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ABSTRACT
Several methods have been proposed for partially or point identifying the average treatment effect (ATE)
using instrumental variable (IV) type assumptions. Thedescriptions of thesemethods arewidespread across
the statistical, economic, epidemiologic, and computer science literature, and the connections between
themethods have not been readily apparent. In the setting of a binary instrument, treatment, and outcome,
we review proposed methods for partial and point identification of the ATE under IV assumptions, express
the identification results in a common notation and terminology, and propose a taxonomy that is based on
sets of identifying assumptions. We further demonstrate and provide software for the application of these
methods to estimate bounds. Supplementary materials for this article are available online.

1. Introduction

This article provides a comprehensive review of the methods for
partial identification of the average treatment effect (ATE) of a
time-fixed binary treatment on a binary outcome using a binary
instrumental variable (IV). Thesemethods and their underlying
assumptions have not been previously presented in a common
set of notation and terminology because the methodological
literature is widespread across journals of statistics, economics,
epidemiology, and computer science. By unifying the notation
and terminology, we provide a taxonomy of the assumptions
that (combined with data) lead to partial or point identification.
Our workmakes apparent the heretofore obscured relationships
between the different combinations of assumptions and the ATE
bounds they identify. We also provide an empirical example
of estimating the ATE under all proposed sets of assumptions.
Finally, although software is available to implement some of
these methods (Beresteanu and Manski 2000; Palmer et al.
2011; McCarthy, Millimet, and Roy 2015; Chernozhukov et al.
2015), we include comprehensive statistical software for partial
identification of the ATE under all proposed sets of assump-
tions (supplementary materials). Space limitations preclude
a detailed discussion of methods for incorporating random
variability into the partial identification framework. However,
in Appendix S1 we give a brief guide to the relevant literature.

This article is organized as follows. In Section 2, we describe
the taxonomy of IV assumptions that lead to partial identifi-
cation of the ATE of a binary treatment on a binary outcome.
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We relate these results to the IV inequalities in Section 3 and
to graphical representations in Section 4. In Section 5, we
extend this taxonomy to additional assumptions considered
in combination with the IV assumptions; we briefly review
some extensions to continuous outcomes and other settings in
Section 6. In Section 7, we demonstrate the estimation of
bounds in studying the effect of Medicaid coverage on emer-
gency department visits from the Oregon Health Insurance
Experiment (Finkelstein 2013; Taubman et al. 2014). We
conclude with a brief discussion (Section 8).

2. Bounds on the Population Average Treatment
Effect (ATE) Under Instrumental Variable
Assumptions

Suppose that our data consist of n independent, identically dis-
tributed draws from a joint distribution P. Let X be a binary
treatment (1: treated, 0: not treated) andY a binary outcome (1:
yes, 0: no). Without loss of generality, we assume a lower prob-
ability of Y is preferable. Our primary interest is in the average
treatment effect (ATE) on the additive scale:

ATE = E[Yx=1] − E[Yx=0], (1)

where the random variable Yx=1 indicates the counterfactual
outcome for a subject had she been treated (X = 1) and likewise
Yx=0 indicates the counterfactual outcome for a subject had she
been untreated (X = 0). We will suppose that the observed data
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(X,Y ) is related to the counterfactual via the usual consistency
assumption:

Y = (1 − X )Yx=0 + XYx=1 ≡ YX . (2)

Before even looking at the data or making any assumptions,
we know nothing about the ATE: in our all-binary setting, it
could range from −1 (i.e., treatment universally prevents the
outcome) to 1 (i.e., treatment universally causes the outcome).
However, the data provide information that (still, without any
assumptions) cuts the width of this range in half (Robins 1989;
Manski 1990). This is essentially a missing data problem: we
only observe one of the two counterfactuals Yx=0 and Yx=1 for
each subject i (e.g., for a treated subject i we observe Yx=1 but
notYx=0). By imputing the unobserved counterfactuals to their
most extreme values possible, we can identify the lower and
upper bounds on the range of possible estimates for theATE that
are consistent with the observed data. The bounds will always
have width 1, hence will include zero (i.e., the null), and thus
cannot identify the direction of the treatment effect.

In the remainder of this section, we discuss how narrower
bounds on the ATE can be obtained if one is willing to make
assumptions about a binary pretreatment variable, Z, that is
associated with X . This variable Z is referred to as an instru-
mental variable (IV), or an instrument, when two unverifi-
able assumptions hold: (i) the exclusion restriction, and (ii)
exchangeability. The exclusion restriction (i) says that the instru-
ment Z cannot affect the outcome except through its potential
effect on treatment X , as formalized below. Exchangeability (ii)
says that, at baseline, subjects withZ = 0 are comparable to sub-
jects with Z = 1. Although these assumptions are not verifiable,
they have testable implications; we will return to this point in
Section 3.

There are several different versions of both the exchangeabil-
ity and exclusion assumptions, and thus also of what constitutes
an instrument. Before formalizing these versions, consider two
settings.

First, consider the paradigmatic IV example of a double-
blind placebo-controlled randomized trial with noncompliance.
Let Z denote the assigned treatment arm, and X the treatment
received. If the double-blinding is successfully maintained and
there is no placebo effect, there can be no effect of treatment
assignment on the outcome other than via the treatment, thus
the exclusion assumptionwill hold. Furthermore, those assigned
to different arms are exchangeable owing to randomization.
Thus, in this circumstance Z will satisfy all versions of (i) and
(ii) required of an instrument.

Second, consider the common applications of IV methods
in observational studies in which investigators propose a pre-
treatment instrument, Z. Examples of proposed instruments
Z include calendar time, geographic variation, provider pref-
erence, and genetic variants (Davies et al. 2013). Importantly,
in observational studies, no version of (i) or (ii) can be guar-
anteed. Moreover, note that exclusion (i) and some versions of
exchangeability (ii) are agnostic about whether the proposed
instrument Z has a causal effect on the treatment X (like the
randomization assignment in randomized trials), or is just a
surrogate for an (unmeasured) causal instrument. Many com-
monly proposed instruments in observational studies may be
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Figure . Combinations of assumptions for obtaining the natural or Balke-Pearl
bounds on the average treatment effect for dichotomous instrument, treatment,
and outcome, as discussed in Section . Note the latent noncounterfactual IVmodel
further requires (A). The row-wise pairs of assumptions that lead to the natural
bounds are shaded dark gray, while the row-wise sets of assumptions that lead to
the Balke-Pearl bounds are shaded light gray.

conceptualized as the latter (Robins 1989; Dawid 2003; Hernán
and Robins 2006).

With the paradigmatic example of a double-blind trial and
common applications in mind, we now turn to formal defi-
nitions of instruments. A summary of these formalizations is
presented in Figure 1. Their relationships are summarized in
Table 1.

2.1. Formalization of the IVModel withYz,x

Counterfactuals

To formally define the properties required of an instrument Z,
we define “joint” counterfactual outcomes Yz,x corresponding
to the outcome that a subject would have if (possibly contrary to
fact) she had been assigned to treatment arm z and then received
(again possibly contrary to fact) the treatment x.

We also define the counterfactual Yx corresponding to the
outcome the subject would have if she had her observed Z, but
we intervened on X = x. These counterfactuals are related by a
form of consistency assumption:

Yx = (1 − Z)Yz=0,x + ZYz=1,x ≡ YZ,x. (3)

As noted above, there are alternative definitions of exclusion
and exchangeability in the literature.We begin by describing the
weakest version of both.

Marginal stochastic exclusion

E[Yz,x] = E[Yz′,x], for all z, z′, x. (A1)

The weakest exclusion restriction, thus, means that at the
population level the average (controlled) directed effects of Z on
Y holding X fixed are zero.

Marginal exchangeability of Y z,x counterfactuals

Z ⊥⊥ Yz,x; for all z, x. (A2)
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Table . Gains in identification comparing sets of assumptions leading to partial identification of the average treatment effect for a dichotomous Z, X , andY .

