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Abstract

In this paper we report a novel inertial instability that occurs in electro-osmotically driven

channel flows. We assume that the charge motion under the influence of an externally applied

electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow

through a prescribed slip velocity at the boundaries. Here, we study spatially-periodic wall velocity

modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow

consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high

slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the

new flow state that bifurcates from a left-right symmetric base flow has a rather strong mean

component along the channel, which is similar to pressure-driven velocity profiles. The instability

sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications

in microfluidic devices.

∗ alexander.morozov@ph.ed.ac.uk
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In microfluidic devices, the use of electric fields as a means of driving flow via electro-

osmosis is an intriguing alternative to using pressure drops or moving surfaces [1–4]. Electro-

osmosis occurs when the ions in a double layer next to a charged surface are set in motion by

an electric field, and the ions drag the solvent with them, producing bulk flow. Such flows

are especially suitable for microfluidic applications, in which microfabrication techniques

allow for control and patterning of electric and dielectric properties of channel surfaces. In

this way, not only can bulk flow be generated to transport analytes, but patterned flow fields

can be imposed, allowing, for example, for creation of microfluidic mixers [5]. Such flows

may also assist in separating particles or cells, possibly both modulating and augmenting

the inertial forces that produce size-depending cross-stream drift [6]. Even if uniform charge

density is intended for a surface, some variation in charge is unavoidable, especially given

the difficulty in controlling precisely the surface chemistry producing the charge, and this

will give rise to non-uniform electro-osmotic flows even in a straight channel. One of the

conceptually simpler non-uniform electroosmotic flows that can be produced is generated

by a sinusoidally periodic surface charge on each side of a straight channel [7]; see Fig.1.

This charge pattern leads to a spatially periodic charge in the double layer adjacent to the

boundaries. When a voltage is applied along the channel, the velocity near the surface varies

periodically as well, and acts like a periodic ’slip’ velocity along the surface, generating a

complex cellular flow in the fluid in the channel. This flow is attractive as a simple boundary

condition (straight walls, periodic charge) that nevertheless generates a complex flow (see

[8–11], for example), and that, moreover, has an analytic solution in the limit of creeping

flow and thin double layers [7]. It is easy to add a uniform surface charge density to the

periodic charge, mimicking, for example, an imperfectly treated surface with charge non-

uniformity. A periodic deviation from a uniform charge might produce a deviation in the

mean flow rate in the channel owing to nonlinear coupling between the flow produced by

the uniform charge, and that produced by the periodic charge variations. If the wall charge

varies sinusoidally around zero, the electro-osmotic flow that is generated is periodic, and

in the Stokes flow limit has no net flow direction.

Here we consider the effect of inertia on this simple flow. We employ a spectral method to

solve the two-dimensional Navier-Stokes equations, and find, surprisingly, for the case of zero

average surface charge, so that the Stokes flow is periodic with no net flow, that at a modest

Reynolds number Re = v0L/ν of around 20, there is a bifurcation to a secondary flow with
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FIG. 1. Electro-osmotically driven periodic flow; after Ajdari [7].

a non-zero mean flow, even when there is no mean flow induced by the boundary conditions

themselves. Here, v0 is the characteristic velocity, L is the half-width of the channel, and ν

is the kinematic viscosity of the fluid. The presence of this bifurcation means that, even for

a boundary condition with no mean surface charge, and hence no mean current, a rectified

mean flow can be produced through a purely oscillatory boundary condition. The direction

of the mean flow, to the right or the left, is arbitrary, but could be imposed by adding some

small bias to the initial oscillatory flow, either electrically, geometrically, or in some other

way. We believe that this is the first report of this hydrodynamic instability in a periodically

patterned electroosmotic flow (although this discovery was alluded to in an earlier work co-

authored by one of the present authors [12]). This bifurcation is of interest in its own right,

but might also be a means of generating rectified flow in a channel with no net imposed

current. In fact, since the base flow is completely periodic, the applied voltage along the

channel could in principle also be alternating, without changing either the zero net current,

or the direction of the resulting flow. To reach the bifurcation condition with a wall charge

that varies with position sinusoidally around zero, the Reynolds number must reach a value

of close to 20, which, for water with ν = 10−6m2/s, requires a flow velocity and channel

width 2L that are relatively large. The flow velocity v0 is given by around σ0E/µκ, where

