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Abstract
Simultaneous analysis of multiple genes using next-generation sequencing (NGS) technology

has become widely available. Copy-number variations (CNVs) in disease-associated genes have

emerged as a cause for several hereditary disorders. CNVs are, however, not routinely detected

using NGS analysis. The aim of this study was to assess the diagnostic yield and the prevalence of

CNVs using our panel ofHereditary Thoracic AorticDisease (H-TAD)-associated genes. Eight hun-

dred ten patients suspected of H-TADwere analyzed by targeted NGS analysis of 21 H-TAD asso-

ciated genes. In addition, the eXomehiddenMarkovmodel (XHMM; an algorithm to identify CNVs

in targeted NGS data) was used to detect CNVs in these genes. A pathogenic or likely pathogenic

variant was found in 66 of 810 patients (8.1%). Of these 66 pathogenic or likely pathogenic vari-

ants, six (9.1%) were CNVs not detectable by routine NGS analysis. These CNVs were four intra-

genic (multi-)exon deletions inMYLK, TGFB2, SMAD3, and PRKG1, respectively. In addition, a large

duplication includingNOTCH1 and a large deletion encompassing SCARF2were detected. As con-

firmed by additional analyses, both CNVs indicated larger chromosomal abnormalities, which
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could explain the phenotype in both patients. Given the clinical relevance of the identification

of a genetic cause, CNV analysis using a method such as XHMM should be incorporated into the

clinical diagnostic care for H-TAD patients.

K EYWORDS

copy-number variations, eXome hidden Markov model, genetics, thoracic aortic aneurysm,

thoracic aortic dissection

1 BACKGROUND

Over the last decade, advances in clinical genetics have led to the

identification of disease-associated genes at a rapid pace. Especially

when surveillance, early detection, and/or treatment provide health

benefits for the index patient and at-risk relatives, identification of an

underlying genetic cause is highly relevant. Therefore, recommenda-

tions for genetic counseling and DNA testing are increasingly being

incorporated into clinical guidelines (Ackerman et al., 2011; Eccles

et al., 2016). Thoracic aortic aneurysms and aortic dissections (TAAD)

are a significant cause of sudden death at young age and is an example

of a disease where screening of at-risk relatives can be lifesaving

(Hoyert, Arias, Smith, Murphy, & Kochanek, 2001; Olsson, Thelin,

Stahle, Ekbom, & Granath, 2006). Because aortic aneurysms are often

asymptomatic and aortic dissections are often fatal and preventable

by timely surgical intervention, the identification and clinical screening

of at-risk relatives are clinically highly relevant and recommended

(Hiratzka et al., 2010). In the majority of cases, TAAD is a sporadic

occurrence, associated with, among others, hypertension, bicuspid

aortic valve, and older age. However, in approximately 20% of cases

TAAD is reported to be familial (FTAAD), often with an autoso-

mal dominant pattern of inheritance with incomplete penetrance

(Biddinger, Rocklin, Coselli, & Milewicz, 1997; Coady et al., 1999;

Robertson et al., 2016). TAAD that is caused by a pathogenic variant

in one of the disease-associated genes (Hereditary Thoracic Aortic

Disease (H-TAD)) can be subdivided in nonsyndromic and syndromic

aortic disease. The phenotypic manifestations of both syndromic and

nonsyndromic H-TAD are highly variable, both within and between

families. Syndromic H-TAD is only diagnosed in a minority of cases and

includes, among others, Marfan syndrome (MIM# 154700), Loeys–

Dietz syndrome (MIM#609192,MIM#610168,MIM#613795,MIM#

614816, and MIM# 615582), and vascular Ehlers–Danlos syndrome

(MIM# 130050). The genes most frequently associated with nonsyn-

dromic H-TAD are involved in smooth-muscle cell function (ACTA2,

MIM# 611788, MYH11, MIM# 132900, and MYLK, MIM# 613780).

Of note, variants in genes originally associated with syndromic H-

TAD have also been reported in patients presenting with apparently

nonsyndromic H-TAD (Gago-Diaz et al., 2014; Regalado et al., 2011,

2016). Given the incomplete penetrance and the highly variable age

of onset within both heritable and sporadic TAAD (Campens et al.,

2015; Coady et al., 1999; Khalique et al., 2009; Robertson et al., 2016),

follow-up of at-risk relatives with normal aortic diameters at initial

cardiologic screening is important. The identification of a pathogenic

variant in a TAADpatient allows for targeted screening of relatives and

enables prenatal and preimplantation genetic diagnosis. In addition,

specific recommendations on imaging, surgical, and pharmacological

treatment based on the underlying genetic cause are emerging (den

Hartog et al., 2016; Franken et al., 2015; D. Milewicz et al., 2016). A

causative variant can be identified in approximately 20% of FTAAD

families (D.M.Milewicz, Regalado, Shendure, Nickerson, &Guo, 2014).