Initial Strengthened
assumption set assumption set Gains in identification (If any)

No data and no assumptions Data only Width of bounds reduced by 1/2 (width of bounds= )
Data only A+ A Width of bounds= Pr[X = 0|Z = 1] + Pr[X = 1|Z = 0]†
A+ A A+ A No gains
A+ A A+ A No gains
A+ A A+ A Narrower bounds if and only if inequalities () are violated
A+ A A+ A No gains
A+ A A+ A No gains
A+ A A+ A+ A Potentially narrower bounds depends on specified proportion in A
A+ A+ A A+ A+ A+ A Improvement depends on assumed limits in A
A+ A A+ A+ A Identifies direction of effect with the same upperbound
A+ A A+ A+ A May improve lowerbound on each mean counterfactual
A+ A A+ A+ A Point identification
A+ A A+ A+ A Point identification
A+ A+ A A+ A+ A+(A or A) Point identification

NOTES: Note the following assumptions imply one another and therefore are not included in nested assumption sets: A⇒ A⇒ A; A⇒ A⇒ A.
†Here we implicitly suppose that Pr[X = 0|Z = 1] + Pr[X = 1|Z = 0] < min{Pr[X = 0|Z = 0] + Pr[X = 1|Z = 1], 1}.

This assumption follows from randomization of Z, but is a
weaker condition.

Theorem 1. Under (A1) and (A2), we have:

Z ⊥⊥ Yx, for all x, (4)

and further E[Yx] = E[Yz,x] for all z.

Robins (1989) and Manski (1990) obtained sharp lower and
upper bounds on the ATE under (4). These bounds are given
in Tables 2 and 3, respectively. Sharp bounds for the mean

counterfactuals E[Yx=0] and E[Yx=1] are given in Appendix S2.
These bounds on the ATE and the counterfactual means are
also sharp under the larger model given by (A1) and (A2).
These ATE bounds are often referred to as the “natural” or
the “Robins-Manski” bounds in the literature. The width of the
natural bounds is no greater than the sum of the noncompliance
proportions in each arm: Pr[X = 1|Z = 0] + Pr[X = 0|Z = 1]
(Balke and Pearl 1997). As such, the width of the bounds may
be substantially narrower than those identified from the data
on X andY alone (which were of width 1).

Table . Lower bounds for identification of the average treatment effect under sets of assumptions described in Figure .

Assumption set Lower bound*

Data only −py0,x1
− py1,x0

= (py1|x1
− 1)px1

− py1|x0
px0

A+ A** max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−py0,x1|z0
− py1,x0|z0−py0,x1|z1
− py1,x0|z1

py1|z0
− py1|z1

− py1,x0|z0
− py0,x1|z1

py1|z1
− py1|z0

− py1,x0|z1
− py0,x1|z0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

A+ A*** max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−py0,x1|z0
− py1,x0|z0−py0,x1|z1
− py1,x0|z1

py1|z0
− py1|z1

− py1,x0|z0
− py0,x1|z1

= py1,x1|z0
+ py0,x0|z1

− 1
py1|z1

− py1|z0
− py1,x0|z1

− py0,x1|z0
= py1,x1|z1

+ py0,x0|z0
− 1

py1,x1|z0
− py1,x1|z1

− py1,x0|z1
− py0,x1|z0

− py1,x0|z0
py1,x1|z1

− py1,x1|z0
− py1,x0|z0

− py0,x1|z1
− py1,x0|z1

py0,x0|z1
− py0,x1|z1

− py1,x0|z1
− py0,x1|z0

− py0,x0|z0
py0,x0|z0

− py0,x1|z0
− py1,x0|z0

− py0,x1|z1
− py0,x0|z1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A+ A+ A see Appendix
A+ A+ A+ A see Appendix
A+ A+ A same as A+ A

A+ A+ A max

{
py1|x1,z1

px1|z1
+ py1|x0,z1

px0|z1
py1|x1,z0

px1|z0

}
− min

{
py1|x0,z0

px0|z0
+ px1|z0

py1|x0,z1
px0|z1

+ px1|z1

}

A+ A+ A****
py1 |z1

−py1 |z0
px1 |z1

−px1 |z0

A+ A+ A py1|x0
px0
(exp(ψ0)− 1)+ py1|x1

px1
(1 − exp(−ψ0))where exp(−ψ0) = 1 −

py1 |z1
−py1 |z0

py1 |x1 ,z1
px1 |z1

−py1 |x1 ,z0
px1 |z0

NOTES: *pyk ,x j |zi
≡ Pr[Y = k, X = j|Z = i]; pyk |x j ,zi ≡ Pr[Y = k|X = j, Z = i]; pyk |x j ≡ Pr[Y = k|X = j]; pyk |zi ≡ Pr[Y = k|Z = i]; px j |zi ≡ Pr[X = j|Z = i];

px j
≡ Pr[X = j]; pzi ≡ Pr[Z = i].

**Some authors use the term “natural bounds” to refer solely to the fourth term here.
***See Section  for additional assumption sets that likewise lead to the Balke-Pearl bounds.
****Assumption set A+ A+ A+(A or A) also leads to this same expression.
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Table . Upper bounds for identification of the average treatment effect under sets of assumptions described in Figure .

Assumption set Upper bound*

Data only py1,x1
+ py0,x0

= (1 − py1|x0
)px0

+ py1|x1
px1

A+ A** min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

py1,x1|z0
+ py0,x0|z0

py1,x1|z1
+ py0,x0|z1

py1|z0
− py1|z1

+ py0,x0|z0
+ py1,x1|z1

py1|z1
− py1|z0

+ py0,x0|z1
+ py1,x1|z0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

A+ A*** min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

py1,x1|z0
+ py0,x0|z0

py1,x1|z1
+ py0,x0|z1

py1|z0
− py1|z1

+ py0,x0|z0
+ py1,x1|z1

= 1 − py0,x1|z0
+ py1,x0|z1

py1|z1
− py1|z0

+ py0,x0|z1
+ py1,x1|z0

= 1 − py0,x1|z1
+ py1,x0|z0

−py0,x1|z0
+ py0,x1|z1

+ py0,x0|z1
+ py1,x1|z0

+ py0,x0|z0−py0,x1|z1
+ py0,x1|z0

+ py0,x0|z0
+ py1,x1|z1

+ py0,x0|z1−py1,x0|z1
+ py1,x1|z1

+ py0,x0|z1
+ py1,x1|z0

+ py1,x0|z0−py1,x0|z0
+ py1,x1|z0

+ py0,x0|z0
+ py1,x1|z1

+ py1,x0|z1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A+ A+ A see Appendix
A+ A+ A+ A see Appendix
A+ A+ A −|py1|z1 − py1|z0

|

A+ A+ A min

{
py1|x1,z1

px1|z1
+ px0|z1

py1|x1,z0
px1|z0

+ px0|z0

}
− max

{
py1|x0,z0

px0|z0
+ py1|x1,z0

px1|z0
py1|x0,z1

px0|z1

}

A+ A+ A****
py1 |z1

−py1 |z0
px1 |z1

−px1 |z0

A+ A+ A py1|x0
px0
(exp(ψ0)− 1)+ py1|x1

px1
(1 − exp(−ψ0))where exp(−ψ0) = 1 −

py1 |z1
−py1 |z0

py1 |x1 ,z1
px1 |z1

−py1 |x1 ,z0
px1 |z0

NOTES: *pyk ,x j |zi
≡ Pr[Y = k, X = j|Z = i]; pyk |x j ,zi ≡ Pr[Y = k|X = j, Z = i]; pyk |x j ≡ Pr[Y = k|X = j]; pyk |zi ≡ Pr[Y = k|Z = i]; px j |zi ≡ Pr[X = j|Z = i];

px j
≡ Pr[X = j]; pzi ≡ Pr[Z = i].

**Some authors use the term “natural bounds” to refer solely to the fourth term here.
***See Section  for additional assumption sets that likewise lead to the Balke-Pearl bounds.
****Assumption set A+ A+ A+(A or A) also leads to this same expression.

Next, consider the strengthened exchangeability and exclu-
sion assumptions.

Joint stochastic exclusion

Pr[Yz=0,x=0 = y,Yz=0,x=1 = y′]
= Pr[Yz=1,x=0 = y,Yz=1,x=1 = y′] for all y, y′; (A3)

Partial joint exchangeability of Y z,x counterfactuals

Z ⊥⊥ {Yz=0,x=0,Yz=0,x=1}, Z ⊥⊥ {Yz=1,x=0,Yz=1,x=1}.
(A4)

Theorem 2. Under (A3) and (A4), the following joint exchange-
ability holds:

Z ⊥⊥ {Yx=0,Yx=1}. (5)

Richardson and Robins (2014) obtained sharp bounds on the
ATE under (5), which are also sharp under (A3) and (A4). These
bounds are identical to those obtained by Balke and Pearl (1997)
under stronger assumptions that we discuss below. Again, the
bounds are given inTables 2 and 3. In the literature, these expres-
sions are often referred to as the “Balke-Pearl” or the “sharp IV”
bounds. The latter terminology can cause some confusion, as the
natural bounds can likewise be considered sharp, albeit under
different assumptions—for example, (4) but not (5).

