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Abstract: Bioenergy, as a renewable energy resource, is expected to see significant development in the
future. However, a key issue that will affect this trend is sustainability of bioenergy. There have been
many studies on this topic but mainly focusing on only one or two-dimensions of the issue and also
with much of the literature directed at studies of European regions. To help understand the wider
scope of bioenergy sustainability, this paper reviews a broad range of current research on the topic
and places the literature into a multi-dimensional framework covering the economic, environmental
and ecological, social and land-related aspects of bioenergy sustainability, as well as a geographical
analysis of the areas for which the studies have been carried out. The review indicates that it is
hard to draw an overall conclusion on the sustainability of bioenergy because of limited studies or
contradictory results in some respects. In addition, this review shows that crop-based bioenergy and
forest bioenergy are seen as the main sources of bioenergy and that most studies discuss the final
utilization of bioenergy as being for electricity generation. Finally, research directions for future study
are suggested, based on the literature reviewed here.
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1. Introduction

Climate change has been seen as one of the major challenges for sustainable development of
human society, and anthropogenic greenhouse gas (GHG) emissions, mainly due to the usage of
fossil fuels, have been considered as the dominant cause of the observed change in climate to-date [1].
To address the problem, most of the countries in the world are taking measures to control or reduce
their carbon emissions [2]. In this case, promoting the energy transition from fossil fuels to renewable
energy sources is one of the main solutions for the world [3], and where bioenergy is expected to
play a substantial role within the renewables. In recent years, bioenergy use for electricity and
for transport fuels has been growing rapidly, mainly because of higher levels of policy support [4].
For example, IEA predicts that by 2022 bioenergy will be the fourth largest source of renewable
electricity generation [5]. However, many factors may influence the achievement of the prediction,
and one of these is the sustainability of bioenergy, which is the focus of this study.

A review of the literature indicates that there are many studies focusing on the sustainability of
bioenergy. However, the majority of these tend to be rather narrowly focused, looking, for example, at a
particular technology or at a specific region. Such studies play an important role in understanding the
topic but in our view there remain key deficiencies in the current research, primarily in the following
three aspects:
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Firstly, as mentioned, most current studies focus mainly on one aspect, such as the environmental
impact or the economic influence of bioenergy. For example, Cambero et al. [6] analyze forest-based
biorefinery supply chains for bioenergy use via a case study for British Columbia, and show that social
benefits, such as job opportunities, are likely to be created; Igos et al. [7] examine rye as the target
for a sustainable assessment of the environmental and economic aspects of this source of bioenergy;
Glithero et al. [8] set up an economic model to assess farm systems in the UK. Fantozzi et al. [9] present
a technical and economic feasibility study for a cogeneration plant for the agro-food industry whereas
Efroymson et al. [10] set up environmental indicators to assess the sustainability of biofuel. Few studies
put the various aspects together when assessing bioenergy sustainability [11], making it hard for
researchers to form an overall understanding of the topic. However, as Robertson [12] proposed,
bioenergy sustainability should at least interconnect environmental, economic and social facets.
Solomon [13] integrated the three aspects of bioenergy sustainability by using several criteria in order to
present a review work. Apart from the three aspects mentioned above, bioenergy sustainability is also
regarded as relevant with food security and marginal land use, which is discussed by Tilman et al. [14]
and Gelfand et al. [15] respectively.

Secondly, the results from quite a number of studies, e.g., [16,17], draw contradictory conclusions,
which does not help stakeholders, including academia and policy-makers, to form a universal view of
the sustainability of bioenergy. Fargione et al. [18] claim that whether biofuels offer carbon savings
depends on how they are produced. Their study indicates that biofuels made from waste biomass or
biomass grown on abandoned land are more likely to achieve carbon reduction goals compared with
other forms of bioenergy. Searchinger et al. [19] study croplands in the U.S. and find that the value of
using bioenergy obtained from waste biomass is much higher than crop-based bioenergy. By contrast,
Hill et al. [20] who analyzed the environmental costs and benefits of both biodiesel and bio-ethanol,
found that biodiesel releases less pollutants compared with ethanol. Mohr and Rahman [21] appraised
the first and second generations of biofuel, and discussed the challenges for policy in managing
the transition.

Thirdly, many studies discuss sustainability-related issues within the context of a specific region
of the world (e.g., [22–25]), and where studies that examine bioenergy sustainability from a global
perspective are less common. The latter, for example, include Walmsley and Godbold [26] who
reviewed bioenergy with a focus on environmental aspects; German and Schoneveld [27] who reviewed
the social sustainability of bioenergy; and Miyake et al. [28] who examined integrated land use and
environmental aspects for sustainability assessment. However, even these more comprehensive
reviews only aim at one or two aspects of the issue, and so far, we have found no study that examines
the sustainability of bioenergy in a fully multi-dimensional way.

The main aim of this paper here, therefore, is to develop a systematic review of a wide range of
current studies on bioenergy sustainability, and to place these in a multi-dimensional framework and
from a global perspective. The overall objectives of this paper are to enhance the public understanding
of bioenergy and to provide some potential research directions for future study.

