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Abstract

Elevated O-GlcNAcylation is associated with disease states such as diabetes and cancer. O-

GlcNAc transferase (OGT) is elevated in multiple cancers and inhibition of this enzyme 

genetically or pharmacologically inhibits oncogenesis. Here we show that O-GlcNAcylation 

modulates lipid metabolism in cancer cells. OGT regulates expression of the master lipid regulator 

the transcription factor sterol regulatory element binding protein 1 (SREBP-1) and its 

transcriptional targets both in cancer and lipogenic tissue. OGT regulates SREBP-1 protein 

expression via AMP Activated protein kinase (AMPK). SREBP-1 is critical for OGT-mediated 

regulation of cell survival and of lipid synthesis, as overexpression of SREBP-1 rescues lipogenic 

defects associated with OGT suppression, and tumor growth in vitro and in vivo. These results 

unravel a previously unidentified link between O-GlcNAcylation, lipid metabolism and the 

regulation of SREBP-1 in cancer and suggests a crucial role for O-GlcNAc signaling in 

transducing nutritional state to regulate lipid metabolism.
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Increased glycolytic flux observed in cancer cells, termed the Warburg effect (1), feeds not 

only glycolysis but other glucose dependent pathways as well, such as the Pentose 

Phosphate Pathway (PPP) and the Hexosamine Biosynthetic Pathway (HBP). HBP diverts 
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fructose-6-phosphate from glycolysis to produce UDP-GlcNAc that acts as the amino sugar 

donor to O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) (2, 3). This 

enzyme is responsible for the addition of GlcNAc moieties to select serine and threonine 

residues of nuclear and cytosolic proteins involved in a wide variety of cellular functions. 

This reversible modification is analogous to phosphorylation (4) and cycles through addition 

by OGT and removal by the glycoside hydrolase O-GlcNAcase (OGA). O-GlcNAcylation 

can modulate a proteins function by altering stability, localization, protein-protein 

interaction, phosphorylation status, and/or DNA binding ability (5) and is known to occur on 

a variety of proteins associated with oncogenesis and tumor progression including c-Myc, 

AKT and NF-κB (6–8). Alterations in OGT and O-GlcNAc have been found to be 

associated with several pathologies such as diabetes, cardiovascular disease, 

neurodegeneration and more recently cancer (9, 10). Both O-GlcNAcylation and OGT levels 

are commonly increased in cancer and reduction of OGT and O-GlcNAcylation in cancer 

cells results in decreased growth and metastasis in vivo (11) (12) (13).

Increasing evidence indicates that cancer cells display specific alterations in pathways that 

drive lipogenesis to support membrane synthesis and generate signaling molecules required 

for rapid cell growth (14). Most normal adult tissues obtain lipids from the bloodstream in 

the form of dietary free fatty acids, however, cancer cells employ de novo lipogenesis (15). 

De-novo lipogenesis is a critical process to sustain growth and survival in cancer cells (14). 

This consists of activation and expression of enzymes involved in generating lipids, such as; 

fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and ATP-citrate lyase (ACLY) as 

well as a transcription factor responsible for regulating these enzymes, the sterol regulatory 

element binding protein (SREBP-1) (16). The SREBP-1c and SREBP-2 transcription factors 

are known to regulate many proteins involved in lipid and cholesterol synthesis, respectively, 

while the SREBP-1α isoform is an activator of all SREBP-responsive genes (17). SREBP 

family transcription factors are synthesized as inactive precursors that reside in the 

endoplasmic reticulum membrane and nuclear envelope. Upon decreases in sterol or lipid 

levels, (18) these proteins are bound by SREBP-cleavage activating protein (SCAP) and 

proteolytically cleaved generating an N-terminal region containing the basic helix-loop-

helix–leucine zipper for DNA binding (17). Mature SREBPs can then enter the nucleus and 

regulate target gene promoters. SREBP-1 overexpression has been found in many cancers 

including breast (19) (20) and targeting SREBP-1 in cancer cells resulted in significant cell 

death in vitro and slowed tumor growth in vivo (21) demonstrating its importance in 

contributing to cancer phenotypes and survival.

AMP- activated protein kinase (AMPK) is an important metabolic sensor that is implicated 

in cancer growth and survival (22). AMPK activation occurs in response to a variety of 

cellular stressors including low glucose and depletion of ATP levels. Downstream of AMPK, 

mTOR and other drivers of cellular growth are directly phosphorylated to inhibit their 

synthetic actions within cells to ration energy and substrates. AMPK directly regulates lipid 

metabolism in hepatic, muscle and adipose tissue through phosphorylation of SREBP-1 and 

ACC (23, 24). Its tumor suppressive role is well documented in a variety of cancers through 

its regulation of mTOR, ACC and inflammation (25); however a direct connection to 

SREBP-1 in cancer has not yet been established.
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Here, we demonstrate a connection between nutrient sensor O-GlcNAcylation, SREBP-1 

and lipid synthesis in cancer. Our results show that OGT and O-GlcNAcylation are required 

for lipid synthesis in breast cancer cells through the regulation of SREBP-1 in an AMPK-

dependent manner. OGTs regulation of cancer growth and survival requires lipids and 

SREBP-1 expression as restoring SREBP-1 expression in the context of OGT inhibition 

prevented cancer cell growth in vitro and restored tumor growth in vivo. Thus, O-

GlcNAcylation serves to link cancer cell nutritional status to lipid metabolism and cell 

growth via regulation of SREBP1.