The natural bounds obtained under (4) will be wider than
the bounds obtained under (5) if and only if at least one of the

following inequalities is violated:

Pr[Y = 1,X = 0 | Z = 1) ≤ Pr[Y = 1,X = 0 | Z = 0];
Pr[Y = 0,X = 0 | Z = 1] ≤ Pr[Y = 0,X = 0 | Z = 0];
Pr[Y = 1,X = 1 | Z = 1] ≥ Pr[Y = 1,X = 1 | Z = 0];
Pr[Y = 0,X = 1 | Z = 1] ≥ Pr[Y = 0,X = 1 | Z = 0]. (6)

At the end of this section, we provide an interpretation of
these equations in terms of counterfactual variables Xz that will
make these conditions more intuitive.

Next, we consider even stronger versions of exclusion and
exchangeability:

Individual-level exclusion

Y z,x = Yz′,x = Yx for all x, z, z′. (A5)

In other words, there is no individual direct effect of Z onY rel-
ative to X .

Full joint exchangeability of Y z,x counterfactuals

Z ⊥⊥ {Yz=0,x=0,Yz=0,x=1,Yz=1,x=0,Yz=1,x=1}. (A6)

The assumptions (A5) and (A6) do not lead to narrower bounds
than the Balke-Pearl bounds.

We can consider bounds under other combinations of these
exclusion and exchangeability assumptions. Interestingly, the
model defined by the weakest exclusion restriction (A1) and
the strongest exchangeability assumption (A6) leads to the nat-
ural bounds even when (6) fails to hold. Analogously, the model
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defined by the strongest exclusion restriction (A5) and the
weakest exchangeability assumption (A2) also gives the natural
bounds. Both of these claims were verified with direct calcula-
tion using the computational geometry package (rcdd) in R.

2.2. Latent Formulation of the IVModel

Many articles formulate the IVmodel in terms of an unobserved
confounder,U betweenX andY ; see, for example, Dawid (2003)
and Didelez, Meng, and Sheehan (2010). Under this framework,
we may alternatively define an IV model via the following three
assumptions:

E[Yz,x | U ] = E[Yz′,x | U ], for all z, z′; (A7)
Yz,x ⊥⊥ (Z,Xz) | U ; (A8)
Z ⊥⊥ U. (A9)

We will refer to the combination of (A7), (A8), and (A9) as the
latent counterfactual IVmodel. In words, (A7) states that within
strata defined by U , Z has no population-level direct effect on
Y , relative to X (i.e., a version of exclusion). Assumptions (A8)
and (A9) are forms of exchangeability. The assumption (A8)
states that given U , the joint effect of Z and X on Y is uncon-
founded, where Xz is defined as the counterfactual treatment
that a participant would receive under instrument level Z = z.
The assumption (A9) would be true, for example, if Z were ran-
domly assigned, andU were baseline covariates.

The assumption (A8) plus consistency implies

E[Yz,x|U ] = E[Y | Z=z,X= x,U ] (7)

and

E[Yz,x] =
∫
E[Y | X=x,U =u,Z= z]p(u)du. (8)

It then follows that (A7) and (A8) together imply that

E[Yz,x] = E[YZ,x] ≡ E[Yx]; (9)

E[Yx] =
∫
E[Y | X=x,U =u]p(u)du. (10)

Similarly, (A7) and (7) imply:

Z ⊥⊥ Y | X,U. (A10)

Some authors have defined the IV model without referring
to counterfactuals at all (e.g., Dawid 2003). These authors define
the latent noncounterfactual IVmodel by assumptions (A9) and
(A10), together with the assumption that

Eint,x[Y ] =
∫
E[Y | X=x,U =u]p(u)du, (A11)

where Eint,x[Y ] is the expectation ofY under an intervention to
set X to x. The ATE is then defined by

ATE =
∫
(E[Y | X=1,U =u] − E[Y | X=0,U =u]) p(u)du.

(11)
Note that the above latent counterfactual IV model defined

by (A7), (A8), and (A9) implies the noncounterfactual IVmodel
given by (A9), (A10), and (A11).

Interestingly, the latent counterfactual IV model
defined by (A7), (A8), and (A9) is exactly the IV model
defined by (A5) and (A6), discussed earlier, when U =
(Yz=0,x=0,Yz=1,x=0,Yz=0,x=1,Yz=1,x=1). To see this, note that
with this choice ofU , (A7) becomes the individual-level exclu-
sion restriction (A5), (A8) becomes a tautology, and (A9) is
(A6).

Consequently, the bounds on the ATE obtained under the
latent counterfactual model defined via (A7), (A8), and (A9)
are logically at least as large as the Balke-Pearl bounds of model
(A5) and (A6). Furthermore, it was shown by Dawid (2003) that
the sharp bounds in the noncounterfactual IV model (given by
(A9), (A10), and (A11)) were also the Balke-Pearl bounds. It fol-
lows that the bounds are also sharp for the latent counterfactual
model, since it is a submodel of the noncounterfactual model.

In the course of proving the aforementioned result, Dawid
(2003) showed that the sharp bounds for Yx=1 were varia-
tion independent of those for Yx=0. Variation independence is
needed to conclude that the upper bound for the ATE is the
upper bound for E[Yx=1] minus the lower bound for E[Yx=0]
and that the lower bound for the ATE is the lower bound for
E[Yx=1] minus the upper bound for E[Yx=0]; see also Manski
(2003) and Kitagawa (2009).

2.3. Formalization of the IVModel Including
Counterfactual Treatments Xz

We now consider the strongest version of exchangeability:
Randomization assumption

Z ⊥⊥ {Yz=0,x=0,Yz=0,x=1,Yz=1,x=0,Yz=1,x=1,Xz=0,Xz=1}.
(A12)

Balke and Pearl (1997) formulated the IV model as individual-
level exclusion (A5) and

Z ⊥⊥ {Yx=0,Yx=1,Xz=0,Xz=1}. (12)

Note that (A5) and (12) are equivalent to (A5) and (A12).
As noted earlier, the bounds derived by Balke and Pearl

(1997) using these strengthened exclusion and exchangeabil-
ity assumptions are the same as those obtained under (5). That
these assumptions were stronger than necessary was previously
conjectured and demonstrated in the most extreme special case
(Robins and Greenland 1996).

This maximal exchangeability (A12) in addition to (A5) also
implies:

Z ⊥⊥ {Yx=0,Xz=0};Z ⊥⊥ {Yx=1,Xz=0};
Z ⊥⊥ {Yx=0,Xz=1};Z ⊥⊥ {Yx=1,Xz=1}. (13)

Conditions (A5) and (13), which are particularly suited to the
single-world intervention graph (SWIG) framework discussed
in Section 4, are also sufficient for the Balke-Pearl bounds
(Richardson and Robins 2014). This seems surprising since
although (with (A5)) (A12) implies both (5) and (13), neither
of these imply one another.

When counterfactual treatments Xz are defined, we may
characterize subjects by one of four mutually exclusive com-
pliance types: always-takers (Xz=0 = Xz=1 = 1); never-takers
(Xz=0 = Xz=1 = 0); compliers (Xz=0 = 0,Xz=1 = 1); and
defiers (Xz=0 = 1,Xz=1 = 0). With these compliance types
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defined, we can now provide an interpretation of the inequali-
ties (6) presented earlier, at least one of which will be violated if
and only if the natural bounds are wider than the Balke-Pearl
bounds. Specifically, when one of the inequalities (6) is violated,
the proportion of defiers is greater than zero. Consequently,
whenever the natural bounds differ from the Balke-Pearl
bounds, then under (A5) and (A12), there is evidence in the
data for the existence of defiers (Pearl 2000). Huber, Laffers,
and Mellace (2015) showed this is also true under (A5) and an
exchangeability assumption equivalent to

Z ⊥⊥ {Yx=0,Xz=0,Xz=1};Z ⊥⊥ {Yx=1,Xz=0,Xz=1}, (14)

which is weaker than (A12) but stronger than (13).

