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Abstract 

We introduce a new Bayesian inversion method that estimates the spatial distribution of 

geological facies from attributes of seismic data, by showing how the usual probabilistic inverse 

problem can be solved using an optimization framework while still providing full probabilistic results. 

Our mathematical model consists of seismic attributes as observed data, which are assumed to have 

been generated by the geological facies. The method infers the post-inversion (posterior) probability 

density of the facies plus some other unknown model parameters, from both the seismic attributes 

and geological prior information. Most previous research in this domain is based on the localized 

likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the 

facies only at that location. Such an assumption is unrealistic because of imperfect seismic data 

acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we 

relax this assumption: we allow probabilistic dependence between seismic attributes at a location and 

the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods 

quasi-localized. 

Exact Bayesian inference is impractical because it requires normalization of the posterior 

distribution which is intractable for large models and must be approximated. Stochastic sampling (e.g., 

by using Markov chain Monte-Carlo – McMC) is the most commonly used approximate inference 

method but it is computationally expensive and detection of its convergence is often subjective and 

unreliable. We use the variational Bayes method which is a more efficient alternative that offers 

reliable detection of convergence. It achieves this by replacing the intractable posterior distribution 

by a tractable approximation. Inference can then be performed using the approximate distribution in 

an optimization framework, thus circumventing the need for sampling, while still providing 

probabilistic results. We show in a noisy synthetic example that the new method recovered the 

coefficients of the spatial filter with reasonable accuracy, and recovered the correct facies distribution. 

We also show that our method is robust against weak prior information and non-localized likelihoods, 

and that it outperforms previous methods which require likelihoods to be localized. Our method is 

computationally efficient, and is expected to be applicable to 3D models of realistic size on modern 

computers without incurring any significant computational limitations. 

  

https://doi.org/10.1093/gji/ggy163
mailto:Muhammad.AtifNawaz@ed.ac.uk
mailto:Andrew.Curtis@ed.ac.uk


Nawaz & Curtis, 2018. Variational Bayesian Inversion of Quasi-Localized Seismic Attributes for Spatial Distribution of Geological Facies 
Accepted Manuscript: Geophysical Journal International, ggy163, https://doi.org/10.1093/gji/ggy163 

2 
 

1. Introduction 

Geological heterogeneity plays a key role in reservoir characterization and fluid-flow 

prediction in all subsurface reservoirs, and in the quantification of concomitant reservoir development 

and economic risk. The spatial distributions of geological facies can be estimated using a variety of 

information such as seismic and borehole data together with prior geological knowledge. Seismic data 

provides 2- or 3-dimensional subsurface coverage but is limited in resolution, usually to heterogeneity 

on length scales greater than tens or hundreds of metres. Borehole data, on the other hand, exhibit 

far higher resolution along the 1-dimensional borehole trajectory, but boreholes are usually sparsely 

distributed and therefore provide poor 3-dimensional spatial coverage. These differences in spatial 

coverage and resolution provide different types and degrees of information or uncertainty about the 

geological facies. An appropriate data inversion or inference method must therefore combine a variety 

of measurements with different coverage and resolution, and all available prior information, and must 

assess the true resultant state of information and uncertainty about the subsurface. 

Bayesian inference offers a convenient mathematical framework to achieve this. Information 

about parameters of interest is described by probability distributions. The distribution that describes 

uncertainty in model parameters given only the prior information is called the prior distribution, while 

the distribution describing the total resultant state of information given all the above data and 

information is called the posterior distribution. Estimating properties of the latter is the goal in 

probabilistic inverse problems. 

The computation and digital storage of complete joint posterior probability distributions over 

a large number of parameters using Bayesian inversion is commonly intractable given available 

computing power. Probability distributions in high dimensional spaces are therefore generally 

explored using Markov chain Monte-Carlo (McMC) sampling – a suite of methods that theoretically 

produce a set of samples of parameter values which converge in density to that of the true posterior 

probability distribution as the number of samples tends to infinity. McMC methods therefore obtain 

a numerical approximation of the true posterior distribution using a finite number of samples, with a 

theoretical guarantee of asymptotic convergence only as sampling extends to infinity. 

Monte-Carlo based inversion methods are computationally expensive in most models of 

practical interest because as the number of parameters gets large, one can only expect that the 

distribution of samples would converge after generating an infeasible number of samples – often 

referred to as the curse of dimensionality (Curtis & Lomax, 2002). Further, detecting convergence of 

any McMC method to the posterior distribution requires the use of subjectively-selected criteria. As a 

result, any estimate of the posterior that is obtained from any specific, fixed, finite set of Monte Carlo 

samples may be biased by that particular set of samples depending on the criteria used for the 

detection of convergence. We refer to such a bias as convergence-related bias. Posterior distributions 

can sometimes be assumed to take factorizable forms that divide high dimensional problems into 

lower dimensional problems alleviating some of the difficulties in McMC sampling (e.g., Sambridge & 

Mosegaard, 2002; Gallagher et al. 2009; Rimstad et al. 2012), but even for well-designed formulations 

of the posterior distributions the curse of dimensionality remains a barrier to rapid and accurate 

sampling based estimation. 

Although McMC is a very general method for probabilistic inference and has been used to 

solve a wide variety of inverse problems, more efficient inference methods can be designed for certain 
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classes of spatial problems based on variational principles. Variational Bayesian inference is an 

alternative to McMC based inference that provides proxy posterior distributions which are close to 

the true posteriors in some specific sense. They are also more computationally tractable, and may be 

estimated analytically or numerically within an optimization framework. In this paper we introduce a 

Bayesian inversion method under the variational approximation, which we refer to as variational 

Bayesian inversion (VBI). 

This paper is organised as follows. We first provide some background information and a short 

literature review on the inversion of spatial distributions of geological facies from geophysical (seismic 

and borehole) data, and introduce our model. Then we discuss the Bayesian inversion approach and 

introduce the mathematical formulation of the variational Bayesian inversion method to jointly 

estimate spatial distribution of facies and model parameters. Within the variational Bayesian 

framework we discuss the expectation maximization (EM) algorithm which iteratively estimates the 

unknown variables and model parameters alternately in the E-step and the M-step, respectively. In 

the E-step we propose the use of a message passing algorithm (such as loopy belief propagation) and 

provide a mathematical justification of that in the light of previous research in Statistical Physics and 

Artificial Intelligence. The M-step maximizes the likelihoods of the input seismic attributes by 

optimizing the model parameters. After providing mathematical details of our algorithm we discuss 

its computational complexity. Then we provide a synthetic test example where we invert for three 

geological facies (shale, brine-sand and gas-sand) in a deltaic environment from multiple seismic 

attributes computed using rock physics relationships. The synthetic test example is followed by a 

discussion, and finally the conclusions of this research. 

2. Background 

Many different methods have been developed to invert for rock properties from seismic data 

constrained by borehole data. Since various seismic measurements such as seismic amplitudes and 

velocities are directly affected by the elastic properties of rocks, several deterministic and probabilistic 

methods have been developed to invert seismic data for the elastic properties of rocks (Buland & 

Omre, 2003; Bosch et al. 2010; Grana & Mukerji, 2015). Some methods have also been developed that 

aim to invert seismic data for petrophysical rock properties, exploiting implicit and empirical 

correlations between the petrophysical and elastic properties of rocks (Bachrach, 2006; Grana & Della 

Rossa, 2010; Shahraeeni & Curtis, 2011; Shahraeeni et al. 2012). In this paper, we invert for geological 

facies (lithology and fluid types of rocks) from the spatial distribution of seismic attributes. 

Bayesian inversion of seismic data for geological facies usually involves cluster analysis for 

discrimination between various rock and fluid types, and inference for posterior distributions is 

generally carried out using a stochastic approach based on Monte Carlo simulations (Doyen et al. 

1989; Mukerjiet al. 2001; Grana et al. 2012; Wang et al. 2016). Cluster analysis methods attempt to 

group various attributes of interest within some generally multi-dimensional feature- (or attribute-) 

space, based on some distance measure between each data point from the centres of identified 

groups of data which are commonly referred to as clusters. The probabilities that each data point 

belongs to each of the identified clusters can then be estimated by assigning a probability distribution 

to each of the clusters, for example using a multivariate Gaussian distribution in a Gaussian mixture 

model (GMM) which is a term used to describe a sum of Gaussians, e.g., Grana et al. (2016). A typical 

problem with such cluster analysis methods is that they estimate probabilities with high entropy 
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(uncertainty) for those data points that fall equidistant from cluster centres, or in cases where there 

is a significant overlap between different cluster distributions. For this reason, cluster analysis may 

only be used in Bayesian inversion to represent the information obtained directly from the data 

(referred to as the likelihood in Bayesian theory) about the probabilities that each data point belongs 

to a specific cluster. Prior information must then be introduced to produce more geologically 

reasonable estimates of the posterior distribution. Also, cluster analysis methods generally assume 

that the data points are independent and identically distributed (𝑖. 𝑖. 𝑑) and therefore do not 

acknowledge spatial correlations present in the data. 

GMMs for spatial data have been developed in which the spatial nature of data points 

influences the prior distribution, while estimating the parameters of a Gaussian mixture distribution 

using a Bayesian approach (Zhao et al. 2016). We present a method of Bayesian inversion for 

geological facies that jointly estimates the posterior marginal distributions of facies in each model cell, 

and the parameters of the Gaussian mixture distribution of seismic attributes. We introduced a spatial 

Gaussian mixture distribution in our method that estimates the likelihood of observing (or estimating) 

seismic attributes at a location given the geological facies in the neighbouring locations. We refer to 

such likelihoods as quasi-localized likelihoods. In our model, the parameters of the spatial Gaussian 

mixture distribution are spatially constrained through both the a priori distribution of facies, and their 

quasi-localized likelihoods. 

In the following, we refer to the coordinate system that presents the seismic attributes with 

respect to their geographical locations and characterizes the spatial distribution of facies given by the 

prior information as the model space, and the coordinate system that is used to cross-plot seismic 

attributes and allows analysis of their mutual correlation irrespective of their spatial locations as the 

attribute space. Our method uses a variational form of expectation maximization (EM) algorithm which 

iteratively estimates the posterior marginal distributions of facies in the model space during the E-

step, and updates the parameters of the GMM in the attribute space during the M-step. 

A key requirement in seismic inversion is to capture the probabilistic spatial distribution of 

facies and heterogeneity of properties that is consistent with the true earth, and inject this 

information into the inversion process in the form of prior information. This can be achieved by using 

a Markov random field (MRF), a structured set of probabilistic relationships among various parameters 

of interest, under the assumption that given the facies in the neighbourhood of any location in the 

model, the facies at that location are conditionally independent of the facies in the rest of the model 

(the so called (1st-order) Markov assumption). In other words, facies at any location are assumed to 

have a direct dependence only on the facies in the neighbouring locations. Such a model is simple 

enough that it allows rigorous and efficient probabilistic inference by leveraging the conditional 

independence structure of the model, yet sophisticated enough to represent complex spatial patterns 

of facies in the form of prior information. The class of problems that we consider here are those that 

can be represented with sufficient accuracy by this type of model. 

Many different methods for probabilistic seismic inversion have been developed that make 

use of the Markov assumption. Larsen et al. (2006) used a 1D Markov-chain prior model for inversion 

of lithology-fluid classes along vertical profiles through a reservoir zone. Ulvmoen & Omre (2010), and 

Ulvmoen et al. (2010) used a profile Markov random field (see Eddy 1998) which induces correlations 

between 1D Markov-chains across two or three dimensions to model lateral coupling of lithology-fluid 

classes as commonly found in geological strata. Rimstad et al. (2012) used a MRF prior model to invert 
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seismic AVO data for lithology/fluid classes, elastic properties and porosity. A common feature of 

these methods is that they perform inference from a joint posterior distribution across all or a subset 

of parameters in the model that is mathematically intractable: even if one could compute the joint 

posterior distribution, it would require prohibitive amounts of computer memory capacity to store it 

digitally. The joint posterior distribution in high dimensional models must therefore be explored 

through Monte-Carlo based sampling methods, or mathematically approximated for example by 

introducing conditional independence assumptions. The former approach generally uses McMC 

sampling which, as discussed earlier, is slow and suffers from convergence related bias. The latter 

approach has seen recent development for models in which conditional independence may be 

introduced among variables of interest without sacrificing any significant probabilistic dependencies 

(Walker & Curtis, 2014; Nawaz & Curtis, 2017). Spatial models are excellent examples of such models 

since their random variables are expected to be strongly correlated only in a certain region around 

any given location. In fact, most McMC based methods also introduce conditional independence 

assumptions in spatial models in order to improve their computational efficiency, yet such methods 

remain slow to converge. Hence, computationally efficient alternatives are desired in many large scale 

problems. 

Walker & Curtis (2014) developed a method for facies inversion that is based on an exact 

sampling approach as a more efficient alternative to McMC. The advantage of their method is that 

every sample is an independent sample of the posterior distribution (which is not true of McMC 

methods). However, their method requires computation and digital storage of the full joint 

distribution which may not be practical for real scale seismic volumes, or that it is approximated by 

the distribution across a model subspace. Nawaz & Curtis (2017) developed an alternative method for 

Bayesian inversion of facies based on a 2D hidden Markov model (2D-HMM) that entirely obviates the 

need for a sampling-based inference approach. Their method computes marginal posterior 

distributions of facies analytically and is therefore computationally more efficient than previous 

methods, and requires far less computer memory. They also presented a copula function based 

method that performs exact sampling from the marginal posterior distributions in order to circumvent 

the need for digital storage of the full joint posterior distribution. However, a key assumption in all of 

these methods is that the likelihoods are localized; in other words, given the facies in any model cell, 

the seismic attributes in that cell are assumed to be conditionally independent of the facies and 

attributes in the rest of the model. This assumption was implicit or explicit in most of the previous 

research described above (e.g., Larsen et al. 2006; Ulvmoen & Omre, 2010; Ulvmoen et al. 2010; 

Walker & Curtis, 2014; and Nawaz & Curtis, 2017). Geophysical data derived from seismic imaging can 

be strongly correlated spatially due to mixing of information across different spatial locations 

(sometimes referred to as blurring or smearing). This occurs due to errors in the seismic velocity model 

which cause mislocation of seismic attributes, Fresnel zone smearing, migration errors due to the 

limited apertures of seismic arrays, and a variety of other factors. There is therefore an important 

need to find methods that relax this localized likelihoods assumption. 

In this paper, we present a variational Bayesian inversion (VBI) method as a more efficient 

alternative to McMC based methods to solve spatial inverse problems, and which also relaxes the 

localized likelihoods assumption. Section 4.2 provides a description of how the localized likelihoods 

assumption is relaxed. Examples of previous research on Bayesian inversion methods in which 

likelihoods are not (fully) localized include Lindberg & Omre (2014 & 2015), Grana et al. (2017) and 

Lindberg et al. (2015): they used a convolved two-level, 1D hidden Markov model for inversion of 
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categorical variables (such as lithology-fluid classes) represented as the bottom hidden-layer of the 

model, continuous system response variables (such as reflection coefficients) represented as the 

middle hidden-layer, and the measured convolved data represented in the observation layer. The 

advantages of our new approach are that it is multi-dimensional and that it allows for joint estimation 

of model parameters and the spatial distribution of geological facies. As a result, the model 

parameters are chosen such that they provide best estimates of the spatial distribution of geological 

facies that are consistent with the prior information and which are also constrained by the seismic 

attribute data. 

Before proceeding, we define the notation used in this paper. We use a linear index denoted 

by lower case letters such as 𝑖 and 𝑗 to define the locations (or cells) in our model, or equivalently 

vertices in the underlying graph. Sets are represented with italic, regular (non-boldface) capital 

(English or Greek) letters, e.g., 𝒱 and 𝒢. We use the term vector for a one-dimensional row or column 

matrix. We use boldface font with lower case (English or Greek) letters for vectors, e.g., 𝒓 or 𝜷, and 

upper case letters for matrices, e.g., 𝑹. A subscript used with such letters connotes meanings indicated 

in the text. The identity matrix is represented as 𝑰. A superscript 𝑇 stands for transpose of a vector or 

matrix. Bracketed superscripts indicate an estimate of a quantity at the iteration number specified in 

brackets during the course of an iterative update, e.g., θ(𝑡) represents an estimate of some quantity θ 

after t iterations of an iterative algorithm. A hat, or caret, over a parameter (or random variable) 

denotes its estimator, e.g., 𝜃 represents an estimator of 𝜃. Other commonly used statistical and set 

theoretic notations include: ‘~’ for a random variable which reads “is distributed as”, ‘\’ for set 

difference, ‘∪’ for the union of two sets, ‘∩’ for the intersection of two sets, and ‘|∙|’ for cardinality (or 

number of elements) of a set. 