Results

O-GlcNAcylation regulates lipid metabolism in breast cancer cells

To understand the impact of O-GlcNAcylation on cancer metabolism, global metabolomics 

analysis using liquid chromatography-mass spectrometry (LC-MS) was utilized to 

investigate the effect of OGT reduction on metabolites in triple-negative MDA-MB-231 

human breast cancer cells. MDA-MB-231 cells containing OGT RNAi for 48 hours (Fig. 

1A) demonstrated statistically significant (p<0.05) changes in 124 out of 301 metabolites 

examined when compared to control RNAi cells (Fig. S1, Supplementary Table 1). There 

were 35 biochemicals elevated while 89 reduced in OGT knockdown cancer cells compared 

to controls (Supplementary Table 1). KEGG pathway analysis identified a number of 

metabolic pathways that were significantly altered in cancer cells depleted of OGT. 

Reducing OGT in MDA-MB-231 cells elevated pathways associated with biosynthesis of 

alkaloids, reductive carboxylate cycle and TCA cycle while reducing metabolites associated 

with aminoacyl-tRNA biosynthesis, ABC transporters, biosynthesis of unsaturated fatty 

acids, pantothenate/CoA biosynthesis and fatty acid biosynthesis (Fig. 1B).

One of the largest changes in metabolites was in lipids. Of the lipid metabolites measured, 

43% significantly decreased following OGT inhibition, compared to decreases in 27% of the 

measured amino acids, decreases in 21% of the carbohydrate metabolites and 14% of 

nucleotides (Fig. 1C). Levels of free fatty acids, including the polyunsaturated fatty acid 

linoleate that cannot be generated by mammalian cells, decreased significantly in shOGT-

treated cells compared to control cells (Fig. S2). Similar to free fatty acids, several lysolipids 

and a number of long chain fatty acids were reduced in shOGT cells, as compared to control 

at 48 hrs (Fig. S2). In response to OGT inhibition, decreased free fatty acid pools may result 

in reduced phospholipid synthesis and/or increased fatty acid mobilization from 

phospholipids resulting in the observed decrease in lysolipids at 48 hrs. To confirm 

metabolomics profiling results, we measured free fatty acids in MDA-MB-231 cells and 

found a ~50% decrease in free fatty acid levels in OGT knockdown cells compared to 

control cells (Fig. 2A). We found a similar reduction of free fatty acid levels in the breast 

cancer cell lines MCF-7 (Fig. S3A, 3B) and SUM-159 (Fig. S4A, 4B) expressing OGT 

RNAi compared to control cells. In addition, cancer cells MDA-MB-231 (Fig. 2B) and 

MCF-7 (Fig. S3C) also contained lower levels of intracellular lipid droplets as measured by 

nile red staining (26). Conversely, overexpression of OGT in MCF-7 cells (Fig. 2C) 

significantly increased free fatty acid levels (Fig. 2D) and nile red staining (Fig. S2D) 

compared to control cells. Treatment of MDA-MB-231 cells with the OGT pharmacological 
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inhibitor Ac-5sGlcNAc also resulted in a significant decrease in free fatty acids (Fig. S5A) 

and lipid droplets (Fig. S5B). To determine if lipids contribute to OGT-mediated phenotypes 

on cell growth, we treated MDA-MB-231 cells stably expressing OGT RNAi with 

exogenous lipids palmitate/oleic acid. Treatment with exogenous lipids partly rescued 

growth defects resulting from OGT suppression (Fig. S5C) and reduced levels of apoptotic 

marker cleaved PARP (Fig. S5D). Thus, O-GlcNAcylation regulates levels of lipid 

metabolites and free fatty acids and this regulation contributes to growth in breast cancer 

cells.

