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Abstract  

Concrete is non-homogeneous and is composed of three main constituent phases from a 

mesoscopic viewpoint, namely aggregates, mortar matrix, and interface transition zone (ITZ). 

A mesoscale model with explicit representation of the three distinctive phases is needed for 

investigation into the damage processes underlying the macroscopic behaviour of the 

composite material. This paper presents a full 3-D mesoscale finite element model for concrete. 

On top of the conventional take-and-place method, an additional process of creating 

supplementary aggregates is developed to overcome the low packing density problem 

associated with the take-and-place procedure. An advanced FE meshing solver is employed to 

mesh the highly unstructured domains. 3D mesoscale numerical simulation is then conducted 

for concrete specimen under different loading conditions, including dynamic loading with high 

strain rate. The results demonstrate that detailed mesoscopic damage processes can be 

realistically captured by the 3D mesoscale model while the macroscopic behaviour compares 

well with experimental observations under various stress conditions. The well-known inertial 

confinement effect under dynamic compression can be fully represented with the 3D mesoscale 

model and the trend of dynamic strength increase with strain rate from the 3D mesoscale 

analysis agrees well with the experimental data. 

 

Keywords: concrete; heterogeneity; 3D mesoscale model; micromechanical damage; failure 

mechanism; dynamic compression 
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1. Introduction 

Concrete is the most widely used construction material in the world. It has a great variety of 

applications in the field of structural engineering. However concrete is a highly non-

homogenous material with large heterogeneities. The damage and failure process of concrete 

depends closely on the material composition and the interaction between different constituent 

phases; for example it is well known that the initiation of macroscopic damage generally starts 

from the fracture along the interfaces between aggregates and the mortar matrix (the so-called 

interface transition zone, or ITZ). The extent to which the heterogeneity should be described 

in a computational model would depend upon the level (scale) of observation and the stress-

strain conditions particularly the gradient involved in the problem.  

Generally speaking, modelling of concrete may be classified into three distinctive scales 

namely macroscale, mesoscale and microscale. On the macroscale, concrete is traditionally 

considered as homogeneous material and treated as such in classical finite element models. 

Strictly speaking, the treatment of concrete as a homogeneous solid is only valid when 

macroscopic scale of observation is of interest and the stress-strain variation in critical regions 

is not drastic [1]. On the mesoscale, concrete is considered as a composite material comprising 

of coarse aggregate, mortar matrix and the interfacial transition zone (ITZ). An explicit 

mesoscale model permits a direct description of the material heterogeneity and hence has the 

ability to allow for a realistic prediction of the development of damage within the muti-phase 

material. At the microscopic level, the mortar matrix of the previous level is further divided 

into fine aggregate and hardened cement paste with pores embedded inside. As far as the 

composite mechanical behaviour is concerned, subdivision within each individual phase does 

not appear to introduce significant effects [2]. Therefore modelling of concrete on a mesoscale 

is deemed to be the most practical and useful choice when material heterogeneity needs to be 

taken into account. Example applications where such a need arises include investigation into 

concrete damage and fracture mechanisms under complex stress conditions, concrete response 

under high strain rates, and fracture and aggregate interlocking mechanisms in critical zones of 

a concrete member.   

A number of studies on mesoscale modelling of concrete using a continuum approach can be 

found in the existing literature [3-22]. Relatively more realistic aggregate shapes, such as 

random polygon, have been achieved mainly in 2D (e.g. [3-7]). However, a 2D mesoscale 

model has inherent limitation in representing a realistic stress and strain condition in concrete 
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specimen, particularly when pressure and confining stress becomes important such as in 

dynamic compression where lateral inertial confining effect is deemed a critical factor.  

Most of the existing mesoscale modelling studies in 3D have adopted simple shapes of 

aggregate particles like spheres [8, 9] or  mixed spheres and ellipsoids [10] to circumvent  the 

difficulty  of creating random aggregate shapes. A modified version of the ellipsoid function 

[11] made it possible to better approximate real aggregates. Approximation of particle shapes 

by polyhedrons generated from Voronoi tessellation point set has been adopted by some 

researchers [12-15]. This method can capture the real aggregate shape better than simple 

spheres and ellipsoids but it is difficult to satisfy the pre-defined aggregate size grading curve. 

Some more recent studies have focused on developing approaches which can generate and 

randomly pack polyhedron aggregates following a predefined grading curve [16-18]. However, 

a common challenge to most existing meso-structure models of concrete is a relatively low 

aggregate packing density and it is generally difficult to reach the aggregate volume ratio as in 

the real concrete specimens. It is worth noting that in some studies where higher volume 

fractions of aggregates have been reported (e.g. [19, 20]), those were not the real packing 

densities for the polyhedron aggregates but the equivalent spherical particles.  

In a different approach, direct mapping of the aggregate particle from physical samples has 

been explored using computer image analysis and computed tomography (CT-scan) [21-24]. 

However, the major limitation of this technique is that it would be very time-consuming and 

expensive to obtain meaningful analyses by preparing, fabricating, cutting specimens and then 

dealing with the scanned images.   

In an effort to develop a comprehensive mesoscale model for concrete, a series of studies has 

been conducted in this research group. The model is aimed at achieving a realistic 

representation of the actual shapes and sizes of aggregate particles and at the same time 

allowing for high volumetric ratios of aggregates to be attained. The work reported in this paper 

is concerned about a full 3D mesoscale model. In the proposed approach, 3D polyhedral-shaped 

aggregates are represented by convex hull in R3, which is the minimum convex set containing 

a series of points generated randomly. Gravel and crushed shapes of polytopes are both 

considered to enable greater flexibility in the simulation of real shapes of aggregate particles. 

The standard take-and-place procedure is used for generating the main 3D meso-structure. 

Extending from a basic framework [16], the present study focuses on improving the efficiency 

in the generation of the 3D mesoscale geometry and the robustness of finite element meshing 

for the highly unstructured mesoscale model, as well as enabling the realisation of high density 
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packing of aggregates. The mesoscale model generated from the enhanced procedure is verified 

against standard experimental observations under quasi-static compression and tension. The 

model is then further applied to simulate the dynamic behaviour of concrete under high strain 

rate compression.  

 

2. Generation of the 3D mesoscale geometric structure 

Similar to the generation of the 2D mesoscale model, the classical ‘Take-and-Place’ procedure 

[6] is used to generate the 3D meso-structure in the first step. The ‘Take’ process generates an 

individual aggregate (polytope) through a random sampling operation in terms of the size and 

the shape parameters. The ‘place’ process subsequently places the aggregate into the predefined 

3D specimen space, satisfying geometric constraints including no-intersection with other 

aggregates and the specimen boundaries.  The whole process is executed in a sequential manner 

controlled by the target aggregate volume ratio, starting with the largest aggregate size group, 

and carrying on until the smallest size group is completed. The generation of 3D meso-structure 

is implemented in MATLAB. 

2.1. Aggregate size distribution  

In normal concrete, the coarse aggregate is defined to consist of particles having a nominal size 

greater than 4.75 mm [9]. For normal concrete the coarse aggregates take up around 40-50% 

of the mixture volume. The particle size distribution for aggregate is usually defined by a 

grading curve. Herein we adopt a standard Fuller grading curve, which can be expressed as:  

 ndddP max/100)(            (1) 

where ܲ  is the cumulative volume percentage of aggregates below size ݀ , ݀௠௔௫  is the 

maximum size of the aggregates. The exponent ݊ is normally in the range of 0.45-0.70. Herein 

݊ is assumed to be 0.5. Thus the volume ratio of aggregate within each grading segment 

ሾ݀௦, ݀௦ାଵሿ can be calculated as [9]: 
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where ௔ܸ௚௚ሾ݀௦, ݀௦ାଵሿ is the volume of aggregate within the discretized aggregate size range 

ሾ݀௦, ݀௦ାଵሿ. ܲሺ݀௜ሻ	can be calculated from Eq. (1) provided the aggregate size is given.	ݒ௣ is the 
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total amount volume percentage of aggregate in concrete and ௦ܸ  is the volume of concrete 

specimen. 	݀௠௔௫ , ݀௠௜௡ are the maximum and minimum coarse aggregate particle size.  