σ0 is the amplitude of the surface charge density, E the electric field imposed parallel to

the walls, µ the fluid viscosity and κ the inverse Debye length at the wall [7], where typical
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values are σ0 ∼ 1 charge/nm2, µ = 10−3Pa s, and κ−1 = 10nm. Under these conditions, a

field of 104V/m would yield a velocity of 10−2m/s, and so a channel of width 2L = 2mm

would suffice to yield an instability. Note that the channel depth would need also to be

comparable, or larger than, this scale, to prevent viscous suppression of the instability. The

power necessary to drive the base flow at the critical Reynolds number can be estimated as

µv20κ
2 (2κ−1w`), where v0κ is the typical shear rate across the Debye layer, and 2κ−1w` is

the volume of the near-wall region where most of the viscous dissipation takes place. Here,

` and w are the length and width of the channel, respectively, and we accounted for strong

shear occurring next to two walls. For a square channel, w = 2L, the power per unit length

along the channel is, therefore, 0.04J/(m s), which is well within the realistic range.

The instability presented here is distinct from well-known electrokinetic flow instabilities

that result from coupling of electric fields and ionic conductivity gradients [13–16], since

there are no ionic conductivity gradients considered in what we report here. Such gradients

can arise when a core fluid flow is focused by a ’sheath’ fluid introduced at the walls of a

microfluidic device, if the two fluids have differing ionic strengths. An instability occurs

in such flows at a critical electric current Rayleigh number of Rae = (εE2
ad

2/Dµ)((γ −
1)/γ)|grad∗σ∗|max = 205, as reported by Posner and Santiago [14] and Posner et al. [16].

Here ε is the fluid permittivity, Ea is the applied electric field, d is the channel depth, D is

the ion diffusivity, µ is the fluid viscosity, γ is the ratio of core-to-sheath conductivities, and

|grad∗σ∗|max is the maximum dimensionless conductivity gradient. Note that the Rayleigh

number representing the driving force for this instability disappears when the conductivities

of the two fluids are equal to each other (i.e., γ = 1), since then there is no conductivity

gradient to which the electric field can couple and the above Rayleigh number is zero. If a

conductivity gradient is present, the instability produced by it could in many cases occur

at lower field strength than that needed to produce the inertial instability to be discussed

here.

We consider the flow of a Newtonian fluid in a 2D-channel forced by a prescribed slip

velocity at the channel walls, similar to Fig.1. We introduce a Cartesian coordinate system

with the x-axis pointing along the length of the channel, and the y-axis – in the wall-normal

direction. The walls are located at y = ±L, so that the total channel width is 2L. The

velocity components are v = (u(x, y, t), v(x, y, t)), and the flow is driven by the following
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slip velocity at the walls

u(x, L, t) = v+ cos kx,

u(x,−L, t) = v− cos (kx+ φ), (1)

v(x,±L, t) = 0.

Here, v+ and v− are the maximum slip velocities at the corresponding boundary, k is the

wavenumber of the slip velocity modulation, and φ is the phase difference between the

velocity at the upper and lower walls. Without loss of generality we will assume that

v+ > v−, and use v+ as the velocity scale. The equations of motion are given by the

Navier-Stokes equation

ρ

[
∂v

∂t
+ v · ∇v

]
= −∇p+ µ∇2v, (2)

and the incompressibility condition

∇ · v = 0. (3)

Here, ρ and µ are the density and viscosity of the fluid, respectively, and p is the pressure.

The problem is rendered dimensionless by the rescaling of all the variables, where we use

the half-width of the channel L as the unit of length, v+ as the unit of velocity, and L/v+

as the unit of time. We also introduce the Reynolds number

Re =
v+L

ν
, (4)

and the dimensionless wave-vector k̃ = kL. In what follows, all variables are dimensionless

unless stated otherwise.

To reduce the number of degrees of freedom, we introduce the streamfunction Ψ =

Ψ(x, y, t), such that

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (5)

In terms of the streamfunction, the equation of motion is given by(
∂

∂t
+
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∇2Ψ =

1

Re
∇4Ψ, (6)

with the following boundary conditions

∂Ψ

∂y
(x, 1, t) = cos k̃x,

∂Ψ

∂y
(x,−1, t) = ṽ cos

(
k̃x+ φ

)
, (7)

∂Ψ

∂x
(x,±1, t) = 0,

5



−1

0

1

φ = 0
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FIG. 2. Velocity profiles given by Eq.(8) for k̃ = π. Vertical axes are positions in the gap (y-

coordinates), and the horizontal axes give the distance along the channel in units of k̃x. The top

row corresponds to the symmetric boundary conditions (ṽ = 1), while the bottom row shows the

effect of their asymmetry (ṽ = 1/3). The phase shift φ is: (left) 0, (middle) π/2, and (right) π.

where ṽ = v−/v+, and ∇4 is the biharmonic operator.