3. IV Inequalities

The exclusion and exchangeability assumptions that define the
IVmodel are not empirically verifiable.However, it is sometimes
possible to falsify these assumptions, that is, to find empirical
evidence against them. Balke and Pearl (1997) showed that the
most restrictive model defined by (A5) and (A12) implies all of
the following inequalities:

Pr[Y = 0,X = 0|Z = 0] + Pr[Y = 1,X = 0|Z = 1] ≤ 1;
Pr[Y = 0,X = 1|Z = 0] + Pr[Y = 1,X = 1|Z = 1] ≤ 1;
Pr[Y = 1,X = 0|Z = 0] + Pr[Y = 0,X = 0|Z = 1] ≤ 1;
Pr[Y = 1,X = 1|Z = 0] + Pr[Y = 0,X = 1|Z = 1] ≤ 1.

(15)

Conversely, Bonet (2001) showed that any observable distribu-
tion that satisfies (15) is compatible with the assumptions (A5)
and (A12).

It follows from Richardson and Robins (2010) that these
inequalities are also implied by condition (4) alone, that is, the
least restrictive model we have considered! To see this, consider
the following argument. For i, j, k ∈ {0, 1},
Pr[Yx=i = j] = Pr[Yx=i = j | Z = k]

= Pr[Yx=i = j,X = i | Z = k]
+ Pr[Yx=i = j,X = 1 − i | Z = k]

= Pr[Y = j,X = i | Z = k]
+ Pr[Yx=i = j,X = 1 − i | Z = k]

≤ Pr[Y = j,X = i | Z = k]
+ Pr[X = 1 − i | Z = k]

= 1 − Pr[Y = 1 − j,X = i | Z = k], ; (16)

where the first equality follows from (4) and the third from con-
sistency. It follows that

max
k

Pr[Y = 1,X = i | Z = k]

≤ Pr[Yx=i = 1] ≤ min
k∗

1 − Pr[Y = 0,X = i | Z = k∗],

(17)

where the lower bound is obtained from (16) taking j = 0. The
requirement that the lower bound be less than the upper bound
(where k 
= k∗) then directly implies (15).

Since (A5) and (A12) imply (4), it follows that any observable
distribution is compatible with the most restrictive model (A5)
and (A12) if and only if it is also compatible with the least
restrictive (4). This is surprising since the Balke-Pearl bounds
for the ATE implied by (A5) and (A12) are narrower than
the ATE bounds implied by (4) whenever at least one of the
inequalities (6) fails to hold. (This statement is not vacuous
because the set of distributions obeying (6) is a strict subset of
those satisfying (15).)

Many authors have considered the power of these tests and
the interpretation of specific violations. Richardson and Robins
(2010) noted that any distribution can violate at most one of
these four inequalities (15). In addition, they are invariant under
relabeling of any variable. Cai et al. (2008) gave a simple inter-
pretation of the inequalities in terms of bounds on average
controlled direct effects in the counterfactual model assuming
(A12). Specifically, they showed that if either of the IV inequali-
ties associated with a given level ofX = x is violated, then under
(A12) one can conclude that there is a nonzero population con-
trolled direct effect of Z onY fixing X to x, and further the sign
may be determined. In fact, this conclusion follows directly from
our weakest exchangeability assumption (A2) by an argument
similar to that following (16).

Furthermore, returning to the model based on our strongest
exclusion (A5) and exchangeability (A12) assumptions, the vio-
lation of either of the inequalities involving X=1 (or analo-
gously, X=0), may be viewed as the presence of a direct effect
for always-takers (or analogously, never-takers); see Zhang and
Rubin (2003), Hudgens, Hoering, and Self (2003), and Imai
(2008).

Finally, some authors have considered the testable implica-
tions of combining an IV model with additional assumptions,
including some assumptions we review in Section 5. For exam-
ple, see Huber and Mellace (2015), Mourifie and Wan (2014),
and Kitagawa (2015).

4. Graphical Representations

Inmany disciplines such as epidemiology and computer science,
the IV model is nearly exclusively represented using graphs. In
the prior section, we showed several different IVmodels defined
by variants of the exclusion and exchangeability assumptions.
Here, we will show how many of these causal models may be
associated with graphs by different semantics. We begin with a
brief introduction to graphical representations; interested read-
ers unfamiliar with graphical causal models may consider con-
sulting additional resources (Spirtes, Glymour, and Scheines
1993; Greenland, Pearl, and Robins 1999; Pearl 2000; Richard-
son and Robins 2013).

A causal directed acyclic graph (DAG) is a DAG in which (i)
the absence of an arrow from node A to B can be interpreted as
the absence of a direct causal effect ofAonB (relative to the other
variables on the graph), (ii) all common causes, even if unmea-
sured, of any pair of variables on the graph are themselves on the
graph, and (iii) the Causal Markov Assumption (CMA) holds.
The CMA links the causal structure represented by the DAG to
the statistical data obtained in a study. It states that the distri-
bution of the (factual) variables on the graph factor according
to the DAG if the joint density is the product of the conditional
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Figure . Graphical representations of IV models discussed in Section . The setting with no confounding between Z and X is considered in (a), (b), and (c); (d), (e), and (f )
concern the setting with confounding between Z and X . Double edges (⇒) indicate deterministic relationships in (c) and (f ).

densities for each variable given its “parents” in the DAG. This
factorization is equivalent to the statement that each variable
is independent of its nondescendants given its parents, where
variable B is a descendant of variable A if there is a sequence of
directed paths fromA to B. For a causal DAG, this last statement
can be reformulated as, given its parents, any variable is indepen-
dent of all variables for which it is not a (direct or indirect) cause.
These defining independencies logically imply additional inde-
pendencies that can be read off the graph. The graphical method
for determining these additional independencies is known as d-
separation (Pearl 2000).

We now turn to the graphs in Figure 2. We note that the fac-
torization associated with the DAG G1 is

Pr[Z=z,U =u,X=x,Y =y]
= Pr[Z=z] Pr[U =u] Pr[X=x | u, z] Pr[Y =y | x, u].

(18)

The factorization (18) directly implies the independencies
(A9) and (A10).

Spirtes, Glymour, and Scheines (1993) showed that the CMA
implies the distribution resulting from a causal intervention that
fixes or sets a given variable to a specific value is obtained by
simply removing the term from the factorization corresponding
to the variable that has been intervened on. Thus, in the case
of DAG G1 in Figure 2, for the intervention fixing X to x the
distribution after intervention Print,x[z, u, y] is given by

Print,x[z, u, y] = Pr[Z=z] Pr[U =u] Pr[Y =y | x, u]. (19)

This Equation (19) directly implies (A11) by integrating out Z
andU . The right-hand side of (19) is a particular instance of the
g-formula (Robins 1986).

Therefore, we have seen that the latent noncounterfactual IV
model of Section 2 that is defined by (A9), (A10), and (A11) is
directly encoded in G1 via this interpretation. Thus, the causal
DAG G1 would be appropriate if we were to suppose that (i) U
represents all unmeasured common causes of X andY , and fur-
ther (ii) Z has been randomized, and hence is not confounded
with X ,Y , orU .

Causal graphs that directly incorporate counterfactual
variables can also be used to represent counterfactual causal
models. The two most widely considered such models are the
Finest Fully Randomized Causally Interpreted Structural Tree
Graph (FFRCISTG) and the nonparametric structural equation

model with independent errors (NPSEM-IE) (Robins 1986;
Pearl 2000). The NPSEM-IE is a strict submodel of the FFR-
CISTG model. The counterfactual independencies implied by
an FFRCISTG model are sufficient to identify the effects of any
intervention when all the variables on the graph are observed.
The NPSEM-IE model can further identify counterfactual
estimands that do not correspond to any intervention, such as
the pure (or natural) direct effect.

The counterfactual independencies defining the FFRCISTG
model can be encoded graphically by single-world intervention
graphs (SWIGs) introduced in Richardson and Robins (2013).
The nodes on a SWIG represent the counterfactual random
variables corresponding to a single specific hypothetical inter-
vention on a subset of the variables in the graph (Robins and
Richardson 2011).

The graph Gz,x
1 depicted in Figure 2(b) is a SWIG that repre-

sents the causal structure in graph G1 in a counterfactual world
where Z has been set to z and X has been set to x. It is con-
structed from the original DAG G1 by the following three steps:
(i) split all nodes that are being intervened upon into a random
piece and a fixed piece, (ii) the random piece inherits all incom-
ing edges on the original graph and the fixed piece inherits all
out-going edges, and (iii) replace nodes that are descendants
of the fixed portion with counterfactual nodes associated with
this intervention. The random half of a split node represents the
random variable that would be observed if that node had not
been intervened on. Richardson and Robins (2013) showed that
under the (naturally associated) FFRCISTGmodel, the distribu-
tion of the counterfactual random variables on the SWIG factors
according to the graph. Consequently, since Z is not the parent
of any variable on the SWIG Gz,x

1 , we immediately obtain the
counterfactual independence (13). In addition, because the last
node isYx and notYz,x, the SWIG encodes the individual-level
exclusion assumption (A5).