3. Model 

We use a so-called hidden Markov random field (HMRF) as the underlying graph behind our 

method. This defines a Markov random field (MRF) over latent (or unobserved) variables. A MRF is an 

undirected graphical model 𝔾(𝒱, ℰ) which defines the topology of some physical space (Figure 1), 

where 𝒱 = {1,… , 𝑛} is a set of vertices (also called nodes), and ℰ = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝒱 ˄ 𝑖 ≠ 𝑗} is the set 

of undirected edges (or connections between vertices) in the graph where ℰ ⊂ 𝒱 × 𝒱. The edges in 

an undirected graphical model have no orientation and represent unordered pairs, i.e., an edge (𝑖, 𝑗) ∈

ℰ is identical to the edge (𝑗, 𝑖) ∈ ℰ. A path in the graph is defined by an ordered sequence of vertices 

in 𝒱 such that any two consecutive vertices in this sequence share an edge from ℰ. For any disjoint 

sets  𝐴, 𝐵, 𝐶 ⊂ 𝒱, set 𝐶 is said to separate 𝐴 and 𝐵 if every path from any vertex in 𝐴 to any vertex in 

𝐵 passes through 𝐶. 

Every vertex 𝑖 ∈ 𝒱 is associated with a set 𝒩\𝑖 ⊂ 𝒱\{𝑖} of neighbouring vertices; these share 

an edge in ℰ from the vertex 𝑖 ∈ 𝒱, and are referred to as the neighbourhood of 𝑖. So 𝑗 ∈ 𝒩\𝑖 if and 

only if (𝑖, 𝑗) ∈ ℰ. By definition, the neighbouring relationship must satisfy two properties: a vertex 

cannot be a neighbour of itself, i.e., 𝑖 ∉ 𝒩\𝑖 (as is emphasized by the subscript ‘\𝑖’), and the 

neighbouring relationship is commutative, i.e.,  𝑖 ∈ 𝒩\𝑗 ⇒ 𝑗 ∈ 𝒩\𝑖. The neighbourhood 𝒩\𝑖 of a vertex 

𝑖 in a MRF is also sometimes referred to as the Markov blanket of 𝑖. We often need to consider the set 

𝒩\𝑖 ∪ {𝑖} which is used in the rest of this document, so in order to reduce the notational clutter we 

denote it with 𝒩𝑖, and also refer to it as the neighbourhood of 𝑖 while the subscript clearly indicates 
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whether the vertex 𝑖 is included in the set or not. A neighbourhood system 𝒩 in graph 𝔾(𝒱, ℰ) is 

defined as 

𝒩 = {𝒩\𝑖 ⊂ 𝒱\{𝑖} ∶  ∀𝑖 ∈ 𝒱}. (1) 

A clique 𝒸 ⊆ 𝒱 of a graph is any subset of its vertices which are fully connected, i.e., every vertex in 𝒸 

shares an edge from ℰ with every other vertex in 𝒸. The maximal cliques of a graph are defined to be 

its cliques that are as large as they can be given edges ℰ. So 𝒸 is a maximal clique of 𝔾 if it fails to 

remain a clique when any additional vertex from 𝒱\𝒸 is added to  𝒸. The set of all of the cliques in 𝔾 

is represented by 𝒞 and the set of all of the maximal cliques in 𝔾 is represented by 𝒞max. 

 

 

Figure 1: A graphical representation of a Markov random field (MRF) where circles represent vertices 𝒱 and the 

connecting lines represent edges ℰ in the graph. The central dark-grey circle represents a vertex 𝑖 in consideration 

and the light-grey circles around it form the Markov blanket 𝒩\𝑖  of 𝑖. The dotted lines show possible extension of 

edges and the graph that is not shown in the figure. This graph contains only pair-wise cliques, i.e. cliques that 

contain just two vertices that share an edge (as used in this paper). A more complex MRF may also involve diagonal 

edges, thus containing cliques of size 3 or more. 

Each vertex in our graphical model represents either an observed or a latent (unobserved) 

random variable. A HMRF graphical model may be visualized as consisting of two layers, where the 

upper layer contains the observed variables 𝒙 and the lower layer contains the latent variables 𝒛 

(Figure 2). In our model definition, each observed variable 𝒙𝑖 in the upper layer represents seismic 

attributes that can be computed from the latent variables 𝒛𝒩𝑖
 in the lower layer which represent the 

geological facies (litho-fluid type) within the neighbourhood of a location  𝑖. Since the true spatial 

distribution of geological facies is unknown, 𝒛 are referred to as latent variables whereas the seismic 

attributes are referred to as observed variables. Each 𝑧𝑖  may take any of the 𝑘 values from a discrete 

set  𝒢 of pre-defined geological facies, where 𝑘 = |𝒢|. The observed variables 𝒙𝑖  are assumed to have 

continuous values and are denoted with a boldface font because these may be vectors containing 

multiple seismic attributes. Whilst the seismic attributes are actually inferred from seismic data, they 

are referred to as ‘observed data’ or ‘observations’ henceforth in order to explicitly distinguish them 

from the latent variables such as geological facies. 
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The geological facies and seismic attributes at each of the  𝑛 = |𝒱| locations in the model are 

represented as 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝑛)
𝑇and 𝒙 = (𝒙1, 𝒙2, … , 𝒙𝑛)

𝑇, respectively. Then 𝒛 forms a Markov 

Random Field (MRF) over the graph 𝔾 if it satisfies two properties: the positivity property according to 

which the joint probability of the random variables 𝒛 is strictly positive, i.e.,  𝒫(𝒛) > 0, for all possible 

configurations of 𝒛, and the Markovian property which requires that given the facies in the 

neighbourhood of a vertex  𝑖, the facies 𝑧𝑖  at 𝑖 become conditionally independent of the facies in the 

rest of the model, i.e., 𝒫(𝑧𝑖  | 𝒛\𝑖) = 𝒫 (𝑧𝑖  | 𝒛𝒩\𝑖
), where 𝒛\𝑖 ≡ 𝒛\{𝑧𝑖} and 𝒛𝒩\𝑖

≡ {𝑧𝑗: 𝑗 ∈ 𝒩\𝑖}. The 

Markovian property implies that for any disjoint subsets 𝐴, 𝐵, 𝐶 ⊂ 𝒱 such that 𝐶 separates 𝐴 from 𝐵 

in 𝔾, we have 𝒛𝐴 is conditionally independent of 𝒛𝐵 given 𝒛𝐶, i.e., (𝒛𝐴 ⫫ 𝒛𝐵 | 𝒛𝐶), where 𝒛𝐴 =

{𝑧𝑖 ∶  𝑖 ∈ 𝐴} and similarly defining 𝒛𝐵 and 𝒛𝐶. Therefore, according to the Markovian property, any 

two latent vertices in a MRF are conditionally independent if all paths between them pass through the 

observed vertices. Accordingly in our model definition, given the geological facies at the neighbouring 

locations of any vertex, the knowledge of facies in the rest of the model has no influence on the facies 

at the vertex in question. 

 

 

Figure 2: A graphical depiction of a hidden Markov random field (HMRF) with two layers where the upper layer 

consists of observed variables 𝒙 represented by light-grey circles and the lower layer consists of latent variables 𝒛 

represented by dark-grey circles. The solid black lines represent the edges between different latent vertices and 

between latent and observed vertices in the model whereas dotted grey lines in the upper layer are only guidelines 

included for clarity in order to portray the relative positions of observed vertices in the model grid. The grid is shown 

in 2 dimensions with a 3x3 square matrix of vertices for illustration purpose only. The actual grid may be higher 

dimensional and much larger in size. (a) A typical HMRF model where an observed variable 𝒙𝑖  at a location 𝑖 is 

directly connected only to the latent variable 𝑧𝑖  at that location. (b) A variant of the HMRF model used in this paper 

where each observed variable 𝒙𝑖  at location 𝑖 is connected to all latent variables 𝒛𝒩𝑖
 where 𝒩𝑖  refers to the 

neighbourhood of 𝑖 (with 𝑖 inclusive). The edges between latent and observed variables are shown only for one 

observed variable for clarity, but all observed vertices in the model are assumed to be connected to latent variables 

in a similar fashion. 

The latter property is achieved by assuming that the observed variables in our model are 

mutually conditionally independent given the latent variables. A typical MRF assumes that given the 

latent variable 𝑧𝑖  at a location 𝑖, the corresponding observed variable 𝒙𝑖 at that location is also 

conditionally independent of all of the other latent variables 𝒛\𝑖 in the model, which is commonly 

referred to as the ‘localized likelihoods’ assumption (Figure 2a). We define a variant of a typical HMRF 

model where each observed variable 𝒙𝑖 at a location 𝑖 is directly connected to the latent variables 𝒛𝒩𝑖
 

in the neighbourhood 𝒩𝑖 of 𝑖 (with 𝑖 inclusive). This means that given the latent variable 𝑧𝑖  at 𝑖, the 

        (a) A typical HMRF Model                                             (b) HMRF Model as used in this paper 
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corresponding observed variable 𝒙𝑖 is not assumed to be conditionally independent of other latent 

variables 𝒛\𝑖 in the model. This relaxes the assumption of localized likelihoods (Figure 2b). We develop 

this concept further in section 4.2 to introduce the concept of quasi-localized likelihoods – an 

assumption which is a less stringent than the localized likelihoods assumption. 

The MRF model has its origin in statistical physics where it was introduced to model the energy 

states of a large number of mutually interacting particles which exhibit a stochastic behavior, but 

where their mutual interactions obey some natural rules. For example, a natural system commonly 

prefers lower energy states and it continuously updates the local energy states of the particles that 

compose the system until the system attains the lowest energy state. Local energy states of particles 

depend only on their interactions with neighbouring particles. Such a behavior can be modelled with 

a MRF called an Ising or Pott’s model as this provides a mathematical specification of any joint 

distribution over a large number of particles by exploiting the conditional independence among most 

of the (non-neighbouring) particles. We use our MRF model to parameterize the prior information on 

geological facies as embodied within a training image, since heterogeneity typically observed in 

geology may be assumed to be globally random while the facies in neighbouring locations are more 

likely to be similar than those in the distant cells. 

3.1. Gibbs Distribution 

A mathematically tractable specification of a joint probability distribution over a MRF is 

provided by the Hammersley-Clifford theorem (Hammersley & Clifford, 1971) proved by Besag, 1974. 

It states that any joint distribution over a MRF may be expressed as a Gibbs distribution which takes 

the form 

𝒫(𝒛) =  
1

𝒵
exp {−

1

𝑇
∑𝐸𝒸(𝒛𝒸)

𝒸∈𝒞

} 

 

(2) 

where 𝒞 represents the set of cliques in the graph, 𝐸𝒸(𝒛𝒸) represents the energy function of the local 

configurations 𝒛𝒸 ⊆ 𝒛 of each clique 𝒸 in the graph 𝔾 such that low energy states correspond to high 

probability configurations, 𝑇 is a parameter called temperature, and 𝒵 is a constant known as the 

partition function that ensures normalization of the joint distribution to be a valid probability function 

and is given by the sum of the numerator over all possible configurations of 𝒛, i.e. 

𝒵 =∑exp {−
1

𝑇
∑𝐸𝒸(𝒛𝒸)

𝒸∈𝒞

}

𝒛

 

 

(3) 

In a MRF, the energy states of a system are conventionally expressed in the form of potential 

functions over cliques, called clique potentials 𝜓𝒸(𝒛𝒸), given by 

𝜓𝒸(𝒛𝒸) = exp {−
𝐸𝒸(𝒛𝒸)

𝑇
} (4) 

such that the joint distribution over a MRF may be expressed as a product of clique potentials 

𝒫(𝒛) =  
1

𝒵
∏𝜓𝒸(𝒛𝒸)

𝒸∈𝒞

 (5) 
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The clique potentials 𝜓𝒸(𝒛𝒸) are real-valued positive functions of local configurations 𝒛𝒸 ⊆ 𝒛 for each 

clique 𝒸 in the graph  𝔾. The clique potentials may either be defined over pairwise cliques, i.e., edges 

from ℰ in the graph. In this case, the model is termed as a pairwise MRF. The pairwise clique potentials 

are functions of two neighbouring variables expressed as 𝜓𝑖𝑗(𝑧𝑖, 𝑧𝑗) such that (𝑖, 𝑗) ∈ ℰ, which model 

the affinity or relative compatibility of two neighbouring random variables in a pairwise MRF. The 

pairwise clique potentials are also referred to as edge potentials for obvious reasons, and are 

estimated using some form of parameter learning. It is important to note that a MRF that defines 

clique potentials over higher-order cliques in the graph is more expressive than a pairwise MRF (Koller 

& Friedman, 2009) in the sense that higher-order cliques can capture more complex conditional 

independence relationships among vertices in a MRF. Higher-order cliques involve probabilistic 

dependence between more than two locations (vertices in a graph) at a time, and therefore can model 

more complex patterns of facies distribution in space (e.g. map-view of meandering channels in a 

deltaic environment). This concept has been used for example in the development of Multiple-Point 

Statistics (MPS) methods in Geostatistics (Mariethoz & Caers, 2014). Nevertheless, here we use a 

pairwise MRF to model dependencies within the hidden variables 𝒛 (i.e., geological facies at different 

locations) for simplicity in the derivations that follow. 

4. Bayesian Inversion in a Markov Random Field 

We perform inference on latent variables 𝒛 which represent geological facies, conditioned on 

the observed variables 𝒙 which represent seismic attributes, by defining their joint distribution 

𝒫(𝒙, 𝒛). The joint distribution can be obtained from the product of data likelihood 𝒫(𝒙|𝒛) which 

encodes how likely it is to observe 𝒙 given any particular configuration of latent variables 𝒛, and the 

prior model distribution 𝒫(𝒛). Their product is then proportional to the joint distribution 𝒫(𝒙, 𝒛), and 

the posterior distribution 𝒫(𝒛|𝒙) = 𝒫(𝒙, 𝒛)/𝒫(𝒙). Thus, computing the posterior distribution 

requires the normalization constant, 𝒫(𝒙), to be known. 

Contrary to the localized likelihoods assumption, herein we assume that given the geological 

facies at any location and its neighbouring locations, the seismic attributes observed at that location 

are conditionally independent of attributes at other locations, and of the geological facies in the rest 

of the model. We refer to this assumption as quasi-localized likelihoods as in this case the attributes at 

any location may have direct probabilistic dependence on the facies in neighbouring locations, yet 

such likelihoods may not be regarded as fully non-localized unless the neighbourhood of every location 

is defined to be the entire set of other locations in 𝒱 (i.e., 𝒱 is fully connected). Thus fully non-localized 

likelihoods are a sub-class of quasi-localized likelihoods, but the methods introduced herein are not 

efficient for that case so we do not consider it further. Localized likelihoods are also a sub-class of 

quasi-localized likelihoods, and thus our assumed model is significantly more general than the norm. 

This concept is further discussed in section 4.2. 

4.1. Prior 

A priori knowledge about the spatial distribution of facies is often available based on 

previously acquired data and from prior experience of geoscientists on the local and regional geology. 

Such prior information may be quantitatively embodied within geological process modelling, and may 

be presented in the form of training images. We aim to reconstruct the spatial distribution of facies in 
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a Bayesian framework by combining the data likelihoods with this a priori information. How best to 

describe and incorporate geological prior information in Bayesian inverse problems is still under 

research. Depending on the inversion algorithm and on the type and complexity of the a priori 

information, different methods exist which mathematically transform a priori information into 

probability distributions. However, when prior information on facies distribution only involves 

correlations between similar facies in neighbouring locations, the strength of such correlations may 

be encoded in parameters which depend on the relative locations of the neighbours. 

A convenient way to embody a priori knowledge about the spatial distributions of facies is 

through a training image. A training image is a conceptual depiction of typical patterns of geological 

features that are expected to exist in the subsurface based on the subjective opinion of geoscientists, 

or on other objective geological measurements of facies distributions. Mathematically, a training 

image embodies statistics of facies heterogeneity over a lattice of model cells (or vertices).These 

statistics may then be extracted during the inversion process as and when desired. Thus a training 

image also serves as a compact embodiment of joint and conditional probability distributions over 

spatial variables which would otherwise require a comparatively large amount of computer memory 

for their digital storage. Another conceptual advantage of using a training image is that it restricts the 

expected spatial patterns of facies to a limited set of geologically plausible patterns as depicted in the 

image. It is, however, important to note that a training image only provides contextual information 

about the local geology, and not location specific information as is supplied by the data in the form of 

likelihoods.  

