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Abstract In order to study the response of dual QCD vacuum in non-perturbative regime, the dual gluon 
propagator is evaluated by calculating a non-local quark current-current correlation relation in the dynamically 
broken phase of the magnetic symmetry The linearly rising potential is then shown to be responsible for the 
absolute colour confinement in the low energy regime with a constant restoring colour force between a quark-
pair of a flux tube in SU(2) dual QCD vacuum 
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1. Introduction 
The Quantum Chromodynamics (QCD) is the most successful non-Abelian gauge field 
theory of the strong interactions [1] which describes the properties and underlying structure 
of the hadrons in terms of the quarks and gluons [2, 3]. Since the quarks have never 
been seen as free states in nature, their confinement mechanism in the interior of hadrons 
deserves careful attention. The problem is then to explain the dynamics of confinement 
with in the framework of QCD [4]. On the other hand, it is worth noticing that the detailed 
investigations of QCD in infrared (IR) regime (Ae. at large distances) encounter various 
difficulties due to the failure of perturbation theory which only makes sense for the short 
distance processes [5, 6]. In past few years, promising evidences have emerged to solve 
the issue of quark confinement in a non-perturbative way by regarding the QCD vacuum 
as a dual version of the conventional superconductivity [7-10], A firm link of confinement 
mechanism to the monopole condensation is, therefore, of crucial interest and in this 
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respect especially, the 't Hooft's Abelian projection technique is worth to mention [11]. 
There, the gauge degrees of freedom are fixed (by a suitable choice of gauge fixing) in a 
way that the QCD reduces to an Abelian gauge theory with the appearance of the colour 
electric charges (quarks) and colour magnetic charges (monopoles - as topological objects). 
The facets of the colour confinement mechanism may then be described with the monopoles 
as essential built in ingredients of the dual QCD vacuum. In dual (magnetic) superconductor 
scenario of QCD vacuum, the colour magnetic monopoles get condensed and as a result 
of which the colour electric flux is excluded from the QCD vacuum with the formation of 
thin flux tubes between the colour electric sources [12-14]. Moreover, the introduction of 
such topological objects (viz. monopoles and dyons) in QCD vacuum and the dual dynamics 
between the colour iso-charges (quarks) and topological charges (monopoles) along with 
the qualitative picture of a flux tube can best be described by the magnetic symmetry 
structure of the non-Abelian gauge theories [15]. The magnetic symmetry, in fact, restricts 
some of the dynamical degrees of freedom of a non-Abelian gauge theory while keeping 
the full degrees of freedom intact, and as a result, the gauge potential corresponding to a 
non-Abelian SU(2) gauge group can be expressed in terms of the electric and magnetic 
potentials which are Abelian in nature. In particular, the purpose of this study is to extend 
our previous work [16] by deriving the dual gluon propagator in view of the magnetic 
symmetry structure of the local version of the dual SU(2) QCD vacuum in order to further 
investigate the nature of confinement potential in the IR regime. It is explicitly shown that 
how the quarks are absolutely confined by a linearly rising confinement potential at large 
distances in the background of the magnetic condensation in QCD vacuum. 

2. SU(2) QCD and the dual gluon propagator 

The topological properties of magnetic symmetry as an additional isometry express the 
dynamics of QCD explicitly at the level of the gauge potential. The entire formulation for 
QCD vacuum may then be derived in terms of two Abelian components \ (electric 
potential) and B^ (magnetic potential) [15]. But the monopoles in such formalism appear 
as point like objects with the singular behaviour of the magnetic potential and to get rid of 
these undesirable features, one can introduce the dual magnetic potential ( B^) with the 
associated gauge field strength tensor (s„v -^efivapEPp^ and a complex scalar field 
(0) simultaneously for the monopole field [15]. The dual magnetic potential, therefore, 
describes the magnetic field of a monopole with a regular time-like potential. Since the 
monopoles for the present case appear as the point-like objects and have no obvious spin 
structure, their correct field-theoretical description requires to describe them by a complex 
scalar field in a way analogous to the scalar fields used in the formulations of QCD as 
first suggested by Mandelstam [17] and 't Hooft [18]. The monopole field plays the role of 
Ginzburg-Landau (GL) order parameter like the macroscopic Cooper-pair wave function in 
the conventional superconductivity. Such considerations then leads the correct physical 
description of the monopoles in the present dual formulation of the QCD vacuum and the 
dual QCD Lagrangian derived from the naive SU(2) QCD Lagrangian may then be re-
expressed in the following form [15, 16], 
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+ m(vWi+V2W2) + \'Dn<t>\ - V ( 0 0 *)h (1) 
i 
ti 