O-GlcNAcylation regulates transcription factor SREBP-1 and lipid enzymes in breast 
cancer cells and lipogenic tissue

To examine whether O-GlcNAcylation may regulate lipid metabolism via critical regulator 

of lipid metabolism SREBP-1, we first examined whether expression of SREBP-1, OGT and 

global O-GlcNAcylation change as mammary tumors progress in a spontaneous breast 

cancer model in vivo. We utilized tissue from the MMTV-PyMT transgenic breast cancer 

mouse model where mammary hyperplasia can be detected as early as 4 weeks and a large 

percentage of mice developed carcinoma at ∼14 weeks (27) (Fig. S6A). Protein expression 

of OGT and O-GlcNAcylation levels increased notably from week 8 to 12 during 

progression in this tumor model as well as nuclear SREBP-1 protein (N) levels and its 

transcriptional target ACLY (Fig. S6B). Consistent with increased SREBP-1 expression, nile 

red staining was increased in MMTV-PyMT derived mammary gland at week 8 compared to 

a wildtype mouse mammary gland of the same background (Fig. S6C).

To directly examine whether O-GlcNAcylation regulates SREBP-1 and lipogenic enzymes 

in breast cancer cells, we targeted OGT both genetically and pharmacologically. Inhibition 

of OGT via RNAi in breast cancer cells MDA-MB-231 (Fig. 3A), MCF7 (Fig. S3A), and 

SUM159 (Fig. S4A) results in decreased protein expression of both the ER transmembrane 

precursor (P) and the cleaved nuclear transcription factor form of SREBP-1 (N). Consistent 

with a decrease in SREBP-1 expression, OGT inhibition resulted in decreased protein 

expression of SREBP-1 transcriptional targets ACLY and FAS in MDA-MB-231 (Fig. 3A), 

MCF-7 (Fig. S3A) and SUM-159 (Fig. S4A) breast cancer cell lines. MDA-MB-231 cells 

stably expressing OGT RNAi also contain decreased levels of mRNA of SREBP-1 

transcriptional targets FAS, ACLY, ELOVL7 (ELOVL Fatty Acid Elongase 7), ACC and 

LPL (Lipoprotein Lipase) compared to controls (Fig. 3B). Pharmacological inhibition of 

OGT using Ac-5sGlcNAc resulted in reduced total O-GlcNAcylation and similar decreases 

in SREBP-1 and FAS in MBA-MB-231 cells (Fig. 3C). Conversely, overexpression of OGT 

in MCF-7 cells increased SREBP-1 protein levels (Fig. 3D, Fig. S3E) as well as levels of 

ACLY and FAS (Fig. 3D). To further examine a functional connection between OGT and 

lipid biosynthesis, we performed a Gene Essentiality similarity analysis on the breast cancer 

cell lines for which this type of data is publicly available (CCLE/Achilles Project). The 

7,500 genes for which essentiality score are available were ranked based on their similarity 

with OGT’s score, using the nearest neighbor analysis publicly available. Critical 

components of lipid synthesis were among the top correlated genes with OGT including 

SREBP-1 transcriptional targets (28) ACACB (Acetyl-CoA carboxylase 2), MHGCS1 

(Hydroxymethylglutaryl-CoA synthase), ACSL6 (Long chain Acyl-CoA synthetase 6), and 
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ACLY (Fig. S6D). This result suggests that breast cancer cells exhibiting higher dependency 

on OGT are generally more dependent on lipid biosynthesis, providing unbiased and 

independent support to the functional connection between OGT and this biosynthetic 

pathway.

Since de novo lipogenesis also occurs in lactating mammary glands (29), we examined 

whether OGT could regulate SREBP-1 and lipids in lactating breast tissue from mice 

containing ogt floxed alleles. We injected adenoviral (Ad)-Cre recombinase or Ad-GFP as 

control into the mammary fat pads of lactating female mice containing ogt exons flanked by 

loxP recombination sites (30). Injecting Ad-Cre to lactating mammary fat pad resulted in 

reduced OGT protein expression and O-GlcNAcylation as well as reduced SREBP-1 and 

ACLY protein levels compared to Ad-GFP treated mice as shown in immunoblot analysis 

(Fig. S7A). Moreover, targeting OGT in lactating breast reduced nile red staining which 

correlates with reduced SREBP-1 and FAS protein compared to Ad-GFP treated mice via 

immunohistochemical analysis (Fig. S7B). Consistent with reduced fatty acids in mammary 

tissue, growth of pups nursed by Ad-Cre treated dams was significantly attenuated and 

average litter weight was reduced when comparing growth rate over time to control pups 

(Fig. S7C). Thus, OGT and O-GlcNAcylation regulates SREBP-1, its transcriptional targets 

and lipid metabolism in breast cancer cells and lipogenic tissue.

O-GlcNAcylation regulates SREBP-1 expression in a proteasomal and AMPK-dependent 
manner

We next examined the mechanism by which OGT and O-GlcNAcylation regulates SREBP-1 

in cancer cells. SREBP-1 protein can be regulated by proteasomal degradation (31) thus we 

examined whether O-GlcNAc regulation is proteasomal-dependent. Treatment of breast 

cancer cells with proteasomal inhibitor MG132 blocked the OGT suppression-induced 

decrease in nuclear SREBP-1, and to a lesser extent precursor SREBP-1 compared to control 

(Fig. S8A) and reversed decreases in SREBP-1 transcriptional target ACLY (Fig. S8A). 