We represent prior information on the spatial distributions of facies as a joint distribution 

𝒫(𝒛) of facies over a pair-wise MRF given by 

𝒫(𝒛) =  
1

𝒵
∏ 𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗)
(𝑖,𝑗)∈ℰ

 

 

(6) 

The pair-wise potential functions 𝜓𝑖𝑗(𝑧𝑖, 𝑧𝑗) in the above equation are estimated by scanning the 

training image and building histograms for various combinations of facies 𝑧𝑖  and 𝑧𝑗 over pixels with 

offset distance and direction depending on the neighbourhood structure. For example, a histogram is 

built by counting the occurrence of any two facies in laterally or vertically adjacent pixels in the training 

image. These counts are then normalized by the total number of possible combinations of facies within 

the same configuration of pixels across the training image to give prior probabilities. This assigns zero 

probability to configurations of facies that are geologically implausible, such as brine directly over gas. 

The prior probability of occurrence of facies 𝑧𝑖  at a location 𝑖 given the facies in its neighbourhood 𝒩\𝑖 

is therefore given by 

𝒫 (𝑧𝑖|𝒛𝒩\𝑖
) ∝ ∏ 𝜓𝑖𝑗(𝑧𝑖, 𝑧𝑗)

𝑗∈𝒩\𝑖

 (7) 

4.2. Likelihood 

Rock properties and the spatial distribution of facies are generally obtained from inversion of 

seismic data constrained by borehole data and prior geological information about the reservoir. There 

is always residual uncertainty in the estimation of geological facies from the observed data at a given 

location. The uncertainty is either due to the presence of noise in the data, or due to intrinsic 
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uncertainty in the relationship between facies and the observed seismic attributes, or both. We 

assume that multiple seismic attributes are associated to each model cell, which are noisy due to 

imperfect seismic acquisition and processing, and are blurred by the band-limited nature of seismic 

waves and the limited aperture of seismic acquisition systems. Such spatial blurring of seismic 

attributes results in significant superposition of attribute values that are otherwise attributable to 

different facies. Consequently, the seismic attribute response of facies at each location is corrupted 

by the attribute response of facies at neighbouring locations. This implies that the seismic data or 

attributes computed at a given location must be related to the facies at that location according to 

some probability distribution that also involves facies in the neighbouring locations. Thus, data are 

quasi-localized. 

The probability of observing specific (usually measured) data given a set of model parameters 

is called the data likelihood. The likelihood may be interpreted to be a function of model parameters 

given the observed data. The data in our model represent the seismic attributes, and the model 

parameters represent the spatial distribution of geological facies. Much of the previous research in 

inversion of seismic attributes for geological facies uses the localized likelihoods assumption (e.g., 

Larsen et al. 2006; Ulvmoen & Omre, 2010; Ulvmoen et al. 2010; Walker & Curtis, 2014; and Nawaz & 

Curtis, 2017), but such an assumption is not valid for seismic attributes as discussed above: any 

residual non-localized effects that are not fully accounted for during seismic data processing (Fresnel 

zone smearing, seismic velocity errors causing mislocation of attributes, migration errors due to 

limited apertures of seismic arrays, etc.) propagate into the computed seismic attributes. The region 

of the model around the location of observation used to estimate likelihoods must therefore be 

expanded from one vertex (or cell) to include a certain neighbourhood around that vertex. A more 

robust inversion method is then required that acknowledges the non-localized nature of seismic data 

and incorporates spatial correlations present in the data to capture the true spatial distribution of 

facies. 

In this method, the spatial correlations of facies may be reconstructed from the non-localized 

facies-attributes relations, and in addition from correlations in the prior information. We estimate the 

likelihood of seismic attributes at a location 𝑖 given the facies in the neighbourhood 𝒩𝑖 of that location 

in order to account for the blurring effect of the band-limited seismic data. We refer to this assumption 

as quasi-localized likelihoods since the dependence of seismic attributes on facies in neighbouring 

locations may not be regarded as fully non-localized likelihoods (unless the neighbourhood spans the 

entire domain). 

All facies classification methods assume that the variation in rock properties within a facies is 

smaller than variations between different facies. Any ambiguity in classification due to overlap of rock 

properties among multiple facies might be able to be resolved by introducing the spatial context of 

each data point. This can be done by conditioning each data point on its spatial neighbours based on 

the information contained in spatial priors or quasi-localized likelihoods. For example, if spatial 

neighbours of a point are more likely to belong to a particular facies, then that point is generally more 

likely to belong to the same facies based on typical spatial priors and quasi-localized likelihoods. In 

this respect, quasi-localized likelihoods reduce the entropy of (the degree of variation in) classification 

compared to the localized likelihoods which offer no spatial context for the classification task. 

Even though the likelihoods are not assumed to be localized we still assume that the seismic 

attributes at a location are conditionally independent of attributes observed at all other locations 
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given the facies model. This implies that any spatial correlations in the observations of seismic 

attributes are assumed to be a direct consequence of spatial distribution of facies within the 

neighbourhood structure, and not due to correlations in the data measurements that are independent 

of the geology (for example, due to correlated random or systematic noise). 

We consider a set 𝒢 = {1,… , 𝐾} of discrete variables representing geological facies which 

refers to well-defined and distinct rock and fluid types. Each facies 𝑘 ∈ 𝒢 is defined in terms of its 

expected attributes 𝝁𝑘 and the corresponding covariance matrix 𝜮𝑘 that represents intra-facies 

variations. Let 𝑹𝒩𝑖
= (𝒓𝑗: 𝑗 ∈ 𝒩𝑖) be a 𝑝 × 𝑞 matrix of expected local facies responses for 𝑝 seismic 

attributes at each of the 𝑞 locations in the neighbourhood 𝑗 ∈ 𝒩𝑖  such that |𝒩𝑖| = 𝑞 is fixed and is 

independent of location 𝑖 in the graph, and 𝒓𝑗 represents local facies responses at each location given 

by some mapping from the latent variable 𝑧𝑗 to the domain of observed variables 𝒙. To make this more 

concrete, define 𝒓𝑗 as the expectation of a set of superposed Gaussian distributions 𝑁(𝝁𝑘 , 𝜮𝑘), 𝑘 ∈

𝒢 for each facies, weighted by some estimate of the posterior marginal distribution 𝒫̂𝑗(𝑧𝑗) of the facies 

at each location 𝑗: 

𝒓𝑗 = 𝔼(∑𝒫̂𝑗(𝑧𝑗 = 𝑘) 𝑁(𝝁𝑘 , 𝜮𝑘)

𝑘∈𝒢

)  =  ∑𝒫̂𝑗(𝑧𝑗 = 𝑘)𝝁𝑘
𝑘∈𝒢

 (8) 

The seismic attributes 𝒙𝑖 computed at a location 𝑖 are assumed to be a weighted linear combination 

of facies responses 𝑹𝒩𝑖
 in neighbourhood 𝒩𝑖 such that 

𝒙𝑖 = ∑ 𝛽𝑗𝒓𝑗
𝑗∈𝒩𝑖

+ 𝜺𝑖 = 𝑹𝒩𝑖
 𝜷 + 𝜺𝑖 (9) 

where 𝒙𝑖  is a 𝑝 × 1 vector of 𝑝 seismic attributes, 𝜷 is a 𝑞 × 1 vector of regression coefficients, and 𝜺𝑖  

is a 𝑝 × 1 vector of errors which are assumed to be jointly distributed according to a Normal 

distribution 𝑁(0, 𝜮𝜺). The seismic attributes are assumed to have been pre-standardized to have unit 

variance while keeping the covariances intact, so that the definition of regressors 𝑹𝒩𝑖
 allows us to 

interpret 𝜷 as a weighting kernel over all of the attributes observed at multiple locations in the 

neighbourhood of 𝑖 (Figure 3). The attributes can be de-standardized later to their original means and 

variances for display and interpretation purposes. Now define the set of model parameters as Θ =

{ 𝜷, 𝜮𝜺, 𝝁𝑘 , 𝜮𝑘}, 𝑘 ∈ 𝒢. So, given the expected facies responses 𝑹𝒩𝑖
 in the neighbourhood of 𝑖, the 

seismic attributes 𝒙𝑖  are normally distributed with mean 𝑹𝒩𝑖
𝜷 and covariance matrix 𝜮𝜺𝑖. The quasi-

localized likelihood of seismic attributes 𝒙𝑖 computed at 𝑖 given the geological facies 𝒛𝒩𝑖
≡

{𝑧𝑗: 𝑗 ∈ 𝒩𝑖} ⊆ 𝒛 in the neighbourhood 𝒩𝑖 of location 𝑖 is therefore given by 

𝒫(𝒙𝑖|𝒛𝒩𝑖
,Θ) = 𝒫(𝒙𝑖|𝑹𝒩𝑖

𝜷,Θ) = 𝑁(𝑹𝒩𝑖
𝜷,𝜮𝜺𝑖) (10) 
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Figure 3: A graphical depiction of a hidden Markov random field (HMRF) as in Figure 2b where each edge between 

an observed variable 𝒙𝑖  at a location 𝑖 and the latent variables 𝒛𝑗 , 𝑗 ∈ 𝒩𝑖  within the neighbourhood 𝒩𝑖  of 𝑖 is 

associated with a weight parameter 𝛽𝑗  which may be interpreted as the strength of the connection between the 

two variables in the definition of quasi-localized likelihoods. 

We can show that the likelihood of observing seismic attributes 𝒙𝑖 at a location 𝑖 given the geological 

facies 𝒛𝒩\𝑖
 in the neighbourhood 𝒩\𝑖 of 𝑖 and the model parameters Θ is given by 

𝒫 (𝒙𝑖|𝒛𝒩\𝑖
,Θ) =∑𝒫(𝒙𝑖 , 𝑧𝑖|𝒛𝒩\𝑖

, Θ)
𝑧𝑖

  

= ∑𝒫(𝒙𝑖|𝒛𝒩𝑖
, Θ) 𝒫 (𝑧𝑖|𝒛𝒩\𝑖

, Θ)
𝑧𝑖

 (11) 

which represents a spatial Gaussian mixture distribution with components given by the quasi-localized 

likelihoods 𝒫(𝒙𝑖|𝒛𝒩𝑖
, Θ) in equation (10), each of which is scaled with the spatial priors 𝒫 (𝑧𝑖|𝒛𝒩\𝑖

, Θ) 

given by the MRF prior model – equation (7). 

Under the assumption of conditional independence of seismic attributes 𝒙 given the facies 𝒛 

and the model parameters Θ, the likelihood 𝒫(𝒙|𝒛, Θ) of observed seismic attributes 𝒙 given a 

particular facies model 𝒛 is given by 

𝒫(𝒙|𝒛, Θ) =∏𝒫(𝒙𝑖|𝒛𝒩𝑖
,Θ)

𝑖

=∏𝑁(𝑹𝒩𝑖
𝜷,𝜮𝜺𝑖)

𝑖

 (12) 

We can write equation (9) for all of the 𝑛 cells in the model as 

𝒙 = 𝑹𝜷 + 𝜺 (13) 

where 𝒙 = (𝒙1, 𝒙2, … , 𝒙𝑛)
𝑇 is a 𝑛𝑝 × 1 vector of 𝑝 seismic attributes in each of the 𝑛 cells, 𝑹 =

(𝑹𝒩1 , 𝑹𝒩2 , … , 𝑹𝒩𝑛)
𝑇

 is a 𝑛𝑝 × 𝑞 matrix of facies responses at 𝑞 neighbours of each of the 𝑛 cells, and 

𝜺 is a 𝑛𝑝 × 1 vector of errors which are assumed to be uncorrelated with the covariates 𝑹 and are 

jointly distributed according to a Normal distribution 𝑁(0, 𝜮𝜺). Therefore, given the facies responses 

𝑹, the seismic attributes are normally distributed with mean 𝑹𝜷 and covariance matrix  𝜮𝜺, that is, 

𝒙|𝒛 ~ 𝑁(𝑹𝜷, 𝜮𝜺). Thus, the log-likelihood ℒ(Θ; 𝒙|𝒛) of seismic attributes 𝒙 given the facies 𝒛 as a 

function of model parameters Θ may be written as 
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ℒ(Θ; 𝒙|𝒛) ≡ log𝒫(𝒙|𝒛,Θ)  

= ∑log𝒫(𝒙𝑖|𝒛𝒩𝑖
,Θ)

𝑖

 

[using the conditional independence assumption over 𝒙] 

=∑log𝒫(𝒙𝑖|𝑹𝒩𝑖
𝜷,Θ)

𝑖

 
[using equation (12)] 

= ∑log {(2𝜋)−𝑛/2|𝜮𝜺|
−1/2 exp (

−1

2
(𝒙𝑖 − 𝑹𝒩𝑖

𝜷)
𝑇
𝜮𝜺

−1(𝒙𝑖 − 𝑹𝒩𝑖
𝜷))}

𝑖

  

[using equation of a Gaussian distribution] 

= −
𝑛2

2
log(2𝜋) −

𝑛

2
log|𝜮𝜺| −

1

2
∑(𝒙𝑖 − 𝑹𝒩𝑖

𝜷)
𝑇
𝜮𝜺

−1(𝒙𝑖 − 𝑹𝒩𝑖
𝜷)

𝑖

 

 

= −
𝑛2

2
log(2𝜋) −

𝑛

2
log|𝜮𝜺| −

1

2
(𝒙 − 𝑹𝜷)𝑇𝜮𝜺 

−1(𝒙 − 𝑹𝜷) (14) 

 

4.3. Posterior Distribution 

In a so called generative model, the seismic attributes 𝒙 are assumed to have been generated 

by the unobserved facies 𝒛 according to a probability distribution 𝒫(𝒙|𝒛, Θ), where Θ is the set of 

parameters that defines the probability distribution and models the dependencies between the facies 

and the observed seismic attributes – equations (11) and (14). The posterior distribution 𝒫(𝒛|𝒙, Θ) of 

facies 𝒛 given the seismic attributes 𝒙 and parameters Θ is then given in terms of their joint distribution 

using Bayes’ theorem 

𝒫(𝒛|𝒙, Θ) =
𝒫(𝒙, 𝒛|Θ)

𝒫(𝒙|Θ)
=
𝒫(𝒙|𝒛, Θ)𝒫(𝒛)

𝒫(𝒙|Θ)
 (15) 

where the denominator represents the marginal likelihood of observed variables 𝒙 given the model 

parameters Θ and plays the same normalizing role as the partition function 𝒵 in equation (2). Given 

the conditional independence assumption, the quasi-localized likelihood 𝒫(𝒙|𝒛, Θ) given by equation 

(12) can be written as 

𝒫(𝒙|𝒛, Θ) =∏𝒫(𝒙𝑖|𝒛𝒩𝑖
, Θ)

𝑖∈𝒱

= ∏𝜑𝑖(𝒙𝑖, 𝒛𝒩𝑖
|Θ)

𝑖∈𝒱

 (16) 

where 𝜑𝑖(𝒙𝑖 , 𝒛𝒩𝑖
|Θ) = 𝒫(𝒙𝑖|𝒛𝒩𝑖

, Θ) represents a potential function of 𝒙𝑖 and 𝒛𝒩𝑖
 that is called the 

vertex potential in a MRF model. It represents the physical dependency between observables and 

facies in the model, including errors in the data. With the prior 𝒫(𝒛) given by equation (6) and the 

likelihood 𝒫(𝒙|𝒛, Θ) given by equation (16), the posterior distribution 𝒫(𝒛|𝒙, Θ) may be written as 

𝒫(𝒛|𝒙, Θ) =
𝒫(𝒙, 𝒛|Θ)

𝒫(𝒙|Θ)
=
1

𝒵′
∏𝜑𝑖(𝒙𝑖, 𝒛𝒩𝑖

)

𝑖∈𝒱

∏ 𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗)
(𝑖,𝑗)∈ℰ

 (17) 
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where constant 𝒫(𝒙|Θ) has been absorbed in  𝒵′. This demonstrates that although we only assumed 

that the prior distribution 𝒫(𝒛) on the latent variables 𝒛 is a MRF, the posterior distribution 𝒫(𝒛|𝒙, Θ) 

and the joint distribution 𝒫(𝒙, 𝒛|Θ) then also turn out to be MRFs as a consequence of the conditional 

independence assumption on the observed variables 𝒙. Note that without such an assumption the 

joint distribution would not be tractable, making inference impossible for models of practical interest. 