where, D^ «[aM +fls(>\ l +flM)/2/] and % • [3 M ^ /4»(^ / l + B„)/flrs]. However ^ 1 and 
V 2 are the components of the SU{2) iso-dou^let spinor source for the quarks and 
l / ( # * ) is an effective potential. The field strength tensors corresponding to the electric 
and magnetic counterparts are given as follows, 

Fw = 3 , A - 3 v ^ i . 6 ^ = 3 ^ - 3 ^ . (2) 

However, the presence of space-like electric potential (A ) preserves the dual structure 
of QCD vacuum by including the electric coupling to the monopoles. The dynamical breaking 
of the magnetic symmetry by an effective potential enforces the magnetic condensation in 
QCD vacuum and for this purpose the effective potential from phenomenological view point 
is then given by, 

V(#*) = r2(#*-0O
2)2, (3) 

where, Q = 3A/a2 and 0O is the vacuum expectation value (VEV) of the complex scalar 
monopole field (0) and a s = g f / 4 ^ is the strong coupling constant. The magnetic 
condensation as a result of the dynamical breakdown of the magnetic symmetry in QCD 
vacuum ultimately reflects itself in terms of two mass modes (scalar and vector) of the 
condensed vacuum. In order to visualise the confinement mechanism in such condensed 
vacuum, let us try to derive the structure of the dual gluon propagator and confinement 
potential (in view of the condensation of monopole configurations their in vacuum) by 
calculating the action associated with the Lagrangian (1). In the static limit, where the 
quarks get decoupled with the magnetic potential along with the negligibly weak coupling 
between A and the complex scalar monopole field (0) [15], an effective action 
corresponding to the Lagrangian (1) in the quenched approximation may then be expressed 
in the following form, 

s-/cf4x{I(^(vaa-a^v)^+^^)+[5(^(vda-VwK-''^) + -
(4) 

where, fh = j2{g9 a?)4, 's the mass acquired by the dual gauge field {BM) for the 
case x = 1 as a result of the dynamical breaking of the magnetic symmetry in the strong 
coupling limit through the effective potential (3) and imparts the superconducting features 
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to the QCD vacuum. This mass acquisition by dual gauge field, in turn, guarantees that 
the colour electric field penetrates the vacuum up to a finite depth. The colour electric flux 
then effectively screens out which leads the dual Meissner effect in the QCD vacuum. 
Such Meissner effect may clearly visualise through the presence of a Meissner-like term 
m2 fif in the free energy which arises because of the interaction of the dual magnetic 
gauge field (fl^ ) to the complex scalar field <p [19] in the Lagrangian given by equation 
(1). The flux tube structure between a quark-pair, therefore, emerges as an immediate 
consequence of it. The penetration depth defined as A = m"^, gives an effective 
measurement of the strength of the dual Meissner effect and is, therefore, an important 
guiding parameter to discuss confinement in the condensed phase of QCD vacuum. 
However, the current J^ in equation (4) is due to the dynamical quark part in the Lagrangian 
(1) as given below, 

^ ^ y ^ y ^ - ^ r / i V i ) . (5) 

may be replaced by the current constituted by a flux tube consisting of a quark and anti-
quark sitting at its opposite ends as an external source in the following form, 

^-^o{^(r-0-^(r-Ji)}. {6) 

Further, with above considerations, the solution of the field strength tensor ( f ^ ) 
corresponding to the electric potential [20] can be written in terms of the current given by 
equation (6) as follows, 

^ - ( ^ r ^ V v - a ^ ) . (7) 

where, fy = (0, - n) is a fixed space-like vector along the direction of the line joining by 

the quark-pair in the flux tube. Here, J^ is the source term for the gluon field \ . The 

action in its simplest form can be written by eliminating B in the static limit (where the 

quark field decouple to the magnetic potential) with the help of equation of motion for BM 

which is derived from the Lagrangian given by equation (1) in the following form, 

(3Tv + ^ ) + ^ = ' 4n^s)"' (# * 5 » . (8) 

where, F„v = - e „ v a p F0p. In the equation (8), the derivatives of the complex scalar 

monopole field vanish as it has a definite value at each space-time point (i.e. 0 * d^ = 0). 