The basic reference case of concrete considered herein is the type of medium aggregates with 

the coarse aggregates varying in size between 4 to 12 mm. For simplicity the aggregates are 

divided into four size intervals, namely, 4-6 mm, 6-8 mm, 8-10 mm, and 10-12 mm. For a 

coarse aggregate volume ratio of 45%, which is the target volume ratio to be achieved in the 

3D mesoscale model, the percentages of the above four aggregate groups will be 14%, 12%, 

10%, and 9% respectively.  

It should be noted that the procedure itself has no restriction on the aggregate size range or its 

distribution. The number of intervals for the whole size range is also not restrictive. 

Furthermore, as will be discussed later, within each of the 4 size intervals considered herein, 

for example 4-6 mm, the size of an individual aggregate still varies randomly according to a 

uniform distribution within the interval. This effectively results in a linear increase in the 

cumulative grading curve between 4 mm and 6 mm, which is deemed to be good enough to 

represent an actual curve within a size interval.  

2.2. Individual aggregate particle generation 

In an actual concrete specimen, the aggregate shape and surface texture can be classified as 

rounded, angular or polyhedral. Highly irregular particles can also have flaky and elongated 

shape. In this study, polyhedron-shaped aggregates are considered. Other special shapes, such 

as round or ellipsoid, are relatively simple to generate, and they may also be approximated by 

polyhedrons with specially chosen shape parameters.  

One classical approach to describe the shapes of gravel aggregates mathematically is based on 

the morphological analysis. In 2D, the shape of a gravel aggregate can be characterised by 

transforming the boundary contour of each particle into polar coordinates. Thus the trace of an 

aggregate can be expressed with the polar radius ݎ as a Fourier series (i.e. harmonic function) 

of the polar angle [25] ߠ: 

)(cos)( 10 mm m mArr   


     (3) 

where ݎ଴ is the average radius. The term ∑ ߠ݉ݏ݋௠ሺܿܣ ൅ ߮௠ሻஶ
௠ୀଵ  characterises the particle 

contour where Am are the amplitudes of the Fourier frequencies with the corresponding whose 

phase angles ߮௠  and m are the harmonic numbers. According to the morphological law 
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proposed by Beddow and Meloy [25], there should be a linear relation between log(Am) and 

log(m): 

bmaAm  )log()log(        (4) 

where a and b are parameters characterizing the shape of the set of particles. Thus numerically 

the shape of a gravel particle may be approximated by a series of short straight line segments 

in 2D [6]. An inscribed polygon of circle can then be used to represent the relatively regular 

aggregate while an elongation and shrinking procedure can be applied on it to produce 

elongated and flaky aggregate.  

This idea can be extended to 3D case, where the spherical harmonic mathematical analysis is 

used to characterise the boundary of a real aggregate [26]. Similarly regular aggregates can be 

represented by inscribed polyhedrons of spheres while un-regular aggregates can be produced 

by applying elongation and shrinking procedure as is done in 2D case.  

a) Regular aggregates  

As is stated above, an inscribed polyhedrons of sphere is used to characterise the real shape of 

regular aggregate. Thus the generation process starts from picking a set of random points on 

the surfaces of the spheres. These random points can be expressed as the following equations 

using spherical coordinates by radius r0, inclination angle	ߠ, azimuth angle	߮: 

 cossin0rRix                (5a) 

 sinsin0rRiy                                                     (5b) 

cos0rRiz                                            (5c) 

It is worth noting that variables ݎ଴,  .߮ are random numbers from a uniform distribution	and ߠ

Thus we can have: 

  1210 2

1
dddr                                 (6a) 

 2                                                (6b) 

 2                                        (6c) 

where d1 and d2 are the minimum and maximum diameters for each segment in the size 

distribution, ߣ, ,ߛ ߯	are three independent random numbers uniformly distributed between 0 and 

1. The points used to generate the polytope also have random numbers n, which may 

significantly influence the shape of an aggregate. Generally a larger number of points make it 
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possible to generate gravel shape aggregate while small number of point produce angular shape 

aggregate. This will be shown later.  

After picking a series of random points as specified above, we create the aggregate particles by 

bounded polyhedrons. The convex hull for a set of points is the minimum convex polyhedron 

containing all the predefined points [27]. Thus it is possible to generate a random shaped 

aggregate particle from a set of 3D random points. The convexity of the polyhedron can be 

automatically fulfilled without separate checking at every step. Fig. 1 gives an example of a 

convex hull generated using Matlab with a computational geometry function named Qhull.  

 

Fig. 1. An example convex Hull. Left = random points; right = generated convex hull 

b) Crushed aggregates 

The shapes of aggregate particles created above are inscribed polyhedrons of sphere which are 

relatively regular. Both flaky and elongated aggregates can be realised from the regular 

polytopes by shrinking or elongation. A flaky shape is implemented by introducing a random 

shrinkage ratio s (s<1) on one dimension but expanding the other dimensions simultaneously, 

and to keep the nominal volume of the aggregate unchanged we have: 

ixix RsR                                                                          (7a) 

sRR iyiy /                                                                  (7b) 

sRR iziz /                                                                 (7c) 

where (Rix, Riy, Riz) is the original coordinate for the ith vertex on a regular polytope while  

൫ܴ௜௫
ᇱ , ܴ௜௬

ᇱ , ܴ௜௭
ᇱ ൯	is the transformed one.  

An elongated shape will result if an expansion ratio s (s>1) is employed. 
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       Global view                    X-Y view                         X-Z view                 Y-Z view 

(a) Polytopes with 10 random points 

                

        Global view               X-Y view                 X-Z view                           Y-Z view 

(b) Polytopes with 20 random points 

Fig. 2. Sample polytopes shape with different number of random points 

In summary a series of random parameters (five in total i.e. ݊, ,ߣ ,ߛ ߯	and ݏ) are required to 

produce an arbitrary shape of 3D aggregate particle. As shown in the Fig. 2, the polytope with 

only 10 random points has clear angular edges and corners, and with increase of the random 

points the shape of the polyhedron becomes smoother. Considering the actual aggregate shapes 

and a balanced computing time, the number of random points used to create the polytopes is 

controlled between 15 and 25 in the present study. Shrinking and elongation can the then be 

performed to create elongated and flaky particles, as shown in Fig. 3.  

 

                      

       Global view                  X-Y view                       X-Z view                         Y-Z view  

(a) s = 0.5                
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    Global view                                 X-Y view                       X-Z view                       Y-Z view 

(b) s = 3 

Fig. 3. Examples of flaky and elongated particles generation with 20 random points. 

2.3. Placing particles 

After generating an individual aggregate particle, the ‘place’ process is carried out to place the 

particle into the predefined sample space in a random manner, subjected to prescribed physical 

constraints. 

The most important and time consuming step in the placing process is the intersection checking 

between two polytopes. Two obvious conditions should be satisfied. Firstly the whole polytope 

should be completely within the boundary of the concrete specimen; this can be ensured 

relatively easily by making sure all of the random points which have been used to form the 

vertices of the polytope are within the boundary of the defined space. Secondly there should 

not be any intersection with any existing (already placed) aggregates. The check of this 

condition would require much more intensive computation in 3D modelling. To increase the 

check efficiency, only the neighbouring aggregates need be checked, and this is done in two 

steps. The first step is to identify the neighbouring aggregates which may have a chance to 

intersect with the new aggregate. At this step the new aggregate, as well as the existing ones, 

is represented by a bounding sphere which shares the same centre point as the convex hull and 

covers all vertices of the polytope, as illustrated in Fig. 4.  Any aggregate which has the distance 

of its centre to the centre of the new aggregate to be smaller than the sum of the radii of the 

two spheres is picked out as candidates of intersection. In the second step, a more detailed 

check is carried out on the limited number of candidate particles.  



