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Abstract

Normal neuronal communication and synaptic plasticity at glutamatergic synapses requires 

dynamic regulation of postsynaptic molecules. Protein expression and protein post-translational 

modifications regulate protein interactions that underlie this organization. In this Review, we 

highlight data obtained over the last 20 years that have used qualitative and quantitative 

proteomics-based approaches to identify postsynaptic protein complexes. Herein, we describe how 

these proteomics studies have helped lay the foundation for understanding synaptic physiology 

and perturbations in synaptic signaling observed in different pathologies. We also describe 

emerging technologies that can be useful in these analyses. We focus on protein complexes 

associated with the highly abundant and functionally critical proteins: calcium/calmodulin-

dependent protein kinase II, the N-methyl-D-aspartate, and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid glutamate receptors, and postsynaptic density protein of 95 kDa.
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INTRODUCTION

While mass spectrometry based approaches have been used to quantify protein abundance 

changes that underlie long-term plasticity and learning and memory,1 these approaches are 

also well-suited to understand postsynaptic protein post-translational modifications, 

interactions, and protein function that allow for a rapid response to alterations in neuronal 

excitability. Following presynaptic release, glutamate diffuses across the synaptic cleft to 

activate multiple classes of glutamate receptors, including N-methyl-D-aspartate receptor 

(NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 

(AMPARs). Signaling molecules such as calcium/calmodulin-dependent protein kinase II 

(CaMKII) associate with glutamate receptors or voltage-gated calcium channels to respond 

to calcium that enters through these proteins. While CaMKII is one of the most abundant 

enzymes found in the postsynaptic density (PSD; Figure 1),2,3 many other abundant proteins 

act as scaffolds and are required for localizing glutamate receptors and other machinery 

directly opposed to release sites (Figure 1).4 While early studies employed electron 

microscopy and immunoblotting to isolated PSDs obtained via subcellular fractionation, 

shotgun-based proteomics approaches are exquisitely sensitive to identify and quantify 

components of the PSD. These approaches have utilized PSD enrichment strategies such as 
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subcellular fractionation to isolate PSDs followed by mass spectrometry to identify and 

quantify PSD proteomes.1,5–18 It is important to note that different PSD preparations and 

mass spectrometry instrumentation may lead to distinct PSD proteomes.19–21 However, there 

is overlap between many of these approaches. For instance, integrating multiple approaches 

and studies, Grant and colleagues defined what they called the consensus PSD, which 

contained 466 total proteins. They compared 8 different studies and found overlap between 

the PSD proteomes that ranged between 31% and 100%.19 These approaches have identified 

highly abundant PSD proteins such as NMDARs, AMPARs, CaMKII, and PSD-95. Here we 

review how proteomics approaches have been used to interrogate postsynaptic protein 

complexes associated with the above proteins and discuss how this knowledge has increased 

our understanding of synaptic protein organization and function.

Understanding how synaptic proteins are organized is important in decoding physiological 

changes that underlie normal learning and memory. These learning and memory changes are 

encoded via a process termed synaptic plasticity. Long-term potentiation (LTP) and long-

term depression (LTD) are two molecular correlates of synaptic plasticity. Reorganization of 

synaptic protein components occurs during LTP and LTD. This reorganization can be 

achieved by changes in the levels or activity of signaling molecules such as kinases and 

phosphatases as well as changes in synaptic ion channel number or conductance. 

Throughout this Review, we focus on how synaptic protein modifications and interactions 

convey proper postsynaptic organization and facilitate normal synaptic plasticity both 

acutely and long-term. Moreover, we describe how perturbations in synaptic protein 

modifications and interactions are associated with pathological conditions, such as stroke, 

autism spectrum disorders like Angelman syndrome, and Parkinson disease. Finally, we 

describe emerging technologies and approaches that can be used to enhance detection of 

low-abundance synaptic protein complexes and post-translational modifications.

N-METHYL-D-ASPARTATE RECEPTORS (NMDARs)

The NMDARs are ionotropic glutamate receptors that allow for calcium and sodium influx 

into the postsynapse. The NMDAR is made up of an obligate GluN1 subunit and different 

GluN2 (or less commonly GluN3) subunits. In certain brain regions, there is a 

developmental shift from GluN2B to GluN2A such that GluN2B expression decreases and 

GluN2A expression increases.22 In rats, GluN2B levels decreased in both Cornu Ammonis 

(CA)1 and CA3 regions of the hippocampus beginning 4 days after birth and reaching adult 

levels (∼40% decrease) by postnatal day 21.23 Similar results were observed in humans, 

where the GluN2A:GluN2B mRNA ratio increases in the CA1 and CA3 region, but not the 

dentate gyrus.24 Despite age-dependent reductions in GluN2B levels, recent studies suggest 

that triheteromeric NMDARs containing GluN1/GluN2A/GluN2B may be the most 

abundant form in dissociated hippocampal neurons and adult hippocampal synapses.25,26 

Accordingly, global knockout (KO) of the GluN1 subunit in mice resulted in loss of 

NMDAR activity, reduction in expression of the GluN2B subunit of the NMDAR, and death 

of animals by 15 h after birth.27 KO of the GluN2B subunit in CA3 pyramidal cells of the 

hippocampus abrogates NMDAR-dependent currents, decreases spine density, and 

attenuates hippocampal LTP.28 In contrast to GluN2B KO animals, loss of GluN2A 

attenuated CA1 hippocampal LTP but had fewer additional effects.29 The above data 
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demonstrate that NMDAR subunit composition is developmentally and spatially organized. 

