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Analysis of Categorical Data for Complex Surveys

Chris Skinner
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Summary

This paper reviews methods for handling complex sampling schemes when analysing

categorical survey data. It is generally assumed that the complex sampling scheme does

not affect the specification of the parameters of interest, only the methodology for making

inference about these parameters. The organisation of the paper is loosely chronological.

Contingency table data is emphasized first before moving on to the analysis of unit-level

data. Weighted least squares methods, introduced in the mid 1970s along with methods

for two-way tables, receive early attention. They are followed by more general methods

based on maximum likelihood, particularly pseudo maximum likelihood estimation. Point

estimation methods typically involve the use of survey weights in some way. Variance

estimation methods are described in broad terms. There is a particular emphasis on

methods of testing. The main modelling methods considered are log-linear models, logit

models, generalized linear models and latent variable models. There is no coverage of

multilevel models.

Key words: pseudo maximum likelihood; Rao-Scott adjustment; score test; survey weight;

weighted least squares.

1 Introduction

Categorical variables predominate in social surveys and categorical data analysis has

been a major theme in the development of methods of survey data analysis. This paper
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will review methods for handling complex sampling schemes when analysing categorical

survey data. Such methods were first introduced in a systematic way in the 1970s (e.g.

Koch et al., 1975; Rao and Scott, 1979). However, the application of categorical data

analysis methods to survey data has a longer history and might be taken to originate

after World War II (Alwin and Campbell, 1987).

The two or three decades after 1945 saw important developments in categorical data

analysis both in relation to surveys and more generally. Survey data was increasingly

analysed in sociology, particularly influenced by the work of Lazarsfeld, who introduced

different ways of using multi-way contingency tables to explain relationships between

variables in causal contexts (e.g. Lazarsfeld, 1968; Duncan, 1982). Sociological research

also motivated a range of modelling developments (e.g. Goodman 1970, 1972, 1979), such

as in the use of log-linear models, logit models and latent class models with survey data.

This period also played an important part in the development of such modelling methods

in categorical data analysis in general, extending methods of regression and multivariate

analysis for continuous variables to the case of categorical variables. In addition to Good-

man’s work at the University of Chicago, Agresti (2013, Ch. 17) highlights developments

in maximum likelihood for log-linear and logit models at Harvard University, including

the landmark book on log-linear models by Bishop et al. (1975). He also identifies

research at the University of North Carolina by Koch and his colleagues and students

as particularly influential in the biomedical sciences. To these one can add the intro-

duction of generalized linear models by Nelder and Wedderburn (1972) at Rothamsted

Experimental Station, unifying methods for categorical and continuous data.

How to take account of complex sampling schemes in such categorical data analysis

methods defined an agenda for research in the 1970s, 1980s and beyond and this is the

research which will be reviewed here. In addition, research was still needed to accom-

modate complex sampling in classical methods which originated much earlier, especially

testing in two-way tables. Skinner et al. (1989) distinguish aggregated and disaggregated

approaches to taking account of complex sampling schemes. We focus in this paper on

the aggregated approach, where the definitions of the parameters (and model) of interest
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take no account of complex population features such as stratification or clustering un-

derlying the sampling. These features are only relevant to inference. The disaggregated

approach would take the complex population features into account in the specification

of the model of interest, for example via fixed or random effect terms. We shall not

pursue this approach here and, in particular, we shall not consider multilevel models.

See Muthén and Satorra (1995) for further discussion of this distinction in the context

of structural equation modeling.

In this paper we suppose that all variables of interest are categorical and distinguish

contingency tables and unit-level data. In the former case, we suppose that sample cell

counts in the table (excluding structural zeros) are sufficiently large that central limit

theorem arguments will provide a satisfactory approximation to the sampling distribution

of the vector of cell-level proportions and that the covariance matrix of this vector can be

estimated satisfactorily (e.g. Lehnen and Koch, 1974). In the latter case, we suppose that

this is not true, normally because the number of cells in the table is very large relative to

the sample size so that the sample cell counts are sparse and it is more natural to treat

the data as a microdata file at the level of the underlying unit.

In many applications of categorical data analysis it is common to use Poisson models

for counts. This may occasionally be appropriate for survey data when count variables

arise at the unit level, e.g. the number of children ever born to a women (Bellhouse and

Rao, 2002). However, for survey-based contingency tables, it is usually not natural to

specify models for sample cell counts because of their arbitrary dependence on sample size

aspects of the sampling design. It is more usual to model finite population proportions

or underlying model probabilities. With contingency tables, it is usually straightforward

to define finite population cell proportions, for example the proportion of men aged 20-

25 in the population who are unemployed and there may be interest in modelling such

proportions. With unit-level data, finite population proportions are often not meaningful.

