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Requirements determine the expectations for a new or modified product. Requirements 

engineering involves defining, documentation and maintenance of requirements. The rapid 

improving of technologies and changing of market needs require a shorter time to market and more 

diversified products. As an important and complex task in product development, it is a huge work 

to develop new requirements for each new product from scratch. The reusability of requirements 

data becomes more and more important. However, with the current “copy and paste” approach, 

engineers have to go through the entire set of requirements (sometimes even more than one set of 

requirements) to identify the ones which need to be reused or updated. It takes a lot of time and 

highly relies on the engineers’ experiences. Software tools can only make it easier to capture and 

locate the requirements, but won’t be able to solve the problem of effective reuse of the existing 

requirement data. The overall goal of this research is to develop a new model to improve the 

management of requirements and make the reuse and reconfiguration of existing requirements and 

requirement models more efficient.  

Considering the requirements data as an important part of the knowledge body of companies, we 

followed the knowledge categorization method to classify requirements into groups, which were 

called levels in the study, based on their changing frequency. There are four levels, the regulatory 

level, the product line level, the product level and the project level. The regulatory level is the most 

stable level. Requirements in this level were derived from government and industry regulations. 

The product line level contains the common requirements for a group of products, the product line. 

The third level, product level, refers to the specific requirements of the product. And the fourth 

and most dynamic level, the project level, is about the specific configurations of a product for a 

project. We chose auto-injector as the application to implement the model, since it is a relatively 

simple product, but its requirements cover many different categories. There are three major steps 

in our research approach for the project. The first is to develop requirements and classify them for 
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our model. The development of requirements adopts the goal-oriented model to analyze and 

SysML, a system modeling language, to build requirements model. And the second step is to build 

requirements template, connecting the solution of the problem to the information system, 

standalone requirements management tool or information platform. This step is to find a way to 

realize the multi-level model in an information system. The final step is to implement the model. 

We chose two software tools for the implementation, Microsoft Office Excel, a commonly used 

tool for generating requirements documents, and Siemens PLM suite, Teamcenter, a world leading 

PLM platform with a requirement module.  

The results in the study include an auto-injector requirement set, a workflow for using the multi-

level model, two requirements templates for implementation of the model in two different software 

tools, and two automatically generated requirement reports. Our model helps to define the changed 

part of requirements after analysis of the product change. It could avoid the pitfalls of the current 

way in reusing requirements. 

Based on the results from this study, we can draw the following conclusions. A practical multi-

level requirements management model can be used for a medical device—the auto-injector; and 

the model can be implemented into different software tools to support reuse of existing 

requirement data in creating requirement models for new product development projects. 

Furthermore, the workflow and guideline to support the application and maintenance of the 

requirement model can be successful developed and implemented. Requirement 

documents/reports can be automatically generated through the software tool by following the 

workflow. And according to our assessment, the multi-level model can improve the reusability of 

requirements. 
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INTRODUCTION 

Problem Statement 

Requirements describe how the products should be built and the functions of the products should 

be achieved. While requirement engineering refers to the processes of requirements being 

analyzed, documented and managed throughout the life cycle. It is a fundamental piece in product 

development. (Aybüke Aurum, 2005)  

Requirement engineering is a complex task, which demands a tremendous amount of work and an 

enormous cost.(Doig, 2015, October 8) It begins with discovering and elicitation of requirements 

from all kinds of sources, then continues to test and validation of these requirements, and finally 

creates requirements documents. (MITRE, 2015, August 20)  However, rapid developing new 

technologies and fast changing customer needs require the companies to provide new products to 

market as fast as possible and make the product diversified enough to satisfy different customers. 

Instead of developing a new product, reconfigurations to an existing design become more and more 

common. Increasing design reuse rate is a proved effective approach to reduce time to market and 

improve the quality of a new product. As the designs are more and more often reconfigured and 

reused, related requirements often get reused, too.  However, how to effectively reuse existing 

requirement data remains an unanswered question. Some companies are using “copy and paste” to 

reuse the requirement documents. This is sometime a very time consuming work, since the 

product/system/requirement engineers need to go through the entire requirement documents to 

identify necessary modifications. It is also a practice which is highly rely on the experiences of the 

engineers. Other companies are using an information system, either a standalone requirement 

management tool or a module within a larger information platform (for example, a PLM or ERP 

platform), to management requirements data. There are two different approaches to use software 

tools to management requirements: manage requirement documents and manage requirements as 

structured items in database. Using software tools to manage requirement documents can only help 

to locate the right document easier and ensure that the right one is copied and pasted, but cannot 

avoid the reusing pitfalls. It still needs to review entire documents for reusable requirements. It 

will be much more effective to manage requirements as structured items within the software 

database. The question now becomes what the best way is to model these requirement items to 
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make reuse and reconfiguration of the requirement data easier, and get full benefits from the 

software tools. 

We choose a product (an auto injector) from the medical devices industry as an application for 

implementation. An auto-injector is a kind of medical devices to deliver a dose of the drug for 

patients’ self-treatment. Most of the auto-injector is spring-loaded syringes. Their syringe needles 

can be inserted automatically, and then the drug is delivered.  We choose it for the following three 

reasons: 

1. Requirement management is critical for medical devices industry. Food and Drug 

Administration (FDA) has clear and strict definition on requirements and requirement 

management and deliverables. 

2. The auto-injector is relatively simple but refers to inter-discipline collaboration and has a 

lot of branches. Its structure and mechanism are uncomplicated, but its requirements 

cover to all different categories, including regulatory requirements, functional 

requirements, interface requirements and human factor requirements. 

3. Our interviews with industry experts showed that more than 50% of the auto-injector 

product development projects were reconfigurations of existing products. Most common 

reasons for reconfigurations include a new drug, a particular patient population, and a 

new market with different regulations. The high rate of product reconfiguration makes 

the reuse of requirements critical for auto-injector projects.  
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Table 1 showed an example of how the reuse of requirement data works with the current “copy 

and paste” practice and the potential pitfalls with in the process.  

 

Table 1: An Example of Reusing Requirements with "Copy and Paste" Practice 

Steps # Description of the Step Potential Pitfalls 

1 When an auto-injector is chosen as the delivery 

mechanism for a drug, the product engineer 

needs to find the requirement document of a 

similar product. Then copy the document for the 

new project. 

• Wrong product, the product 

may not be the one that is the 

closest related to the new 

project. 

• Right product, but wrong 

version of the document. 

2 Review the entire file to identify the reusable 

ones, for example, the regulatory related 

requirements, and the ones that need to be 

updated or removed, for example, requirements 

related to needle gauge and labeling. 

• Miss identifying reusable 

requirements 

• Longer time to go through 

the entire documents 

 

3 Revise the non-reusable ones and add new ones 

as needed. 

• Revised or newly added 

requirements contradictory 

or duplicate to the existing 

ones 

 

It is very important to develop new approaches to reuse the requirement data in order to keep up 

with the increasing reuses and reconfigurations in product development and avoid the potential 

pitfalls. 

Literature Review 

Requirements define why the system is needed for every stakeholder and what the system should 

do to satisfy the stakeholders’ needs.  The stakeholder includes anyone who is using the system or 

benefiting from it. All of the users, customers, and suppliers are stakeholders of a system.(Jeremy 

Dick. Elizabeth Hull, 2017) According to the definition from IEEE-STD-1220-1998, 

requirements, expressing operational, functional or design characteristic or constraint for a product 

or process, are derived into the natural language to make them easy to understand. (IEEE, 1998) 
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Requirements engineering is about the processes of development, documentation, and 

management of requirements. 

