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ScienceDirect
Recent progress in interpreting comprehensive genetic and

epigenetic profiles for human cellular states has contributed

new insights into the developmental origins of disease,

elucidated novel signalling pathways and enhanced drug

discovery programs. A similar comprehensive approach to

decoding the epigenetic readouts from chemical challenges

in vivo would yield new paradigms for monitoring and assessing

environmental exposure in model systems and humans.
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DNA methylation dynamics in the genome
Epigenomic profiling of multiple tissues and many dis-

ease states has enhanced drug discovery programs, cancer

diagnosis and analysis, population based studies and

regenerative medicine. The relative ease of genomic

mapping of DNA methylation was facilitated by an

epigenetic mark that is highly stable and can be retrieved

from archival samples [1–4]. Genomic DNA methylation

profiles are tissue specific hallmarks of cell identity [5].

The modification occurs at the 5th position of cytosine to

generate 5-methylcytosine (5mC), typically in the con-

text of the dinucleotide CpG on both DNA strands. In

somatic tissues >70% of CpGs are constitutively methyl-

ated [6]. The propagation and maintenance of DNA

methylation patterns during development, by combined
Current Opinion in Chemical Biology 2018, 45:48–56 
action of DNA methyltransferases (DNMTs) and DNA

demethylation pathways, creates an epigenetic ‘landscape’

that supports cell type specific gene regulatory networks,

regulates imprinted gene activity, represses transposon

activity and enhances genome integrity [6].

DNA methylation is an epigenetic repressive mark in

regulatory regions (gene promoters and enhancers), gen-

erally associated with their functional inhibition as deter-

mined by sequence context [6,7]. DNA methylation

reprogramming can result from inhibition of DNMTs

or de novo DNMT activity. In addition, TET enzymes

contribute to DNA methylation dynamics by oxidation of

5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcyto-

sine (5fC) and 5-carboxylcytosine (5caC) as intermediates

in DNA demethylation pathways. These additional DNA

modifications may also act as unique epigenetic signals

(Figure 1a) [8]. Although 5hmC, 5fC and 5caC are less

abundant than 5mC, they contribute to a sensitive and

dynamic read-out of cell state, as their profiles are in part

determined by active gene-body transcription and

enhancer activity, which are rapidly altered upon envi-

ronmental challenge [8,9��,10]. 5mC profiles can exhibit

age associated changes that may predicate more dramatic

changes upon cellular transformation [11] (Figure 1b).

Conversely, 5hmC profiles, in concert with other epige-

nomic profiles, are a highly useful tool for charting envi-

ronmental exposure and integrated pathway analysis to

reveal a drug’s mode of action (MoA) [12] (Figure 2).

DNA modification ‘barcoding’ in risk
assessment
In an environmental exposure context, a baseline of

epigenomic profiles (including transcription) for the tar-

get tissue in the organism can be used as a starting point

for dose–response, temporal and transient exposure stud-

ies with model compounds (inorganic Arsenic, Vinclozo-

lin and Triclosan) (Figure 2) [13]. It is essential to use

models that can be extrapolated to humans, as responses

to a drug or environmental challenge may be species

specific [13]. Furthermore environmental epigenetics

has to be allied with classical toxicology studies in order

to be fully informative [14�,15�]

Elucidating the xenobiotic-induced physiological

changes in animal models and human cohorts is important

for hazard (including cancer) identification and risk assess-

ment [13,16]. Concern over bio-reactive chemical and
www.sciencedirect.com
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Figure 1

(a) (b)

Epigenetic state is a marker of:

• Transcriptional state 

• Developmental history

• Differentiation state

• Environmental exposure

• Health and age
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The methylome as a marker of cell state. (a) In the proposed mammalian DNA methylation pathway, canonical methylcytosine (5mC) is formed by

addition of a methyl group to unmodified cytosine by DNA methyltransferase enzymes (DNMTs). Members of the TET family of di-oxygenases can

then convert 5mC to 5-hydroxymethylcytosine (5hmC), using iron and a-ketoglutarate as cofactors. The DNA methylation cycle is completed by

conversion of 5hmC to unmodified cytosine by (i) passive de-methylation upon DNA replication as methyltransferases do not recognise

hydroxymethylated DNA, or (ii) TET-mediated oxidation of 5hmC to 5-formylcytosine (5fC) and then carboxyl-cytosine (5caC), followed by their

removal through base-excision repair. (b) The development of epigenetic identity in mammalian cells reflects the establishment and activity of

underlying gene regulatory networks (GRNs) that specify epigenetic transitions in dynamic and reversible systems that become more restricted as