The equation (8) in the Lorentz gauge, therefore, leads fi in the following form, 
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Here, the longitudinal component of the dual magnetic gauge field is strongly coupled 
to the longitudinal excitations of the complex scalar monopole field. However in the 
quenched approximation with the naive dual Ginzfrurg-Landau type Lagrangian [16], the 
Meissner effect seems to generate only the Yukawa potential associated to the massive 
dual gauge field ( f ^ ) which can easily be sesfn in terms of the propagator of the 
corresponding Klein-Gordan (KG) equation. It is therefore necessary to investigate the 
present situation in the presence of colour electric-sources to obtain the full and effective 
dual gluon propagator and consequently the contingent potential. Now using the equation 
(9), the action (4) (where the quantum effects of the mass gained by the gauge field \ 
are suppressed) may then be re-structured in its Simplest form as given below, 

^{^(a 2 ^)"^^} (10) 

In order to calculate the dual gluon propagator for the present formulation, the action 
(10) may then be simplified and approximated in terms of a non-local quark current-
current correlation relation through the dual gluon propagator as follows, 

(Vv)=-pK*^ rt 
d2 + tf (n-df 

~>2 

d2 + ft2 
, / i V k,+-. (11) 

considered due to the requirement of the conservation of current and D^' can be now 
identified as an effective dual gluon propagator in the following form, 

D"v(/C,/7?) = -
il*v mVv' 

^ 2 {(k2-m2) (k2-m' 

where, rfy is defined in the following form, 

tfnv] 

(12) 

n"v'(fr,n) = 
(n-kf 

i»v - . (13) 

The first term in the gluon propagator (12) is of short-range while the second term 
contains the long-range correlation factor (n-k)~2 which manifests itself in terms of the 
absolute confinement of the quark-pair [21] and its consequences are discussed in the 
forthcoming section in view of the string tension and linear confinement potential at large 
distances. 

3. The string tension and confinement scenario 

In order to calculate the exact shape of the static confinement potential [8], the energy 
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contents from the action (4) with the definition of current given by equation (6) may be 
derived in the form as given below, 

Kc **U erV, JVr2 {p(ry)Uc(r2-r,)p(r2)}, (14) 

where Uc(r2 - f j ) is the potential term and has the following form, 

Uc(r) = -^ } 
(fik -Ikr 

•I 
d*k m* rV*- r 

2 (2^)3(/t2
+m2) J(2*)3 (*2 + m2)(r-*) ; (15) 

where, n - r, - r2- r. The first term in the equation (15) leads the usual short-ranged 
static Yukawa potential as follows, 

*wo=-**•/ cPk -lk.r CC$ „ •rlk 

4 J(2*) 3 (^H-m 2 ) 4 r ' (16) 

where, o /̂c = k2 sin0 dk de d<p. It is very difficult to make a direct calculation for the 
second term is equation (15) which can be rewritten as follows, 

<W = -*f-J 92
s r d 3 * m2 rV*' 

4 J(2*)3 («r2 + m2)(r . /r)2 

2^ Jo (n-^a jJo | 
1 2 . f/crz^ 

2 (17) 

The z-integral does not converge on ( 0, 1) and therefore it has typical divergences at 
small values of z as well as at large values of momentum k [21, 8]. The integral given by 
equation (17) leads the ultra-violet (UV) divergences at small z which contributes as an 
infinite term (independent of t) and the integral may then only be evaluated by calculating 
a difference UL(r)-UL(r) with the help of the Frullani's integration technique [8, 22] in 
the following form, 

Udr)-UL(r) = ^±\n[u(AX)2], (18) 

where, A is a sharp cut-off parameter which is introduced in order to make the k-

integral converge at large k except in the region where r« A. Further, UL(7) may be 

regarded as a constant which is small enough because of the parameters of the present 
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model [16]. The total integration of equation (15) then leads the exact shape of the confining 
potential in the following form, 