SREBP-1 is regulated by the tumor suppressor and E3-ubiquitin ligase FBW7 (31), thus we 

examine whether reducing O-GlcNAcylation altered SREBP-1 interaction with FBW7. 

Reducing OGT expression led to increased interaction between SREBP-1 and FBW7, as 

indicated by coimmunoprecipitation experiments in breast cancer cells (Fig. S8B) and 

HEK-293 cells overexpressing FLAG-tagged SREBP (Fig. S8C). Consistent with the idea 

that OGT regulates SREBP-1 via the proteasomal pathway, we detected a two-fold increase 

in SREBP-1 ubiquitination under conditions of decreased OGT levels in HEK-293 cells 

compared to controls (Fig. S8C). Indeed, we show that FBW7 is partly required for OGT 

regulation of SREBP-1 as stable knockdown of FBW7 in MDA-MB-231 cells partly 

reverses OGT shRNA mediated inhibition of SREBP-1 protein levels (Fig. S8D). SREBP-1 

does not appear to be directly O-GlcNAcylated as immunoprecipitation of exogenous 

SREBP-1 contained no detectable O-GlcNAcylation when compared to a known target of 

OGT (data not shown). This does not rule out the possibility that SREBP-1 is O-GlcNAc 

modified but suggests that O-GlcNAcylation may regulate SREBP-1 protein stability 

indirectly.
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We have previously demonstrated that reduction of OGT via RNAi, in breast cancer cells, 

results in metabolic stress and leads to activation of the AMPK pathway (32). AMPK is 

activated under low nutrient conditions and is known to phosphorylate SREBP-1 on Ser372 

and inhibit its cleavage and maturation in hepatocytes (24). Thus we examined whether OGT 

may regulate SREBP-1 in an AMPK-dependent manner. Reducing O-GlcNAcylation in 

breast cancer cells leads to an increase in phosphorylated AMPK (T172) (Fig. 4A). Using a 

phospho-antibody that recognizes SREBP-1 phosphorylation on Ser372, we observe an 

increase in SREBP-1 phosphorylation when OGT is suppressed in MDA-MB-231 cells, 

correlating with activation of AMPK as measured by phosphorylation at T172 (Fig. 4A). We 

tested the requirement of AMPK in OGT-mediated changes in SREBP-1 in MDA-MB-231 

cells by treating cells with the AMPK inhibitor Compound C. MDA-MB-231 cells treated 

with Compound C contained decreased AMPK activation as measured by phosphorylation 

of its substrate Raptor-(Ser792) compared to control cells (Fig. 4B). Phosphorylation of 

SREBP-1 on Ser372 was reduced in Compound C treated cells and the reduced SREBP-1 

and ACLY protein levels observed upon suppression of OGT were partly reversed by 

treatment with Compound C (Fig. 4B, Fig. S8E). Similar results were obtained in MDA-

MB-157 cells with Compound C (data not shown) and using dorsomorphin 2HCL (Fig. S8F) 

in MDA-MB-231 cells suggesting that OGT regulation of SREBP-1 is AMPK-dependent in 

multiple breast cancer cells. We then assessed whether regulation of SREBP-1 by OGT 

required AMPK using WT and AMPK-/- mouse embryonic fibroblasts (MEFs). In WT 

MEFs, OGT inhibition results in decreased SREBP-1 protein expression and transcriptional 

targets ACLY (Fig. 4C). However, AMPK null MEFs showed reduced change in SREBP-1, 

ACLY protein expression upon OGT inhibition compared to control MEFs. To determine 

whether OGT regulation of AMPK and SREBP-1 is dependent on changes in metabolism, 

we tested whether treating OGT depleted cells with methyl-pyruvate, a permeable nutrient 

that supports mitochondrial bioenergetics (33), would reverse AMPK activation and 

SREBP-1 levels. Reducing OGT levels in MDA-MB-231 cells leads to activation of AMPK 

and increased phosphorylation of SREBP-1 and reduced total levels of SREBP-1 and 

transcriptional target FAS (Fig. 4D). However, SREBP-1 phosphorylation was reduced and 

SREBP-1 total levels and FAS levels were restored in OGT-depleted cells treated with 

methyl-pyruvate compared to control cells (Fig. 4D) suggesting OGT regulation of 

SREBP-1 is dependent on metabolic changes. Taken together, these results suggest that O-

GlcNAcylation regulates SREBP-1 protein levels, its interaction with E3 ligase FBW7 and, 

is in part, AMPK-dependent and associated with O-GlcNAcylation regulation of cell 

metabolism.

