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Methodological bias associated 
with soluble protein recovery  
from soil
Lucy M. Greenfield  1, Paul W. Hill1, Eric Paterson2, Elizabeth M. Baggs3 & Davey L. Jones1

Proteins play a crucial role in many soil processes, however, standardised methods to extract 
soluble protein from soil are lacking. The aim of this study was to compare the ability of different 
extractants to quantify the recovery of soluble proteins from three soil types (Cambisol, Ferralsol 
and Histosol) with contrasting clay and organic matter contents. Known amounts of plant-derived 
14C-labelled soluble proteins were incubated with soil and then extracted with solutions of contrasting 
pH, concentration and polarity. Protein recovery proved highly solvent and soil dependent 
(Histosol > Cambisol > Ferralsol) and no single extractant was capable of complete protein recovery. 
In comparison to deionised water (10–60% of the total protein recovered), maximal recovery was 
observed with NaOH (0.1 M; 61–80%) and Na-pyrophosphate (0.05 M, pH 7.0; 45–75% recovery). We 
conclude that the dependence of protein recovery on both extractant and soil type prevents direct 
comparison of studies using different recovery methods, particularly if no extraction controls are used. 
We present recommendations for a standard protein extraction protocol.

Protein represents the dominant form of organic nitrogen (N) entering soil ecosystems and frequently the bottle-
neck in soil N cycling1. Further, based on the number of proteins contained in plants and microorganisms, it can 
be expected that a single gram of soil may contain thousands of different proteins2,3. As proteins play a key role 
in many soil processes, there is increasing interest in the extraction, separation, identification and quantification 
of proteins as indicators of soil function. However, the development of exoproteomic approaches are currently 
limited by the lack of standard protocols and the difficulty of recovering proteins from soil.

Extractants that have commonly been used for soil protein recovery include simple salts (e.g. K2SO4, 
Na-pyrophosphate, Na-phosphate), bases (e.g. NaOH), organic acids (e.g. Na-citrate) and surfactants (e.g. 
Tris-SDS) (Supplementary Table S1). Although previous studies have examined a range of protein extraction 
methods, these have been largely restricted to single unrepresentative proteins (e.g. BSA), single soils or have used 
quantification methods known to suffer from severe interference by the co-extraction of humic substances4–6. In 
addition, many of these studies have lacked the appropriate controls, preventing determination of protein extrac-
tion efficiency or have focused on the whole soil metaproteome.

Soil type has a large influence on protein recovery. Some studies suggest that organic matter and clay content 
are the key soil properties which affect protein recovery5,7,8 whilst other studies suggest soil pH is also impor-
tant9–11. Organic matter content, clay content and pH influence the adsorption of protein in soil and, therefore, 
affects the ease to which it can be extracted.

Our aim was to focus on soluble proteins and to compare the recovery of a mixture of 14C-labelled plant 
proteins from soil using 39 different extractants. Our secondary aim was to evaluate the influence of soil type on 
protein recovery.

Materials and Methods
Soils used in the study. We evaluated protein recovery from three soils with contrasting organic matter and 
Fe contents: (1) a Eutric Cambisol obtained from a temperate Lolium perenne L. grassland in Abergwyngregyn, 
Gwynedd, UK (53°14′N, 4°00′W); (2) a Fibric Histosol obtained from a temperate Calluna vulgaris (L.) Hull 
moorland in Abergwyngregyn, Gwynedd, UK (53°22′N, 4°01′W), and (3) a Rhodic Ferralsol obtained from a 
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Saccharum officinarum L. plantation in Piracicaba, Brazil (22°32′S, 49°20′W)12. In all cases, replicate batches of 
soil (n = 3) were collected from a depth of 0–15 cm, sieved (<2 mm) and kept at 4 °C until required. The main 
soil properties are shown in Table 1. Soil pH and electrical conductivity (EC) were measured in 1:5 (v/v) soil:H2O 
extracts. Total C and N were determined with a TruSpec® analyser (Leco Corp., St Joseph, MI). Soil texture was 
determined with a LS1330 Particle size analyser (Beckman Coulter, Brea, CA). Cation exchange capacity (CEC) 
was measured by saturation with an index cation13. Soluble protein in water extracts was measured using the 
Coomassie Blue method14 and was used to calibrate the rate of 14C-labelled protein addition (Supplementary 
Table S3). This method, however, cannot be used with other extractants other than water due to bias from inter-
fering substances6,15.