The counterfactual DAG G∗
1 in Figure 2(c) encodes addi-

tional independencies implied by the NPSEM-IEmodel that are
not implied by the FFRCISTG model. In particular, the graph
implies the independencies (12) used by Balke and Pearl (1997)
because Z is d-separated from all the counterfactuals on the
graph. Graph G∗

1 is not a SWIG because (12) is not implied by
the FFRCISTG model.

The graph G1 depicted in Figure 2(a) is often provided as
“the” canonical IV graph, sometimes with the implication that
this is the only situation where IV techniques may be applied.
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However, this is inaccurate. To see this, consider the graph
G2 that, unlike the simple graph in G1, includes confounding
between the instrument Z and treatment X (Figure 2(d)). Like
G1, the factorization of conditional densities represented by G2
implies the latent noncounterfactualmodel of Section 2 given by
(A9), (A10), and (A11). (Dawid (2003) did not consider G2, but
it implies all the assumptions (A9), (A10), and (A11) needed for
his analysis.)

Consider next the graph for the SWIG Gz,x
2 depicted in

Figure 2(e). This graph is a population-level SWIG because the
variable Y is indexed by both z and x. The absence of the edge
from Z to Y encodes the population-level exclusion (A7) with-
out imposing the individual-level exclusion (A5). Furthermore,
by d-separation, the graph implies the constraints (A8) and (A9).
Thus, it implies the latent counterfactual IV model described in
Section 2.

Finally, the graph G∗
2 in Figure 2(f) is the natural extension

of G∗
1 in Figure 2(c) and thus is not implied by the FFRCISTG

model and therefore is not a SWIG.On this graph,Z is no longer
independent of the counterfactuals Xz, and therefore does not
imply the exchangeability assumptions discussed in Section 2
involving Xz (such as (12)). However, the graph does imply (5)
because Z is d-separated from the node containing the counter-
factualsYx=1,Yx=0.

In summary, we have seen that all of the different counter-
factual formulations of the IVmodel that lead to the Balke-Pearl
bounds can be expressed graphically, thus unifying the graphical
and counterfactual approaches.

5. Bounds on the Population Average Treatment
Effect (ATE) Combining an Instrument with Further
Assumptions

Now that we have thoroughly discussed the various versions of
the IV assumptions, we turn to partial and point identification
results when combining an instrument with additional assump-
tions. As with the bounds discussed in Section 2, the gains in
identification for the bounds for the ATE discussed in this sec-
tion are presented in Table 1, while expressions are presented in
Tables 2 and 3.

5.1. Further Assumptions Requiring Counterfactual
Treatments Xz

As discussed in Section 2, some IVmodels require the existence
of the counterfactual treatment Xz. As noted earlier, with Xz

defined, we may characterize subjects by one of four mutually
exclusive compliance types: always-takers (Xz=0 = Xz=1 = 1);
never-takers (Xz=0 = Xz=1 = 0); compliers (Xz=0 = 0,Xz=1 =
1); and defiers (Xz=0 = 1,Xz=1 = 0).

We can then consider further assumptions about the dis-
tribution of compliance types and effects within compliance
types. For example, Richardson and Robins (2010) considered
the geometry of the IV model under individual-level exclusion
(A5), full exchangeability (A12), and the assumption that the
proportion of defiers is known, that is,

Pr[Xz=0 = 1,Xz=1 = 0] is known. (A13)

Note that the set of possible proportions of defiers is restricted
by the assumptions (A5) and (A12) in conjunction with the

observed joint distribution of (Y,X,Z). Interestingly, the full
joint data imply restrictions beyond those implied by the
marginal data on (X,Z). However, once given the proportion
of defiers, the proportion of the other three compliance types
is determined solely by the marginal distribution (X,Z). See
Richardson and Robins (2010) and our Appendix S3 for details.

Assumption (A13) is of interest because, in the special case
when it is assumed that there are no defiers, the effect in the
compliers (a.k.a., the local average treatment effect [LATE]) is
identified by the usual IV estimand

E[Y |Z = 1] − E[Y |Z = 0]
E[X |Z = 1] − E[X |Z = 0]

. (20)

This result was described in seminal work by Imbens and
Angrist (1994), Baker and Lindeman (1994), and Angrist,
Imbens, and Rubin (1996). It does not require (A12). In fact,
for the usual IV estimand to equal the LATE it suffices that Z
is independent of (Xz=0,Xz=1) and assumption (4) both hold;
recall that (4) is our weakest outcome independence assump-
tion. These assumptions are weaker than those of Huber, Laf-
fers, and Mellace (2015) who also showed that (A12) could be
relaxed. Richardson and Robins (2010) generalized the results
fromAngrist, Imbens, and Rubin (1996) by giving bounds for all
four compliance types and for the entire population as a func-
tion of (A13). Such results can be used as a sensitivity analysis,
as subject matter experts are often willing to give bounds on the
proportion of defiers in their study population. If the propor-
tion of defiers specified is nonzero, the effect in the compliers
becomes only partially identified. Angrist, Imbens, and Rubin
(1996) made this latter point but did not consider the restric-
tions placed on the proportion of defiers implied by the joint
distribution of (Y,X,Z) (Richardson and Robins 2010). Huber,
Laffers, and Mellace (2015) also studied bounds for compliance
types under weaker assumptions.

5.2. Further Assumptions Restricting the Heterogeneity of
the Effect of X onY

The observed data P(Y,X,Z) and assumptions (A5), (A12), and
(A13) provide no information, by definition, about the mean
counterfactual outcome in the never-takers had they been forced
to take treatment nor in the always-takers had they been forced
to forgo treatment. A corollary of this observation is that wemay
tighten the bounds on the ATE by assuming bounds on:

E[Yx=0 |Xz=0 = Xz=1 = 1] or E[Yx=1 |Xz=0 = Xz=1 = 0].
(A14)

For instance, when an outcome is rare, it is unlikely that the stra-
tum of always-takers would universally experience the outcome
had they not been treated; rather we might consider assuming
that atmost a certain proportionwould experience the outcome.

Some authors have made specific proposals for how to use
the observed data to inform specific versions of the assumption
(A14). For example, an approach described by Baiocchi, Cheng,
and Small (2014) corresponds to bounding the differences in
treatment effects between compliance types under the special
case of no defiers. A condition proposed by Siddique (2013)
corresponds to, under the assumption of no defiers, bounding
the mean counterfactual outcome under treatment among the
never-takers by Pr[Y = 1|Z = 1,X = 1] and themean counter-
factual outcome under no treatment among the always-takers by
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Pr[Y = 1|Z = 0,X = 0]. By definition, a strategy for imposing
limits for (A14) based on the observed data and/or prior knowl-
edge would be subject-matter-dependent.

Another assumption that has been used to limit possible het-
erogeneity of the effects X can have on Y is to assume a mono-
tonic relationship that specifies nobody is hurt by treatment:

Yx=1 ≤ Yx=0 (A15)

for all individuals (Manski 1997; Manski and Pepper 2000). It
then follows that the upper bound is necessarily nonpositive
and the lower bound is the same as that identified under the IV
assumptions alone. Note the direction of inequality described
in assumption (A15) could be flipped depending on the study
setting. Related bounds can be found by assuming a mono-
tonic relationship betweenX andY without specifying the direc-
tion of the effect but further assuming a monotonic relationship
between Z and X (Bhattacharya, Shaikh, and Vytlacil 2008).

Another assumption that limits treatment heterogeneity,
described by Siddique (2013), specifically imposes restrictions
on the counterfactual outcomes among those for whom Z 
= X .
Specifically, she assumes that among those who decided not
to take their assigned treatment, this decision was, on average,
correct. That is, the outcome would be minimized under the
observed treatment relative to the “compliant” unobserved treat-
ment level:

E[Yx=1|Z = 1,X = 0] − E[Yx=0|Z = 1,X = 0] ≥ 0,
E[Yx=1|Z = 0,X = 1] − E[Yx=0|Z = 0,X = 1] ≤ 0. (A16)

When combined with the IV assumptions, (A16) can lead to
improved lower bounds for each of the mean counterfactual
outcomes, E[Yx=1] and E[Yx=0]; however, the specific gains in
identifying the ATE have not been described previously. As with
(A15), note the direction of the relationship described in (A16)
could be flipped depending on the study setting. Assumption
(A16) is related to the “mean dominance” assumptions some-
times proposed in the econometrics literature (Huber, Laffers,
and Mellace 2015; Huber and Mellace 2015).