10 
 
 

 

Fig. 4. Local checking space 

The clipping and capping algorithm [28] is then employed to detect the intersection between 

the aggregate being placed and the existing particles picked out above. The algorithm is based 

on the concept that any 3D convex polytope can be represented by a list of plane indicating a 

facet (i.e. any bounded polytope in 3D can be reconstructed by the boundary surfaces in half-

spaces) [27]. Then the intersection checking between two convex polytopes can be converted 

to the intersection of the polygonal surfaces in one polytope with the cutting planes in the other 

polytope. Full details of the algorithm on clipping and capping can be found in [28].   

2.4. Enhancement on the placing of aggregates 

In the standard “place” procedure, once an aggregate being placed is found to intersect with 

any existing aggregates, this aggregate will be abandoned and a new polytope is regenerated 

and placed into a new position, and the checking process is carried out all over again. In order 

to increase the success rate of placing the aggregate and hence improve the placing efficiency, 

a translate-and-rotate procedure is employed on the aggregate which is being placed, as 

described in the following.  

The translation is done by translating the whole particle by a small distance, which is defined 

by three increments, zyx  ,, , in the three axis directions respectively. Each of these 

incremental components is taken randomly (assuming a uniform distribution) within a small 

range defined by a fraction of the nominal aggregate size, both positive and negative. The 

translated coordinates in the Cartesian system for each vertex “i" of the particle are thus: 

),,(' zzyyxxVP iiii          (8) 
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For a 50mm sample cube with nominal aggregate size of 10mm as used in the numerical 

simulation described later, the increment in each axis direction is taken in the range of (-1.5 to 

+1.5mm).  

The intersection check is immediately carried out after the translation. If intersection is found 

to still exist, a random rotating operation is performed. According to Euler’s rotation theorem, 

any rotation of an object in 3-dimenisonal Euclidean space can be achieved by three elemental 

rotations, namely ߙ, ,ߚ ,ݔ with respect to ߛ  axis respectively. In the random rotating	ݖ	݀݊ܽ	ݕ

operation, these three angles are sampled independently within their variable range, i.e. -90 to 

+90 degrees. It should be noted that the final rotation matrix can be dependent on the sequence 

of the three rotations. In the present procedure the rotation is done first about the x-axis, then 

the y-axis, and finally the z-axis, thus: 

      xyzT                       (9)                                             

where  
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The intersection check is carried out again after the rotation. This completes one round of 

translation-rotation operation and the associated check. To avoid waste of effort for a bad 

position, a limit number of translate-and-rotate operations can be set. From the trial analysis in 

the present study, a limit of 50 times appears to be adequate and the attampt will be abondoned 

if a valid position is still not resulted at that point.  

When compared with the procedure without consideration of the translate-and-rotate method 

it is found that the translate-and-rotate procedure not only reduces the computing time (by 

about 60%) but also can result in an increase in the aggregate volume percentage (by about  

4%). Despite the improvement, however, when a high volume ratio of aggregates such as 40-

50% is desired the enhanced ‘take-and-place’ procedure would still become very time-

consuming and likely to fail to achieve such high packing density. Thus an alternative approach 

would be needed to further increase the aggregate percentage, and this will be discussed in the 

next section. 
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3. Finite element meshing and generation of supplementary aggregates 

3.1. Meshing methodology 

Due to the randomly shaped aggregate particles, the meso-structure is highly unstructured. For 

meshing unstructured domain, triangle and tetrahedral meshing are mostly used in the grid 

refinement. Specific smoothing algorithms for meshing unstructured domain include Octree, 

advancing front and Delaunay refinement [29]. A typical way to work around the difficulty 

arising from meshing directly the highly unstructured mesoscale geometry has been to firstly 

perform a background meshing and then bundle groups of the meshed elements into aggregates 

of desired shapes [19, 30]. The obvious drawback of such an approach is that the actual surfaces 

of the aggregates cannot be preserved.  

In the present mesoscale model we adopt a direct approach to meshing the mesoscale structure 

of concrete. An advanced meshing code, called TetGen [31], is employed to do this task. This 

meshing code is one type of Delaunay triangulation, and it aims to maximize the minimum 

angle of all the angles of a triangle in the triangulation, thus largely avoiding skinny or badly 

shaped triangles.  A typical way in this algorithm is to generate an initial node set by meshing 

the boundary of the geometry. The boundary nodes are then triangulated with Delaunay 

triangulation. However it should be noted that not all the boundaries of the structure, especially 

in 3D, can conform to the Delaunay triangulation. Hence a generalization of the Delaunay 

triangulation called constrained Delaunay triangulation (CDT), which forces certain required 

segments into the triangulation, has been proposed in computational geometry literature [32]. 

The TetGen code, which is based on the (CDT), treats the 3D unstructured geometry to a more 

general input called piecewise linear complex (PLC) [33]. A PLC can be easily decomposed 

into a constrained Delaunay tetrahedronlization provided it has a CDT. The code successfully 

resolves the problem of non-existence of a CDT by updating the input PLC into another PLC 

which is topologically and geometrically equivalent to the original one and does have a CDT. 

The advantage of using this type of meshing method is that it can retain realistic boundaries 

between aggregate and mortar. This provides an essential basis for the simulation of stress 

concentration, crack initiation and damage accumulation in concrete from a mesoscopic 

perspective.  
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Fig. 5. 3D meso structure and mesh result 

Fig. 5 and Fig. 6 show an example of the 3D structure and meshing result of a cubic concrete 

specimen. Note that up to this point only aggregate and mortar elements have been generated; 

the polytope particles represent the aggregates and the remaining domain belongs to the mortar 

material.  

          

(a) Aggregates elements left = 3D view, right = a plane cut view 

        

(b) Mortar elements x, y, z plane cut view respectively 

Fig. 6. Meshing results for aggregates and mortar 
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The generation of the third phase, i.e. the ITZ can be made by different methods depending 

upon the way the ITZ is to be modelled, for example by “shrinking” the already formed 

aggregates to leave an interface layer between the aggregates and the mortar matrix which is 

subsequently meshed as ITZ. Using cohesive elements is another option; however, due to 

complex stress conditions at the mortar-aggregate interface, typical cohesive element 

formulation is found to exhibit poor performance in a mesoscale model [5]. In the present study 

we use the equivalent solid layer approach to represent the effect of ITZ.  

As an alternative to shrinking aggregates, in the current scheme the equivalent ITZ layer is 

generated after the initial meshing of mortar domain, by choosing mortar elements that 

immediately come into contact with the aggregates. The procedure is straightforward and one 

just needs to pick up those elements in mortar domain which have shared nodes with the 

aggregates. This means if a mortar element shares at least one node with any aggregate, then 

the element will be defined as an interface element. Otherwise the element remains in the 

mortar domain. An in-house selection program has been developed using MATLAB to identify 

the layer of elements surrounding aggregate particles. Fig. 7 shows the identification results 

and the ITZ elements thus defined. 

           

Fig. 7. ITZ layer; left = 3D view, right = a plane cut view 

One may note that the ITZ defined by the above ‘equivalent’ solid layer will generally exhibit 

some degree of uneven thickness which depends on the mesh size, and it can also be rather 

non-smooth. The thickness issue may be dealt with in the assignment of the equivalent ITZ 

properties for a specific mesh size, which will be discussed further in Section 3.2.2. The effect 

of the non-smooth feature, on the other hand, is expected to average out over a few ITZ 
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elements that form a small fraction of the interface between an aggregate and the surrounding 

mortar elements, and therefore will not affect sensitively on the damage processes.  

It is worth noting that the meshing processes for the type of concrete specimens under 

consideration is rather efficient, and with a standard desktop computer with dual-Intel core 

i7@3.4GHz and 64 GB RAM, the total running time for the meshing is on the order of 100 

seconds. 

3.2. Creation of supplementary aggregates  

As has been discussed above, a practical limitation of the take-and-place method when applied 

in 3D meso-scale modelling is the packing density; even with the enhancement operations it is 

difficult to achieve an aggregate volume ratio as high as 40-50%, which is typical in normal 

concrete.  

Based on the experiences from the present study, the maximum aggregate volume ratio that 

may be achieved from the standard take-and-place procedure is around 30% when the grading 

curve is closely followed, and with the enhanced operations described in Section 2.4 the ratio 

may be increased to about 35%.  