It is instructive to consider the limit of zero inertia and steady velocity field. In this

case, Eq.(6) reduces to the Stokes equation, ∇4Ψ = 0, that has a simple analytical solution

satisfying the boundary conditions, Eqs.(7),

Ψ0 =
2k̃

sinh2 2k̃ − 4k̃2

[
A(x) (1 + y) sinh k̃ (1− y)

−B(x) (1− y) sinh k̃ (1 + y)

]
, (8)

where

A(x) = cos k̃x+ ṽ
sinh 2k̃

2k̃
cos
(
k̃x+ φ

)
, (9)

B(x) = ṽ cos
(
k̃x+ φ

)
+

sinh 2k̃

2k̃
cos k̃x. (10)

This solution is similar to the one obtained by Ajdari [7]. Although Ψ0 differs from the

true solution to Eq.(6) for any finite amount of inertia, it is nevertheless useful for gaining

an insight into the structure of the flow. In Fig.2 we plot the velocity profile given by Ψ0 for
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ṽ = 1 (top row), and ṽ = 1/3 (bottom row) for three values of the phase difference φ: 0 (left

column), π/2 (middle column), and π (right column). As can be seen from the figure, the

flow consists of two arrays of vortices aligned along each wall with their relative position and

strength set by the phase-difference φ and the relative velocity magnitude ṽ, respectively.

To assess the effect of inertia on this solution, we solve Eqs.(6) and (7) numerically using

a Fourier-Chebyshev pseudo-spectral method [17, 18]. We express the streamfunction as a

Fourier series

Ψ(x, y, t) =
N∑

n=−N

ψn(y, t)eink̃x, (11)

where ψn(y, t) = ψ∗
−n(y, t) to ensure that Ψ(x, y, t) is real, and ∗ denotes the complex con-

jugate. At any time t, ψn(y, t) is represented by its values at M Gauss-Lobatto points [18]

in the wall-normal direction, and the y-derivatives are taken by multiplying these values

with the Chebyshev pseudo-spectral differentiation matrix [18]. The non-linear terms are

calculated by performing a discrete Fourier transform of the streamfunction to real space,

evaluating the non-linear terms there, and performing an inverse discrete Fourier transform

back to spectral space; the 3/2-rule is used to avoid aliasing errors and the boundary con-

ditions are implemented using the tau-method [17, 18]. For each set of parameters, we

check convergence of the velocity field by comparing it at several resolutions (N,M); con-

vergence was always reached for N = 5 (before de-aliasing) and M = 80. Most of the

results presented below are obtained by using the Newton-Raphson algorithm [18] to solve

the time-independent version of Eq.(6). We also performed direct numerical simulations of

Eq.(6) using a fully-implicit Crank-Nicolson method [17, 18]; for all parameters studied, con-

vergence was reached for the dimensionless time-step of 10−2. Simulations were started from

random initial conditions for the streamfunction drawn from a uniform distribution. When

assessing stability of a particular state, the initial conditions comprised the streamfunction

of that state plus some noise.

First, we study how the presence of inertia modifies the Stokes solution, Eq.(8), at rela-

tively low Reynolds numbers. Using the Newton-Raphson method, we find steady solutions

of Eq.(6), and compare them to the Stokes profile Ψ0. The difference is quantified by calcu-

lating the kinetic energy of the flow, defined as

E =
k̃

2π

∫ 2π
k̃

0

dx
1

2

∫ 1

−1

dy
1

2

[(
∂Ψ

∂y

)2

+

(
∂Ψ

∂x

)2
]
, (12)
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FIG. 3. The ratio of the kinetic energies of the inertial and Stokes solutions for ṽ = 1, φ = 0,

and k̃ = π as a function of the Reynolds number Re. The solid line is well-approximated by

1 + (Re/151.41)2.

for the inertial, Ei, and Stokes solutions, Es. In Fig.3 we plot the ratio Ei/Es for ṽ = 1,

φ = 0, and k̃ = π. The data demonstrate that the inertial contribution to the kinetic

energy is only about 4% of the total kinetic energy at Re = 30, and that that contribution

decreases for smaller values of Re. The difference Ei/Es−1 scales quadratically with Re (fit

not shown), implying that the small inertial correction to the Stokes profile can be obtained

from the leading-order term of the perturbation theory in Re, even for Re ∼ 30. Visual

inspection of the inertial velocity profiles together with the data in Fig.3 suggests that the

Stokes solution, Eq.(8), is a very good approximation to the actual inertial solution even at

moderate Reynolds numbers.