The structure of the paper is as follows: Section 2 explains the research framework and provides
an overview of literature reviewed for this study; Section 3 shows the results from this review
by visualizing the geospatial distribution of current studies, and by analyzing the sustainability
of bioenergy from four different aspects; namely, economic, environmental and ecological, social,
and land-related issues. Section 3 discusses the main types of bioenergy and their application forms.
Finally, Section 4 presents the conclusions of this study.

2. Research Framework and Description of Target Literature

2.1. Research Framework

To help the public better understand the sustainability of bioenergy in the global perspective from
multi-dimensions, this review aims at answering three types of questions as follows:
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The first type of questions is region-related with focus on studies with specific regions and the
reasons for the choice of the regions. In order to answer these questions, this paper firstly analyzes
geospatial distribution of bioenergy studies, which is useful for us to understand current studies of
bioenergy sustainability in a macroscopic way. Geospatial distribution analysis can also visualize the
density of bioenergy-related studies in a global perspective. Besides, necessary analyses of the major
drivers of the geospatial distribution of literature are also studied.

The second type of questions is result-related, that is, which aspects current studies cover and
whether the results are sustainability-related. To offer persuasive answers of the questions, the review
of current literature covers aspects of bioenergy sustainability and the discussion is focused on the
following four aspects: (1) Economic; (2) Environmental and ecological; (3) Social; (4) Land related
issues. It should be noted that land related issues mainly include two sub-contents, that is, availability
of land and Land Use Change (LUC). The reason for the inclusion of land availability is that big scale of
bioenergy development requires a high demand of raw materials from land products, while land itself
is also considered as a scarce resource. Therefore, it is reasonable to include land availability when
discussing the sustainability of bioenergy. As we mentioned previously, to our knowledge, there is no
review that has combined all the four aspects above.

The third type of questions is bioenergy-associated, that is, which types and application forms of
bioenergy are frequently discussed by scholars to-date. To provide justified answers to these questions,
the type of bioenergy sources and their application forms are discussed.

The research framework of this paper is designed based on the above three types of questions
and the flow chart of sustainability assessment progress can be seen in Figure 1. By integrating all
these questions, a relatively systematic and explicit review will be presented. Note that the question of
whether a form of bioenergy is sustainable or not depends in many instances on the extent to which it is
deployed. In this paper, this issue of scale is implicit in most of the papers reviewed, and is a key topic
that needs to be kept in mind when discussing the sustainability of bioenergy in its broader context.
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2.2. Description of Target Literature

As a review work, reviewed literature is the target of our analysis, and the expected conclusions
correlate deeply with chosen studies. To make this work persuasive, this review focuses only on
relevant literature published on peer-reviewed scientific academic journals. Thus, studies from other
sources such as newspaper, reports, blogs and other channels are out of consideration. This paper has
reviewed a total of 74 studies on bioenergy sustainability and the publication journals of the reviewed
studies are illustrated in Figures 2 and 3 respectively.

Figure 2 indicates that the range of studies is from 2007 to 2018 (with the exception of 2008 and
2009). It is quite clear that bioenergy has been frequently discussed in recent years and soared from
2015 onward, compared with the earlier years. It can thus be inferred that with the increasing concerns
on climate change, bioenergy has encountered opportunities for its scale deployment.
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Figure 2. Year distribution of reviewed studies.

Moreover, if analyzed from the distribution of published journals, it is interesting to find that
target studies can be obtained in a wide range of journals while journals related to sustainability
and/or bioenergy (e.g., the first four journals in Figure 3) no doubt take up a much higher proportion.
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3. Review Results

3.1. Geospatial Distribution of Bioenergy Studies

Figure 4 shows the geospatial distribution of bioenergy studies we have reviewed for this paper.
From Figure 4, we can see that current studies mainly established in EU countries, with Germany
contributes the largest proportion of it (e.g., [29–31]), this may due to the fact that Germany has made
a policy—The Renewable Energy Sources Act (German: EEG), which serves as an incentive to promote
electricity generation from bioenergy [32]. Other EU members also account for a substantial part of
current studies. The reason might be simple: the European directive 2009/28/EC (also known as the
Renewable Energy Directive or RED), and the related COM/2010/11 that integrate guidelines for
calculating greenhouse gas impact on various bioenergy pathways [33] appeal more to EU citizens
and scholars. Southern European regions also take up for a relatively high proportion of bioenergy
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assessment because many analytical and experimental-based studies are established in this area.
For example, Zabaniotou et al. [34] analyze bioenergy systems of Mediterranean areas and promote
creation in the agricultural-based bioenergy sector. Manos et al. [35] demonstrate their study more
specifically by taking Greece as an example; the results imply that good governance in Public-Private
Partnerships is required to achieve the balance among stakeholders, technical solutions as well as
financial solutions. Other European countries also appeal researchers’ attention but studies on these
regions take up for a relatively small proportion. For example, only one of the reviewed works discusses
about bioenergy in Russia [36] and mainly concentrates on current status of bioenergy resources such
as crop residues, forest residues and municipal solid waste in this country. Steubing et al. [37] assess
bioenergy potential in Switzerland and find out that material utilizations, economic factors and Swiss
biofuels policy are major constraints for developing bioenergy in this country.