O-GlcNAcylation-mediated cancer cell survival requires SREBP-1 regulation of lipid and 
glucose metabolism in cancer cells

To determine if changes in SREBP-1 were required for the lipid defects observed upon OGT 

inhibition, we overexpressed exogenous SREBP-1 to restore levels in the context of OGT 

knockdown. While exogenous SREBP-1 nuclear protein levels were still affected by OGT 

suppression in cells, they were comparable to levels in control cells thereby ensuring that 

SREBP-1 had been restored to basal levels (Fig. 5A, Fig. S9A). Cells stably overexpressing 

exogenous SREBP-1 restored nile red staining (Fig. 5B) and significantly restored free fatty 

acid levels (Fig. 5C) in OGT knockdown cells to levels similar to control cells. In addition, 
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overexpression of SREBP-1 rescued protein levels of transcriptional targets FAS and ACLY 

in OGT knockdown cells compared to controls (Fig. 5A). We next tested whether regulation 

of SREBP-1 by OGT played a role in cancer cell growth. Growth inhibition resulting from 

OGT suppression as shown by crystal violet staining (Fig. 5D) and anchorage-independent 

growth (Fig. 5E, Fig. S9B) was partially reversed when SREBP-1 was overexpressed in 

OGT knockdown MDA-MB-231 cells. Apoptotic factors such as cleaved caspase 3, which 

are induced upon OGT suppression, were no longer activated in SREBP-1 overexpressing 

cells compared to controls and the loss of anti-apoptotic Bcl2 was prevented in these cells 

(Fig. S9C).

We noticed that SREBP-1 overexpression rescued growth to a much greater extent (Fig. 5D) 

when compared to addition of exogenous lipids in OGT knockdown cells (Fig. S5C). Since 

we have previously shown that OGT regulates HIF-1α and its transcriptional target GLUT1, 

and overexpression of a HIF-1α stable mutant or GLUT1 can also partly rescue OGT 

knockdown phenotypes (32), we examined expression of HIF-1α and GLUT1 in SREBP-1 

overexpressing cells. In cells overexpressing SREBP-1 we did not detect any changes in 

HIF-1α. However, surprisingly, we found maintenance of GLUT1 in OGT knockdown cells 

(Fig. 6A). Consistent with the idea that SREBP-1 overexpression may be regulating GLUT1 

function, we found that inhibition of glucose consumption caused by OGT-knockdown was 

reversed in SREBP-1 overexpressing cells (Fig. 6B). Similar reversal was seen in lactate 

production suggesting that SREBP-1 can also regulate OGT-mediated glycolytic flux (Fig. 

6C). SREBP-1 overexpression also reversed metabolic signaling including decreases in 

mTOR signaling seen with OGT suppression in control cells, as measured by 

phosphorylated 4EBP-1 and S6 ribosomal protein (Fig. 6A). Downstream of mTOR, c-Myc 

protein expression was also rescued by SREBP-1 overexpression (Fig. 6A). Thus, O-

GlcNAc regulation of SREBP-1 in cancer cells is critical for lipid metabolism but also for 

regulation of glycolytic flux and metabolic signaling in a HIF1-independent manner.

SREBP-1 is critical for OGT-mediated regulation of breast cancer tumorigenesis in vivo

To determine if the regulation of SREBP-1 by OGT was important for tumor growth and 

survival in vivo, we employed an orthotopic xenograft animal model. We injected MDA-

MB-231- Luciferase cells either stably expressing control shRNA or OGT shRNA in the 

presence or absence of SREBP-1 overexpression (Fig. 7A) orthotopically into the inguinal 

fat pad of female Nu/Nu mice. We monitored tumor growth as readout of bioluminescence 

intensity and using caliper measurements. Reducing OGT levels in MDA-MB-231 cells 

blocks tumor growth in vivo (Fig. 7B) (11). However, cells overexpressing SREBP-1 partly 

rescued the effects of OGT depletion in cancer cells in vivo (Fig. 7B). At animal endpoint 

we observed a significant rescue of tumor volume in SREBP-1 overexpressing cells in the 

context of OGT depletion compared to control OGT depleted cells (Fig. 7C). Thus, OGT 

regulation of tumor growth in vivo is partly dependent on SREBP-1 expression and function.

Discussion

Cancer cells generate nearly all fatty acids via de novo synthesis to support rapid tumor 

growth and survival (21). In this study, we demonstrate that O-GlcNAcylation, elevated in 
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nearly all cancers (10), is required and sufficient to control SREBP function and lipid 

metabolism in cancer cells. We show that O-GlcNAcylation, via metabolic control of AMPK 

signaling, regulates SREBP-1 phosphorylation and stability as well as its transcriptional 

targets ACLY and FAS to regulate lipid metabolism and cancer cell growth and survival 

(Fig. 7D). Our study uncovers the critical function of O-GlcNAcylation in controlling lipid 

metabolism in tumor cells linking OGT regulation of metabolism to AMPK signaling and 

SREBP regulation. Thus, elevated O-GlcNAcylation not only maintains aerobic glycolysis 

in cancer cells (32), but also maintains lipid metabolism via regulation of SREBP 

independent of OGT regulation of HIF-1α. Additionally, we find that O-GlcNAcylation also 

regulates lipid metabolism and SREBP in adult lipogenic tissue such as lactating mammary 

gland and suggest cancer cells have co-opted this normal regulation of de novo lipid 

synthesis.

