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Abstract

Research Objectives Nationally sponsored cancer care quality improvement efforts have been 

deployed in community health centers to increase breast, cervical, and colorectal cancer screening 

rates among vulnerable populations. Despite some immediate and short-term gains screening rates 

remain below national benchmark objectives. Overall improvement has been both difficult to 

sustain over time in some organizational settings and/or diffuse to others as repeatable best 

practices. One reason is that facility-level changes typically occur in dynamic organizational 

environments that are complex, adaptive, and unpredictable. This study seeks to better understand 

the factors that help shape community health center facility-level cancer screening performance 

over time. This study applies a computational modeling approach that combines principles of 

health services research, health informatics, network theory, and systems science. Methods In 

order to investigate the role of knowledge acquisition, retention, and sharing within the setting of 

the community health center and the effect of this role on the relationship between clinical 

decision support capabilities and improvement in cancer screening rate improvement, we 
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employed Construct TM to create simulated community health centers using previous collected 

point-in-time survey data. Construct TM is a multi-agent model of network evolution. Social, 

knowledge, and belief networks co-evolve. Groups and organizations are treated as complex 

systems, thus capturing the variability in human and organizational factors. In Construct TM, 

individuals and groups interact communicate, learn, and make decisions in a continuous cycle. 

Data from the survey was used to create high-performing simulated community health centers and 

low-performing ones based on extent of both computer decision support use and cancer-screening 

rates. Results Our virtual experiment revealed that patterns of overall network symmetry, agent 

cohesion, and connectedness varied by community health center performance level. Visual 

assessment of both the agent-to-agent knowledge sharing network and agent-to-resource 

knowledge use network diagrams demonstrated that community health centers labeled as high 

performers typically showed higher levels of collaboration and cohesiveness among agent classes, 

faster knowledge absorption rates, and fewer unconnected agents to key knowledge resources. 

Conclusions and Research Implications Using the point-in-time survey data outlining community 

health center cancer screening practices our computational model successfully distinguished 

between high and low performers. Our study showed that high performance environments 

displayed distinctive network characteristics in patterns of interaction among agents, as well as in 

the access and utilization of key knowledge resources. Our study demonstrated how non-network 

specific data obtained from a point-in-time survey can be employed to forecast community health 

center performance over time and thereby enhance sustainability of long-term strategic 

improvement efforts. Our results revealed a strategic profile for community health center cancer 

screening improvement over a projected 10-year simulated period. The use of computational 

modeling and simulation allows for additional inferential knowledge to drawn from existing data 

examining organizational performance in increasingly complex environments.
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1. Introduction

Improving cancer-screening performance for breast, cervical, and colorectal cancer in 

community health centers (CHCs) is a priority.1 Cancer screening rates among vulnerable 

populations typically served by CHCs remain below the nationally targeted benchmarks.2,3 

Low cancer-screening rates are primary contributors to cancer health disparities among this 

population, resulting in an increase in the number of new cancer cases, increased mortality 

and lower five-year survival rates.1,3,4

The Health Disparities Cancer Collaborative (HDCC) established in 2003–2005 represents a 

structured approach towards building capacity, encouraging best practices, and evaluating 

the areas of deficiency in cancer-care delivery as it contributes to present and future cancer-

screening performance levels.1,3 The HDCC, co-sponsored by the Health Resources 

Services Administration (HRSA)and the National Cancer Institute (NCI), includes CHCs 

from around the country.5

Despite advancements in facility-level cancer-screening rates among HDCC participants, 

two major performance issues regarding the sustainability of effort over time and diffusion 

of best practices have emerged. Previous studies have revealed that HDCC participation was 

positively correlated with improvements in screening for breast, cervical, and colorectal 

cancer with improvements derived through providers’ self-reported measures over the 

previous year.1,3 Other studies also revealed that maintaining improvements in process 

outcomes well after their HDCC participation remains a major challenge for CHCs.6–9 

Additionally, the best practices that discriminate high-performing CHCs from low-

performing CHCs are not easily duplicated in low-performing CHCs.

Issues related to the sustainability and diffusion of innovation reveal the possibility of 

additional organizational and/or practice-setting factors that could affect health outcomes. 

Such organizational factors among HDCC participants may not be easily decipherable or 

explained through the use of traditional statistical modeling. In an earlier study, we used 

traditional (statistical) modeling to examine the correlation between antecedents and 

outcome variables, as collected from a single point-in-time snapshot of CHCs cancer-

screening practices. Such correlations, while at times positive, may not be reliable 

necessarily for the accurate prediction of future organizational practices and/or outcomes.

We address this issue by a hypothesis-generating experiment of CHCs cancer-screening 

practices, using dynamic network-simulation analysis to convert single point-in-time survey 

data into a dynamic network-analysis data source and to generate a series of network 

diagrams (configurations) to be used to compare high-performing CHCs to low-performing 

CHCs.

2. Using Computational Modeling to Evaluate Community Health Centers’ 

Practices

Computational organizational models (COMs) are useful in situations where actual 

experimentation on the population of interest is not feasible or is deemed unethical. Such 
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scenarios may be actual (having already occurred in past) or hypothetical (providing an 

interesting future possibility). In this project, we used an existing COM called Construct-

TM, which has been validated previously to reflect the dynamics of group diffusion of 

information accurately.10

Recent advances in social networks, cognitive sciences, computer science, and 

organizational theory have led to a new perspectives on organizations, accounting for both 

their computational nature and their underlying social and knowledge networks.11 

Organizations are complex, computational, and adaptive agents in their own right,12 as they 

are composed of other elements which are constrained and enabled by their positions in 

social settings and knowledge webs of affiliations, linked agents, and tasks. Computational 

modeling allows for in-depth investigations between an organization’s complex and adaptive 

nature that may include, (1) the interaction of the specific agents/actors, (2) the resources 

present in the organization (e.g. the use of information-technology, clinical reminders, 

prompts at point-of-care, etc.), and (3) the core activities that directly or indirectly impact 

the desired health objectives and outcomes.13,14

Computational modeling enables the construction of a virtual model for a system, such as a 

hospital or patient-care unit, which can be used to study its behavior under various 

conditions15,16 as well as to generate hypotheses regarding organizational dynamics.17,18 

Traditional statistics cannot explore adequately the what-if scenarios and are unable to 

investigate hidden relationships between people and resource configurations, which are 

necessary to explain the organizational behaviors and/or outcomes of which computational 

modeling is capable.1915 Computational models can provide meaningful insights into 

organizational behavior (e.g. linking a set of organizational predictors of outcomes to 

observable patterns of key resource-utilization). The use of computational models, 

specifically simulation, allows for the generation and testing of hypotheses.17 Computational 

models used in conjunction with hypothesis testing could be an effective approach to 

resolving complex organizational challenges.

The goal of this research is to explore the possible existence of simple, nonlinear processes 

underlying team or group behavior17 through computational models. Our core objectives are 

to determine if we can (1) duplicate CHC performance over an extended period of time into 

the future using simulations, which could be used for the formulation of hypotheses on 

sustainability; (2) identify structural differences between observed high-performing CHCs 

and low-performing CHCs to generate hypotheses on issues related to the diffusion of best 

practices; and (3) examine and analyze point-in-time survey data, such as survey data 

collected in 2006 on HDCC breast, cervical, and colorectal screening practices, and 

determine if exploratory computational analysis can add value to existing information.

In this study, we focus on the use of existing simulation tools to examine the dynamics of 

CHCs. We discuss Construct-TM in the next section, followed by a discussion of the use of 

NCI/HRSA HDCC survey items to define the Construct-TM model.