The situation changes significantly at higher Reynolds numbers. In Fig.4(left) we plot

the velocity profile for the symmetric boundary conditions at Re = 40 and k̃ = π, and

observe that it no longer posseses a translation-reflection symmetry along the x-axis, c.f.

Fig.2(top, left). This is associated with the emergence of the zeroth Fourier mode U(y) of the

horizontal velocity component u(x, y), see Fig.4(right), absent at lower Reynolds numbers.

This x-independent, mean flow along the x-direction reaches significant amplitudes of about

23% of the maximum slip velocity at the wall.

To characterise this new flow state, we introduce a dimensionless order parameter

χ = Re
k̃

2π

∫ 2π
k̃

0

dx

∫ 1

−1

dy u(x, y) ≡ Re

∫ 1

−1

U(y)dy, (13)

which is a two-dimensional flow rate along the channel (in physical units) scaled by the
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FIG. 4. Velocity profile at Re = 40 for ṽ = 1, φ = 0, and k̃ = π. (Left) The velocity field in the

channel without its mean profile (zeroth Fourier harmonics). (Right) The mean profile U(y).

kinematic viscosity ν of the fluid. In Fig.5(left) we plot χ as a function of the Reynolds

number for ṽ = 1, φ = 0, and k̃ = π (black line). For low values of Re the flow is left-

right-symmetric, there is no mean flow, and χ = 0, while at larger Re, χ acquires non-zero

values indicating the presence of a mean flow. The direction of the mean flow is selected by a

spontaneous symmetry breaking, and can be in either direction along the channel. The state

diagram, Fig.5(left), therefore has two symmetric branches, ±χ, typical of a super-critical

(pitchfork) bifurcation. By combining the Newton-Raphson and time-iteration techniques,

we have verified that the left-right symmetric solution with χ = 0 is also present for higher

values of Re but is linearly unstable. The final flow state with χ 6= 0 is stationary and

stable with respect to small perturbations. Therefore, we conclude that the new flow state

is a result of a linear instability that sets in at Recrit ≈ 33.3, for this set of parameters. In

Fig.5(left) we also show the bifurcation diagrams for other values of the phase-difference φ,

and observe that the lowest Recrit is achieved for φ = π; the corresponding base profile is

shown in Fig.2(top,right).

The instability thresholds presented above were calculated by imposing a fixed value of

k̃, i.e. assuming a particular spatial period of the solution. To find the critical condition in

an infinitely long channel, we now study how Recrit depends on k̃. In Fig.5(right) we plot

the non-linear stability thresholds for two values of φ, and observe that Remin
crit = 21.2 for

k̃ = 2.6 and φ = π. The stability thresholds for other values of φ lie in-between the two

cases presented in Fig.5(right), similar to Fig.5(left).

We also studied the effect of the asymmetry in the wall slip velocity (not shown), with ṽ
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FIG. 5. (Left) The bifurcation diagram, χ vs Re, for various values of φ at k̃ = π. (Right) The

critical Reynolds number Recrit as a function of k̃. For φ = 0 the minimal value of Recrit is

Remin
crit = 33.31 at k̃ = 3.3, while for φ = π, Remin

crit = 21.2 at k̃ = 2.6. In both plots ṽ = 1.

either smaller or larger than unity. For every set of φ and k̃ considered, the corresponding

Recrit was found to be larger than Recrit for ṽ = 1.

As mentioned in the Introduction, this instability can potentially be utilised as a means

of creating a unidirectional flow in a microfluidic device, although relatively high transitional

Reynolds numbers and the a priory unknown direction of the flow could make it impractical.