Moreover, the NMDAR is critical in different forms of LTP and LTD. However, 

understanding the full complement of NMDAR interactions and how those differ under 

physiological and pathological changes is well-suited for proteomics-based studies.

NMDAR-dependent synaptic plasticity requires proper expression, localization, and function 

of the NMDAR. In one of the first neuroproteomics studies ever performed, multiple affinity 

isolation techniques, including immunoprecipitation and immunoaffinity purification of 

GluN1 complexes, and peptide isolation of GluN2B complexes, were used to identify 66 

different proteins that coimmunoprecipitate with the NMDAR.30 This approach allowed for 

identification of proteins that associate with both GluN1 and GluN2B or that may be 

enriched in one complex or another. For instance, SAP102 was weakly detected in the 

GluN1 immunoprecipitates and immunoaffinity purification, but was strongly detected in the 

GluN2B peptide isolation.30 Using the string database (www.string-db.org)31 to analyze a 

subset of these proteins, we highlight the interconnectivity of these molecules (Figure 2). We 

mapped those interactions that were experimentally validated and had medium to high 

confidence (0.4–0.9) to generate a connectivity map between the proteins that were detected 

in the GluN2B immunoprecipitates (Figure 2). NMDARs interact either directly or indirectly 

with kinases such as CaMKII, PKA, and PKC and phosphatases such as protein phosphatase 

1, 2A, and 5, calcineurin, and tyrosine-protein phosphatase nonreceptor type 11 (Figure 2), 

signaling molecules that are known to regulate NMDAR function.32 PKA interacts with 

scaffolding/regulatory subunits termed A-kinase anchoring proteins (AKAPs), whereas PKC 

interacts with regulatory subunits for C-kinase (RACKs) for PKC. These subunits help target 

them to the NMDAR.33 CaMKII per se, AKAPs, or RACKs can target the kinase and/or 

interacting proteins to the NMDAR. In addition to kinases, the NMDAR was also found to 

associate with multiple scaffolding proteins including PSD-93, PSD-95, SAP-102, Homer 1, 

and Shank 1 and 2 (Figure 2), synaptic proteins that can modulate NMDAR targeting, 

localization at the PSD, and channel function.34–41 The scaffolding and GTPase activating 

protein, SynGAP1, also associates with the NMDAR. The association between the GluN2B 

subunit of the NMDAR and SynGAP1 modulates synaptic transmission through structural 

roles and/or RAS-GTPase activity that, together with NMDAR function, modulate ERK/

MAPK signaling.42–45 Cytoskeletal proteins including actin, α-actinin, tubulin, and myosins 

also associate with the NMDAR. Interestingly, NMDAR activity regulates phosphorylation 

of cytoskeletal proteins such as MAP2 to modulate the synaptic cytoskeleton.46 Moreover, 

cytoskeletal proteins such as actin and myosins regulate NMDAR properties.47,48 

Proteomics studies to identify novel interacting proteins do not require a priori knowledge of 

those interactions and the data obtained in this initial proteomics study helped direct many 

subsequent studies probing the function of specific interactions. However, it is important to 

address some caveats of these interactome maps. Using the above criteria, only two proteins 

were not connected to any other protein. These include Ppp1ca (the catalytic subunit of PP1) 

and Hspa1a. However, PP1 is known to modulate NMDARs49 and other synaptic proteins, 

suggesting a functional association with the NMDAR and additional proteins. Therefore, the 

fact that an interaction is not observed does not mean it does not exist. Moreover, while we 

restricted these maps to those associations for which experimental data is available, one can 

also utilize the string-db to glean information from other sources, such as data mining and 
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co-occurrence in the literature. However, while these approaches are useful to generate 

hypotheses, specific experimental approaches need to be performed to validate these large 

interactome maps as well as to test specific hypotheses.

