future work.
With the quantized CSI ĥk , k ∈ {1, . . . , K }, the precoding
vector vk is designed to satisfy

ĥ∗
k′ vk = 0, k ′ ∈ {1, . . . , K }\k. (10)

Since the obtained CSI is not perfect, i.e., ĥk �= h̃k , the IUI is
not perfectly removed. Considering this, the signal model (3)
is rewritten as

yk = ‖d1‖−β/2 h∗
k vksk +

K∑

k′=1,k′ �=k

‖d1‖−β h∗
k vk′sk′

+
∞∑

i=2

‖di‖−β/2 h∗
k,i Vi si + zk . (11)

Denoting the remaining inter-user interference and the inter-
cell interference as IU = P/K

∑K
k′=1,k′ �=k ‖d1‖−β ∣∣h∗

k vk′
∣∣2

and IC = P/K
∑∞

i=2 ‖di‖−β
∥∥∥h∗

k,i Vi

∥∥∥
2
, the instantaneous SIR

of the typical user k is givenx by

SIRk
ZF = P/K ‖d1‖−β ∣∣h∗

k vk
∣∣2

IU + IC
. (12)

By leveraging the instantaneous SIR, the CCDF of the
instantaneous SIR is defined as

Pk
ZF = P

[
SIRk

ZF > γ
]
. (13)

The ergodic spectral efficiency is also defined as

Rk
ZF = E

[
log2

(
1 + SIRk

ZF

)]
. (14)

E. Net Spectral Efficiency
We define the net spectral efficiency to measure the dif-

ference between downlink and uplink spectral efficiencies.
This is essential for evaluating the overall system gain, as the
downlink spectral efficiency improvement comes at the cost of
the uplink spectral efficiency spent by sending CSI feedback.
When a user sends B feedback bits, the net spectral efficiency
is defined as

RNet (B) = R (B)− B/Tc, (15)

where R (B) is the downlink ergodic spectral efficiency and
Tc is the channel coherence time, specifically defined as the

number of downlink symbols that experience the same channel
fading. From (15), the net spectral efficiency is penalized
by B/Tc when using B feedback bits, so that 1/Tc behaves
as a penalization factor. The reason for choosing 1/Tc as the
penalization factor is as follows. Rewriting (15) by multiply-
ing Tc on each side, we have

Tc RNet(B) = Tc R(B)− B. (16)

In (16), we find that the net spectral efficiency multiplied
with Tc consists of the sum downlink spectral efficiency cor-
responding to one channel coherence block, subtracted by the
number of feedback bits used for quantizing the corresponding
channel. From this observation, the net spectral efficiency (15)
measures the normalized net gain for one channel coherence
block when using B feedback bits. In this case, when Tc is
large, the number of feedback bits should be increased since
the inaccuracy of the CSIT can cause a significant effect
to a large number of downlink symbols. We also note that
this interpretation was also adopted in [15] and [16]. In this
paper, we assume Tc > 100, which means that more than
100 downlink symbols experience the same channel fading.

III. SINGLE-USER MAXIMUM RATIO TRANSMISSION

In this section, we analyze the CCDF of the instantaneous
SIR and the ergodic spectral efficiency for MRT. Based on
the derived expressions, we obtain a lower bound on the
optimum number of feedback bits that maximizes the net
spectral efficiency RNet(B).

A. SIR CCDF Characterization

We first attempt to derive the CCDF of the instantaneous
SIR as an integral form. Theorem 1 is presented for the main
result of this subsection.

Theorem 1: When the number of feedback bits is B, the
CCDF of the instantaneous SIR of single-user MRT, defined
in (8), is

P
[
SIRMRT > γ

] =
N−1∑

m=0

γm

m! (−1)m
∂mLI/ cos2 θ1

(s)

∂sm

∣∣∣∣
s=γ

,

(17)

where I = ‖d1‖β∑∞
i=2 ‖di‖−β

∣∣∣h∗
1,i Vi

∣∣∣
2
, cos2θ1 =

∣∣∣h̃1ĥ1

∣∣∣
2

and LI/ cos2 θ1
(s) is the Laplace transform of the random

variable I/ cos2 θ1, which is given by

LI/ cos2 θ1
(s)

=
∫ 2

− B
N−1

0

β − 2

β − 2 + 2 s
1−x · 2 F1

(
1, −2+β

β , 2 − 2
β ,− s

1−x

)

· 2B(N − 1)x N−2 dx . (18)

2 F1 (·, ·, ·, ·) is the Gauss-hypergeometric function defined as

2 F1 (a, b, c, z) = �(c)

�(b)�(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tz)a
dt .

(19)
Proof: See Appendix A. �
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The obtained CCDF of the instantaneous SIR expression
contains the relevant system parameters, e.g., the number of
BS antennas N , the pathloss exponent β, and the number of
feedback bits B .

B. Ergodic Spectral Efficiency Characterization

Before deriving the ergodic spectral efficiency, we derive
Lemma 1 which provides the Laplace transform of the desired
channel gain in terms of the number of feedback bits B , and
refer Lemma 2 which presents an integral form of the ergodic
spectral efficiency.

Lemma 1: In single-user MRT, the Laplace transform of the

desired channel gain
∣∣∣h∗

1ĥ1

∣∣∣
2

is

E

[
e
−s
∣∣∣h∗

1ĥ1

∣∣∣
2
]

=
(

1

1 + s

)⎛

⎝ 1

1 + s
(

1 − 2− B
N−1

)

⎞

⎠
N−1

.

(20)
Proof: From the definition of the Laplace transform,

E

[
e
−s
∣∣∣h∗

1ĥ1

∣∣∣
2
]

= E

[
e
−s‖h1‖2

∣∣∣h̃∗
1 ĥ1

∣∣∣
2
]

= E

[
e−s‖h1‖2 cos2 θ1

]

(a)= Ecos θ1

[(
1

1 + s cos2 θ1

)N
]

= Esin θ1

⎡

⎣
(

1

1 + s
(
1 − sin2 θ1

)
)N
⎤

⎦

(b)=
(

1

1 + s

)⎛

⎝ 1

1 + s
(

1 − 2− B
N−1

)

⎞

⎠
N−1

,

(21)

where (a) follows from ‖h1‖2 ∼ χ2
2N , and (b) follows (5). �

Notice that when random beamforming is used, which
requires no CSI feedback, the desired channel gain
H RB