O-GlcNAcylation has been shown to regulate key transcription factors that directly bind to 

promoters of a number of metabolic enzymes including c-Myc (34), HIF-1α (32) and now 

SREBP-1. These transcription factors allow for coordinate up- and down-regulation of entire 

metabolic processes associated with the Warburg effect in cancer cells (35). C-Myc has been 

shown to be directly O-GlcNAcylated on threonine 58 (36) and increase its protein stability. 

Consistent with these studies, reducing OGT and O-GlcNAcylation reduces protein levels of 

c-Myc. Surprisingly, overexpression of SREBP-1 restored c-Myc protein levels in OGT 

depleted cells suggesting that SREBP-1 regulation of c-Myc overrides it regulation by O-

GlcNAcylation. This, along with reversing GLUT1 expression, may explain why 

overexpression of SREBP-1 partly restores glucose and lactate levels in OGT-depleted cells. 

Importantly, SREBP-1 restoration of metabolic defect and mTOR signaling was independent 

of regulation of HIF-1α. Recent studies suggest that SREBP-2 can regulate stem cell-like 

properties in prostate cancer cells in part via transcriptional activation of c-Myc (37). Thus, 

SREBP-1 may regulate c-Myc by direct binding or through other mechanisms and suggests 

that SREBP-1 may have broader functions beyond lipid synthesis regulation in cancer cells.

Although the requirement of lipogenesis has been well chronicled in a variety of cancer 

tissues, inhibition of this process as a means of therapy has proved challenging. Genetic 

inhibition of lipogenesis downstream of SREBP-1 favors the use of inhibitors against 

enzymes such as FAS and ACLY for the treatment of cancer. More recently, the FAS 

inhibitor TVB-2640 which carries a more favorable tolerability (38), entered phase I clinical 

trials for solid malignant tumors (21). OGT inhibitors have not yet been tested in animal 

studies. However, since targeting OGT regulates three key transcriptional regulators of 

cancer metabolism, including c-Myc, HIF-1α, and SREBP-1, it suggest that these 

compounds may provide strong anti-tumor effects especially in highly metabolic cancers. 

Thus, targeting OGT in cancer may serve as a therapeutic alternative to directly targeting 

enzymes such as FAS or ACLY in breast cancer and other lipid-dependent cancers as well.

Materials and Methods

Reagents

MG132, Nile Red, Methyl-pyruvate were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Compound C and Dorsomorphin (2HCL) from Selleck-Chemicals (Houston, TX, 
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USA). Ac-5sGlcNAc was provided by D. Vocadlo (Simon Fraser University). Antibodies 

used were Anti-OGT, Anti-O-GlcNAc, Anti-FLAG from Sigma-Aldrich; Anti-pSREBP1-

(S372), Anti-pAMPK-(T172), Anti-pRaptor-(S792), Anti-pS6 Ribosomal Protein-

(S240/244), Anti-p4EBP1-(T70), Anti-AMPK, Anti-Raptor, Anti-S6 Ribosomal Protein, 

Anti-4EBP1, Anti-FAS, Anti-ACC, Anti-Ubiquitin, Anti-Cleaved Caspase 3, Anti-Cleaved 

PARP from Cell Signaling (Danvers, MA, USA); Anti-Actin, Anti-Bcl2 from Santa Cruz 

Biotechnology; Anti-SREBP1, Anti-HIF1α, Anti-c-MYC from Novus Biologicals; Anti-

SREBP1, Anti-ACLY, Anti-Glut1 from Abcam; Anti-FBW7 from Bethyl Labs. 

pLKO.FLAG-SREBP1 (Addgene-32017 from D. Sabatini).

Cell Culture

MDA-MB-231 and MCF-7 cells were obtained from ATCC and cultured following 

instructions. SUM-159 and MDA-MB-157 cells were a generous gift from T. Seagroves (U 

Tennessee). WT and AMPKα1/α2 KO MEFs were provided by B Viollet (INSERM) (23). 

shRNA sequences and lentiviral particles were generated as previously described (11). 

pSicoR-shFBW7 was kindly provided by L. Busino (University of Pennsylvania) and 

previously described (39).

Western blotting

Western blotting procedures were carried out as previously described (40).