Next-generation sequencing (NGS) allows for the rapid analysis of

multiple genes in a diagnostic setting at relatively low costs. Therefore,

DNA testing is increasingly offered to TAAD patients. The majority

of the detected variants are single-nucleotide changes. CNVs have

emerged as a relevant cause for several genetic disorders including

cancer, intellectual disability, and neuropsychiatric disorders (Pollack

et al., 2002; Shlien & Malkin, 2010; Thapar & Cooper, 2013). Routine

diagnostic variant-calling analysis by (short reads-)NGS technology

is not suitable for detecting CNVs. Therefore, CNVs may be missed

unless additional testing is performed, for example, by multiplex

ligation-dependent probe amplification (MLPA) or targeted array

analysis. However, these tests are often not routinely performed

and/or do not include all the relevant genes. The detection of CNVs

in NGS sequencing data using statistical and computational tools is an

alternative approach. The eXome hidden Markov model (XHMM) is

one of several algorithms developed for the detection ofCNVs through

NGS data (Fromer & Purcell, 2014; Fromer et al., 2012). XHMM has

identified (potential) causative CNVs in, for example, patients with

Parkinson's disease, autism spectrum disorders, and rare diseases like

Joubert syndrome and very early onset inflammatory bowel disease

(Kelsen et al., 2015; Koyama et al., 2017; Poultney et al., 2013; Spataro

et al., 2017). The aim of this study was to assess both the diagnostic

yield of our panel of H-TAD-associated genes and the prevalence of

CNVs in these genes. Here, we present the results of routine NGS

analysis (variant-calling analysis) and XHMM analysis on the NGS

sequencing data of the largest series of TAAD patients described so

far (n = 810) referred for analyses of the H-TAD panel. In addition, we

provide an overview of the clinical data of patients with a pathogenic

or likely pathogenic variant, with a special focus on patients with

CNVs. The results of this study underline the importance of CNV

analysis in routine diagnostic testing in patients with H-TAD.

2 METHODS

2.1 Genetic data

DNA diagnostics was performed at the Department of Clinical Genet-

ics at the VU University Medical Center (VUmc, Amsterdam, the

Netherlands) from March 2015 to June 2017. The routine NGS panel
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included ACTA2, COL3A1, EFEMP2, ELN, FBN1, FBN2, MYH11, MYLK,

NOTCH1, PLOD1, PRKG1, SCARF2, SKI, SLC2A10, SMAD2, SMAD3,

SMAD4, TGFB2, TGFB3, TGFBR1, and TGFBR2. Since October 2016,

the BGN gene was added to the panel (analyzed in 166 patients),

while SCARF2, which was not associated with TAD but had previously

been selected in view of a possible differential diagnosis ‘Congenital

contractural arachnodactyly’ and ‘Van den Ende–Gupta syndrome,’

was excluded from routine analysis. The previously described bioin-

formatics read-depth-based tool XHMM was used for CNV detection

in the NGS sequencing data. CNV confirmation was performed using

either a home-made MLPA test, in combination with the P300 or the

P200MLPA kit ofMRCHolland, or an SNP array. Detailed information

on the analyzed genes and applied methodologies are available in the

SupportingMaterials andMethods.

2.2 Clinical data

Informed consent for NGS gene panel analysis was obtained from

all 810 patients after genetic counseling by the referring physician.

The main reasons for analysis of this gene panel include familial or

early onset aortic aneurysms or dissections or signs of generalized

connective tissue disorders. The majority of patients was referred by

a clinical geneticist who frequently participated in a multidisciplinary

team specialized in connective tissue disorders. A standardized survey

was sent to the referring physicians in order to collect themedical data

of patients carrying an identified genetic variant (including ophthalmo-

logic and cardiologic findings, family history, andphysical examination).

Written informed consent was obtained from the patients and/or their

parentswith an aberration detected byXHMM, asmore detailedmedi-

cal datawerepublished.UnderDutch law, assessmentof the studypro-

tocol by our ethics committee was not indicated because only genetic

and clinical data collected during regular patient care were used.

3 RESULTS

A pathogenic or likely pathogenic variant in anH-TAD-associated gene

was identified in 66 of 810 index patients (8.1%). Of these, 60 (90.9%)

were identified using routine NGS panel analysis (variant-calling anal-

ysis). In the other six cases (9.1%), a pathogenic or likely pathogenic

CNV was detected using XHMM. In 84 patients (10.4%), only vari-

ants of unknown significance (VUS) were identified. No pathogenic or

likely pathogenic variants and/or VUS were identified in 660 patients

(81.5%). The mean age at DNA diagnostics of index patients with a

pathogenic or likely pathogenic variantwas 35 years (median 36, range

0–77). The mean age of the remaining patients was 46 years (median

49, range 0–78). There was a male preponderance in index patients

with a pathogenic or likely pathogenic variant, VUS, or without a VUS

or pathogenic variant (68%, 64%, and 67%, respectively).

3.1 Genetic and clinical data in patients with

variants identified by variant-calling analysis

Table 1 provides an overview of the molecular data of the 60

pathogenic or likely pathogenic variants identified by variant-calling

analysis. Of these variants, 37 (62%) have not been described previ-

ously and all of them were unique. Heterozygous pathogenic or likely

pathogenic variants were identified in FBN1 (N = 18, 30%), ACTA2

(N = 8, 13.3%), SMAD3 (N = 7, 11.7%), COL3A1 (N = 6, 10%), TGFB2

(N = 4, 6.7%), TGFBR1 (N = 3, 5%), TGFBR2 (N = 3, 5%), FBN2 (N = 3,

5%), MYH11 (N = 2, 3.3%), TGFB3 (N = 2, 3.3%), PRKG1 (N = 1, 1.7%),

andNOTCH1 (N= 1, 1.7%). Homozygous pathogenic SLC2A10 variants

were identified in two patients (3.3%). No (likely) pathogenic variants

were found in BGN, EFEMP2, ELN, PLOD1, SKI, SMAD2, and SMAD4.

In addition, 90 VUS were identified (patients 9, 52, 67–150; Table 1

and Supporting Information Table S1). In six patients (patients 9 and

52 in Table 1 and Supporting Information Table S1; and patients 69,

75, 90, and 127 in Supporting Information Table S1), two VUS (in dif-

ferent genes) were identified. An overview of the clinical data of all

60 patients with a pathogenic or likely pathogenic variant identified

by variant-calling analysis is provided in Table 2. The clinical data of

patients 67–150 with a VUS are available in Supporting Information

Table S2.