For example, if we define a combination of categories of a large number of variables for

which there is only one individual in the population, the proportion of such individuals

who are unemployed will be either 0 or 1. In such a setting, it will usually be more
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interesting scientifically to treat the finite population as drawn stochastically from a

super-population and to suppose that the unemployment status of the individual here

follows some binary response model, for which the model parameters and associated

probabilities are of interest. Of course, model parameters and probabilities may also be

of interest in the contingency table case, where model-based analogues of finite population

proportions can be defined.

We distinguish between symmetric models, where the attribute variables defining the

table of interest are treated jointly in a symmetric way and asymmetric models, where,

in the most common case, we are interested in the relation between one attribute, y say,

and a vector of other attributes, x say.

In the symmetric setting, the cells of the table formed by cross-classifying the attribute

variables may be denoted 1, . . . , K and we may denote the corresponding finite population

cell proportions or model cell probabilities by π = (π1, . . . , πK)′, where
∑

k πk = 1. Mod-

els for such tables include log-linear models and latent class models and these typically

express π in terms of a lower-dimensional parameter θ.

In the asymmetric setting, we may let πi|j denote the conditional probability (or

corresponding finite population proportion) that y falls into category i given that the

combination of categories taken by x can be labelled j. Supposing that I is the number

of categories of y and that J is the number of possible combinations of categories of x,

we have IJ possible values of πi|j, with
∑

i πi|j = 1 for each j, and these may be collected

into a IJ × 1 vector π of interest. Models in such settings include logit models and again

typically express π in terms of a lower-dimensional parameter θ.

The organisation of the paper is loosely chronological. The earliest contributions in

the 1970s are outlined in section 2 on the general method of weighted least squares and

in section 3 on the narrower but important case of two-way tables. The general class of

methods based upon maximum likelihood are outlined in section 4. This includes discus-

sion of the analysis of contingency tables, as in the earlier sections, but also introduces

the analysis of unit-level data in section 4.3. This methodology is extended to a general

estimating equation approach in section 5. The paper concludes with section 6 on latent
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variable modelling and some remarks in section 7 on the take-up of the methods in the

substantive scientific literature.

2 Weighted Least Squares

A general class of models for contingency tables is defined by

F (π) = Xθ, (1)

where F (.) is a known smooth function, X is a known design matrix, with rows that de-

pend on the values of the attribute variables associated with the corresponding elements

of π and θ is an unknown vector of parameters. This class includes symmetric models,

such as a log-linear model where π consists of a vector of cell probabilities πk and the ele-

ments of F (π) consist of the logarithms of these probabilities. It also includes asymmetric

models, such as a logit model where π consists of a vector of conditional probabilities πi|j

and the elements of F (π) consist of the logits of these conditional probabilities.

In a seminal paper, Grizzle et al. (1969) proposed weighted least squares (WLS)

as a general approach to estimation and testing for such models. Although they made

standard multinomial assumptions and did not discuss complex sampling schemes, the

framework they introduced lends itself naturally to extensions to complex sampling.

For purposes of inference, Grizzle et al. (1969) assumed there is an observed vector of

sample proportions p, which is unbiased for π either under multinomial assumptions for a

symmetric model or under product multinomial assumptions for the asymmetric model.

Grizzle et al. (1969) also assumed that the covariance matrix of p can be expressed as

V (π), a function of π.

To apply WLS, the idea is to consider the linear model F (p) = Xθ+ δ, treating F (p)

as the ’dependent variable’ and taking δ as the estimation error δ = F (p) − F (π). An

estimated covariance matrix of δ is obtained by linearization as S = H(p)V (p)H(p)′,

where the matrix H(π) contains the partial derivatives of F (π) with respect to π. The

WLS estimator of θ is then given by

θ̂ = (X′S−1X)−1X′S−1F (p). (2)
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The extension to complex surveys is then straightforward in principle (Lehnen and

Koch, 1974; Koch et al., 1975; Shuster and Downing, 1976). It is assumed that there

exists a consistent estimator π̂c of π and a consistent estimator V̂c of the covariance

matrix of π̂−π, where c indicates complex design. The estimator π̂c might, for example,

involve sample weighting and the estimator V̂c might involve survey sampling variance

estimation techniques, such as linearization or replication. The WLS estimator then takes

the same form as in (2), with V (p) replaced by V̂c and F (p) replaced by F (π̂c). We

write the estimator as θ̂c and write Sc = H(π̂c)V̂cH(π̂c)
′. An estimator of the covariance

matrix of θ̂c is V̂ (θ̂c) = (X′S−1c X)−1.

The extension of test procedures is also straightforward. Grizzle et al. (1969)

proposed testing the goodness of fit of model (1) by referring the Wald test statistic

(F (p)−Xθ̂)′S−1(F (p)−Xθ̂) to a χ2 distribution with appropriate degrees of freedom.

In the complex survey case (Koch et al., 1975; Shuster and Downing, 1976), F (p) is

replaced by F (π̂c), θ̂ by θ̂c and S by Sc. Nested linear hypotheses H0 : Cθ = 0 about

θ may also be tested, where C is a matrix of arbitrary constants of full rank. Thus,

the Wald statistic θ̂′cC
′[CV̂(θ̂c)C

′]−1Cθ̂c is referred to a χ2 distribution with degrees of

freedom given by the rank of C.

