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23]. It is also reported by the previous workers that ultrasonic shear wave velocity is more 
sensitive for the study of the basic properties [14]. 

In the present investigation, ultrasonic attenuation as a function of temperature due to 
phonon-phonon interaction is studied in Copper (Cu), Silver (Ag) and Gold (Au) at different 
temperatures, viz. 100, 200,300 and 400 K, using repulsive parameter (q), interatomic 
distance (r) and Born-Mayer [24] potentials following Mason's approach [13]. The thermal 
relaxation time, average Gruneisen parameters, non-linearity constants and attenuation 
coefficients for longitudinal and shear waves are evaluated along <100> direction of propa
gation. 

2. Theory 

As present study is concerned with attenuation coefficients at different temperatures, the 
third order elastic constants are required at these specific temperatures. Third order elastic 
constants (TOECs) are evaluated using Born-Mayer potential, 0(r) = A exp(-r/g) and Cou
lomb potential, ±e2/r, (r,q and e being interatomic distance, hardness parameter and 
electronic charge, respectively). According to Brugger's [25] definition for elastic constants, 
one obtains the three expressions for TOECs at absolute zero temperature, given in 
Table 1. 

Table 1. Expressions for the third order elastic constants at OK. 

C?„ = W2639G-GZ-2GA, 

C?12 = C?ee - 1.208625G-G^ 

Cfzj = C?* - C^e = 0.678375G. 

Expressions for G's 

G = e*/r/f Gf ~ (1/r0 + 1/q) O (or)/qr0, 

G2 = (r2/2r0+1/q)Q(rj2)/qr0$ 

G^ (3/r0* + 3/qr0 + 1/cf) Q (rj/q, 

G4= (3f2/rf + 6/qr0 + 2 fc/q*) Q (rQ f2)/4q, 
G s - (Wrf + 15/qrf + 6/q*r0 * 1/<?) r0 Q (rj/q, 

Gd« (15f2/4r0°+15/2qr0* + 3f2/cfr0 + 1/q°) rft (rj2)/2q. 

Seeger and Mann [26] has already studied these crystals and obtained the second 
order elastic constants (SOECs) using the same potentials. The temperature dependence 
of elastic constants is determined using anharmoniclty theory of crystal dynamics devel
oped by Leibfried and Hahn [27] or Leibfried and Ludwig [28] given below : 

^Pr(T)*Ppr+CpT, (D 
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where 

/ is a function of hardness parameter and interatomic distance given by 

/, = - Q { ( 2 + 2Q0 -qlp(r0) + 2j2(n2q0 -ql)O(r0J^)}/l2 (3) 

and 

k -2{(«fc-2)0(ro) + 2 ( ( f c - ^ r o ^ } x { ( q b - 2 ) 0 ( r 0 ) + 4(gD-^)o(r0V5)} (4) 

Table 2. Expressions for vibrational contribution to the third order elastic constants. 

CJf2 = gf? + fcF,(2Fs + F2) + g,F6, 

Table 3. Expressions for g„ for highly conducting metals. 

ffi = JfoS; 

fc-flb[(X/S,) + S]/2; 

0o=/xt>o/8i£; 

flf3 = Po[(2XaS / 3S,)+(X / S,) + SJ / 48; 

X = oa>0/2KT; 

04 - - f l o ^ ' S 2 / 3S,) + (X3 / 6Sf)+(X*S / S,) + (5X / 45,) + (5S / 4)] /144; 

a)0=(l/M+ + W-)/QroF0; 

5 = CothX, S,=Sinti*X 

and cj? are the contributions due to vibrational energy of the crystal and these values are 
given in Table 2. The expressions of different G„*s and F„'s are shown in Table 3 and 4. 
Mason [13] has shown that the Gruneisen numbers are related with the second and third 
order elastic constants. Therefore, the Gruneisen numbers y'f are evaluated using 
Gruneisen tables [13], and second and third order elastic constants are thus obtained. The 
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non-linearity constant [13] 'D ' is related to Gruneisen numbers as 

D^9(Yfy[3CT(Y)f)/Et (5) 

where C, T and E are specific heat, absolute temperature and energy of the crystal, 
respectively; <yf > and <Y',> a r e square average and simple average of Gruneisen 

( a / / 2 L^^ 2 £ D T ^ / 3 d V ' 3 ( 1 + £ £ > 2 ^) ' <6> 

numbers. 
One gets the following relations for phonon viscosity and thermoelastic losses [13] 

using Gruneisen numbers and non linearity constants. 

{<xlf\=(2n)2(YtfKTI2dV\ (7) 

where 'K" is the thermal conductivity, '<f the density of the substance, V (=2nf) the 
angular frequency of the ultrasonic wave and *Tm* the thermal relaxation time for the 
exchange of acoustic and thermal energies, given by 

jT,=T,=Tlh=3K/CV2 (8) 

V represents V (longitudinal wave velocity) or V (shear wave velocity) and V is the 
Debye average velocity. These are computed according to the relations : 

V,=(C„/d)5 . 

3/73=1/V,3 + 2/V;3 . (9) 

As the whole evaluation is based upon elastic constants and these elastic constants 
are obtained using repulsive parameter and interatomic distance of the crystal, one may 
successfully conclude that attenuation is one of the basic properties of substance. 