The above formulation is quintessentially the generative approach as it models the posterior 

distribution 𝒫(𝒛|𝒙, Θ) via the joint distribution 𝒫(𝒙, 𝒛|Θ), as opposed to the discriminative approach 

that directly models the posterior distribution. 

Vertex potentials 𝜑𝑖(𝒙𝑖 , 𝒛𝒩𝑖
|Θ) are estimated from the data using a rock physics model of the 

relationship between facies and seismic attributes. The edge potentials 𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗), on the other hand, 

are estimated only from the prior information expressed in the form of a training image. This means 

that any spatial correlations in the data are only used in the reconstruction of the spatial distribution 

of facies through the likelihood function. The form of the probability distribution in equation (17) 

suggests that this model is an undirected alternative to a 2D-HMM (Nawaz & Curtis, 2017). A hidden 

Markov model (HMM) is a directed graphical probabilistic model (with directed edges) with causal 

probabilistic influence. In other words the direction of flow of probabilistic influence in a directed 

model is constrained to the directions of edges. Although such causality has no direct physical 

interpretation in a spatial context, this allows for analytical computation of posterior probabilities. A 

MRF (or HMRF), on the other hand, is a more natural representation of spatial phenomena but it does 

not allow analytical computation of posterior probabilities because of the intractable normalizing 

constant 𝒵′. For this reason, inference is typically performed using sampling based methods such as 

McMC. 

In view of the high computational cost of McMC methods discussed earlier, we seek 

alternative numerical inference methods. In this paper, we use variational Bayes method which is an 

attractive alternative to McMC based methods because of its computational efficiency. The variational 

Bayes method is generally used to find a factorizable distribution as a proxy for the true posterior 

distribution which is not always factorizable. We would like to emphasize here that besides its 

computational efficiency, the variational Bayes method for inference is a natural choice in our model 

due to the fact that the posterior distribution 𝒫(𝒛|𝒙, Θ) as given by equation (17) is fully factorized as 

a consequence of the conditional independence assumption over the observed variables 𝒙. 

5. Variational Bayesian Inference 

The major challenge in Bayesian inversion is calculation of the partition function 𝒫(𝒙|Θ) in 

equation (15). This requires summation over a prohibitively large number of configurations (other 

than in toy problems). We therefore seek a more tractable approximation. A common approach uses 

stochastic sampling, such as Markov-chain Monte Carlo (McMC), which is based on the concept that 

the probability distribution emerges as the number of samples tends to infinity. Variational Bayesian 

inference offers a more efficient alternative. It approximates a complex posterior distribution by a 

simpler, so called auxiliary distribution with which it is relatively easier to work. Such an approximation 

is commonly referred to as the variational approximation. We exploit the conditional independence 

assumption over observed variables 𝒙 in our MRF model in order to perform inference on the latent 

variables 𝒛 conditioned on 𝒙, by reducing their joint distribution 𝒫(𝒙, 𝒛|Θ) to a factorizable form as 

given in equation (17). Such factorization connotes conditional independence among various sets of 
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variables in the model. Such an approximation is inherent in our choice of the MRF model as the 

conditional independence among the cliques is a characteristic of a MRF. Below we show how 

factorization allows the Bayesian inference problem to be transformed into a constrained optimization 

problem under the variational approximation. 

As a function of the model parameters Θ, the joint distribution 𝒫(𝒙, 𝒛|Θ) over observed and 

latent variables 𝒙 and 𝒛 in equation (15) is called the complete-data likelihood and the normalization 

constant 𝒫(𝒙|Θ) is called the incomplete-data likelihood (as it does not involve the latent variables 𝒛), 

the partition function or the model evidence. Estimation of the partition function requires 

marginalization of the complete-data likelihood over all possible configurations of the latent variables 

𝒛, i.e. 

𝒫(𝒙|Θ) =∑𝒫(𝒙, 𝒛|Θ)

𝒛

 
(18) 

Rather than trying to estimate 𝒫(𝒙|Θ) as a general function of Θ which is intractable, we first try to 

estimate Θ from the observations 𝒙; once Θ has been fixed, estimating 𝒫(𝒙|Θ) is a more tractable 

problem. The parameters Θ can be estimated from the observations 𝒙 using the maximum-likelihood 

(ML) method that aims to find the parameters by setting Θ = Θ̂𝑀𝐿 that maximizes the joint likelihood, 

or equivalently the logarithm of joint likelihood of 𝒙 and 𝒛 as a function of the model parameters Θ: 

Θ̂𝑀𝐿 = argmax
Θ

{log𝒫(𝒙, 𝒛|Θ)} ≡ argmax
Θ

{ ℒ(Θ; 𝒙, 𝒛)} 
(19) 

If the facies 𝒛 were observed, ℒ(Θ; 𝒙, 𝒛) defines the complete log-likelihood as a function of the model 

parameters Θ. However, since 𝒛 is a latent variable, it must be marginalized out resulting in the 

marginal log-likelihood of the observed variables, henceforth referred to as incomplete log-likelihood, 

that can be written as a function of parameters Θ as 

ℒ(Θ; 𝒙) ≡  log𝒫(𝒙|Θ) =  log∑𝒫(𝒙, 𝒛|Θ)

𝒛

 
(20) 

The estimation of Θ is hard in this case as the presence of latent variables in the model may introduce 

dependencies between the parameters. In order to address these difficulties, we use the variational 

Bayesian approach (Beal, 2003) that employs an auxiliary variational distribution 𝒬(𝒛|𝒙) of the latent 

variables 𝒛 from a family ℚ of distributions that are more easily manipulated (typically expressible in 

a factorized form). The expected complete log-likelihood under 𝒬(𝒛|𝒙) ∈ ℚ may then be defined as a 

function of the model parameters Θ as 

𝔼𝒬[ℒ(Θ; 𝒙, 𝒛)] ≡∑𝒬(𝒛|𝒙) log𝒫(𝒙, 𝒛|Θ)

𝒛

 (21) 

which is linear in the complete log-likelihood and is equally factorizable. The notation 𝔼𝒬[∙] represents 

expectation of the argument with respect to the auxiliary distribution 𝒬(𝒛|𝒙). As we show below, this 

allows estimation of posterior marginal distributions and the maximum a posteriori (MAP) solution to 

the Bayesian inverse problem through inference on 𝒬(𝒛|𝒙) rather than 𝒫(𝒛|𝒙, Θ). Since there is no 

ambiguity in the arguments of 𝒬(𝒛|𝒙) as it does not explicitly depend on Θ, we often denote it just as 

𝒬. 
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The expected complete log-likelihood 𝔼𝒬[ℒ(Θ; 𝒙, 𝒛)] acts as a lower bound on the incomplete 

log-likelihood ℒ(Θ; 𝒙) as can be seen by 

ℒ(Θ; 𝒙)  = log∑𝒫(𝒙, 𝒛|Θ)

𝒛

  

= log𝔼𝒬 [
𝒫(𝒙, 𝒛|Θ)

𝒬(𝒛|𝒙)
]  

≥ 𝔼𝒬[log𝒫(𝒙, 𝒛|Θ)] − 𝔼𝒬[log𝒬(𝒛|𝒙)] [using Jensen’s inequality] 

 (22) 

= 𝔼𝒬[ ℒ(Θ; 𝒙, 𝒛)] + 𝒮𝒬(𝒛) (23) 

≡ ℱ(𝒬, Θ) (24) 

where 𝒮𝒬(𝒛) = −𝔼𝒬[log𝒬(𝒛|𝒙)] is the entropy of the distribution 𝒬(𝒛|𝒙) and the functional ℱ(𝒬, Θ) 

is called the variational free energy or simply free energy. The first term in equation (23), 

𝔼𝒬[ ℒ(Θ; 𝒙, 𝒛)], represents the expectation of the complete log-likelihood ℒ(Θ; 𝒙, 𝒛) with respect to 

the variational distribution 𝒬(𝒛|𝒙) as defined in equation (21). If we interpret −ℒ(Θ; 𝒙, 𝒛) as the 

energy function of the MRF then 𝔼𝒬[ℒ(Θ; 𝒙, 𝒛)] represents negative of the so called expected energy 

under 𝒬(𝒛|𝒙), and ℱ(𝒬, Θ) corresponds to the negative of Gibbs free energy in statistical physics 

(Feynman, 1972). 

 

Figure 4: A schematic illustration of minimizing the relative-entropy 𝐾𝐿(𝒬 || 𝒫(𝒛|𝒙, 𝛩)) between the variational 

distribution 𝒬(𝒛|𝒙) and the true posterior distribution 𝒫(𝒛|𝒙, 𝛩) for a fixed set of parameters 𝛩. Since the log-

likelihood ℒ(𝛩; 𝒙) of observed variables 𝒙 is a constant for fixed 𝛩, maximizing the variational free energy ℱ(𝒬, 𝛩) 

with respect to 𝒬 corresponds to minimizing the relative-entropy 𝐾𝐿(𝒬 || 𝒫(𝒛|𝒙, 𝛩)) between 𝒬(𝒛|𝒙) and 

𝒫(𝒛|𝒙, 𝛩). 

Variational inference methods aim to estimate the variational distribution 𝒬(𝒛|𝒙) of the 

latent variables 𝒛 that maximizes the free energy functional ℱ(𝒬, Θ) since this is guaranteed to 

increase the allowable values of the incomplete log-likelihood ℒ(Θ; 𝒙) by equation (22). Since ℱ(𝒬, Θ) 

is a lower bound of  ℒ(Θ; x), the variational Bayesian method allows us to cast the inference problem 

into a constrained optimization problem. We attempt to maximize ℱ(𝒬, Θ) with respect to both 𝒬 and 
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Θ rather than directly estimating ℒ(Θ; x) which is intractable in most high-dimensional problems. Also 

by definition 

ℱ(𝒬, Θ) =  𝔼𝒬[log𝒫(𝒙, 𝒛|Θ)] − 𝔼𝒬[log𝒬(𝒛|𝒙)]  

= 𝔼𝒬[log𝒫(𝒛|𝒙, Θ)] + 𝔼𝒬[log𝒫(𝒙|Θ)] − 𝔼𝒬[log𝒬(𝒛|𝒙)] 
 

= 𝔼𝒬 [log
𝒫(𝒛|𝒙, Θ)

𝒬(𝒛|𝒙)
] + log𝒫(𝒙|Θ) 

[as log𝒫(𝒙|Θ) is independent of 𝒬(𝒛|𝒙)] 
 

= −𝐾𝐿(𝒬 || 𝒫(𝒛|𝒙, Θ)) + ℒ(Θ; 𝒙) (25) 

where 𝐾𝐿(𝒬 || 𝒫(𝒛|𝒙, Θ)) is the Kullback–Leibler (KL) divergence (or relative-entropy) between the 

variational distribution 𝒬(𝒛|𝒙) and the true posterior distribution 𝒫(𝒛|𝒙, Θ). Since ℒ(Θ; 𝒙) is 

independent of 𝒬(𝒛|𝒙), maximizing ℱ(𝒬, Θ) is equivalent to minimizing the relative-entropy 

𝐾𝐿(𝒬 || 𝒫(𝒛|𝒙, Θ)) (Figure 4). The KL divergence takes a minimum value of zero when the two 

distributions that it compares are identical. Therefore, by maximizing the free energy ℱ(𝒬, Θ) for a 

given set of parameters Θ the variational Bayesian inversion effectively estimates 𝒬 that best 

approximates the posterior distribution 𝒫(𝒛|𝒙, Θ). 

As 𝒫(𝒙, 𝒛|Θ) factorizes over the cliques in a MRF by definition, it follows from equation (23) 

that 𝔼𝒬[ℒ(Θ; 𝒙, 𝒛)] can be computed efficiently, but estimation of 𝒮𝒬(𝒛), and hence ℱ(𝒬, Θ), is still 

computationally expensive. In order to overcome this difficulty, we use a variational form of the 

expectation maximization (EM) algorithm (Dempster et al., 1977; Beal, 2003) which attempts to 

approximate ℱ(𝒬, Θ) in an iterative fashion such that the lower-bound ℱ(𝒬, Θ) is increased while 

decreasing 𝐾𝐿(𝒬 || 𝒫(𝒛|𝒙, Θ)) for a given set of parameters in each iteration. The EM algorithm 

involves two steps in each iteration: the so-called E-step and the M-step, which aim to alternately 

maximize the free-energy ℱ(𝒬, Θ) with respect to 𝒬 and Θ, respectively. In concept, the E-step 

estimates the posterior distribution of facies 𝒛 (which factorizes in a MRF as shown by equation (2)) 

in the model space for a given estimate of parameters Θ, whereas the M-step updates the current 

estimate of model parameters Θ in the attribute space by maximizing their likelihood for the current 

estimate of the posterior distribution of facies (Figure 5). Alternate E- and M-steps therefore improve 

the estimates of 𝒬 and Θ such that the log-likelihood is guaranteed not to decrease in any iteration. 

With a suitable initialization, the EM algorithm is guaranteed to converge to a local optimum within a 

relatively small number of iterations (Balakrishnan et al. 2017). 
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Figure 5: A schematic illustration of the variational EM algorithm. (a) After 𝑡 iterations of the EM algorithm, we 

have estimates of the variational distribution as 𝒬(𝑡) and the parameters 𝛩(𝑡). (b) The E-step then maximizes the 

lower-bound (free energy functional) ℱ(𝒬(𝑡), 𝛩(𝑡)) of the incomplete log-likelihood ℒ(𝛩(𝑡); 𝒙) for fixed 𝛩(𝑡) 

yielding updated estimate of the variational distribution 𝒬(𝑡+1) and the updated lower-bound ℱ(𝒬(𝑡+1), 𝛩(𝑡)) ≥

ℱ(𝒬(𝑡), 𝛩(𝑡)). The incomplete log-likelihood ℒ(𝛩(𝑡); 𝒙) remains constant during the E-step, and as a consequence 

the relative-entropy 𝐾𝐿 (𝒬(𝑡) || 𝒫(𝒛|𝒙, 𝛩(𝑡))) between the variational distribution 𝒬(𝒛|𝒙) and the true posterior 

distribution 𝒫(𝒛|𝒙, 𝛩) is minimized to 𝐾𝐿 (𝒬(𝑡+1) || 𝒫(𝒛|𝒙, 𝛩(𝑡)))  for fixed 𝛩(𝑡) – see Figure 4. (c) The M-step 

estimates a new set of parameters 𝛩(𝑡+1) by maximizing the incomplete log-likelihood to ℒ(𝛩(𝑡+1); 𝒙) ≥

ℒ(𝛩(𝑡); 𝒙) thereby maximizing the lower-bound to ℱ(𝒬(𝑡+1), 𝛩(𝑡+1)) ≥ ℱ(𝒬(𝑡+1), 𝛩(𝑡)) to yield a new estimate 

of the relative-entropy as 𝐾𝐿 (𝒬(𝑡+1) || 𝒫(𝒛|𝒙, 𝛩(𝑡+1))). This is subsequently minimized in the E-step of the next 

iteration of the EM algorithm which iterates until convergence. 

5.1. E-Step – Estimation of 𝓠 from current estimate of model parameters 𝚯 

In the E-step of iteration 𝑡, the variational distribution 𝒬(𝒛|𝒙) over the latent variables 𝒛 is 

estimated from the current estimate of the model parameters Θ(𝑡) by maximizing the free-energy 

ℱ(𝒬, Θ) with respect to 𝒬. The E-step may therefore be written as 

𝒬(𝑡+1) = argmax
𝒬

{ℱ(𝒬, Θ(𝑡))} (26) 

where the bracketed superscripts refer to the iteration number. Since ℱ(𝒬, Θ) is a lower bound 

of ℒ(Θ; 𝒙), maximizing the lower bound ℱ(𝒬, Θ(𝑡)) of the incomplete log-likelihood ℒ(Θ(𝑡); 𝒙) with 

respect to 𝒬 results in 𝒬(𝑡+1) equal to the estimate of the posterior distribution 𝒫̂(𝒛|𝒙, Θ(𝑡)). This can 

be proved by setting 𝒬 equal to 𝒫(𝒛|𝒙, Θ(𝑡)) in the inequality (24). 