A complication in the WLS approach is the assumption in (2) that S (or Sc) is

non-singular. In practice, the vector π may contain linear dependencies which induce

singularity in S. For example, Grizzle et al. (1969) considered the asymmetric case

where the vector π contains IJ conditional probabilities πi|j, i = 1, . . . , I; j = 1, . . . , J .

The constraints
∑

i πi|j = 1 for each j create J linear dependencies in π. To avoid

singularity, Grizzle et al. (1969) removed the J linear dependencies in π by defining F (π)

to be of dimension u, where u ≤ (I−1)J . Here u is chosen so that the u×IJ matrix H(π)

is of full rank u (and hence that S is non-singular); u may be strictly less than (I−1)J if

there are zero counts in the table. Different ways of redefining F (π) to avoid singularity

in S may be needed for different models. See, for example, Grizzle and Williams (1972)

for log-linear models. Two alternative approaches to handling the singularity of Sc were

proposed by Scott et al. (1989). One appeals to the optimal theory of linear models
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with singular covariance matrices. The other involves modification of F (π̂) and the use

of g-inverses. These approaches are discussed further by Rao et al.(1989).

A basic concern with the WLS approach in complex surveys is that, although the

covariance matrix estimator V̂c is consistent, in practice it will typically yield ’far less

precision than the multinomial analogues’ V (p) ’and this reduced precision has a serious

effect on the inversion required in the computation of the Wald statistic’ (Fay, 1985, p.

148), that is in the inversion of Sc. Fay (1985, p. 148) continued that ’this instability

in the estimated inverse in turn inflates the rate of rejection under the null hypothesis,

often enough to make the test unusable’. See Fay (1982) for further discussion.

3 Adjustments to Classical Tests in Two-way Tables

An important special case of the nested hypotheses considered in the previous section is

that of independence in a two-way table, classically tested with a Pearson or likelihoood

ratio test statistic. The distribution of these test statistics under the null hypothesis of

independence can be greatly affected by clustering and stratification (Fellegi, 1980; Rao

and Scott, 1981) and the use of such tests can give misleading results in practice. A

number of approaches have been derived to correct for these effects. Some approaches

used models for clustering (Altham, 1976; Cohen, 1976; Brier,1980), although Nathan

(1981) drew attention to unrealistic assumptions in these models. The weighted least

squares approach is also available, of course (Nathan, 1972, 1975).

The approach proposed by Rao and Scott (1981, 1984) has proved particularly in-

fluential. They started with the classical Pearson and likelihood ratio test statistics,

redefined as necessary to handle survey weights. Thus, the Pearson test statistic for an

I × J table takes the form

X2 = n

I∑
i=1

J∑
j=1

(p̂ij − p̂i+p̂+j)
2/(p̂i+p̂+j), (3)

where n is the sample size, p̂ij is the survey weighted estimate of the population pro-

portion in cell ij, and p̂i+ and p̂+j are the corresponding marginal sums. They showed
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that this statistic and the corresponding likelihood ratio test statistic are asymptotically

distributed under the hypothesis of independence as a weighted sum,
∑T

1 δtWt, of in-

dependent χ2
1 random variables Wt, where the weights δt are related to familiar design

effects used by survey samplers and T = (I − 1)(J − 1). They developed first and second

order approximations to this distribution, which may be used to obtain simple adjust-

ments to the standard test statistic. We refer to these as Rao-Scott adjustments. For

example, the first order Rao-Scott adjustment to X2 takes the form X2
RS = X2/δ̂, where

δ̂ = (
∑
δ̂t)/T and the δ̂t (t = 1, . . . , T ) are estimated values of the δt. These adjustments

are discussed further in a more general setting in section 4.1.

Thomas and Rao (1987) undertook a Monte Carlo evaluation of the significance level

and power of alternative goodness-of-fit tests under cluster sampling. They found that the

Wald test performed poorly with its actual significance level often greatly exceeding the

nominal level. The significance levels for the two Rao-Scott adjustments were much closer

to their nominal levels. Thomas and Rao (1987) also proposed a further adjustment,

whereby the adjusted test statistic is referred to an F distribution to take account of

the fact that the δt must be estimated, and this adjustment was found to offer further

improvements in significance level and generally to improve performance. Fellegi (1980)

proposed a slightly different adjustment but Thomas and Rao (1987) found that its

significance level performance was similar to that of the first order Rao-Scott adjustment.

Another approach, involving the construction of a test statistic by jackknifing, was

proposed by Fay (1985). Thomas and Rao (1987) found this approach to perform simi-

larly to the second order Rao-Scott adjustment. Fay argued that the approach can be ap-

plied for any replication method, such as the bootstrap or balanced repeated replication,

which provides a consistent estimate of the covariance matrix of the sample estimates.