In Asia regions, major studies to analyze the sustainability of bioenergy are focused on China.
Four such studies are developed with different focuses, namely, bioenergy systems [38], bioenergy
resource potential [39], bioenergy technology [40], economic potential of supply [41]. However, other
Asia regions such as Malaysia, India, Iran, and Turkey are less mentioned, as only one or two of the
reviewed studies targeted those areas respectively (e.g., [42–45]). The main causes of this phenomenon
might be that, as the largest emerging economy in the world, China attracts more attentions from
scholars all around the world, and it has made more bioenergy attempts than any other Asian countries,
with the purposes both of fossil fuels usage reduction and its responsibility to respond to climate
change. Other Asian countries, however, still need more concentration on facilitating bioenergy,
for there remains great potential of bioenergy in these countries as well.

The U.S. accounts for a relatively large proportion of bioenergy sustainability assessment in North
American regions (e.g., [46–49]), whereas merely one study concentrates on Canada, with the emphasis
on marginal land use. A most possible reason is that America actually has sufficient corn-based
bioenergy supply compared with its Canada counterpart; and according to Jin and Sutherland [46],
from 2000 to 2014, the U.S. bioenergy consumption per capita increased by 38.7%, which roughly
proves that bioenergy plays an important part in the country’s economic growth.

By contrast, studies in Africa and South America only account for a limited proportion of
bioenergy sustainability assessment. For example, Akbi et al. [50] analyze sustainable bioenergy
potential in Algeria via bioenergy power-generation technologies, waste resources and industrial
wastes; Gonzalez-Salazar et al. [51] analyze bioenergy as well as land use strategies; while Finco and
Doppler [52] accomplish their work by integrating bioenergy together with food security and climate
change. Compared with the regions that mentioned earlier, Africa and South America regions have
more fragile ecological environment (tropical forest systems and desert areas), thus naturally more
barriers exist on the way to develop bioenergy. However, it might be a good approach to help bioenergy
development in these regions by connecting scattered bioenergy power-generations together to achieve
technology enhancement because according to IEA WEO 2017 [53], 10% electricity production in
Brazil in 2016 was generated by bioenergy, which indicates the possible scale deployment of bioenergy
power-generations in these areas.

We should notice that most of the reviewed studies develop their research in certain areas. (See the
map in Figure 4). Thus, due to the uneven distribution of current studies, the authors think that it is a
necessity for future researches to pay more attention to Africa and South America regions to improve
the global understanding on bioenergy sustainability. Furthermore, South America should be given
more attention since this region has tremendous lands covered by farmlands, which can provide a
large number of organic wastes, and therefore raw materials for bioenergy production are easy to
gather. Moreover, although EU is widely studied in terms of bioenergy sustainability assessment
as a whole, it is undeniable that many of the studies actually take Germany as an example as it has
published some renewable energy policies and acts as a pacemaker. Therefore, future studies focus on
other EU members can also be conducted to assess the sustainability of bioenergy based on their own
national conditions.
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3.2. Multi-Aspects Analysis

Research aspects in this paper are divided into four parts: economic, environmental and ecological,
social aspects, land related issues. Table 1 summarizes the aspects applied in the target literature and
the methods used to analyze these aspects. Sections 3.2.1 and 3.2.4 provide more specific analyses on
these aspects.

Table 1. Four research aspects in literature and the methods for analysis.

Reference 1© 2© 3© 4© Methods

Awasthi et al., 2017
[54]

√ √ List of economic and ecological impacts through diverse
perennial cropping systems(DPCSs)

Purkus et al., 2017
[29]

√
1© Technology-push and demand-pull; cost-effective

Hayashi et al., 2014
[55]

√ √ √ 1© Global Bioenergy Partnership (GBEP), net energy balance;
2© LCA of GHG emissions; 3© Change in income, bioenergy

used to expand access to modern energy services, etc.

Khishtandar et al.,
2017 [44]

√ √ √ Hesitant fuzzy linguistic term sets; Multi actor multi criteria
outranking method based on HFLTS

Vasco-Correa et al.,
2018 [56]

√ √
1© Techno-economic analysis; 2© Life cycle assessment

Alsaleh et al., 2017
[57]

√ √ 1© Theoretical review of market analysis; supply and demand
model

Buchholz et al., 2007
[58]

√ √ √
Multi Criteria Analysis (MCA)

Jin and Sutherland
2016 [46]

√ √ √ Causal loop diagram (CLD); IMPLAN (Impact Analysis for
Planning)

Tittmann et al., 2010
[47]

√
1© Techno-economic model

Kalt and Kranzl 2011
[59]

√
1© Techno-economic approach
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Table 1. Cont.