«W>~3^+f£h[i+x^|. (19) 
'I 

where, X = A A sets a typical scale for the strength of confinement at different couplings 
in the IR region of dual QCD vacuum. The potential given by equation (19) is composed of 
the well-known short ranged Yukawa potential5 and typical linear potential which is 
responsible for the confinement of colour electric sources. The confinement potential (19) 
is screened due to the dual gauge field mass (m) which is responsible for the colour flux 
screening [16, 23] and becomes equivalent to the Coulomb potential in the vanishing limit 
of such screening dual gauge field mass as UCou(r) = -as/4r. The total confinement 
force between a quark-pair is also derivable from the potential (19) in the following form, 

4r rk *"-Hl?^**\ m 
It is worth mentioning that the term in addition to the Coulomb force in the first term 

of the equation (20) may consider as a typical non-perturbative effect due to the monopole 
condensation which, in turn, enhances the effective strength of the confinement force even 
at very short distances when compared to the only Coulomb force which arises from the 
well known phenomenological Cornell (funnel) potential (-as/r + ar) in QCD [24]. The 
colour force given by equation (20) further reduces to a constant restoring force (i.e. 
confining force) at large distances r - » » whose magnitude (in terms of the VEV of the 
monopole field) is given in the following form, 

F f ? =^0 o
2 ln [ l+X 2 ] = a , (21) 

where, a is the string tension per unit length for the resulting flux tube in the dual 
superconducting QCD vacuum which, in fact, characterizes the strength of the linear 
confinement potential in dual QCD vacuum. The string tension (or the energy per unit 
length of the flux tube) given by equation (21) is similar to the energy per unit length of 
an Abrikosov vortex in the type-ll superconductors in the conventional superconductivity 
[25, 26]. However the superconducting type of QCD vacuum is decided by the GL 
parameter K = j6/gs which has a unique value at any particular strong coupling constant. 
The linear term in equation (19) with the string tension given by equation (21) is responsible 
for the absolute confinement of any colour electric source in the dynamically broken 
phase of magnetic symmetry in the dual QCD vacuum. The numerical estimation of the 
potential U^i) may be calculated by identifying X which changes for different values of 
strong coupling constant. For the purpose of the numerical estimation of the different 
parameters, it is worth to mention the linearly rising behaviour of the Regge trajectories 
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for the hadrons which supports the flux tube model with a linear potential. The observed 

value of the Regge slope parameter (RSP) is a' - 0.93 GeV~2 which has a relationship 
with the string tension as a' = (2;rcr)~1 [10]. This value of the RSP also comes from the 
measurements for the hadrons in the electron scattering experiments with the typical 
mass and radius about 1 GeV and 1 fm respectively [27]. The maximum value of the cut
off parameter then decreases with the increase in the strong coupling constant in order to 
maintain the string tension of the flux tube or RSP. The dimensionless fitting parameter X 
for a fixed strength of the colour force attraction is then given as, 

xJ^vM^r. (22) 

For the string tension with its fixed value as an input parameter, the cut-off parameter 
(A) re-adjusts itself in terms of X in accordance with the field penetration depth. The 
different parameters those are used for the graphical presentation of the confinement force 
and potential are then computed for three extreme cases of strong coupling constant in 
full IR sector of QCD [10, 16] and are given in the Table 1. In fact, the strong coupling 
constant (a$) ~ 0.2 up to - 1 leads to various crucial non-perturbative effects in the IR 
regime with a transition in its type-l (K < 1) to type-ll (K > 1) superconducting nature at 
as ~ 0.47 [16, 28] where the GL parameter acquires the unit value with the range of 
Yukawa force - 0.16 fm. We have also graphically presented the behaviour of the 
confinement force for these three cases in Figure 1. In order to have the response of the 
confinement potential, we have plotted confinement potential at large and short distances 
for these coupling regions as shown in Figure 2. Since X attains comparatively higher 
values at relatively lower couplings in IR sector i.e. it increases while approaching towards 
the UV regime and may therefore be subjected to the formation of quark-gluon plasma 
(QGP) at extremely short distances with the dominating Yukawa force (potential) which is 
completely a separate issue of discussion and beyond the scope of this paper. It can 
also be noticed that at short distances the Yukawa potential approaches towards the 
origin of the plots for the case of lower couplings and this is because of the decrease in 
the range of the Yukawa force in comparison to their strength at higher couplings. The 
confinement potential for the dual QCD vacuum given by equation (19) then indicates 
almost the same behaviour as that of the phenomenological Cornell potential [24, 29] at 
large distances (i.e. > 0.2 fm) at different couplings in view of the parameters given in 