A rather different bootstrap approach was proposed by Beaumont and Bocci (2009) in

which not only is a test statistic constructed but also a null distribution for this statistic

is simulated by bootstrapping. See also Lumley and Scott (2014).

Tests of independence for two-way tables are also applicable to testing for differences

between two groups on a categorical outcome. When the outcome is ordinal a widely used
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test which exploits the ordinality is Wilcoxon’s rank sum test. Natarajan et al. (2012)

showed how this test can be adapted for complex survey data. They used a proportional

odds cumulative logistic regression model framework with an ordinal outcome and a

single dichotomous covariate. Within this framework the Wilcoxon test was shown to be

equivalent to a score test of no effect of the covariate under multinomial sampling. They

extended this test to a complex survey setting using the score test based upon weighted

estimating equations proposed by Rao et al. (1998), as described in section 5.

4 Approaches based on Maximum Likelihood

Maximum likelihood (ML) is a very widely used inferential framework for modern cat-

egorical data analysis and, for various reasons, its use has tended to supersede WLS

(Agresti, 2013, sect. 16.7.3).

4.1 Log-linear models for contingency tables

To illustrate an approach based on maximum likelihood, consider first a log-linear model,

where the K×1 vector π contains the cell proportions in a table with K cells and where,

in a similar format to (1), we write

log(π) = u(θ)1 + Xθ, (4)

where the K×1 vector log(π) contains the logarithms of the elements of π, X is a known

matrix of full rank with X′1 = 0, 1 is the K × 1 vector of 1’s and u(θ) is a normalizing

factor chosen so that
∑

k πk = 1.

Under multinomial assumptions, the likelihood equations are given by

X′π(θ) = Xp, (5)

where π(θ) is defined by π in (4) viewed as a function of θ and p is the vector of sample

proportions as in section 2.

In the complex survey case, the pseudo likelihood equations are given by

X′π(θ) = Xπ̂c, (6)
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where π̂c is a consistent estimator of π as in section 2, and the solution of these equa-

tions θ̂pml is the pseudo ML estimator (Imrey et al., 1982; Rao and Scott, 1984). The

asymptotic covariance matrix of θ̂pml (Rao and Scott, 1984) is given by

(X′∆(π)X)−1(X′VcX)(X′∆(π)X)−1, (7)

where Vc is the asymptotic covariance matrix of π̂c and ∆(π) = diag(π) − ππ′ is the

multinomial covariance matrix for a single observation.

Turning to testing, the goodness of fit of a specific log-linear model can be assessed by

testing this model as a nested hypothesis against the saturated model, so it is sufficient

to focus here just on nested tests. It is possible to construct a Wald test of a nested

hypothesis, as noted by Rao and Scott (1984). However, the test can be unstable, as

illustrated by Rao and Thomas (1988). Fay (1982, 1985) and Lumley and Scott (2014)

outline several problem with this test and we do not pursue it further here. We focus

instead on classical Pearson or likelihood ratio tests of nested hypotheses with the pseudo

MLE replacing the classical MLE. Although these two tests perform similarly, the likeli-

hood ratio test may be preferred since it is invariant to nonlinear transformations of the

parameter vector θ. Rao and Scott (1984) showed, as discussed in section 3, that the

asymptotic distribution of each of these classical test statistics under the nested hypoth-

esis is a weighted sum,
∑
δtWt, of independent χ2

1 random variables Wt (t = 1, . . . , T ),

where the weights δt may be viewed as generalized design effects and T is the number of

parameters restricted under the nested hypothesis. The classical Pearson and likelihood

ratio test statistics may be expressed as

X2 = n
∑
k

(π̂k − π̂∗k)2

π̂∗k
, G2 = 2n

∑
k

π̂klog

(
π̂k
π̂∗k

)
, (8)

where π̂k and π̂∗k are the elements of π(θ) implied by the pseudo MLE θ̂pml under the

unrestricted and restricted hypotheses, respectively.

The first order Rao-Scott adjusted Pearson and likelihood ratio test statistics are

defined by X2
RS = X2/δ̄ and G2

RS = G2/δ̄, where δ̄ = T−1
∑T

1 δ̂t is the average of

the estimated values δ̂t of the δt. The test statistics X2
RS and G2

RS are referred to a χ2
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distribution with T degrees of freedom. The second order adjustment divides each of X2
RS

and G2
RS by c1 =

∑
δ̂2t /(T δ̄

2) and refers them to a χ2 distribution with c2 = T/c1 degrees

of freedom. A basic rationale for the Rao-Scott adjustments is that they match the

moments of the test statistic under the null hypothesis with the χ2 reference distribution.

Thus, the first order adjustments match the first moments of the asymptotic distributions

of X2
RS and G2

RS under the null hypothesis with T , the first moment of χ2
T . The second

order adjustments match the first two moments of these asymptotic distributions scaled

by c1 with the first two moments of χ2
c2

. In both cases, estimation error in the δ̂t is

ignored.