Reference 1© 2© 3© 4© Methods

Merry et al., 2017 [48]
√

4© Scenario analysis

Pour et al., 2017 [60]
√ √ √ 1© Cost of electricity (COE) production; 2© LCA; 3© social

acceptability, job creation, social benefits

Kato et al., 2017 [61]
√ √ 2© Integrated assessment (IA) model; 4© GRAPE (Global

Relationship Assessment to Protect the Environment)

Chitawo and
Chimphango, 2017
[62]

√ √ 1© Cost-benefit analysis; 2© Net water requirement, net savings
on carbon emissions

Fang et al., 2018 [63]
√

1© Cost-benefit analysis

Arodudu et al., 2017
[64]

√ √
1© Energy Return on Energy Invested (EROEI); 2© LCA

Meyer and Leckert,
2017 [65]

√
2© Systematic review

Hennig and Gawor,
2012 [30]

√ √
1© Cost and profitability analysis; 2© LCA

Liu et al., 2017 [66]
√ √

1© Cost-benefit analysis; 2© GHG emission model

Fridahl and Lehtveer,
2018 [67]

√ √ 1© Non-parametric statistical analysis; 2© Social constraints on
deployment

Santoli et al., 2015 [68]
√

1© Discounted Cash Flow

Kang et al., 2018 [69]
√

2© The bottom-up energy system, optimization model

Mangoyana and
Smith, 2011 [38]

√ √ √
Review and case study

Fuess et al., 2018 [70]
√ √

1© Techno-economic model; 2© LCA

Durusut et al., 2018
[71]

√
1© Techno-economic model

Yang et al., 2018 [72]
√

2© LCA

Buratti et al., 2012 [73]
√

3© Input-output analysis

Bartocci et al., 2016
[74]

√
2© LCA

Spatari et al., 2010 [75]
√

2© LCA

Roos and Ahlgren,
2018 [76]

√
2© LCA

Note: 1© Economic; 2© Environmental; 3© Social; 4© Availability of land (should also include land use change which
is not included in this table. Detailed description of land use change is given in Section 3.2.4.).

3.2.1. Economic Aspect

The review of this study shows that 21 studies analyze bioenergy sustainability in economic
aspects, which accounts for one of the largest proportion of the four aspects.

Methods of economic assessment are typically techno-economic analysis, net energy balance,
market analysis and cost-benefit analysis. Among these methods, techno-economic analysis is most
widely adopted and over 30% of the studies mentioned economic aspect (as indicated in Table 1) were
based on this approach. The core of techno-economic analysis is the calculation of the internal rate
of return (IRR), net present value (NPV), and discounted payback period, which is adopted by many
scholars as a preference because of its relatively low threshold and universality. Although popular in
most studies, techno-economic analysis has its own drawbacks, especially in its accuracy compared
with net energy balance analysis when it refers to energy cost analysis. Hayashi et al. [55] choose net
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energy balance as one of the indicators in their Global Bioenergy Partnership (GBEP) analysis, which
contributes significantly to the holistic assessment of bioenergy.

Energy efficiency is also discussed when assessing economic aspect of bioenergy since high
efficiency always means high economic feasibility. Fang et al. [63] estimate energy use efficiency of a
potential biofuel feedstock in China and find that the highest observed benefit/cost ratio and economic
productivity values for plantation size of 4.0–20.0 hectare in Gansu province and >35.0 hectare in
Shandong province, respectively. The authors consider that with the enhancement of bioenergy
production, problems caused by growing population in the future might be alleviated. Arodudu et
al. [64] develop their work by using Energy Return on Energy Invested (EROEI) and the results show
that an extra 1.7 to 1.8 times more of EROEI from corn ethanol and an extra 2.8–3.5 times more of
EROEI from corn biogas are obtained. The outcomes of the two studies above indicate that energy
efficiency of bioenergy is quite positive.

By using the methods of economic assessment and considering the research results of energy
efficiency, many studies draw their conclusions which show a convergent tendency that bioenergy is
economical. For example, Fuess et al. [70] observe positive NPV and higher IRR values relative to the
minimum attractive rate of return (MARR) (12%) during the implementation of AD-power plants in
the reference biorefinery. Besides, when scholars assess the impact factors on bioenergy developments,
the price and the cost are the major concentrations. For instance, Tittmann et al. [47] estimate total
biomass utilization at a certain range of biofuel prices by applying sensitivity analysis, which is at the
range of 18 to 25 million dry tons; Durusut et al. [71] use cost-effective analysis to calculate marginal
cost associated with bioheat in Ireland and then provide policy recommendations. For future studies,
since economic feasibility is the primary issue for bioenergy sustainability assessment, studies in this
field will continue to grow. Moreover, in terms of future energy efficiency analysis, the use of different
potential conversion techniques should benefit the bioenergy industry further. Furthermore, at the
same time, more focuses are expected to be on some new methods as supplements to the existing
techno-economic methods and on how to cut down the costs in a continuous way.