Requirements are critical for every project. It guides the project direction and configures the steps 

for developing a marketable product. Since 1994, Standish group starts producing the CHAOS 

report, which focuses on the failure and success factors of projects. Its study shows that the 

incompleteness of requirements is the most critical reason for project failures, which is responsible 

for about 13.1% of all failures.(Standish, 2014)  

Owing to the importance of requirements, it is essential to develop complete requirements and to 

document and manage the requirements well for a successful project. 

Requirements Engineering Models 

Requirements Engineers adopt Model-Based Engineering (MBE) to build requirements. Model-

Based Engineering (MBE) is a trend in system design. It is applied in order to define the functional 

specifications, systems modeling, the traceability criteria for the system, with the benefit of 

providing a wide communication process through a common language.(Chanaka Aluwihare, 2014) 

It is an approach intends to raise the level of abstraction through the use of models in systems 

development activities.(Fabiola Goncalves C. Ribeiro, 2017)  

Several basic models were currently used in requirement engineering focusing on developing good 

requirements. The goal-oriented model helps to analyze and organize the requirements logically; 

while the models for requirement engineering process, including the waterfall model, the spiral 

model, and the V and W model, are trying to optimize the development process and reduce the 

risk of mistake. There are also efforts to standardize the modeling language. SysML is a system 

modeling language. It is the most widely used to standardize and visualize the pattern of 

requirements. Models built based on SysML represents requirements clearly and improves the 

traceability of requirements. 

Goal-oriented Requirement Model 

In Requirements Engineering, goal-oriented requirements models are structured by answering 

questions: why is the system needed, what should the system do, who is the operator, and how 

does the operation carry out? (Alvaro E. Arenas, 2015)Then requirements come out. Goal-oriented 

requirements models are structured into different sub-models: a goal model which is the driving 
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model (the WHY), an object model to structure the domain description (the WHAT), an agent 

model to capture responsibilities (the WHO) and an operation model for specification level (the 

HOW).(Davoud Mougouei, 2016; Jennifer Horkoff, 2016; Tan Bui-Thanh, 2007)  

A goal-oriented model possesses some advantages. Primarily, it will find the relationship between 

a system and its environment. This gives the reasons why a system is needed and its original goal. 

Then the process of goal specifications guide engineers to consider “why”, “how” and, “how else”. 

Consequently, the requirements are determined. This process generates requirements, which 

reduces the risk of missing or over-specifying of requirements analysis. Due to the process, goal-

oriented models also allow large goals to be analyzed into elementary requirements, which are 

specific and realizable goals. It can reveal divergent relationships between requirements, especially 

the conflicts that appear because sometimes achieving one goal can interfere with achieving other 

goals. In addition, this model makes it possible to measure requirement completeness. By using a 

goal-oriented model, requirements can be discerned the completeness, their fulfillment of all the 

goals.(Alvaro E. Arenas, 2015; Davoud Mougouei, 2016; Jennifer Horkoff, 2016; Tan Bui-Thanh, 

2007)  

The goal-oriented model provides a logical thinking to analyze requirements based on the scenario 

of system operation. It will help us in developing the requirement data source for the project. 

Model for Requirement Engineering Processes 

Several approaches are used to specify processes of requirement engineering. The Waterfall model 

is one of the most commonly used process models, in which requirements model development 

moves steps by steps from requirements development, requirements documentation to 

implementation and maintenance of requirements, like a waterfall flowing from top to 

bottom.(MITRE, 2015, August 20) For auto-injector, the process starts from the development of 

auto-injector requirements. Then documented them for implementation in product. And engineers 

should maintain the requirements during the life cycle. The Spiral model is an updated version of 

the waterfall model. Each phase in spiral model contains design and review. Instead of a waterfall, 

the processes will be repeated moving in a spiral way. The repeated processes reduce the risk of 

the system.(Boehm, 2000)  

V model consists of the system analysis, sub-model analysis and development and the system 

integration.(Kevin Forsberg, 2005) Following the V model, auto-injector should be refined into 
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sub-systems, components. Engineers develop requirements for each component and sub-system. 

Then requirements could be integrated for the whole auto-injector. Every time moving to the next 

step, verification is needed. If any problem is found, the development should go back to the last 

step. Because of the shape of the processes, it is called V model. W model is an improved model 

based on the V model. Comparing with the V model, a new process named virtual integration is 

added to the W model.(Christophe Ponsard, 2015; Giacomo Barbieria, 2014; Robert Darimont, 

2016) The process is just like doing a simulation in software after parts design to check the 

assembly of parts instead of checking by real parts. The project starts with system analysis and 

then continues with sub-models analysis. Before detailed development, a virtual integration makes 

preliminary validation. If problems are found, the process should go back to analysis. Otherwise, 

the process moves forward to detailed development. Ultimately, system integration makes 

practical validation. 

The following figure 1 is a demonstration of these models. 

 

Figure 1: Models for Requirements Engineering Process(Boehm, 2000) 
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These models focus on the development process of requirement engineering. They are trying to 

reduce the risk by designing a perfect development process and to make engineers find problems 

before actual operation, saving time and cost. 

SysML (System Modeling Language) 

SysML is a general-purpose modeling language for system engineering application.(Balmelli, 

2007) Researches use SysML, modeling requirements graphically, to improve specifications, 

organization, and traceability of requirements engineering. SysML standardizes a pattern to 

represent a requirement showing its all properties, in tabular or diagram. The SysML requirements 

diagram allows several ways to represent requirement relationships, including defining the 

requirements hierarchy, deriving requirements, satisfying requirements, verifying requirements 

and refining requirements. (Shiva Nejati, 2016) The following are parts of a requirement model 

named Traffic Management, which is built to manage the road traffic. For the visualization, it is 

based on SysML to help trace the requirements development. Figure 2 shows two SysML 

requirement diagrams containing theirs names, descriptions, and Ids. The description is the content 

of requirement. And the arrow shows the relationship with another requirement. These two 

requirements define two based functions of the traffic management system.  TM12 showing in 

figure 2 is derived from another requirement TM13. TM 13, evolving from object management 

towards task and scenario management, enables TM12 that the system must provide means for 

expressing a wide range of tasks and scenarios, which is not only the management of traffic object, 

but also the interactions between traffic managers and objects. For example, the system must 

provide means for expressing the scenarios of controlling a set of traffic lights in an area, instead 

of individual lights in a crossroad. (Michel dos Santos Soares, 2007) 
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Figure 2: SysML Requiremment Diagrams(Michel dos Santos Soares, 2007) 

 

Model based on SysML is built by all requirement diagrams connecting each other with the 

relationships arrow. In SysML, requirements are mapped visually, properties showing in diagram 

and relations showing by arrows. It improves the traceability of requirements. 