Carney et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1 Construct-TM Overview

Construct-TM is “a social network simulator”20 based on the concept of transactive memory 

(the “TM” in Construct-TM), which is the process by which a group of people (e.g. an 

organization such as a community health center) collectively store, retrieve, learn, 

communicate (both inside and outside the group), and use knowledge.20 Construct-TM 

employs dynamic-network theory to simulate the gain, spread, retention, and loss of the 

organization’s knowledge over time through probabilistically determined informational 

exchanges, which are termed interactions.20 This allows for evaluation of intermediary and 

long-term effects of an intervention on the knowledge component of an organization through 

virtual experiments. Entities within Construct-TM are known as agents (human or non-

human) and interact due to (1) homophily, or similarity, between agents; (2) acquisition of 

new knowledge (i.e. learning); and (3) explicit information search (i.e. research).20 In a 

simulation, an agent’s knowledge can be inaccurate or incomplete, resulting in a less-than-

optimal behavior and changed interaction probabilities with other agents in the network. 

Attributes assigned to or acquired by agents within a Construct-TM simulation are:20

• Knowledge. Defined by Construct-TM’s user and represented mathematically as 

a binary or real value. It can be learnt or forgotten by agents at differing rates.

• Beliefs. An agreement with a principle area-function of current knowledge, prior 

beliefs, and simulation parameters, composition of the interaction sphere (a 

simulation parameter), and the influencing ability of others in conjunction with 

the susceptibility to influence knowledge.

• Tasks. Actions taken, possibly based on knowledge and beliefs.

• Influence. Interactions with other agents: i.e. initiating or receiving 

communication. Aside from homophily, the principle of influenceability is a 

prime driver of agent interactions within Construct-TM.

• Socio-demographic Attributes. Proximity measures affecting the likelihood of 

interaction. These include static factors (physical, socio-demographic, and/or 

social similarity weights) and knowledge factors (based on knowledge similarity 

and/or knowledge expertise). These determine the selection of a second agent to 

accept a fact “known” to or in possession of another agent.

2.2 Informing Construct-TM with Organizational Performance Survey Items

We used Construct-TM to create virtual CHCs similar to the virtual design team described 

by Jin and colleagues,21–23 who used a “systematic” design of “organizational structures that 

relied upon abstracted descriptions of organizational tasks and activities” in a simulated 

model of the team.22 The “virtual design team” pioneered the use of a simulated model to 

mimic the behavior of a full-scale, real-life organization.22 We constructed our virtual CHC 

by relying on 37 summary measures derived from the 99 unique NCI/HRSA HDCC survey 

items. The HDCC survey provided details on cancer screening from the perspective of (1) 

organizational and/or practice setting factors, (2) provider factors shaping beliefs, attitudes, 

and behaviors, and (3) patient-population characteristics.
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For an effective application of our method, the prerequisites include (1) availability of 

sufficient data on strategic planning to capture organizational performance and (2) a set of 

predefined metrics, which are available with CHCs and other healthcare organizations. We 

also assume this data is gathered largely to provide a retrospective view of activity for a 

specified time period, after which assumptions can be made about future events. However, in 

light of two primary issues specific to CHCs cancer screening facility-level performance 

stated above, sustainability and diffusion remain a problem and negatively impact long-term 

goals of reduction in cancer health disparities within vulnerable populations. We assume 

there exists hidden information in the strategic-planning data which is used inadequately to 

design future CHC practices. To address this issue, we designed a self-contained study to 

examine organizational behavior and the usefulness of the available data in extracting 

additional insights. An additional challenge involves the conversion of organization-

performance assessments into usable network data using probabilistic-modeling algorithms 

within Construct-TM to extract data involving person-to-person contacts for interaction 

networks, person-to-resource/knowledge contacts for knowledge networks, etc.

Our study is self-contained, as the performance boundaries are limited strictly to the cohort 

of CHCs used. The terminology of “high-performance” and “low-performance” are not 

absolute and are used relative to each other (based upon their HDCC survey responses). 

Additionally, we utilize four distinct states for comparison: (1) low-performing CHC-

beginning state, (2) high-performing CHC-beginning state, (3) low-performing CHC-end 

state, and (4) high-performing CHC-end state. The beginning states are derived from the 

existing data, and the end states are based on probabilistic modeling of interaction, 

knowledge utilization, learning, and the ability to influence others or to be influenced. The 

high-performing CHC-end state represents the ideal state that any of the CHCs can assume 

within the given timeframe of ten years, while low-performing CHC-beginning state 

represents the least-desirable state. Two major challenges to achieving virtual CHCs include 

the following: (1) if successful simulation of performance level behavior throughout the ten-

year simulated period can be achieved to reflect CHCs using the existing HDCC survey 

variables, and (2) if observable differences detected within the network structures can be 

hypothesized as facilitating/inhibiting sustainability and diffusion.

The first challenge involves the assignment of a correct set of variables to define the 

behaviors and practices of each agent specifically and the performance level generally 

(reviewed below in Methods). The second challenge pertains to determining the extent to 

which the experiment could yield visual distinctions in relation to the performance levels 

and add value to traditional assessments of CHCs cancer-screening performance (HDCC 

survey, in our case). A successful experiment would yield critical intelligence on the specific 

data set and variables gathered within the HDCC cancer-screening performance survey, 

along with the parametric boundaries that best describe and predict the facility-level and 

agent behavior over time. A successful model will enable the identification of structural 

differences linked to performance levels, aiding in the development of strategies for the 

diffusion of best practices and innovation. We argue that the current HDCC-survey data 

cannot model successfully the future performance of CHCs with a traditional statistical 

model alone.
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3. Evaluating Performance via Network Visualization

Network analysis is used typically to examine interactions among and between entities 

(referred as agents or actors) within a predefined boundary or space. In our modeling, an 

agent (A) can be human or non-human models of interaction between two or more people, 

between a person and a knowledge resource (K), or between core knowledge resources and 

critical tasks (T) that can be created.

In the present study, we limit our investigation to the knowledge-sharing network to evaluate 

knowledge-sharing practices between agents (A × A) and the knowledge-resource network 

(A × K), as well as to observe access to knowledge resources among agents in the network. 

We rely largely on visual analysis of network diagrams to highlight the differences between 

performance levels. The basic construction of a network is characterized by nodes 

(represented by an individual agent or resource) and linkages (the connecting lines among 

agents or between agents and resources). Network relations among agents and resources are 

illustrated by sample network diagrams recreated from data provided by the Center for 

Computational Analysis of Social and Organizational Systems (CASOS) at Carnegie Mellon 

University.18 Figures 1a–1d illustrate the initial- and final-state sample network diagrams 

and help to contextualize our use of network measures.

We limit our analysis to six distinct network measures: density, cliques, clusters, 

connectedness, cohesion and symmetry. Our networks are bimodal, with agents connected to 

knowledge. Therefore, concepts such as betweenness centrality and eigenvector centrality 
are not appropriate entirely for describing these networks, although they are useful 

analogical concepts.

3.1 Network Density

Network density is defined as the proportion of ties actually present from the total number of 

possible ties. When depicted using a force-directed layout, highly dense networks are 

presented as tightly packed, and the node-level measure of this quantity is called degree.