3.2.2. Environmental and Ecological Aspect

Environmental and ecological aspect is the most significant area discussed in current studies as
22 of the reviewed studies analyze environmental related concerns. Life Cycle Assessment (LCA)
is extensively adopted as the approach to analyze environmental impact that bioenergy may bring.
LCA is defined as “cradle-to-grave” method normally with several indicators such as Global Warming
Potential (GWP), Acidification Potential (AP) and Eutrophication Potential (EP), which represent
different aspects of environmental sustainability assessment and can provide a full-scale simulation
analysis on environmental and ecological impacts if data collected is of high quality. When assessing
the specific environmental indicators, software packages, such as SimaPro and Gabi are often adopted.
Hennig and Gawor [30] evaluate the environmental impact of bioenergy in Germany by applying LCA,
and the results show that the use of solid (wood) and gaseous biomass pathways causes the lowest
environmental impact; whereas Roos and Ahlgren [76] assess bioenergy systems via the same method.
Buratti et al. [73] conduct a case study in Italy by applying Input-output analysis. The authors choose
diesel and fertilizers as input parameters of sunflower, rapeseed and soybean during the cultivation,
drying and refining progresses, and GHGs emissions as outputs to demonstrate environmental impact
of bioenergy. The results show that the current target of EU renewable energy policy was made based
on sunflower and soybean chains, instead of rapeseed chain. Chitawo and Chimphango [62] take
net water requirement and carbon emission savings as methods to calculate daily water requirement
for bioenergy production and savings on carbon emission based on the assumption that electricity
production from fossil diesel is replaced by straws when running irrigation water pumps; the results
show that the potential fire risk in Malawi will be eliminated and methane gas reduction can be
achieved as well by applying bioenergy. Yang et al. [72] combine LCA with water use in their work,
and find out that bioenergy production contributes to the majority of the life cycle water use.
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Interestingly, carbon emissions related studies hold a dominant share in current LCA analyses.
This could be excepted since the justification of low carbon emission is the main driving force of
bioenergy production expansion. Therefore, it is necessary for scholars to verify to which extent that a
bioenergy product really reduces the emissions in reality [77]. For example, Liu et al. [66] find out that
ethanol from bioenergy can significantly reduce GHGs emissions compared with ethanol that obtained
from traditional energy forms such as coal, which illustrates that bioenergy usage can reduce total
GHGs emissions. Hayashi et al. [55] also take GHGs emissions as an indicator in their LCA analysis
and point out that biodiesel fuel is more sustainable overall than diesel. Bartocci et al. [74] indicate
that the net carbon footprint of biochar is −737 kg CO2eq/t. Cherubini and Strømman [78] present a
compressive review of carbon balance or carbon neutral of the bioenergy products and their results
show that compared with fossil fuels systems, most of studies show that bioenergy systems generally
ensure carbon emission savings. However, for some cases of bioelectricity, their life cycle carbon
emissions of bioelectricity may be higher than those of other renewable energy, such as hydropower
and wind power [78]. Therefore, from the perspective of the overall status, this paper concludes that
bioenergy could achieve the carbon saving in reality since bioenergy products are mainly used to
replace those fossil energy products.

In a word, these studies, conducted in parts of the world and used various indicators of LCA
assessment, have drawn the similar conclusion that bioenergy and related products show positive
sustainability tendency compared with other energy forms such as coal and diesel. It should be
noted that most of current studies on environmental sustainability of bioenergy are about carbon
emissions, which means that the above conclusion is mainly drawn from carbon emission related
studies. However, a small number of studies focusing on water consumption show that a large amount
of water can be consumed if bioenergy is used for electricity generation. For example, Yang et al. [72]
figure out that life cycle water use of woody bioenergy is 40 times than that of crude oil, while this value
of charcoal is 20 times more than that of coal. Thus, more studies on water consumption of bioenergy
production and other related aspects are required along with carbon emission in future studies.

3.2.3. Social Aspect

Unlike economic and environmental analysis, assessments related to social aspect are relatively
scarce, only 7 of the reviewed articles take social aspect into consideration. Multi-index analysis is
the most commonly chosen approach, consisting of various indicators such as job creation, income
change [54,60]. For instance, job opportunities created by bioenergy related industries are usually
seen as one of the social benefits that bioenergy developments bring about. Using questionnaire
survey to investigate social acceptance of bioenergy is also a popular method for measuring social
sustainability and it is more direct as adopted by Fridahl and Lehtveer [67]. Besides, Carbon
Capture and Storage (CCS) technology is another essential method when assessing social impact
of bioenergy. Pour et al. [60] develop a framework attached to BioEnergy with Carbon Capture and
Storage (BECCS), which involves the conversion of biomass to energy and geological formation of
CO2 produce, transportation and storage, while Fridahl and Lehtveer [67] illustrate their views from
another perspective and illustrate its constraints that influences the economic feasibility of BECCS.

The results show that bioenergy developments have benefited the locals a lot because bioenergy
associated industries offer a substantial number of job opportunities and the subsequent income
increase. Due to the beneficiaries, social acceptance of bioenergy remains at a relatively high level.
CCS technology itself is actually a newly-created concept that still needs time to be developed until
its maturity. However, it does not matter if researchers can combine CCS with bioenergy, for both
bioenergy and CCS are good attempts to mitigate climate change and have been accepted by most
stakeholders. BECCS requires more tests and further improvement but ultimately the reduction of
GHGs and mitigation of climate change can be a large step forward which is a great contribution
of bioenergy.
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Thus, future studies might be developed based on an in-depth analysis of the indicators, which
requires a clear logical chain about how the job creation happens and to what extend the influence
can be. If the logical chain is built properly, a new pathway for social sustainability of bioenergy
might be found. And social sustainability indicators might be enlarged since currently major ones are
economic growth based, while other indicators such as local environment change can also affect social
acceptance, therefore a multidimensional social sustainability assessment framework is required in
future studies. BECCS also need more scientific research inputs to maximize the usage of bioenergy
because CCS technology has relatively high social acceptance and if widely applied in bioenergy field,
public perception towards bioenergy should be more positive.