Protein extraction solutions. The extractants tested were based on previously published methods 
(Supplementary Table S1) and included: deionised water, Na-pyrophosphate (0.01, 0.05, 0.1 M; pH 7.0), Na-citrate 
(0.01, 0.05, 0.1, 0.5 M; pH 8.0), Tris-SDS (0.01, 0.05, 0.1 M SDS with 0.05 M Tris; pH 7.0), K-phosphate buffer 
(0.01, 0.05, 0.1, 0.5 M; pH 6.0 and 8.0), CaCl2, NaOH and K2SO4 (0.01, 0.05, 0.1, 0.5 M), methanol and ethanol 
(25%, 50%, 75%, 100% v/v). Extractants with no pH value stated were not adjusted and their values are presented 
in Supplementary Table S4.

Protein addition and recovery from soil. Soil (1 g) was placed in individual 20 ml polypropylene vials 
and heat-sterilised (80 °C, 1 h) immediately prior to experimentation16. This sterilisation procedure was not found 
to affect the CEC of the soils (Supplementary Table S2). In addition, it also proved effective at killing the microbial 
community preventing bias from microbial breakdown/immobilisation of the added protein (Supplementary 
Fig. S1). Although free protease activity was not completely eliminated by heat sterilisation, the exoenzyme activ-
ity was extremely low compared to the amount of protein added to the soil and was therefore not expected to 
bias our findings (Supplementary Table S5). Purified, 14C-uniformly labelled soluble protein from Nicotiana tab-
acum L. leaves (100 µl; 0.860 mg ml−1; 1.2 kBq ml−1; purified to >3 kDa by ultra-filtration; custom synthesised 
by American Radiolabeled Chemicals, St Louis, MO) was added to each soil, shaken to mix and incubated for 
30 min at 20 °C. An incubation time of 30 min was deemed appropriate based on initial pilot studies of protein 
sorption and recovery from soil at incubation times varying from 0.5 to 24 h (Supplementary Table S6). The time 
is therefore sufficient to obtain high rates of sorption while minimising the chances of proteolysis or microbial 
regrowth. Soluble plant proteins were chosen as they represent one of the major forms of dissolved organic N 
added to soil. Based on extractant methods from previous studies, the soils were subsequently shaken with 5 ml 
of each extractant (30 min; 200 rev min−1)17,18, then a 1.5 ml aliquot was pipetted into 1.5 ml microfuge tubes and 
centrifuged (18 000 g; 60 s) and the supernatant recovered. The centrifugation time of 60 s allowed complete phase 
separation of the soil particles and supernatant (Supplementary Table S7). The amount of 14C-label recovered in 
degradations per minute (DPM) of supernatant was determined using a Wallac 1414 scintillation counter (60 s) 
and Wallac Optiphase HiSafe3 scintillation fluid (PerkinElmer Inc., Waltham, MA). Baseline 14C-labelled protein 
was determined by counting 100 µl of 14C-labelled protein. Extraction efficiency was calculated by Equation (1).

Extraction efficiency C in extractant supernatant DPM
baseline C DPM

(%) ( )
( )

100
(1)

14

14= ×

Humic acids and organic solvents had no effect on 14C counting efficiency (Supplementary Tables S8 and S9). 
To estimate the amount of humic substances co-extracted with the protein, the colour of the extracts was deter-
mined at 254 and 400 nm in UV-transparent plastic 96-well plate using a PowerWave HT Spectrophotometer 
(BioTek Inc., Winooski, VT).

Statistical analysis. All experiments were performed in triplicate. All statistical analysis was performed 
using R 3.4.1 and work was carried out in base R unless stated19. Data was declared to be normally distrib-
uted by Shapiro-Wilk normality test (p > 0.05) and have equal variances across groups by Bartlett test (p > 0.05). 
Graphs were created using the R package ggplot220. Differences in soil properties between soil types were analysed 
by one-way ANOVA with TukeyHSD post-hoc testing using p < 0.05 as the cut-off for statistical significance. 