One reason given originally for preferring the first order to the second order adjust-

ment was that the latter requires an estimate of the full covariance matrix Vc and this

was often not available, especially when undertaking secondary analysis from published

tables. On the other hand, expressions for δ̄ (and hence the first order adjustment) could

often be calculated using more limited information for many models. For example, in the

common case of testing independence in a two way table, Rao and Scott (2004) showed

that the first order adjustment only requires information on the cell design effects and

marginal row and column design effects. Further discussion of the use of simple kinds

of design effect for adjustment is given by Holt et al. (1980), Bedrick (1983), Gross

(1984) and Rao and Scott (1987). Subsequently, however, it was found that the second

order adjustment provides a more stable test when the full covariance matrix is available.

As a result both adjustments are now used in some standard software, such as STATA,

SUDAAN and SAS(survey software), sometimes as a default option. See section 7 for

further comment.

Further adjustments have been proposed to handle error in estimating Vc and hence

the δt. A widely used approach is via an F-adjustment. For example, the second order

Rao-Scott adjusted test statistic is divided by T and referred to an F distribution with

c2 and c2ν degrees of freedom, where ν denotes the degrees of freedom used to estimate

Vc for the complex survey design and is often taken as the number of primary sampling

units minus the number of strata. Lumley and Scott (2014) recommendeded taking c1 as

11



1 (its minimum value when the δ̂t all equal δ̄) and hence c2 as T when ν is relatively small.

They also reported that a saddlepoint approximation worked very well in simulations.

An alternative simple approach to handling survey weights in log-linear models was

proposed by Clogg and Eliason (1987). See Skinner and Vallet (2010) for discussion.

4.2 Logit models for contingency tables

An alterative asymmetric class of models may be defined in terms of conditional prob-

abilities πi|j. We consider here logit models, where i takes only two values 0 or 1 and

define π as a J × 1 vector, containing values of π1|j for j = 1, . . . , J . We express the

model as

logit(π) = Xθ, (9)

where π = (π1|1, . . . , π1|J)′ and logit(π) contains elements log[π1|j/(1 − π1|j)] for j =

1, . . . , J . Roberts et al. (1987) defined the π1|j as finite population proportions Nj1/Nj,

where Nj is the size of domain j in the population and Nj1 is the number of these units

with outcome 1. It is, however, also possible to define the π1|j as model probabilities.

In a conventional product multinomial setting, we would suppose that frequencies nj

are given in each domain j = 1, . . . , J and that frequencies n1j with outcome 1 in each

of these domains are determined by independent binomial sampling, n1j ∼ Bin(nj, π1|j).

The likelihood equations then become X′D(n)π(θ) = XD(n)p, where D(n) = diag(nj),

π(θ), as a function of θ, is given in (9) and p is the vector with elements n1j/nj.

In the complex survey setting (Roberts et al., 1987), the pseudo MLE θ̂pml is the

solution of

X′D(q)π(θ) = XD(q)π̂c, (10)

where D(q) = diag(qj), qj = N̂j/N̂ is the estimated relative size of domain j and π̂c is

the complex survey point estimator of π. An estimated asymptotic covariance matrix of

θ̂pml is given by

(X′∆̂X)−1(X′D(q)V̂cD(q)X)(X′∆̂X)−1, (11)

where ∆̂ = diag(qjπ̂1|j(1 − π̂1|j)), the π̂1|j are the elements of π(θ̂pml) and V̂c estimates
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the covariance matrix of π̂c under the complex design. Tests of goodness-of-fit and

nested hypotheses about θ, extending the kinds of methods described in section 4.1, were

discussed by Roberts et al. (1987).

Extensions to polytomous responses and the use of Box-Cox transformations to handle

departures from the logit assumption were discussed by Rao et al. (1989).

4.3 Unit-level models

The analysis of categorical data at the level of the unit rather than the table cell has

many advantages. It enables the analysis of large numbers of categorical variables, where

the contingency table would be sparse, as well as combinations of categorical and contin-

uous variables. It creates natural links between categorical data analysis and regression

analysis, two main themes of survey data analysis. It provides the basis for much modern

analysis software which allows for complex surveys. One downside is that it removes a

natural goodness-of-fit test, but this can generally be resurrected by a nested analysis if

the data correspond to a suitable contingency table. Other approaches to goodness of fit

testing are also available, e.g. Graubard et al. (1997).

The role of the sampling scheme in the analysis of unit level data (rather than con-

tingency tables) has been more contested. If a unit-level model is specified to represent

individual behavior then some, such as Hoem (1989), have argued that the sample can

be treated as an ancillary statistic and likelihood-based inference about the model pa-

rameters can proceed ignoring the sampling scheme, except in some special cases such

as outcome-based sampling. The survey sampling community has generally been more

sceptical about ignoring the sampling scheme, in particular because of inadvertent bias

that can be induced by informative sampling (e.g. Chambers, 2003; Fuller, 2009, section

6.3.1).