This initial NMDAR proteomics study was performed under basal conditions. NMDAR 

activity and membrane localization is regulated by multiple factors, including 

phosphorylation. For example, CaMKII, PKC, and death-associated protein kinase 1 

(DAPK1) phosphorylate GluN2B at Ser1303. Phosphorylation at Ser1303 and/or Ser1323 

by PKC or DAPK1 can enhance channel conductance.50 However, other studies have 

suggested that Ser1303 phosphorylation by CaMKII reduce channel conductance by 

enhancing desensitization in HEK293 cells.51 Recent data suggest that the differential role 

of Ser1303 phosphorylation by different kinases is actually due to Cl− levels in the cells, as 

Ser1303 phosphorylation enhances desensitization in the context of low intracellular Cl−, but 

decreases desensitization in the context of high intracellular Cl−.52 In addition to Ser1303 

phosphorylation, casein kinase 2 (CK2) phosphorylates GluN2B at Ser1480, which 

decreases GluN2B binding to synaptic scaffolding proteins such as PSD-95 and SAP-102 

and attenuates surface expression of the receptor.53 Increased CK2 activity during 

development decreased synaptic GluN2B expression.54 Together, these data have identified 

multiple NMDAR-specific interacting proteins and have determined phosphorylation sites 

that modulate these interactions. However, many of these studies use phosphorylation-

specific mutants such as alanine (to prevent phosphorylation) or aspartate/glutamate (to 

mimic phosphorylation). One of the benefits of proteomics approaches is that one can survey 

multiple phosphorylation sites on a protein of interest in an unbiased manner and without 

potentially perturbing additional sites. Interestingly, this type of approach uncovered 

multiple novel phosphorylation sites on GluN2A and GluN2B.55 Moreover, coupling 

proteomics approaches to biochemical preparations that isolate different subcellular 

fractions can allow for tracking of specific phosphorylation sites in different parts of the 

neuron. This type of approach can also be used to determine how different pathological or 

developmental conditions impact phosphorylation at multiple sites at one time.

Proteomics experiments have revealed pathological perturbations in the NMDAR 

interactome. For instance, the GluN2B subunit of the NMDAR has enhanced association 

with synaptic proteins during aging.56 In addition, withdrawal from chronic intermittent 

ethanol (CIE) treatment increased the association of GluN2B with activity-regulated 

cytoskeleton-associated protein (Arc) and Homer1,57 two NMDAR interacting proteins that 

were detected in the initial NMDAR proteomics screen.30 Translocation of Arc mRNA to 

synapses has been shown to require NMDAR activity.58 Also, Arc mRNA synthesis is 

enhanced by epileptic seizures.58–60 Interestingly, the observed CIE-dependent increased 

association of Arc and Homer with the NMDAR occurred in a synaptic subcellular fraction. 

Previous studies have found that synaptic and extrasynaptic NMDAR activation 

differentially modulate ischemia-induced injuries and neurodegenerative diseases.61–63 

Using proteomics to delineate unique subcellular differences in the NMDAR interactome in 

different disease states will greatly inform the function of different complexes and determine 

how alterations in these complexes may underlie specific pathologies.
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CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II (CaMKII)

NMDARs allow for ions such as Ca2+ to enter the postsynaptic spine. Ca2+ entry via 

NMDARs and other sources activates molecules such as CaMKII. When the calcium signal 

is robust and persistent, the kinase autophosphorylates at Thr286 on CaMKIIα which allows 

the kinase to retain Ca2+-independent activity and regulates CaMKII interactions and 

subcellular localization.64–67 CaMKIIα expression and autophosphorylation are required for 

NMDAR-dependent synaptic plasticity. Both complete loss of CaMKIIα and mutant 

CaMKIIα mice that cannot autophosphorylate at Thr286 (T286A) have abrogated LTP and 

LTD and behavioral deficits.68–72 It is important to note that there are four different isoforms 

of CaMKII: α, β, γ, and δ. While CaMKIIα is the most abundant CaMKII isoform in the 

forebrain, CaMKIIβ is the second most abundant CaMKII isoform in the forebrain with one 

CaMKIIβ molecule per three CaMKIIα molecules. In contrast to forebrain, CaMKIIβ is 

three times more abundant than CaMKIIα in the cerebellum73 and CaMKIIβ KO mice have 

altered cerebellar plasticity that leads to deficits in motor coordination.74 The above studies 

demonstrate that kinase expression and/or autophosphorylation are critical for normal 

synaptic function in different parts of the brain.

CaMKII is the most abundant protein in the PSD, with levels > 1.5 pmol/μg protein across 

CaMKIIα and CaMKIIβ isoforms.4 This protein accounts for ∼6% of the total protein in the 

PSD.3,75 Biochemical estimates of the abundance of endogenous kinase suggest 80 

dodecameric holoenzymes (∼960 CaMKII molecules) per typically sized (∼100 nm2) 

PSD.3,75 While this estimation may be conflated due to translocation and targeting 

postdecapitation during sample preparation,76 it remains interesting that a kinase is so highly 

concentrated in this subcellular compartment. While estimation of CaMKII abundance in the 

PSD may be high, CaMKII actively translocates in slices and cultured neurons (within 30 

min of stimulation),77–80 indicating that activated CaMKII moves to preferentially associate 

with the PSD following glutamate signaling.