Using these graphical diagrams, Requirements and their relationships are mapped explicitly. It 

improves visualization of requirements, and at the same time helps to trace requirements. (Michel 

dos Santos Soares, 2007) 

The SysML requirements diagrams improve the organization of requirements and, meanwhile, 

they can show the relationships explicitly between different requirements. There is also another 

advantage in using these diagrams that it helps to standardize the requirement specification due to 

the pre-defined semantics of SysML.(Michel dos Santos Soares, 2007; Shiva Nejati, 2016)  

However, these previous efforts are all focused on developing new requirements and requirement 

models. They can help analyze and specify requirements well. But, there is no studies on reusing 

and managing requirement data to our knowledge. There is a clear lack of knowledge on how to 

manage the significantly increasing number of requirements and requirement models and how to 

reuse and reconfigure them to satisfy the fast paced changing market and customer needs. 

Requirements Data Management 

Requirements, as a critical part of a company’s knowledge body, can be managed using knowledge 

management methodologies, like knowledge classification. Companies can also take advantage of 
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software tools and information systems to manage their requirement data. Following sections will 

start with discussing knowledge management and knowledge classification, and followed with 

examining the advantages and disadvantages of the requirement management software tools. 

Knowledge Management 

The requirements data is an important part of knowledge to any companies. Thus, knowledge 

management approaches can be applied to manage requirements.  

Knowledge Management is the process of creating, sharing, using and managing the knowledge 

and information of an organization.(John Girard, 2015) Davenport and Prusak said knowledge 

management is trying to make knowledge visible and show the role of knowledge in an 

organization, to share knowledge and offer knowledge proactively, and to build knowledge 

connections among people.(Maryam Alavi, 2001) The purpose of knowledge management is 

reducing the risk of knowledge loss and the cost of knowledge transfer under the circumstance that 

knowledge is stored only in the individual.  

Categorizing knowledge into groups has been identified as one of the key activities in knowledge 

management in several studies. It is considered as an effective approach to simplify the searching, 

sharing and creation of knowledge. There were several studies using different criteria to classify 

knowledge based on their goals. Andreu & Sieber identified knowledge based on three 

perspectives: information, technology and the culture of firm.(Lloria, 2008) G. Hedlund’s model 

distinguishes knowledge between three aspects of knowledge: skills, knowledge embodied in 

products, and well-defined services or artifacts. (Hedlund, 1994) Knowledge category models 

were created  by Boisot and Nanoka & Takeuchi to categorize knowledge into ontological levels: 

individual, organizational and inter-organizational.(Lloria, 2008) However, there is no study 

specifically designed for classify requirements data for reuse purposes.  

Requirements Management with Software Tools 

Many companies start adopting software tools to manage their product related data, including 

requirements. The software tool can be a standalone tool just for requirement management, like 

IBM Rational DOORS and Dassualt Reqify; but more often a module or a function within a larger 

information platform, which will provide a better solution to connect requirement data with the 

other critical product development related information. Several top information systems provide a 
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tool for requirement management. Siemens PLM software, Teamcenter, provides a requirements 

management solution which can help the companies capture and communicate requirements from 

every source to product decision-makers. Teamcenter could connect requirements with project 

plan, and make the impact of change visible. With the Teamcenter requirements management 

solution, requirements can be traced and maintained across organizations.(Siemens) Oracle PLM 

solution, Agile, also provide functions for customer need management. Agile enables users to 

collect all the innovation inputs, like requests, from various sources into a single sharable 

application. It connects engineering, design partners and sales together for collaboration. And 

Agile could link approved product proposals to actual items.(Oracle, 2018) 

Software tools can provide support for the storing and searching of the requirement data. Many of 

them also help to improve the traceability and change control of the requirement data, which are 

essential for requirement management. However, these tools won’t be able to answer the question 

of how to model the data and how to control and maintain the data after importing them into the 

tools. Significant efforts are needed to build the data model, and also define workflows and rules 

on how to manage the requirement date within the tools. 

Objectives 

The Overall goal of this research is to develop a new model to improve the management of 

requirements and make the reuse and reconfiguration of existing requirements and requirement 

models more efficient. Our proposed model can help simplify the identification of the changing 

part of requirements by classifying them into different levels based on their changing frequency. 

A workflow was also developed to support the use of the model. A medical device application 

with two implementations was chose to verify the model and the workflow. 

The specific objectives of this research were to: 

• Develop a multi-level reusable requirements management model for a medical device 

product. 

• Develop a corresponding workflow, and maintenance guidelines to support the 

effective use of the model. 

• Implement the model and the workflow in two different software tools, an 

independent interface, and in a commercial platform. 

• Assess the benefits of the multi-level requirement model. 
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Organization 

The remainder of this thesis contains four chapters. Chapter 2 captures the methods using in this 

study, which includes the development of requirement data source, the building requirement 

template, and the implementation of model. The application we used in study, and the way we 

used in building requirement model are also discussed in this chapter. Additionally, Chapter 2 

stated the general workflow and the maintenance guideline for the multi-level model. Chapter 3 

present the results of the methods in Chapter 2. The results contain the multi-level requirement 

model, the templates for two software, the specific workflow for each template, and the 

requirements reports generated by each template. Chapter 3 also contains the comparison of two 

implementations and the reusability assessment of multi-level model. Chapter 4 discusses the 

importance of the multi-level model, and the future work. Lastly, Chapter 5 concludes the results 

of this study.  
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METHODOLOGY 

There are three major steps in our research approach for the project. The first is to develop 

requirements and classify them for our model. The development of requirements adopts the goal-

oriented model and use case to analyze requirements and SysML to build requirements model. 

And the second step is to build requirement template, connecting the multi-level requirement 

model to the information system. This step is to find a way to realize the multi-level model in an 

information system. The final step is to implement the model. We chose two software tools for the 

implementation, Microsoft Office Excel, a commonly used tool for generating requirements 

documents, and Siemens PLM suite, Teamcenter, a world leading PLM platform with a 

requirement module. The research approach was shown in the following figure 3.  

 

 

Figure 3: Research Approach 

 

To avoid confusion, we made the following definitions which were used in the rest of this thesis. 

• Requirement data (source): This is the original group of requirements developed by 

using requirement development process. 

• Classified requirements: These are the requirements with extra level/class 

information. 

• Requirement template: This is the base requirement model which will be 

implemented in a software tool. The template for different tools may have different 

appearance. 

• Requirement model: This is the model created for a particular product development 

project based on the requirement template. 

• Requirement report/document: This is the document containing all the requirement data 

for a particular project, normally an Excel or Word file. We still generate requirement 



13 

 

report, since this remains the most popular approach for requirement management in 

many companies. The reports/documents are usually used for communicating with 

persons/organizations outside of the information system, for example, vendors, 

suppliers, etc. 

Requirements Development 

The requirement data were developed by using the goal-oriented model to define the use case, 

which is used to elicit requirements, and following the decomposition process to allocate the 

requirements. The requirements were then created by applying System Modeling Language 

(SysML). 

Goal-oriented Model to Define the Requirements 

The goal-oriented model provides a logical thinking to analyze requirements based on the scenario 

of system operation. Goals may refer to functions system provided or to the quality of system 

needed to achieve. Agents are active components, such as humans, devices, that play some role 

towards goal satisfaction. Some agents thus define the software whereas the others define its 

environment.  

In the goals’ organization, goals in higher-level are integrated into general strategic, that these 

goals are overall and involve more agents. Relatively, goals in lower-level focus on technical 

details, which are more specific and involve fewer agents. That is to say, in this organization, that 

the development in AND way refines a goal into a set of sub-goals. In another word, AND-

refinement means that it is necessary to achieve all sub-goals to make the upper goal satisfied. 