3.2.4. Land Related Issues

Availability of Land

Two of the reviewed studies take availability of land as an indicator, Merry et al. [48] estimate
potential land areas available for bioenergy production and observe the possibility of reduction in
land availability. Kato et al. [61] set availability of land as a precondition of bioenergy enhancement
and point out that there is a requirement of careful consideration of land availability. Since studies on
availability of land are quite scarce we cannot draw a general conclusion of this aspect. The reason for
lack of researches on this field might be that some scholars do not consider land issues as a matter or
even if they were aware of the importance of land availability they have not thought that there would
be impacts on sustainability. However, the main sources of bioenergy are those raw materials that
grow on land, and thus use land resource. In many regions with high population density, arable land
itself is considered as a scarce resource, coupled with the issues of food security which is also seen as
a threat to the availability of land. Thus, in some parts of the world, it is not appropriate to develop
bioenergy sustainability assessment without considering the availability of land.

Future studies may be developed based on land availability observation and estimation,
and therefore provide parameters for bioenergy sustainability assessment in certain areas.

Land Use Change

Land Use Change (LUC) is also frequently mentioned in reviewed studies, which often causes
environmental concerns and one of the factors affecting policy recommendations. Bioenergy usage
might cause some environmental impacts on land and therefore lead to the change in land use patterns;
moreover, policies associated with bioenergy developments can also affect land use change to some
extent. Many scholars have seen the impacts of LUC and in order to demonstrate land related issues
of bioenergy more specifically, this section will be developed in a sequence of LUC plus policies
(regional and global) and LUC plus environmental concerns.

As indicated in Table 2, the literature review of this paper has identified 23 studies referring to
LUC and almost all of them have discussed about either policy recommendations or environmental
effects, or both. A number of studies discuss about Renewable Energy Directive (RED) that has been
established by the European Commission (EC), and it is noticed that policy driven strategies play an
important role in bioenergy development, and mostly are along with LUC (both direct and indirect).
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Table 2. Land use change and related aspects.

Year LUC Policy Recommendations Environmental Effects

2018 Kaur et al.; Roos and Ahlgre; Kang et al.
[69,76,79] Roos and Ahlgre [76] Roos and Ahlgre; Kang

et al. [69,76]

2017

Purkus et al.; Khishtandar et al.; Meyer
and Leckert; Gonzalez- Salazar et al.;
Zabaniotou et al.; Searchinger et al.

[29,34,44,51,65,80]

Purkus et al.; Meyer and
Leckert; Searchinger et al.

[29,65,80]

Khishtandar et al.;
Zabaniotou et al. [34,44]

2016 Efroymson et al. [81] Efroymson et al. [81] Efroymson et al. [81]

2015 García et al.; Wise et al.; Miyake et al.; Lin
et al. [82–85]

Wise et al.; Miyake et al.;
Lin et al. [83–85]

García et al.; Wise et al.;
Miyake et al. [82–84]

2014 Hayashi et al.; Vázquez-Rowe et al.
[55,86] Vázquez-Rowe et al. [86]

Hayashi et al.;
Vázquez-Rowe et al.

[55,86]

2013 Scarlat et al. [87] Scarlat et al. [87] -

2012 Miyake et al.; Popp et al. [28,88] Miyake et al. [28] Miyake et al.; Popp et al.
[28,88]

2011 Cherubini and Strømman; Scarlat and
Dallemand; Van Stappen et al. [78,89,90]

Cherubini and Strømman;
Scarlat and Dallemand

[78,89]

Cherubini and
Strømman; Van Stappen

et al. [78,90]

2010 van Dam et al. [91] van Dam et al. [91] -

Total 23 14/23 14/23

Purkus et al. [29] figure out that indirect land use change (ILUC) caused by bioenergy (biofuel
production in particular) has become a major issue in EC policy debate; and consequently, an
amendment of RED was carried out in 2015 to restrain the proportion of crop-based biofuels in
transport sector. Meyer and Leckert [65] also conduct their work with the background of RED,
and suggest that policy-makers should consider the interactions with other biomass or crop uses in the
context of bioenergy, because ILUC is regarded as leakage effect. Scarlat et al. [87] point out that RED
excludes several land categories with high biodiversity value and concluded that biomass should not
be acquired from land converted from forest or other areas of high biodiversity or high carbon stock.

Searchinger et al. [80] demonstrate their viewpoint based on the world’s current situation and
recommended that it is better not to support bioenergy from energy crops and other dedicated uses
of land when making a policy. In order to address LUC attached issues, van Dam et al. [90] suggest
that policy measures on local, national and global levels should be aligned with the multiple spatial
dimensions of biodiversity. Efroymson et al. [81] and Miyake et al. [28] discuss about international
climate change policy—Reducing Emissions from Deforestation and forest Degradation (REDD),
and attempt to figure out the relationship between bioenergy ILUC concern with the policy REDD.
Cherubini and Strømman [78] figure out that standardization in indirect environmental effects may
provide the possibility to establish LUC related policies in the field of mitigating climate change.