To facilitate the discussion let us stay with the particular cubic concrete specimen, and we aim 

to generate an aggregate volume ratio of 45%. For simplicity we have subdivided the 

aggregates into four discretized ranges according to the Fuller curve, namely i) 4-6 mm, 14%; 

ii) 6-8 mm, 12%; iii) 8-10 mm, 10%; and iv) 10-12 mm, 9%. We firstly follow the standard 

take and place procedure and start from the largest aggregate size group (10-12 mm). We find 

that the volume percentage of the first two size groups, i.e. the 10-12 mm and 8-10 mm groups 

herein, can be perfectly completed. But for the third group 6-8 mm, the maximum aggregate 

ratio that can be achieved is around only 10%, and further attempt to fill in the remaining 2% 

can be extremely time consuming and may not succeed at all. It is still possible to pack some 

aggregates of the next group (4-6 mm), but only a small fraction of the target volume 

percentage for this group may be achieved. Clearly the missing amounts of aggregates in the 

two smallest size groups (6-8 mm and 4-6 mm herein) can only be generated using methods 

outside the take-and-place procedure.  

To tackle the above difficulties we propose to proceed, upon exhausting the “take-and-place” 

operation, to finite element meshing and create supplementary aggregates from the meshed FE 

domain, such that selected mortar elements in qualified neighbourhood are grouped to form the 
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remaining aggregates. The neighbourhood is identified by a virtual sphere whose diameter 

matches the nominal size of the aggregates to be created. The positioning of the sphere is 

random but a valid position should have the sphere meeting a similar set of criteria as an 

aggregate in the normal take-and-place procedure, namely no intersection or overlapping with 

any existing aggregates. In this sense the general effect of such a procedure to generate the 

supplementary aggregates is analogous to the take-and-place procedure.  

The operation is controlled by the balance of the aggregate volume ratio for each segment size 

group, which means the secondary aggregates are formed one by one until the target aggregate 

volume ratio is fulfilled.  

For each size group requiring the generation of the supplementary aggregates, a virtual sphere 

of nominal diameter equal to the upper-end size in the size group, d2, is employed to encircle a 

target space for a new aggregate. For example d2 = 8 mm for the 6-8 mm group. The process 

can then be subdivided into two main steps: 

Step 1: Placing the centre of such a virtual sphere into the mortar space in a random manner. 

Considering that by this stage all mortar elements have been meshed and a library can be 

created to contain all mortar elements with their respective nodal coordinates, placing the 

virtual sphere can be effectively done by putting its centre to the centroid of a mortar element 

at random. A checking process then proceeds to see if the location of the sphere is a valid one 

with no intersection with other aggregates and the boundary. 

 

Fig. 8. Schematic of placing the virtual sphere and intersection checking 
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Step 2: After the base mortar element (centre of the sphere) is successfully selected from the 

above step, the new aggregate grouping process and the new ITZ identifying process can be 

carried out with respect to the virtual spherical space.  

Fig. 8 illustrates schematically the relative position of a virtual sphere in the mortar domain, 

where “i”, “k” denotes a random mortar element, respectively, to which a trial sphere is placed. 

For illustration purpose, “i” indicates an invalid base element while “k” represents a valid base 

element.  

Understandingly a proper location of the base element and a suitable grouping process are 

equally important in determining an adequately shaped secondary aggregate. Discussions on 

these two topics in detail are given in the following seb-sections. The general procedure for 

creating secondary aggregates is programmed using MATLAB code.   

3.2.1. Base element  

As stated above it is important to choose a proper location for the base mortar element because 

it is essentially the centre of the virtual sphere for the formation of a supplementary aggregate 

and will therefore significantly influence the shape of the secondary aggregate. A valid base 

mortar element should satisfy the following three conditions: 

1. It should not result in any overlapping or intersection between any two supplementary 

aggregates. 

2. The base element should be kept at a certain distance away from the boundary surfaces 

of the specimen, such that the virtual sphere does not intersect the boundary surfaces.  

3. The base element should have a minimum distance from the surfaces or edges of the 

surrounding aggregates (polytopes) created in the first batch with the ‘take-and-place’ 

procedure.  

Condition 1 can be satisfied by checking the distance between the base element and any 

previously selected base elements (stored in a valid base elements array ܸܤ௞ሺݔ௞, ,௞ݕ  ௞), whereݖ

݇ is the order number of the valid base element and	ሺݔ௞, ,௞ݕ   ,(௞) is its centroid coordinatesݖ

such that 

)(5.0 2 pk dd         (11) 

where d2  is the diameter of the current virtual sphere, and dp is the diameter of the virtual 

sphere for an already formed supplementary aggregate.   
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Condition 2 can be satisfied by checking the distance from the base element to any of the 

boundary surfaces. This distance by default should be greater than the radius of the virtual 

sphere. For a cubic or prismatic specimen, this condition may be implemented more efficiently 

by creating a reduced specimen space by shrinking all sides by the same margin (equal to the 

radius of the virtual sphere), and checking that the base element falls within the shrunk space.  

Condition 3 is checked after meeting the first two conditions. The procedure is not 

straightforward and involves several considerations, as detailed below. 

a) The primary check is the normal distance from the base element to the surfaces of an existing 

aggregate polytope, i.e. the distance rn shown in Fig. 8.  The centroid point for each candidate 

base element is available after the meshing (herein from the post-processor LS-PREPOST 4.2). 

Its normal distance to a surface of a polytope can be calculated using the following formula:  

222

000

cba

dczbyax
rn




                       (12) 

where point ܥ ଴ܲ ൌ ሺݔ଴, ,଴ݕ ଴ሻݖ  represents the centroid of the base element, and the plane 

representing a surface of a polytope being checked is ܽݔ ൅ ݕܾ ൅ ݖܿ ൅ ݀ ൌ 0. 

Geometric data generated in the Take-and-Place procedure are processed to establish the planes 

for all the surfaces of an aggregate polytope. These geometric data include the coordinates of 

all the vertex points, and the three co-planar vertex points for each surface of the polytope. 

These data are extracted from the output of the convex hull generation procedure in MATLAB 

described in Section 2.2. 

Let the three vertex points on a surface of a polytope be ,ଵݔሺܣ	 ,ଵݕ ଵሻݖ , ,ଶݔሺܤ ,ଶݕ  ଶሻݖ

and	ܥሺݔଷ, ,ଷݕ   :ଷሻ, the normal vector of the surface can be obtained asݖ

ሬ݊Ԧ ൌ ሬሬሬሬሬԦܤܣ ൈ ሬሬሬሬሬԦܥܣ ൌ ቮ
ଓԦ ଔԦ ሬ݇Ԧ

ଶݔ െ ଵݔ ଶݕ െ ଵݕ ଶݖ െ ଵݖ
ଷݔ െ ଵݔ ଷݕ െ ଵݕ ଷݖ െ ଵݖ

ቮ ൌ ܽଓԦ൅ ܾଔԦ൅ ܿሬ݇Ԧ  (13) 

The equation for the plane is therefore: 

ܽሺݔ െ ଵሻݔ ൅ ܾሺݕ െ ଵሻݕ ൅ ܿሺݖ െ ଵሻݖ ൌ 0     (14) 

This equation can be re-written in a general form as:  

ݔܽ ൅ ݕܾ ൅ ݖܿ ൅ ݀ ൌ 0             (15) 

where 
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ܽ ൌ ሺݕଶ െ ଷݖଵሻሺݕ െ ଵሻݖ െ ሺݕଷ െ ଶݖଵሻሺݕ െ ,ଵሻݖ ܾ ൌ ሺݕଶ െ ଷݖଵሻሺݕ െ ଵሻݖ െ ሺݕଷ െ ଶݖଵሻሺݕ െ

,ଵሻݖ ܿ ൌ ሺݔଶ െ ଷݕଵሻሺݔ െ ଵሻݕ െ ሺݔଷ െ ଶݕଵሻሺݔ െ ݀		ଵሻ andݕ ൌ െܽݔଵ െ ଵݕܾ െ  .ଵݖܿ

By default, the normal distance should be equal or greater than the radius of the virtual sphere, 

i.e.  

|௡ݎ| ൒ ଴ݎ ൌ 0.5݀ଶ         (16) 

b) As can be seen from Fig. 8, for a candidate base element “k”, only the surfaces of adjacent 

polytopes that are likely to bound the virtual sphere should be checked. Checking against 

unrelated surfaces of polytopes not only waste the computing time, but may result in false 

rejection of a valid base element because of not meeting the normal distance criterion to these 

irrelevant surfaces.  