Whereas, in OR way, development refines a goal into a set of alternative sub-goals. OR way means 

that an upper goal could be satisfied by a sub-goal or another sub-goal. A requirement is an 

expression of a goal and how the goal could be achieved by the corresponding agent. [7-10] Figure 

4 is a schematic diagram showing a part of a goal-oriented model for a business continuity plan. It 

is about an after-sale repair system, from the original goal contract fulfillment to the sub-goals, 

“repair request received”, “repair request satisfied” and “repair invoice sent and paid”. These are 

refined in AND way. To fulfill contract, all these three sub-goals have to be satisfied. The sub-

goal, repair request satisfied, is refined into three alternative sub-goals in OR way, “equipment 
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repaired within 4 days”, “equipment repaired within 1 day” or “request no satisfied”. To achieve 

the sub-goal, repair request satisfied, only one alternative sub-goal is necessary to achieve.  

 

 

Figure 4: Goal Model Fragment (Alvaro E. Arenas, 2015) 

 

We defined the use case by using the goal-oriented thinking. Use case, which is a kind of diagram 

in SysML, is used to decribe the interaction between actor and the system. Regarding to satisify 

the user need as a goal, several sub-goals are refined by asking how to achieve the goal. Then the 

goal and sub-goals could describe as actions, which are use cases. After that we elicit requirements 

according to the scenario describing by use cases. Detailed example are described in the following 

scection, steps of defining requirements.  

Models Using SysMl 

Models using SysML can represent requirements clearly and improves the traceability of 

requirements. It will help us in our requirements development. So we analyzed scenario of the use 

case in Goal-oriented thinking to elicit requirements. And our requirements are built based on 

SysML. These methods help to develop a good requirements model.  

The SysML is a general modeling language. Requirements diagram is a unique function of 

SysML.(Jeremy Dick. Elizabeth Hull, 2017) As above stated, SysML standardizes a pattern to 

present requirements. And it also enables Use Case to help requirements elicitation. A Use Case 

is made of scenarios to describe the activity, which is acted by an external actor in order to achieve 
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a stakeholder’s need. (Williams, 2004) The stakeholders’ needs can be developed into sub-goals 

in goal-oriented thinking. With the help of SysML, not only the requirements and their relationship 

are visually mapped, but also their related experts are demonstrated. Therefore, we derived use 

cases by analysis user needs in goal-oriented thinking, elicited requirements according to the use 

cases, and represented requirements by SysML requirement diagrams.  

A requirement in SysML is a diagram, which contains some text, and can be associated with any 

other diagrams. It visualizes the property of requirement. The text states each requirement, its ID, 

name, and description. As for the association, it refers to the relations between requirement and 

another element, including other requirements or use cases. The following figure 5 shows three 

requirement diagrams in SysML, and the bottom two requirements diagrams are derived from the 

upper one. 

 

 

Figure 5: Requirement Diagram in SysML 

 

In SysML, a use case is represented by an oval with its name. There is also an actor symbol, which 

is not a part of the system, but it interacts with the system. The actor is an agent to carry out goals. 

It is represented as a stickman. The following figure 6 shows part of the scenario that an actor, 

Delivery system, interact with a system Distribute Product. And there are three use cases. The 
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direct acting use case is Distribute Product which includes two use case, Packaging Configuration, 

and Product Protection. It is like a goal is refined into two sub-goals. 

 

 

Figure 6: Use Case Symbol in SysML 

 

Steps on Defining Requirements 

We developed requirements based on use case. There are three steps to define requirement. First 

is identifying the actor of use case. Second is identifying the use case. Then, based on the use case, 

we can elicit requirements. The process shows as following. 
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Figure 7: Steps of Defining Requirements 

 

1. Identify the actor. 

To start the requirements development, the first step is to identify the actors of the system. A whole 

set of use case model should contain every actor, which is everyone needs to interact with the 

system, and every use case refined to achieve the stakeholder’s need for this system.(Williams, 

2004) 

The actors often in the answers to the following questions. Who uses the system? Who gets 

information from/provides information to the system? 

For auto-injector, one of the user need is “safe and easy to handle”. Obviously, the actor is target 

patient. So we identified the actor as following figure 8. 

 

 

Figure 8: Identify the Actor 

 

2. Identify the use case. 

The development of requirements by use cases is based on scenarios. So after identifying the 

actors, the process comes to define the use case. The questions continue as what operation will the 

actor do to the system, or what functions the actor needs from the system.(Barbara Gallina, 2007; 

Williams, 2004) Use case could have relationships with another use case. When a use case provides 

information to another use case, the relationship is communication relationship, showing as an 
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arrow. When a use case includes other functionalities, the relationship between use cases includes 

relationship. In SysML, the include relationship is represented by an arrow and labeled with 

<<include>>.  

What operation will the target patient do to auto-injector? Then we can define the interaction 

between target patient and auto-injector as “handle product”. The use case shows in figure 9. 

 

 

Figure 9: Identify the Use Case 

 

While identifying the refined use case, we analyze in the goal-oriented thinking. In order to achieve 

the user need “safe and easy to handle”, product has to be used effectively and be handled safely. 

We can refine two sub-goals in AND way, “to use effectively” and “to minimize use error”. Then 

we can transfer these goals into interactions. So we can get that the use case “handle product” 

include two use cases, “use effectively” and “minimize use error”, showing in the figure 10.  

 

 

Figure 10: Refine Use Cases in Goal-oriented Thinking 
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3. Elicit Requirements. 

When it is done with identifying use case, represent it in SysML symbols to visualize the system. 

And it will easier to understand what will happen and to derive a textual sequence of the use case. 

The sequence is so-called flow-of-event. The flow-of-event is a description of what the system 

should do, and how the system does it. Then requirements come out by the expression of the event 

in natural language. 

According to the refined use cases, we can derive two child requirements from the user need “safe 

and easy to handle”, showing in the figure 11. One is that the forces and torques required to operate 

the product shall enable safe and effective use. Another is that the product shall minimize or 

eliminate the likelihood of use errors for target patient as determined by risk management. 

 

 

Figure 11: Elicit Requirements from Use Case 

 

We process the above steps in Cameo System Modeler. The Cameo System Modeler, which 

provides the environment of SysML, was chosen to build our requirements. Cameo Systems 

Modeler is an industry software providing Model-Based Systems Engineering (MBSE) 

environment to define, track, and visualize all aspects of systems in the most standard-compliant 

SysML models and diagrams. 

The detailed steps demonstrate as following. 

 

 

 

 



20 

 

1. Create diagram. 

 

Figure 12: Create Diagram 

 

2. Choose use case diagram. 

 

Figure 13: Choose Use Case Diagram 
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3. Create the actor and input its name. 

 

Figure 14: Create the Actor and Input its Name 

 

4. Create the use case and input its name. 

 

Figure 15: Create Use Case and Input its Name 
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5. Create requirement diagram and input its content. 

 

Figure 16: Create Requirement Diagram and Input its Content 

 

Multi-level Model 

Requirement classification is a helpful way to manage requirement data. A clearly defined 

classification schema is critical to the success of requirement classification and management. 

Considering the reusability of requirements model as the main goal, we categorized requirements 

into groups based on their changing frequency. 

There are four different groups in our classification schema, called four requirement levels: the 

regulatory level, the product line level, the product level, and the project level.   

