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Abstract

The paper considers an application of martingales for testing the hypothesis that
the data are generated by the Gauss linear model. In addition, the martingales are
also used for suggesting some possible clustering of the data. A Russian household
dataset is taken to show results of this approach. In particular, with the help
of martingales the households were split into groups with a similar structure of
expenditure. It was assumed that within each group dependence of the household
total consumption on its income can be described by the Gauss linear model. The
structure of expenditure was tested for the households within the groups.
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1 Introduction

In many applications an assumption is made that the data are generated by the Gauss
linear model - that our response variables y are linearly dependent on the vectors of
explanatory variables x with the normally distributed random noise ξ:

y = β1 + β2 · x + ξ

where β1 is unknown coefficient and β2 is a vector of coefficients of the same length as
x. Our aim is to test this assumption for a special class of predictors, called conformal
predictors (Vovk et al., 2005). Conformal predictors allow us to estimate confidence of the
predictions and their main property is validity: for a given significance level ε the number
of errors would not exceed ε. It has been proved that this property of validity holds for
many different models including i.i.d. model1, Gauss linear model and some other models.
The underlying models (assumptions) can be tested using martingales: they allow us to
accumulate evidence against the assumptions. That is if the martingale value is large
then we reject the assumption. In this paper we use the martingale testing for the Gauss
linear assumption and present results of the testing for a Russian household dataset.

1independent and identically distributed data

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/160155539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The martingales can also help to split the data into certain clusters when a mar-
tingale changes its behavior. In the work Ho (2005) a similar problem of splitting was
considered for the i.i.d. assumption: how the data sequence may be split by a martingale
into several i.i.d. clusters. Within each of them data examples followed a random order.
However, the Gauss linear assumption does not require anything of the order of examples
(x1, y1), . . . , (xn, yn), so we can sort them in a way convenient for testing our assumption.
In this work we use ranking by xi (that is one-dimensional). As we will see, this allows
us to find deviations from the assumption effectively and to clusterize the data by the
deviations so that a cluster is a group of households with a similar level of income and
a structure of expenditure. This direction of study was mostly motivated by the work
Aivazian and Kruglyak (2010) where authors describe the data as a mixture of several
clusters with the normal distributions.

The rest of the paper is organized as following: in section 2 we briefly describe the
data and used model, in section 3 we outline the concepts of martingale testing, in section
4 we explain the ideas of our clustering, in section 5 we present results of analysis of the
data and finally we summarize the work in section 6.

2 Data

We will study the part of the Russian households dataset (http://www.micro-data.ru)
collected during the first quarter of 2003 year. It consists of 53149 households, each
household is described by several attributes. The attributes could be numerical (i.e.
income, number of members of family etc.) or categorized (i.e. householder’s profession).
To split the dataset into clusters we consider only links between the income budget of
household and its total consumption. We use the following Gauss linear model:

log10(consumption) = β1 + β2 · log10(income) + ξ, (1)

where β = (β1, β2) is a real number vector of coefficients and ξ ∼ N(0, σ) is independent
and normally distributed noise.

Figure 1 plots the data on the logarithmic scale of income and consumption. The
dark dashed line represents function log10(consumption) = log10(income).

The paper will study households with the income budget more than 500 rubles during
the first quarter of 2003 year. We suppose that for the rest of households studied time
period does not give enough information on their income. The dark solid vertical line in
figure 1 shows the income level of 500 = 102.7 rubles. We can see that the points that
lie to the left of the line look like outliers. From this considerations for our analysis we
will use the dataset of 53082 households with income greater than 500 rubles during the
quarter.

3 Testing

In this section we describe the testing of the hypothesis that data agree with the Gauss
linear model. It proceeds in two steps. The first one is a calculation of p-values as an
output of conformal predictors. And the second one is a calculation of martingales that
reflect the “correctness” of the assumption.
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Figure 1: The Russian household data is given for the first quarter of 2003 year: income and total consumption are on the
logarithmic scale. The dark dashed line is for log10(consumption) = log10(income) and the dark solid vertical line is for
income level of 500 rubles (log10(500) = 2.7 in the scale).

3.1 Conformal predictors

We start testing by obtaining a sequence of p-values using conformal predictor for the
Gauss linear assumption. Recalling the model (1) we can denote i-th example of the
data as (xi, yi), where xi =

(
1, log10(income)

)
is a vector of p = 2 attributes and yi =

log10(consumption) is a label. To describe the process of p-value calculation we will
use the following notation: ŷli is the Least Square prediction for xi, based on examples{

(x1, y1), . . . , (xl, yl)
}

; ŷn is shorthand for ŷn−1
n ; s2

n−1 = 1
n−p−1

∑n−1
i=1 (yi − ŷn−1

i )2 is the

standard estimation of variance of ξ from the first l examples; Xl is a matrix consists of
rows x1, . . . , xl; Yl is a column-vector of labels y1, . . . yn; symbol ′ denotes operation of
transposition.