Animal experiments

Athymic nude Nu/Nu 5–6 week old female mice (Charles River, Wilmington, MA, USA) 

were inoculated with 1.5 × 106 MDA-MB-231 cells stably expressing luciferase and either 

pBabe-Control or plko-SREBP-1 as well as either Control or OGT shRNA. Cells were 

injected in 100 μl of 1x PBS containing 20% matrigel (Invitrogen) using a 271/2-gauge 

needle into the fourth-inguinal mammary fat pad and imaged as previously described (32). 

Tumor volumes were calculated as V=(length)x(width)2 ×0.52. All protocols using animals 

were approved by the Institutional Animal Care and Use Committee at Drexel University. 

B6.129-Ogttm1Gwh/J female mice have been previously described (30) and obtained as a 

gift from S Jones (University of Louisville) (30). Mice were injected into the mammary fat 

pad with Ad5-CMV-GFP or Ad5-CMV-Cre (2.7 × 107 PFU, from the Baylor University) as 

previously described (13) post parturition daily for three days. Histology was performed as 

previously described (12).

Free Fatty Acid Quantification

Free Fatty Acids were quantified using the Fatty Acid Kit from Biovision as per the 

manufacturers’ instructions. Equal number of cells from each sample were used for 

quantification of lipids using a choloform/1% TritonX solution. Cells were centrifuged and 

the lipid-containing layer was dried. Lipids were resuspended and acyl-CoA derivatives 

were generated using kit provided enzyme. Colormetric detection was performed in a 

Synergy HT plate reader (BIO-TEK Instruments Inc.).
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Metabolite Analysis

Metabolomic Analysis of MDA-MB-231 cells stably expressing Control or OGT shRNA for 

48 hrs was performed as described previously (32). Welch’s t-tests were performed to 

compare data between experimental groups. Multiple comparisons were accounted for by 

estimating the false discovery rate using q-values. Pathway enrichment analysis was 

performed by independently subjecting significantly increased and decreased metabolites 

identified through Metabolon Analysis to MBRole2.0 software (41). Enrichment results are 

ranked by FDR corrected p-values. All KEGG pathway results with p-value <0.05 are 

shown.

Immunoprecipitation

Assays were performed as described previously (40).

qRT-PCR

qRT-PCR was performed as previously described (40). Taqman primer probes for OGT 

(Hs00914634_g1), SREBF-1 (Hs1088691-m1), ACLY (Hs00982738-m1), FASN 

(Hs0105622-m1), ACACA (Hs01046047-m1), ELOVL7 (Hs00405151-m1), LPL 

(Hs00173425-m1) and Cyclophilin A (Hs99999904_m1) were purchased from Applied 

Biosystems (Foster City, CA, USA).

Metabolic Assays

For glucose uptake, cells were plated at a density of 100,000 cells/well. After 48 hours, 

media was collected and cells were counted using the Guava Easy Cyte Plus system and 

CytoSoft (Millipore Corporation). Control media and each sample were measured on Accu-

chek Active (Roche). Glucose consumption was calculated by subtracting sample 

measurement from control and normalizing to cell number. Lactate assay were performed as 

previously described (32).

Nile Red Staining of Cells and Tissue

Cells or tissues were fixed using 4% Formalin, washed in 1xPBS prior to staining with 

5μg/ml Nile Red solution and incubated for 30 minutes. Samples were then washed in PBS 

and photographed on EVOS FL (Life technologies) using Texas-Red filter.

Statistical Analysis

All results shown are of at least three independent experiments and shown as averages and 

presented as mean ± s.e. P-values were calculated using a Student’s two-tailed test (* 

represents at least P-value ≤0.05 or as marked in figure legend). Statistical analysis of 

growth rate of mice was performed using ANCOVA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Metabolomics Profiling of MDA-MB-231 breast cancer cells with stable OGT 
suppression
(A) Cell lysates from MDA-MB-231 cells stably expressing control or OGT shRNA were 

collected for immunoblot analysis with the indicated antibodies and used for liquid 

chromatography-mass spectrometry (LC-MS) metabolomics profiling. (B) KEGG pathways 

highly associated metabolic changes resulting from OGT suppression. Pathways association 

with significantly increased metabolites (blue) and significantly decreased metabolites (red) 

are displayed in ranking p-values. Analysis was performed using MBrole2.0. (C) Pie graph 

showing metabolic categories altered in cells expressing OGT shRNA compared to control 
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shown. Data are represented as statistically significant (p<0.05) changes in 124 out of 301 

metabolites, grouped by metabolites related to amino acids, carbohydrates, lipids and 

nucleotides.
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Figure 2. OGT Regulates Lipid Metabolism in Breast Cancer Cells
(A) Relative free fatty acids levels in MDA-MB-231 cells stably expressing control, OGT-1 

or OGT-2 shRNA. Equal number of cells was analyzed in each sample and normalized to 

control. (B) Cell lysates from MDA-MB-231 cells expressing control, OGT-1 or OGT-2 

shRNA were collected for immunoblot analysis with the indicated antibodies (B) 