Besides, in other parts of the world, bioenergy has not quite met their time target, as there are still
a plenty of concerns of LUC. We have to mention that, as far as we are aware, main stream argument
seems to disapprove LUC associated with bioenergy production, as they consider that LUC brings
adverse impacts on the environment. Jin and Sutherland [46] believe LUC plays a negative role in
GHGs mitigation, whereas Hayashi et al. [55] combine environmental issues together with economic
drawbacks and come to similar conclusion due to LUC caused by biofuel production. Kang et al. [69]
think that LUC caused by energy crops cultivation can influence carbon storage capacity of soil and
bring substantial variations to the global GHG balance as a result. Apart from environmental debates
that related to bioenergy production, LUC itself is also regarded as a matter. Scarlat and Dallemand [89]
analyze several regions which show a higher prospect of bioenergy production and consider that ILUC
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is very uncertain. We may need more technological facilitators such as remote sensing to facilitate
sustainable land use planning.

The above analyses show that the attitudes of some people on LUC related to bioenergy are
negative for the sustainability of bioenergy or at least contradictory. Therefore, more studies are
needed in this area and studies on technology improvements may also be needed to mitigate the
adverse impacts that LUC may bring when promoting bioenergy.

3.3. Types of Bioenergy Sources and Application Forms

From the discussion above, we find out that a lot of works analyze the impacts of biofuel
production, yet biofuel actually sources from various kind of biomass. In this section, the authors
attempt to present an unambiguous classification of bioenergy sources as well as its application forms.

3.3.1. Types of Bioenergy Resources

In our review stage, we find that basically studies mainly focus on the following type of bioenergy
forms, which are: crops, biodiesel/ bioethanol, forest/woody biomass, wasted biomass, and aquatic
weeds. Major bioenergy sources are covered in our discussion. Crop-based bioenergy requires
abundant land to cultivate energy crops; production of biodiesel/bioethanol depends heavily on
refinery technologies; forest/woody biomass has the most sufficient supply but is usually accompanied
with private-owned or open-field debates; wasted biomass seems to be the most environmentally
friendly form of bioenergy with low usage cost, yet social perception towards this kind of bioenergy
still needs popularization; aquatic weeds are considered as a brand new bioenergy source with great
development potential if more technologies and attentions are thrown in this field.

The number of studies on the types of bioenergy sources reviewed for this paper are shown in
Table 3.

Table 3. Types of bioenergy sources.

Types of Bioenergy
Sources Crops Biodiesel/Bioethanol Forest/Woody

Biomass
Wasted
Biomass

Aquatic
Weeds

Number of studies 8 8 8 8 1

Liu et al. [66] indicate that energy crops grown on marginal agricultural land are beneficial for
the reduction of GHG emissions; and Shane et al. [92] and Qin et al. [39] believe that crops residues
can be used effectively to provide more energy. Petersen and Snapp [93] define crop yield without
adverse impacts on environment as “sustainable intensification”, whereas López-Bellido et al. [94]
and Manevski et al. [95] figure out that currently in most parts of the world, biomass cultivation
still encounters issues such as ILUC, and thereby a recession of farmer’s income and biodiversity
decline exist.

Crop ethanol is regarded as a major form of bioenergy. Zhang et al. [96] analyze the ethanol
production in China, and point out that the production of fuel ethanol is mainly sourced by biofuel
crops such as cassava, sweet potato and sugar grass, with about one-third produced from cassava.
Qin et al. [39], also focusing on China, estimate that crop residue-based biomass (about 280 million
metric tons (Mt)) and energy crop-based ethanol (over 150 Mt) are available each year, which can
exceedingly meet the country’s 2020 national target of 10 Mt year-1. Junginger et al. [97] consider
import tariffs as the major barrier of bioethanol and biodiesel international trade, and urge that import
tariffs reduction can be realized by some specific actions taken by the policy makers.

Organic waste accounts for a substantial part of bioenergy sources, Wang et al. [98] consider that
residual wastes can effectively serve human life and will be more important in the future if we use
them properly.
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We notice that studies on major types of bioenergy are evenly distributed apart from aquatic
weeds, this may be due to there are many options of bioenergy, and people tend to use those that are
easy to obtain. Thus, aquatic weeds only take up for a small proportion. However, we cannot deny the
fact that aquatic weeds have a great potential for generating bioenergy.

3.3.2. Application Forms

There are a number of forms of application for bioenergy, such as bio-gas, bio-diesel, bio-ethanol,
bio-heat, bio-power, and combine heat and power (CHP). For example, Matteo et al. [99] and
Kraxner et al. [100] point out that it is possible for conversing municipal solid waste or urban forests to
renewable fuel, such as bio-gas or other bioenergy. Agarwal [101] and Von Blottnitz and Curran [102]
analyze the feasibility of using bio-ethanol and bio-diesel as transportation fuels from the perspectives
of net energy and life-cycle environmental impacts. Fantozzi et al. [103] show the technical feasibility for
generating heat from biomass and waste. Durusut et al. [71] take bio-heat in Ireland as the entry point,
and develop a related model to examine policy impacts against a range of metrics. Manos et al. [104]
analyze agro-energy which is basically composed of straw and forests, and point out that in rural areas,
public–private partnerships (PPPs) can be a success in the production of thermal and electrical power
from bioenergy.