3.2 Genetic and clinical data in patients with a CNV

identified by XHMManalysis

The results of the XHMM analysis in the six patients with a CNV

(patients 61–66) are depicted in Figure 1 and are summarized in

Table 3.

In patient 61, a deletion of two exons in the MYLK gene was iden-

tified (NM_053025.3: c.(2390+1_2391-1)_(3448+1_3449-1)del). This
deletion is predicted to generate an out-of-frame deletion in the long

transcript of the MYLK gene (NM_053025.3) and a loss of the first

682 coding nucleotides, including the alternative translation initiation

codon in the smooth-muscle cell-specific transcript encoding isoform

5 (Uniprot Q15746-7). This male patient was diagnosed with a type

B dissection at the age of 60 years and developed a type A dissection

at the age of 65 years. He was treated surgically (Bentall procedure).

Medical history andphysical examinationdidnot reveal anyother signs

of a connective tissue disorder. Pedigree analysis revealed that his sis-

ter suddenly died at the age of 53 years. No medical records, autopsy,

or DNA were available. The 35-year-old son of the index patient did

not carry the two-exon deletion ofMYLK. Until now, no other relatives

opted for genetic testing.

In patient 62, a deletion of one exon of PRKG1 was detected

(NM_001098512.2: c.(433+1_434-1)_(547+1_548-1)del). This dele-

tion is predicted to lead to an in-frame deletion of 39 amino acids and

the insertion of an Alanine residue and encompasses a large part of

the high-affinity cGMP-binding domain of the PRKG1 protein includ-

ingArginine177. A recurrent substitution of this arginine for glutamine

has been reported in patients with H-TAD and shown to have a gain-

of-function effect (Guo et al., 2013). At the age of 35 years, this male

patient was diagnosed with an aortic root dilatation, a type A dissec-

tion, aortic valve insufficiency, and dilated cardiomyopathy. He was

treated surgically (Bentall procedure). His skin showed stretch marks

on the shoulders and chest. Medical history, ophthalmological evalu-

ation, and physical examination did not reveal any other features of

a connective tissue disorder. A cardiomyopathy gene panel analysis
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TABLE 2 Summary of the clinical features of patient with a pathogenic or likely pathogenic variant detected by variant-calling analysis of 21
H-TAD genes

Family history

Patient
Involved
gene Sex, agea Cardiovascular feature(s) Systemic feature(s) Genotype Relative Phenotype

1 ACTA2 ♀, 16 PDA None +
−
?
?

F
PU
PA
PGF

Dis (B, 51 y,), CVD
Clinically not affected
Dis, unconfirmed (deceased)
Dis, unconfirmed (deceased)

2 ACTA2 ♂, 28 Dis (A and B, 26 y), BAV None +b

−
F
Sib

An (AoR 42mm, AAo 49mm, AA,
61 y) BAV

Clinically not affected

3 ACTA2 ♂, 46 Dis (A, 45 y) None ? No relatives clinically affected

4 ACTA2 ♀, 69 Dis (B, 61 y; A, 65 y) None −
+
+

B (2)
Si
N

Clinically not affected
Rup (AA, 62 y)
An (AA, 35mm)

5c ACTA2 ♂, 36 Dis (B, 36 y) Iris flocculi, livedo
reticularis

+
+

M
D

Dis (B, deceased, 30 y), iris
flocculi

Iris flocculi

6 ACTA2 ♂, 73 An (AoR, 52mm, 69 y) None ? No relatives clinically affected

7 ACTA2 ♂, 22 Dis (A, 21 y), BAV PP, SS, Myopia−5/−5 dpt ? No relatives clinically affected

8 ACTA2 ♂, 57 Dis (B, 57 y), An (AoR
41mm, 57 y)

Myopia−4 dpt,
pneumothorax

? B SUD (58 y)

9d COL3A1 ♂, 59 Rup (AoA, 54 y), An (AA, 59
y)

None ?
?
?

B
B
N

Rup (AoA, deceased, 59 y)
An (AA)
An (AA, severe, 40 y)

10 COL3A1 ♂, 52 Dis (A, 47 y), An (subclavian
and vertebral artery, 52
y)

Increased AHR ? No relatives clinically affected

11 COL3A1 ♀, 44 Dis (B, 44 y) NA - Si de novoe

Borderline An (AoR, 40mm, 51
y), HT

12 COL3A1 ♀, 31 An (renal and carotid
artery), Dis (mammary-,
subclavian- and iliac
artery), occlusion
(brachial artery)

None −
?
+

F
M
Si

Clinically not affected
Gastric perforation
Dis (iliac artery)

13 COL3A1 ♂, 42 Dis (A, 38 y) Hyperkyphosis,
hypermobile fingers

+
−
−

M
PU
PGF

Clinically not affected
Rup (AA, 55 y), CVD
Rup (AA, 63 y), CVD

14 COL3A1 ♂, 45 Dis (coronary artery, 42 y),
An (AAo, 47mm, 45 y)

Soft skin ? No relatives clinically affected

15 FBN1 ♂, 66 Dis (B, 49 y), An (subclavian
artery, AA, 54 y)

NA ? So Clinical features ofMFS

16 FBN1 ♀, 27 An (AoR, 41mm, 27 y),
MVP

Arachnodactyly ?
+

M
D

Clinical features ofMFS
No clinical features ofMFS (5
months)

17 FBN1 ♂, 35 An (AoR, 50mm, 35 y),
ASD, atrial flutter (23 y)

Growth inhibiting
treatment, HAP,
crowding, retrognathia

SS, IH

?
?
?