To calculate p-values by a conformal predictor we specify a “non-conformity” measure

of an example (xi, yi) with respect to the given examples
{

(x1, y1), . . . , (xl, yl)
}

as

αi = |yi − ŷli|. (2)

The “non-conformity” measure is a way of scoring how i-th example is different from the
rest of given examples. It is known that the random variable:

ti =
yi − ŷi

si−1

√
1 + x

′
i(X

′
i−1Xi−1)−1xi

has a t-distribution with i − p − 1 degrees of freedom (see, eg. Ryan, 1997, p. 17).

Consider the value ti provided by the given data and denote t
|ti|
i−p−1 for the |ti|-th quintile

of t-distribution with i − p − 1 degrees of freedom. Then p-value is estimated by the
equation

pi = 2 · (1− t|ti|i−p−1).
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This equation for p-value agrees with the equation (2) for “non-conformity” measure (for
details see Vovk et al., 2005, pp. 202 - 203). A p-value is a number from [0, 1]. It is close
to 1 if the pair (xi, yi) fits well to the model (1) with the parameters estimated by the

given examples
{

(x1, y1), . . . , (xl, yl)
}

.

To obtain a sequence of p-values we use conformal predictor in on-line mode (exam-
ples arrive one after another) and the algorithm 1 summarizes this process.

Algorithm 1 Generating p-values

Input:
{

(x1, y1), . . . , (xn, yn)
}

– data, sorted by xi

Output:
(
p1, . . . , pn

)
– sequence of p-values

for i = p+ 1 to n do

Xi−1 =

 x1
...

xi−1


Yi−1 = (y1 . . . yi−1)

′

(xi, yi) is a new example
β̂ = (X

′
i−1Xi−1)−1X

′
i−1Yi−1

ŷi = xi · β̂
s2
i−1 = 1

i−p−1

∑i−1
j=1(yj − ŷi−1

j )2

ti = yi−ŷi
si−1

√
1+x

′
i(X
′
i−1Xi−1)−1xi

find quintile of t-distribution t
|ti|
i−p−1

pi = 2 · (1− t|ti|i−p−1)
end for

In the paper we assume only the Gauss linear model (1) for dependence between xi
and yi. It allows us to put data in the order relevant for the problem (sort the households
by the value of income). Output of the algorithm 1 is a sequence of p-values: that is the
p-value pi that corresponds to the data point (xi, yi). It was proved that the p-values
distribute independently and uniformly in [0,1] if the assumption of conformal predictor
is satisfied (see Vovk et al., 2005, Theorem 8.1).

3.2 Martingales

The main tool for testing our assumption is martingales. Denote zi = (xi, yi), i = 1, . . . n
and assume that each zi is generated by the probability distribution P. Then a sequence
of non-negative random variables M0,M1, . . . is a martingale if each Mn is a measurable
function of z1, . . . , zn and

Mn = E(Mn+1|M1, . . . ,Mn),

where E refers to the expected value in the probability space P. We set M0 = 1. After
observing a new example, the martingale value reflects the strength of evidence against
the assumption that probability distribution P generates the data.
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According to Ville’s inequality (see Ville, 1939, p. 100)

P
{
∃n : Mn ≥ C

}
≤ 1/C, ∀C > 0.

it is unlikely that any Mn would have a large value.

3.2.1 Martingale based on p-values

In this paper we use the so called sleepy jumper martingale introduced in Vovk et al.
(2003) as a generalization of power martingales.

A family of power martingales is defined as

M ε
n =

n∏
i=1

(εpε−1
i ), (3)

where ε ∈ [0, 1] and pi-s are the p-values output by algorithm 1. If the p-values are
distributed independently and uniformly then the power martingales keep value close to
0.

The sleepy jumper martingale approximates the performance of the best power mar-
tingale (martingale from the family of power martingales with the largest final value).
For a sequence ε̃ = (ε1, . . . , εn), the equation (3) is generalized as

M ε̃
n =

n∏
i=1

(εip
εi−1
i ),

where εi ∈ [0, 1], i = 1, . . . n. Then sleepy jumper martingale is defined as

Mn =

∫
[0,1]∞

M ε̃
nµdε̃, (4)

where µ is a probability distribution in [0, 1]∞. The sleepy jumper distribution is specified
by two parameters: R for probability of awake/asleep and S for probability of change
current εi to another value from [0, 1]. To obtain the distribution µ sleepy jumper creates
sequences of states. When the state is (s, j) the new state is generated from the Cartesian
product {awake, asleep} × [0, 1] with respect to the following conditions:

• if s is asleep then the new state is (asleep, j) with the probability R or it is (awake, j)
with the probability 1−R;

• if s is awake then the new state is (s, j): s is awake with the probability 1−R or it is
asleep with the probability R, j takes random value from [0, 1] with the probability
J or it stays the same j with the probability 1− J .

Sleepy jumper starts from the state (s1, j1) = (asleep, 1) and further generates se-
quences (s1, j1), (s2, j2), . . .. From a sequence of states corresponding sequence ε̃ for equa-
tion (4) is defined as

εi =

{
ji, if si = awake;
1, otherwise.