Representative images of nile red staining of MDA-MB-231 cells under the same conditions 

as (A). (C) Cell lysates from MCF7 cells stably overexpressing control or Flag-OGT were 

Sodi et al. Page 16

Oncogene. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



collected for immunoblot analysis with indicated antibodies. (D) Measurement of relative 

free fatty acids in MCF7 stably overexpressing control or Flag-OGT. Mean ± SE. *p<0.05.
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Figure 3. O-GlcNAcylation regulates expression of SREBP-1 and its transcriptional targets
(A) Cell lysates from MDA-MB-231 cells expressing control, OGT-1 or OGT-2 shRNA 

were collected for immunoblot analysis with the indicated antibodies (top). SREBP-1 

protein expression quantified normalized to actin (below). (B). Measurement of relative 

mRNA expression of SREBP-1 target genes from control or stable OGT shRNA expressing 

MDA-MB-231 cells using qRT-PCR. All expression is normalized to cyclophilin A internal 

control and to MDA-MB-231 control samples. (C) Cell lysates from MDA-MB-231 cells 

treated for 48 hours with control (DMSO) or 100 μM Ac-5sGlcNAc for 48 hrs were 
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collected for immunoblot analysis with the indicated antibodies. (D) Cell lysates from 

MCF7 cells stably overexpressing control or Flag-OGT were collected for immunoblot 

analysis with indicated antibodies. Mean ± SE. *p<0.05 **p< 0.01.
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Figure 4. O-GlcNAcylation regulation of SREBP-1 is dependent on AMPK activation
(A) Cell lysates from MDA-MB-231 cells expressing control, OGT-1 or OGT-2 shRNA 

were collected for immunoblot analysis with the indicated antibodies. (B) Protein 

immunoblot of lysates from MDA-MB-231 expressing control or OGT shRNA and treated 

with vehicle (DMSO) or 10 μM Compound C for 24 hours, analyzed with the indicated 

antibodies. (C) Cell lysates from WT or AMPK -/- MEF cells expressing control or OGT 

shRNA were analyzed with the indicated antibodies by immunoblot (top). Quantification of 

SREBP-1 protein expression normalized to actin (below). (D) Cell lysates from MDA-
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MB-231 cells expressing control or OGT shRNA treated with control (dH20) or 10 μM 

methyl-pyruvate for 24 hours were collected and analyzed with the indicated antibodies. 

Mean ± SE. *p<0.05.
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Figure 5. OGT-suppression induced decreases in lipids and cell growth are prevented when 
SREBP-1 expression is restored
(A) Cell lysates were collected from MDA-MB-231 cells were treated with control or OGT 

shRNA after stable infection with control or SREBP-1. Lysates were analyzed with the 

indicated antibodies (top). Quantification of relative SREBP-1 protein expression 

normalized to actin is displayed below panel. (B) Representative immunofluorescent 

imaging of nile red stained cells corresponding to the conditions in (A). (C) Quantification 

of measurements of relative free fatty acids within cells corresponding to the conditions in 

(A). (D) MDA-MB-231 cells were treated with control or OGT shRNA after stable infection 
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with control or SREBP-1 and cell colonies were stained with crystal violet. (E) 

Quantification of soft agar colony forming assays corresponding to conditions in (A-D) after 

staining with INT for visualization. Mean ± SE. *p<0.05.
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Figure 6. SREBP-1 restoration prevents OGT-suppression mediated decreases in mTOR 
signaling, activation of AMPK and decreased glycolytic regulators
(A) Cell lysates were collected from MDA-MB-231 cells were treated with control or OGT 

shRNA after stable infection with control or SREBP-1 and analyzed with the indicated 

antibodies. (B) Changes in lactate levels were measured from cells in (A) and normalized to 

control-treated cells. (C) Relative glucose consumption were measured from cells in (A) and 

normalized to cell number. Mean ± SEM. *p<0.05, **p<0.01.
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Figure 7. Decreased tumor growth in vivo by OGT suppression is partially rescued by SREBP-1 
overexpression
(A) Cell lysates were collected prior to injection into mice from MDA-MB-231-Luciferase 

cells treated with control or OGT shRNA after stable infection with control or SREBP-1 and 

analyzed by immunoblot with the indicated antibodies. (B) Representative bioluminescent 

images of xenograft conditions corresponding to conditions in (A) from week 4–6 post-

injection (endpoint as dictated by IACUC. (C) Mean tumor volume (mm3) from MDA-

MB-231 cells with the indicated treatment (as in A-B) (n=6/group). Mean ± SE. *p<0.05. 

(D) A schematic illustration of proposed model, showing OGT regulation of SREBP-1 
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protein and phosphorylation via regulation of AMPK that regulates lipid metabolism and 

cancer growth and survival.
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