F
PA
PCo

SUD (44 y), clinical features of
MFS

SUD (43 y), clinical features of
MFS

Clinical features ofMFS

18 FBN1 ♂, 5 An (AAo, 27mm, Z-score
+2.7, 5 y), VSD

PP, hyperkyphosis, wrist
sign+, dolichocephaly,
malar hypoplasia, EL, BS
8/9

? No relatives clinically affected

19 FBN1 ♂, 53 An (thoracic aorta, 80mm,
53 y)

Wrist and thumb sign+, IH ? PF Multiple relatives with An and/or
Dis

20 FBN1 ♀, 36 An (AoR, severe, 35 y),
MVP

Scoliosis, PC,Myopia−6.5
dpt, SS

? No relatives clinically affected

21 FBN1 ♂, 11 NA Increased AHR, PD, clinical
features ofMFS

NA

(Continues)
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TABLE 2 (Continued)

Family history

Patient
Involved
gene Sex, agea Cardiovascular feature(s) Systemic feature(s) Genotype Relative Phenotype

22 FBN1 ♂, 32 Dis (A, 15 y), MVP Marfanoid habitus, PP,
reduced elbow
extension,
arachnodactyly, HAP,
crowding, myopia -5/−3
dpt, SS

? No relatives clinically affected

23 FBN1 ♀, 0 An (AoR,0 y), MI, TI PC, joint contractures,
arachnodactyly,
dysmorphic facial
features

? No relatives clinically affected

24 FBN1 ♂, 3 None Height+3.4 SD,
arachnodactyly, HAP,
ptosis, epicanthal folds,
delayed speech

+
?
?

M
MF
MU

Arachnodactyly, tall stature
AnamnesticMFS
Premature birth, intracranial
bleeding, epilepsy, spasticity,
developmental delay

25 FBN1 ♀, 29 An (AoR, 41mm, 29 y), MI Arachnodactyly, HAP,
dolichocephaly, EL, RD

? F SD (42 y), myocardial infarction

26 FBN1 ♀, 11 MVP Marfanoid habitus, PP,
wrist and thumb sign+,
joint luxations, SS,
recurrent hematomas

? Clinically not affected

27 FBN1 ♀, 9 None Increased AHR, PC, club
foot, PP, thumb sign+,
downslanting, malar
hypoplasia, myopia,
recurrent hematomas

? No relatives clinically affected

28 FBN1 ♂, 5 None Tall stature,
arachnodactyly, PP, PC,
wrist sign+, HAP,
hypermobility, macular
degeneration

de novoe

29 FBN1 ♀, 10 An (AAo, 31mm, Z-score
+2.7, 10 y)

PD, PP, arachnodactyly,
HAP, dolichocephaly,
myopia

de novoe

30 FBN1 ♂, 54 Dis (A, 54 y) Pneumothorax, NA + So(2) Clinically not affected

31 FBN1 ♀, 46 An (AAo, 46mm, 46 y),
cerebral infarction (33 y),
stenosis (axillary-,
brachial- and subclavian
artery, 36 y)

Hypermobile fingers ? No relatives clinically affected

32 FBN1 ♂, 0 MI, TI PC, PP, dolichocephaly,
downslanting,
enophthalmos, floppy
ears

? No relatives clinically affected

33 FBN2 ♂, 10 TI Tall stature, PE, HAP,
crowding

? MF An (aorta), hypermobility

34 FBN2 ♂, 55 Borderline An (AAo,
39mm, 54 y)

PE, hyperkyphosis, hammer
toes, downslanting,
myopia

+ F Clinically not affected

35 FBN2 ♂, 65 An (AAo, 45mm, 64 y) Hammer toes, HAP,
enophthalmos,
prominent eyes, and
nose, malar hypoplasia

?
−

F
B

An (AA, at older age)
An (AAo, 45mm, 39 y)

36 MYH11 ♂, 71 Dis (A and B, 70 y), An (AA,
54mm, 71 y)

None ? M Rup (aorta, deceased)

37 MYH11 ♂, 59 An (AAo, 46mm, 58 y),
BAV, PFO

PP, malar hypoplasia,
cutaneous
hyperextensibility

? No relatives clinically affected

38 NOTCH1 ♂, 77 An (AAo and AoA, 85mm,
77 y)

None ? de novo (inferred, mosaic)
No relatives clinically affected

(Continues)
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TABLE 2 (Continued)

Family history

Patient
Involved
gene Sex, agea Cardiovascular feature(s) Systemic feature(s) Genotype Relative Phenotype

39 PRKG1 ♂, 52 Dis (subclavian-, iliac- and
brachiocephalic artery,
42 y), borderline an
(AAo, 40mm, 52 y)

SS ? No relatives clinically affected

40 SLC2A10 ♀, 15 Arterial tortuosity (aorta,
pulmonary artery,
carotid arteries),MI, ASD

PP, hypermobile fingers,
hypermobility, thumb
sign+, clinodactyly,
hypertelorism,
periorbital fullness,

? No relatives clinically affected

41 SLC2A10 ♂, 0 An (AoR, 17mm, Z-score
+3.3, 5 months), PFO,
abnormal course AoA,
and pulmonary vessels

Arachnodactyly, abnormal
thumb position,
downslanting,
hypertelorism, HAP,
retrognathia
diaphragmatic hernia

HE
HE

F
M

Clinically not affected
Clinically not affected

42 SMAD3 ♀, 62 Dis (A, 60 y), MI PP, early onset arthrosis,
myopia−2.5/−4 dpt

? F An (AA, deceased, 67 y)

43 SMAD3 ♂, 68 An (thoracic aorta) Tall stature, PE, scoliosis,
early onset arthrosis,
mild myopia

+ D Tall stature, arachnodactyly

44 SMAD3 ♀, 37 Dis (coronary artery, 32 y),
VSD

Brachydactyly type E,
hypertelorism,
prominent venous
pattern, varicose veins,
recurrent hematomas,
myopia−6 dpt, IH, UH

?
?