The regulatory level contains the most stable part of requirements. The product line level is about 

the basic requirement for main features of a product family. The product level contains more 

specific requirements for a single product. The project level refers to the requirements of 

configuration. The first level, we use the government and industry regulations as the foundation. 

Requirements in this level set the basic necessity for the product design, which is the most stabled 

for the requirement model. It is unnecessary for the basic level to be updated in every project. Next 

level is the product line requirements. It is a set of products, which have common features. These 

requirements in this level are set to define the basic functions that the product family should 

provide. Table 2 showed examples of different level requirements for an Auto Injector. 
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Table 2: Examples of Different Level Requirements for an Auto-injector 

Level Example Requirement 

Regulatory ID: 1.18.1, Name: Specified Requirement Servicing, Text: the FDA 

stipulates that each manufacturer shall establish and maintain 

instructions and procedures for performing and verifying that the 

servicing meets the specified requirements, where servicing is a 

specified requirement. 

Product Line ID: 2.7.1, Name: Auto-Injection, Text: The device shall deliver the 

dose by auto-injection 

Product ID: 3.7.4, Name: Container Type, Text: The Delivery System shall be 

designed to function with a pre-filled 2.25ml round flange syringe 

with Rigid Needle Shield (RNS) as its container closure.  

Project ID: 4.7.5, Name: Needle Gauge, Text: The Delivery System Container 

Closure shall use a 27-gauge thin wall or smaller needle.  

 

Figure 17 is a structural demonstration of the multi-level requirements model. We number the ID 

as following rules. The first number is requirement’s level. The second number is the number of 

user needs which the requirement derived from. The latter numbers describe the location of the 

requirement in the development process. Different levels of abstraction allow a separation of 

concerns among domains of experts. The specific group of users has access to the corresponding 

level of requirements. The manager can access the high level, but the parts designers only have 

low-level access. When the change happens, it is easy to determine the affected contents. By multi-

level model, the corresponding part of knowledge in requirements engineering is connected to 

certain people. And the role of knowledge will be defined when the requirements are classified 

into levels. 
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Figure 17: Multi-level Sketch 

 

The multi-level requirements model is just like to assemble requirements as the parts assembled, 

from fundament to alternative branches. As a result, it makes the recombination to build a new 

requirement model easier, disassembling alternative requirements and adding new requirements, 

when product reconfiguration happens. Similarly, an instance for the reconfiguration, Arvid 
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Butting and his group in 2016 did a modeling for reusable robot assembly processes. They divided 

the assembly into the process level, task level, and skill level. Using skills fulfills the task, and 

tasks go through the processes. Different levels are designed by different domains experts.(Arvid 

Butting, 2016) The modeling can still work well with the same skill level when the process 

changes. Thus, same as our multi-level requirement model, different level refers to the different 

part corresponding to specific domain experts. Similar to the car models, manufacturers cannot 

design a new engine for every new model. The styling varies, while the engine remains. Therefore, 

we make the core of our model stable and make the lower levels changeable. Our requirement 

model classifies the requirements from high-level industry regulation to the lowest level 

configuration requirements of a specific version of the product. 

There were three main advantages of the multi-level model. 

1. In order to reuse, the multi-level requirements template for a product will be stored. 

So the most of requirement knowledge for this product, will be stored in the 

organization. The requirements data could be shared with other people who have 

access. The knowledge won’t be lost even if the related experts leave. 

2. Multi-level model helps to locate the corresponding groups of requirements when a 

change happens. Rebuilding work of requirements can reuse requirements by groups. 

In consequence, a multi-level requirements model is demanding to improve the 

reusability of requirements model and to help in knowledge management. 

3. There is also another advantage of multi-level requirement model. Under normal 

condition, it makes the requirements easy to build, manage and maintain. During the 

building of the requirements model, level classification helps analysis. Building the 

model with derived requirements from high-level to low-level increases the 

completeness and reduces the risk of missing requirements.  

Model Implementation 

The model was then implemented into two different software tools, Microsoft Office, Excel and 

Siemens PLM, Teamcenter. There are two main reasons for the implementation: first, it can help 

to test the feasibility of the model, and second, a good implementation strategy is critical to the 

success of the model. Without a good implementation, the stakeholders won’t be able to see the 

advantages of the model and may cause more errors and confusions in the future. We want to use 
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the two implementations in these two different software tools to provide guidelines and best 

practices on implementation strategy. The choice of the two software tools were carefully 

considered. These two tools represented two different requirement management approaches and 

two different information system mature levels. Excel is the currently most commonly used tool 

for requirement documentation. The implementation with Excel can be used as a standalone tool, 

but also can easily be adapted as a middleware or an interface to another information system or 

software tool. While Teamcenter represented the highest level of integrated requirement 

management within an enterprise level information system with much more sophisticated data 

structures and functions. The Teamcenter implementation will provide an example of using the 

model in a complexed information environment and take full advantage of the capability of the 

information platform. 

There are several challenges and important questions in the implementation of the requirement 

management model. 

1. How to align the multi-level management model with the requirement model built based 

on requirement decomposition?  

Requirement decomposition provides a hierarchy view of the requirements, and also makes 

the tractability between different requirements become clearer and more intuitive. It is the 

most comment method to organize requirements. We want to remain this top down tree 

view of the requirements to make it easier for the engineers to accept our implementation, 

but also want to include the level information to support the reuse of the requirements. We 

end up choose two different approaches for the two implementations. For Excel 

implementation, we add an extra digit in the first of requirements’ coding schema to 

represent the level information. While for Teamcenter implementation, we add the level 

information as a new attribute to each requirement items. This new attribute can be used as 

one of the querying criteria and also can be used for access control and configuration 

management.  

2. How to create new requirement models after the implementation? 

A workflow is needed to provide guidelines on how to use the requirement templates after 

they were built in the software tool. This workflow should cover different product 

development scenarios, and need to be modified for different software tools. 

3. How to maintain the requirement template to ensure its accuracy and validity? 
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The requirement template is not a static item, but a dynamic one. This means that the 

template needs to be understand continuous reviews and updates. An obsolete template will 

not bring any benefits, but rather cause troubles and even disasters. There has to be clearly 

defined and documented processes and guidelines on the maintenance of the template. 

The details on the two implementation and how these challenges were addressed will be discussed 

in the following sub-sections. 

Workflow 

For the reusability of requirement model, we need to take advantage of the existing template and 

minimize the changes. Therefore, it is necessary to analyze the change of product first, to determine 

which part of requirements is needed to change before moving on developing the requirement 

model for the new product. 

Based on an original requirements template, when a new product design is presented, the workflow 

becomes as the following. We can only change the configuration part of the requirements if the 

new product is a reconfiguration of the original one. The requirements model has to change all the 

corresponding requirements of this type of product if the new product is a new category product. 