development proceeds.
environmental agents has led to better understanding of

the MoAs underlying toxic effects of chemical exposure

[17]. Testing of chemicals depends on long-term rodent

bioassays, which are costly and time-consuming, especially

dose response studies to evaluate minimal observed

adverse effect levels as points of departure (PoD) for

hazard assessment. Recent progress has demonstrated that

the integrated analysis of combined gene expression and

epigenetic profiling of target tissues in model organisms

exposed to chemical compounds can reveal underlying

MoAs, and may act as predictors of atypical endpoints

and adverse outcome pathways (AOPs) where cellular

homeostasis is over-ridden [18,19]. The application of

epigenomics profiling in concert with bioassays can further

inform decisions in chemical risk assessment by identify-

ing the critically sensitive biological pathways. As epige-

nomic signatures can be propagated through cell divisions,

they can potentially persist even after removal of the

exposure agent [20]. However, altered epigenomic profiles

may also signify changes in cellular populations, altered by

exposure [3]. This record of chronic epigenomic alterations

induced by multiple environmental exposures may be

interpreted in terms of a ‘barcode/identifier’ of risk and

consequences that can be developed into alternative

screening systems, such as microfluidic organs-on-a-chip

technologies [20,21].

5hmC mapping: a tool to link exposure events
to disease states
A wealth of data has recorded changes in transcriptional

states following compound exposure [22]. However, due

to the highly dynamic nature of transcriptional changes

following chemical exposure, it is challenging to tell cause
www.sciencedirect.com 
from effect in these studies. The application of dynamic

5hmC profiling can enhance the information extracted

from exposure studies, especially if it can be performed

on archived material and integrated with previous data

profiles. 5hmC patterns are linked with gene expression

status and can rapidly alter following short term (24 hours)

exposure — highlighting the sensitivity of such assays

[9��]. 5hmC alterations are linked to the length of drug

exposure, and a number of 5hmC changes induced by the

non-genotoxic carcinogen, phenobarbital (PB), were

shown to persist in PB driven tumours, highlighting that

such changes may be early exposure biomarkers [13]. It is

also noteworthy that in age associated DNA methylation

signatures, identified in humans and mice, attenuation of

these changes by altered diet is associated with increased

longevity [11,23]. Thus, it may be possible to decode

5hmC signatures that are unique to a given drug expo-

sure/disease state, in which loci exhibiting reproducible

5hmC changes can be predictive of downstream conse-

quences. 5hmC profiles in circulating cell free DNA can

already aid in the identification of the tissue origin of

tumours based on their abnormal DNA modification

profiles [24��]. The large scale application of genome-

wide sequencing approaches in these studies will lead to a

greater understanding of the molecular events occurring

following compound exposure and toxicity, enabling a

more defined study of linkage to disease outcomes.

Studies of DNA methylation patterns following
environmental and chemical exposure events
in humans
The majority of studies interrogating epigenetic response

have been highly targeted approaches, such as locus
Current Opinion in Chemical Biology 2018, 45:48–56
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Figure 2

Time/dose dependent effect
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Potential application of epigenetic profiling to chemical challenge studies. A generic experimental design encompassing an overview of the stages

relating to toxicity pathway responses, mode of action pathways (MoAs) and adverse outcome pathways (AOP) — with the examples below of

inorganic arsenite and endocrine disrupting compound (EDCs: Vinclozolin and Triclosan) mediated perturbation of target organs including liver and

CD4+ T-cells.

Current Opinion in Chemical Biology 2018, 45:48–56 www.sciencedirect.com
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Table 1

Environmental and chemical exposure studies.

Exposure Mode of action Areas of uncertainty References

Heavy metals: arsenic, cadmium Differentially methylated regions

detected following exposure in

cultured cells correlate with changes

in gene expression, alternative

splicing, epithelial to mesenchymal

transition; differential methylation in

T-cells; altered p16 expression.

In vivo exposure, dose severity [26,27,48–52]

Airborne aerosols and cigarette

smoke

DNA methylation differences

detected in whole blood DNA after in

vivo exposure locate at CpGs in or

near genes including aryl

hydrocarbon receptor (AHRR)

Variance in exposure levels (i.e.

dose level, frequency of

exposure, chemical composition

differences between exposures)

[29–31,53,54�]

Endocrine disrupting chemicals

(EDCs)

Mimic endogenous hormones,

impairing reproduction; nuclear

receptor signalling dependent

activation of liver specific

cytochrome P450 detoxification

enzymes leads to transcriptional

and epigenetic perturbance

Difference between organisms in

their dependencies on

epigenomic pathways

[15�,34]

Non-genotoxic-carcinogens:

phenobarbital

Promotes nuclear translocation of

the constitutive androstane receptor

(CAR); changes the epigenome and

transcriptome, leading to liver

cancer (genetic change)

Diversity in MoAs and lack of

genotoxicity make it hard to

predict carcinogenic potential in

short term tests.