M
MGF

SUD (cause unknown, 50 y)
SUD (cause unknown, 51 y)

45 SMAD3 ♀, 76 Dis (B, 63 y), An (AoA,
60mm, 70 y)

Arthralgia, genu valgum,
hypermobility, IH

?
+
+
+

So
So
GSo
GDa

Dis (aorta, deceased, 44 y)
Skeletal features fitting SMAD3
Borderline An (AoR, 40)
Clinically not affected

46 SMAD3 ♂, 17 None Scoliosis, PE, flat cornea +
?
?

F
PA
PGM

An (cerebral, 49 y), PC
SUD (anamnestic aneurysmAA,
40 y)

SUD (anamnestic aneurysmAA,
60 y)

47 SMAD3 ♀, 51 Dis (A, B, 51 y) Scoliosis, arthralgia, early
onset arthrosis

+ So Clinically not affected

48 SMAD3 ♀, 40 Borderline an (AoR, 40 y),
MVP,MI

Wrist and thumb sign+, SS +
?
?

F
PGM
PF

Dis (A, 57 y), aneurysm (aorta,
40 y), HT

Dis (thoracic aorta, 71 y)
Several relatives with SUD
(cause unknown)

49 TGFB2 ♀, 19 None Patellofemoral pain
syndrome, wrist sign+,

BS 7/9, downslanting,
varicose veins

−
−

M
B

Clinically not affected
Clinically not affected

50 TGFB2 ♂, 39 An (AoR, 55mm, 25 y),
MVP

Scoliosis, PD, wrist and
thumb sign+,
hypermobility, recurrent
hematomas in iliopsoas
muscle, dural ectasia

? No relatives clinically affected

51 TGFB2 ♂, 0 None Arachnodactyly, joint
contractures,
retrognathia

+
+

F
PA

No clinical information available
Dis (thoracic aorta)

52d TGFB2 ♂, 32 An (AoR, 44mm, 32 y) PC, PP, arachnodactyly,
HAP, dolichocephaly,
enophthalmos, malar
hypoplasia, crowding,
myopia−6.5 dpt,
pneumothorax

−
−

F
B

de novoe

An (AAo, 52mm, 65 y), BAV
PD, PP, myopia

(Continues)
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TABLE 2 (Continued)

Family history

Patient
Involved
gene Sex, agea Cardiovascular feature(s) Systemic feature(s) Genotype Relative Phenotype

53 TGFB3 ♂, 43 None Increased AHR, PD, thumb
sign+, BS 6/9

+
+

Si
So

Clinical features of connective
tissue disorder

Clinical features of connective
tissue disorder

54 TGFB3 ♂, 59 AVI (25 y), An (AoR, 46mm,
25 y; AoR, 55mm, AAo
48mm, 57 y)

PP, HAP, downslanting, UH - So Clinically not affected

55 TGFBR1 ♂, 56 Dis (A and B, 56 y) Scoliosis, PE,
dolichocephaly,
enophthalmos, malar
hypoplasia

+ M Clinically not affected

56 TGFBR1 ♂, 33 An (AoR, 43mm, 31 y) SS, dural ectasia +
+
?

M
MA
MGF

An (AoR, 44mm, AAo, 44mm,
58 y)

An (thoracic aorta, 55 y)
SUD (cause unknown, 64 y)

57 TGFBR1 ♂, 16 Dis (thoracic aorta,
deceased, 16 y)

PE, tall stature, scoliosis,
arachnodactyly

de novo

58 TGFBR2 ♂, 14 An (AoR, 40mm, Z-score
+4.3, 14 y), VSD, DCRV

None + F An (AoR, 42mm, 52 y)

59 TGFBR2 ♂, 15 None PD, hyperkyphosis,
arthralgia, myopia -3 dpt

NA

60 TGFBR2 ♀, 16 An (AoR, 44mm, 16 y),
MVP

PP, arachnodactyly,
hypermobility, luxations
of hips and knees, bifid
uvula, hypertelorism,
blue sclerae

NA

AA, abdominal aortic; AAo, ascending aorta; AHR, arm / height ratio; An, aneurysm; AoA, aortic arch; AoR, aortic root; ASD, atrial septal defect; AVI, aortic
valve insufficiency; B, brother; BAV, bicuspid aortic valve; BS, Beighton score; CVD, cardiovascular disease; D, daughter; DCRV, double chambered right
ventricle; Dis, dissection; dpt, dioptre; EL, ectopia lentis; F, father; GDa, granddaughter; GSo, grandson; HAP, highly arched palate; HE, heterozygous carrier;
HT, hypertension; IH, inguinal hernia;M,mother;MF,maternal family;MFS,Marfan syndrome;MGF,maternal grandfather;MI,mitral valve insufficiency;MU,
maternal uncle; MVP, mitral valve prolapse; N, nephew; NA, no further information available; PA, paternal aunt; PC, pectus carinatum; PCo, paternal cousin;
PD, pectus deformity; PDA, patent ductus arteriosus; PE, pectus excavatum; PF, paternal family; PFO, patent foramenovale; PGF, paternal grandfather; PGM,
paternal grandmother; PP, pes plani; PU, paternal uncle; RD, retinal detachment; Rup, rupture; SD, standard deviation; Si, sister; Sib, sibling; So, son; SS, skin
striae; SUD, sudden death; TI, tricuspid valve insufficiency; UH, umbilical hernia; VSD, ventricular septal defect
aAge (in years) at DNA diagnostics.
bLow-grademosaicism detected by NGS analysis in the father of the index patient.
cThis family is recently described in literature (Overwater &Houweling, 2017).
dA variant of unknown significancewas identified in these patients as well (Supporting Information Table S1).
ePaternity andmaternity not confirmed.
+ variant present
− variant absent
? unknown

(50 genes) did not result in the identification of a genetic cause for his

dilated cardiomyopathy. Family history showed no clinically affected

relatives. No relatives were available for cardiologic evaluation and

DNA diagnostics.