1 = ∣∣h∗
1v1
∣∣2 is distributed as Chi-squared with degrees of

freedom two. The corresponding Laplace transform, therefore,
is E

[
e−s HRB

1

]
= 1

1+s . Whereas, when perfect CSIT is used for

MRT, the desired channel power denoted as H CSIT
1 = ∣∣h∗

1v1
∣∣2

is distributed as Chi-squared with 2N degrees of freedom;
so its Laplace transform is E

[
e−s HCSIT

1
] = ( 1

1+s

)N . As a result,
we confirm that the Laplace transform of the desired channel
power with limited CSI feedback is lower and upper bounded
by the two Laplace transforms, namely,

1

1 + s
≥
(

1

1 + s

)⎛

⎝ 1

1 + s
(

1 − 2− B
N−1

)

⎞

⎠
N−1

≥
(

1

1 + s

)N

(22)

for all s ≥ 0, B ≥ 1, and some N ≥ 1. This relationship
clearly exhibits that the MRT gain with limited feedback
is larger than random beamforming gain from a Laplace
transform perspective. For example, the additional gain of
MRT with limited CSI feedback compared to random beam-

forming is
(

1/1 + s
(

1 − 2− B
N−1

))N−1
by using B feedback

bits. Further, we show that the Laplace transform of MRT with
limited feedback converges to that of MRT with perfect CSIT
as B goes infinity.

Next, Lemma 2 is derived to give an integral form of the
ergodic spectral efficiency.

Lemma 2 ([36], Lemma 1): Let x1, . . . , xN , y1, . . . , yM be
arbitrary non-negative random variables. Then

E

[
ln

(
1 +

∑N
n=1 xn∑M

m=1 ym + 1

)]

=
∫ ∞

0

My (z)− Mx,y (z)

z
exp (−z) dz, (23)

where My (z) = E
[
e−z

∑M
m=1 ym

]
and Mx,y (z) =

E
[
e
−z
(∑N

n=1 xn+∑M
m=1 ym

)]
.

Proof: See Lemma 1 in the reference [36]. �
Now, we obtain the ergodic spectral efficiency for

single-user MRT in an integral form.
Theorem 2: The ergodic spectral efficiency of the

single-user MRT with B bits feedback is

E
[
log2 (1 + SIRMRT)

]

= log2 e
∫ ∞

0

1

z

⎛
⎜⎝1−

(
1

1 + z

)⎛

⎝ 1

1 + z
(

1 − 2− B
N−1

)

⎞

⎠
N−1
⎞
⎟⎠

·

⎛

⎜⎜⎝
1

1 + 2z · 2 F1

(
1,−2+β

β ,2− 2
β ,−z

)

β−2

⎞

⎟⎟⎠ dz. (24)

Proof: From Lemma 2, we have

E
[
log2 (1 + SIRMRT)

]

= log2 e
∫ ∞

0

1

z
(1 − MS (z))MI (z) dz, (25)

where MS (z) = E
[
e−z|h∗

1v1|2]
and MI (z) =

E
[
e
−z‖d1‖β∑∞

i=2‖di ‖−β
∣∣∣h∗

1,i Vi

∣∣∣
2]

. Since MS (z) is obtained
in Lemma 1, we calculate MI (z). By following the same
step as (51), we have

E

[
e
−z‖d1‖β∑∞

i=2‖di ‖−β
∣∣∣h∗

1,i Vi

∣∣∣
2
]

= β − 2

β − 2 + 2z · 2 F1

(
1, −2+β

β , 2 − 2
β ,−z

) . (26)

Plugging MS (z) and MI (z) into (25), the proof is
completed. �
When the number of feedback bits B , the number of
antenna N , and the pathloss exponent β are given, we are able
to obtain the ergodic spectral efficiency for single-user MRT
by calculating (24) numerically. The verification of Theorem 2
will be provided in Section V.

While Theorem 2 provides the exact ergodic spectral effi-
ciency, it is not easy to see the benefit of increasing B to the
ergodic spectral efficiency since the characterization is in an
integral form. To resolve this, we provide a lower bound on
the ergodic spectral efficiency in the following corollary.
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Corollary 1: The ergodic spectral efficiency of single-user
MRT is lower bounded by

E
[
log2 (1 + SIRMRT)

]

≥ log2

(
1 +

(
1 − 2− B

N−1

) exp (ψ(N))

2/(β − 2)

)
, (27)

where ψ(·) is the digamma function defined as

ψ(x) =
∫ ∞

0

(
e−t

t
− e−xt

1 − e−t

)
dt . (28)

Proof: See Appendix B. �
Corollary 1 reveals the effect of the feedback bits in a

way that is easier to understand compared with Theorem 2.
Intuitively, increasing the number of feedback bits B improves
the SIR term by

(
1 − 2− B

N−1

)
in the spectral efficiency (9).

C. Lower Bound on the Optimum Number of Feedback Bits

Now we derive a lower bound on the number of feedback
bits B�MRT that maximizes the net spectral efficiency defined
in (15).

Theorem 3: In single-user MRT, the number of feedback
bits B�MRT that maximizes the net spectral efficiency is lower
bounded by

B�MRT ≥ B�L,MRT

= (N − 1) log2

(
(β − 2) N + (β − 2)Tc

(β − 2) N + β

)
. (29)

Proof: See Appendix C. �
The verification of the obtained analytical lower bound will

be provided in Section V.
Remark 1: In this paper, we use the SCVQ technique,

which provides an upper bound performance over all channel
codebooks [5]. Conversely, the feedback bits obtained under
the SCVQ assumption indicates a general lower bound on
cases of applying other practical channel codebooks. The
reason is that, when using a practical codebook, more feedback
bits are required to have the same performance with the
SCVQ assumption as the SCVQ assumption gives an upper
bound performance. For this reason, the obtained lower bound
B�L,MRT serves as an actual lower bound for any quantization
codebook.

One important observation in Theorem 3 is that the lower
bound B�L,MRT is not a function of λ. This agrees with the
result of [2], which revealed that the SIR of the cellular
network modeled by a homogenous PPP is independent to λ.
Since the ergodic spectral efficiency is a function of the SIR,
it is also independent to λ, which leads to the result that
B�L,MRT is independent to λ.

Next, we find an intuitive approximation of B�L,MRT when
Tc � 1 in the following corollary.