To identify the surfaces of polytopes that need checking, we propose to define a proximity 

spherical region ܵሺ݇ሻ surrounding the base element under consideration. The spherical region 

is drawn from the candidate base element with an enlarged radius equal to two times of that of 

the virtual sphere, i.e.  ݎଵ ൌ ଴ݎ2 ൌ ݀ଶ. A surface whose centroidal distance to the base element 

falls within the spherical domain	ܵሺ݇ሻ is considered as a relevant surface and will subsequently 

be checked, otherwise the surface is considered to be outside the region of interest and will not 

be checked. Surfaces identified as within the proximity region will be stored in an array called  

,ሺ݇݉݋ܦݎݑܵ ݆ሻ , where ݇ is the order number of the spherical domain and j is the serial number 

of the surfaces within the spherical domain.  

All surfaces stored in ܵ݉݋ܦݎݑሺ݇, ݆ሻ are checked with respect to the normal distance criterion 

for the validation of the base element. The default criterion has been expressed in Eq. (16). If 

the distances from the base element to all these surfaces satisfy the criteria, the base element is 

valid. Otherwise additional checks will be warranted, as explained next. 

c) If the above normal distance check fails for a particular surface, another layer of check is 

entered into operation to ensure that the surface is not one that is only marginally related to the 

base element, such as “e” and “f” in Fig. 8.  As schematically shown in the figure, “e” and “f” 

have been identified to be within the proximity sphere, but they are not “facing” the base 

element and therefore checking for the normal distance criterion is not reasonable and could 

result in rejection of a valid base element such as element “k” shown in the figure. 
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Fig. 9. Flowchart for selection of a base element for a supplementary aggregate 

For simplicity, the following additional checks are carried out in conjunction with the normal 

distance check, such that when a normal distance check to a surface fails, the base element will 

be rejected only if any of the following conditions is met: 

i) the distance from the base element to any vertex point of the surface is smaller than 

the specific limit, which by default will be r0. (Otherwise the virtual sphere will 

surely intersect with the surface) 
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ii) the distance from the base element to the centroid of the surface is smaller than r0, 

and  

iii) the distance to the middle point of any edge of the surface is smaller than the specific 

limit, which by default is also taken as r0. 

Conditions ii) and iii) above are designed to cater for the extreme situation where the size of 

the current virtual sphere is considerably smaller than the size of the surface being checked 

against; in such a situation passing the vertex points check may not guarantee that there is 

sufficient space between the base element and the surface. 

A special case worth noting is that there may be no element in the array ܵ݉݋ܦݎݑሺ݇, ݆ሻ for a 

candidate base element. This means the candidate base element is at least ݀ଶ distance away 

from the centroid point of any surface in any existing polytope. Therefore this base element 

can be directly progressed as a valid base element without further checking.  

The flowchart for the validation of a base element is shown in Fig. 9. 

3.2.2. Grouping process 

After successfully selecting a valid base element, the next step is to create a new aggregate by 

grouping the mortar elements within the virtual sphere. The aggregate grouping process and 

the corresponding ITZ layer identifying process can be carried out simultaneously in this step. 

The procedure is as follows: 

1. A mortar element is taken and checked. If all the four nodes of the mortar element are 

within the virtual sphere, the element is attributed the aggregate property and thus 

clustered into the new aggregate.  

2. On the contrary, if none of the nodes of the mortar element is within the virtual sphere, 

the element remains as mortar and retains its mortar material property.  

3. If some of nodes of a mortar element are within the virtual sphere while the remaining 

nodes are not, then the element is crossing the interface element and is given the 

equivalent ITZ property.  

It should be noted that because only the remaining “mortar” elements are involved in the 

generation process for the supplementary aggregates, the new ITZ elements created for each 

new aggregate will have no conflict with and are different from the ITZ elements created in the 

primary stage in Section 3.1.   
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It should also be pointed out that because the space remaining for grouping is highly irregular 

and unstructured, some clusters formed in this way may not have the required volume to fall 

within the targeted size segment. To eliminate such clusters an equivalent volume check is 

included to judge the validity of the cluster to become an aggregate. For simplicity the critical 

volume is defined as the volume of the smallest sphere within the size segment, i.e. 

  3/2/4 3

1dVolcr   in the aggregate size segment of [݀ଵ, ݀ଶ]. 

The volume of each newly generated aggregate through the above grouping procedure can be 

obtained by adding all elements included in the cluster. The volume of an individual element 

can be calculated from the coordinates of all nodes of the element which can be directly output 

after the FE meshing. In the present mesoscale model tetrahedron element is used to mesh the 

3D mesoscale structure. Let the coordinates of the four nodes of a tetrahedron element be 

ଵܰሺݔଵ, ,ଵݕ ,ଶݔଵሻ, ଶܰሺݖ ,ଶݕ ,ଷݔଶሻ, ଷܰሺݖ ,ଷݕ ,ସݔଷሻ and ସܰሺݖ ,ସݕ  ସሻ, respectively, the volume of theݖ

element can be calculated by the standard expression:  

݈݋ܸ ൌ ተ

1 1 1 1
ଵݔ ଶݔ ଷݔ ସݔ
ଵݕ ଶݕ ଷݕ ସݕ
ଵݖ ଶݖ ଷݖ ସݖ

ተ	                              (17) 

The grouping cluster can be considered as a valid secondary aggregate only when its volume 

is no smaller than a nominal volume for the size range to which the new aggregate is supposed 

to belong. Otherwise the cluster would be discarded and the procedure will repeat from the 

very beginning where a new base element candidate is selected by random from the mortar 

domain.  In this way the new aggregates generated here can be made to follow exactly the target 

size distribution.  

Fig. 10 shows the generation results of supplementary aggregates. It can be observed that all 

these aggregates are in reasonable gross shapes, although local irregularities exist as a result of 

grouping neighbouring mortar elements. Considering that the aggregates generated in this 

process are supplementary to the primary aggregates generated from the take-and-place 

procedure, the local irregularities are deemed to have only secondary effect, and hence are not 

further treated in the present study.  

The final meso-structure can be determined subsequently after generating all the aggregates 

and identifying the corresponding ITZ layers, shown in Fig. 11. Comparing to Fig. 6 where 

only the primary aggregates from the take-and-place procedure are shown, the increased 

packing density due to the addition of the supplementary aggregates is remarkable.     
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Fig. 10. Supplementary aggregates (3D isometric view) 

 

               

          x = 20 cut plane view                                 x = 40 cut plane view 

Fig. 11. Typical section views of final meso-structure of concrete (darker-brown colour aggregates are 

supplementary)  

4. FE analysis of general behavior of concrete using the mesoscale model 

In this section, the procedure described in Section 3 is implemented to create a complete 3D 

mesoscale model representing a typical type of concrete. Verification of the 3D mesoscale 

model is then presented, and this is followed by the application of the model to simulate the 

behaviour of concrete under various loading conditions. The underlying meso-mechanical 

damage process will be examined and discussed. 

4.1 Outline of the 3D mesoscale model creation procedure  

As described in detail in Section 3, the creation of a 3D mesoscale model is carried out in the 

following main steps: 
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1) Define the geometric space within which the mesoscale model will be created. For 

example, in the present study a cube with dimension size 50 mm is employed.  

2) Creation of the primary mesoscale structure by the “Take and Place” procedure as 

described in Section 2. Herein this procedure is implemented by an in-house MATLAB 

code. 

3) Finite element meshing for aggregates and the mortar matrix. Herein the software 

TETGEN [31] is used but this is not restrictive. 

4) Generation of supplementary aggregates with the procedure as described in Section 3.2. 

The procedure is also implemented by an in-house MATLAB code. 