Table 4. Expressions for Fn for highly conducting metals. 

F. ' 1/Kq0-2)Q(rJ + 2(q0-f2)Q(rj2) 
qc » r/q; 
F, = 2[(2 + 2qe-q*) Q (rj+ 2 (f2*2q0 -f2q») Q (r/2)]F0; 
F3 = 2(-6-6qB-qe* + qe*)Q(rJFt + Fs; 
F3 = 2(-30-30qB-9qo* + qo

3-q,<)Q(ro)F0 + Fe; 
F4 = 2(-210-210q0-75qg*.5q0

3 + 4qo< + qo')Q(ro)F0 +FT. 

F5 - (•3f2-6q0-f2qJ> + 2q0
3)Q(r0f2)Fe, 

F, = K1S/f2)+1Sq9-(9/f2)q/-9q0
3-f2q<;]Q(ref2)F0; 

FT = [-(105/2 f2) - 105/2) qe - (75/ 2&) q/ - (5/2) q3 + 2& qo" 

+ q0
5]Q(rj2)F0. 
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3. Evaluation 

According to Tables 1-4, the third order elastic constants are evaluated at different tem
peratures using hardness parameter [26] and nearest neighbour distance [29]. Taking 
second order elastic constants from literature [29, |0] and calculated third order elastic 
constants, average Gruneisen numbers <yf> and <yi

I> are evaluated along <100> 
direction of propagation for longitudinal and shear vfcves using Manson's Gruneisen [13] 
Tables (Table 5). The thermal relaxation time ' i / is^computed using thermal conductivity 
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Figure 1. Temperature dependence of thermal relaxation time in <100> highly conducting metals. 
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Table 5. Average Gruneisen numbers and nonlinearity constants ratio along <100> direction of 

propagation in highly conducting metals. 

Average Gruneisen 

numbers & nonlinearity 

constants ratio 

<Y >i 

<Y2>i 

<Y>, 

D,/Ds 

Substances 

Cu 
Ag 
Au 

Cu 
Ag 
Au 

Cu 

Ag 
Au 

Cu 

Ag 
Au 

r 

100 

-0.0203* 
-0.4973; 
-0.4001* 

0.4479 
1.1366 
0.6449 

0.0809 
0.2202 
0.1162 

5.53 
4.41 
4.50 

Temperatures (K) 

200 

-.00332 
-0.5179 
-0.4318 

0.5176 
1.2340 
0.7388 

0.0945 
0.2214 
0.1247 

5.47 
4.98 
5.22 

300 

-0.0279 
-0.5248 
-0.4589 

0.5637 
1.2362 
0.8199 

0.1101 
0.2248 
0.1381 

5.11 
4.96 
5.32 

400 

-0.0187 
-0.5837 
-0.4818 

0.7621 
1.4044 
0.9183 

0.1274 
0.2286 
0.1584 

5.98 
5.73 
5.23 

[29-31], density [29-31] and eq. (8) and (9) and is shown in Figure 1. From eq. (5), the 
non linearity constants '£7 are obtained taking specific heat [30] and energy [30] of the 
crystal as a function of temperature (Table 5) and are shown in Figure 2. At last, phonon 
viscosity and thermoelastic losses,(a/f2)m and {a,f2)p_p are calculated from eqs. (6) and 
(7) and are presented in Figure 3 and 4. 

4. Results and discussion 

Comparison of calculated and experimental values of thermal relaxation time, Gruneisen 
numbers, nonlinearity constants, ultrasonic attenuation due to phonon-phonon interaction 
and thermoelastic loss, with the values for similar substances is the best way to check 
the validity of present theory. 

The value of T,„IS of the order of 10~"s[33]. From Figure 1, it is clear that at low 
temperature, its value is very high and decreases as temperature is increased, which is 
also expected and seen in other types of crystals [32, 33]. After a certain temperature, 
it achieves, constant value. The expression for temperature variation of thermal relaxation 
time is 

Tt-tmmxp(-Ta). (10) 

where r0 and A are the constants and Tis the absolute temperature. 
It can be concluded that non linearity constants increase as temperature increases as 

shown in Figure 2. This behaviour can be related with atomic mass or atomic number. As 
atomic number or atomic mass increases, nonlinearity constant will increase in metallic 
crystals. It is also clear from Table 5 that the ratio of D,/D9 lies between 3 and 16 which 
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is also seen in other types of substances [32, 33]. D, is greater than D, along <100> 
direction of propagation. 

In all the three noble metals Cu, Ag and Au, (a/f2)th\s negligible in comparison with 
p-p interaction. The thermoelastic attenuation due to the thermal conduction between the 
compressed and expanded parts of acoustic waves increases as temperature is increased 
and shown in Figure 3. 

The values of {a/f2)p_p have been calculated using second and third order elastic 
constants data at 293 K by Tondon et al [33]. Attenuation for both longitudinal and shear 
waves is increasing as the temperature is increased (Figure 4). Ultrasonic attenuation for 
the shear wave is less that that for the longitudinal wave. The values are in good agreement 
with the literature [28, 30]. The attenuation varies with temperature as 

a = a0T\ (11) 

where a and n are constants. 
From the above results, one may successfully conclude that ultrasonic attenuation is a 
fundamental property of the substance. 
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