Cambisol Ferralsol Histosol

pH 6.07 ± 0.02a 4.75 ± 0.22b 4.48 ± 0.17b

EC (µS cm−1) 21.8 ± 3.3a 140.7 ± 52.9a 47.5 ± 28.4a

Organic C (%) 2.43 ± 0.02a 1.45 ± 0.08a 23.2 ± 0.5b

Total N (%) 0.21 ± 0.00a 0.12 ± 0.00b 1.12 ± 0.04c

Sand (%) 40.7 ± 3.2a 31.0 ± 1.8a 90.7 ± 2.4b

Silt (%) 46.0 ± 2.7a 35.1 ± 2.2b 8.0 ± 1.9c

Clay (%) 13.3 ± 0.5a 33.8 ± 0.7b 1.3 ± 0.5c

Cation exchange 
capacity (mmol 
kg−1)

145 ± 6a 90 ± 8a 334 ± 57b

Table 1. Major characteristics of the three soils used in the extraction trial. Values represent means ± SEM 
(Standard error of the mean) (n = 3). Different letters (a, b, c) indicate significant differences between soils at the 
p < 0.05 level.
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Differences in protein recovery between treatments and soils were analysed by two-way ANOVA with TukeyHSD 
post-hoc testing using p < 0.05 as the cut-off for statistical significance. Chemical speciation modelling to esti-
mate the net valency of each extractant was performed with Geochem-EZ21.

Data availability. Please contact the corresponding author (l.greenfield@bangor.ac.uk) for access to data.

Results and Discussion
Protein recovery from soil by water. Here we aimed to evaluate methods of soluble protein recovery. 
This is relevant to studies investigating the potential behaviour of isotopically labelled proteins in soil (sorption, 
biodegradation) or for recovering the plant or microbial exoproteome. Overall, we found significant differences in 
protein extraction efficiency between the different extractants (F10, 318 = 118.5; p < 0.001; Fig. 1) and soils (Histos
ol > Cambisol > Ferralsol) (F2, 318 = 148.4; p < 0.001; Fig. 1). As the soil was sterilised to limit microbial activity16, 
14C measured is assumed to represent intact 14C-protein, therefore we refer to extraction efficiency as protein 
recovered. Protein recovery by deionised water varied from 10–60% between soil types. As the water is expected 
to recover mainly free, unbound protein, we assume the remainder became bound to the solid phase or coagu-
lated/precipitated on entering the soil22,23. Proteins are known to readily sorb to the surface of clay minerals, Fe/Al 
oxyhydroxides and humic materials in soil24–26. Therefore, extractants should be able to displace proteins bound 
to surfaces during the extraction process or to solubilise the binding surfaces themselves. Ferralsols had the 
lowest protein recovery probably because of the higher clay and Fe-oxide fraction, compared to the Histosol and 
Cambisol (p < 0.001; Table 1), resulting in more protein being strongly bound to the solid phase. In comparison, 
the higher humic content of the Histosol (p < 0.001; Table 1) may have resulted in the extraction of protein as 
soluble humic-protein complexes27. In our soils, a complete recovery of the added 14C-protein was not achieved 
for any soil, with ca. 25% not recoverable by any extractant. This is likely to be even higher in soils where proteins 
have been stabilised for long periods.

Protein recovery from soil by salt extracts. For the Histosol, no significant difference was observed 
between deionised water and the other extractants (p > 0.05) except CaCl2 and K2SO4 which lowered pro-
tein extraction compared to deionised water (p < 0.05). We ascribe the poor protein recovery with CaCl2 and 
K2SO4 to salt-induced conformational changes in protein structure and subsequent coagulation/precipitation 
(Supplementary Table S10), a phenomenon which is well documented in the literature23. In contrast to the 

Figure 1. Extraction efficiency (%) of 14C-labelled protein from three contrasting soils using a range of 
chemical extractants. The legend to the left of the dashed line refers concentrations of methanol and ethanol. 
For all other extractants, refer to the legend on the right of the dashed line. Different capital letters represent 
significant differences between soil type of the same molarity and extractant. Different letters represent 
significant differences between molarity of the same soil type and extractant. Values represent means ± SEM 
(n = 3).
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Histosol, deionised water gave low protein recovery rates from the Ferralsol and Cambisol likely due to more pro-
tein adsorbed onto the clay fraction. We conclude therefore that water extracts may provide an estimate of free, 
unbound proteins in soil and limited information of the bound fraction. Further, while 0.5 M K2SO4 is frequently 
used as a standard extractant for dissolved organic N and for measuring soil microbial biomass-N17,28, our results 
suggest that the method may reduce total protein recovery.