                  (a)                                                                           (b)                                                                             (c) 
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Since computing free energy ℱ(𝒬, Θ) is computationally hard, we seek more efficient 

approximate alternatives. The distribution 𝒬(𝒛|𝒙) in a pair-wise MRF is specified by approximate 

marginal distributions 𝑏𝑖(𝑧𝑖) over the vertices, and 𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗) over the edges in the graphical model 

as defined below. The free energy −ℱ(𝒬, Θ) can then be approximated for pair-wise MRFs by the 

Bethe’s free energy ℱ̂𝐵 (also called Kikuchi free energy for general MRFs) given by 

ℱ̂𝐵 = ∑ ∑  𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗) log (
 𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗)

𝜑𝑖(𝑧𝑖) 𝜑𝑗(𝑧𝑗) 𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗)
)

(𝑧𝑖,𝑧𝑗)(𝑖,𝑗)ϵℰ

−∑(|𝒩\𝑖| − 1)∑𝑏𝑖(𝑧𝑖) log (
𝑏𝑖(𝑧𝑖)

𝜑𝑖(𝑧𝑖)
)

𝑧𝑖𝑖ϵ𝒱

 

(27) 

where |𝒩\𝑖| represents the neighbourhood cardinality of  𝑖, i.e., the number of vertices that are 

neighbours of  𝑖. The Bethe’s free energy only approximates the entropy term 𝒮𝒬(𝒛) in equation (23) 

which is hard to compute; the expectation term 𝔼𝒬[ℒ(Θ; 𝒙, 𝒛)] remains exact. The approximate 

marginal distributions 𝑏𝑖(𝑧𝑖) and 𝑏𝑖𝑗(𝑧𝑖, 𝑧𝑗) over vertices and edges in the graph are commonly 

referred to as pseudo-marginals or beliefs. The above expression for Bethe’s free energy ℱ̂𝐵 is a direct 

consequence of a re-parametrization of the posterior distribution from the original parameters in 

terms of potential functions 𝜑𝑖(𝑧𝑖) and 𝜓𝑖𝑗(𝑧𝑖, 𝑧𝑗), to the new parameters in terms of beliefs 𝑏𝑖(𝑧𝑖) 

and 𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗) under the so called admissibility constraints: 

𝒫(𝒛|𝒙) =  
1

𝒵
∏𝜑𝑖(𝒙𝑖, 𝒛𝒩𝑖

)

𝑖

∏𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗)
(𝑖,𝑗)ϵℰ

 ∝  ∏ 𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗)
(𝑖,𝑗)ϵℰ

∏𝑏𝑖(𝑧𝑖)
|𝒩\𝑖|−1

𝑖

⁄  (28) 

The Bethe’s free energy ℱ̂𝐵 is exactly equal to the free energy ℱ(𝒬, Θ) for an acyclic MRF 

(Koller & Friedman, 2009) and can be computed efficiently as it only involves summation over the 

vertices and edges in a pair-wise MRF. Yedidia et al. (2001a, b) showed that the stationary points of 

Bethe’s free-energy correspond to the fixed points of an iterative message-passing algorithm, the so 

called belief propagation (BP) algorithm introduced by Pearl, 1982. 

Belief propagation performs approximate inference in graphical models by estimating 

marginal distributions of unobserved variables conditioned on any observed variables by passing 

messages over edges in the graph. A message 𝓂𝑗→𝑖(𝑧𝑖) from the vertex 𝑗 to the vertex 𝑖 is a real 

function with domain 𝑧𝑖, the set of values that can be taken by an unobserved vertex 𝑖, and represents 

probabilistic influence of a vertex 𝑗 on the vertex 𝑖. In other words, a message 𝓂𝑗→𝑖(𝑧𝑖) encodes 

‘belief’ of a vertex 𝑗 about the state 𝑧𝑖  of an unobserved vertex 𝑖. The beliefs 𝑏𝑖(𝑧𝑖) and 𝑏𝑖𝑗(𝑧𝑖, 𝑧𝑗) can 

be expressed in terms of messages as 

𝑏𝑖(𝑧𝑖) ∝ 𝜑𝑖(𝑧𝑖) ∏ 𝓂𝑗→𝑖(𝑧𝑖)

𝑗∈𝒩\𝑖

 (29) 

𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗) ∝ 𝜑𝑖(𝑧𝑖)𝜑𝑗(𝑧𝑗)𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗) ∏ 𝓂ℎ→𝑖(𝑧𝑖)

ℎ∈𝒩\𝑖\{𝑗}

∏ 𝓂ℎ→𝑗(𝑧𝑗)

ℎ∈𝒩\𝑗\{𝑖}

 (30) 

Combining these equations yields the belief propagation equation (Pearl, 1982) 

𝓂𝑗→𝑖(𝑧𝑖) ∝∑𝜑𝑗(𝑧𝑗)𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗) ∏ 𝓂ℎ→𝑗(𝑧𝑗)

ℎ∈𝒩\𝑗\{𝑖}𝑧𝑗

 (31) 
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which presents a schedule for message passing and shows how a vertex encodes messages that it 

receives from its neighbours except the target vertex, and passes the encoded messages to its target 

neighbouring vertex. The schedule starts with a vertex 𝑗 receiving messages 𝓂ℎ→𝑗(𝑧𝑗) from each of 

its neighbours ℎ ∈ 𝒩\𝑗\{𝑖} except its target vertex 𝑖. Figure 6 shows a typical illustration of the 

schedule of messages received by a given vertex from its neighbours other than the target vertex, and 

the message it sends to its target neighbouring vertex. The received messages are multiplied together 

for each of the possible values of 𝑧𝑗 and then scaled with the vertex and edge potentials 𝜑𝑗(𝑧𝑗) and 

𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗) for a given value of the state 𝑧𝑖  of 𝑖. The resulting scaled products of messages are then 

summed over all of the possible values of 𝑧𝑗 and then forwarded by the vertex 𝑗 to the vertex 𝑖 

encoding the belief of 𝑗 regarding the state of 𝑖 being equal to 𝑧𝑖. The observed vertices in a hidden 

MRF also send messages to their neighbouring latent vertices, however they cannot receive any 

messages as their values are fixed. 

 

Figure 6: A schematic illustration of message passing. The light-grey circle represents an observed vertex (or 

variable), dark-grey circles represent latent vertices, and the solid lines connecting these circles represent edges in 

the graphical model. Double-lined arrows represent messages flowing between vertices as labelled. The vertex 𝑗 

receives messages 𝓂.→𝑗  from all of its neighbours (including the observed vertex 𝒙𝑗) except the vertex 𝑖 which is 

the current target for a message from 𝑗. The messages received by 𝑗 are combined together and encoded into a 

message 𝓂𝑗→𝑖 according to equation (31). The encoded message 𝓂𝑗→𝑖  is then forwarded by 𝑗 to 𝑖. Only latent 

vertices can receive messages. Observed vertices can only send messages to their neighbouring latent vertices, and 

cannot receive any messages as their values are fixed. Propagation of messages in this manner between all vertices 

in a graph constitutes what is commonly known as the belief propagation (BP) algorithm. 

Equation (31) is often referred to as the sum-product equation for obvious reasons and may 

be solved using the belief propagation (BP) algorithm. The BP algorithm is an exact inference method 

for tree-structured graphs in which case it can be shown to converge to the true marginal distributions 

in a number of iterations equal to the diameter of the tree (Koller & Friedman, 2009). In cyclic graphs, 

a variant of BP known as the loopy belief propagation (LBP) can be used which is an approximate 

inference method. LBP is not guaranteed to converge, however, it has been shown empirically to 

converge in most cases (Pearl, 1982 & 1988; Murphy et al. 1999). We discuss this point further in 

section 9, but the LBP algorithm has seen wide applicability and success in various fields of research, 

for example in statistics (e.g., Pearl 1988; Yasuda, 2015), digital signal and image processing (e.g., 
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Sudderth & Freeman, 2008), artificial intelligence (e.g., Tatikonda & Jordan, 2002) and biology (e.g., 

Sinoquet & Mourad, 2014). The LBP is a variant of BP in which messages are passed iteratively until 

convergence is detected or until a maximum number of iterations is exceeded. Convergence may be 

detected if less than a predefined threshold number of vertices are updated, or all vertices are 

updated by an amount less than a predefined tolerance. 

Messages are generally initialized with unity or with random numbers greater than a positive 

tolerance, and then updated according to a pre-defined message schedule using equation (31). After 

the messages have converged based on some convergence detection criteria, the vertex beliefs are 

updated according to equation (29) to give approximate marginal posterior distributions. Despite that 

the vertex potentials 𝜑𝑖(𝑥𝑖) and the edge potentials 𝜓𝑖𝑗(𝑧𝑖, 𝑧𝑗) need not be exact probabilities, their 

marginalization and normalization ensures numerical stability of the LBP algorithm. Also, since the LBP 

involves several iterative multiplications of potential functions at each vertex, the LBP algorithm is 

usually run in the logarithmic domain in order to avoid numerical underflow. 

The LBP algorithm may also be used to perform maximum a posteriori (MAP) inference which 

computes the most likely configuration, rather than the approximate marginal posterior distributions. 

MAP inference minimizes the error probability that the most likely configuration, also known as the 

MAP estimate, does not coincide with the true one. This can be achieved by replacing the summation 

in the sum-product equation (31) with the max function yielding the corresponding max-product 

equation as 

𝓂𝑗→𝑖(𝑧𝑖) ∝ max
𝑧𝑗

{𝜑𝑗(𝑧𝑗)𝜓𝑖𝑗(𝑧𝑖 , 𝑧𝑗) ∏ 𝓂ℎ→𝑗(𝑧𝑗)

ℎ∈𝒩\𝑗\{𝑖}

} (32) 

The LBP algorithm on a MRF is summarized in  Algorithm 1. If Algorithm 1 converges, the 

beliefs 𝑏𝑖(𝑧𝑖) and 𝑏𝑖𝑗(𝑧𝑖, 𝑧𝑗) are updated using equations (29) and (30). The variational distribution 

𝒬(𝑡+1) at the end of the E-step of (𝑡 + 1)th  iteration of the EM algorithm is then approximated to 

𝒫(𝒛|𝒙) using equation (28). 
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Algorithm 1: Loopy belief propagation over an undirected graphical model 𝔾(𝒱, ℰ) with 

accuracy ε and for a maximum number of iterations L. Comments follow the hash signs ‘#’ 

till the end of each line. 

1. Set sum_product ← true # or false for max-product 

2. Initialize messages 𝓂𝑗→𝑖
(0)(𝑧𝑖) 

3. Set 𝑙 ← 1 # LBP iteration number 

4. while 𝑙 ≤ 𝐿 

5.    Set 𝛿 ← 0 

6.    for each 𝑖 ∈ 𝒱 

7.       for each 𝑗 ∈ 𝒩\𝑖 ⊂ 𝒱 

8.          if sum_product # for sum-product algorithm 

9.             Compute 𝓂𝑗→𝑖
(𝑙)(𝑧𝑖) using equation (31) 

10.          else # for max-product algorithm 

11.             Compute 𝓂𝑗→𝑖
(𝑙)(𝑧𝑖) using equation (32) 

12.          end if 

13.          Set 𝛿 ← 𝑚𝑎𝑥 (𝛿, 𝓂𝑗→𝑖
(𝑙)(𝑧𝑖) −𝓂𝑗→𝑖

(𝑙−1)(𝑧𝑖)) 

14.       end for 𝑗 

15.    end for 𝑖 

16.    if 𝛿 < 𝜀 

17.       Update beliefs using equations (29) and (30) 

18.       print ‘Converged!’ 

19.       exit 

20.    end if 

21.    Set 𝑙 ← 𝑙 + 1 

22. end while 

23. print ‘Not converged!’ 

5.2. M-Step – Estimation of model parameters 𝚯 from the current estimate of 𝓠 

In the M-step, the current estimate of the variational distribution 𝒬(𝑡+1) obtained from the E-

step is used to compute the updated set of model parameters Θ(𝑡+1) that maximize the free-energy 

ℱ(𝒬, Θ) with respect to Θ. The M-step may therefore be written as 

Θ(𝑡+1) = argmax
Θ

 ℱ(𝒬(𝑡+1), Θ) = argmax
Θ

 𝔼𝒬(𝑡+1)[ℒ(Θ; 𝒙, 𝒛)] (33) 

which follows from the fact that 𝒮𝒬(𝒛) in equation (23) is independent of the model parameters Θ. 

Thus maximizing ℱ(𝒬, Θ) with respect to Θ only requires that 𝔼𝒬[ℒ(Θ; 𝒙, 𝒛)] be maximized with 

respect to Θ. Accordingly, it turns out that the M-step may only require a few statistics of the latent 

variables 𝒛 computed in the E-step, instead of the full distribution 𝒬(𝑡+1)(𝒛|𝒙). Expanding equation 

(33) in terms of the incomplete log-likelihood and substitution from equation (14) gives 
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Θ(𝑡+1) = argmax
Θ

∑∑𝑏𝑖
(𝑡+1)(𝑧𝑖) (−

𝑛2

2
log(2𝜋) −

𝑛

2
log|𝜮𝜺|

𝑧𝑖𝑖

−
1

2
(𝒙𝑖 − 𝑹𝒩𝑖

𝜷)
𝑇
𝜮𝜺

−1(𝒙𝑖 − 𝑹𝒩𝑖
𝜷)) 

(34) 

The solution to the above equation can be obtained with and without the assumption of 

homoscedasticity whereby the covariance matrix 𝜮𝜺 is assumed to be scalar such that 𝜮𝜺 = 𝜎
2𝑰. With 

this assumption, maximizing log-likelihood under the constraints ∑ 𝑏𝑖(𝑧𝑖)𝑧𝑖 = 1 is equivalent to 

minimizing the residual sum-of-squares 

𝜷̂ = argmin
𝜷

∑(𝒙𝑖 − 𝑹𝒩𝑖
𝜷)

𝑇
(𝒙𝑖 − 𝑹𝒩𝑖

𝜷)

𝑖

 (35) 

which gives the ordinary least-squares (OLS) solution 

𝜷̂𝑶𝑳𝑺 = (𝑹
𝑻𝑹)

−𝟏
𝑹𝑻𝒙 (36) 

The OLS solution is also the unbiased maximum-likelihood solution if 𝑹 is a full-rank matrix, otherwise 

one may seek the regularized least squares (RLS) solution given by 

𝜷̂𝑅𝐿𝑆 = (𝑹
𝑇𝑹+ 𝑘𝑰)−1𝑹𝑇𝒙 (37) 

where 𝑘 is the control parameter which governs the relative strength of regularization (damping) 

applied. Similarly, the maximum-likelihood solution of equation (34) with respect to 𝜮𝜺 = 𝜎
2𝑰 is given 

by 

𝜎̂2 =
1

𝑛
∑(𝒙𝑖 −𝑹𝒩𝑖

𝜷̂)
𝑇
(𝒙𝑖 −𝑹𝒩𝑖

𝜷̂)

𝑖

 (38) 

but this is a biased estimator; the bias-corrected estimate (Rencher, 2002) is given by 

𝜎̂2 =
1

𝑛 − 𝑞 − 1
∑(𝒙𝑖 − 𝑹𝒩𝑖

𝜷̂)
𝑇
(𝒙𝑖 − 𝑹𝒩𝑖

𝜷̂)

𝑖

 (39) 

where we recall that 𝑞 = |𝒩𝑖| is the neighbourhood cardinality, which is assumed to be a constant for 

each location 𝑖 in our graphical model. In the general case of heteroscedasticity whereby the 

covariance matrix is non-scalar, maximizing log-likelihood is equivalent to minimizing the residual 

weighted sum-of-squares 

Θ̂ = argmin
Θ

{ 𝑛 log|𝜮𝜺| +∑(𝒙𝑖 − 𝑹𝒩𝑖
𝜷)

𝑇
𝜮𝜺 

−1(𝒙𝑖 − 𝑹𝒩𝑖
𝜷)

𝑖

} (40) 

With 𝜮̂𝜺 = (𝜎̂𝑘𝑙), 𝑘, 𝑙 ∈ {1,… , 𝑝} where 𝜎̂𝑘𝑙 is given by the OLS solution in equation (39), the 

generalized least-squares (GLS) solution is given by 

𝜷̂𝐺𝐿𝑆 = (𝑹
 𝑇(𝑰𝑛⊗ 𝜮̂𝜺)

−1
𝑹)

−1
𝑹 𝑇(𝑰𝑛⊗ 𝜮̂𝜺)

−1
𝒙 (41) 
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where ⊗ represents the Kronecker product defined between two matrices 𝑨 = [𝑎𝑚𝑛] and 𝑩 = [𝑏𝑝𝑞] 

as a (𝑚𝑝 × 𝑛𝑞) matrix with elements 

(𝑨⊗𝑩)𝑖,𝑗 = 𝑎⌊(𝑖−1)/𝑝⌋+1,⌊(𝑗−1)/𝑞⌋+1 𝑏𝑖−⌊(𝑖−1)/𝑝⌋𝑝,𝑗−⌊(𝑗−1)/𝑞⌋𝑞,  

where ⌊∙⌋ represents the floor function which returns the greatest integer less than or equal to its 

argument. 