Corollary 2: When N, β are given and Tc is large enough,
a lower bound on the optimum number of feedback bits,
denoted as B�MRT, is approximately

B�MRT ≥ B�L,MRT ≈ (N − 1) log2 (Tc). (30)
Proof: From Theorem 3, a lower bound B�L is

B�MRT ≥ B�L,MRT = (N − 1) log2

(
(β − 2) N + (β − 2)Tc

(β − 2) N + β

)
.

(31)

When Tc � 1, we have the following approximation.

(N − 1) log2

(
(β − 2) N + (β − 2)Tc

(β − 2) N + β

)

(a)≈ (N − 1) log2

(
(β − 2)Tc

(β − 2) N + β

)

= (N − 1) log2 (Tc)+ (N − 1) log2

(
(β − 2)

(β − 2) N + β

)

(b)≈ (N − 1) log2 (Tc) , (32)

where (a) comes from Tc � (β − 2)N , and (b) comes from
log2 (Tc) � log2

(
(β−2)

(β−2)N+β
)

. This completes the proof. �
From Corollary 2, we observe that the optimum number

of feedback bits scales linearly with the number of antennas
and scales logarithmically with the channel coherence time.
As mentioned before, B�MRT is not a function of instantaneous
SIR, so it provides an appropriate channel codebook size
which is not changed depending on short-term channel fading
or even long-term pathloss.

IV. MULTI-USER ZERO FORCING

In this section, we characterize the CCDF of the instanta-
neous SIR and the ergodic spectral efficiency for multi-user ZF
with the feedback bits. After that, as in the previous section,
we derive a lower bound on the optimum number of feedback
bits B�ZF that maximizes the net spectral efficiency.

A. SIR CCDF Characterization

Following the same steps with single-user MRT, we derive
the CCDF of the instantaneous SIR for ZF. For better under-
standing, we first present SIRk

ZF (12) as

SIRk
ZF

= P/K ‖d1‖−β ∣∣h∗
kvk
∣∣2

IU + IC

=
P
K

∣∣h∗
kvk
∣∣2

P
K

∑K
k′=1,k′ �=k

∣∣h∗
k vk′

∣∣2+ P
K ‖d1‖β∑∞

i=2 ‖di‖−β
∥∥∥h∗

k,i Vi

∥∥∥
2

(a)= ‖hk‖2 β (1, N − 1)
( ‖hk‖2 sin2θk

∑K
k′=1,k′ �=k β (1, N − 2)

+ ‖d1‖β∑∞
i=2 ‖di‖−β

∥∥∥h∗
k,i Vi

∥∥∥
2

) , (33)

where (a) follows (21) in [4]. In the above, β (1,M) is a Beta
random variable that follows Beta (1,M). Now, Lemma 3 is
presented for the distribution of a product of a Gamma random
variable and a Beta random variable.

Lemma 3: Let G and B be random variables that follow
the Gamma distribution � (M, θ) and the Beta distribution
Beta (1,M − 1), respectively. Then, H = G B is an exponen-
tial random variable with mean λ = 1/θ .

Proof: See [37, Th. 1]. �
Leveraging Lemma 3, Theorem 4 gives the CCDF of

the instantaneous SIR of multi-user ZF. One should note
that we assume independence between the desired signal
and the IUI terms for analytical tractability. This assumption
was also used in [23] and shown to be reasonable. The
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verification provided in the next section also shows that the
results under this assumption matches well with the simulation
results.

Theorem 4: The CCDF of the instantaneous SIR for
multi-user ZF with B bits feedback is

P

[
SIRk

ZF > γ
]

=
(

1

1 + γ 2− B
N−1

)N−1
1

2 F1

(
N,− 2

β , 1 − 2
β ,−γ

) . (34)

Proof: See Appendix D. �
In Theorem 4, it is clear that the CCDF of the instan-

taneous SIR of multi-user ZF consists of two separate
terms, representing the Laplace transforms of IUI and ICI,
respectively.

B. Ergodic Spectral Efficiency Characterization

Theorem 5: The ergodic spectral efficiency of the multi-user
ZF transmission with B bits feedback is

E

[
log2

(
1 + SIRk

MU

)]

= log2 e
∫ ∞

0

(
1

1 + z

)(
1

1 + z2− B
N−1

)N−1

·
⎛

⎝ 1

2 F1

(
N,− 2

β , 1 − 2
β ,−z

)

⎞

⎠ dz. (35)

Proof: The proof is similar to that of the single-user case.
We start from Lemma 2.

E

[
log2

(
1 + SIRk

MU

)]

= log2 e
∫ ∞

0

1

z
(1 − MS (z))MI (z) dz, (36)

where MS (z) = E

[
e−z|h∗

k vk|2
]

and

MI (z)

= E

[
e−z(IU+IC)

]

= E

⎡

⎣e
−z

(∑K
k′=1,k′ �=k |h∗

k vk′ |2+‖d1‖β∑∞
i=2‖di ‖−β

∥∥∥h∗
k,i Vi

∥∥∥
2
)⎤

⎦

= LIU (z)LIC (z). (37)

As revealed in Lemma 3,
∣∣h∗

k vk
∣∣2 = ‖hk‖2 β (1, N − 1) ∼

� (1, 1) so we have the Laplace transform MS (z) =
1/ (1 + z). Plugging the Laplace transform of the IUI and
ICI obtained in (69) and (70) into MI (z), we complete the
proof. �

The verification for Theorem 5 will be provided in
Section V. We also provide a lower bound on the ergodic
spectral efficiency of ZF in the following corollary.

Corollary 3: The ergodic spectral efficiency of the multi-
user ZF with B bits feedback is lower bounded by

E

[
log2

(
1 + SIRk

ZF

)]
≥ log2

⎛

⎝1 + exp(ψ(1))

(N − 1)2− B
N−1 + 2N

β−2

⎞

⎠.

(38)

Proof: By using the lower bound (54), we have

E

[
log2

(
1 + SIRk

ZF

)]

≥ log2

(
1 +

(a)︷ ︸︸ ︷
exp
(
E

[
ln
(
‖hk‖2 β (1, N − 1)

)])

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

⎡

⎣‖hk‖2 sin2θk

K∑

k′=1,k′ �=k

β (1, N − 2)

⎤

⎦

︸ ︷︷ ︸
(b)

+ E

[
‖d1‖β

∞∑

i=2

‖di‖−β ∥∥h∗
k,i Vi

∥∥2

]

︸ ︷︷ ︸
(c)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

)
,

(39)

By leveraging the distribution obtained in Lemma 3, expecta-
tions in the log function are calculated as (a) = exp (ψ(1)),
(b) = (N − 1)2− B

N−1 , and (c) = 2N
β−2 . Combining the

calculation results completes the proof. �
In Corollary 3, it is well observed that increasing

the feedback bits B boosts the ergodic spectral effi-
ciency by mitigating the IUI in inverse power scale, i.e.,
2− B

N−1 .