[37,38,39��]

Germline exposure: vinclozolin,

bisphenol A, or di-(2-ethylhexyl)

phthalate

Changes in transcription and

methylation in fetal cells after

maternal exposure

Differences between studies due

to genetic variability; extent of

transgenerational inheritance

[40,41,44–46]
specific sequencing following bisulphite treatment or

candidate locus specific PCR following epigenetic anti-

body enrichment strategies [15�,25�]. Progress in the

assessment is summarised here and in Table 1.

Arsenic (As) contaminated drinking water at levels

associated with a variety of adverse health effects

and shortened lifespan are consumed by an estimated

200 million people worldwide [26]. The mechanisms

underlying arsenic toxicity are not completely clarified;

however, epigenetic events in concert with epithelial-to-

mesenchymal transformation have been hypothesized to

underpin its MoA [27]. Reduced representative DNA

methylation analysis has identified differentially methyl-

ated (for 5mC and 5hmC) regions between normal and

iAs-transformed cultured cells but further genome-wide

efforts are required to assess in vivo arsenic-exposure

risk, and dose severity, as this strongly impacts upon

the observed epigenetic perturbations [26,28]. For

instance, assessments of in vivo exposure by recent epi-

genome-wide association studies (EWAS) have identified

reproducible, smoking-associated DNA methylation dif-

ferences in whole blood DNA, even from short-term low-

dose exposure [29–31].

The harmful effects of endocrine disrupting chemicals

(EDCs) in the environment are based on their ability to

act as endogenous hormone mimics [15�]. Multi-layered

epigenomic analysis combined with toxicological
www.sciencedirect.com 
assessments such as the EDC tests provided by the

Organisation for Economic Co-operation and Develop-

ment (OECD) will improve exposure monitoring and

derive endpoints that are predictive/protective of all life

stages in different organisms, which may have altered

dependencies on epigenomic pathways [32�,33]. The

mode of action of EDCs is not only through reproduction

impairments [15�]; many liver specific cytochrome P450

detoxification enzymes are induced by and metabolise a

broad range of steroidal and EDC compounds, leading to

perturbed transcriptional and epigenetic outcomes [34].

Recent studies on the antibacterial agent, Triclosan, for

instance suggest it may alter the liver methylome and act

as a tumour promoter [35,36]. Comprehensive epige-

nomic modelling of the effect of toxic compounds and

EDCs on the liver in multiple organisms can therefore

underpin environmental exposure epigenetic studies; a

generic experimental design is outlined in Figure 2.

Studies investigating drug induced epigenetic perturba-

tions have focused on exposure to carcinogenic agents in

rodent bioassays either by genotoxic carcinogens (GCs) or

non-genotoxic carcinogens (NGCs). NGCs are able to

promote carcinogenesis without inducing a direct muta-

tion to the DNA sequence and thus can be viewed as

inducers of changed epigenetic states that are propagated

long after the initial exposure event [13,37]. PB is a well-

established model of a non-genotoxic rodent hepatocar-

cinogen increasing the incidence of spontaneously and
Current Opinion in Chemical Biology 2018, 45:48–56
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Figure 3

C
5hmC
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The methylome as sensor of environmental injury. Numerous natural and non-natural environmental agents have been shown to induce changes in

DNA methylation in various tissues in vivo, some with correlated changes in gene expression (e.g. Cyp2b and PTPRJ). The stable maintenance of

these altered epigenetic patterns (based on Refs. [12,27,29]) ensures that a memory of this exposure remains, long after the initiating signal is

gone. Different colours represent target tissues.
chemically induced liver tumours [38]. Previous work has

shown that exposure to certain xenobiotic agents such PB

results in reproducible changes in both the epigenome

and transcriptome in both mouse and rat livers in a time

dependent manner — ultimately resulting in genetically

defined liver tumour formation (Figure 3) [39��]. Com-

parative analyses of these omics landscapes provides a

novel insight into the molecular events and perturbation

of gene networks following both acute and chronic expo-

sure events providing early biomarkers for the develop-

ment of AOPs such as tumour formation [13].