3.2 Cliques and Clusters

A clique represents a concentrated or localized density of network nodes, represented as 

agents or resources. The formal definition of a clique is a group involving “the maximum 

number of actors who have all possible ties present among themselves.” The smallest cliques 

can consist of as few as two nodes (referred as dyads) or can grow to form much larger, 

closely connected groups within the network. Cliques provide insight regarding access to 

key resources or actors within the network, the level of proximity or isolation between 

individuals or resources to others within the same network, and the level of overlap of these 

agents/actors within the network. Clique analysis is critical when examining diffusion and 

adoption of innovation studies. Innovations often have difficulty penetrating a clique 

initially, but then spread rapidly.24,25
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3.3 Connectedness and Cohesion

While network density can be observed by examining the arrangement of nodes and their 

relative distance to each other in the network, connectedness and cohesion are used to 

examine the arrangement of linkages within a network. Connectedness measures how many 

linkages one agent has to other agents within the network, both in-group and out-group. This 

is examined visually by observing the number of linkages in the network. Here we assume 

that more visible linkages refer to a network displaying increased connectedness.

Within our sample network, connectedness can be observed in terms of within-cluster 

connectedness and between-cluster connectedness. As an example, we consider each cluster 

as representative of a distinct agent classification (e.g. general practitioners and specialists), 

and we examine the level of coordination among primary-care and specialty-care providers 

in sharing knowledge resources with each other and the patient in delivering care. In our 

sample network, we observe that in the initial state within each cluster, several sub-clusters 

or cliques display more connectedness, which reveals a less uniform arrangement of agents 

in the network. Also, the relative connectedness of agents to knowledge resources is 

distributed unevenly, making certain knowledge resources more accessible to some agents 

than to others. Analysis between clusters indicates that two core clusters in the initial state 

are connected only by a single agent, referred to as a bridging agent. A bridging agent links 

two or more distinct clusters; although this resembles the ideas of betweenness, these are 

multi-modal networks. A bridging agent has a unique collection of knowledge instead of 

social relationships.

Considering the example of primary care vs. specialists, the bridging agent might be a 

patient navigator or care coordinator. Elimination of a bridging agent compromises the 

integrity of interaction across the clusters. In the end state, connectedness is increased 

greatly over the start state and with uniform access to critical knowledge resources. In our 

network analysis, more connectedness is considered favorable.

Cohesion defines not only the number of linkages, but also the quality of the linkages 

(defined as agent to agent sharing, cooperation, and collaboration). Cohesion is, in part, 

observed in patterns of clusters of cliques formed. Clusters and cliques must be examined 

within the context of phenomena in question.

Consistent with our analysis, the end state in our sample network suggests a heightened state 

of all of these factors, evident from the strong centralized cluster or clique encompassing 

nearly all agents, signifying strengthened ties amongst agents and a strong, tightly knit 

environment. Additionally, the knowledge resources are more accessible, and the two larger 

clusters within the end state have more ties between them and no longer rely upon a single 

bridging agent. The existence of knowledge nodes between the two clusters indicates shared 

knowledge resources that are accessible to both clusters. In the start state, the knowledge 

resources were only available within each cluster, and the bridging agent served as a curator 

for inter-cluster knowledge transfer. Within our analysis we assume that greater patterns of 

cohesion indicate a more favorable state than lesser cohesion.
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3.4 Network Symmetry

There is an ongoing debate whether a symmetrical network represents a more favorable state 

than a less symmetrical one. Within the context of sustainability and diffusion, we assume 

that a symmetrical network allows for enhanced information flow, improved knowledge 

utilization and sharing, and increased interactions among agents. Network symmetry can be 

observed visually and serves to combine several concepts such as the proximity of nodes, the 

arrangement of the connection of nodes, and the pathways agents/resources must travel to 

reach targeted agents/resources. While analyzing for symmetry, a visual inspection is 

performed for areas of the network exhibiting vulnerability in terms of the need for or 

absence of potential bridging agents, randomness in configuration vs. highly predictable/

repeatable patterns, and relative distribution of agents and resources throughout the network. 

The relative distribution of nodes in a network is critical to understand the overall health of a 

network. Ergo, the principle that the network is only as strong as its weakest link (or node) is 

an appropriate reference.

In our sample network (Fig 1c), the start state displays knowledge resources (green) and 

agents (red) randomly scattered and without any discernible patterns. While we observe two 

large clusters and several observable cliques, the overall start-state network represents a 

highly asymmetrical arrangement of agents and knowledge resources, resulting in an uneven 

accessibility of knowledge resources to the neighboring cliques and no accessibility to other 

members of the network. The same applies to sharing between agents, as some agents might 

have access to neighboring agents but limited or no access to other agents across the 

network. A healthy organizational network allows a consistent distribution of and access to 

knowledge resources and agents across the network, assuming that collaboration, 

cooperation, and cohesion are desired to interact either directly or through connections in the 

network.

We also observe a “crowning” arrangement in the end state produced by the knowledge 

resources, indicating that the agents are surrounded amply by knowledge resources to 

support the activity of the centralized cluster of agents. The centralized clustering of agents 

and the crowning effect of the knowledge resources represent an easily identifiable pattern, 

which is predictable and symmetrical. The challenges of sustainability and diffusion 

throughout the network are likely to be achieved in a network displaying end-state 

configurations instead of start-state configurations.

By employing the sample network diagrams, we illustrate that visual analysis of network 

diagrams can assess network density, cliques and clusters, cohesion and connectedness, and 

symmetry. A comparison of the start- and end-state sample networks can detect an evolution 

in network cohesion, cooperation, collaboration among agents; decreased vulnerability (less 

reliance on a single bridging agent); increased access and exchange of knowledge; and more 

evenly dispersed patterns of knowledge-resource availability with the end state 

representation as highly favorable.

A similar methodology evaluates CHCs cancer-screening performance and generates 

hypotheses on factors shaping the long-term sustainability of quality-improvement efforts 
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(e.g. HDCC) and the increased diffusion of best practices and innovations for the 

improvement of cancer-screening efforts.

4. Methods: Modeling Community Health Center Behavior with Construct-

TM

The primary aim of this computational analysis is to generate hypotheses by examining the 

outcomes of a cohort of virtual CHCs. Outcomes are examined through visual analysis of 

the resulting interactions and knowledge networks of CHCs. We conducted a facility-level 

comparison, expressed as high vs. low performance levels for activities involved in the 

screening of breast, cervical, and colorectal cancer. Our “between” analysis focuses on 

comparing the two performance levels to determine observable structural differences that 

account for a lack of sustainability of quality-improvement efforts over time and for the slow 

uptake and diffusion of innovation and best practices throughout the network of CHCs.

To achieve these objectives, we targeted the following three tasks: (1) to convert a point-in-

time survey of organizational, provider, and patient characteristics associated with cancer-

screening performance into a data source for dynamic network-simulation modeling, (2) to 

develop a sufficiently sensitive simulation model to discriminate between performance levels 

based upon the 37 summary measures, and (3) to project these simulated behaviors over a 

ten-year time period.