Even stronger assumptions limiting the effect heterogeneity
lead to point identification. Assuming additive effect homogene-
ity across levels of Z in the treated and the untreated,

E[Yx=1|X = 1,Z = 1] − E[Yx=0|X = 1,Z = 1]
= E[Yx=1|X = 1,Z = 0] − E[Yx=0|X = 1,Z = 0],

E[Yx=1|X = 0,Z = 1] − E[Yx=0|X = 0,Z = 1]
= E[Yx=1|X = 0,Z = 0] − E[Yx=0|X = 0,Z = 0] (A17)

identifies the ATE. The first equality identifies the effect of treat-
ment on the treated, and the second equality identifies the effect
on the untreated, both by the standard IV estimand (20). The
first equality was given as an identifying assumption under an
additive structural mean model (Robins 1989, 1994). Assum-
ing effect homogeneity on themultiplicative rather than additive
scale

E[Yx=1|X = 1,Z = 1]
E[Yx=0|X = 1,Z = 1]

= E[Yx=1|X = 1,Z = 0]
E[Yx=0|X = 1,Z = 0]

,

E[Yx=1|X = 0,Z = 1]
E[Yx=0|X = 0,Z = 1]

= E[Yx=1|X = 0,Z = 0]
E[Yx=0|X = 0,Z = 0]

(A18)

also results in point identification for the ATE. The identifying
formula under additive versus multiplicative effect homogene-
ity assumptions, however, differs whenever the effect is nonnull
(Robins 1989, 1994; Hernán and Robins 2006). In other words,
except when the effect is null, it is impossible for both additive
(A17) and multiplicative (A18) effect homogeneity to hold.

5.3. Further Assumptions Regarding Unmeasured
Covariates

Recently, Wang and Tchetgen (2016) have provided new identi-
fying assumptions for the ATE under the latent counterfactual
IV model. Specifically, they showed that if, in addition to (A7),
(A8), and (A9), either

E[X |Z = 1,X,U ] − E[X |Z = 0,X,U ]
= E[X |Z = 1,X] − E[X |Z = 0,X] (A19)

or

E[Yx=1 −Yx=0|X,U ] = E[Yx=1 −Yx=0|X] (A20)

holds, then the ATE is identified by the usual IV estimand (20).
Other researchers have considered bounds, without point

identification, in specific settings for which there is some sub-
jectmatter knowledge about a specific unmeasured covariate,U ,
in combination with the IV assumptions. Such settings typically
require a number of further parametric assumptions concerning
the state space of U and the relationship between U and either
the treatment X , the outcomeY , or both. For example, Chesher
(2010) derived bounds that rely on assumptions about a single
scalar U . Manski and Pepper (2000) described an assumption
about how a specific dichotomous U informs treatment X ; see
also Siddique (2013), who further considered the same assump-
tion in conjunction with (A16).

The bounds for the ATE under any of these additional
assumptions concerning U often lead to markedly narrower
bounds than the IV assumptions alone. However, the strong
and/or specific assumptions about the unmeasured U are only
substantively justified in limited domains (e.g., econometric
models that imply the existence of a scalarU ). For this reason,we
do not compute bounds under these assumptions in our empir-
ical example in Section 7.

5.4. Proposed Relaxations of IV Assumptions

In Section 2, we reviewed IVmodels defined by combinations of
exclusion and exchangeability assumptions, but a natural ques-
tion may be what happens if we relax (rather than add to) one
or both of these types of assumptions. For example, Kaufman,
Kaufman, andMacLehose (2009) noted that assuming only (A5)
or (A12), but not both together, provides no improvement over
the bounds obtained under the data alone. Other authors have
considered “imperfect instruments” (Manski and Pepper 2000;
Ramsahai 2012; Flores and Flores-Lagunes 2013; Huber 2014).
As one example, Ramsahai (2012) considered an IV model that
replaced (A10) with

0 ≤ |Pr[Y = 1|Z = 1,X = x,U ]
− Pr[Y = 1|Z = 0,X = x,U ]| ≤ ε, (21)
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where ε = 0 would reduce to (A10), ε = 1 would place
no restriction, and 0 < ε < 1 would represent a weakened
exclusion restriction. Such relaxations of course lead to wider
bounds than those derived under the IV assumptions, but can
serve as a sensitivity analysis between having an instrument and
having no instrument at all.

6. Extensions to Other Study Settings

6.1. Continuous Outcomes

When Y is a continuous variable, partial identification of the
ATE (i.e., the difference in means) under the IV assumptions
requires specification both of an upper bound that exceeds the
maximum of the supports forYx=1 andYx=0 and a lower bound
that is less than the minimum of the supports. As one example,
given such upper and lower bounds for the support of Y , the
bounds that follow frommarginal exchangeability (4) are identi-
fied for continuous outcomes by assumingmean exchangeability
(Manski 1990; Robins 1994; Manski and Pepper 2000; Hernán
and Robins 2006):

E[Yx | Z = 1] = E[Yx | Z = 0] for all x. (22)

Though implicit for dichotomous outcomes (which are bounded
by 0 and 1), bounding the support of Yx is an additional
assumption needed when outcomes are continuous. For many
continuous outcomes this may be plausible: for example, choles-
terol levels cannot be negative nor can they approach infinity.
However, the limits onYx may not be known. For example, it is
physically impossible for cholesterol levels to be below 0 mg/dl
or above 105,200 mg/dl given the density of cholesterol, imply-
ingYx must be bounded between 0 and 105,200mg/dl. Onemay
further argue that the cholesterol levels are less than a certain
threshold (e.g., 1100 mg/dl) based on extreme hypercholes-
terolemia case studies (Sprecher et al. 1984). For a specific study
population, experts may argue the range of plausible cholesterol
levels is narrower still. In practice, the choice of the bounds on
Yx can greatly affect the width of the bounds on the ATE.

For continuous outcomes, other assumptions that have been
used to construct bounds for the ATE found in the litera-
ture include: relaxing mean exchangeability to instead assume
E[Yx|Z = 1] ≥ E[Yx|Z = 0] (Manski and Pepper 2000) and
nonparametric selection models (Heckman and Vytlacil 2001).
In the face of continuous Y , a number of authors have made
their object of inference contrasts between the quantiles ofYx=1

andYx=0 rather than between themeans; seeChernozhukov and
Hansen (2005) and Blanco, Flores, and Flores-Lagunes (2013).

In Section 2, we observed that a range of exchangeability
assumptions leads to the same bounds. In particular, the SWIG
exchangeability (13) and full randomization (A12) assumptions
both lead to the Balke-Pearl bounds. This phenomenon may be
specific to the case where Y is binary; Huber, Laffers, and Mel-
lace (2015) showed that, in the case whereY is continuous, they
obtain wider bounds under (A5) and (14) than those obtained
by Kitagawa (2009) who assumed (A5) and (A12).

6.2. Nonbinary Instruments

The IV model can be extended to settings with continu-
ous or categorical instruments. Beresteanu, Molchanov, and

Molinari (2012) described identification regions in the general
case under (4) and the natural extension of (5). Ramsahai (2012)
and Richardson and Robins (2014) described bounds on the
ATE under the IV assumptions for a categorical instrument with
an arbitrary (finite) number of categories with binary treatment
and outcome. Palmer et al. (2011) provided software for imple-
menting bounds using three-level instruments.

The instrumental inequalities discussed in Section 3 can like-
wise be generalized for nonbinary instruments and outcomes.
When the instrument Z and outcome Y are categorical, Pearl
(1995) showed the IV model satisfied:

max
x

∑
y

max
z

Pr[y, x|z] ≤ 1. (23)

(When Z or Y is continuous, this can be reexpressed with
respect to the conditional density function of Y given X,Z.)
When Z has more than two levels, Bonet (2001) showed
that the IV model defined by the individual-level exclusion
restriction (A5) and the full exchangeability assumption (A12)
implies additional constraints on the joint distribution of the
observed data beyond (23) or the more general form. Results
in Richardson and Robins (2014) imply that the constraints on
the observed data distribution under the model given by joint
exchangeability (5) are the same as those implied by the more
restrictive model (A5) plus (A12). In Appendix S4, the addi-
tional constraints of Bonet are given for the special case Z =
3; furthermore, an observed data distribution satisfying Pearl’s
constraints (23) but not Bonet’s additional constraint is dis-
played. An argument similar to that of Equation (16) shows
that Pearl’s constraints (23) hold under the weakest IV model
(4); however, this is not the case for Bonet’s additional con-
straint, which need not hold even under the model defined by
individual-level exclusion (A5) and marginal exchangeability
(4)—rather joint exchangeability (5) is required. It follows that
the surprising finding that the least andmost restrictive IVmod-
els are associated with the same instrumental inequalities (dis-
cussed in Section 3) is specific to the binary instrument setting.