In contrast to Thr286 autophosphorylation enhancing CaMKII activity, Thr305/6 

phosphorylation prevents Ca2+/calmodulin-stimulation of CaMKII. Whereas T286 

phosphorylation enhances CaMKII at the PSD, Thr305/6 phosphorylation diminishes 

CaMKII targeting to the PSD.78,79 Functionally, Thr286 phosphorylation without Thr305/6 

phosphor-ylation leads to Ca2+/calmodulin-independent CaMKII activity along with Ca2+/

calmodulin binding. This form of the kinase favors enhanced synaptic strength.81,82 

However, T286D mutants in combination with TT305/6DD mutants decrease synaptic 

strength.83 Proteomics-based approaches have recapitulated overexpression and 

immunoblotting data showing that CaMKIIα phosphorylation at Thr286 is greatest in the 

synaptic fraction whereas phosphorylation at Thr306 is greatest in a cytosolic fraction.66

As mentioned above, T286A mutant CaMKIIα had lower levels in a synaptic fraction; 

however, immunoprecipitation of the kinase followed by both immunoblotting and 

proteomics approaches revealed that the kinase that was detected in this fraction had a 

greater association with multiple synaptic scaffolding proteins and NMDARs.66,84 Previous 

studies have suggested that the NMDAR is critical in targeting CaMKII to the PSD and that 

autophosphorylation of the kinase enhances the association of CaMKII with the GluN2B 
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subunit of the NMDAR.85–87 This discrepancy may be due to differences in using the 

T286A mutant kinase, which can regulate additional phosphorylation sites on CaMKII as 

well as calmodulin binding affinity.66,88 Together, the above data suggest that CaMKII 

binding to the NMDAR is critical in regulating autophosphorylation-dependent CaMKII 

targeting to the PSD; however, additional synaptic proteins may also play critical roles. For 

example, based on a recent proteomics study, the cytoskeletal protein, brain-specific 

angiogenesis inhibitor 1-associated protein 2 (BAIAP2, also known as IRSp53) had a 

decreased association with CaMKII in a synaptic fraction.66 BAIAP2 is a highly expressed 

PSD protein with an abundance of 23.5 fmol/μg protein.4 BAIAP2 KO mice have decreased 

PSD size, but increased insertion of NMDARs and enhanced hippocampal LTP.89 Moreover, 

proteomics studies determined that BAIAP2 expression is decreased in human Alzheimer 

disease patients.90 It is important to note that due to the multimeric structure of CaMKII, 

immunoprecipitation of CaMKII may isolate low levels of interacting proteins. If a single 

CaMKII molecule is bound to your protein of interest, immunoprecipitating that CaMKII 

molecule will copurify 11 other CaMKII molecules, but only one interacting protein. 

Therefore, low abundance CaMKII interacting proteins may be valid interactors and using 

technologies such as multidimensional protein identification technology (MudPIT) and other 

approaches to detect low abundance proteins will be useful in identifying novel interacting 

proteins (see Summary, Emerging Approaches, and Future Directions, below). Moreover, 

given the dodecameric structure and the high abundance of CaMKII in the PSD, as well as 

the panoply of CaMKII interacting proteins, CaMKII may also function as a structural or 

scaffolding protein in dendritic spines.91

Many of the studies that have delineated the function of CaMKII autophosphorylation at 

Thr286 and Thr305/6, have done so using phosphorylation mutants. These mutants do not 

fully recapitulate a nonphosphorylated residue (e.g., T286A) or a phosphorylated residue 

(e.g., T286D). Moreover, phosphorylation mutants at one site may influence the 

phosphorylation status of additional sites.66 While Thr286 and Thr305/6 are the most well-

studied sites of autophosphorylation, CaMKIIα is autophosphorylated at multiple other 

sites, including Thr253, Ser279, Thr305, Thr306, Ser314, Ser318, Ser331, Ser333, Thr334, 

Thr336, and Thr337 (Figure 3).92–102 In addition to these sites on CaMKIIα, CaMKIIβ 
contains an actin-binding domain and can be phosphorylated at Ser315 and Thr320/1 nearby 

and within this domain. Phosphorylation at these CaMKIIβ sites is associated with the 

cytosolic fraction66 suggesting phosphorylation at these sites may modulate CaMKIIβ 
interactions and synaptic targeting. While many of these sites have been identified as 

autophosphorylation sites, the interplay between them in vivo is not completely understood. 

Many of the above phosphorylation sites have been identified in vivo using proteomics 

approaches and future proteomics-based studies will be needed to track phosphorylation 

changes at multiple sites under different pathological conditions and/or subcellular fractions.