4.1 Data Preparation for Entry

As published previously,26 CHC data collected during the HDCC survey was mapped with 

37 summary measures concerning organizational and/or practice-setting factors, provider 

characteristics, and patient characteristics to explain CHCs cancer-screening behaviors.26 

For the current study, these summary measures were mapped with the following Construct-

TM categories to yield a set of formal definitions and parameters governing agent behavior 

throughout the simulation: knowledge, task, agent, and belief.15,19

4.2 Study Sample

Data was retrieved from the NCI/HRSA HDCC 2006 survey comprised of a representative 

sampling of 44 CHCs. Of these, 22 CHCs were identified as participants within the NCI/

HRSA sponsored 2003–2005 cancer-screening improvement collaboration, while the other 

22 CHCs did not participate. The HDCC survey measured the impact of HDCC participation 

on CHCs overall cancer-screening improvement over a 12-month period. The sample was 

biased intentionally toward high-performers in both participants and non-participants to 

ensure an observable effect was detected if it existed. A secondary analysis was performed 

to determine the extent of impact of the clinical decision support (CDS) as an innovative 

best practice (with the use of clinical reminders, use of provider prompts at point-of-care, 

and generation of automated patient results for providers) on facility-level cancer-screening 

improvement scores.27 Although our previous results indicate a positive correlation between 

HDCC participation and CDS use, traditional statistical analysis could not find any 

correlation between the use of CDS and its impact on cancer-screening improvement in 
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CHCs. We were also unable to observe continued rates of improvement in cancer screening 

or sustained uptake of innovative technologies.27

Therefore, we created a composite outcome measure of cancer screening improvement and 

CDS utilization to represent the overall performance of CHCs, which was later used to 

instantiate our virtual CHCs. These virtual CHCs served as a basis for computational 

analysis. For the computational model, each CHC was assigned a composite performance 

level based on its graph location (Fig. 2). The CDS measure for the intensity-of-use (ranging 

from 0 to 4) formed the graph’s x-axis, and the cancer-screening improvement score 

(ranging from 0 to 3) formed its y-axis. The resulting matrix was divided into high, medium, 

and low regions for each measure. Based on its position in the graph, a CHC could be 

assigned a qualitative, two-part coordinate, which formed the unit of analysis of virtual 

CHCs within Construct-TM. Figures 2 and 3 represent this distribution and the plot matrix 

of CHCs, respectively. Our current analysis (as well as the previous computational-analysis 

study) does not discriminate on the basis of HDCC participation.27 Our initial statistical 

analysis of CDS uptake tested the effects of both HDCC cumulative exposure and current 

membership, influencing uptake.26 The results indicate that cumulative exposure to 

collaborative activities had a higher impact on outcomes when compared to the current 

collaborative membership status.26

4.3 Identifying Agents Within the Virtual CHCs

Initially, to adapt the survey data to Construct-TM, five entities (either positions or 

functional units within a CHC) were selected to act as agents in the simulation. Five survey-

respondent groupings identified in the original survey served as a basis for the simulated 

agents: (1) director (CEO), (2) chief financial officer (CFO), (3) general staff, (4) provider, 

and (5) chief information officer (CIO). Since several survey items addressed the utilization 

of outside agreements with medical specialists via contracting, collaborative agreements, 

and sharing of best practices among CHCs, an agent classification of outside collaborator 
was added (ignoring the membership status at the time of the survey). As the study involves 

cancer screening, an agent classification for the cancer-screening test itself was also 

included. The agent set thus consisted of (1) firm view–administrative, (2) firm view–clinical 

care, (3) outside collaborators, (4) IT systems–CDS, and (5) cancer-screening tests (CSTs).

4.3.1 Agent tasks, knowledge, and beliefs—After initiating the agents in the virtual 

CHC’s, agents were characterized according to the tasks they performed, knowledge they 

possessed/shared, and their beliefs. This was accomplished using the data set from the 

HDCC survey (37 summary measures) according to the following definitions:

• Task assignment: an action performed by the agent.

• Knowledge assignment: information in possession of an agent.

• Belief assignment: principles or assertions believed by an agent to be true or 

false.

The logic of question(s) composing one of the 37 summary measures determined its 

category assignment and were validated by an internal advisory committee of subject-matter 
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experts (SMEs). Subsets of the 37 summary measures were used to define agent behavioral 

characteristics and performance-level practices in the simulation. Appendix I enlists the 

variable subsets used to define each agent classification in our analysis. Key assumptions 

and factors shaping agent performance of tasks related to cancer screening, as well as 

opportunities identified for an exchange of ideas, learning, and shaping of beliefs (referred 

to as homophily or similarity knowledge), are also enlisted.

5. Construct-TM Glossary and Definitions

The Construct-TM Variable Glossary highlighted in Appendix II outlines the full list of 37 

summary measures used to define the simulation, along with their Construct-TM coded 

name.

5.1 Agent Definitions

For each of the five agents described above (Administrative, Patient Care, IT Systems, 

Outside Collaborators, and CSTs), useful definitions were created based on a set of critical 

assumptions. These include the following:

• One IT system actor was sufficient to represent all available technology 

capabilities for CDS used in support of cancer-screening activities.

• One outside collaborator agent was sufficient to represent all official outside 

collaborations.

• Three types of CSTs were in existence: (1) colorectal, (2) cervical, and (3) breast 

cancer.

• The total number of people equals 100× the normalized value for the financial 

budget (as a mathematical relationship between organizational size and budget).

• Of the personnel in CHCs, 60% contributed to the agent Patient Care, and 40% 

contributed to agent Administrative Staff (these arbitrary percentages were based 

on the proportion of survey responders labeled as Administrative vs. Clinical and 

are not an actual representation of CHCs personnel distribution).

The definition of each agent comprised the logic used to determine the start value (current 

knowledge, connections, and interactions) for the agent and for his/her end value (post-

simulation knowledge, learning, and connections) within the simulated range of activities 

referred to as an array. The agents were set up to allow Construct-TM to read the value for 

each agent in the array and to move automatically to the next agent classification for input 

into the simulation. The start of one agent value is defined where the previous agent ends, as 

seen in Table 1.

5.2 Knowledge Definitions

Knowledge definitions were based on the assumption that all tasks are roughly equivalent in 

complexity (i.e. each task has the same number of “bits” in Construct-TM, informing it 

throughout the simulation). Bits establish the level of expertise or knowledge saturation a 

particular agent may have (ranging from 0% to 100%). Within the same simulation, a 
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complex task has more bits informing its execution.20 For this Construct-TM virtual 

experiment, we assumed each task was roughly equivalent in complexity and therefore had 

the same knowledge bits (50) assigned to each. This equivalence was chosen due to a lack of 

information in discriminating the tasks (i.e. the relative importance of the variables within 

the HDCC survey items among respondents was not known). As with other simulation 

assumptions, if more information was available, the assumption could be revised. For now, 

the definitions for knowledge reveal the start and end of the 50-bit index assigned to each 

knowledge element as task knowledge and homophily knowledge (see Appendix I). Table 2 

lists the system-wide schema for all knowledge that the agents must possess or sources from 

which it can be obtained in conducting cancer-screening practices.

5.3 Task Definitions

The task definitions associated with each agent’s knowledge consisted of assigning an index 

number for Construct-TM to read it into the array and to provide a start and end point for 

each task in the simulation. Appendix III enlists a complete list of tasks used in the present 

analysis and defines the tasks that agents perform or factors that might influence the 

performance in conducting cancer screening. Agents are not expected to be able to perform 

every task of the organization.

5.4 Simulation of Performance Measures

The next step involved defining the simulation’s outcome measures and determining the role 

of Construct-TM’s output in generating hypotheses. In this analysis, simulation outcomes 

focused on organizational-environmental learning as a function of either the task 

performance or the absorption of knowledge, both of which were measured in terms of the 

facility-level improvements in cancer screening, defined as the chief outcome of interest. 

The Construct-TM model’s primary performance measures were knowledge gains and task 

capabilities, as evidenced by interactions and knowledge-absorption rates. Although CDS 

application was also critical, we viewed it as a driver of overall cancer-screening 

performance and as an artifact of diffusion.