C. Approximate Lower Bound on the Optimum
Number of Feedback Bits

In this subsection, we derive an approximate lower bound
on the optimum number of feedback bits that works for a
particular region of Tc, specifically Tc � 1. Later, we numeri-
cally show that the gap between the derived approximation and
the numerically obtained optimum feedback bits is tight in our
interest range of Tc. Before the derivation, we first provide the
following lemma for obtaining a lower bound on the Laplace
transform of the ICI.

Lemma 4: The Laplace transform of the ICI is lower
bounded as follows.

LIC (s) = 1

2 F1

(
N,− 2

β , 1 − 2
β ,−s

)

≥ 1

1 + s
2
β 2
β N

2
β

(
−�(− 2

β )
) . (40)
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Proof: Rewriting LIC (s), we have

1

2 F1

(
N,− 2

β , 1 − 2
β ,−s

)

= 1

1 +
(

2
∫∞

1

(
1 −

(
1

1+st−β
)N
)

tdt

)

≥ 1

1 +
(

2
∫∞

0

(
1 −

(
1

1+st−β
)N
)

tdt

)

(a)≥ 1

1 + (2 ∫∞
0

(
1 − e−s Nt−β ) tdt

)

(b)= 1

1 +
(

2
β s

2
β N

2
β
∫∞

0

(
1 − e−u

)
u−1− 2

β du
)

= 1

1 + s
2
β 2
β N

2
β

(
−�(− 2

β )
) , (41)

where (a) follows 1/(1 + st−β) ≥ e−st−β , thereby

1 −
(

1

1 + st−β

)N

≤ 1 − e−s Nt−β , (42)

and (b) comes from variable change s Nt−β = u. This
completes the proof. �

By leveraging Lemma 4, we derive an approximate lower
bound in the following theorem.

Theorem 6: As Tc � 1, a lower bound on the optimum
feedback bits is approximated as

B�ZF ≥ B�L,ZF ≈ B̃�L,ZF

= (N − 1) log2

⎛

⎝
β�
(

1 − 2
β

)
Tc

2N
(
−�(− 2

β )
)

⎞

⎠

β
2

. (43)

Proof: See Appendix E. �
The verification for Theorem 6 will be provided

in Section V.
Next, to find an intuitive form of B̃�L,ZF, we more approxi-

mate B̃�L,ZF in the following corollary,
Corollary 4: For Tc � 1, an approximate lower bound

on the optimum feedback bits, denoted as B̃�L,ZF, is further
approximated as

B�ZF ≥ B�L,ZF ≈ B̃�L,ZF ≈ (N − 1)
β

2
log2 (Tc) . (44)

Proof: The proof is similar to that of Corollary 2. When
Tc � 1, we have the following approximation.

B̃�L,ZF

= (N − 1) log2

⎛

⎝
β�
(

1 − 2
β

)
Tc

2N
(
−�(− 2

β )
)

⎞

⎠

β
2

= (N − 1) log2 (Tc)
β
2 +(N − 1) log2

⎛

⎝
β�
(

1− 2
β

)

2N
(
−�

(
− 2
β

))

⎞

⎠

β
2

(a)≈ (N − 1) log2 (Tc)
β
2 , (45)

where (a) comes from that

(N − 1) log2 (Tc)
β
2 � (N − 1) log2

⎛

⎝
β�
(

1 − 2
β

)

2N
(
−�

(
− 2
β

))

⎞

⎠

β
2

(46)

when Tc is large enough. This completes the proof. �
Similar to single-user MRT, B̃�L,ZF is not a function of

instantaneous SIR since it averages over all the randomness
that affects the SIR. The different feature from single-user
MRT is that the optimal number of feedback bits increases
with the pathloss exponent linearly. A reasonable explanation
for this observation can be found in the definition of the net
spectral efficiency. Considering the net spectral efficiency, a
major factor that determines the optimum number of feedback
bits is the feedback efficiency, which measures how much
downlink ergodic spectral efficiency improves when increasing
a small number of feedback bits. When the pathloss exponent
is small, the typical user has a large amount of the ICI,
therefore the operating SIR is chiefly determined by the
dominant ICI. In this case, the feedback efficiency is likely to
be low since the downlink spectral efficiency only marginally
improves even when mitigating the IUI by increasing the
number of feedback bits. For this reason, the optimum number
of feedback bits is small. In the opposite case, if the pathloss
exponent is large, the typical user has less amount of ICI.
Then, the IUI mainly determines the operating SIR. When
the IUI decreases by increasing the number of feedback bits,
the downlink spectral efficiency would improve dramatically
compared to the case of a small pathloss exponent. As a result,
the optimum number of feedback bits is large.

On the contrary, in single-user MRT, the feedback informa-
tion is used to boost up the desired signal power, so that the
number of feedback bits B is only related to the desired signal
term while not affecting the interference term. For this reason,
normalizing the SIR (7) by the desired signal’s pathloss allows
us to represent the SIR as the ratio between a function of B
and a function of β. We write it as

RMRT = log2

(
1 + S(B)

I (β)

)
. (47)

Then, for large Tc, we approximate the above as

log2

(
1 + S(B)

I (β)

)
(a)≈ log2

(
S(B)

I (β)

)

= log2(S(B))− log2(I (β)). (48)

The high SIR assumption (a) is justified as follows: for
large Tc, using many feedback bits is encouraged, so the
desired signal power is relatively high compared to the inter-
cell interference. When differentiating (48) with respect to B ,
the β-related term vanishes, thereby the feedback efficiency
is independent of β, and the optimum feedback rate is also
independent of β.

V. NUMERICAL COMPARISONS

In this section, we verify the obtained analytical expressions
by comparing to simulation results. We assume that the BSs
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Fig. 1. Single-user MRT ergodic spectral efficiency comparison vs. the
number of feedback bits sharing both analysis with SCVQ and simulation
with RVQ. It is assumed that λ = 10−5/π and β = 4.

Fig. 2. Illustration for verfifying an analytical lower bound B�L,MRT by
comparing the exact B�MRT obtained numerically. It is assumed that β = 4.

are distributed as a homogeneous PPP with λ = 10−5/π and
that the pathloss exponent β = 4. As a channel quantization
method, we use RVQ, which serves a lower bound perfor-
mance on the limited feedback strategy. We assume Rayleigh
fading, where each channel coefficient is drawn from IID
complex Gaussian random variables. The number of iterations
is 5000.