The highest recoveries were obtained by NaOH and Na-pyrophosphate (70–76% of the total protein added), 
with no significant difference apparent between them (p > 0.05; Fig. 1). The high pH of NaOH relative to the other 
extractants solubilises organic matter leading to the release of protein particularly the case of the Histosol29. For 
the Ferrasol, NaOH was the most efficient extractant (49–77% compared to 43–48% by Na-citrate). NaOH also 
solubilises protein adsorbed to Al(OH)3, resulting in protein release from the Ferralsol30.

Our results therefore suggest that the recovery of protein from soil is consistent with (i) their salting-out 
potential based on the Hofmeister series23, and (ii) the potential of each salt to displace bound protein from sur-
faces via ligand exchange, based on their net valency (i.e. HP2O7

3- > Citrate3- > phosphate1.87- (pH 8) = phosphate1.15- 
(pH 6) > SO4

2- > Cl-). The exception to this was Tris-SDS0.09- which had a significantly higher extraction efficiency 
than K2SO4 and CaCl2 (p < 0.001) suggesting that the presence of surfactant aids ionic displacement. Surfactants 
tend to gather around interfaces (e.g. the interface between the soil surface and soil solution). The surfactants 
compete with the protein molecules for available surface area in order for the hydrophobic tails to avoid water. 
Over time the SDS molecule will replace the protein molecules because the surfactant molecules are in excess31,32.

Protein recovery from soil by organic solvents. The polar solvents, methanol and ethanol both proved 
ineffectual at recovering soluble proteins from soil likely due to the alcohol-induced precipitation of proteins33. 
This contrasts strongly with metabolomic studies where these extractants often yield the greatest recovery of low 
molecular weight organic solutes34,35.

Co-extraction of humic substances. NaOH caused the solubilisation of large amounts of humic sub-
stances and based on previous studies, this is likely to induce protein denaturation36,37. Consequently, we would 
not recommend it as an extractant. However, in some analysis the structure of the protein is not important (e.g. 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the Kjeldahl method) and NaOH 
can be used.

Na-pyrophosphate, NaOH, Na-citrate and both phosphate buffers extracted more humic substances in com-
parison to deionised water (Supplementary Table S11; Supplementary Fig. S2) in support of previous findings11,38. 
Humic substances can be problematic due to their ability to bind to proteins and interfere with colorimetric 
procedures for quantifying protein4,39. Proteins interact with humic substances to form protein-humic substance 
complexes26. The mechanisms of the interaction are thought to consist of: (a) covalent and hydrogen bonds40, (b) 
ionic bonds between the functional amino group of the protein and the carboxyl or hydroxyl group of the humic 
substance41, (c) physically immobilised within macromolecular matrix of humic substances42, and (d) electron 
donor-acceptor complexes43.

The co-extraction of humic substances with proteins in the protein-humic complexes results in colour in 
the supernatant. This interferes with colorimetric and fluorescent analysis of protein quantity6,44. Methods of 
removing interfering humic substances (e.g. PVPP4 and TCA precipitation45) have been found to be ineffective46. 
Therefore, NaOH, Na-pyrophosphate, Na-citrate and phosphate buffers are not ideal extractants when these types 
of analysis are being used. In addition, if extracting protein from a soil with high organic matter content, more 
interference will occur in comparison to soils with lower organic matter contents.

Conclusions
In summary, we found that  0.1 M NaOH was the most effective extractant overall when denatured protein can 
be used in subsequent analysis and co-extraction of humic substances does not interfere. For analysis of intact 
proteins, 0.05 M Na-pyrophosphate (pH 7.0) was most effective for extracting water-soluble proteins from soil; 
however, it did also co-extract humic substances. Where interference of humic substances may prove problematic 
for subsequent analysis and intact proteins are required, deionised water is recommended. For proteomics, fur-
ther analysis by LC-MS/MS will be necessary to assess the quality of the proteins extracted by each method15,47. 
In addition, although this study was limited to three soils, our results clearly indicate that soil type directly affects 
the amount of protein that can be recovered. This may make quantitative comparisons between soils problem-
atic. Rarely has this been accounted for in previous studies comparing protein levels in soil. The impact of this in 
future studies can be evaluated by measuring the recovery of a known mixture of proteins, as undertaken here. It 
should also be emphasised that this study focused only on the recovery of hydrophilic proteins from soil. Similar 
studies are therefore required to optimise the recovery of proteins contained within the soil microbial community, 
especially those of a hydrophobic nature.
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