5.5 Data Preparation

To convert HDCC summary measures into useful inputs for Construct-TM, inputs were 

provided in the form of Extensible Markup Language (XML). We developed an XML code 

generator in Excel, and this Excel spreadsheet served as a functional, special-purpose 

graphical user interface (GUI) for Construct-TM. A Construct-TM input deck comprised of 

four critical elements: variables (factors being studied or system components), parameters 
(the mathematical/system boundaries that the variables can assume), nodes (the 

representation variables within the network/elements of the system), and networks (the 

overall representation of phenomena in the studied context or system dynamics). This Excel 

XML generator was used to create a valid XML code for each of these elements, allowing us 

to focus on interpreting HDCC measures rather than considering the basic syntax of XML.
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5.6 Visualizing Construct-TM Output

The CASOS tool-set contains a network-visualizer tool called ORA® (originally 

Organizational Risk Analyzer, but now used as a psuedo-acronym)28, which permits visual 

and qualitative analysis of networks with over 100 network-analysis measures (e.g. 

connectedness, between-ness, density, centrality, etc.). We employed a small subset of these 

measures, which were selected because of their relevance to our hypothesis-generation 

exercise. Construct-TM output was inserted into ORA® to generate network diagrams for 

visual inspection of networks to observe changes in the visual displays of the networks over 

the 10-year simulation period. Patterns of interest included knowledge/resource utilization 

within CHCs in the agent-by-knowledge (A × K) network and those in the agent-by-agent 

(A × A) network, representing knowledge-sharing patterns among network agents within 

CHCs. Model Year-1 represented the beginning of the simulation period (beginning state), 

while Year-10 represented the end state for each performance level with respect to network 

measures (density, clusters and cliques, cohesion and connectedness, and symmetry). In this 

paper, however, we present only the comparisons of the two most extreme conditions 

(performance levels): high/high (HH) and low/low (LL). As mentioned previously, the 

composite measure was scored for cancer-screening improvement (high, medium, or low) 

plus CDS use (high, medium, or low).

6. Results

6.1 Community Health Center Characteristics

HDCC Sample Means and Standard Deviations for Summary Measures by Performance 

Level

6.2 Diffusion and Task Capability over Time

Because we are using a simulation model, we can examine outputs at each time-period of the 

simulation. Figure 4 demonstrates how HH and LL groups interact and evolve differently 

over the course of the simulation.

The diffusion curves show a steady increase in knowledge in each group, but the task 

capability patterns, defined as the number of knowledge-groups for which an agent has more 

than half of the knowledge available for the task, are non-linear. Despite being related to 

knowledge diffusion, task capability is sensitive to different interaction patterns.

In general, LL firms tend to aggregate task capability regularly over time, indicating that 

agents learn information about a variety of tasks over the course of time, implying that the 

actors in LL firms seek to be generalists. The HH firms, on the other hand, show different 

rates of growth over the course of the simulation, suggesting that HH actors tend to interact 

within their groups and that new knowledge acquired by an actor is spread rapidly through 

their membership group. Thus, HH actors tend to be more specialized.

6.3 Outcomes at Year 10: The Knowledge/Resource Utilization Network (A × K)

Figures 5a and 5b represent the network diagrams produced in ORA®, highlighting our 

agent-by-knowledge (A × K) network at simulation start time (Year-1, Figure 5a) and at 
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simulation end time (Year-10, Figure 5b). The agent classes for the simulation are shown in 

red, while knowledge elements are in green. Connections between agent classes and 

knowledge elements are represented by blue lines.

Both HH and LL Year-1 networks reveal four distinct agent clusters or cliques, characteristic 

of interaction among similar agents. Uneven distribution of knowledge resources and 

unconnected agents and knowledge resources are evident. Unconnected agents within a 

network diagram represent a lack of connection to the core group/key resources, while 

unconnected knowledge elements represent unused or underused knowledge resources 

(issues of access or being outdated), with each unconnected agent and knowledge element 

contributing to a less-than-ideal state.

The Year-10 networks exhibit an evolution of HH and LL networks toward ideal states, 

reflected by higher cohesion between the agent (represented by the central red cluster) and 

the knowledge-resource (represented by the green clusters around agents). HH displays only 

one major agent cluster in the network center, suggesting greater levels of overall agent 

cohesion, while LL has the presence of a secondary agent cluster, a potential clique. 

Interestingly, although Year-10 LL network has a higher overall density than Year-10’s HH 

network, Year-10 LL network configuration is less than ideal because of a wide distribution 

of knowledge elements.

6.4 Outcomes at Year 10: The Knowledge-Sharing Network (A × A)

Figures 6a and 6b represent the simulated evolution of knowledge-sharing practices within 

the HH and LL networks over the 10-year period. We measured the degree of 

communication between network agents or the sharing of core knowledge resources 

essential to the performance of the cancer-screening task.

The agent classes defined for A × A network are the same as in the A × K network (in 

Figures 5a and 5b). However, the A × A knowledge sharing network was used to infer 

homophily relations between actors (colored by their membership group). As in the A × K 

network, greater density is considered favorable with respect to information dissemination, 

sharing, and exchange, unless such increased density is coupled with structural network 

characteristics that inhibit sharing of core knowledge resources.

Both HH and LL networks show nearly identical patterns of knowledge sharing in Year-1, 

with three distinct agent clusters: patient-care (clinical) staff (green), administrative staff 

(blue), and the cancer-screening-test agents (red). Administrative agents serve as a 

knowledge bridge between patient-care agents and cancer-screening tests. LL firms also 

appear larger, and the Year-1 LL network displays greater density than HH, consistent with 

previous results.

When simulation is initiated, there is little difference between the two networks. However, 

the simulation results for Year-10 display significant differences in network configurations. 

Both firms develop a single large cluster, as information is gained by all parties. However, 

relative specialization of HH firms is evident in the cohesive patient-care and administrative 
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blocks, while LL firms have a single core-cluster of firm members where patient-care and 

admin agents are dispersed randomly.

7. Discussion

The reported analysis provides possible alternative hypotheses explaining facility-level 

cancer-screening performance to examine in future work. To explore the sustainability of 

quality-improvement efforts and the diffusion of innovative/best practices, we use a well-

regarded simulation engine to instantiate virtual CHCs and then to examine the network 

characteristics of the CHCs. We limited our network-analysis measures to network density, 

cohesion, presence of cliques, the level of connectedness, and symmetry, as previous work 

by Bruque and colleagues suggests that network size, network density, and the strength of 

information ties serve as predictors of the ability to adapt and that a dense information 

network displays increased adaption as long as network members use information to resolve 

doubts, solicit opinions, and deepen understanding of the new system or of existing 

strategies for improvement.29 Such a system displays greater sharing, a more effective use of 

knowledge resources, and a greater capacity for information-exchange, growth, and 

evolution.

This study employed density as the single objective measure but also included the subjective 

measures like network cohesion, cliques, and collaboration to provide additional perspective. 

In addition, network symmetry and overall accessibility to knowledge (in relation to other 

members of the network) were also considered.

We show that the visual comparison of high- and low-ranked CHCs network configurations 

for Year-10 HH firms possess an ideal agent-to-knowledge-resource configuration in 

comparison to LL, despite lower levels of overall network density. The LL end-state 

configuration did not facilitate streamlined and efficient knowledge/resource utilization nor 

encourage greater degrees of knowledge-sharing outside of the centralized agent cluster, 

confirming that network density alone was not an ideal indicator of organizational 

performance.

These findings were consistent with previous studies for all parameters except network 

density. This is not surprising, as there are numerous configurations possible for a network 

to assume that may display relatively identical density, with some more effective than others 

in the transfer of knowledge.