Binder (1983) is a seminal paper, which took a sceptical view of models and provided

a framework for unit-level analysis of complex survey data that has influenced much

subsequent applied work and survey software. He considered a class of generalized linear

models for unit-level data of the form (yi,xi), where yi is an outcome variable and xi is
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a vector of covariates for unit i. The probability density function of yi was taken to be

p(yi; θi, φ) = exp[α(φ){yiθi − g(θi) + h(yi)}+ γ(φ, yi)], (12)

where the mean of yi is a function g′(θi) of θi, denoted µ(θi), and it is assumed that

θi = f(x′iβ), where f(.) is a known differentiable function and β is unknown. If all finite

population values (yi,xi), i = 1, . . . , N were known then the likelihood equations would

be

S(β) =
N∑
i=1

[yi − µ{f(x′iβ)}]f ′(x′iβ)xi = 0, (13)

where S(β) is the population score function of β. The solution of these equations βN is

often referred to as the census parameter and Binder (1983) discussed why this may be

of interest and how it may be estimated using design-based inference. The framework

includes a wide range of models including logistic regression and log-linear models; it

also extends naturally to inference about β, assuming the model holds. Design-based

inference about βN is not dependent on the model, which may be viewed as a working

model, or as ’a convenient approximation to the real world’ (Binder, 1983, p. 279). Point

estimation is obtained by treating S(β) as a vector of population totals, estimating it by

sample weighting to give Ŝ(β) =
∑

i∈swi[yi − µ{f(x′iβ)}]f ′(x′iβ)xi, where s denotes the

sample and wi is a sample weight (assumed to enable consistent estimation of population

totals) and then solving

Ŝ(β) = 0 (14)

for β to obtain β̂. The same point estimator is typically natural for both βN and β and

is often called the pseudo maximum likelhood estimator (Skinner, 1989). Binder (1983)

proposed a design-based variance estimator for βN . Binder and Roberts (2003) argued

that, for most models, the same variance estimator can be used for β if the sampling

fraction is small. See Korn and Graubard (1998) for further discussion of this point.

Wald tests of hypotheses about β or βN may be constructed in a similar manner to

earlier (Skinner, 1989). Rao et al. (1998) proposed quasi score tests as an alternative ap-

proach with advantages compared to Wald tests. Both the Wald and score tests depend

on estimators of the covariance matrix of the pseudo MLE and the tests can become
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unstable if the degrees of freedom used to estimate this covariance matrix are not large.

Rao et al. (1998) proposed alternative tests to handle this case. These include Rao-

Scott corrections to naive Wald or score tests which ignore the design. See also Rao and

Thomas (2003, sect. 7.5). Lumley and Scott (2014) derived the large sample distribution

of the naive likelihood ratio test statistic and showed how Rao-Scott adjustments can be

applied to this statistic. They also demonstrated the asymptotic equivalence of the score

and likelihood ratio approaches.

The use of a design weight wi in Ŝ(β) can lead to loss of efficiency. The loss can

be particularly important in case-control studies, where sample selection is based upon

the binary outcome yi. In this setting, Scott and Wild (2002, 2003) and Li et al.(2011b)

argued that no weighting or the use of an alternative weighting method may be preferable.

For a more general discussion of alternatives to standard design-based weighting in the

case of generalized linear models see Pfeffermann and Sverchkov (2003).

5 Estimation Equations Approaches for Unit-level

Data

The sample-weighted likelihood equations in (14) provide one example of estimating

equations, which may be solved to determine a point estimator. They are obtained

from the population score function S(β), which is itself derived from the fully specified

parametric model in (12). This modelling assumption may be relaxed in a broader

estimating equations approach, where the overall model has two parts: a model of interest

and a complementary working model. The former defines the parameters of interest

and is required for consistent estimation. The latter (along with the model of interest)

determines the point estimator but it is not required to hold for consistency and may be

viewed more as a ’nuisance’ part of the model. One important example was introduced

by Rao et al. (1998) as a quasi-score approach. The model of interest for (yi,xi) is

specified through the mean of yi, denoted µi = µ(xi, β), and this is acccompanied by
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a working model under which the yi are independent with variances V0i = V0(µi) (see

also Molina and Skinner, 1992). For example, for a binary outcome the working variance

could be taken as the binomial variance V0(µi) = µi(1 − µi). The estimating equations

now become

Ŝ(β) =
∑
i∈s

wi
∂µi

∂β
V −10i (yi − µi) = 0. (15)

Rao et al. (1998) noted that β̂, the point estimator of β obtained by solving these

equations, is consistent under more general conditions than the working model. All that

is required is that the finite population can be regarded as a self-weighting sample from

the superpopulation. They proposed an approach to variance estimation analogous to

Binder (1983) and showed how score tests can be used for testing. Rao et al. (2002)

showed how these variance estimation methods and test procedures can be extended to

handle poststratification.