6.3. Other Study Designs

Thus far we have considered observed data distributions that
may have been generated in one of two study designs: ran-
domized trials and observational follow-up studies. We may
also consider the so-called “two-sample” study design, where we
obtain information on the distribution of (Z,X ) from one sam-
ple and (Z,Y ) from a second sample. Intuitively, such a design
has less information than one that observes the full joint distri-
bution of (Z,X,Y ). Bounds and point identification results have
been derived under IV assumptions in these settings: see Palmer
et al. (2011) for data analysis and implementation, and see Ram-
sahai (2012) for further discussion. Note an implicit assumption
in “two-sample” study designs is that the two samples are both
random samples from the same source population.

IV analyses in case–control studies have also been consid-
ered, and indeed bounds under IV assumptions have been
derived if themarginal distribution Pr[Y = 1] of the binary out-
come in the source population is known. If this probability is not
known, onemay consider assuming upper and lower bounds on
Pr[Y = 1] to obtain bounds for the ATE (Didelez and Sheehan
2007; Palmer et al. 2011).
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6.4. IncorporatingMeasured Covariates

Particularly in observational studies, the above-described
assumptions may often be unlikely to hold unconditionally, but
perhaps would seem more palatable within levels of measured
covariates occurring prior to Z. We can relax any of these sets
of assumptions by first bounding effects within strata, and then
using standardization techniques to partially identify the ATE.
For example, suppose we assumed that some set of assumptions
held within levels of a measured categorical covariate, L. This
implies that we can estimate lower and upper bounds, LBl and
UBl , for the treatment effect within any level of L = l:

LBl ≤ E[Yx=1|L = l] − E[Yx=0|L = l] ≤ UBl . (24)

It follows that bounds for the ATE can be derived by standard-
izing these bounds:

∑
L=l

LBl Pr[L = l] ≤ E[Yx=1] − E[Yx=0] ≤
∑
L=l

UBl Pr[L = l].

(25)
See Swanson et al. (2015) for an applied example. For an
approach to modeling stratum-specific ATE bounds as a func-
tion of preinstrument covariates (including potentially continu-
ous covariates); see Richardson, Evans, and Robins (2010).

Rather than incorporating preinstrument covariates, another
strategy in some studies may be to incorporate information on
auxiliary outcomes. For example, Mealli and Pacini (2013) con-
sidered a setting for which the IV conditions were satisfied for
a secondary outcome, and developed bounds for the intention-
to-treat effect within compliance types for a primary outcome.

7. Empirical Example

7.1. Study Setting

To demonstrate the reviewed bounding approaches in one
empirical example, we used publicly available data from theOre-
gon Health Insurance Experiment (Finkelstein 2013). Details of
the study have been provided elsewhere (Taubman et al. 2014).
In brief, Oregon initiated an expansion of theMedicaid program
in 2008, extending benefits to include uninsured, low-income,
able-bodied adults who would not have previously qualified for
Medicaid coverage. This expansion was done by drawing names
from a waiting list lottery, thus offering an opportunity to study
the effects of healthcare coverage in a randomized design. Taub-
man et al. (2014) analyzed the effects of Medicaid coverage on
emergency department visits during the 18-month follow-up
period using IV methods, and generally concluded that Med-
icaid coverage increased emergency department use over this
study period. Their study primarily focused on point estimates
for the LATE, that is, the average treatment effect in personswho
would have receivedMedicaid coverage had theywon the lottery
draw but not otherwise.

Here, we estimate bounds for the ATE, that is, the effect
in the entire study population. The ATE is arguably more rel-
evant for policy questions (Robins and Greenland 1996)—in
particular for questions about the possible effects of univer-
sal healthcare coverage (Kreider and Hill 2009)—but typically

Table . Distribution of randomization, Medicaid/OHP coverage, and outcomes.

Randomization Coverage Any visit Heart visit
N Z X E[Y |X , Z] E[Y |X , Z]
Medicaid

,   . .
   . .
   . .
   . .

OHP
,   . .
   . .
   . .
   . .

requires stronger assumptions for point identification. We esti-
mate bounds for the ATE of Medicaid coverage on (i) any emer-
gency department visit and (ii) any emergency department visit
for chest pain or a heart condition. These outcomes were cho-
sen to demonstrate results for a common and a rare dichoto-
mous outcome, respectively. We used the data made publicly
available by Taubman et al. (2014)with complete information on
these outcomes, and further restricted analyses to single-person
households, leaving an analytic sample of N = 18,854. For our
primary analyses, we considered as our treatment variableMedi-
caid coverage defined as any enrollment in Medicaid during the
study period. As a secondary treatment definition, we consid-
eredOregonHealth Program (OHP) Standard coverage, defined
as enrollment in the lotteried healthcare program (OHP Stan-
dard) during the study period. Using these two treatment defi-
nitions allow for comparison of the flexibility of bounds derived
for feasible distributions of compliance types.

The distribution of these variables can be found in Table 4.
Note that, for both treatment definitions, there is noncompli-
ancewith lottery assignment in both levels of lottery assignment.
Persons who were selected in the lottery may not have obtained
coverage for a number of reasons, including simply failing to
pursue the application process. Persons who were not selected
in the lottery could have obtained coverage if they qualified for
coverage through other means, for example, because of changes
in their income or disability status over the study period.

7.2. Bounds

Estimates of the bounds for the ATE of Medicaid and OHP cov-
erage on the risk of the twodichotomous outcomes are presented
in Table 5. As expected, bounds of unit length are obtained using
the data only.Narrower bounds are achieved under an IVmodel,
with the natural and Balke-Pearl bounds being identical in these
data: for example, [−0.287, 0.452] for the effect ofMedicaid cov-
erage on any emergency department visit. Because of random-
ization, we might expect all versions of exchangeability to hold.
A justification for the individual-level exclusion restriction (A5)
was provided by the authors (Taubman et al. 2014). The assump-
tion (A5) would not hold if a participant’s lottery draw encour-
aged some patients to adopt other healthy behaviors or seek
other public services. Moreover, even if the exclusion restric-
tion was satisfied for the continuous, time-varying treatment of
Medicaid coverage (e.g., number of months with coverage), our
dichotomization of the treatment as “any” versus “none” can lead
to violations of the condition (VanderWeele et al. 2014).
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Table . Identification of the average treatment effect of Medicaid coverage on
-month risk of emergency department visits under the sets of assumptions
described in Figure .

Assumption set Lower bound Upper bound

Effect of Medicaid coverage on any visit
Data only −. .
A+ A −. .
A+ A −. .
A+ A+ A −. −.
A+ A+ A −. .
A+ A+ A .
A+ A+ A .

Effect of Medicaid coverage on heart visit
Data only −. .
A+ A −. .
A+ A −. .
A+ A+ A −. −.
A+ A+ A −. .
A+ A+ A −.
A+ A+ A −.

Effect of OHP coverage on any visit
Data only −. .
A+ A −. .
A+ A −. .
A+ A+ A −. −.
A+ A+ A −. .
A+ A+ A .
A+ A+ A .

Effect of OHP coverage on heart visit
Data only −. .
A+ A −. .
A+ A −. .
A+ A+ A −. −.
A+ A+ A −. .
A+ A+ A −.
A+ A+ A −.

Bounds under an additional assumption restricting the
direction of individual-level effects (A15) led to identifying
the direction of the ATE, as expected. Because it is plausible
that coverage could cause visits for some people and protect
against visits in other people, neither (A15) or its inverse
would be reasonable in this study. Assuming (A16) improves
the bounds relative to the bounds under the IV assumptions
alone. However, (A16) is also unlikely to hold in the current
study, particularly because it is implicit in this assumption that

minimizing risk of an emergency department visit completely
informs the enrollment decision.