Another area that requires deeper study is the analysis of

compounds implicated in germline changes causing trans-

generational outcomes [40,41]. Many groups have shown

that the sperm methylome can be perturbed by environ-

mental influences including diet; however, stochastic

epigenetic variation can affect the mouse sperm methy-

lome to a greater extent than diet and would be hard to

reconcile with specific transgenerational outcomes that

depend on fertilization by a single sperm [42�,43]. Vin-

clozolin, an anti-androgenic fungicide, is suggested to

induce transgenerational phenotypes associated with per-

turbed epigenetic profiles [40,41]. However, independent

groups were unable to replicate the phenotypic results

following intraperitoneal or oral exposure routes [44–46],

perhaps due to genetic variability in rat strains and other

factors. In a genome wide methylation study of prosper-

matogonia of male offspring from mothers treated with

vinclozolin, bisphenol A, or di-(2-ethylhexyl)phthalate,

changes in transcription and methylation in the G1 germ-

line observed after EDC exposure did not persist into the
Current Opinion in Chemical Biology 2018, 45:48–56 
G2 germline [47��]. This suggests that EDCs can exert

direct epigenetic effects in exposed fetal germ cells, but

these may be corrected by reprogramming events in the

next generation which protect against transgenerational

outcomes.

T-cell methylation as an optimal barcode of
environmental and chemical exposure in
humans
An ideal biomarker should be sensitive, specific, accessi-

ble, cause minimal discomfort to the patient and be robust

to variations in laboratory handling. DNA methylation

fulfils many of these criteria. However, although several

chemical and environmental agents are known to affect

the DNA methylation profiles of mammalian tissues,

profiling in vivo methylation at internal sites of environ-

mental insult is rarely possible. CD4+ T-cells patrol the

entire human body, including the central nervous system,

and upon exposure to their cognate antigen differentiate

into short-lived effector T-cells or long-lived memory T-

cells [55]. Importantly, as the chemical micro-environ-

ment of T-cells at the time of activation can affect their

epigenetic profile [31,48–53,54�,56], memory T-cells can

carry epigenetic markers of both the type and location of

exposure to chemical or environmental agents [57,58].

Moreover, as these cells can live for up to 40 years, our

memory T-cell population carries a collective epigenetic

record of our total environmental and chemical exposure

over time (Figure 4).

Several studies have reported consistent alterations in

T-cell methylation resulting from environmental or
www.sciencedirect.com
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Figure 4
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T-cells as sensors and stores of environmental exposure. (a) Upon exposure to their cognate antigen, a small proportion of activated cells

become long-lived, memory T-cells. The specific cell state of each memory T-cell will also reflect the microenvironment in which the exposure

occurred such as the tissue as well as the presence of biologically active chemicals and non-chemical compounds. (b) As memory T-cells are

long-lived (up to 40 years), the combined memory T-cell methylome may be codified as a barcode of all historical exposures in a given individual.

The development of single cell methylome sequencing will allow dissection and resolution of this complex and highly valuable epigenetic record of

environmental insult.
chemical exposure to many of the agents reviewed above.

Smoking, air pollution (polycyclic aromatic hydrocarbons,

and ambient fine particles) [31,53], arsenic [48–50], pollen

[54�], milk protein [56] and certain vitamins [53] have

been associated with altered CD4+ T-cell methylation, at

the time of exposure and afterwards [54�]. The observed

changes in T-cell methylation or in T-cell population

composition may result from direct effects upon the

differentiation program of the T-cells or from their

response to tissue injury, or both. Thus, whereas meth-

ylation profiles of total CD4+ T-cell populations may

identify large changes in DNA methylation induced by

exposure to chemical and non-chemical environmental

agents [54�], the ability to profile thousands of single

T-cell methylomes simultaneously will allow identifica-

tion of individual sub-populations of memory T-cells that

may have been affected by different exposures at differ-

ent time points; this complex information may be codified

into an epigenetic barcode of system-wide and organ-

specific historical environmental and chemical exposures

(Figure 4).

Future perspectives
The application of integrated epigenomic and transcrip-

tomic profiling of xenobiotic exposure in animal models

has enabled enhanced mechanistic interpretation and
www.sciencedirect.com 
novel early biomarker discovery [12,13,59�,60]. To assess

the relevance of epigenetic modifications identified in
vitro for drug safety science, it is essential to investigate

such changes in putative target organs in vivo. To deter-

mine the epigenetic changes that signify a toxic response,

one of the future challenges will be in understanding the

mechanisms by which these dynamic multi-dimensional

epigenetic landscapes are regulated and altered in

response to chemical exposure [14�]. It is therefore essen-

tial to establish both the dose response, particularly at low

exposures, and reversibility, to aid risk assessment and

dose setting (Figures 2 and 4). Another challenge will be

understanding how toxicant exposure affects the compo-

sition and differentiation status of cell types in a given

tissue — which may be addressed through the adaptation

of new technologies such as single cell transcriptomic and

epigenomic analyses. Progress in these areas will require

interdisciplinary research encompassing toxicology, epi-

genomics data generation, bioinformatics and clinical and

whole animal studies.
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