 The parameters 𝝁𝑘 and 𝜮𝑘, 𝑘 ∈ 𝒢 of the Gaussian mixture distribution are iteratively updated 

by weighted averages of the seismic attributes 𝒙𝑖 at each location 𝑖 with respect to the estimated 

posterior marginal distributions 𝒫̂𝑖(𝑧𝑖|𝒙, Θ) as estimated in the E-step to honor the spatial 

dependence among 𝑧𝑖’s, as 

𝝁𝑘
(𝑡+1) =

∑ 𝒫̂𝑖(𝑧𝑖|𝒙, Θ
(𝑡))𝒙𝑖

𝑛
𝑖=1

∑ 𝒫̂𝑖(𝑧𝑖|𝒙, Θ
(𝑡))𝑛

𝑖=1

 (42) 

and 

𝜮𝑘
(𝑡+1) =

∑ 𝒫̂𝑖(𝑧𝑖|𝒙, Θ
(𝑡)) ∙ (𝒙𝑖 − 𝝁𝑘

(𝑡+1))(𝒙𝑖 − 𝝁𝑘
(𝑡+1))

𝑇𝑛
𝑖=1

∑ 𝒫̂𝑖(𝑧𝑖|𝒙, Θ
(𝑡))𝑛

𝑖=1

 (43) 

where 𝒫̂𝑖(𝑧𝑖|𝒙, Θ
(𝑡)) is approximated by the vertex beliefs 𝑏𝑖

(𝑡)(𝑧𝑖) estimated from the LBP algorithm 

in the E-step of 𝑡th iteration. 

In summary, at the end of (𝑡 + 1)th iteration the E-Step of the EM algorithm yields the free 

energy ℱ(𝒬(𝑡+1), Θ(𝑡)) equal to ℒ(Θ(𝑡); 𝒙) which is the upper bound of ℱ(𝒬, Θ(𝑡)), and the M-step 

maximizes ℱ(𝒬(𝑡+1), Θ(𝑡)) with respect to Θ. Therefore the E-step improves the estimate of the 

posterior distribution of facies 𝒫̂(𝒛|𝒙, Θ) in the model space while the M-step improves the estimates 

of model parameters Θ in the attribute space, such that the combined E-M steps are guaranteed not 

to decrease the incomplete log likelihood ℒ(Θ; 𝒙) during any iteration of the EM algorithm. 

6. Computational Cost 

The computational cost of this algorithm is defined by the cost of the loopy belief propagation 

algorithm in the E-step and the solution of the linear problem in the M-step. The loopy belief 

propagation is an iterative procedure and its computational cost depends on the number of iterations. 

The cost of E-step is therefore given by 

𝐶𝐸 ≤ 𝑛 ∗ 𝐾
2 ∗ max |𝒩| ∗ 𝐿 (44) 

where 𝑛 = |𝒱| is the number of locations (vertices in the graph), 𝐾 = |𝒢| is the number of facies 

considered, max |𝒩| represents the maximum neighbourhood cardinality (the maximum number of 

neighbouring vertices 𝒩\𝑖 of any vertex 𝑖 ∈ 𝒱 in the graph), and 𝐿 is the total number of iterations in 

the LBP algorithm. Although there are cases when belief propagation does not converge (as in the 

case of repulsive potential functions, Koller & Friedman, 2009), we consider the number of iterations 

assuming that the algorithm does converge. If the belief propagation algorithm converges, the 
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required number of iterations depends on the desired accuracy in Algorithm 1, the initial values of 

beliefs, model size and complexity. Initial beliefs close to a local optimum result in a smaller number 

of iterations. A good choice for initial beliefs are the localized likelihoods (Walker & Curtis, 2014; 

Nawaz & Curtis, 2017), which are then updated based on the priors by the belief propagation 

algorithm.  

Starting with reasonable initial beliefs, the belief propagation algorithm requires 10’s to 100’s 

of iterations in most cases, depending on the model size and complexity. Different strategies may be 

adopted to limit computational demands in models of large sizes and complexity. For example, the 

regions in the graph in which beliefs do not change significantly in some pre-defined number of 

previous iterations may be eliminated from future iterations, thus effectively reducing the size of the 

graph. 

The computational cost of solving the linear equations in the M-step is given by 

𝐶𝑀 = 𝑛 ∗ 𝑝 ∗ (max |𝒩|)
2 (45) 

where 𝑝 is the number of input seismic attributes at each location. Since the E and M steps run 

alternately, the computational cost of the two steps is a sum of the computational cost of each step. 

The total computational cost of the EM algorithm is therefore 

𝐶𝑡𝑜𝑡𝑎𝑙 ≤ (𝐶𝐸 + 𝐶𝑀) ∗ 𝑡𝑚𝑎𝑥 (46) 

where 𝑡𝑚𝑎𝑥 is the total number of EM iterations. 

Convergence of the EM algorithm is fast and guaranteed provided that the belief propagation 

algorithm in the E-step converges. The important considerations for computational cost are the 

number of facies (𝐾 = |𝒢|) considered and the maximum size (max |𝒩|) of the neighbourhood 

structure in the graph, as the above expressions (44) and (45) are quadratic in these variables, 

respectively. The size of the neighbourhood structure defines the extent of spatial correlations in 

seismic attributes that is incorporated within the likelihood function. The maximum size of the 

neighbourhood structure must therefore not be excessively large in order to avoid prohibitive 

computational costs. For this reason, the likelihoods in our method cannot be solved in fully non-

localized form in realistic problems, hence the term quasi-localized. Our method is therefore based on 

a trade-off between computational tractability and the extent of spatial correlations incorporated 

from the data. All other parameters in the above expressions (44) and (45) are linear and therefore do 

not cause serious computational implications. 

In previous research (Rimstad & Omre, 2010; Walker & Curtis, 2014; Nawaz & Curtis, 2017) 

the size of the space of geological facies 𝐾 = |𝒢| was critical as the computational cost of those 

algorithms increases exponentially with  𝐾. It was therefore required that  𝐾 is chosen to be as small 

as possible. As a consequence, that research considered typically small numbers of facies (e.g., Walker 

& Curtis (2014) and Nawaz & Curtis (2017) inverted for the same 3 classes as in the current synthetic 

test – see section 7, while Rimstad & Omre (2010) inverted for 4 classes). If the range of distinct facies 

classes is large, one was required to limit the number of facies classes, for example by merging or 

nesting relatively closely related facies (e.g., limestone and dolomite, or shale and marl) within one 

another. By contrast, the computation cost of our algorithm herein is only quadratic in  𝐾. Thus our 

algorithm may be able to operate with a larger number of facies compared to previous algorithms 
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without requiring merging or nesting of similar facies before incurring serious computational 

limitations. 

Since both the LBP and the EM algorithms are iterative, the current method is more 

demanding of computational power and is not as parallelizable as the HMM based method of Nawaz 

& Curtis (2017) which is mainly analytical and can easily be parallelized as it does not require iterative 

convergence. However, the cost of the current method confers the additional advantages of 

parameter optimization as part of the inversion scheme, and the fact that it does not require the 

assumption of localized likelihoods as is required in the algorithms of Walker & Curtis (2014) and 

Nawaz & Curtis (2017). 

For large models which require parallelization of the algorithm in order to improve 

computational speed, each iteration of the LBP algorithm in the E-step may be parallelized over the 

vertices of the graph (the for loop in line 6 of Algorithm 1). A key consideration concerning the 

convergence and computational performance of the LBP algorithm is message scheduling. Although 

synchronous scheduling may be desired where all of the messages are updated at once for higher 

computation efficiency, an asynchronous schedule is optimal both for convergence and performance. 

Koller & Friedman (2009) suggested a residual belief propagation schedule which dynamically detects 

convergence in different parts of the graph and schedules messages in the parts where beliefs disagree 

most strongly. Also, the solution of the linear problem in the M-step may be parallelized to improve 

performance (e.g., Koc & Piedra, 1991). 

The memory required by the current algorithm is similar to that of Nawaz & Curtis (2017) and 

is far less than that required to store the partial conditional distributions in the method of Walker & 

Curtis (2014). Although below we demonstrate the method on a 2D model, our method can be applied 

to practical 3D models with reasonably sized neighbourhood structures without requiring any 

modifications or extensions, and without facing severe computational limitations on standard modern 

computers: this follows from the fact that our method is based on a linear indexing of cells, and models 

of any dimensionality can be unwrapped to conform to such linear indexing. 

7. Synthetic Test 

In order to test our algorithm, and in particular to benchmark it against previous research, we 

generated synthetic seismic attribute data similar to that used in Walker & Curtis (2014) and Nawaz & 

Curtis (2017). The synthetic example is based on two vertical cross-sections extracted from a 3D 

geological process model that contains channel-filled and overbank sand deposits with background 

shale. The channel sands are mostly filled with brine with some of the channels containing gas such 

that the two fluids obey gravitational ordering (gas above brine, all else being equal). The lithofacies 

considered for discrimination are therefore given by the sample space 

𝒢 = { shale, brine-sand, gas-sand }.  

We used one of the vertical cross-sections with dimensions of 200 x 200 cells as a given training image 

(Figure 7a), and another with dimensions of 100 x 100 cells as the target model (Figure 7b) 

representing the unknown true earth. Since both the training image and the target cross-section were 

extracted from the same geological process model, they are assumed to contain statistically similar 

patterns and conditional distributions of facies. 
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The training image encodes the spatial conditional prior distributions of facies graphically. 

These can be extracted by scanning it with a template of cells whose shape and size is defined by the 

neighbourhood structure 𝒩𝑖. In our example, the prior information was extracted from the training 

image in terms of prior probabilities 𝒫 (𝑧𝑖|𝑧𝑗 ∈ 𝒛𝒩\𝑖
) constructed from histograms of various facies 

configurations that occur in the image, where 𝒛𝒩\𝑖
= {𝑧𝑗 ∈ 𝒛: 𝑗 ≠ 𝑖 ˄ (𝑖, 𝑗) ∈ ℰ} for various 

configurations of 𝑖 and 𝑗 that define their relative positions within a square 3x3 cell neighbourhood 

structure. The prior information encoded in 𝒫 (𝑧𝑖|𝑧𝑗 ∈ 𝒛𝒩\𝑖
) represents the probability of observing 

facies 𝑧𝑖 ∈ 𝒢 at the vertex 𝑖 ∈ 𝒱 given that facies 𝑧𝑗 ∈ 𝒢 exists at vertex 𝑗 ∈ 𝒩\𝑖 for every (𝑖, 𝑗) ∈ ℰ. 

These are the so called two-point statistics from the training image. These prior probabilities 

encapsulate the spatial conditional distributions of facies under the assumption that they are 

stationary over the entire model space. 

 

 

 

Figure 7: The training image (TI) and the target image extracted as 2D cross-sections from a 3-D geological process 

model containing channels with filled and overbank sand deposits and shale in the background. The sand is filled 

with brine or gas, which obey gravitational ordering of the two fluids. (a) The training image: this represents a 

conceptual depiction of typical forms of expected geological structures and spatial distributions of facies. It lacks 

any location-specific information about the real geology of the target image. It was scanned with a 3x3 template 

to obtain spatial conditional prior probability distributions of facies (for pairs of locations at a time) to obtain prior 

information related to the spatial continuity and association of various geological facies. (b) The target image: this 

represents the true geological model which is the target for spatial facies inversion. It is assumed to contain 

statistically similar spatial patterns and conditional distributions of facies as the training image. 

As discussed in section 6, the computational cost of the M-step (using the linear problem) 

increases as the square of the maximum neighbourhood cardinality in the graph. The computational 

cost of the E-step (the loopy belief propagation algorithm) only increases linearly with the maximum 

neighbourhood cardinality. The size of the neighbourhood template could therefore be reasonably 

increased from 3x3 model cells (or graph vertices) without incurring any serious computational 

limitations. Even if a 3x3 neighbourhood template is too small to reproduce more complex geological 

patterns (such as complex aerial meandering of channels in a deltaic environment), it is shown below 

to reproduce the cross-sectional patterns of channels in our model reasonably well. 

          Gas-sand                    Brine-sand                 Shale 

(a) Training image                                                                       (b) Target image 
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Lithology-Fluid Class 
Clay Content by Volume 

(𝑽𝒄𝒍𝒂𝒚) 

Sandstone Matrix Porosity 

(𝝋𝒔𝒂𝒏𝒅) 

Water Saturation 

(𝑺𝒘) 

Shale [ 0.50, 0.90 ] [ 0.10, 0.40 ] [ 1.00, 1.00 ] 

Brine-sand [ 0.00, 0.20 ] [ 0.20, 0.40 ] [ 0.40, 1.00 ] 

Gas-sand [ 0.10, 0.40 ] [ 0.20, 0.40 ] [ 0.00, 0.30 ] 

Table 1: Lower and Upper bounds used to define Uniform distributions 𝑃(𝒎𝑘  | 𝑧𝑖) over petrophysical parameters 

𝒎𝑘 = [𝑉𝑐𝑙𝑎𝑦 , 𝜑𝑠𝑎𝑛𝑑 , 𝑆𝑤]𝑘. 

Lithology-Fluid Class 
Covariance matrix for seismic attributes: 

P- and S-wave impedances 

Shale [
1.0 0.3
0.3 0.5

] 

Brine-sand [
0.8 0.3
0.3 0.6

] 

Gas-sand [
0.7 0.3
0.3 0.5

] 

Table 2: Covariance matrices of seismic attributes (P- and S-wave impedances) for the three facies considered. The 

diagonal entries in the above matrices are variances of P- and S-wave impedances, whereas the cross-diagonal 

entries are the covariances of P- and S-wave impedances. 

Synthetic P and S-wave impedance profiles were generated from the target cross-section to 

represent the corresponding real-data derived seismic attributes. These synthetic seismic attributes 

were then inverted using our algorithm to estimate marginal posterior distributions of geological 

facies with the aim to reproduce the target cross-section. Synthetic attributes 𝒙′𝑖 were first generated 

independently in each model cell 𝑖 from a Gaussian mixture distribution using the Yin-Marion shaly-

sand model (Marion, 1990; Yin et al. 1993; Avseth et al. 2005). The Yin-Marion model is defined by the 

petrophysical parameters 𝒎𝑘 = [𝑉𝑐𝑙𝑎𝑦, 𝜑𝑠𝑎𝑛𝑑 , 𝑆𝑤]𝑘, where 𝑉𝑐𝑙𝑎𝑦 represents the volume of 

clay, 𝜑𝑠𝑎𝑛𝑑 represents the sand matrix porosity, 𝑆𝑤 represents the water saturation (such that the gas 

saturation is given by 1 − 𝑆𝑤), and the subscript 𝑘 refers to the facies. The conditional probability 

𝒫(𝒙′𝑖 | 𝑧𝑖) of local facies responses 𝒙′𝑖 given the geological facies 𝑧𝑖  at location 𝑖 is then given by 

𝒫(𝒙′𝑖 | 𝑧𝑖) =∭ 𝒫(𝒙′𝑖 | 𝒎𝑘) 𝒫(𝒎𝑘  | 𝑧𝑖) 𝑑𝒎𝑘

𝒖

𝒍

 (47) 

where 𝒍 and 𝒖 (with boldface vector notation) respectively represent the lower and the upper vector 

bounds for each of the three petrophysical parameters in 𝒎𝑘, and are given in Table 1. 