5) Identification of the ITZ elements, also implemented with in-house MATLAB code. 

6) Assignment of the material properties for the three types of elements, namely mortar 

matrix, ITZ and aggregates. 

7) Conducting finite element analysis under a specified boundary and loading scenario 

using a general purpose FE solver. Herein LS-Dyna is employed [34].  

4.2. Material model and material parameters 

Under a general loading condition, damage and the nonlinear behaviour in concrete occur 

primarily in the mortar matrix and along ITZ. Therefore adequate nonlinear material models 

need to be considered for these two parts in order to represent the underlying damage process. 

At this juncture, it should be noted that the constitutive behaviour of quasi-brittle geomaterials 

like concrete bears similarities, and many ‘geomaterial’ models are designed to suit a range of 

such materials. Furthermore, because of the regularisation effect of the mesoscale structure, the 

sensitivity of the macroscopic behaviour of concrete in a mesoscale model to the choice of 

individual material description tends to be largely reduced and so the selection of the specific 

material model becomes less important, so long as the key properties, chiefly the elastic 

modulus and strength, are representative of the different component phases.  

The material model employed for the mortar and ITZ parts in the present study is the K&C 

Concrete Damage Model. This material model is capable of describing the material failure due 

to tension, shear, as well as compression under various stress conditions, and it also includes 

pressure and strain rate dependent features. The detailed technical information about this 

material model can be found in [35]. The material model has been tested extensively and is 

found to be a suitable candidate for quasi-static as well as dynamic applications of concrete-

like materials [36].  
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For normal concrete, the coarse aggregates are usually of much higher strength than the mortar 

matrix. It is reasonable to use a linear elastic material model for aggregates under low rate 

loadings. However for high dynamic loading such as shock and blast, the rapid propagation of 

stress wave could result in high stresses being developed in aggregates in a very different way 

as compared to low rate loading conditions, and this could subject the aggregates to potential 

failure [37]. Under this circumstance, a nonlinear material model becomes necessary. Herein 

we also use the concrete damage model for aggregates with however a failure strength 

matching that of the chosen aggregate type. 

Table 1. Material parameters 

Component Compressive strength (MPa) Density (kg/m3) Poisson’s ratio 

Aggregate 150 2600 0.23 

Mortar 35 2000 0.2 

ITZ 17.5 2000 0.2 

 

Normal concrete of grade 30 MPa in cubic compressive strength is analysed using the 

mesoscale model. For this grade of concrete, the standard strength of mortar is around 35 MPa 

with the Young’s modulus around  22 GPa [2, 15]. The properties of the ITZ layer are difficult 

to determine precisely but it is generally known to be weaker and is about 50% of the strength 

of the mortar matrix. Since in the present model the ITZ is represented by a layer of solid 

elements, thus as mentioned in Section 3.1 the ITZ layer will have a thickness that depends on 

the mesh (element) size, and this calls upon some trial analysis for the determination of the 

equivalent ITZ properties. In the present mesoscale modelling study, the element size is 

generally on the order of one 10th of the nominal aggregate size. For such a thin layer of 

equivalent ITZ, it has been found that use of a reduced strength as 50% of the mortar strength 

is appropriate.  The properties of aggregates can vary significantly depending on the types of 

the aggregates, and for crushed stones the Young’s modulus is around 50-60 GPa [2, 37]. 

Considering natural crushed stones of a nominal strength of 150 MPa the Young’s modulus is 

assumed to be 50 GPa according to CEB [38].  

Table 1 summarises the material properties for mortar, ITZ and coarse aggregate for the 30 

MPa concrete in the mesoscale model. 

It should also be pointed out that in the concrete material model used (K&C model) a crack 

localisation band width ܮ௖ is employed to control the mesh sensitivity of the softening stage of 
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the response, such that the total fracture energy over the 	ܮ௖	band would be constant and equal 

to the physical material fracture energy Gf. The default value for ܮ௖  is set at 25.4 mm, 

presuming a nominal aggregate size of 1/3 inch (8.5 mm) and a typical crack band of 3 times 

of the aggregate size. For models in which the element size (hc) is smaller than this, ܮ௖ should 

normally be set equal to hc if softening is certain to localise within one element band such as 

in simple tension, otherwise ܮ௖ will be multiples of hc and the precise choice will be subject to 

empirical judgement. For the mesoscale model herein and under general loading (other than 

direct tension or shear) it has been found that ܮ௖ ൌ 12	mm	is adequate and this value is used 

in all compression analyses.   

4.3. “Numerical experiment” setup 

3D mesoscale model of a cube specimen is developed. The size of the cube is 50 mm, which 

is commonly used in dynamic testing of concrete samples and is also a suitable size for quasi-

static testing with coarse aggregates in a size range of 4-12 mm. It is worth noting that the 

model may be regarded as representing a standard concrete cubic specimen of 150 mm by 

simply scaling up all dimensions by a factor of 3, including the aggregate size and the mesh 

grid. 

For uniaxial loading, the cubic specimen is restrained at the bottom along the axial (vertical, z-

axis) direction, while loading is applied from the top face in the vertical direction. Other 

boundary conditions can be simulated by imposing different lateral constraints on the top and 

bottom faces; for instance a complete restraint in the lateral directions would simulate an upper 

bound friction condition at the loading and support faces. Specific confinement can also be 

simulated by imposing a given level of confining stress on the side faces.  

In order to be able to produce the full range of the concrete response including the softening 

stage, the loading is applied in a displacement-controlled manner through imposing a velocity 

boundary condition. The transient analysis code LS-DYNA is employed to perform the analysis 

using an explicit time integration scheme. To minimise spurious oscillation in the simulation 

of quasi-static loading with an explicit transient analysis, the loading (velocity boundary) is 

made to follow a smoothed transition pattern. Controlling parameters that need to be specified 

in such a loading scheme include the rise time and the cap velocity. In a quasi-static analysis a 

rise time of at least 10 times of the fundamental period of the specimen is adopted and this 

generally ensures a negligible transient effect, whereas the velocity cap is chosen so that the 

specimen can be loaded to failure within an acceptable computing time. For dynamic loading, 
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the maximum velocity is dictated by the target nominal strain rate (velocity divided by the 

specimen length). More specific information about the velocity scheme will be given later for 

different loading conditions.  

As stated before tetrahedral meshing is used in the present 3D mesoscale model to mesh the 

highly unstructured multi-layer domains. For tetrahedral mesh, several element formulations 

are available in general FE packages including LS-DYNA. Considering the fact that in the 3D 

mesoscale model the mesh is already considerably fine due to the need to mesh the mesoscale 

geometry, the 4-node tetrahedron element is employed after a mesh sensitivity study comparing 

the use of the 4-node and 10-node tetrahedron elements as well as the 8-node hexahedron 

element. In the final mesh setting, the length of the tetrahedron has a nominal size 0.5-1 mm, 

resulting in about 260k nodes and 158k elements respectively for the cubic model.  

As a reference regarding the computation cost, the finite element simulations have been 

performed in a Linux system with 16 CPUs. As mentioned above the quasi-static analysis is 

carried out using an explicit time integration scheme and a longer duration is required to 

simulate a quasi-static response, thus the run time is relatively long and it can range between a 

few hours (for uniaxial tension) and a couple of days for compressions. Obviously for high rate 

dynamic loading, the run time would be drastically reduced, to the order of minutes. 

4.4. Verification under quasi-static compression  

The 3D mesoscale cubic specimen is examined firstly under a quasi-static compression.  It is 

generally known that the compressive behaviour of a concrete specimen can be strongly 

influenced by the frictional constraint between the specimen and loading platen [39]. In the 

current 3D meoscale model, it is possible to simulate the varying friction force by incorporating 

a friction coefficient at the loading faces through a contact approach. For simplicity, two 

borderline scenarios are simulated herein; the lower bound is represented by a friction-free 

condition while the upper bound is represented by a complete lateral constraint on the top and 

bottom faces. The friction effect in typical laboratory tests should fall in-between the two 

borderline conditions.  

