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Abstract
Background  Discrete choice experiments (DCEs) are increasingly used for health state valuations. However, the values 
derived from initial DCE studies vary widely. We hypothesize that these findings indicate the presence of unknown sources 
of bias that must be recognized and minimized. Against this background, we studied whether values derived from a DCE 
are sensitive to how well the DCE design spans the severity range.
Methods  We constructed an experiment involving three variants of DCE tasks for health state valuation: standard DCE, 
DCE-death, and DCE-duration. For each type of DCE, an experimental design was generated under two different conditions, 
enabling a comparison of health state values derived from current best practice Bayesian efficient DCE designs with values 
derived from ‘severity-stratified’ designs that control for coverage of the severity range in health state selection. About 3000 
respondents participated in the study and were randomly assigned to one of the six study arms.
Results  Imposing the severity-stratified restriction had a large effect on health states sampled for the DCE-duration approach. 
The unstratified efficient design returned a skewed distribution of selected health states, and this introduced bias. The choice 
probability of bad health states was underestimated, and time trade-offs to avoid bad states were overestimated, resulting in 
too low values. Imposing the same restriction had limited effect in the DCE-death approach and standard DCE.
Conclusion  Variation in DCE-derived values can be partially explained by differences in how well selected health states 
spanned the severity range. Imposing a ‘severity stratification’ on DCE-duration designs is a validity requirement.

Key Points for Decision Makers 

Unstratified efficient design algorithms cannot guarantee 
adequate coverage of the severity range.

If health state selection bias occurs in DCE-duration 
studies, the derived values may be too low.

Sampling choice task from different severity strata is a 
way to prevent skewed designs and biased values.

1  Introduction

The use of the discrete choice experiment (DCE) has 
attracted researchers’ interest as an alternative to more 
conventional techniques, such as the time trade-off (TTO) 
method, to derive quality-adjusted life years (QALYs) in 
health state evaluation. One of the merits of using DCE 
methodologies is that they improve the feasibility of valu-
ation studies. In contrast to TTO valuations, which require 
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organizationally complex and costly face-to-face inter-
views, DCE valuation surveys can be self-administered [1, 
2]. However, the use of a DCE for valuation introduces an 
unusual requirement in the DCE, namely that the estimated 
values are anchored at 1 for full health and 0 for death. The 
validity of the proposed approaches to achieve that has 
yet to be established. Two proposed strategies include the 
DCE-death and the DCE-duration approaches. However, 
results obtained from initial applications of those methods 
were markedly different. For instance, Norman et al. [3, 4] 
showed that DCE-duration approaches consistently produce 
lower values than DCE-death approaches. Also compared 
to conventional health valuation methods, DCEs have pro-
duced discrepant results. Craig et al. [5] and Jonker et al. 
[6] reported a considerably longer value range derived 
from their DCE approaches (minimum values < −  1.5) than 
the range obtained with the conventional TTO for EQ-5D 
(− 0.594 to 1.000) [7]. Researchers now aim to understand 
why.

We aim to contribute to the body of knowledge of how 
best to implement DCE methods for health state valuation, 
with a focus on strategies for the development of the experi-
mental design. In this area, methodological advancements 
made best practice somewhat of a moving target. On top 
of that, best practice for choosing a strategy for designs 
may well be context dependent [8, 9]. Whereas some gen-
eral considerations always apply, such as the importance of 
identification and statistical efficiency, other demands can be 
application specific. The latter may be the case in the field 
of health state valuation.

A popular approach for the construction of experimental 
designs in DCEs is the (Bayesian) efficient design approach. 
These designs exploit prior information to arrive at a design 
that produces small asymptotic standard errors. Because 
of the direct link between standard errors and sample size 
requirement, this is a desirable property [10]. Efficient 
designs have been frequently used in DCEs for health valu-
ation [2, 6, 11, 12]. However, these designs are not without 
problems. A potential problem is that designs purely opti-
mized for statistical efficiency can produce more difficult 
choice sets [13]. As a result, respondents might not always 
have a clear preference for any of the options, or they may 
be tempted to use simplifying decision rules that obscure 
their true preferences and cause bias [14]. A current line 
of research is whether such concerns can be addressed by 
introducing constraints on the design generation algorithms 
for DCEs, for example, by forcing attribute-level overlap 
in the constructed choice sets [15, 16]. Another potential 
problem is that the choice sets will not be selected at ran-
dom, but rather chosen to support estimation of a proposed 
utility function [8, 17]. The algorithm will favor choice tasks 
that clearly reveal attribute trade-offs and avoid strongly 
dominant alternatives [18]. As a consequence, each health 

state has a different probability to be included in the choice 
tasks [17]. This can cause bias if decisions derived from 
included health states do not predict decisions about health 
states that have a lower inclusion probability due to model 
misspecification.