If the new product belongs to another field, it has to rebuild a whole requirements model. Figure 

18 shows the workflow of the change of requirements. When changes happen, the first is to define 

which part is needed to change. Then keep unaltered levels and remove undesired levels. After 

that, process and complete the new requirements model. Instead of making a fresh new 

requirements model, the requirements can be changed simply if the reconfiguration happens. In 

the workflow, the first step is defining the change of the product. If it is a new field of product, the 

requirements should start with the regulatory to build a whole requirements model. If the product 

is a new category but in the same field, the industry regulations are same, but it needs new product 

line requirements. So the regulatory requirements remain and the steps continue with the 

specification of level 2 (product line requirements), and then move to lower level until finish the 

whole requirements system. If the product is just a new configuration, the steps directly start with 

the specification of configuration requirements, keeping the level 1, 2 &3 (regulatory, product line 

and product requirements). 
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Figure 18: Multi-level Requirement Model Development Workflow 

 

Maintenance of the Model 

After releasing a requirements model for a project, the following job of requirements engineering 

is the maintenance of this multi-level requirements model. It is critical to making the model 

dynamic, in order to keep it most suitable for the current projects. There are two kinds of 

maintenance, regular maintenance, and need-based maintenance. 

The first is regular maintenance, which is periodically reviewing all the requirements of the 

template and the changes happened in previous projects. The purpose of the reviewing is to define 

if there are any changes significant enough to change the template permanently. For instance, some 

requirements may be not necessary anymore. They will be deleted after maintenance. And there 

may be some new stable requirements appearing after a period of time. So that template will add 
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new requirements during maintenance. Or some critical information of requirements has to change 

permanently. In a word, the regular maintenance is reviewing documented information, based on 

the frequency of changes, to update the template. 

To execute the permanent change, every change happening for every project has to be documented. 

And the collection of these changes will be reviewed by a specific group of experts regularly. 

Then, experts will define if the change is stable enough to be changed in the template. Therefore, 

according to the assessment of experts’ review, the requirements template has to be updated 

periodically. 

The second maintenance is based on the need. It will be triggered once a significant event happens, 

for example, an FDA regulation change or a major recall. Similar team of experts need to be 

included in the review and change control meetings to ensure the changes are addressed properly 

and the templates are updated correspondingly. 

Excel and TC Implementations 

We chose Excel as one of the tools to implement the multi-level model. There are two main reasons 

for this choice. First, it is a very widely used tool and many companies are currently using it for 

requirement documents. An implementation in Excel will be easier for engineers, without much 

training, to understand and use. Second, an implementation in Excel can also be used as a 

middleware to interface or integrate into other information systems.  

Besides, Macro in Excel enables us to program functions for the convenience of implementation. 

In the Excel table, the same level’s requirements can be listed in one section, in order to make the 

levels of requirements obvious to be located. The checkbox in Excel can be linked with each 

requirement in the table to make the requirements selectable by click. The more powerful 

capability is that the checkboxes and buttons inserted in the Excel sheet could embed code. These 

encoded items enable kinds of operations on this implementation. 

The most important function of the code is to store the relationships among requirements by the 

programs of the linked checkboxes, though there are only requirements listed in Excel sheet. And 

because of the stored relationships, reminder shows when engineer selects related requirement that 

has a specific relationship with others. And associated requirements can be selected automatically. 

On the contrary, the conflicted requirements will be not selectable, showing with another changed 

background color in the row of the related requirement. By distinguishing the checkbox value, and 
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storing the related rows of the true value checkbox, the encoded button also makes it possible to 

generate a requirements report after engineer finishing the selection of all desired requirements for 

the new project. Sometimes engineering may want to clear all selected requirements while mistake 

happening. This function is realized by changing values of all checkboxes to “False”. The opposite 

value “True” means the requirement is selected. Furthermore, code enables scrolling screen to a 

certain row, which makes engineer can locate desired levels quickly.  

Teamcenter is another tool we adopted to implement our model. Teamcenter is a suite of product 

lifecycle management (PLM) computer software applications. It is one of the most widely used 

commercial software for product lifecycle management. We implemented our requirements model 

by using the product structure module in Teamcenter. This implementation showed the feasibility 

and advantages of using our model together with an information system. We chose the product 

structure module for our implementation since it is one of the core PLM capabilities that all major 

commercial platforms provide (maybe under a different name). This makes our implementation 

more representative and can be easily adapted for other PLM platforms. 

Teamcenter enables items created as product structure. Product structure is a hierarchical 

decomposition of a product, typically known as the bill of materials.(Wikipedia, 2018, February 

10) It is a tree structured breakdown of product. In the structure, sub-items are assembled under 

the parent item. It is like requirements organized in development process relations from parent 

requirement to derived requirements. The following is the process of creating requirements 

template in Teamcenter.  

To build the requirement template in product structure, the operations start from creating new item, 

to choosing the type of item, to setting the attributes of the item in the dialog windows. Since we 

are building a product structure, we use part as the type of the new item. First is to create a top 

level item, which is the requirement model for auto-injector. Then, user needs are created under 

the top item. And the building of requirements continues following requirements decomposition. 

The location of new creating item is under the selected item while clicking the new button. Select 

the parent requirement and create new requirement. Then the new requirement will be under the 

parent one. Derived requirements created under each user needs, and sub-requirements follow. The 

most important work is adding the level as an attribute for each item, according to the classification 

of requirements. In Teamcenter, we set the level attribute of requirements as a reference designator. 

And filter can search the requirements in the template by the designator so that certain levels of 
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requirements can be easily found. Reference designator is a reference to identify a component in 

schematic. Filter in product structure management can search item by designator. So we choose 

the designator as the level attribute, in order to enable searching entire level’s requirements. 

The detailed steps process as the following. 

1. Create new part, the multi-level model for auto-injector. 

 

Figure 19: Create the Top Part 

 

2. Appear a window for part information setting, click next. 

 

Figure 20: Window of Part Setting 

 

 

 

 

 

 



32 

 

3. Input the ID, Revision, Name and Description. (we didn’t revise, so the revisons for 

all requirements are setting as 1.), then click finish. 

 

Figure 21: Input Information of Top Part 

 

4. Create user needs under the top part, while the upper part is selected. 

 

Figure 22: Create User Need 
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5. Input the information of this user need. 

 

Figure 23: Input Information of User Need 

 

6. Set its level as reference designator. 

 

Figure 24: Set the Level of User Need 

 

 

 

 

 

 

 

 

 



34 

 

7. Create derived requirement under user need. 

 

Figure 25: Create Requirement 

 

8. Input information for requirement. 

 

Figure 26: Input Information of Requirement 
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9. Set its level as reference designator. 

 

Figure 27: Set the Level of Requirement 

 

The building work continues to repeat above steps for the rest of requirements. 
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RESULTS 

The results from each major step are shown in Figure 28. From the first step, requirements 

development generated requirements data source, which is classified into levels according to their 

stability. These requirements are then used in the second step to build requirements template for 

an information system. And the final step outputs specific workflow of each implementation tools 

and requirements reports. 

 

 

Figure 28: Outputs of Each Step 

 

Requirements Data Source 

After setting application for implementation of multiple level model, the first step of research 

starts. And the first step outputs the requirements data source. These requirements, classified into 

levels, are developed for auto-injector. 

During the building process, we use the Cameo System Modeler, which is a software of Model-

Based Systems Engineering (MBSE) environment, to make the development of our Requirements 

Template easy. It helps to analyze and abstract in the development of requirements by its graphical 

use case and requirements diagrams.  

A use case can show the development process from user needs to their corresponding requirements. 

In the use case, it graphically describes what activities the system should do by which actor to 

satisfy the user needs from stakeholders. It is also a microscopic demonstration of corresponding 
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relations between requirements and experts. Requirements can derive from these use case. Figure 

29 is a sample of the use case and the requirements derived from it. The user need is protecting 

safety during the delivering of product. So the actor is delivery. to deliver product. Before customer 

get product, the delivery has to distribute product and store product. So there are two use case for 

protecting safety during distribution. And based on the use case, two requirements are derived 

from the user need. The requirement “drug product quality during distribution” was elicited by the 

use case “distribute product”. The requirement “shelf life” was elicited by the use case “store 

product”. 