Among these application forms, electricity generation is the most commonly used form for
bioenergy and widely discussed by current literature but normally mentioned with CHP technology.
Kalt and Kranzl [59] calculate the biofuel production cost as well as electricity generation cost to provide
the estimation of CHP feasibility as replacement of fossil fuels in Austria, whereas Tittmann et al. [47]
believe CHP producers (e.g., electricity-only producers) are facing significant risk as the threshold
biofuel price needed to divert feedstock from electricity to fuel is still relatively low. Santoli et al. [68]
assess the social-economic impacts of a CHP plant in Italy by using Discounted Cash Flow (DCF)
method. It is obvious that the costs of electricity and the price of biofuel are the major concerns
associated with bioenergy electricity production.

In a word, current studies mainly research on crop-based and forest bioenergy, and electricity
generation is the most widely analyzed final utilization of bioenergy, which implies that the results
of sustainability assessment are outputs under this mode. However, looking forward, aquatic weeds
seem to be promising because a substantial number of bioenergy sources remain. CHP has more
economic values compared with electricity or heat-only plant. Therefore, a trend for CHP to meet its
popularity is likely to come in near future. Thus, future prospective researches should concentrate
more on aquatic weeds and CHP as mentioned above.

4. Conclusions

This paper presents a multi-aspect assessment of the current literature on bioenergy sustainability,
and sets this within a global perspective. It does this by first analyzing the geospatial distribution of
the literature reviewed, and by then classifying the literature against four key indicators of bioenergy
sustainability, namely: economic, environmental and ecological, social, and land-related. In addition,
the paper analyzes the main types of bioenergy currently under investigation, and sets out their typical
modes of application.

From this review, the following key conclusions can be drawn:

1. The majority of authors to date have focused their research on Europe, or on regions within
Europe. This is illustrated in Figure 4 and is almost certainly due to approval by the EU of a
wide range of strong renewable energy policies. For future research, we thus suggest it would be
useful to broaden the existing research areas to cover other regions of the world in greater depth.
In particular, we suggest research should increase its focus on Africa and South America regions,
because of the scope for connecting scattered bioenergy power-generation systems together
so as to achieve technology enhancement; and because a large potential exists for bioenergy
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exploitation provided we can deal successfully with issues related to fragile ecosystems in
these regions.

2. In terms of findings on the four indicators of bioenergy sustainability focused on here, for
economic aspects of bioenergy sustainability, we note that although differences exist among
the findings of the studies in this area, the results generally conclude that bioenergy should
be regarded positively. In particular, the economic feasibility of bioenergy is noted in most
studies; though we recognize that this is very different from saying that bioenergy is cheaper
than energy from fossil fuel sources, and from proving the overall sustainability of bioenergy.
Note that the relatively high energy efficiency of bioenergy in use, relative to that of some of
the alternative renewables, supports a positive view of bioenergy within such an economic
sustainability assessment.

3. When considering the environmental and ecological aspects of bioenergy sustainability, authors
frequently use life cycle analysis (LCA) methods. Here it is clear that bioenergy can generally
contribute significantly to carbon reduction when compared to coal and liquid fossil fuels,
such that using bioenergy to replace those traditional fossil energies has the potential at least to
help achieve a favorable global carbon balance.

4. On the social aspect of bioenergy sustainability, to-date there has been less of focus within the
current literature compared to aspects of bioenergy sustainability mentioned above. Thus, an
expansion of research into social indicators could be important for future studies.

5. In terms of the assessment of land related issues, the availability of land itself is less mentioned,
and we cannot draw general conclusions due to limited studies on this aspect. On the second
and crucial-land related issue of land use change (LUC), here the research is generally extensive,
but findings to-date are unfortunately contradictory. This suggests that more research on
land-related issues is required.

6. In terms of types of bioenergy sources, and their application forms, the literature reviewed
indicates that crop-based and forest bioenergy are the major types currently being researched;
and that electricity generation is the main utilization of bioenergy.

7. In terms of more specific conclusions on future research that might be warranted, we note that
while the energy in aquatic weeds is generally less concentrated than in many other forms of
biomass, they might achieve scale deployment in the future; that CHP has generally a greater
economic value compared with electricity production or heat-only bioenergy power plants but
seems in our view to be under-researched; and likewise, the important topic of water use in
bioenergy production also seems to have received too little attention.

In summary, the multidimensional review of literature given in this paper generally indicates a
positive view in the areas of bioenergy economics, though bioenergy is often not the cheapest energy
source available; on environmental aspects (though such analyses need to be extended, perhaps
particularly on water use); and on social acceptance. However, from a more negative side, we find
that studies on land-related issues of bioenergy use are either too scarce (on the availability of land) or
contradictory (on land use change) to allow solid conclusions to be drawn, which suggests scope for
future work in these areas. Finally, the literature reviewed suggests that understanding the scope for
bioenergy sustainability could be improved by a wider geographical spread of studies, in particular
for Africa and South America.
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