CaMKII phosphorylation is modulated in different disease states. For example, Thr286 

phosphorylation is increased in animal models of Parkinson disease103,104 and Thr305/6 

phosphorylation is increased in an animal model of Angelman syndrome.105 Rescue of 

changes in CaMKII autophosphorylation/activity normalizes behavioral deficits observed in 

these animals.104,105 In addition to Parkinson disease and Angelman syndrome, CaMKII 

autophosphorylation and interaction with the NMDAR is increased in brain slices following 
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oxygen/glucose deprivation, a model of ischemia.106 Furthermore, a recent phospho-

proteomics study identified multiple phosphor-ylation sites on different synaptic proteins, 

including phosphorylation of Ser331 on CaMKIIα. Phosphorylation at this site was 

increased by cocaine-cue memory extinction, but decreased by cocaine-cue memory 

reconsolidation.107 While individual phosphorylation sites have been interrogated on 

CaMKII, understanding the interdependencies of phosphorylation on the kinase would be 

very interesting. As an emerging field, top-down proteomics is useful in identifying not only 

individual phosphorylation sites, but the phosphorylation signal or code on an intact protein 

molecule.108 For CaMKII, this approach would be useful in determining how a single kinase 

subunit within a holoenzyme is phosphorylated in a specific subcellular localization or in 

response to physiological or pathological changes in synaptic plasticity. Using proteomics to 

understand pathological changes in kinase autophosphorylation, protein interactions, and 

subcellular localization in different neurological diseases will increase understanding of the 

normal and pathological role of this multifunctional kinase and may uncover novel targets to 

treat multiple synaptopathies.

α-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLEPROPIONIC ACID 

RECEPTOR (AMPAR)

AMPARs are ionotropic glutamate receptors that allow for Na+ (and in some cases Ca2+) to 

enter the postsynapse. There are four subunits of the AMPAR, GluA1−4, with the GluA2 

subunit being the most abundant, followed by GluA1, then GluA3, and then GluA4 (Figure 

4). NMDAR-dependent synaptic plasticity requires CaMKII activation. Activation of 

CaMKII and the NMDAR modulate AMPAR localization at the synapse, causing long-term 

plasticity changes. Increased AMPAR levels in the membrane are essential for LTP, whereas 

decreased AMPARs in the membrane underlies LTD. Multiple, immunoprecipitation-based 

studies have identified novel proteins that interact with the AMPAR to modulate AMPAR 

insertion into membranes and/or AMPAR channel conductance.109–111 Quantitative 

proteomics approaches have recently been used to determine absolute or relative abundance 

of AMPAR interacting proteins.110–112 Based on these quantitative data, we have generated 

a schematic model depicting the ratiometric expression of AMPARs and their interacting 

proteins (Figure 4). The transmembrane-AMPAR regulatory proteins (TARPs) are localized 

to the membrane (shown as inner components in Figure 4). Multiple TARP isoforms include 

γ-8, γ-3, γ-2, γ-7, and γ-4. Knockout of TARPγ-2 (aka stargazin) leads to deficits in basal 

AMPAR synaptic transmission in hippocampal neurons and also AMPAR insertion in 

cerebellar granule cells.113 Mice with a spontaneous mutation in what was later described as 

stargazin were found to have an ataxic gait and were prone to seizures.114,115 Stargazin and 

TARPγ-7 are the main TARPs expressed in the cerebellum,112 but other TARPs may 

compensate for stargazin activity at other synapses.116 TARPγ-8 is one of the most abundant 

TARPs detected in the whole brain (Figure 4).110 Recent studies have found that CaMKII 

phosphorylates TARPγ-8 at Ser277 and Ser281. Phosphorylation at these sites enhances 

AMPAR transmission and is required for LTP.117 Conversely, mutating similar 

phosphorylation sites on stargazin in the context of knocking out TARPγ-3 and TARPγ-4 

had no effect on LTP,117 suggesting that other TARPs do not compensate for loss of 

TARPγ-8.
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Germ cell-specific gene 1-like protein (GSG1L) is a novel AMPAR interacting protein that 

was found using proteomics-based approaches and that uniquely modulates AMPAR 

function by altering desensitization kinetics.110,111 GSG1L has also been shown to suppress 

the calcium permeability of AMPARs.118 In addition to GSG1L, proteomics studies have 

uncovered other proteins such as Abhydrolase domain-containing 6 (ABHD6) and porcupine 

(PORCN), which modulate AMPAR trafficking to the membrane.119 Unbiased, proteomics-

based approaches are well-suited for identifying interacting proteins such as those where 

there is no a priori knowledge that the protein may interact with the receptor.