Currently, it is unknown whether this bias is a problem 
in DCEs designed to capture the value of health, but we 
hypothesize that it might be. Because optimization algo-
rithms consider the level of utility balance for better statisti-
cal efficiency [19], the fact that the DCE-death and the DCE-
duration approaches present respondents with very different 
fixed alternatives can cause other health states to be favored 
in the different approaches. To investigate the issue, we set 
up an experiment featuring EQ-5D-5L health states. First, 
we examine whether the current best practice efficient DCE 
designs (i.e. ‘unstratified’ efficient designs) tend to favor a 
particular type of health states in the context of various DCE 
formats. Second, we investigate the sensitivity of estimated 
health state values to the potentially skewed selection of 
health states by comparing estimates derived from unstrati-
fied designs with those from DCE designs that satisfy the 
requirement that the set of selected health states has to span 
the entire severity scale (i.e. ‘severity-stratified’ designs).

2 � Methods

To investigate the issues mentioned above, we proposed a 
strategy for generating severity-stratified designs and com-
pared the severity-stratified designs to unstratified efficient 
designs on (1) health state selection for inclusion in DCE 
tasks and (2) values derived from the DCE tasks. We did this 
in the context of three different DCE formats: standard DCE, 
DCE-death, and DCE-duration. Table 1 shows the overview 
of the six study arms used in this study.

2.1 � The Discrete Choice Experiment (DCE) Choice 
Tasks

Figure 1 provides an example of the three DCE formats. The 
health states were defined by the five dimensions of the EQ-
5D-5L instrument: mobility, self-care, usual activities, pain/
discomfort, and anxiety/depression. For each dimension, five 

Table 1   Overview of the study arms

DCE discrete choice experiment

Unstratified Severity-
stratified

Standard DCE 1 4
DCE-death 2 5
DCE-duration 3 6
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levels are used to describe the severity of impairment in 
monotonic order from ‘no problems’ (level 1) to ‘extreme 
problems/unable’ (level 5).

The standard DCE was a forced choice paired compari-
son between two health states where respondents were asked 
to choose between 10 years in health state A and 10 years 
in health state B. This task focused on the direct trade-off 
between the health state attributes and produces values on 
a latent scale.

In the DCE-death format, each choice task had three 
alternatives, A, B, and C, and respondents compared A to B 
and B to C using a so-called ‘matched pairwise choice task’ 
[6, 15, 20]. The A–B comparison resembled the standard 
DCE described above. The next question was a forced choice 
between 10 years in health state B versus immediate death 

(i.e., B–C comparison). Each choice task thus comprises 
two pairwise comparisons so that the number of observa-
tions will be twice as high as in the standard DCE. However, 
the cognitive burden is only marginally increased, because 
option B appears in both comparisons and option C is fixed 
and easy to imagine.

In the DCE-duration format, each choice task also had 
three alternatives, A, B, and C, that were compared using a 
matched pairwise choice task. Respondents were first asked 
to choose between 10 years in health state A and 10 years in 
health state B (i.e., A–B comparison), followed by the B–C 
comparison, where option C was always health state 11111 
(i.e., no problems in any EQ-5D dimension) with a duration 
shorter than that of option B. Length of life in the perfect 

1. Which health state do you prefer, A or B?

10 years in this health 
state, followed by death

Slight problems in 
walking about

Unable to wash or dress

Moderate problems in 
doing usual activities

Slight pain or discomfort

Not anxious or depressed

10 years in this health 
state, followed by death

Slight problems in 
walking about

Severe problems in
washing or dressing

Severe problems in doing 
usual activities

Slight pain or discomfort

Not anxious or depressed

Mobility

Self-care

Usual activities

Pain / discomfort

Anxiety / depression

BA

1A. Which health state do you prefer, A or B?

10 years in this health 
state, followed by death

Slight problems in 
walking about

Unable to wash or dress

Moderate problems in 
doing usual activities

Slight pain or discomfort

Not anxious or depressed

10 years in this health 
state, followed by death

Slight problems in 
walking about

Severe problems in
washing or dressing

Severe problems in doing 
usual activities

Slight pain or discomfort

Not anxious or depressed

Mobility

Self-care

Usual activities

Pain / discomfort

Anxiety / depression

BA

YoYY u die immediately

C

1B. Which health state do you prefer, B or C?

10 years in this health 
state, followed by death

Slight problems in 
walking about

Severe problems in
washing or dressing

Severe problems in doing 
usual activities

Slight pain or discomfort

Not anxious or depressed

Mobility

Self-care

Usual activities

Pain / discomfort

Anxiety / depression

B

You die immediately

C

10 years in this health
state, followed by death

Slight problems in
walking about

Unable to wash or dress

Moderate problems in
doing usual activities

Slight pain or discomfort

Not anxious or depressed

A

1A. Which health state do you prefer, A or B?

10 years in this health 
state, followed by death

Slight problems in 
walking about

Unable to wash or dress

Moderate problems in 
doing usual activities

Slight pain or discomfort

Not anxious or depressed

10 years in this health 
state, followed by death

Slight problems in 
walking about

Severe problems in
washing or dressing

Severe problems in doing 
usual activities

Slight pain or discomfort

Not anxious or depressed

Mobility

Self-care

Usual activities

Pain / discomfort

Anxiety / depression

BA C

7 years in this health
state, followed by death

No problems in walking
about

No problems in washing
or dressing

No problems in doing
usual activities

No pain or discomfort

Not anxious or depressed

1B. Which health state do you prefer, B or C?