A more general approach is obtained for a clustered population by allowing for intra-

cluster correlation in the working model. Thus, relabel the observations in the clustered

population by (yc`,xc`), for cluster c = 1, . . . , C and element ` = 1, . . . , nc in cluster

c. The model of interest is again defined through the marginal mean of yc`, denoted

µc` = µ(xc`, β). Write yc as the vector of clustered observations (yc1, . . . , ycnc)
′, µc as the

vector of means µc = (µc1, . . . , µcnc)
′ and V0c as the working covariance matrix of yc,

now allowed to be non-diagonal. The estimating equations now become

Ŝ(β) =
∑
c∈sc

wc
∂µc

∂β
V−10c (yc − µc) = 0, (16)

where sc is the sample of clusters and wc is the survey weight for cluster c. It is assumed

that there is no subsampling within clusters. Various approaches to specifying and/or

estimating V0c are feasible. Rao (1998) proposed a similar inferential approach to that

in Rao et al. (1998), considering both Wald and quasi-score tests. He focussed on the

working independence model, where V0c is diagonal, but does also propose a survey-based

approach to handle the non-diagonal case. Rotnitzky and Jewell (1990) proposed Wald,

score and likelihood ratio procedures for testing hypotheses about β and, in particular,

Rao-Scott adjustments to ’working’ tests.
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An important special case of this set-up is in longitudinal surveys, where the cluster

consists of repeated observations across survey waves. Liang and Zeger (1986) discuss

this case (in the absence of complex sampling), where the working covariance matrix is

expressed as V0c = diag(V 0.5
0c` )R(α)diag(V 0.5

0c` ), R(α) is the working correlation matrix

that may depend on a parameter α and V0c` is the working variance of observation yc`.

The estimation equations are referred to as generalized estimating equations (GEE). Rao

(1998) discussed the extension of this approach to a survey setting. Roberts et al. (2009)

extended Rao (1998) by considering also a working model which allows for dependence

between repeated observations on a binary outcome variable via odds ratios rather than

correlations. They referred to the estimating equations as survey-weighted GEE. They

proposed a one-step estimating function bootstrap method for variance estimation. Car-

rillo et al. (2010) provided further theoretical results and simulation studies and adopted

a similar approach to Rao (1998) for the estimation of R(α).

Li et al. (2011a) discussed an application of the general clustered approach to surveys

which collect family-based genetic data and the cluster consists of a family. They specified

a model for V0c as a function of α based upon genetic theory. It is perhaps surprising that

the general case of clustered survey data with non-diagonal V0c has not been considered

more. Even if clustering is of no scientific interest, it would still be interesting to know

more about how much efficiency is lost by making the working independence assumption.

One obstacle to considering such questions is that it is very common in surveys for clusters

to be subsampled and this raises complications for inference.

6 Latent Variable Models

Options for handling survey weights and complex designs have increasingly appeared in

latent variable modeling software since 2000 (see e.g. Oberski, 2014). Latent variable

models for categorical outcome variables include latent class models and categorical factor

analysis models as well as structural equation models (e.g. Muthén, 1984).

For latent class models, Patterson et al. (2002) proposed a pseudo maximum likeli-
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hood approach to inference. This approach can be formulated in the unit-level framework

of section 4.3, where the outcome yi is now a vector of categorical variables. However,

since there is no unit-level covariate xi, the probability density function of yi is the

same for all units in the same cell of the table formed by the outcome variables. It

follows that, as for the log-linear model in section 4.1, the census log likelihood can be

expressed as a sum over the cells k of Nklogπk, where Nk is the population count in cell

k, and that the same holds for the pseudo log likelihood, if Nk is replaced by N̂k, its

sample weighted estimate. Point estimation can thus be obtained simply by replacing

the observed cell proportions p by the survey estimates π̂c of the population cell pro-

portions, just as in section 4.1, and employing a standard maximisation procedure, such

as the EM or Newton-Raphson algorithm, which would be employed under multinomial

assumptions. Vermunt and Magidson (2007) proposed an alternative method, extending

an approach of Clogg and Eliason (1987) for fitting log-linear models in which the inverse

of cell-specific weights are included as an offset term in the model. Skinner and Vallet

(2010) raised concerns, however, about the validity of the standard errors and test pro-

cedures generated by this approach. Patterson et al. (2002) made some related points in

response to Vermunt’s discussion of their paper.