To simulate a “quasi-static” compression, the velocity boundary condition was defined with a 

rise time of 4 ms and a velocity cap of 0.025 m/s following preliminary trial analyses. The 

computed axial stress - strain curves for the above mentioned lower and upper boundary 

conditions are shown in Fig. 12. A pair of experimental curves with “low” friction and “high” 
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friction are also shown in the figure for a comparison. Note that the grade of concrete in the 

experiment was not exactly 30 MPa so the absolute strengths are not to be compared in absolute 

terms.  

 

 

Fig. 12. Computed stress strain curves in comparison with typical experimental results [39] 

As can be seen, the results from the mesoscale model show very good overall agreement with 

the experimental data in terms of elastic response (modulus), peak strains, and softening phase 

of the response. Both the computed and experimental results exhibit strong effect of the loading 

boundary conditions.  

Fig. 13(a) and (b) show the damage patterns for low and high surface frictions respectively. 

The damage is represented by the plastic strain and this will be employed in similar damage 

illustrations hereinafter. As mentioned earlier, in the present simulation the concrete model 

(K&C) [35] is employed, and in this model three independent strength surfaces are defined for 

yield, maximum and residual strength respectively. At any stage the current damage state is 

defined as a linear interpolation between the maximum and either the yielding or residual 

failure surface, and the interpolation factor is a function of the modified effective plastic strain 

measure, ߣ, which is defined in the following form: 

ߣ ൌ ׬
ௗఌ೛തതതതതത

௥೑൬ଵାቀ௣ା൫௣/௥೑௙೟൯ቁ൰
್భ

ఌ೛തതതത
଴           when p ൒ 0   (18a) 

ߣ ൌ ׬
ௗఌ೛തതതതതത

௥೑൬ଵାቀ௣ା൫௣/௥೑௙೟൯ቁ൰
್మ

ఌ೛തതതത
଴            when p ൏ 0   (18b) 

where ߝ௣ഥ  is the effective plastic strain with the increment: 
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௣തതതതതߝ݀ ൌ ටଶ

ଷ
௜௝ߝ݀

௣݀ߝ௜௝
௣                                (19)                                                            

ܾଵ and ܾଶ are damage scaling parameters for the case of the uniaxial compression and tension, 

respectively; ݎ௙  is the dynamic increase factor that accounts for strain rate effect, p is 

hydrostatic pressure and ௧݂ is the tensile strength of the concrete material. 

Therefore, the plastic strain output from the model represents directly the damage (cracking) 

pattern. It can be seen that both of the global damage and internal crack patterns agree well the 

experimental observations. Under a low friction condition (Fig. 13(a)) the specimen was 

effectively separated into a series of small columns by the formation of the major cracks almost 

parallel to the applied load, and the cracks appear to follow the weakest path along the ITZ. On 

the other hand, under high friction (Fig. 13(b)) significant confinement develops in the 

triangular (cone-shaped) zones near the end faces, this lead to the well-known “hour glass” 

failure mode. Besides, the damage patterns appear to follow closely the weakest links formed 

by the ITZ around the aggregates (note that the shapes of aggregates are not shown in the 

contours to avoid confusion with the damage lines). 

                   

                            3D view                                                      Internal (section) view  

(a) Lower loading-face friction  

                

                            3D view                                                      Internal (section) view  

(b) Higher loading-face friction  

Fig. 13. Comparison of damage patterns between numerical results (left in each pair of graphs) and 

experimental observations (right, after [40]) 
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4.5. Verification under quasi-static tension 

In this section, the 3D mesoscale model is used to analyse the behaviour of concrete under 

uniaxial tension. The same material property parameters as in the compression analysis are 

used. The velocity loading boundary condition is applied directly on the top face in the same 

fashion as the compression loading. No lateral constraint (friction) is considered in the 

simulation of tension. The loading scheme used in the tension case is also similar to that used 

in the compression analysis with the same rise time, but the cap velocity was reduced 0.0025 

m/s to reflect the fact that the tensile failure strain is about an order of magnitude smaller than 

the compressive failure strain. It is worth noting here that the exact loading rate is not important 

in the “quasi-static” analysis, so long as it avoids any sensible transient effect. 

   

               

            Pre-peak                                   peak load                                 post-peak 

Fig. 14. Development of crack patterns  

 
Fig. 15. Computed nominal stress-strain curve under direct tension (experimental data after [41]) 
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Fig. 14 depicts a typical simulated fracture process of concrete under uniaxial tension. The 

corresponding tensile stress-strain curve is given in Fig. 15. It can be observed that upon the 

peak stress many micro-cracks developed and are mostly around the interface zone between 

mortar and aggregates. As the strain increases, some micro-cracks gradually coalesce to form 

macro cracks while other micro-cracks stop opening further. As the deformation continues, 

localization which is a well-known phenomenon in tension can be observed clearly from the 

3D mesoscale simulation. 

The direct tensile strength obtained in 3D mesoscale model is around 2.7 MPa, which is 

reasonable for the 30-MPa concrete under consideration. The strain at peak strength is around 

1.2ൈ 10ିସ which also agrees well with many experimental observations [41, 42]. Here if we 

also compare the results with the ones computed from 2D mesoscale model in [2], the 3D 

model again produces more reliable results than 2D model; in the 2D analysis the strain around 

peak load is much lower than the expected value. The relative lower strains at peak loads under 

both compression and tension indicate that 2D mesoscale model lacks the ability to produce 

realistic stress and strain states in concrete specimen. As for result from the 3D homogeneous 

model, it seems the softening part after peak load is too brittle. This could be attributed to the 

fact that the homogeneous model fails to predict a realistic path of crack propagation. As can 

also be seen from Fig. 14, some well-known fracture mechanisms such as crack deflection, 

crack branching and bridging can be well observed from the 3D mesoscale model. 

4.6. Analysis of confined compression 

The compressive behaviour of concrete is known to be sensitive to the lateral confinements. 

Generally speaking, with the increase of lateral confinement pressure, both the compressive 

strength and the ductility tend to show significant enhancement [43-45]. 

The 3D mesoscale model is tested under confined compression. Several levels of confining 

stress are considered in the simulation, namely 1.5, 4.5, 9 and 30 MPa. The confinement 

pressure is applied as lateral force on the side faces of the specimen, while the axial loading is 

still controlled by the velocity boundary condition with the same loading history as used in the 

uniaxial compressive analysis . With the explicit analysis scheme, the lateral confinement 

pressure is applied gradually in order to minimize spurious oscillations.  

The axial stress - strain responses of the specimen at different levels of the confining pressure 

are presented in Fig. 16. As expected the compressive strength of the concrete increases 
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markedly with the increase of the confining pressure. Under relatively low confining pressure, 

the axial stress-strain curves exhibit well-defined peaks and clear softening branches. Both the 

peak strength and the ductility increase persistently with the increase in the confining pressure. 

Under further increased confinement, the post-peak branch turns to be flat and eventually 

exhibits a hardening stage. The transition from post-peak softening to hardening, i.e. the 

compressive behaviour of concrete specimen changes from quasi-brittle to apparently ductile, 

happens with a confining pressure of the order of 9 MPa. This phenomenon echoes very well 

the observations from other studies [44, 45]. A comparison with the experimental data from 

[45] is also given in Fig. 16. A good agreement can be observed in general. It is noted that at a 

high level of confinement with a pressure of 30 MPa, the numerical result appears to 

overestimate the confined strength, especially in the early nonlinear stage. This may be related 

to the fact that the experimental specimens were cylinders (150 mm in diameter and 300 mm 

in length) whereas the 3D mesoscale model is a cube of 50 mm (or 150mm cube by scaling). 

Nevertheless a good agreement in the overall comparison is evident.  

  

Fig. 16. Axial stress strain response under different levels of confining pressures (experimental data 

after [45]). 

Fig. 17 shows damage patterns from the 3D mesoscale model. As can be seen, the failure crack 

patterns for different levels of confining pressures are different. In the lower confining pressure 

end, the macro-cracks at failure are nearly vertical (parallel to the axial compression), showing 

a splitting mode of failure. As the confining pressure increases, the damage (crack) zone 

becomes increasingly less oriented, and eventually turns into a crushing failure with well 

distributed fracture throughout the whole specimen. Experimental evidences (e.g. [46]) tend to 
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show a similar trend. Besides, the damage patterns appear to follow closely the weak links 

formed by the ITZ and extend into the mortar matrix. 