The conditional distribution 𝒫(𝒎𝑘  | 𝑧𝑖) in equation (47) represents the probabilistic 

relationship between the petrophysical parameters 𝒎𝑘 and the facies 𝑧𝑖  in each cell of the target 

cross-section, and was set to a Uniform distribution within the pre-defined bounds 𝒍 and 𝒖 on 𝒎𝑘 

(Table 1). The conditional distribution 𝒫(𝒙′𝑖 | 𝒎𝑘) in equation (47) represents the statistical rock 
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physics model and was set to a Normal distribution 𝑁(𝝁𝑘 , 𝜮𝑘), where 𝝁𝑘 = 𝑓(𝒎𝑘) is given by the Yin-

Marion shaly-sand model and 𝜮𝑘 is the covariance matrix per facies given in Table 2 for the three 

facies considered. Collocated synthetic seismic attributes, P and S-wave impedances 𝒙𝑖, were then 

generated in each cell 𝑖 from local facies responses 𝒙′𝒩𝑖
within the neighbourhood 𝒩𝑖 of 𝑖 in order to 

model the non-localized blurring effect of seismic imaging. This is achieved by using a Gaussian 

probabilistic forward model 𝒫(𝒙𝑖|𝒛𝒩𝑖
, Θ) = 𝑁(𝑹𝒩𝑖

𝜷, 𝜮𝜺) from the design matrix 𝑹𝒩𝑖
 of expected 

local responses of facies in each cell in 𝒩𝑖 and the spatial filter 𝜷 (see section 4.2) which was chosen 

as a 5x5 banana-shaped kernel to represent the kind of blurring that may take place during seismic 

migration using a reference velocity model that is slightly too slow: 

𝛽 =

[
 
 
 
 
 
 

  

0 0 0 0 0

0 0 0 0 0

0 0 0.25 0 0

0 0.125 0.125 0.125 0

0.0625 0.125 0 0.125 0.0625

  

]
 
 
 
 
 
 

 (48) 

and the resulting P and S-wave impedances are shown in Figure 8. 

 

 

Figure 8: Synthetic (a) P- and (b) S-wave impedance attributes first sampled independently in each cell of the target 

cross-section in Figure 7b using a probabilistic forward model based on a Gaussian distribution per facies with 

mean computed from the yin-Marion shaly-sand rock physics model (Marion 1990; Yin et al. 1993; Avseth et al. 

2005) and covariance matrix given in Table 2. The impedance sections thus obtained are then spatially filtered 

using the 5x5 banana-shaped kernel in equation (48) to mimic blurring caused by non-localized effects of seismic 

data processing. 

 

(a) P-wave impedance                                                                 (b) S-wave impedance 
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Figure 9: Model space plots of initial cell-wise marginal likelihoods of (a) shale, (b) brine-sand and (c) gas-sand 

computed from the initial estimates of parameters, and (d) entropy as a measure of uncertainty in the model under 

the initial likelihoods. 

 

 

 

 

Figure 10: Attribute space plots of initial cell-wise marginal likelihoods of (a) shale, (b) brine-sand and (c) gas-sand 

computed from the initial estimates of parameters, and (d) entropy as a measure of uncertainty of the model under 

the initial likelihoods. Equidistant contours represent the initial Gaussian mixture distribution for the three facies. 

(a) Initial shale marginal likelihood                                            (b) Initial brine-sand marginal likelihood 

(c) Initial gas-sand marginal likelihood                                     (d) Entropy of initial marginal likelihoods 

(a) Initial shale marginal likelihood                                               (b) Initial brine-sand marginal likelihood 

(c) Initial gas-sand marginal likelihood                                          (d) Entropy of initial marginal likelihoods 
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The seismic attributes and the model parameters were then inverted with the aim to 

reproduce the target cross-section. The initial estimates of parameters 𝝁𝑘 and 𝜮𝑘 , 𝑘 ∈ 𝒢 of the 

Gaussian mixture distribution were obtained using a mixture density neural-network (MDN; Meier et 

al. 2007a,b & 2009; Shahraeeni & Curtis, 2011; Shahraeeni et al. 2012) based clustering of seismic 

attributes. In a real problem, estimates of these parameters may also be obtained from prior 

information based on well-logs or other data sources. The spatial filter 𝜷 was initialized to a centered-

spike with amplitude equal to 1 at the central element of the kernel while the rest of the elements 

were all set to 0. The initialization of 𝜷 as a centered-spike effectively results in estimation of localized 

likelihoods 𝒫(𝒙𝑖 | 𝑧𝑖) as a starting point before the parameters Θ (and hence 𝜷) are updated during 

the M-step of the EM algorithm. The localized likelihoods were estimated from a GMM with 

components 𝑁(𝝁𝑘 , 𝜮𝑘), 𝑘 ∈ 𝒢. Since the localized likelihoods are estimated only from the seismic 

attributes observed at the location of estimation, they are susceptible to noise in the data (Figure 9 & 

Figure 10) and therefore do not abide by the geological plausibility rules of various facies 

configurations (such as gravitational ordering of fluids) and the conditional spatial distributions of 

facies depicted in the training image. 

The E-step of the EM algorithm estimates marginal posterior distributions in the model space 

using the loopy belief propagation (LBP) algorithm with the initial estimate of Θ in the first iteration. 

Contrary to the general practice of initializing the LBP algorithm with random or constant beliefs, we 

initialized it with the localized-likelihoods estimated using a GMM with components 𝑁(𝝁𝑘 , 𝜮𝑘), 𝑘 ∈

𝒢 obtained from the Yin-Marion rock physics model. Such initialization of vertex beliefs with the 

estimated localized likelihoods allowed faster convergence. The parameters Θ were then updated in 

the attribute space during the M-step using the current estimate of posterior marginal distributions 

𝒫𝑗(𝑧𝑗) obtained from the E-step, as follows. The filter coefficients 𝜷 were estimated using equation 

(41) with the expected facies responses 𝒓𝑗 at each location 𝑗 computed using equation (8). The 

parameters 𝝁𝑘 and 𝜮𝑘, 𝑘 ∈ 𝒢 were updated using equations (42) and (43). The parameters updated 

during the M-step were then used in the E-step of the subsequent iteration until convergence. On 

convergence, the EM algorithm resulted in estimates of quasi-localized likelihoods that show a higher 

quality of facies discrimination (Figure 11 & Figure 12), and the estimates of marginal posterior 

distributions 𝒫(𝒛𝑖|𝒙, Θ̂) for facies 𝒛 in each model cell 𝑖 (Figure 13 & Figure 14) given the observed 

seismic attributes 𝒙 and the final estimate Θ̂ of parameters Θ, by incorporating both the prior 

information 𝒫(𝒛) elicited from the training image (Figure 7a) and the final estimates of non-localized 

likelihoods 𝒫(𝒙|𝒛, Θ̂) (Figure 11a-c). 

Figure 15 shows the maximum a posteriori (MAP) estimate of the geological facies obtained 

from the max-product equation (32) based loopy belief propagation using the parameters updated by 

the EM algorithm. The MAP estimate matches quite reasonably with the ‘true’ geology (Figure 7b). 

Figure 9-Figure 14 (d) show entropy of distributions in each of the corresponding figures (a-c) as a 

measure of uncertainty under the respective distributions. It is evident from these figures that the 

entropy reduces significantly starting with the entropy of the localized likelihoods in Figure 9d & Figure 

10d to the entropy in the marginal posterior distributions in Figure 13d & Figure 14d. 
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Figure 11: Model space plots of updated cell-wise quasi-localized marginal likelihoods of (a) shale, (b) brine-sand 

and (c) gas-sand computed from the updated model parameters after running the EM algorithm, and (d) 

normalized entropy as a measure of model uncertainty under the updated likelihoods. 

 

 

 

 

Figure 12: Attribute space plots of updated cell-wise quasi-localized marginal likelihoods of (a) shale, (b) brine-

sand and (c) gas-sand computed from the updated model parameters after running the EM algorithm, and (d) 

normalized entropy as a measure of the model uncertainty under the updated likelihoods. Equidistant contours 

represent the Gaussian mixture distribution for the three components (facies). 

(a) Updated shale marginal likelihood                                        (b) Updated brine-sand marginal likelihood 

(c) Updated gas-sand marginal likelihood                                  (d) Entropy of updated marginal likelihoods 

(a) Updated shale marginal likelihood                                          (b) Updated brine-sand marginal likelihood 

(c) Updated gas-sand marginal likelihood                                    (d) Entropy of updated marginal likelihoods 
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Figure 13: Model space plots of cell-wise marginal posterior distributions of (a) shale, (b) brine-sand and (c) gas-

sand, and (d) entropy as a measure of model uncertainty under the marginal posterior distributions. 

 

 

 

 

Figure 14: Attribute space plots of cell-wise marginal posterior distributions of (a) shale, (b) brine-sand and (c) gas-

sand, and (d) normalized entropy as a measure of model uncertainty under the marginal posterior distributions. 

Equidistant contours represent probability distributions of individual components of Gaussian mixture. 

(a) Shale marginal posteriors                                                    (b) Brine-sand marginal posteriors 

(c) Gas-sand marginal posteriors                                             (d) Entropy of marginal posteriors 

(a) Shale marginal posteriors                                                        (b) Brine-sand marginal posteriors 

 

(c) Gas-sand marginal posteriors                                                 (d) Entropy of marginal posteriors 
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Figure 15: Model space plot of the inverted MAP estimate of facies in each of the model cell using the variational 

Bayesian inversion (VBI) showing a reasonable reconstruction of the target model (Figure 7b).  

 

 

 

Figure 16: Attribute space plots of (a) components of the Gaussian mixture model, and the seismic attributes 

colour-coded with the facies of maximum marginal posterior distributions: shale (green colour), brine-sand (blue 

colour) and gas-sand (red colour). (b) The Gaussian mixture distribution obtained from a weighted sum of Gaussian 

components per facies as displayed in (a). 

Although the prior information 𝒫(𝒛) was formulated from the training image as spatial 

distributions between just two neighbouring locations at a time (so called 2-point statistics, or pair-

wise cliques), the approximate posterior distributions 𝒫(𝒛|𝒙, Θ̂) estimated by LBP algorithm are 

reasonably close to the desired target distributions 𝒫(𝒛|𝒙, Θ). This suggests that Bayesian inversion 

using non-localized likelihoods requires much less prior information about the conditional spatial 

distributions of facies to yield reliable estimates of posterior marginal distributions of facies. By 

contrast, the previous research (Walker & Curtis, 2014; Nawaz & Curtis, 2017) based on localized 

likelihoods used prior information extracted using larger templates in the form of joint distributions 

of facies over multiple points at a time from the same training image (for geological patterns of the 

same complexity). This is evident from figures Figure 9 and Figure 11 since the localized likelihoods 

          Gas-sand                    Brine-sand                 Shale 

          Gas-sand                    Brine-sand                 Shale 

                  (a) Gaussian distributions per facies                                             (b) Gaussian mixture distribution 

https://doi.org/10.1093/gji/ggy163


Nawaz & Curtis, 2018. Variational Bayesian Inversion of Quasi-Localized Seismic Attributes for Spatial Distribution of Geological Facies 
Accepted Manuscript: Geophysical Journal International, ggy163, https://doi.org/10.1093/gji/ggy163 

37 
 

used in the first iteration of the EM algorithm are much noisier than the quasi-localized likelihoods 

estimated using parameters updated in the M-step. Our current algorithm can, however, be modified 

to incorporate the prior information from cliques of size greater than two. Such a modification is 

expected to allow the reconstruction of richer features observed in more complex geologies (we leave 

it for future research). 

It is also noteworthy that the marginal posterior distributions are updated in the model space 

during the E-step of the EM algorithm such that the spatial conditional distributions of various facies 

comply with those encapsulated in the training image. As a consequence of this, the model parameters 

are updated in the attribute space to reflect the inter-mixing of attributes (and overlap of their 

distributions) that are generated by different facies (Gaussian components) – see Figure 16. 

The coefficients of estimated spatial filter 𝜷̂ were estimated from the M-step of the last 

iteration of the EM algorithm under the constraint that the resulting matrix is laterally symmetric 

(symmetric across columns). The estimated coefficients are shown below in the matrix form 

𝛽̂ =

[
 
 
 
 
 
 

  

0 0 0 0 0

0 0 0 0 0

0 0 0.25 0 0

0.018 0.118 0.162 0.118 0.018

0.153 0.016 0.049 0.016 0.153

  

]
 
 
 
 
 
 

. (49) 

 

 

 

Figure 17: Comparison of (a) the spatial filter 𝜷 used to blur the synthetic attributes and (b) the recovered spatial 

filter 𝜷̂. The amplitudes are scaled to a maximum value of 0.25 in both the plots. 

Figure 17 shows a comparison of the spatial filter 𝜷 that was used to blur the seismic attributes and 

the estimated spatial filter 𝜷̂, both scaled to a maximum amplitude value of 0.25, showing that while 

not perfect, a reasonable estimate of the spatial blurring can be obtained. 

8. Comparison with inversion methods that use the localized 

likelihoods assumption 

The previously published methods of facies inversion from seismic attributes (e.g., Larsen et 

al. 2006; Ulvmoen & Omre, 2010; Ulvmoen et al. 2010; Walker & Curtis, 2014; and Nawaz & Curtis, 

2017) assume that any spatial correlations present in the data (seismic attributes) are a direct 

                                                    (a)                                                                               (b)  
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consequence of, and therefore can be completely described by, the spatial distribution of facies as 

encoded in the prior information, i.e., geological patterns depicted in the training image: this is the so 

called localized likelihoods assumption. In effect, these methods may not account for any spatial 

correlations present in the data due to other effects unrelated to the geology, such as those due to 

spatial blurring caused by processing related artefacts and limited resolution of seismic data. Also, 

such methods do not make effective use of any spatial correlations in the data that are related to the 

local geology. We hypothesize that these methods have been successful to-date mainly because they 

rely on the prior information to reconstruct the spatial distribution of facies, and not the likelihoods. 

This hypothesis suggests that in the case that the prior information is limited (e.g., using small 

neighbourhood templates to scan the training image) or is inconsistent with the true geology (e.g., if 

geological patterns in the training image are not rich enough or are different from those present in 

the true subsurface), the localized-likelihoods based inversion methods may not reconstruct the 

spatial distribution of facies successfully. The quasi-localized likelihoods, on the other hand, 

complement the prior information by incorporating the spatial correlations present in the data within 

some neighbourhood of each location in the model. Our method based on quasi-localized likelihoods 

is therefore expected to be more robust against insufficient or incorrect prior information. 

 

 

Figure 18: Model space plots of the inverted cell-wise marginal distributions per facies – shale, brine-sand and gas-

sand in the order from the top to the bottom row: (left column) true marginal distributions in the synthetic model 

as in Figure 7b, (middle column) that obtained using our current method which is based on the quasi-localized 

likelihoods, and (right column) that obtained using the method of Nawaz & Curtis (2017) which solves the problem 

using the localized likelihoods assumption. 

       True marginal                       Marginal posteriors using           Marginal posteriors using 

       distributions     quasi-localized likelihoods             localized likelihoods 
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In order to test our hypothesis we used our synthetic test data (from section 7) to compare 

our quasi-localized likelihoods based algorithm with the previous algorithm of Nawaz & Curtis (2017) 

which is based on a 2D-HMM and provides virtually analytic posterior marginal solutions using 

localized likelihoods. Henceforth this is referred to as the ‘localized-likelihoods based method’. The 

comparison is made in terms of the quality of inverted posterior marginal distributions per facies when 

the data is spatially blurred (i.e., when the seismic attributes for various facies overlap significantly in 

the attribute space) and the amount of prior information is either limited or inconsistent with the true 

geology. 

Figure 18 shows such a comparison with respect to the amount of prior information used. The 

prior information on the spatial distribution of facies is extracted from the training image by scanning 

it with a 3x3 template and then supplied to the localized-likelihoods based method of Nawaz & Curtis 

(2017). This corresponds to a clique size of 9, i.e., the prior information is encoded as a joint 

distribution over neighbouring vertices in a square matrix with 3 rows and 3 columns. In comparison, 

since our current method uses only pair-wise cliques, it requires the prior information to be 

formulated as spatial distributions between just two neighbouring locations at a time. Even though 

our current methods uses much less prior information, it reconstructs the marginal posterior 

distributions quite reasonably as it uses the quasi-localized likelihoods which is a less stringent 

assumption compared to the localized likelihoods. 

The results using the localized likelihoods based method (right column in Figure 18) show that 

this method could not discriminate between brine-sand and gas-sand and indeed failed to detect any 

gas-sand. Also the reconstruction of the spatial distribution of shale and brine-sand is not as good as 

in our current method (middle column in Figure 18). In this case, we found that if we increased the 

size of the prior template to 5x7, the localized-likelihoods based method can reconstruct the posterior 

marginal distributions just as reasonably as with quasi-localized likelihoods. This explains the previous 

success of methods that assumed localized likelihoods: they can work well with significantly non-

localized data, but only if the prior information supplied is sufficiently strong to overcome the 

erroneous assumption. 