In addition to identification of AMPAR components, proteomics approaches have also been 

utilized to determine developmental and region specific differences in AMPAR levels and 

interactions.112,120 The hippocampus, cortex, and cerebellum have the highest relative 

amounts of AMPAR levels.112 While the quantity of the AMPARs are fairly stable during 

development, the associated proteins tend to vary. TARPγ-4 is highest at birth but decreases 

as animals age to adults. In contrast, TARPγ-8 increases during development to adult levels 

in rat brain.112 Proline Rich Transmembrane Protein 1 (PRRT1) was expressed in, and 

interacts with, AMPARs most robustly in the hippocampus. GSG1L had robust interaction 

with AMPARs in the cortex and less association in the hippocampus. Ras-related protein 

Rap2B (RAP2B) and Abhydrolase domain-containing 12 (ABHD12) had robust interactions 

with AMPARs in the hippocampus. Characterization of AMPAR proteomes from different 

brain regions and/or subcellular fractions has greatly enhanced our knowledge of differential 

AMPAR complexes; however, it is currently unclear how different physiological (e.g., 

induction of LTP/LTD) or pathological perturbations may modulate these specific 

complexes. Recent work by Castillo, Tomita, and colleagues has shown that, in addition to 

its role in LTP in hippocampal slices (see above), phosphorylation of TARP γ-8 at Ser-277 

and Ser-281, is critical for both cued and contextual fear memory.117 While this is one 

change, it is likely that changes in the phosphorylation of, or association of AMPARs with, 

additional AMPAR interacting proteins also occurs in normal plasticity and under 

pathological conditions. Understanding pathologies associated with interactions in specific 

brain regions and/or cell types may reveal novel disease targets that have enhanced 

specificity for treating diseases associated with plasticity deficits.

POSTSYNAPTIC DENSITY PROTEIN OF 95 kDa (PSD-95)

PSD-95 is a highly enriched scaffolding protein that has multiple organization domains. 

PSD-95 and other scaffolding proteins interact with multiple synaptic proteins including 

NMDARs, AMPARs, and CaMKII (Figure 5) to properly localize them at the PSD. PSD-95 

is expressed at a concentration of ∼85 fmol/μg in forebrain PSDs, making it one of the most 

abundant adaptor/scaffold-type proteins.4 Knockdown of PSD-95 decreases AMPAR levels 

in specific membrane patches.121 KO of PSD-95 increases protein expression of a synaptic 

tyrosine phosphatase, striatal-enriched protein tyrosine phosphatase (STEP61), causing a 

decrease in synaptic GluN2B protein at the membrane.122 Moreover, PSD-95 KO animals 

have decreased spine density in the striatum and increased spine density in the 

hippocampus.123 PSD-95 KO animals also have specific physiological and behavioral 

abnormalities,124 including enhanced LTP, abrogated LTD, and impaired spatial memory 

deficits in aversive behaviors.125,126
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While PSD-95 KO mice have many deficits, overall they are viable and do not have as 

severe of a neurological phenotype as may be thought given PSD-95 abundance and ability 

to recruit and stabilize proteins at the PSD. This minimal synaptic phenotype may be due to 

overlapping function of other adaptor/scaffolding proteins at the PSD. Specifically, 12 

adaptor/regulatory proteins associated with PSD-95 in a proteomics screen, including: 

PSD-93, SAP-102, SAP-97, SAPAP1, SAPAP2, SAPAP3, and SAPAP4.127 While these 

proteins may compensate for loss of PSD-95, they are normally expressed at 6–40-fold 

lower levels than PSD-95 (∼2–15 fmol/μg).4 Grant and colleagues identified 118 proteins in 

at least three biological replicates that coprecipitated with PSD-95 that they have defined as 

constituents of the “core” PSD. We have plotted these proteins using the String database and 

the protein function categories given by Fernandez et al. (Figure 5).127 As expected there are 

multiple known nodes of association between the identified PSD proteins. To understand 

how the PSD-95 interactome compares to other synaptic protein interactomes, we can 

compare the NMDAR interactome (Figure 2)30 with the PSD-95 interactome (Figure 5).127 

If we use the same parameters as Figure 2 and only plot associations that have been 

experimentally validated, a large majority of the proteins are not connected (data not 

shown). Therefore, we evaluated interactions that were not only experimentally validated, 

but also validated by textmining, databases, coexpression, neighborhood, gene fusion, and/or 

co-occurrence. Even adding other evidence of interactions, there were still 18 proteins that 

were unconnected. Given that the more recent studies use updated mass spectrometers, it is 

possible that these studies have probed deeper and have not been as well validated. 