Overall, the higher ranked CHCs demonstrate greater network cohesion with streamlined 

and efficient forms of collaboration (expressed as a function of the knowledge-sharing 

network’s symmetry) and with fewer separate group clustering or cliques. For 

connectedness, results were mixed; higher-ranked CHCs in Year-10 have fewer unconnected 

knowledge resources than lower-ranked centers, but they also have greater number of 

unconnected agents than the Year-10 lower-ranked centers, indicating that performance 

might have a better correlation with knowledge/resource utilization than with agent 

connectedness.29
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We demonstrate that network elements indicate performance level over time and provide 

insights into organizational ability to learn, exchange information, and adapt over time. 

Network configurations with respect to CHCs’ performance allow for hypotheses to be 

drawn and tested in future experiments to examine sustainability and diffusion. We assert 

that long-term sustainability and diffusion may be positively correlated with network 

characteristics such cohesion and connectedness, cliques and clusters, and symmetry and 

that they are correlated less tightly with network density. We also generated hypotheses 

regarding the coupling effect of command and control structures and agent-to-agent 

knowledge-sharing practices as predictors of long-term sustainability and diffusion.25 This 

present study suggests that the mere presence of a highly organized quality-improvement 

effort may indeed yield positive results in the short-term, but progress sustainability and 

diffusion of practices within and across agencies are shaped by factors with fewer ties to 

processes and outcomes.

Visual inspection of the network diagrams strongly suggests that the network-evolution 

simulation model presented here can provide significant insight into the organizational 

performance of future CHCs and can provide a basis for continued hypothesis generation 

and testing on ways to sustain effort and to encourage best practices. Finally, through 

computational modeling, we could extract additional value and insights from the data set 

beyond the traditional analysis of a single point-in-time survey.

7.1 Simulation-Model Validation

Sargent describes the process through which system theories about the world are 

incorporated into simulations to fulfill system-level experimental objectives and to produce 

results for hypothesis generation.30 Although real-world inferences are a natural progression 

in any computational-modeling exercise, model validation is a necessary prelude.

We addressed issues of learning, adaptation, and evolution of social and organizational 

systems by examining the problem of facility-level performance with respect to both 

clinical-decision support and cancer-screening rates. We used both a reductionist statistical 

model based on real-world data and a simulation. The model validation categories are (1) 

internal, (2) parameter, (3) process, (4) face, (5) pattern, (6) content, (7) external, and (8) 

theoretical.

Internal validity determines if the computer code is correct and error-free.31 It employs 

strategies to ensure that all steps including data collection, data entry (via CASOS’s Excel-

based XML code generator worksheet), and data transformations in the study maintained a 

high degree of accuracy. Furthermore, each series of statements was tested and debugged 

iteratively.

Parameter validity involves correct assignment of the simulation parameters to ensure that 

each of the 37 summary measures derived were mapped properly to the appropriate 

simulation category (e.g. task, belief, measure of knowledge, agent). As available data did 

not specify explicit interaction partners, we used statistical means to determine and to define 

the average probability of an agent’s knowledge allocation (represented as knowledge bits, 

k) and relied on Construct’s homophily and expertise-seeking drives to suggest interactions. 
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This study posited three representations of the “Cancer-Screening Test” agent (e.g. 

colorectal, breast, and cervical) for each clinic, all of which represented the clinic’s 

competency in the key tests of interest. We measured the saturation of knowledge in these 

three agents over time, allowing for a direct comparison across all test cases.

Process validity determines if the study is conducted in a dependable, competent manner and 

if efforts are not focused on appraising existing practices.32 It is understood as the extent to 

which actions and thought processes of test takers or survey responders demonstrated that 

they understood the construct in the same way the researchers intended.33 The HDCC survey 

performed by Haggstrom and colleagues generated data used in this simulation study.3 

Therefore, SME assessment was employed to validate the following aspects: (1) the original 

researcher’s interpretation of summary measure data as agent, task, belief, or knowledge 

measure, (2) the assignment of specific summary measures to describe the behavior of each 

of the five agents used in the simulation, and (3) the assignment of each of the 44 CHCs to 

one of five performance levels used in the simulation. The experts also ensured that the logic 

of survey questions and/or intent of the primary data collector were maintained throughout 

the development of the simulation experiment. Process validity can be extended to the issue 

of content validity, defined by Merrill and colleagues as the principle guide for formulating 

survey questions’ specific relationships in a predefined network.34,35 Therefore, the HDCC 

survey data used in this study can be considered a valid representation of the agents, 

knowledge, tasks, and beliefs of CHC workers.

Regarding pattern validity and face validity, study results for the respective performance 

levels are relative to their initial states. Pattern validity, also called relational equivalence,36 

is defined as the degree to which patterns in the data reflect observed results. Closely related 

is face validity, which is essential for the study to be considered a reasonable representation 

of reality.37 In the methods section we describe how two measures—facility-level CDS 

utilization scores and cancer-screening improvement-rate scores—were used to construct a 

composite representation of CHC performance and how each facility was designated to one 

of the five performance levels based on this composite measure. We initiated our study based 

on the assumption that better-performing facilities exhibit higher patterns of learning and 

knowledge absorption over time, and the simulation network visualizations confirmed these 

expectations, providing greater insight into the impact of knowledge sharing, resource 

utilization, group cohesion, and network connections on learning over time. In all instances, 

results obtained were reasonable representations of CHC performance, as reflected by the 

HDCC survey.

Merrill and colleagues raised the issues of external validity, or generalizability of study 

results, with respect to network analysis: “External validity refers to the adequacy and 

accuracy of the computational model in matching real world data.” 31 Merrill and colleagues 

suggest that the model can be validated by correlating network findings with observed data.
34,38 Although this does not imply a generalization of the model for real-world 

implementation, it does imply that the model—if evaluated in the context of stakeholders 

knowledgeable in both CDS and cancer-screening-related organizational structure and 

operations—may enhance overall facility-level learning and knowledge absorption over time 

as related to the two outcomes.
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Finally, the issue of theoretical validity represents the ability of the findings to reflect current 

theory (i.e. that model assumptions fit the problem and that model instances were specified 

appropriately). Sargent describes how model confidence is a function of the cost of 

conducting the test and the value of the model to a predefined user, stating that “The cost of 

model validation is usually quite significant, especially when extremely high model 

confidence is required.”30

We chose specific tests for simulation modeling based upon the following criteria: (1) 

hypothesized relationships and statistical inferences drawn from the statistical model (the 

relatedness of the antecedents to both the proximal and distal outcomes),26 (2) recognizable 

patterns in the data set of CHC characteristics (e.g. the grouping of performance levels), and 

(3) expert guidance from SMEs (e.g. which antecedents should be used to inform which 

agents).

While no formal cost curve was developed for this study, cost-benefit can be understood in 

terms of the value added to data obtained from a single point-in-time source and of using 

this data for future, long term projections. The simulated model of the 2006 HDCC survey 

added value to the survey data, projecting the 10-year outcomes (assuming that the real-

world interactions observed in the point-in-time data remained constant over this time 

horizon). This highly specific set of chosen tests examined the following: (1) rate of learning 

or knowledge absorption, and (2) patterns of cohesion, interactions, and interconnections 

expressed as network diagrams. These topics of interests added value to the long-term 

strategic-planning efforts aimed at addressing CHC performance objectives for cancer 

screening and CDS.