This process gives the distribution µ and we can calculate the sleepy jumper martingale
(4).
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4 Clustering

By studying a martingale performance we can split the data into clusters. Since the data
are sorted by values xi the martingale tests whether yi can be reliably predicted from xi
and previous data according to the Gauss linear assumption. We assume that the points
where the martingale performance becomes different (for example by visual inspection)
can reflect changes in the structure of expenditure. We split the data by those points and
then each cluster is analyzed separately.

We will present results and additional comments about clustering for the data in the
section 5.

5 Results

We study the data on the logarithmic scale and sorted it by value of income.

5.1 Testing and clustering

Figure 2 shows sleepy jumper martingale performance for the household data. The x-axis
is for the number of a household (as sorted by income) and y-axis is for the value of the
martingale.

Figure 2: Sleepy jumper martingale is performing on the household data. The final value of the martingale is higher than
10300. The dark dashed lines roughly split the household data according to the different growth rate of the martingale.

The large final value of the martingale means that the Gauss linear assumption is
falsified for the data.

According to the martingale performance in figure 2 we split the data into three
clusters:

• in the first cluster the martingale grows insignificantly except of several points where
p-values occasionally appear to be very close to zero;
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• in the second cluster the martingale tends to grow faster;

• in the third cluster the growth of the martingale becomes very fast.

To illustrate the splitting on the data the dashed vertical lines in figure 3 show the borders
that we see in the figure 2 for the martingale performance. But unlike figure 2 this picture
is plotted in terms of income value itself (not the number of the household). There we can
see that, for example, in the first cluster (the income of households less than 14000 rubles)
the whole income is used for the consumption (up to the noise). For the households with
higher income the consumption is usually smaller than the income. It is clear from the
figure where the diagonal line corresponds to the equality between the income and the
consumption.

Figure 3: The household data are split according to the clusters found in the figure 2.

5.2 Expenditure structure for clusters

The martingale performance for the whole household data showed that the Gauss linear
assumption is falsified. But the martingale values were changing differently. Apparently
for each cluster the assumption is violated in a different way. The clusters can be useful
if they correspond to a certain expenditure structure. We will check within each cluster
whether the spending on food, non-food goods, services and alcohol is proportional to the
total consumption.

For the testing, each example is represented by the total consumption as an attribute
and a category of spending as a label. We use the conformal predictor for the Gauss linear
assumption to generate the p-values and finally calculate performance of the martingale
for each cluster.

Figure 4 shows the analysis of the expenditure structure inside the three clusters. A
large martingale value shows that the linear dependence between the category of spending
and the total consumption is falsified or normality of the noise is broken.
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The results in figure 4 show that most of martingales take large values. Only in the
second cluster most of the martingale values do not increase. There hypotheses about the
expenditure structure can work. An exception is the spending on alcohol, it seems to be
less predictable than other spendings.

5.3 Conformal prediction and validity for clusters

Let us now compare the clusters by applicability of the Gauss linear model for predictions.
We use the on-line conformal predictor for the Gauss linear assumption and we check
whether its predictions are valid.

If the assumption were satisfied for data then predictions would be automatically
valid, i.e. the error rate does not exceed beforehand chosen significance level (for details
see Vovk et al., 2005, section 8.5). The question is whether the predictions are valid within
the clusters.

The error rate for the significance level of 5% and median accuracy of obtained
predictions are plotted in figure 5. The dashed grey line on the graphs of errors (left
column in figure 5) shows the allowed level of 5% for errors.

So the Gauss linear model is practically applicable inside the first, second and most
of the third clusters.

6 Discussion and conclusions

In the paper we use the martingale approach for testing the Gauss linear assumption and
clustering data according to the martingale performance. From what we presented here
the following results can be concluded:

• The Gauss linear assumption for the whole dataset is falsified.

• According to the martingale behavior we split the data into the clusters. Because the
dataset was sorted by income the clusters correspond to some interval of household
income values. We have seen that different clusters show different consumption
behavior. Within each of the clusters conformal predictor for the Gauss linear
assumption produce practically valid predictions.

For further research we can try to split clusters into smaller ones taking into account
more attributes.
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Figure 4: Martingale is plotted for testing structure of expenditure. The columns from left to right are for the first, second
and third clusters respectively. The rows from top to bottom are for different categories of spending. If a spending takes
fixed share of the total consumption (up to normally distributed noise) martingale should not grow.
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Figure 5: Error rate and median accuracy for on-line conformal prediction are plotted for the significance level of 5% for the
first, second and third clusters from top row to bottom. Obtained predictions are practically valid with the only exception
of the end of the third cluster.

11


	Introduction
	Data
	Testing
	Conformal predictors
	Martingales
	Martingale based on p-values


	Clustering
	Results
	Testing and clustering
	Expenditure structure for clusters
	Conformal prediction and validity for clusters

	Discussion and conclusions