First, we verify the analytical results of single-user MRT.
Fig. 1 shows the comparison between Theorem 2 and the
simulation results. As observed in this figure, the performance
gap between SCVQ and RVQ is less than 1 bps/Hz, and
this gap becomes vanish as the number of used feedback
bits increases. Fig. 2 illustrates the gap between an analytical
lower bound B�L,MRT and the exact B�MRT obtained numerically.
We use B�L,MRT� to draw the analytical lower bound.
In the graph, the gap between numerically obtained
B�MRT and B�L,MRT is tight over the entire range of Tc, therefore
B�L,MRT is a good indicator of B�MRT.

Next, we provide verification of the analytical results
of multi-user ZF. As shown in Fig. 3, the gap between
the analysis and simulation is less than 1bps/Hz, and
the gap becomes smaller as the number of feedback bits
increases. Fig. 4 shows the comparison between B�ZF obtained

Fig. 3. Multi-user ZF ergodic spectral efficiency comparison vs. the number
of feedback bits sharing both analysis with SCVQ and simulation with RVQ.
It is assumed that λ = 10−5/π and β = 4.

Fig. 4. Illustration for verfifying an analytical lower bound B̃�L,ZF by
comparing the exact B�ZF obtained numerically. It is assumed that β = 4.

Fig. 5. Sum ergodic spectral efficiency comparison between single-user MRT
and multi-user ZF. In each method, the feedback bits are provided as B�L,MRT
and B̃�L,ZF, respectively. It is assumed that β = 4.

numerically and B̃�L,ZF derived in Theorem 6. When drawing

the figure, we use B̃�L,ZF�. As observed in the figure, the gap
between the optimum feedback bits B�ZF and the analytical
approximation B̃�L,ZF is small over all range of Tc.

Finally, we numerically compare the ergodic spectral effi-
ciency of single-user MRT and multi-user ZF when the number
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of feedback bits are provided as B�L,MRT and B̃�L,ZF, respec-
tively. Considering the net spectral efficiency, each trans-
mission method achieves their maximum performance when
using B�L,MRT and B̃�L,ZF. In Fig. 5, it is observed that there
exists a threshold of Tc that separates the whole region into
two regions. In each region, called the MRT region and the ZF
region, the maximum performance of one transmission method
is better than that of the other transmission method. For
instance, as Tc increases, the sum ergodic spectral efficiency
of multi-user ZF dominates that of single-user MRT. From this
observation, we can conclude that if Tc larger than a particular
threshold, using multi-user ZF for extracting the multiplexing
gain is more beneficial than single-user MRT for the array
gain.

VI. CONCLUSIONS

In this paper, we derived a tight lower bound on the
optimum number of feedback bits B�L,MRT for single-user MRT
and B̃�L,ZF for multi-user ZF when deployed in a cellular net-
work. The main results are summarized as B�L,MRT ≈ (N − 1)

log2 (Tc) and B̃�L,ZF ≈ (N − 1) β2 log2 (Tc). In both cases, the
optimum number of bits scales linearly with the number of
antennas and logarithmically with the length of the coherence
block. The multi-user ZF approach requires typically more
feedback (usually β > 2) since higher resolution of CSIT is
required to mitigate the limited feedback-induced interference.
These are new findings, compared to prior analyses of limited
feedback. For example, in [11], assuming multi-user ZF, it
was shown that the number of feedback bits should scale as
(N − 1) log2 (SNR) to achieve a constant performance gap to
the perfect CSIT case. This result holds under the assumption
of a deterministic user location by treating the ICI as additive
Gaussian noise. An implication of the result of [11] is that the
channel codebook size depends on the users’ locations, which
requires adaptive codebooks to implement unlike our result.
In this sense, our results propose more general channel code-
book size than [11] by averaging the effects of not only short-
term channel fading but also long-term pathloss determined
by a user location. However, one should note that stochastic
averaging over the SIR is not the reason that Tc appears in the
obtained expressions of B�L,MRT or B̃�L,ZF. The main reason
for this is our particular selection of the uplink penalization
factor as 1/Tc. If a different penalty function is considered,
then the results may change.

It is also worthwhile to compare with other work that used
limited feedback and considered ICI. In [20], [22], and [25],
feedback bit allocation methods were proposed for multi-user
multi-cell coordinated beamforming under the assumption of
deterministic BSs locations. The core idea is to allocate the
feedback bits to cooperative BSs in proportion to their received
power. The rationale is that the limited feedback achieves
high efficiency by assigning more feedback bits to BSs whose
signal power is relatively strong. For this reason, when the
pathloss exponent increases, the fraction of feedback dedicated
to the primary serving (the closest) BS increases since the
relative signal power coming from the far distance diminishes
quickly. Our result assumes random users and BSs locations,

but we observe a similar relationship on the pathloss exponent
in Corollary 4. When the pathloss exponent increases, the
ICI power decays drastically, and the IUI power becomes
relatively strong. This causes more feedback bits to be needed
for managing the IUI.

There are many interesting directions left as future work.
One possible direction is to consider CQI feedback. The
acquired CQI can be exploited for sophisticated user schedul-
ing, creating a link between the user scheduling and the used
feedback bits. Another direction is assuming a multi-antenna
heterogeneous network with limited feedback. Since it was
shown that the SIR coverage probability is related to the
BS densities [38] in heterogeneous networks, the optimum
number of feedback bits will likely relate to the BS densities.
It would be also interesting to consider a cooperative multi-
antenna cellular network with finite feedback. In a cooper-
ative network, the required amount of limited feedback is
a function of the BS cluster size [39]. Another interesting
direction is to consider different sources of CSIT inaccuracy.
For example, the effect of feedback delay [40], [41] or channel
estimation error [42] can be characterized with a similar
performance metric as in this paper. In addition to that,
generalizing to allow other numbers of users, e.g. 1 < K < N ,
and more sophisticated beamforming strategies are also of
interest.