 

 

Figure 29: Use Case and Derived Requirements 

 

The following figure 30 shows part of the multi-level requirement model, which are documented 

in the table. They are already classified into four levels. 
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Figure 30: Part of Multi-level Requirement Model 

 

Implementation 

Excel 

For implementation in Excel, we put the classified requirements in Excel sheet and embed code 

for functions to implement the model. Then multi-level requirements template for Excel comes 

out. This template can generate a new requirements model file just by choosing altered 

requirements in the database while updating. A demo of multi-level requirements template in Excel 

table is showing in Figure 31. 
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Figure 31: Part of Template Table 

 

Moreover, we embedded several functions in the excel file to implement this model. And Visual 

Basic for Application (VBA) is the default programming language of Excel. So we code in VBA 

programming these functions. 

Figure 32 is a Requirements report, which contains all selected requirements in the requirements 

database, generated by the excel table. Our implementation tool can automatically generate a file 

containing the checked requirements. This function makes the Requirements Model accessible to 

varied management platform. 

 

 

Figure 32: Part of Automatically Generated Requirement Report in Excel 
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The workflow of Excel implementation starts selecting the desired requirements under each level. 

And after finishing the selection of desired requirements, the final step is to generate a file which 

contains all the selected requirements. 

As the workflow, the first coding function is linking checkbox with each individual requirement. 

In that way, the desired requirement can be selected just by clicking the corresponding checkbox. 

Of course, one of the most important functions is generating final selected requirements file. For 

the convenience, the template is also embedded in some other functions coding by VB. In the 

template, we programed functions that make it possible to check all child-items automatically. And 

the background color of the requirement will change once the item is selected.  

Despite the requirements are tabular items, the relationships among requirements still need to store 

in the template. And that can remind users of these relationships while choosing requirements. One 

of the reminders shows in Figure 33 and 34. This reminder helps users to check the associated 

requirements automatically.  

 

 

Figure 33: Relation Reminder 

 

 

Figure 34: Partial Detail of Relation Reminder 

 

The basic function is making every available requirement selectable by a checkbox. The user can 

click the checkbox to select corresponding requirements, which is needed in the practical project. 

All related requirements are saved in the template, so users can build the whole requirements file 

just by selecting the items they want. After saving the requirements in the template, we defined 

the relationships among requirements in the code. That comes to the second function. The template 
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can recognize the relations of each checked requirements, automatically selecting the dependent 

requirements, or blocking the conflicting requirements and showing the reminder at the same time. 

Also, there is an additional function for the child-parent relation. All sub-requirements are selected 

while the parent is checked, and vice versa. For the convenience, the code also makes the switching 

levels possible. The most important function is generating a new file. When users finish choosing 

the requirements what they want to develop their project, they can click the generate button to 

create a new file containing all the items they selected. And this file can be imported to their 

management platform. 

Teamcenter Implementation 

For the implementation in an information system, we built a multi-level requirements template in 

Teamcenter in product structure management. In the template, we set the level of each requirement 

as one of their attributes, reference designator. The certain level of requirements can be selected 

in the template by groups, filtering the corresponding attributes. After defining the changed level 

of requirements, engineers can modify the entire level of requirements directly. The following 

Figure 35 shows that certain levels of requirements are selected in development structure in this 

template. 
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Figure 35: Search Level 3 in Template 

 

After reviewing and updating requirement model copied from the template, a report can be 

generated automatically, showing in figure 36. 
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Figure 36: Part of the Requirements Report Automatically Generated in Teamcenter 

 

A requirement template was built in a tree form (similar to the BOM for product structure) in 

Teamcenter for future reuse. Figure 37 shows the workflow for using this template to develop a 

requirement model for a product.  It’s based on the basic workflow in figure 18 with several extra 

steps (showing in ovals). These are steps after defining the change of product design, from copy 

the template to searching and removing the related levels of requirements. For a new field product, 

there is no difference, starting with the very beginning regulatory requirements. For a new category 

product, the process begins after defining the changed parts in Teamcenter. Copy the template and 

paste in a new project, and then review and update the lower levels 2&3 (category and 

configuration). That means the regulatory requirements stay in a new project. For a new 

configuration, the process starts with the configuration, keeping the regulatory requirements and 

product requirements. Copy and paste the template, then review and update the level 3 

(configuration requirements).  With the template in Teamcenter, after decided the change level of 

the project, engineers can just duplicate all requirements in the template, and then review and 

update the related levels of requirements in the template. 
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Figure 37: Multi-level Requirement Model Development Workflow in Teamcenter 

 

With the template in Teamcenter, after defining the change level in a project, engineers can just 

review the template, and then update related levels of requirements in the template, which are the 

requirements needed to change in the new product. Based on the template, brand new requirements 

can be added following the development process, deriving from user need to requirements, and 

labeled their levels. If a new requirement is just new from an original user need, it only needs to 

add new requirements under the same user need. 

Mainly there may be two types of change. For a specific project, there must be some changed 

requirements, including adding new requirements, deleting or modifying original requirements. 

Another is about the permanent change of the template, which refers to the maintenance. 

For the first kind of change, generally, it happens for each project. The frequency differs from the 

levels. The regulatory requirements are most stable. They are only changed when the 

corresponding department changes the policy for this product field. The lower level’s requirements 

change more frequently. For the second change, it happens when the product changes some 

important features or regulations. So, for the future convenience of reuse, the requirement template 

needs to make the corresponding change permanently. 

The following figure shows the workflow of requirement change in Teamcenter template. While 

reusing this template in Teamcenter, if there is a requirement needed to change, the steps follow 
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like figure 38 The first step is defining that if the new requirement is derived from a new user need. 

If the answer is yes, the development starts with user need and determine their levels. After 

finishing the development process, create these items in Teamcenter template and label their levels. 

If the requirement is derived from original user need, then specify this requirement, create it under 

the affiliated user need and label it as the corresponding level in Teamcenter. If this requirement 

is not absolutely new, it is only needed to modify original details in the template. 

Besides, for the permanent change of the requirements template, the workflow is also same as 

these steps showing in figure 38. 

 

 

Figure 38: Requirement Change Workflow in Teamcenter 

 

Comparison between Two Implementations 

We chose two different software tools, the MS Office Excel and Siemens Teamcenter, for 

implementation of the multi-level requirement model. There are some similarities between the two 
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implementations. First, both of them support automatic generation of requirement documents after 

the necessary revise of the template. Second, both of them group the requirements based on their 

levels for easy selections. However, there are also some differences between the two 

implementations. Excel is the most commonly used tool for requirements documentation, and it is 

also a tool that most of the companies have already invested in and most of the engineers are 

familiar with. The Excel implementation will be easier for companies and engineers to accept and 

adopt the new reuse approach. This implementation can be used as a standalone requirement 

management tool, or as a middleware or interface to be integrated with other software tools. 