From all of these comparisons, it is reasonable to say that the 3D mesoscale model has the 

capability to estimate the real stress strain state and the damage behaviour under various 

loading conditions with acceptable accuracy. Therefore a true 3D mesoscale model becomes a 

desirable solution to predict and better understand the failure mechanisms of concrete from 

micromechanical analysis. The model is further applied in the analysis of dynamic compression 

of concrete, which will be discussed in the Section 5.  

 

                              

                         (a) 0 MPa                                                                (b) 4.5 MPa 

                                         

                                                                        (c) 30 MPa 

Fig. 17. Global and internal damage patterns for different confining pressures 

5. Application to dynamic compression 

In this section the 3D mesoscale model is employed for a dynamic analysis of concrete under 

high strain rate compression. Experimental data generally suggests an apparent increase of the 

dynamic compressive strength with the increase of the strain rate, and a dynamic increase factor 

(DIF) is usually used in the engineering community to account for the strength enhancement 

due to high strain rates. However, the true mechanism underlying the occurrence of the DIF is 

still a subject of debate. As far as compression is concerned, a prevailing theory suggests that 

the DIF is largely attributed to the lateral inertial confinement (e.g. [47, 48]). More recent 
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numerical studies using 2D-type mesoscale models provide further support to this argument 

(e.g. [7, 49]) and also highlight possible contribution of the mesoscale heterogeneity towards 

the dynamic strength enhancement. However, a full representation of the mesoscale 

heterogeneity effect could only be achieved with a true 3D mesoscale.  

The application of the present 3D mesoscale model to simulate the dynamic compression is 

straightforward. The dynamic loading is simulated by applying a velocity boundary condition 

in a similar way as in the quasi-static analysis, but with a high velocity in order to achieve a 

desirable strain rate. For example, the cap velocity is set at 2.5 m/s for a nominal strain rate 50 

/s and 10 m/s for a nominal strain rate 200 /s in the 50-mm specimen.  Note that in the dynamic 

simulation herein, no friction is considered at the loading face. To facilitate a direct observation 

of the contribution of the structural inertial effect, the constituent materials are considered to 

be rate insensitive, i.e., no embedded strain rate enhancement factor is adopted in the material 

properties in all the models. Thus any increase in the apparent compressive strength of the 

simulated test specimen is attributable only to the sample-wide dynamic effect, as well as the 

material heterogeneity. The apparent dynamic compressive strength is evaluated from the 

average peak stress on both the loading and supporting faces. For a comparison, a 2D 

homogeneous model, a 2D mesoscale model and a 3D homogeneous model are also analysed 

for the same variation range of the strain rates. 

 

 

Fig. 18. Variation of compressive DIF with strain rate 

Fig. 18 shows the variation of the predicted DIF with the strain rate from the simulations using 

the models mentioned above. Four empirical equations on DIF of concrete from the literature 

[37, 50-52] are also included for a comparison. 
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It is worth mentioning here that for dynamic compression test there is an upper limit of the 

strain rate concerning the stress and strain uniformity requirement upon the specimen reaching 

failure, and this strain limit is directly related to the length of the specimen. For 30-MPa 

concrete specimen of 50 mm in length a strain rate up to about 100 s-1 is considered as 

acceptable [36]. Beyond this strain rate limit the peak stress at the loading and reaction ends 

may not be reached at the same time. A detailed discussion on such a phenomenon is beyond 

the scope of the present analysis. Herein for simplicity the apparent dynamic strength is 

evaluated as the average of the peak stresses at the loading and reaction ends, regardless 

whether they have been reached at the same time. 

As can be observed from Fig. 18, all models exhibit an apparent increase in the compressive 

strength as the strain rate increases, despite that no strain rate enhancement has been 

incorporated in the material constitutive model. The general trend of the DIF curves in 

numerical models resemble well with the curves given by the empirical formulas. The 3D 

mesoscale model tends to predict the upper bound DIF among all numerical results, and this is 

deemed to be attributable to the enhanced contribution from the aggregates, as well as a fuller 

representation of the inertial confinement effect. Further comparison of the DIFs between 2D 

and 3D numerical models shows that the 2D numerical models markedly underestimate the 

DIF in the specimen, due apparently to an insufficient representation of the lateral inertial-

induced confining effect in the third direction.  

 

                             

Fig. 19. Damege distribution at strain rate 200 /s (left: 3D mesoscale model; right: 3D homogeneous 

model) 

The mesoscale heterogeneity is believed to contribute to the dynamic compression strength 

increase in two aspects, namely a) by promoting the distribution of damage (fracture) and thus 

better mobilising the strength of the specimen as a whole; this is evident from the damage 
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distributions in Fig. 19, and b) by having the stronger aggregates participate directly in the 

resistance, thus boost the overall stress level which then manifests as an increase of the apparent 

strength. This can be examined easily from the stress level achieved in the aggregates in the 

3D mesoscale model. Fig. 20 shows the damage distributions in aggregates at the peak load 

stage for different strain rates. Note that damage only occurs in aggregates if the stress attained 

the “yield” strength level of 150 MPa. It can be seen that damage in aggregates appears at a 

strain rate of 50 s-1 and it becomes increasingly more significant as the strain rate further 

increases. 

          

       Strain rate 50 (1/s)                       Strain rate 200 (1/s)                   Strain rate 400 (1/s) 

Fig. 20. Damage conditions of aggregates at peak load 

6. Conclusions  

A comprehensive procedure has been developed to generate realistic 3D mesoscale finite 

element model for concrete-like materials. The development has been catered to suit the needs 

of material investigation under general and complex stress conditions, including dynamic 

loading.  

The mesoscopic geometric structure of a concrete specimen is generated in two steps. A take-

and -place procedure is employed first to produce and pack convex polytopes as aggregates 

into a specimen space, which is a cube or prism in the present study. A fast detection of particle 

inclusion intersection procedure and a translate-and-rotate procedure are incorporated to 

enhance efficiency and effectiveness of the packing process. Finite element meshing is 

subsequently made using an efficient meshing code suitable for meshing the highly 

unstructured domains due to the existence of randomly shaped aggregate particles. The 

interface elements are formed by selecting an equivalent layer of elements surrounding the 

aggregate particles.  
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To tackle the shortcoming of the take-and-place procedure in terms of a limited packing density 

(in the range of 30-35%), an algorithm to identify and group suitable mortar elements into 

supplementary aggregates has been developed. The algorithm enables the supplementary 

aggregates to largely retain the randomness in the size and location of the aggregates, and at 

the same time fit to a desired grading curve.   

The 3D mesoscale is verified in the simulation of the quasi static response of concrete under 

uniaxial compression, uniaxial tension, as well as confined compression. The simulated results 

resemble favourably the corresponding experimental observations.  

The 3D mesoscale is also applied for simulation of the dynamic behaviour of concrete under 

high strain rate compression. Comparisons between the 3D mesoscale model and other 

modelling approaches demonstrate clearly the advantages of the 3D mesoscale model in terms 

of realistic representation of the stress field and the effect of the inertial confinement, as well 

as the participation of the aggregates in the dynamic resistance under high strain rates.  

The procedure presented in this paper for the 3D mesoscale model is readily applicable for 

material investigation of concrete, with no restriction on aggregate sizes, shapes, and 

volumetric ratios, or loading and boundary conditions. The model allows investigations into 

the underlying concrete damage mechanisms under practically any loading and boundary 

condition, thus complement experimental testing and can lead to the development of more 

representative macroscopic concrete models for specific applications or improved mix design 

for enhanced material behaviour. The model can also be implemented in the analysis of a 

structural component where the stress conditions may be highly complicated. To control the 

computational cost in a structural component analysis it is possible to incorporate a two-scale 

approach such that the critical regions are modelled by the mesoscale model while the 

remaining regions by a homogenous model. As the 3D mesoscale model is developed in a 

continuum framework, interface between different scale regimes within the model domain is 

straightforward. 
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