Conversely, by detecting lower abundance interactors, it is possible that some of the 

interactions are nonspecific. Looking at specific proteins, one notices both overlap and 

unique proteins in each interactome. Examples of overlap include kinases, phosphatases, 

SynGAP, and cytoskeletal proteins. Conversely, some differences were observed. For 

instance, Shank and Homer were present in the NMDAR complex, whereas in the PSD-95 

complex, Shank was only observed in a single biological replicate whereas Homer was not 

detected. Moreover, vesicular trafficking proteins and multiple ATPases were detected in the 

PSD-95 complexes, but not in the NMDAR complexes. These variances in data may be due 

to differences in the interactions between these molecules, but may also be due to technical 

advances in HPLC separations and parameters and mass spectrometers. As instrumentation 

and methodologies continue to improve, additional data will be generated, even from the 

same types of experiments. In addition to technical differences, isolation of NMDAR 

complexes would be predicted to include both synaptic and extrasynaptic complexes, which 

may have different interactions and organization. Comparing complexes from core PSD 

proteins such as PSD-95 with other synaptic protein complexes (like the NMDAR, which is 

localized both within and outside of the core PSD) will allow for the determination of the 

core components of the PSD as well as the identification of proteins that reside outside of 

the PSD that may have unique synaptic functions.

In addition to traditional isolation of PSDs using immuno or peptide isolation strategies, 

recent studies overexpressed a PSD-95 protein fused to an E. coli. biotinylating enzyme, 

BirA.128 This fusion protein allows for biotinylation of proteins near the fused PSD-95 

protein and streptavidin pull-down to identify proteins in proximity to PSD-95. Following 

streptavidin pulldown and mass spectrometry, multiple known PSD-95 interacting proteins 
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were identified, including NMDARs, AMPARs, and scaffolding proteins (e.g., Shank, 

PSD93, SAP97, SAP102).

Robust characterization of the PSD-95 interactome has identified multiple synaptic proteins 

and interactions, many of which have been implicated in neurological diseases, including 

autism spectrum disorder and psychiatric diseases.129–131 Future studies will need to 

identify cell-specific changes in the PSD-95 interactome under different conditions and/or 

disease states.

SUMMARY, EMERGING APPROACHES, AND FUTURE DIRECTIONS

Proteomics approaches have identified and characterized multiple synaptic protein 

complexes. These approaches are well-suited to understanding how proteins interact and 

how those interactions are regulated in different cell types and under pathological 

conditions. Moving forward, technological advances will allow for a deeper understanding 

of the synaptic interactome. This deeper understanding will aid in identification of novel 

therapeutic targets.

As mentioned above, proximity labeling approaches were used to identify proteins in 

proximity to PSD-95. One potential drawback to this approach is that it may not detect 

tertiary interacting proteins, depending upon the distance of the tertiary interacting protein 

from the biotinylating enzyme. Also, addition of the biotinylating enzyme may induce 

ectopic changes to the interaction network. Furthermore, appropriate controls must be 

performed to account for proteins that nonspecifcally bind to streptavidin.132 However, 

proximity labeling approaches like these133 allow for detection of both direct and indirect 

interactions, as well as interactions that tend to be more transient or that are difficult to 

biochemically isolate.134,135 Moreover, this approach allows for temporal and cell specific 

isolation of protein complexes. This proximity approach was used to biotinylate proteins that 

are near gephryin,128 a protein enriched at inhibitory postsynaptic densities, an area that is 

difficult to biochemically isolate. This approach can enhance immunoprecipitation 

approaches that have been used to immuno-isolate inhibitory and purkinje synapses.136,137

Another proximity labeling approach uses horseradish peroxidase (HRP) or an engineered 

peroxidase called APEX (or APEX2 depending on iteration) that uses hydrogen peroxide 

and biotin-phenol substrate to label nearby proteins.138,139 Specifically, neuronal cultures 

expressing HRP-tagged proteins were incubated with hydrogen peroxide and a membrane 

impermeable biotin phenol. This allowed for biotinylation of proteins in close proximity to 

the HRP-conjugated protein. Both excitatory and inhibitory synaptic cleft proteins were 

identified using mass spectrometry on streptavidin-isolated proteins.132 Further refinement 

of this approach allows the APEX2 protein to be split into two parts, allowing for 

identification of proteomes only where both parts of the protein are expressed. Fusing one-

half of APEX2 to neurexin and one-half to neuroligin allowed for identification of specific 

synapse proteomes in the visual system.140 One of the drawbacks to these approaches may 

be toxicity of using hydrogen peroxide. However, this is not an issue with the BirA (BioID) 

approaches. Moving forward, one could envision using these types of approaches to further 

restrict expression of tagged proteins to specific cell types in addition to specific regions.
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While proximity labeling approaches will allow for the identification of proteins in specific 

compartments such as the PSD, newer technological advances will improve identification of 

synaptic proteins as well. A standard workflow (see Abstract graphic) for isolation of 

synaptic protein complexes includes immunoprecipitation of the complex, followed by 

separation of the complex and identification of the complex components using mass 

spectrometry. Standard separation techniques include gel-based separation. However, 

advances in separation technologies, such as MudPIT, will allow for identification of lower-

abundance proteins. This approach couples strong cation exchange followed by reversed 