We obtained similar point estimates with wide confidence
intervals (not shown) under the additional assumptions of effect
homogeneity on the additive (A17) and multiplicative (A18)
scales. To justify the reasonableness of these additional assump-
tions, we might apply subject-matter knowledge to assess the
sufficient condition of effect homogeneity by the unmeasured
confounders described by Hernán and Robins (2006). In this
study, age, preexisting conditions, and health literacy are all
likely strong effect modifiers, thus effect homogeneity assump-
tions may not be appropriate.

For Medicaid coverage, a proportion of defiers between 0
and 14.7% was consistent with the observed data, individual-
level exclusion restriction (A5), and randomization (A12); for
OHP coverage, the feasible proportion of defiers wasmuchmore
restrictive (0 to 2.6%). In this particular study, both of the upper
bounds on the proportion of defiers are Pr[X = 1|Z = 0], and
thus the small number of subjects who obtained OHP coverage
despite not being selected in the lottery drives this narrow range.

The ATE and the effects within compliance types were
estimated under the IV assumptions and various feasible com-
pliance type distributions (Table 6). The estimated LATE was
sensitive to the proportion of defiers assumed: if we assumed
1.3% or more of the study population were defiers, the direction
of the effect of Medicaid coverage on any visits was no longer
identified. In Table 7, we also estimate the ATE under further
assumptions restricting the proportion of always-takers who
would have had a heart-related emergency department visit
had they not had coverage, and the proportion of never-takers
who would have had a heart-related emergency department
visit had they had coverage. Because only 2.6% of the study
population had an emergency department visit for chest pain
or a heart condition, it is perhaps plausible to assume that at
most a certain proportion of the always-takers and never-takers
under their unobserved counterfactual treatment level would
have had such a visit. However, subject-matter experts may
have different opinions on what is a reasonable upper bound. A
similar strategy of assumed restrictions could also be applied to
ourmore common outcome of any emergency department visit,

Table . Identification of the average treatment effect globally and within compliance types under assumptions (A), (A), and specified feasible versions of (A).

Distribution
[DE,CO,AT,NT]* Defier Complier Always-taker Never-taker Global

Effect of Medicaid coverage on any visit
[0.00, 0.26, 0.15, 0.59] [−1.000, 1.000] . [−0.670, 0.330] [−0.349, 0.661] [−0.287, 0.452]
[0.05, 0.31, 0.10, 0.54] [−1.000, 0.968] [−0.122, 0.194] [−1.000, 0.502] [−0.370, 0.722] [−0.287, 0.450]
[0.10, 0.36, 0.05, 0.49] [−0.981, 0.484] [−0.238, 0.167] [−1.000, 1.000] [−0.408, 0.796] [−0.285, 0.400]

Effect of Medicaid coverage on heart visit
[0.00, 0.26, 0.15, 0.59] [−1.000, 1.000] −0.002 [−0.969, 0.031] [−0.028, 0.972] [−0.159, 0.579]
[0.05, 0.31, 0.10, 0.54] [−0.326, 0.090] [−0.054, 0.012] [−1.000, 0.467] [−0.030, 1.000] [−0.125, 0.534]
[0.10, 0.36, 0.05, 0.49] [−0.163, 0.045] [−0.047, 0.011] [−1.000, 0.097] [−0.033, 1.000] [−0.075, 0.484]

Effect of OHP coverage on any visit
[0.00, 0.28, 0.03, 0.69] [−1.000, 1.000] . [−0.680, 0.320] [−0.345, 0.655] [−0.245, 0.474]
[0.01, 0.29, 0.02, 0.68] [−1.000, 0.822] [0.007, 0.070] [−1.000, 0.523] [−0.350, 0.664] [−0.245, 0.472]
[0.02, 0.30, 0.01, 0.67] [−0.874, 0.411] [−0.018, 0.067] [−1.000, 1.000] [−0.355, 0.674] [−0.242, 0.462]

Effect of OHP coverage on heart visit
[0.00, 0.28, 0.03, 0.69] [−1.000, 1.000] −0.002 [−0.975, 0.025] [−0.029, 0.971] [−0.046, 0.673]
[0.01, 0.29, 0.02, 0.68] [−1.000, 0.064] [−0.037,−0.000] [−1.000, 0.041] [−0.029, 0.986] [−0.046, 0.664]
[0.02, 0.30, 0.01, 0.67] [−0.994, 0.032] [−0.068,−0.000] [−1.000, 0.113] [−0.030, 1.000] [−0.045, 0.654]

NOTES: *[DE,CO,AT,NT] denotes the proportion or defiers, compliers, always-takers, and never-takers under each specified proportion of defiers. ForMedicaid coverage, we
specified the proportion of defiers as 0%, 5%, and 10%. For OHP coverage, we specified the proportion of defiers as 0%, 1%, and 2%.
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Table . Identification of the average treatment effect of Medicaid and OHP
coverage on any heart visit under assumptions restricting the unobserved
counterfactuals within compliance types, assuming no defiers (assumptions
(A)+(A)+(A)+(A)).

Restriction on Effect of Effect of
unobserved strata (A) Medicaid coverage OHP coverage

No restriction [−0.159, 0.579] [−0.046, 0.673]
[0, 0.9] [−0.144, 0.520] [−0.043, 0.604]
[0, 0.8] [−0.130, 0.461] [−0.040, 0.535]
[0, 0.7] [−0.115, 0.402] [−0.038, 0.465]
[0, 0.6] [−0.100, 0.342] [−0.035, 0.396]
[0, 0.5] [−0.086, 0.283] [−0.033, 0.327]
[0, 0.4] [−0.071, 0.224] [−0.030, 0.257]
[0, 0.3] [−0.056, 0.165] [−0.028, 0.188]
[0, 0.2] [−0.042, 0.106] [−0.025, 0.119]
[0, 0.1] [−0.027, 0.047] [−0.022, 0.049]
[0, 0.05] [−0.020, 0.017] [−0.021, 0.015]
[0, 0.02] [−0.015,−0.001] [−0.020,−0.006]

however, because it is not rare it is less clear what subject-matter
knowledge can be applied to impose reasonable restrictions.

8. Discussion

We reviewed and provided a taxonomy of methods for partial
identification of the ATE under IV assumptions in a common
notation. We laid out the gains and trade-offs involved when
making increasingly strong assumptions, and presented an
empirical example of estimating bounds in a common dataset.
As such, readers can now readily compare all the proposed sets
of assumptions and resulting bounds.

Focusing on partial identification has two key benefits. First,
presenting bounds clarifies the role of unverifiable assumptions
when deriving estimates for causal effects. This in turn makes
clear how much any data-driven decision (e.g., policy, clinical,
personal) relies on strong assumptions. Our empirical exam-
ple illustrates that the IV assumptions alone resulted in wide
bounds, and it is only when we restrict the possible effects of
treatment on outcome that we identify the direction of the effect.
Like others before (Robins and Greenland 1996), we suggest it
is often useful to present bounds and point estimates under var-
ious sets of assumptions, particularly when using IV methods.
Indeed, presenting bounds and point estimates under an array
of assumptions clarifies that the scientific debate should focus
on what assumptions we are most confident in, which in turn
relates to the range of plausible effect sizes we aremost confident
in. For a recent application highlighting this benefit, see Manski
and Pepper (2015).

Second, presenting bounds allows us to refocus on theATE as
the causal parameter of interest. Because the effect homogeneity
assumptions necessary for point identification for the ATE are
often unrealistic, the LATE has often been favored in IV appli-
cations (including in the primary publications associated with
our empirical example). However, the LATE applies to a subset
of the population that generally cannot be identified, and is not
directly informative for decision-making. Further, our example
shows that the LATE estimate can be sensitive to relatively small
monotonicity assumption violations.

The development of partial identification methods has been
transdisciplinary, with important advances on this topic made
by statisticians, economists, epidemiologists, and computer

scientists. Nevertheless, these methods are seldom applied
outside of some applications by economists. It is time to place
these partial identification methods into the standard arsenal
for causal inference. If nothing else, estimating the bounds
can serve as a reminder to remain humble about how much
information the data really provide.

Supplementary Materials

In Appendix S1, we provide a brief overview of estimation
procedures. In Appendix S2, we provide expressions for the
bounds on the mean counterfactuals under the assumption sets
described in Section 2. In Appendix S3, we provide expres-
sions for the ATE, the ATE within compliance types, and the
mean counterfactuals under assumption sets including (A13)
and (A14). In Appendix S4, we provide a comparison of con-
straints implied by the IV model for a trichotomous instru-
ment. The supplementary materials further include SAS code;
any updates to this code following publication will be posted at
https://www.hsph.harvard.edu/causal/software/.
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