Binary factor analysis of an A × 1 vector y = (y(1), . . . , y(A))′ of binary observable

variables can be formulated via a threshold model, where a continuous latent variable u(a)

underlies observed variable y(a) (a = 1, . . . , A) with y(a) = 1 iff u(a) ≥ τa for parameters

τ1, . . . , τA and where u = (u(1), . . . , u(A))′ is multivariate normal, obeying a classical factor

analysis model (e.g. Christoffersson, 1975). Maximum likelihood (or pseudo maximum

likelihood) estimation tends to be infeasible in practice, unless A is small, because of

the need to compute A−dimensional integrals for each observation. More common is a

three-stage procedure (e.g. Muthén, 1984), where (i) the τa are estimated from univariate

likelihoods of the y(a), (ii) the covariance matrix of u, subject to constraints to remove

identification indeterminacies, is estimated from bivariate likelihoods of the A(A− 1)/2

pairs y(a), y(b), a 6= b, holding the τa fixed at their values estimated at stage (i), and (iii)

the parameters of the factor model are estimated by fitting this model to the covariance
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matrix estimated at stage (ii) using a WLS approach. Such a three-stage procedure can

be extended to a more general structural model involving a vector of observed covariates

x for each unit, as described in Muthén (1984). This point estimation approach and its

consistency extends naturally to complex surveys as described by Aparahouhov (2005).

This extension is only required at stages (i) and (ii), where the log likelihoods at each of

these stages involve sums over observations and survey weights need to be incorporated

in these sums as in a pseudo maximum likelihood approach. Aparahouhov (2005) also

discussed variance estimation, following Muthén and Satorra (1995). More research seems

needed, e.g. to consider the possible role of the complex design in the choice of weight

matrix at stage (iii), to consider alternative variance estimation methods for such three-

stage procedures and to consider alternative testing methods.

7 Concluding Remarks

We conclude by discussing the take-up of the new methods described in this review in

the substantive scientific literature. We follow Scott (2007) by looking at citations of the

Rao and Scott (1981, 1984) papers using the Web of Science. We do not gather other

systematic evidence and the comments in this section should be taken as personal.

Our first remark is on the variation in take-up between disciplines. Like Scott (2007),

we find that the great majority of recent citations of Rao and Scott (1981, 1984) are in

medical, health or biometric applications with many fewer in the social sciences. This

contrasts with the introduction of this paper, where we noted how sociological research

motivated some of the early developments in the methodology of survey data analysis.

As Scott notes, this may partially reflect the differential coverage of the Web of Science

or the nature of the software used by different disciplines.

This prompts our second remark that take-up is very dependent upon the software

used by different researchers and the kinds of complex survey features the software em-

ploy. Scott (2007) notes that the trajectories of numbers of citations of Rao and Scott

(1981, 1984) stay at a low level until the mid- to late-1990s, when they took off on an
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upward trajectory. Inspection of counts from 2007 to 2016 shows that this upward trajec-

tory has continued. Scott (2007) attributes the change to the time when the Rao-Scott

methods were first included in major software packages and in Stata and SAS in partic-

ular. A contrasting trajectory of number of citations is for Grizzle et al. (1969), which

shows a clear increase for around 15 years from publication, in contrast to the static low

level of citations of Rao and Scott (1981, 1984) for their first 15 years, and this may

be attributable to software being made available much sooner for the implementation of

methods in the former paper.

Thirdly, we note that many of the methods being made available now in software

are for unit-level data, where the information about complex surveys consists of survey

(and perhaps replicate) weights together with identifiers of strata, clusters or replicates.

Hence, the methods described in sections 4.3 and 5 are most readily used. It seems very

difficult to identify any modern software which can fit a log-linear model as in section

4.1 using as input only the vector π̂c and an associated covariance matrix estimator V̂c.

As a consequence, there seems to be little take-up currently of methods for contingency

tables, as described in sections 4.1 and 4.2. There is an exception - one widely analysed

type of contingency table is the two-way table. A very common style of paper among

those recently citing Rao and Scott (1981, 1984) has a categorical outcome variable

and several explanatory variables, mostly categorical. Such papers often begin with

one or more two-way tables of the outcome variable versus one of the key categorical

explanatory variables, usually accompanied by tests of independence for the complex

design as described in section 3. These are then followed by some kind of regression of

the outcome variable on a vector of explanatory variables, as described in section 4.3 or

5.

The fact that software usually assumes now that sufficient complex survey information

is included in unit-level data to enable the direct calculation of a covariance matrix

estimator V̂c contrasts with the world described in the early papers in the 1970s and

1980s. Then it was noted that this full matrix was often not available to researchers in

practice and thus consideration was given to the possibility of constructing adjustments
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from simpler design effect quantities, as discussed in section 4.1. Scott (2007) notes that

’none of this work seems to have had much impact in practice’. Hence, there is usually

no strong practical reason now for using, say, a first order rather than a second order

Rao-Scott adjustment.

A final remark is based on the observation that a few of the recent substantive scientific

papers which cite Rao and Scott (1981, 1984) do not refer to a probability sampling

scheme at all. They make use of the kinds of methods described in this paper because

these methods can handle unit-level weighting, which might have been constructed to

correct for selection bias in a non-probability sample, or complex data structures, such

as clustering. Looking to the future, the class of methods which have been developed

to handle complex survey features in categorical data analysis may thus find additional

kinds of applications, in practice.
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