In patient 63, a deletion of one exon in SMAD3, predicted to

result in an in-frame deletion of part of the MH2 domain, was

found (NM_005902.3: c.(658+1_659-1)_(871+1_872-1)del). Thismale

patient was followed up from the age of eight years, after his father,

who was diagnosed with a chronic dissection of the ascending aorta at

the age of 33 years, suddenly died at the age of 37 years. The paternal

grandmother died at the age of 39 years, possibly caused by an aor-

tic dissection as well. The patient was diagnosed with an aortic root

dilatation with a maximal diameter of 48 mm and a dilated left coro-

nary artery at the ageof 30years.Hewas treated surgically (David pro-

cedure). Physical examination revealed pes plani, a prominent venous

pattern on the chest and arms, and several dysmorphic facial features

including dolichocephaly, hypertelorism, and retrognathia. He had no

signs of early onset osteoarthritis.

In patient 64, a four-exon deletion was detected in the TGFB2

gene (NM_001135599.2: c.(594+1_595-1)_(1170+1_1171-1)del).
This deletion is predicted to result in an in-frame deletion of a large

part of the TGFB2 protein. This 17-year-old male patient was under

regular cardiologic surveillance because of TAAD in his father and

paternal grandfather. At the age of 17 years cardiologic evaluation

revealed an aortic root dilatation of 39mm (Z-score+3.28).Moreover,

he had inguinal hernia repair at the age of one year, recurrent patellar

dislocation, an asymmetric pectus deformity, and mild dysmorphic

facial features including a long face, downslanting palpebral fissures,

and a highly arched palate. The intragenic TGFB2 deletion was also

present in his clinically affected father (clinical features include aortic
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F IGURE 1 Genomic copy-number variants in H-TAD patients based on XHMM analysis. PCA: principal-component analysis; XHMM: eXome
hidden Markov model. A, MYLK gene; deletion of exons 17 and 18. B, PRKG1 gene; deletion of exon 3. C, SMAD3; deletion of exon 6. D, TGFB2;
deletion of exons 4, 5, 6, and 7. E,NOTCH1 gene; whole gene duplication. F, SCARF2 gene; whole gene deletion. Graphic representation of the copy-
number variants in each gene based on XHMM analysis. Horizontal axis indicates physical position of the CNVs. Vertical axis indicates sample
Z-score of PCA-normalized read depth. Deletions are colored in red, and duplications are colored in green

root aneurysm requiring surgery at age 31 and aortic dissection

at age 46) and his 11-year-old sister (features consisted of pectus

deformity and highly arched palate and mild myopia). The phenotypes

of all family members will be described in more detail elsewhere

(Vliegenthart et al., manuscript in preparation). All intragenic dele-

tions were confirmed by MLPA analysis (Supporting Information

Figure S1).

In patients 65 and 66, XHMM findings were suggestive of a larger

chromosomal abnormality. In patient 65, a duplication of the entire

NOTCH1 gene was detected. COL5A1 and ADAMTSL2, which are

located in the same chromosomal region (9q) and are present in our

NGS platform, were also duplicated in this newborn female patient

whopresented after birthwith several dysmorphic features. Facial fea-

tures included frontal bossing, deep-set eyes, low set ears with over-

folded helices, and a crumpled left ear with a preauricular tag, microg-

nathia, and a small mouth. In addition, flexion contractures of elbows,

wrists, and knees and striking arachnodactyly were noticed. Based

on these features, she was initially suspected to have neonatal Mar-

fan syndrome or Beals syndrome. Because XHMM analysis indicated

a large 9q duplication, an SNP array was performed. A copy-number

gain at 9q33.3–q34.43 (11.8Mb; hg19; chr9:129172353–141020389)

and a copy-number loss at 7p22.3 (2Mb; hg19; chr7:43360–2067625)

were found. Subsequent karyotyping revealed an unbalanced translo-

cation 46,XX,der(7)t(7;9)(p22.3;q33.3). Parental cytogenetic studies

showed that her father carried a balanced reciprocal transloca-

tion; 46,XY,t(7;9)(p22.3;q33.3). Results of the array and karyotyping
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F IGURE 1 Continued

are shown in Figure 2A. In the literature, overlapping phenotypic

manifestations such as similar craniofacial features, joint contractures,

and arachnodactyly have been described in the 9q duplication syn-

drome (Amarillo, O'Connor, Lee, Willing, & Wambach, 2015). During

follow-up, she was treated for bleeding esophageal varices proba-

bly caused by portal vein thrombosis, which have not been described

in patients with a 9q duplication syndrome and/or 7p22.3 deletion

previously.