Next we generated synthetic seismic attributes as described in section 7 except that the ‘true’ 

geology now contains dipping sand lenses (with no over-bank deposits), in a hypothetical scenario 

where the stratum is tilted after lithification (Figure 19). The same training image is used as in Figure 

7a with sand channels and over-bank deposits with a background shale in an assumed horizontal 

stratum (i.e., without tilting). This allowed us to make a comparison between the two methods when 

the prior information supplied in the form of a training image is inconsistent with the true geology 

(Figure 20). In this case, the prior information on the spatial distribution of facies is supplied to the 

localized-likelihoods based method of Nawaz & Curtis (2017) by using a 5x3 template. This 

corresponds to a clique size of 15, i.e., the prior information is encoded as a joint distribution over 

neighbouring vertices in a rectangular matrix with 5 rows and 3 columns. The prior information for 

our current quasi-localized likelihoods based method still comprises the joint distribution over just 

two neighbouring vertices. In this case the localized likelihoods based method fails to discriminate 

between shale and brine-sand, though the reconstruction of posterior marginal distributions of gas-

sand is somewhat reasonable (right column in Figure 20).  Our current method based on quasi-

localized likelihoods, however, reconstructs the posterior marginal distributions of all of the three 

facies quite well (middle column in Figure 20) and therefore proves to be significantly more robust 

against incorrect prior information than localized likelihoods based methods. 
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Figure 19: The target image representing the ‘true’ geological model consisting of dipping sand lenses (with no 

over-bank deposits), in a hypothetical scenario where the stratum is tilted after lithification. This is the target for 

spatial facies inversion in the case that the prior information presented in the form of training image in Figure 7a 

is inconsistent with this ‘true’ geological image. 

 

 

Figure 20: Model space plots of the inverted cell-wise marginal distributions per facies – shale, brine-sand and gas-

sand in the order from the top to the bottom row: (left column) true marginal distributions in the synthetic model 

as in Figure 7b, (middle column) that obtained using our method as presented in this paper which is based on the 

quasi-localized likelihoods, and (right column) that obtained using the method of Nawaz & Curtis (2017) which is 

based on the localized likelihoods assumption.  
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The above comparisons show that the inversion methods based on the localized likelihoods 

assumption require well informed priors: that is, the priors must be sufficiently informative to 

overcome errors due to the incorrect localized assumption, and must be consistent with the true 

geology. This means that the geological patterns depicted in a training image must be rich – diverse 

enough to include any possible facies patterns expected to be present in the subsurface. In other 

words, in order to use localized-likelihoods based methods we should have sufficient prior information 

about local geology to overcome errors caused by erroneous likelihoods. Our current method based 

on quasi-localized likelihoods, on the other hand, is expected to perform better even in the case that 

we do not have sufficient prior information, or that our prior information is only partially consistent 

with the true geology. 

9. Discussion 

A major motivation of this research was to remove the localized-likelihoods assumption in the 

Bayesian inversion method of previous research by Larsen et al. 2006; Ulvmoen & Omre, 2010; 

Ulvmoen et al. 2010; Walker & Curtis, 2014; and Nawaz & Curtis, 2017. The implication of this 

assumption is that the seismic attribute are assumed to be perfectly localized by processing, and by 

correcting the seismic data for any non-localized effects of wave propagation such as attenuation, 

Fresnel zone smearing, etc. (Nawaz & Curtis, 2017). Such perfect localization can only be dreamed of 

because seismic data is band-limited in nature and seismic data processing involves uncertain models 

and various approximations in theory (e.g., ray theory as an approximation to wave theory; smooth 

and erroneous velocity models used for migration) and algorithms. As an example, seismic migration 

is never guaranteed to collapse the reflection Fresnel zone to a point in space, resulting in blurring or 

smearing in the image. 

Localized likelihoods can only help to constrain the local presence or otherwise of facies and 

do not make use of any spatial correlations present in the data which may provide useful information 

about the geological heterogeneity and spatial conditional distributions of facies. By contrast, the 

current method derives the local presence of facies only from the likelihoods while the spatial 

distributions of facies are derived from both the prior information and the likelihoods. This suggests 

that the amount of prior information required for the reliable reconstruction of spatial distribution of 

facies that must be combined with localized likelihoods is significantly higher than with the quasi-

localized likelihoods: prior information was expressed as a joint distribution of facies using a 3x3 

template (9 cells) in the synthetic example of Walker & Curtis (2014), and from a 7x1 partition element 

in the synthetic example of Nawaz & Curtis (2017), both of which used localized likelihoods. In our 

synthetic example, the prior information is expressed as a joint distribution over just two cells in the 

form of pair-wise edge potentials, and still the quality of resulting posterior distributions is noticeably 

better as compared to those of Walker & Curtis (2014) and similar to those of Nawaz & Curtis (2017). 

Further, it can be shown that the quality of facies discrimination with quasi-localized likelihoods 

(Figure 11) is higher than with localized likelihoods (Figure 9) since the seismic attributes contain 

spatial correlations and are not independent. The prior information further improves the 

discrimination and the spatial distribution of facies when combined with the quasi-localized 

likelihoods, for example ensuring that geologically implausible configurations (e.g., brine-sand directly 

overlaying gas-sand in some areas of Figure 9) are disregarded in the computation of marginal 

posterior distributions (Figure 13). Although we have not tested this explicitly, it is to be expected that 
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the older methods that use localized likelihoods from other authors cited herein will have similar 

short-comings to those of our previous paper. 

The localized likelihoods assumption was used in the previous research by Walker & Curtis 

(2014) and Nawaz & Curtis (2017) in order to address the computational intractability of mathematical 

inference in models with non-localized likelihoods. The current method evades such computational 

intractability by retaining the conditional independence assumption of seismic attributes given the 

facies, and resorting to an iterative optimization based approximation (the EM algorithm) rather than 

an analytical approach as in Nawaz & Curtis (2017) for estimation of marginal posterior distributions 

of facies. This paper introduces the concept of quasi-localized likelihoods as a step towards methods 

that incorporate fully non-localized likelihoods, which is clearly a topic for future research. 

A major challenge with any inference or parameter estimation based on the loopy-belief 

propagation algorithm is that there is no theoretical guarantee about the convergence of the LBP 

algorithm. This contrasts with McMC based methods which are theoretically guaranteed to converge 

asymptotically. The empirical evidence, on the other hand, is very strong that LBP converges in most 

cases. The convergence of LBP depends on the topology of the graph as well as on the strength of 

potential functions. Strong and appropriate potential functions encode strong Lagrangian constraints 

that drive this algorithm towards faster and improved convergence. Koller & Friedman (2009) 

discussed many different possible reasons of non-convergence of LBP and their suggested remedies. 

In the situations when LBP fails to converge, it is observed that the non-convergence is either local or 

is due to oscillations in the beliefs. Koller & Friedman (2009) suggested using a dampening of the 

difference between two subsequent updates of beliefs as a remedy for oscillatory beliefs. If non-

convergence is local, most of the beliefs converge except just a few. Averaged beliefs over a number 

of iterations may be used in case of local non-convergence. In either case, we recommend a careful 

examination of the problem before applying any such remedy. These problems may be caused by 

conflicts between the vertex and edge potentials which are likely to be caused by the presence of 

noise in the data, or by problematic parameters learnt during the M-step. Inappropriate parameters 

may lead to weak likelihoods. In such cases, either the input attributes must be properly conditioned 

or the parameters must be constrained through the use of an appropriate kernel function. Interested 

readers are recommended to consult Mooij & Kappen (2007) for a detailed account on the sufficient 

conditions for convergence of the LBP algorithm. Nevertheless, in contrast to McMC based methods 

where it is impossible to detect convergence objectively, non-convergence in LBP is always detectable 

(see Algorithm 1). 

An important consideration regarding loopy belief propagation is that it may converge to a 

stationary point of Bethe’s free energy other than the global minimum. This can be illustrated as 

follows. If 𝒢 represents the finite state space of geological facies and |𝒢| represents its size (i.e., the 

number of geological facies considered), the set 𝕄(𝒢) of realizable marginals 𝜏 of some distribution 

𝒬(𝒛|𝒙) is defined as 

𝕄(𝒢) ≡ { 𝜏 ∈ ℝ𝑑 ∶ ∃ 𝒬(𝒛|𝒙), 𝜏𝑖(𝑧𝑖), 𝜏𝑖𝑗(𝑧𝑖, 𝑧𝑗) ∀ 𝑖, 𝑗 ∈ 𝒱 ˄ (𝑖, 𝑗) ∈ ℰ } (50) 

where 𝑑 = |𝒢|(|𝒱| + |ℰ| ∙ |𝒢|). The set 𝕄(𝒢) is commonly referred to as the marginal polytope of the 

graph 𝔾 (Wainwright & Jordan, 2008). The beliefs 𝑏𝑖(𝑧𝑖) and 𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗) in equation (27) are 
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constrained through the Lagrangian to be locally consistent in order to ensure that they represent 

proper marginal distributions. A set 𝕃(𝒢) of locally-consistent beliefs is defined as 

𝕃(𝒢) ≡  

{
 

 

 𝑏 ∈ ℝ𝑑  ∶

𝑏𝑖(𝑧𝑖) ≥ 0,∑ 𝑏𝑖(𝑧𝑖)
𝑧𝑖

= 1, ∀ 𝑖 ∈ 𝒱

∑ 𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗)
𝑧𝑗

= 𝑏𝑖(𝑧𝑖), ∀ (𝑖, 𝑗) ∈ ℰ
}
 

 

 (51) 

Which represents a polytope, commonly referred to as the local-consistency polytope, defined by 

𝒪(|𝒱| + |ℰ|) constraints. Any arbitrary set of locally consistent beliefs 𝑏𝑖(𝑧𝑖) and 𝑏𝑖𝑗(𝑧𝑖 , 𝑧𝑗) may not 

be jointly realizable by some distribution 𝒬; global consistency is not guaranteed to ensure the 

existence of a joint distribution 𝒬 that corresponds to these beliefs. Its converse, however, is true: all 

jointly realizable beliefs are locally consistent. This implies that 𝕄(𝒢) ⊆ 𝕃(𝒢), where equality holds 

only for tree-structured graphs (Figure 21). As a consequence of this, even if LBP converges, it may 

converge to different stationary points of the Bethe’s free-energy other than the global minimum. This 

problem may be addressed by heuristic initialization and multiple restarts as suggested by Koller & 

Friedman (2009). 

 

Figure 21: A graphical depiction of a marginal polytope 𝕄(𝒢) for a graph 𝒢 as a sub-set of local-consistency 

polytope 𝕃(𝒢). 

Another important consideration in probabilistic inversion is the ability to draw stochastic 

realizations (samples) from the posterior distribution. Methods which are based on McMC algorithm 

(e.g., Larsen et al. 2006; Ulvmoen & Omre, 2010; Ulvmoen et al. 2010; Hammer & Tjelmeland, 2011; 

Rimstad & Omre, 2013; Lindberg & Omre, 2014 & 2015) are computationally demanding as they 

generate samples of the model from full joint posterior distributions and estimate marginal posterior 

distributions from these realizations. However, the comparative advantage of such methods is that 

they provide samples that may be used to perform any desired inference that cannot be performed 

directly from the marginal posterior distributions alone. The recursive algorithms of Walker & Curtis 

(2014) and Nawaz & Curtis (2017) provide alternatives to McMC based methods, and they also allow 

drawing samples from computed probabilities. Nawaz & Curtis (2017) presented a method to draw 

samples from the marginal posterior distributions using a copula function which encapsulates 

conditional spatial distributions of facies as stored in the prior information presented in the training 

image. Since their method assumes localized likelihoods, the spatial distributions of facies were only 

incorporated from the prior information, and not from the data. A key feature of our method is that 
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it focuses on estimating the posterior marginal distributions (as in Nawaz & Curtis, 2017) instead of 

the full joint posterior distribution as in Walker & Curtis, 2014, and the previous research that uses 

the McMC algorithm because the latter is intractable for large scale models. Such an approach in its 

current form sacrifices the ability to draw samples in the favor of computational efficiency and 

provides the most commonly desired marginal posterior distributions of facies. Even though our 

current algorithm estimates marginal posterior distributions, samples cannot be drawn from them 

directly using the copula function based approach of Nawaz & Curtis (2017) as the samples drawn in 

this manner would not incorporate the spatial correlations observed in the data, which would make 

relaxation of the localized likelihoods assumption in our method pointless. A modification to the 

copula function based sampling is therefore needed that also incorporates the spatial correlations 

observed in the data – another topic for future research. 

In comparison to the McMC method which has been used to solve all sorts of inverse problems 

in various fields of research because of its general applicability, the variational Bayes method requires 

analytical derivations or numerical algorithms that are specific to the problem in question. The 

variational form of the EM algorithm as used in this paper is expected to offer a significant step 

towards generalization of the variational Bayesian inversion for solving problems which specifically 

involve a spatial grid of observed data that are collocated with the unknown model parameters. Our 

method can be extended further to invert for continuous variables (such as rock properties from 

seismic waveform data) in spatial inverse problems. We leave such an extension for future research. 

Since our method uses a pair-wise MRF as the spatial model for the distribution of facies, we 

anticipate that it may not be so capable of reconstructing complex spatial patterns of geological facies 

(e.g., those found in aerial view of intersecting sand channels in a deltaic environment). Multi-point 

statistics based simulation (Strebelle 2001; Caers & Zhang, 2004; Arpat, 2005; Journel & Zhang, 2006; 

Mariethoz & Caers, 2014) and related stochastic inversion methods have been developed for such 

cases (Haas & Dubrule, 1994; Francis, 2005; Nunes et al. 2016). We have not tested the current 

method for such a case. However, a general MRF with higher-order cliques would be required in this 

case which is an extension of our current model, and we leave this for future research. 

10. Conclusions 

We presented a Bayesian method for inversion of geological facies from seismic attributes 

under the variational approximation as a computationally efficient alternative to the commonly used 

Markov chain Monte-Carlo (McMC) based methods. In addition, our method also allows for reliable 

detection of convergence, in contrast to the McMC based spatial inversion methods which are known 

to have difficulties with detection of convergence. Geological facies and seismic attributes are 

considered as latent and observed variables, respectively, in Bayesian inversion. The prior information 

is presented in the form of a training image that encodes the spatial distribution of facies according 

to some geological process model or subjective opinion of a geoscientist. The prior spatial distribution 

of facies is modelled as a Markov random field (MRF). The likelihoods are assumed to have a Gaussian 

distribution with expectations at a location given by a linear combination of local facies responses 

within the neighbourhood of that location. We termed the likelihoods estimated in this manner as 

quasi-localized likelihoods which refer to a relaxation of the assumption of localized likelihoods as was 

generally used in previous research. The seismic attributes are assumed to be conditionally 

independent given the geological facies and are assumed to be distributed as a Gaussian mixture 
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distribution with number of components given by the number of facies considered.  We also showed 

that the quasi-localized likelihoods define a spatial Gaussian mixture distribution for seismic attributes 

observed at a location given the facies at the neighbouring locations, whose parameters are estimated 

while acknowledging the spatial nature of seismic attributes. Although the prior distribution is 

modelled as a MRF, we showed that by virtue of the conditional independence assumption on seismic 

attributes, the joint and hence the posterior distribution of facies given seismic attributes also 

represents a MRF. 

We used a Bayesian approach to jointly estimate the posterior marginal distributions of facies 

in the model space, and of the model parameters in attribute space, using a variational form of 

expectation maximization (EM) algorithm. The EM algorithm performs inference on facies and model 

parameters in an iterative fashion by alternately estimating the approximate marginal posterior 

distributions of facies from the current estimate of model parameters in the so-called E-step, and 

maximizing the expectation of log-likelihood of the model parameters from the current estimate of 

marginal posterior distributions of facies in the so-called M-step. We used the loopy belief 

propagation (LBP) algorithm to estimate marginal posterior distributions of facies in the E-step, and 

solved the linear model to obtain estimates of the spatial filter that maximizes the likelihood of 

observing seismic attributes given the current estimate of posterior marginal distributions of facies in 

the M-step of the EM algorithm. The EM algorithm is guaranteed not to decrease the log-likelihood of 

the observed variables (seismic attributes) given current estimate of model parameters at any 

iteration. Thus, in essence, the variational Bayesian inversion performs inference on the latent 

variables by solving a constrained optimization problem. 

We compared our method with the previous methods of facies inversion from seismic 

attributes that are based on the assumption of localized likelihoods using a synthetic data example. It 

shows that our current method requires far less prior information to reconstruct an accurate estimate 

of the true marginal posterior distributions of facies in the sub-surface as compared to our previous 

inversion method that is based on the localized likelihoods assumption. Also we showed that our 

current method is more robust against incorrect prior information. 
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