APPENDIX A
PROOF OF THEOREM 1

We start the proof by rewriting the CCDF of the instanta-
neous SIR of the single-user case (8)

P
[
SIRSU > γ

]

= P

[
‖h1‖2

∣∣∣h̃∗
1ĥ1

∣∣∣
2
> γ ‖d1‖β

∞∑

i=2

‖di‖−β ∣∣h∗
1,i vi

∣∣2
]

(a)= P

[
‖h1‖2 > γ

1

cos2 θ1
‖d1‖β

∞∑

i=2

‖di‖−β ∣∣h∗
1,i vi

∣∣2
]
,

(49)

where (a) follows sin2θ1 = 1 −
∣∣∣h̃∗

1ĥ1

∣∣∣
2
. Define I =

‖d1‖β∑∞
i=2 ‖di‖−β

∣∣∣h∗
1,i vi

∣∣∣
2

and LX (s) = EX
[
e−s X

]
. Then,

we rewrite (49) as

P

[
‖h1‖2 >

Iγ

cos2 θ1

]

(a)= E

[
E

[
N−1∑

m=0

γm

m!
I m

cos2m θ1
exp

(
− Iγ

cos2 θ1

)∣∣∣∣∣ cos2 θ1, I

]]

(b)=
N−1∑

m=0

γm

m! (−1)m
∂mLI/ cos2 θ1

(s)

∂sm

∣∣∣∣
s=γ

, (50)

where (a) follows that ‖h1‖2 follows the Chi-squared
distribution with 2N degrees of freedom and (b) fol-
lows the derivative property of the Laplace transform,
which is E

[
Xme−s X

] = (−1)m∂mLX (s)/∂sm . Now we
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obtain LI/ cos2 θ1
(s).

LI/ cos2 θ1
(s)

= E

[
e
− s

cos2 θ1
‖d1‖β∑∞

i=2‖di‖−β
∣∣∣h∗

1,i vi

∣∣∣
2
]
, z = s

cos2 θ1
,

(a)= ER,cos2 θ1

[
E�\B(0,R)

[ ∏

di ∈�\B(0,R)

1

1 + z Rβ ‖di‖−β

∣∣∣∣∣∣
‖d1‖ = R, cos2 θ1

]]

(b)= ER,cos2 θ1

[
exp

(
−2πλ

∫ ∞

R

z Rβr−β+1

1 + z Rβr−β dr

)]

= ER,cos2 θ1

⎡

⎣exp

⎛

⎝−2πλR2z
2 F1

(
1, −2+β

β , 2 − 2
β ,−z

)

β − 2

⎞

⎠

⎤

⎦

(c)= Ecos2 θ1

⎡

⎣ β − 2

β − 2 + 2z · 2 F1

(
1, −2+β

β , 2 − 2
β ,−z

)

⎤

⎦

= Ecos2 θ1

[

β − 2

β − 2 + 2 s
cos2 θ1

· 2 F1

(
1, −2+β

β , 2 − 2
β ,− s

cos2 θ1

)
]
, (51)

where (a) follows that
∣∣h∗

1,i vi
∣∣2 = Hi ∼ exp (1) due to the

random beamforming effect, (b) follows the probability gen-
erating functional (PGFL) of PPP, and (c) takes the expectation
over R from its probability density function (PDF)

f‖d1‖(r) = 2λπre−λπr2
. (52)

By leveraging the PDF of sin2 θ1, which is obtained by
differentiating the CDF of sin2 θ1 (5), we finally get an integral
form of LI/ cos2 θ1

(s) as follows.

LI/ cos2 θ1
(s)

= Ecos2 θ1

⎡

⎣ β−2

β−2 + 2 s
cos2 θ1

·2 F1

(
1,−2+β

β ,2 − 2
β ,− s

cos2 θ1

)

⎤

⎦

= Esin2 θ1[
β−2

β−2 + 2 s
1−sin2 θ1

·2 F1

(
1, −2+β

β , 2 − 2
β ,− s

1−sin2 θ1

)
]

=
∫ 2

− B
N−1

0

(β − 2) · 2B(N − 1)x N−2

β − 2 + 2 s
1−x · 2 F1

(
1, −2+β

β , 2 − 2
β ,− s

1−x

)dx .

(53)

�

APPENDIX B
PROOF OF COROLLARY 1

The proof relies on [43, Lemma 2], which provides the
following lower bound.

log2

(
1 + eln E[X ]

E[Y ]

)
≤ log2

(
1 + X

Y

)
, (54)

where X and Y are non-negative random variables. By using
this, we have

E
[
log2 (1 + SIRMRT)

]

= E

⎡

⎢⎣log2

⎛

⎜⎝1 + ‖h1‖2 cos2 θ1

‖d1‖β∑∞
i=2 ‖di‖−β

∣∣∣h∗
1,i vi

∣∣∣
2

⎞

⎟⎠

⎤

⎥⎦

≥ log2

⎛

⎜⎜⎝1 + exp
(
E
[
ln(‖h1‖2 cos2 θ1)

])

E

[
‖d1‖β∑∞

i=2 ‖di‖−β
∣∣∣h∗

1,i vi

∣∣∣
2
]

⎞

⎟⎟⎠ . (55)

Calculating the numerator inside the log function in (55),
we obtain

E

[
ln(‖h1‖2 cos2 θ1)

]
= E

[
ln(‖h1‖2)

]

︸ ︷︷ ︸
(a)

+ E

[
ln
(

cos2 θ1

)]

︸ ︷︷ ︸
(b)

.

(56)

Since ‖h1‖2 follows the Chi-square distribution with degrees
of freedom 2N , (a) = ψ(N) where ψ(·) is the digamma
function defined as

ψ(x) =
∫ ∞

0

e−t

t
− e−xt

1 − e−t
dt . (57)

Furthermore, from (5), we obtain

E

[
ln
(

cos2 θ1

)]

= 2B
(

B
(

2− B
N−1 , N, 0

)
+ 2−B ln

(
1 − 2− B

N−1

))
, (58)

where B (·, ·, ·) is the incomplete Beta function defined as

B (z, a, b) =
∫ z

0
ta−1(1 − t)b−1dt . (59)

Since 2− B
N−1 < 1, B

(
2− B

N−1 , N, 0
)

≥ 0, therefore

(b) ≥ ln
(

1 − 2− B
N−1

)
. Calculating the denominator in (55),

we obtain E
[ ‖d1‖β∑∞

i=2 ‖di‖−β ∣∣h∗
1,i vi

∣∣2] = 2
β−2 . Plugging

the results of the calculation into (55), the following lower
bound is established.