Finally, a deletion of the entire SCARF2 gene, located at 22q11,

was detected in patient 66. This newborn male patient presented

with severe perinatal problems, including asphyxia and the need for

resuscitation, after an uncomplicated pregnancy. Furthermore, initially

a connective tissue disorder was suspected based on the presence of

a relative dilatation of the aortic root in relation to the body surface

area (16 mm, Z-score +3) and a strangulated inguinal hernia. Physical

examination revealed unilateral postaxial polydactyly without any

other dysmorphic features. Simultaneous analysis of the NGS H-TAD

gene panel and SNP array revealed that the heterozygous deletion

of SCARF2 was part of a 22q11.2 deletion (i.e., DiGeorge syndrome)

(3.2Mb; hg19; chr22:20779645_20792061). A normal male kary-

otype (46,XY) was seen. Parental fluorescence in situ hybridization

(FISH) revealed that his mother also carried the 22q11.2 deletion (ish

del(22)(q11.2q11.2)(HIRA-)). Results of array and FISH are shown

in Figure 2B. Except for delayed motor and speech development at

childhood and complaints of fatigue and recurrent infections, his

mother had no medical problems. Cardiac ultrasound showed no

abnormalities. Most clinical features of the index patient, including

inguinal hernia and postaxial polydactyly, were consistent with the
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F IGURE 1 Continued

established diagnosis. During follow-up the relative dilatation of the

aortic diameter was normalized.

4 DISCUSSION

This study provides the results of the molecular and clinical findings

in the largest cohort of patients suspected of H-TAD reported in the

literature to date. In addition, this is the first report describing CNV

analyses of 21 H-TAD-associated genes using variant-calling analy-

sis combined with XHMM analysis. In this cohort of 810 patients, a

pathogenic or likely pathogenic variant was identified in 66 patients

(8.1%). Overall, we identified a relatively low number of pathogenic

or likely pathogenic variants in our H-TAD cohort compared to pre-

vious studies that identified mutations in 10.3% to 35.5% (Campens

et al., 2015; Lerner-Ellis et al., 2014; Poninska et al., 2016; Proost et al.,

2015; Wooderchak-Donahue et al., 2015; Ziganshin et al., 2015). This

wide range is likely to be explained by differences in clinical and demo-

graphic characteristics of the study populations and different inclusion

criteria used for genetic testing. In general, DNA testing in theNether-

lands is increasingly offered at a lower threshold to TAAD patients

(e.g., not only to very young patients or patients with a positive family

history for H-TAD), which may explain the relatively low mutation

detection yield.

Using routine NGS analysis (variant-calling analysis) pathogenic or

likely pathogenic variants were identified in FBN1, ACTA2, SMAD3,

COL3A1, TGFB2, TGFBR1, TGFBR2, FBN2, MYH11, TGFB3, SLC2A10,

PRKG1, and NOTCH1. As expected, most of the pathogenic and likely

pathogenic variants were detected in FBN1 (N = 18, 30%). Of these,
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TABLE 3 Summary of the genetic features of six patients with a pathogenic or likely pathogenic CNV

Patient
Gender,
agea

Involved gene,
exon(s) based on
XHMManalysis Loss/gain Protein change Effect Confirmed CNV

Validation
technique

Variant
classification

61 M, 66 MYLK; exon 17
and 18

Loss Isoform 1
(NM_053025.3):
p.(Asn798Leufs*13)

Isoform 5
(smooth-muscle cell
specific): p.(0)

Frameshift (NMD
expected)

Loss of initiation
codon (no protein
expected)

MYLK, deletion exon
17 en 18b

MLPA 5

62 M, 36 PRKG1; exon 3c Loss p.(Asp145_Thr183
delinsAla)

in-frame
deletion-insertion

PRKG1, deletion exon
3c

MLPA 4

63 M, 31 SMAD3; exon 6d Loss p.(Asp220_Ile290del) in-frame deletion SMAD3, deletion
exon 6d

MLPA 5

64 M, 17 TGFB2; exons 4–7e Loss p.(Ile199_Arg390del) in-frame deletion TGFB2, deletion
exons 4–7e

MLPA 5

65 F, 0 Duplication
NOTCH1; whole
genef

Gain NA NA unbalanced
translocation:
46,XX,der(7)t
(7;9)(p22.3;q33.3)f

SNP array
and
karyotyping

5

66 M, 0 Deletion SCARF2;
whole geneg

Loss NA NA 22q11.2 deletion:
arr[hg19]
22q11.2(207796
45_20792061)x1g

SNP array 5

CNV, copy-number variation;MLPA,multiplex ligation-dependent probe;NA, not applicable; NMD, nonsensemediatedmRNAdecay; XHMM, eXomehidden
Markovmodel.
aAge (in years) at DNA diagnostics.
bHGVS nomenclature: NC_000003.11(NM_053025.3)(MYLK): c.(2390+1_2391-1)_(3448+1_3449-1)del.
cHGVS nomenclature: NC_000010.10(NssssssssM_001098512.2)(PRKG1): c.(433+1_434-1)_(547+1_548-1)del.
dHGVS nomenclature: NC_000015.9(NM_005902.3)(SMAD3): c.(658+1_659-1)_(871+1_872-1)del.
eHGVS nomenclature: NC_000001.10(NM_001135599.2)(TGFB2): c.(594+1_595-1)_(1170+1_1171-1)del.
fISCN nomenclature after additional SNP array and karyotyping.
gISCN nomenclature after additional SNP array.

at least 14 (78%) fulfilled the revised Marfan criteria. However, the

proportion of pathogenic FBN1 and COL3A1 variants in this cohort is

biased because single-gene analysis of these two genes is still offered

in our institute and variants in these genes detected using single-gene

analysis were not included in this study. Therefore, it is likely that

in patients with a highly suggestive phenotype of vascular Ehlers–

Danlos syndrome, single-gene analysis of COL3A1 was requested

instead of NGS panel analysis. This might explain the high proportion

of COL3A1 variants predicted to result in haploinsufficiency detected

in this study (3 of 6 = 50%, compared with approximately 4% of non-

sense/frameshift variants currently reported in the COL3A1 LOVD

database; https://eds.gene.le.ac.uk/home.php?select_db=COL3A1), as

the phenotype in patients with COL3A1 haploinsufficiency is often

confined to vascular events (Leistritz, Pepin, Schwarze, & Byers,

2011).