phase HPLC to enhance the separation of peptides.141 In addition to detecting more proteins 

by increasing detection of lower-abundance proteins and peptides, we will be able to identify 

post-translational modifications (PTMs) that occur at low levels. Coupling MudPIT with 

other technological advances such as improvements in mass spectrometers as well as in 

ionization approaches (e.g., electron transfer dissociation (ETD)) will be useful in detecting 

more PTMs by enhancing coverage and more faithfully preserving PTMs such as 

phosphorylation.142 Moreover, top-down mass spectrometry approaches to analyze intact 

proteins will be useful in identifying specific “proteoforms” of proteins.108,143 Specifically, 

this approach could map all of the PTMS on a single protein molecule. Furthermore, using 

multiple enzymes to digest complex mixtures along with the above newer technologies and 

chromatagrophy improvements has allowed for near complete examination of the yeast 

proteome.144–146 One would predict that utilizing these approaches would allow for 

identification of a near-complete or complete interactome. These approaches will be critical 

for identification of low abundance, endogenous synaptic interactomes. However, with 

improved detection capabilities and the high abundance of certain synaptic proteins, 

especially in fractionated samples, appropriate controls including KO-based strategies are 

important in validating specific interactions.147

Moving forward, improvements in mass spectrometry instrumentation and data analysis 

tools will allow us to further identify protein interactions that underlie normal and 

pathological synaptic communication. In addition to improvements in instrumentation, label-

based approaches are being developed to allow for relative or absolute quantification of 

proteins using stable-isotope labeling of amino acids in culture (SILAC) or isobaric mass 

tags (e.g., iTRAQ and TMT).148 These approaches have been used to quantify tens to 

hundreds of proteins concurrently149 and have been used to analyze relative PSD protein 

abundance and abundance of phosphorylation sites.150 Targeted, label-free quantitative 

techniques such as selected reaction monitoring (SRM) and Sequential Windowed 

Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH-MS) can be used to 

analyze tens to hundreds (SRM) or tens of thousands (SWATH-MS) of proteins at one 

time.151 Specifically, SRM methods have been designed to quantify ∼100 rat PSD 

proteins.152 In addition, newer label free quantitation approaches such as isoQuant20 or 

MaxQuant software and delayed normalization and maximal peptide ratio extraction153 are 

useful. MaxQuant has been utilized to quantify levels of over 13 000 protein groups isolated 

from different structures and different cell types in the brain.154

Taken together, advanced methodologies along with improved hardware will enhance our 

ability to quantitatively probe the depths of global synaptic protein abundance, PTMs, and 

protein interaction networks under normal and pathological conditions in specific brain 
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regions and cell types. In addition to novel approaches and methodologies, performing 

multiple biological and technical replicates is also important in enhancing the full 

complement of detected proteins. Obtaining a complete and specific synaptic interactome 

and understanding physiological and pathological changes that regulate this interactome will 

be critical for identifying novel druggable pathways to treat myriad different neurological 

disorders.
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Figure 1. 
Relative expression of PSD proteins. Schematic representation of multiple PSD-enriched 

proteins shown at relative abundance based on previous quantitative data.4 Values in 

parentheses represent approximate arbitrary expression of PSD molecules with CaMKII, the 

most abundant PSD protein, set to 1000 individual subunits. The number of molecules 

shown is representative of this arbitrary expression.
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Figure 2. 
Interconnectivity of the NMDAR interactome. The NMDAR interactome30 was input into 

the string database (http://string-db.org/) to visualize interactions between the identified 

components. 66 proteins were evaluated. We set parameters to only detect interactions that 

were validated experimentally. The thickness of the line corresponds to the confidence of 

interaction (thin lines, >0.4; medium lines, >0.7; thick lines, >0.9).31
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Figure 3. 
CaMKII autophosphorylation sites.102 Those autophosphorylation sites that are enriched in 

nonsynaptic (green) or synaptic (red) locations are labeled. CD, catalytic domain; AD, 

association domain; LK, linker region; ABD, actin-binding domain.
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Figure 4. 
Relative expression of AMPAR interacting proteins. AMPAR interacting protein 

abundance110,111 was used to generate a schematic showing the relative abundance of 

AMPAR and proteomically quantified interacting proteins. Interactions are split into integral 

membrane proteins, inner components, and outer components. Ratiometric expression is 

normalized to the highest abundance protein, GluA2, which is set at an arbitrary value of 34.
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Figure 5. 
Interconnectivity of the PSD-95 interactome. PSD-95 interacting proteins identified using a 

tandem-affinity purification approach127 were input into the string database (http://string-

db.org/) to visualize interactions between the identified components. 118 proteins were 

evaluated. We set parameters to only detect interactions that were found by multiple sources 

(see text). The thickness of the line corresponds to the confidence of interaction (thin lines, 

>0.4; medium lines, >0.7; thick lines, >0.9).31
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