E
[
log2 (1 + SIRMRT)

]

≥ log2

⎛

⎝1 +
exp

(
ψ(N) + ln

(
1 − 2− B

N−1

))

2/(β − 2)

⎞

⎠

= log2

(
1 +

(
1 − 2− B

N−1

) exp (ψ(N))

2/(β − 2)

)
. (60)

�
APPENDIX C

PROOF OF THEOREM 3
The optimum feedback bits B�MRT satisfies

B�MRT = arg max
B∈N∪0

(
E
[
log2 (1 + SIRMRT)

]− B/Tc
)
. (61)

Solving (61) requires NP-hard complexity since it is in a class
of integer programming. To resolve this, we first relax the
feasible field of B to the real number, i.e., B ∈ R. Later,
we can turn back to the original feasible field of B by B�.
After relaxation, the optimum feedback bits B�MRT satisfies the
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KKT condition of (61), which is given by

∂E
[
log2 (1 + SIRMRT)

]

∂B

∣∣∣∣∣
B=B�MRT

= 1/Tc. (62)

It is worthwhile to mention that ∂E
[
log2 (1 + SIRMRT)

]
/∂B

can be interpreted as the feedback efficiency, since it
means how much the ergodic spectral efficiency increases
when increasing small amount of feedback. Calculating
∂E
[
log2 (1 + SIRMRT)

]
/∂B, we have

∂E
[
log2 (1 + SIRMRT)

]

∂B

= 2− B
N−1

∫ ∞

0

β − 2

β − 2 + 2z · 2 F1

(
1, −2+β

β , 2 − 2
β ,−z

)

·
(

1

1 + z

)⎛

⎝ 1

1 + z
(

1 − 2− B
N−1

)

⎞

⎠
N

dz. (63)

After plugging (63) into ∂E
[
log2 (1 + SIRMRT)

]
/∂B,

solving (62) about B provides the optimum feedback
bits B�MRT. Finding a solution in (62) is not straightforward,
however, since (63) does not have a closed form expression.
For this reason, instead of directly solving (62), we rather
consider a lower bound on ∂E

[
log2 (1 + SIRMRT)

]
/∂B.

Denoting (·)LB as a lower bound on the corresponding term
inside the parenthesis, we consider the following problem in
place of (62).(

∂E
[
log2 (1 + SIRMRT)

]

∂B

)

LB

= 1/Tc. (64)

One important point here is that since ∂E[log2(1+SIRMRT)]
∂B is a

monotonically decreasing function of B , a solution of (64)
provides a lower bound on the optimum number of feedback
bits.

Now, we focus on obtaining
(
∂E[log2(1+SIRMRT)]

∂B

)

LB
. To do

this, we define the following random variables: I =
‖d1‖β∑∞

i=2 ‖di‖−β
∣∣∣h∗

1,i vi

∣∣∣
2
, E ∼ exp (1) ,G ∼ �

(
N,

1−2− B
N−1
)
, where � (·, ·) is the Gamma distribution. With sim-

ple calculations, the expectations of the defined random vari-
ables are E [I ] = 2

β−2 ,E [E] = 1,E [G] = N
(

1 − 2− B
N−1

)
.

Now we rewrite (63) with I, E , and G.

2− B
N−1

∫ ∞

0

β − 2

β − 2 + 2z · 2 F1

(
1, −2+β

β , 2 − 2
β ,−z

)

·
(

1

1 + z

)⎛

⎝ 1

1 + z
(

1 − 2− B
N−1

)

⎞

⎠
N

dz

= 2− B
N−1

∫ ∞

0
E

[
e−z I

]
E

[
e−zE

]
E

[
e−zG

]
dz

(a)≥ 2− B
N−1

∫ ∞

0
e−zE[I ]e−zE[E]e−zE[G]dz

(b)= 2− B
N−1

∫ ∞

0
e−z 2

β−2 e−ze
−zN

(
1−2

− B
N−1

)

dz

= 2− B
N−1

2
β−2 + 1 + N

(
1 − 2− B

N−1

) , (65)

where (a) follows Jensen’s inequality and (b) comes from the
expectations of the defined random variables I, E, and G.
Plugging (65) into

(
∂E[log2(1+SIRMRT)]

∂B

)

LB
in (64), we have

2− B
N−1

2
β−2 + 1 + N

(
1 − 2− B

N−1

) = 1/Tc, (66)

which has a solution

B�L,MRT = (N − 1) log2

(
(β − 2) N + (β − 2)Tc

(β − 2) N + β

)
. (67)

�
APPENDIX D

PROOF OF THEOREM 4

Before starting the proof, we denote Hi , i ∈ {1, . . . , K } as a
random variable that follows the exponential distribution with
unit mean. Then, by Lemma 3, the CCDF of the instantaneous
SIR is rewritten as

P

[
SIRk

ZF > γ
]

= P

⎡

⎢⎢⎢⎢⎢⎢⎣

‖hk‖2 β (1, N − 1)
( ‖hk‖2 sin2θk

∑K
k′=1,k′ �=k β (1, N − 2)

+ ‖d1‖β∑∞
i=2 ‖di‖−β

∥∥∥h∗
k,i Vi

∥∥∥
2

) > γ

⎤

⎥⎥⎥⎥⎥⎥⎦

(a)= P

⎡
⎢⎢⎢⎢⎢⎢⎣

Hk

( 2− B
N−1
∑K

k′=1,k′ �=k Hk′

+ ‖d1‖β∑∞
i=2 ‖di‖−β

∥∥∥h∗
k,i Vi

∥∥∥
2

) > γ

⎤
⎥⎥⎥⎥⎥⎥⎦

(b)= E

[
exp

(
− γ

(
2− B

N−1

K∑

k′=1,k′ �=k

Hk′

+ ‖d1‖β
∞∑

i=2

‖di‖−β ∥∥h∗
k,i Vi

∥∥2
))]

(c)= E

⎡

⎣exp

⎛

⎝−γ 2− B
N−1

K∑

k′=1,k′ �=k

Hk′

⎞

⎠

⎤

⎦

· E
[

exp

(
−γ ‖d1‖β

∞∑

i=2

‖di‖−β ∥∥h∗
k,i Vi

∥∥2

)]
, (68)

where (a) follows that ‖hk‖2 sin2θkβ (1, N − 2) has a distri-

bution of �(1, δ) with δ = 2− B
N−1 by [4, Lemma 1] and

Lemma 3, (b) follows that Hk is an exponential random
variable with unit mean, and (c) comes from the independence
between the IUI and ICI terms. Note that (68) is a multipli-
cation of the Laplace transforms of IUI and ICI. The Laplace
transform of the IUI is