8. Conclusions

This study demonstrated that a healthcare facility, defined by 37 summary measures 

obtained from a previous organizational survey of cancer-screening, can be described as a 

learning organization and a function of the following: (1) knowledge/resource utilization by 

key agents, and (2) agent-to-agent sharing of core knowledge to support cancer-screening 

quality and improvement efforts.29,39–41

This research successfully produced a meaningful virtual experiment in computational-

modeling, mimicking reported activity within the CHC sample associated with the cancer-

screening test. We demonstrate that our model is (1) sensitive enough to differentiate 

between high- and low-performing CHCs, (2) could identify observable structural 

differences between high and low performers, and (3) can establish a research platform to 

explore hypothesis generation and testing to achieve sustained improvement and diffusion of 

best practices after traditional quality-improvement efforts are completed. Our model views 

the healthcare organization as a complex adaptive entity,40–43 reinforcing the findings of 

previous studies associating high-performing firms with greater learning, intuition, or 

knowledge absorption in clinical knowledge-management practices. Our research effort was 

designed to generate a series of hypotheses that can be developed and tested in future 

experiments to contribute to more informed interventions.
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9. Limitations

We were unable to apply every combination of summary measures to each agent class within 

the simulation, limiting the generalization of the model and its applicability. Additionally, 

the rigorous selection of the summary measure describing agent behavior dramatically 

limited the number of ways the agent could learn, interact, and evolve within the simulation. 

Future research might explore less-rigid criteria for inclusion of variables to account for 

unpredictable changes in the data, employ a more-sophisticated algorithm capable of testing 

any or all combinations of variables, and allow for agents in the simulation to forget, a 

capability not allowed in this simulation. We examined knowledge acquisition alone and 

assumed that, once acquired, the knowledge was retained through the remainder of the 

simulation.
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13. Appendices

Appendix I: Facility-Level Cancer-Screening Performance Agents, Tasks, 

and Knowledge Elements and Their Assumptions

Patient-Care Agent Classification

Agent Categories:

Task Knowledge Impacting 
Performance is Informed 
by:

Knowledge Absorption 
(Homophily Knowledge) is 
Informed by: Rationale and/or Assumptions:

Firm View – 
Patient Care

• Clinic 
Processes

• Work 
Importance of 
Cancer-
Screening 
Tasks

• CDS and IS 
Practices

• Delivery 
System 
Design for 
Cancer 
Screening 
(e.g. Role 
Responsibility, 
Overlap, and 
Clinical 
Champions)

• Information-
Dissemination 
Strategies

• Supportive 
Senior 
Leadership 
Environment

• Supportive 
Local 
(Functional) 
Leadership 
Environment

• Team 
Characteristics

• Human Agent 
(assumed 60% of 
firm staff)

• % is arbitrary and 
not meant to 
represent any 
single firm within 
the sample

• Patient-Care 
Agents are active 
in their ability to 
interact with other 
agents in the 
network

• Leadership and 
Team interactions 
are viewed as 
opportunities for 
firm mission, 
goals, objectives, 
culture, and 
performance to be 
distributed 
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Agent Categories:

Task Knowledge Impacting 
Performance is Informed 
by:

Knowledge Absorption 
(Homophily Knowledge) is 
Informed by: Rationale and/or Assumptions:

• Provider IT-
Performance 
Expectancy

• Electronic-
Information 
Retrieval and 
Availability

throughout the 
firm

Firm View – Administrative-Care Agent Classification

Agent Categories:
Task Knowledge Impacting 
Performance is Informed by:

Knowledge Absorption 
(Homophily Knowledge) is 
Informed by: Rationale and/or Assumptions:

Firm View – 
Administrative 
Care

• Cancer-Screening 
Rate-Reporting 
Behavior (Provider 
Level)

• Cancer-Screening 
Rate-Reporting 
Behavior (Facility 
Level)

• Payer Mix (Insurance 
Type)

– Uninsured 
Population

– Medicare 
Population

– Medicaid 
Population

– Commercial 
Insurance 
Population

• Financial Readiness 
(Cash Reserves)

• Organizational 
Structure and Size

• Information-
Dissemination 
Strategies

• Patient Demographics

– Patient Age

– Patient 
Language

• Supportive 
Senior 
Leadership 
Environment

• Supportive 
Local 
(Functional) 
Leadership 
Environment

• Team 
Characteristics

• Human Agent 
(assumed 40% of 
firm staff)

• % is arbitrary and 
not meant to 
represent any 
single firm within 
the sample

• Administrative 
Agents are active 
in their ability to 
interact with other 
agents in the 
network

• Leadership and 
Team interactions 
are viewed as 
opportunities for 
firm mission, 
goals, objectives, 
culture, and 
performance to be 
distributed 
throughout the 
firm
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IT-Systems Agent Classification – Clinical-Decision Support for Cancer 

Screening

Agent Categories:

Task Knowledge Impacting 
Performance is Informed 
by:

Knowledge Absorption 
(Homophily Knowledge) 
is Informed by: Rationale and/or Assumptions:

IT Systems • Cancer-
Screening 
Rate-
Reporting 
Behavior 
(Provider 
level)

• Cancer-
Screening 
Rate-
Reporting 
Behavior 
(Facility 
Level)

• Clinic 
Processes

• Work 
Importance of 
Cancer-
Screening 
Tests (CSTs)

• Delivery-
System 
Design for 
Cancer 
Screening 
(e.g. Role 
Responsibility, 
Overlap, and 
Clinical 
Champions)

• CDS 
Practices 
(IT Systems 
have all of 
this 
information)

• Non-human Agent

• Specifically 
referencing IT in 
support of Cancer 
Screening

• Assumes tie 
between cancer-
screening 
performance and 
demand for IT-
Systems Support

IT Systems Activity is informed 
by:

• Provider IT 
Performance 
Expectancy

• Electronic 
Information 
Retrieval & 
Availability

The % of this task knowledge 
that they have is based on:

• EHR Functions 
and Capabilities

Outside-Collaborators Agent Classification

Agent Categories:

Task Knowledge Impacting 
Performance is Informed 
by:

Knowledge Absorption 
(Homophily 
Knowledge) is Informed 
by: Rationale and/or Assumptions:

Outside Collaborators • Cancer-
Screening 
Rate-
Reporting 
Behavior 
(Provider 
Level)

• Cancer-
Screening 
Rate-
Reporting 
Behavior 
(Facility 
Level)

• Clinic 
Processes

• No 
Explicit 
Homophily 
Knowledge 
sought for 
expertise 
(within the 
simulation)

• Assumes one-way 
communication of 
industry best 
practices to the 
firm

• Scores represent 
the level of access 
and pace of 
infusion of this 
outside expertise

Outside Collaborator Activity is 
informed by:

• External Factors 
(e.g. Pressure, 
Support, 
Connectedness, 

Carney et al. Page 24

J Biomed Inform. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Agent Categories:

Task Knowledge Impacting 
Performance is Informed 
by:

Knowledge Absorption 
(Homophily 
Knowledge) is Informed 
by: Rationale and/or Assumptions:

• Work 
Importance of 
CSTs

• Delivery 
System 
Design for 
Cancer 
Screening 
(e.g. Role 
Responsibility, 
Overlap, and 
Clinical 
Champions)

and Collaborative 
Agreements)

• Environmental 
Assessment of 
Cancer-Screening 
Activities

• Medical Specialist 
Availability

Cancer-Screening Test (CST) Agent Classification

Agent Categories:

Task Knowledge 
Impacting Performance is 
Informed by:

Knowledge Absorption 
(Homophily Knowledge) is 
Informed by: Rationale and/or Assumptions:

Cancer-Screening Test • Clinic 
Processes

• Delivery 
System 
Design for 
Cancer 
Screening

• CDS 
Practices

• Information-
Dissemination 
Strategies

• Work Importance of 
CSTs

• Cancer-Screening 
Rate-Reporting 
Behavior Provider 
Level

• Cancer-Screening 
Rate- Reporting 
Behavior Facility 
Level

• Patient 
Demographics

– Patient 
Age

– Patient 
Language

• Non-human Agent

• Agent is active all 
the time

• Agent can be 
interacted with 
only by Patient-
Care Agents

• Agent cannot 
initiate interaction

Appendix II: Construct-TM Glossary

Summary Measure Construct™ Coded Variable

X1 = HRSA Collaborative Experience CollaborativeExp

X2 = Facility Age1–Number of Years receiving BPHC* funding DateOpened

X3 = Facility Age2–Number of Years in any HRSA Collaborative YrsHRSAFunded

X4 = Clinic Processes ClinProcesses

X5 = Information Dissemination Strategies InfoDissemination

X6 = Electronic Information Retrieval & Availability ElecRetrieval

X7 = Electronic Health Record (EHR) Functions Capabilities EHRFunctions

X8 = Work Importance of Cancer Screening Tasks Screening_Task_Imp
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Summary Measure Construct™ Coded Variable

X9 = Cancer Screening Rate Reporting Behavior (Facility Level) FacilityScreeningBehavior

X10 = Quality Improvement Strategies QIStrategy

X11 = External Pressure, Support, Connectedness, and Collaborative Agreements ExtAgreements

X12 = Delivery System Design for Cancer Screening (e.g., Role Responsibility, 
Overlap, and Clinical Champions)

SystemDesign

X13 = Supportive Senior Leadership Environment SrLeadership

X14 = Supportive Local (Functional) Leadership Environment LocalLeadership

X15 = Team Characteristics Team

X16 = Medical Specialist Availability MedSpec

X17 = Organizational Structure & Size OrgSize

X18 = Financial Readiness1–Total Budget Budget_Size

X19 = Financial Readiness2–Ratio of Revenues to Expenses CashResearves

X20 = Payer Mix1–% Uninsured UninsuredPop

X21 = Payer Mix2a–% Medicare MedicarePop

X22 = Payer Mix2b–% Medicaid MedicaidPop

X23 = Payer Mix2c–% Commercial Insurance CommercialPop

X24 = Payer Mix2d–% Self Pay SelfPayPop

X25 = Patient Demographics (Language) PatientLanguage

X26 = Patient Demographics (Occupation Migrant Worker) MigrantPop

X27 = Patient Demographics (Living Homeless) HomelessPop

X28 = Patient Demographics (Age) PatientAge

X29 = Environmental Assessment of Cancer Screening and Follow-up Activity via 
Provider Performance Feedback’

EnvAssessment

X30 = Cancer Screening Rate Reporting Behavior (Provider Level)’ ProviderScreeningBehavior

X31 = Provider IT Performance Expectancy IT_Beliefs

Y1 = CDS Capacity for Measuring Cancer Screening (CDS1) IT_Capacity

Y2 = Use of CDS Provider Prompts at Point-of-Care (CDS2) Prompts

Y3 = Computerized Patient Reminders (CDS3) Reminders

Y4 = Electronically Generated Correspondence with Results to Patients (CDS4) PatientResults

YCDS = CDS Practices Score CDS_score

YCSI = Cancer Screening Improvement Scores Screening_rate

*
Bureau of Primary Health Care

Appendix III: Task Definitions Used in Study

Descriptive Index Descriptive Index

Budget 0 Medical Specialization 14

Cash Reserves 1 Medicare 15

CDS Score 2 Patient Age 16

Clinic Processes 3 Patient Language 17
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Descriptive Index Descriptive Index

Commercial Insurance 4 Patient Results 18

Electronic Retrieval 5 Provider Prompts at point-of-care 19

Environmental Assessment 6 Provider Screening Behavior 20

Facility Screening Behavior 7 Clinical Reminders 21

Info Dissemination 8 Screening Task 22

Insurance Type 9 Senior Leadership 23

IT Beliefs 10 System Design 24

IT Capacity 11 Team 25

Local Leadership 12 Uninsured 26

Medicaid 13
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Highlights

• We measure community health center cancer screening performance using 

dynamic network analysis and computational modeling

• Single point-in-time surveys on process improvement may lack information to 

project future success

• High performance organizations display differing network characteristics than 

lower performers

• Network structure reveals factors that shape diffusion and sustainability of 

best practices
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Figure 1. 
Figure 1a: Sample A × K Network Examining Network Density

Figure 1b: Sample A × K Network Examining Network Clusters and Cliques

Figure 1c: Sample A × K Network Examining Network Connectedness and Cohesion

Figure 1d: Sample A × K Network Examining Network Symmetry
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Figure 2. 
CHCs Performance-level Matrix
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Figure 3. 
Basis of Performance-level Assignment to Community Health Centers
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Figure 4. 
Diffusion and Task Capability over time.

HH firms are solid, while LL firms are dashed.
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Figure 5. 
Figure 5a: Agent-to-Knowledge (Knowledge Utilization) Network Configurations at Start of 

Simulation

Figure 5b: Agent-to-Knowledge (Knowledge Utilization) Network Configurations at the End 

of Simulation
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Figure 6. 
Figure 6a: Agent-to-Agent (Knowledge-Sharing) Network Configurations at Start of 

Simulation.

Agents are colored by their membership groups.

Figure 6b: Agent-to-Agent (Knowledge-Sharing) Network Configurations at End of 

Simulation.

Agents are colored by their group memberships.
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Table 1

Agent definitions are as follows:

Firm_Start 0

Firm_End (100 × Financial Readiness_Budget) − 1

Patient Staff_Start 0

Patient Staff_End 0.6 × Firm_End

Adminstrative Staff_Start Patient Staff_End + 1

Adminstrative Staff_End Firm_End

IT System_Start Firm_End + 1

IT System_End IT System_Start

Outside Collaborators_Start IT System_End + 1

Outside Collaborators_End Outside Collaborators_Start

Cancer Screening Test_Start Outside Collaborators_End + 1

Cancer Screening Test_End Cancer Screening Test_Start + 3 * (Patient_Staff_End)
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Table 2

System-wide Schema for All Knowledge

Start_index End_Index Construct-TM Name Descriptive Variable Name

0 49 SrLeadership Supportive Senior Leadership Environment

50 99 LocalLeadership Supportive Local Leadership Environment

100 149 Team Team Characteristics

150 199 ClinProcesses Clinic Processes

200 249 Screening_Task_Imp Work Importance of Cancer Screening Tasks

250 297 CDS_score* CDS Practices (IT Capacity, Prompts, Reminders, Patient Results)

298 347 SystemDesign Delivery System Design for Cancer Screening

348 397 ProviderScreeningBehavior Cancer Screening Rate Reporting Behavior Provider Level

398 445 InsuranceType* Uninsured, Public-Medicaid, Pubic-Medicare, Commercial, Self-pay

446 495 CashReserves Financial Readiness_RevenueToExpense

496 545 Budget_Size Combined Size and Budget

546 595 InfoDissemination Information Dissemination Strategies

596 645 PatientAge Patient Demographics (Age)

646 695 PatientLanguage Patient Demographics (language)

696 745 ITBeliefs Provider IT Performance Expectancy

746 795 ElectronicRetrieval Electronic Information Retrieval & Availability

796 845 EnvironmentalAssessment Environmental Assessment of Cancer Screening and Follow-up Activity via 
Provider Performance Feedback

846 895 MedicalSpecialization Medical Specialist Availability

896 945 FacilityScreeningBehavior Cancer Screening Rate Reporting Behavior Facility Level

*
These knowledge buckets are made of four separate sub-indices, each with 48 bits rather than 50.
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