Teamcenter, as the leading PLM platform, can provide more powerful support on the management 

of the requirements; and more importantly, it provides an opportunity to connect requirement data 

with other product development related data (BOM, materials, manufacturing process, etc.), since 

it can be the only data source for an entire enterprise. We want to use these two different types of 

tools and implementations to show the feasibility and flexibility of our multi-level requirement 

model. 
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Benefits of the Multi-level Requirement Model and its Implementation 

Avoiding Potential Pitfalls 

Table 3 showed how the new reuse approach with the multi-level requirement model can help to 

reduce the steps in generation new requirement documents and avoid the pitfalls mentioned in 

Table 1. 

 

Table 3: Avoiding Potential Pitfalls with New Reuse Approach 

Step # Description of the Step Potential Pitfalls New Process 

1 When an auto-injector is chosen 

as the delivery mechanism for a 

drug, the product engineer needs 

to find the requirement 

document of a similar product. 

Then copy the document for the 

new project. 

• Wrong product, the 

product may not be 

the one that is the 

closest related to 

the new project. 

• Right product, but 

wrong version of 

the document. 

• The software tool 

will help to locate 

the right document 

for the right product. 

• The continuously 

review and 

maintenance process 

ensures that the up-

to-date document 

will be used. 

2 Review the entire file to identify 

the reusable ones, for example, 

the regulatory related 

requirements, and the ones that 

need to be updated or removed, 

for example, requirements 

related to needle gauge and 

labeling. 

• Miss identifying 

reusable 

requirements 

• Longer time to go 

through the entire 

documents 

 

• The templates are 

pre-defined and 

carefully reviewed 

by domain experts to 

make sure that the 

requirements are at 

the right level for 

reuse. 

• The software tools 

can provide easy 

query functions to 

save the time. 

3 Revise the non-reusable ones 

and add new ones as needed. 

• Revised or newly 

added requirements 

contradictory or 

duplicate to the 

existing ones 

• Build-in compliance 

and completeness 

check will help to 

improve the quality 

of the requirements. 
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Besides all the improvements mentioned in Table 3.1, both of the two implementations support 

automatic requirement document generation which can save time and avoid possible human errors 

in creating documents. 

Increasing the Number of Reusable Requirements 

There are 184 requirements in total, with 75 in Level 1, 73 in Level 2, 29 in Level 3, and 7 in Level 

4 (Table 4). For a product reconfiguration project (for example, a new drug using an existing auto-

injector), 96% of the requirements can be reused. More than 40% of the requirements can be used 

for a product in a brand new product line, while about 80% requirements can be reused for a 

product in an existing product line (Figure 39). 

 

Table 4: Statistics of Requirements Number 

Statistics of Requirements Number 

Total Number of Requirements 184 

Number of Requirements in Level 1 75 

Number of Requirements in Level 2 73 

Number of Requirements in Level 3 29 

Number of Requirements in Level 4 7 

 

 

Figure 39: Percentage of Requirements Number in each Level 
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DISCUSSIONS 

In the past few decades, many companies start adopting the idea of product configuration and 

customization in order to keep up with the rapid changing technologies and satisfy the significant 

increasing on customized and personalized products from customers. Instead of developing new 

product from scratch each time, product configuration allow the companies to build their new 

product based on a group of pre-developed and validated parts or technologies. Reuse of existing 

designs and technologies becomes a widely adopted approach. As a key step in a product 

development process, requirement engineering is also embracing the reusable idea in requirement 

development and management. However, how to effectively reuse the existing requirement data 

remains an unanswered question. Some companies are trying to take advantage of software tools 

(either standalone or a part of a larger information platform) to improve the reusing of requirement 

data. But there is a clear lack of knowledge on the data model for requirement management and 

the workflow to create, maintain, search, and retrieve requirement data from the tool. So, the 

objectives of the current project are to (1) develop a requirement data management model to 

support easy reuse of the data; (2) develop corresponding workflows and guidelines on how the 

data model working; and (3) implement the model and the workflow into two different software 

tools; (4) assess the benefits of the multi-level requirement model. Following the research 

approach discussed in Chapter 2, we built the data management model and the workflow, and also 

successfully implemented them into two different software tools to verify the feasibility of the 

model and the workflow.  

Our results presented in Chapter 3 showed that it is possible to implement the multi-level model 

in both Excel and Teamcenter. With the new process, the multi-level model could avoid the pitfalls 

of current reusing way mentioned in Chapter 1. Following the workflow in results, engineer could 

find the right document for reusing. And the maintenance ensures the reused document is up-to-

date. While reusing, because the level of requirements in the templates derived in Chapter 3 are 

predefined by experts, reusing process could reduce the miss identifying of reusable requirements. 

Besides, the query functions in both implementations reduce the reviewing time. Also, it increases 

the reusable of the requirements. Most part of requirements could be reused in new project. 

During the research, we had several observations beside the results shown in Chapter 3. 
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1. Managing requirements as documents in a software tool won’t be able to have the full 

benefit from the tool. Companies should consider managing each requirement as a 

structuralized database item to make the searching, retrieving, changing, tracing and 

controlling of access of the requirement data easier. When a requirement report is needed, 

most of the software tools have the capability to automatically generate the report 

documents. 

2. The requirement templates built in the software tool are not only a critical part of the 

requirements reusing process, but also a very helpful way to ensure that the requirement 

knowledge will remain inside the company and will become a useful tool to train the new 

generation of engineers. The requirement data and requirement template building process 

will need contributions from many different domain experts. These inputs from the 

engineers many years of experiences within their area are valuable assets to the company, 

and the template is a convenient and effective way to capture and management them. 

These templates also provide a good starting point for a new product/requirement/system 

engineer to begin their work. They can develop their new requirements/requirement 

models based on a validated foundation. 

3. A well-defined workflow is very important to the success implementation of the model. 

A lot of concerns with requirement engineering/modeling are related to the usability of 

the models, during our interviews with people from industry. Most people agree that 

requirements are important and requirement management is necessary. But they are 

worried that more works will be introduced and they will their control and flexibility over 

their own works during the process. A clearly defined workflow together with guidelines 

on how to use and maintain the model will help people to accept the implementation, and 

also avoid confusions in the future. 

Overall, the model and workflow developed in the study provide a more systematical approach to 

manage requirement data, especially with a software tool. Following are some of the future works 

which can help to generalize the model for a larger range of application and expand the scope of 

the model to cover more processes within product development. 

1. Due to the time constrain, the model and workflow didn’t get implemented in a real 

world working environment. A real working environment will bring in a lot more 
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uncertainties and variations. An implementation in such an environment will help to 

improve the current model and workflow to make it a more robust solution. 

2. The current application is for one product line in medical devices industry—the auto 

injector. The application should be expanded both horizontally and vertically in the 

future. Horizontally, the application should cover a broad range of medical devices and 

even other industries; while vertically, the other product development related data 

should be included, for example, the testing/validation methods and results, the product 

structure, etc.   
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CONCLUSIONS 

Following conclusions were drawn based on the results from this study: 

• A practical multi-level requirements management model for a medical device—the 

auto injector can be developed, and the model can be implemented into different 

software tools to support reuse of existing requirement data in creating requirement 

models for new product development projects. 

• The workflow and guideline to support the application and maintenance of the 

requirement model can be developed and implemented. Requirement 

documents/reports can be automatically generated through the software tool by 

following the workflow. 

• The new method can improve the reusability of requirement model. With the help of 

the multi-level model, it can avoid the pitfalls of current way in reusing requirements, 

increase the reusable requirements. 
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