We now attempt to assess whether a modification of the slip boundary condition, Eq.(1),

can alleviate both problems. To this end, we consider the following (dimensional) velocity

profile prescribed at the walls

u(x,±L, t) = vc ± v cos kx, (14)

where the spatially-oscillatory component is the same as in Eq.(1) for the most unstable

parameters (v+ = v− ≡ v, φ = π, and kL = 2.6), and we have introduced vc – the amplitude

of a constant slip velocity in the positive x-direction. Here, we study whether a small value

of vc can produce a significant mean flow at Re < Remin
crit . The problem is made dimensionless

as before, and we define additionally another Reynolds number, Rec = vcL/ν, based on the

constant slip velocity.

In the absence of the spatially-oscillatory component, equations of motion are trivially

solved by a plug-like flow, U(y) = vc (in physical units),which to the order parameter given

by χc = 2Rec. For Re > 0, we expect that the interaction between the plug-like and

spatially-oscillatory components will generate flow rates enhanced beyond χc. In Fig.6 we
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FIG. 6. The bifurcation diagram for the modified boundary conditions with a bias, Eq.(14) for

φ = π and k̃ = 2.6. The strength of the bias, Rec, is fixed and the strength of the spatially

oscillatory component, Re, is varied.

present the bifurcation diagram for the modified boundary conditions, Eq.(14), varying Re

but keeping Rec fixed to a particular value. The Rec = 0 data is the same as in Fig.5(left)

for φ = π. In the presence of a constant bias, the bifurcation diagram loses its ±χ symmetry,

and we only plot the dimensionless flow rate in the same direction as the bias. For Rec = 0.1

and Rec = 1, the flow rate is dominated by the plug-like profile at low values of Re, while

at larger Re there is an enhancement of the flow rate due to the instability. The bifurcation

diagram now looks like an imperfect pitch-fork bifurcation. For yet larger Rec, the effect

of the underlying instability is masked by the presence of a strong bias and only a mild

enhancement is observed. While the presence of the bias clearly enhances the mean flow

rate and breaks the left-right symmetry, the enhancement is mild and it remains to be seen

whether there are practical advantages of generating a steady flow in a microfluidic device

by a slip velocity Eq.(14) instead of a stronger steady component alone.

The results developed here have several implications. First, we find that a periodic

variation in wall charge will have only a small effect on average velocity in a microfluidic

device with an otherwise uniform wall charge, if the periodic component is small (or even

modest) in magnitude compared to the uniform component. This conclusion seems likely to

hold if the non-uniform component is irregular or non-periodic, as long as it is significantly

smaller than the uniform wall charge. Thus, surface charge in a microfluidic device does

not need to be nearly perfectly uniform to achieve a uniform flow rate, whose magnitude

is set by the average surface charge, a conclusion of importance in practical applications
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where wall charging is unlikely to be exquisitely uniform. Secondly, if a rectified flow with

a sharp onset is desired in a microfluidic device using electric fields to drive the flow, this

can be accomplished by exploiting the bifurcation described here, albeit only for rather

large channel widths and heights (i.e., millimeters) and strong fields. In addition, there

may be benefit in using periodic, or nearly periodic flows for separation of particles or

cells based on size or other characteristics, including separations based on inertial forces.

These inertial forces are already being exploited in pressure-driven flows to separate rare

circulating tumor cells from white blood cells [6]. Electroosmotic flow driven by a periodic

wall charge, along with fluid inertial forces, may expand the options for improving the

efficiency of such devices. We note that inertial fluid forces in pressure-driven microfluidic

devices are strong enough to induced circulating Dean flows, which are of great significance

for separating particles and cells. Thus, the addition of electroosmotically driven flow,

combined with inertial effects, opens multiple new opportunities for separations. Thirdly,

the flows generated by periodic charges may provide a good experimental test of one’s

ability to control elecroosmotic flow fields, and of the ability to created controlled charge

at walls. Since the flow field is readily predicted, including the effect of surface charge

amplitude and other parameters, a measurement of the flow (even without the bifurcation)

could be used to validate methods of controlling surface charge, for example. Fourthly, both

the circulating primary flow and the secondary bifurcation flow described here occurs in a

geometry of trivial simplicity (a straight channel), which allows it to be used as a test flow

field for exploring various advanced simulating methods, such as mesoscopic flow simulations

[12], and for exploring the behaviour of complex fluids in complex flows, but with simple

geometry and boundary conditions [19]. Finally, the flow is essentially completely viscous

prior to the bifurcation and described by an analytical solution to the Stokes equation, and

thus represents a particularly simple and elegant example of a classical forward bifurcation

at a very modest Reynolds number, and is the simplest bifurcation so far presented for

electroosmotic flow.
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