LIU (s)
(a)=

K∏

k′=1k′ �=k

E

[
exp

(
−s2− B

N−1 Hk′
)]

(b)=
(

1

1 + s2− B
N−1

)N−1

, (69)
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where (a) comes from our assumption that each of IUI
term is independent and (b) follows the Laplace transform
of an exponential random variable with unit mean and the
assumption that N = K . The Laplace transform of the ICI is

LIC (s) = E

[
exp

(
−s ‖d1‖β

∞∑

i=2

‖di‖−β ∥∥h∗
k,i Vi

∥∥2

)]

(a)= ER

[
E�\B(0,R)

[ ∏

di∈�\B(0,R)

(
1

1 + s Rβ ‖di‖−β

)K
∣∣∣∣∣∣
‖d1‖ = R

]]

(b)= ER

[
exp

(
−2πλ

∫ ∞

R

(
1 −

(
1

1 + s Rβr−β

)K
)

rdr

)]

(c)= ER

[
exp

(
−2πλR2

∫ ∞

1

(
1 −

(
1

1 + st−β

)K
)

tdt

)]

(d)= 1

1 +
(

2
∫∞

1

(
1 −

(
1

1+st−β
)K
)

tdt

)

(e)= 1

2 F1

(
N,− 2

β , 1 − 2
β ,−s

) , (70)

where (a) follows
∥∥∥h∗

k,i Vi

∥∥∥
2

is a Chi-squared random variable

with 2K degrees of freedom, i.e., χ2
2K , (b) follows the PGFL

of PPP, (c) comes from the variable change t = R−1r ,
(d) follows the first-touch distribution of PPP (52), and (e)
comes from the variable change st−β = u and the assumption
that K = N . Plugging (69) and (70) into (68), we obtain

P

[
SIRk

ZF > γ
]

=
(

1

1 + γ 2− B
N−1

)N−1
1

2 F1

(
K ,− 2

β , 1 − 2
β ,−γ

) . (71)

�

APPENDIX E
PROOF OF THEOREM 6

Following the same logic in the proof of Theorem 3, instead
of finding an exact expression, we rather obtain a lower bound

on
∂E
[
log2

(
1+SIRk

ZF

)]

∂B assuming Tc → ∞ thereby B�ZF → ∞.

∂E
[
log2

(
1 + SIRk

ZF

)]

∂B

= 2− B
N−1

∫ ∞

0

(
z

1 + z

)(
1

1 + z2− B
N−1

)N

·
⎛

⎝ 1

2 F1

(
N,− 2

β , 1 − 2
β ,−z

)

⎞

⎠ dz

≥(a) 2− B
N−1

∫ ∞

0

(
z

1 + z

)
exp
(
−z N2− B

N−1

)

·
⎛

⎜⎝
1

1 + z
2
β 2
β N

2
β

(
−�(− 2

β )
)

⎞

⎟⎠ dz, (72)

where (a) follows Lemma 4 and the inequality of the exponen-
tial function 1/(1 + x) ≥ e−x for x > 0. We calculate (72) by
separating the integration range into [0,C) and [C,∞). For
C < ∞,

2− B
N−1

∫ C

0

(
z

1 + z

)
exp

(
−z N2− B

N−1

)

·
⎛
⎜⎝

1

1 + z
2
β 2
β N

2
β

(
−�(− 2

β )
)

⎞
⎟⎠ dz (73)

≤ 2− B
N−1

∫ C

0
exp

(
−z N2− B

N−1

)
⎛

⎜⎝
1

z
2
β 2
β N

2
β

(
−�(− 2

β )
)

⎞

⎟⎠ dz

= 2− B
N−1

(
�
(−2+β

β

)
− �

(−2+β
β , 2− B

N−1 C N
))

2
β N

2
β

(
−�

(
− 2
β

)) (
2− B

N−1 N
)1− 2

β

. (74)

Since B�ZF → ∞, 2− B
N−1 → 0 for our interest B . Then we

have

2− B
N−1

(
�
(−2+β

β

)
− �

(−2+β
β , 2− B

N−1 C N
))

2
β N

2
β

(
−�

(
− 2
β

)) (
2− B

N−1 N
)1− 2

β

→ 0. (75)

Since (73) > 0, (73) → 0 as 2− B
N−1 → 0. For this reason,

as 2− B
N−1 → 0, we have

2− B
N−1

∫ C

0

(
z

1 + z

)
exp
(
−z N2− B

N−1

)

·
⎛
⎜⎝

1

1 + z
2
β 2
β N

2
β

(
−�(− 2

β )
)

⎞
⎟⎠ dz

≈ 2− B
N−1

∫ C

0
exp

(
−z N2− B

N−1

)

·
⎛
⎜⎝

1

z
2
β 2
β N

2
β

(
−�(− 2

β )
)

⎞
⎟⎠ dz. (76)

Now we compute the integration over [C,∞) of (72). For
large enough C and z > C , we have z

1+z ≈ 1 and
1

1+z
2
β 2
β N

2
β
(
−�(− 2

β )
) ≈ 1

z
2
β 2
β N

2
β
(
−�(− 2

β )
) . By leveraging these

approximations, we have

2− B
N−1

∫ ∞

C

(
z

1 + z

)
exp

(
−z N2− B

N−1

)

·
⎛

⎜⎝
1

1 + z
2
β 2
β N

2
β

(
−�(− 2

β )
)

⎞

⎟⎠ dz

≈ 2− B
N−1

∫ ∞

C
exp
(
−z N2− B

N−1

)

·
⎛

⎜⎝
1

z
2
β 2
β N

2
β

(
−�(− 2

β )
)

⎞

⎟⎠ dz. (77)
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Combining (76) and (77), (72) is given as

∂E
[
log2

(
1 + SIRk

ZF

)]

∂B

≥ 2− B
N−1

∫ ∞

0
e

(
−zN2

− B
N−1

) ⎛

⎜⎝
1

z
2
β 2
β N

2
β

(
−�(− 2

β )
)

⎞

⎟⎠ dz

=
�
(

1 − 2
β

)

2
β N

(
−�(− 2

β )
)2−( 2

β )
B

N−1 . (78)

Now we consider the equation of (78) = 1/Tc, and it has a
solution at

B̃�L,ZF = (N − 1) log2

⎛

⎝
β�
(

1 − 2
β

)
Tc

2N
(
−�(− 2

β )
)

⎞

⎠

β
2

. (79)

�
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