Table 1. Numerical estimate of various confinement parameters for different 
couplings. 

9s <** *b(GeV) X - K 

1.66 0.22 0.156 2.89 1.5 

2.42 0.47 0.170 2.36 1.0 

3.47 0.96 0.183 2.02 0.7 
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Table 1. The confinement potential given by equation (19) can also reproduce the Cornell 

potential [29] and Lattice data [29, 30] with the appropriate value of the UL(r) in equation 
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Figure 1. Schematic presentation of the colour confinement force in dual QCD vacuum. 

(18) and the fitting parameter X in equation (22). In any case, the linearity in potential at 
large distances continues intact as evident by the Figure 2. Remarkably enough, the 
general behaviour of the confinement potential does not depend over the type of the 
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Figure 2. The confinement potential at various length scales in different coupling regimes. 
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superconducting nature of dual QCD vacuum (i.e. independent of its type-l or type-ll nature) 
and varies with the same strength at all the couplings for the quite large (in the sense of 
hadronic scale) distances. Thus, for the present formulation the colour electric sources 
(i.e. quarks) are absolutely confined at large distances via a linearly rising potential i.e. 
Uc(r) ~ a r in the deep IR regime of QCD vacuum. 

4. Epilogue 

The dynamical breaking of the magnetic symmetry through the effective potential given by 
equation (3) subsequently induces the monopole condensation in the dual QCD vacuum. 
The action (4) associated to the dual SU{2) QCD Lagrangian (1) is derived in its simplest 
form given by equation (10) with the quark current as an external source and by using the 
equation of motion (8) for dual magnetic gauge field in the background of monopole 
condensation. The current configuration for the flux tube structure given by equation (6) 
then leads a non-local quark current-current correlation relation (11) where the quark-
current given by equation (5) associated to the dynamical quark part in the Lagrangian (1) 
has been replaced by the equation (6). The dual gluon propagator (12) along with the 
quark current-current correlation (11) has been shown to lead the confinement potential 
(19) in the dynamically broken phase of dual QCD vacuum which is constituted of the 
usual Yukawa and linear terms given by equations (16) and (18) respectively. Using the 
confinement potential, the colour confinement force given by equation (20) is derived and 
graphically presented in Figure 1 for different couplings at various length scales. The 
transition from constant restoring force to the Yukawa one at short distances is shown to 
occur below 0.2 fm which is quite obvious in view of the maximum range - 0.21 fm of the 
Yukawa force at cts = 0.96 for the present formulation. However the change in the behaviour 
of the confinement force from one state (short distance : UV region) to another (large 
distance : IR region) is apparent in manner and can be clearly seen in Figure 1. The 
graphical plot (Figure 2) of the confinement potential for various values of couplings 
demonstrates that the dual QCD vacuum changes the strength of the confinement potential 
at short distances with the change in the range of Yukawa force from - 0.12 fm - 0.21 
fm. The string tension given by equation (21) is shown analogous to the energy of a 
vortex in a type-ll superconductor in conventional superconductivity which conclusively 
leads a flux tube structure in the QCD vacuum in a parallel (but dual) way to the magnetic 
flux confinement. The graphical presentation of the confinement potential also clearly 
indicates that the absolute confinement at large distances is independent of the 
superconducting state of dual QCD vacuum. The linear potential and large distances are, 
therefore, inextricably locked together in the magnetically condensed QCD vacuum in the 
IR sector so that one can not be possibly evoked without other by any means. The 
present dual QCD model is thus strongly suggestive of a linearly confining potential for 
quarkonium systems at large distances and the results are in a quite close agreement 
with those obtained by various others [8, 21, 31, 32]. 
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