Of the pathogenic and likely pathogenic variants identified, 37

(67%) have not been described previously. None of these variantswere

identified more than once in our patient cohort. This emphasizes the

extreme allelic heterogeneity of H-TAD-related disorders. Young age

at diagnosis, a positive family history, and presence of syndromic fea-

tures were shown to be the strongest predictors for the identification

of a disease-causing variant in the literature (P = 0.001–0.01) (Camp-

ens et al., 2015). The observation that the mean age at DNA testing in

thegroupofpatientswithapathogenic or likelypathogenic variantwas

11 years lower than the mean age in the groups without a pathogenic

or likely pathogenic variant is in line with this. However, 10 of the 66

patients with a pathogenic or likely pathogenic variant were over the

age of 60 years at the time of DNA testing (15.2%). Of these, three

patients (30%) had a negative family history for aortic disease, sudden

death < 45 years, or systemic features of a connective tissue disor-

der. These observations underscore the reduced and age-dependent

penetrance with a high degree of clinical heterogeneity in H-TAD. In

five patients with an identified pathogenic or likely pathogenic variant,

DNA testing of both parents suggested a de novo occurrence, while in

one case a de novooccurrencewas inferred as the variantwas detected

in mosaic status. This was in line with the negative family history for

aortic disease in these families.

Of the 66 pathogenic or likely pathogenic variants, six were CNVs

detected by XHMM analysis. These aberrations account for an incre-

mental yield of 9.1% of the identified pathogenic or likely pathogenic

variants, underscoring the relevance of adding a technique to identify

CNVs in TAAD patients. The CNVs included (multi-)exon deletions

in MYLK, PRKG1, SMAD3, and TGFB2. To the best of our knowledge,

intragenic (multi-)exon deletions have not been reported in these

genes before. The clinical features of the patients with these (multi-

)exon deletions did not differ notably from the known phenotypic

manifestations related to variants in these genes. Moreover, a large

duplication including the whole NOTCH1 gene and a large deletion

https://eds.gene.le.ac.uk/home.php?select_db=COL3A1
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F IGURE 2 Further characterization of XHMM results by additional (cyto-) genetic testing. BAF, B allele frequency; Chr, chromosome; der,
derivate chromosome; LLR, log R ratio; FISH, fluorescence in situ hybridization. A, SNP array profile of chromosomes 7 and 9 are shown on the
left. The top plot of each image shows the LRR, which provides an estimation of the copy number for each marker aligned to its chromosomal
position. The bottom plot of each image shows the BAF for each SNP aligned to its chromosomal position. SNP array analysis revealed a terminal
copy-number loss at 7p22.3 (2Mb; GRCh37; chr7:43360-2067625) indicatedwith a red arrow and a terminal copy-number gain at 9q33.3–q34.43
(11.8Mb; GRCh37; chr9:129172353–141020389) indicated with a green arrow. Chromosomes 7 and 9 from the index (left) with the unbalanced
translocation and the father (right) carrying the balanced translocation are shown on the right. The breakpoints of the reciprocal translocation
are indicated with an arrow. The index has the derivative chromosome 7 lacking a short segment from the short arm of chromosome 7 that is
replaced by an extra copy of a terminal segment of chromosome 9q. The father has two derivative chromosomes 7 and 9, each carrying a segment
of the other chromosome. B, SNP array profile of chromosome 22 is shown on the left. SNP array analysis revealed a copy-number loss at 22q11.2
(3.2Mb; GRCh37; chr22:20779645_20792061) indicated with a red arrow. The results of metaphase FISH on blood from the mother is presented
on the right. The 22q11.2 region is recognized by the HIRA probe, producing a red signal. The green signal is from the ARSA probe hybridizing
with the ARSA gene on chromosome band 22q13.33. The 22q11.2 deletion is indicated by a blue arrow.Metaphase FISH analysis revealed that the
mother is also a carrier of the 22q11.2 deletion (ish del(22)(q11.2q11.2)(HIRA-))

encompassing SCARF2 were detected by XHMM analysis.

These aberrations were part of an unbalanced translocation

(46,XX,der(7)t(7;9)(p22.3;q33.3)) and a 22q11.2 deletion (22q11.

2(20779645_20792061)x1), respectively, and were classified as the

cause of the clinical features of the patients.

The results of this study underline the importance of CNV analysis

usingabioinformatics tool suchasXHMMin the clinical diagnostic care

for TAAD patients. As CNV analysis is often not routinely performed

for most genes included in this NGS platform, these CNVs would not

havebeendetectedby regular genetic analysis. Fourof the six detected

CNVs in this study were small intragenic deletions (two single-exon

deletions, one 2-exon, and one 4-exon deletion). These are generally

not detected by routine CGH or SNP array analysis. This highlights the

importance of using a CNV detection tool, which allows detection of

CNVs with (small) single-exon resolution. Based on the results of this

study, single-exon-sensitive deletion/duplication analysis on a routine

basis should be recommended in patients suspected of H-TAD.

5 CONCLUSION

In 66 of 810 (8.1%) patients suspected of H-TAD, a pathogenic or likely

pathogenic variant was identified using our NGS gene panel in com-

bination with XHMM analysis. Six of these 66 pathogenic or likely

pathogenic variants (9.1%)were a CNV, not detectable by routineNGS

analysis. This study is the first to describe the incremental yield of CNV

analysis in patients suspected of H-TAD. Our study underscores the

importance of CNV analysis using a bioinformatics tool such as XHMM

in the clinical diagnostic care for H-TAD patients.
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