10 years in this health 
state, followed by death

Slight problems in 
walking about

Severe problems in
washing or dressing

Severe problems in doing 
usual activities

Slight pain or discomfort

Not anxious or depressed

Mobility

Self-care

Usual activities

Pain / discomfort

Anxiety / depression

B C

7 years in this health 
state, followed by death

No problems in walking 
about

No problems in washing 
or dressing

No problems in doing 
usual activities

No pain or discomfort

Not anxious or depressed

10 years in this health
state, followed by death

Slight problems in
walking about

Unable to wash or dress

Moderate problems in
doing usual activities

Slight pain or discomfort

Not anxious or depressed

A

a

b

c

Fig. 1   Presentation of choice tasks: a standard DCE; b DCE-death; c DCE-duration. DCE discrete choice experiment
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health was restricted to 12 levels: 2, 4, 6 months and 1, 2, 
…, 9 years.1

In order to reduce task complexity and respondent bur-
den, all choice tasks for the A–B comparisons included 
attribute-level overlap [6, 15]. For each pair of choices A and 
B, a minimum of two out of five dimensions were presented 
at the same level. In addition, combinations of the first level 
(no problem) of usual activities with the fifth level (extreme 
problems) of pain/discomfort and/or anxiety/depression 
were avoided to make health states easier to imagine and 
evaluate. Lastly, intensity color coding was used to further 
reduce task complexity. Imposing attribute-level overlap 
and color coding as well as excluding implausible states is 
currently best practice considering the reduced dropout rate 
and improved respondents’ attribute attendance in DCE [15].

2.2 � Experimental Designs With/Without 
Severity‑Stratified Restriction

We implemented heterogeneous DCE design algorithms to 
create for each study arm a unique experimental design com-
prising 168 choice tasks, distributed over eight sub-designs 
[21]. The algorithm optimizes for Bayesian D error for the 
total design, while simultaneously optimizing for the Bayes-
ian D errors of each of the eight sub-designs. In essence, 
this strategy produces a blocked design with eight blocks, 
where the design within each block is optimized in addition 
to the optimization of the overall design across blocks. A 
Latin hypercube sample optimized for maximum minimum 
distance between points and a greedy optimization algo-
rithm was used to optimize the weighted averaged Bayesian 
D error with one-third of the weight assigned to the aggre-
gated efficiency and two-thirds on the individual efficiencies 
of the sub-designs. Note that the design algorithm controlled 
for left–right randomization of the two states by including 
both options A and B in comparison with option C in the 
Bayesian design criterion, even though only one of the two 
choice options was presented (in random order) to the survey 
respondents.

To obtain an identifiable DCE design at the individual 
level, each sub-design contained 21 choice tasks, that is, 
the number of parameters to be estimated in a main effects 
model. As Bliemer and Rose [22] suggested, a DCE design 

optimized for a standard conditional logit model performs 
well for estimating panel mixed logit models. Therefore, the 
design was optimized for a conditional logit model, which 
reduced the computational burden substantially.

Whereas the full candidate set of all possible EQ-5D-5L 
health states (excluding 225 implausible health states) was 
used to optimize the unstratified DCE designs, the sever-
ity-stratified DCE designs used different candidate sets for 
each choice task. The creation of severity-stratified designs 
involved the following steps:

1.	 Informative priors were used to predict latent utility val-
ues for all health states, which were subsequently used 
to divide the health states into 21 severity strata (i.e., 
3125/21 = ~ 148 states per stratum for each DCE format, 
thus comprising as many severity strata as there were 
choice tasks in each DCE design).

2.	 A total of 225 implausible health states were removed 
from the full set of 3125 health states and from each of 
the 21 strata.

3.	 For each stratum, candidate sets were constructed by 
creating all possible combinations of health states in 
the stratum with all other possible health states (i.e., 
148 × 2899/2 = ~ 0.2 million).

4.	 The design algorithm created a DCE design that 
included exactly one choice task from each candidate 
set in each sub-design.

Prior values used for the DCE design optimization (and 
thus also in step 1) were obtained from previous research 
(based on an unstratified DCE design; unpublished to date), 
which contains 350 Dutch respondents for each DCE format. 
The design algorithm was implemented in Julia [23].

2.3 � Statistical Analysis

To analyze the health state preferences, a mixed logit model2 
was used. For the standard DCE, the utility of the respondent 
i for the health state j in the choice task t was specified as:

where Xijt consists of 20 dummies for EQ-5D-5L instruments 
assuming the level 1 (no health problem) as the reference 
category for each dimension. The error �ijt is assumed inde-
pendent and identically distributed with an extreme value 

(1)Uijt = Xijt�i + �ijt

1  Experimental designs to make respondents compare two health 
states within a vast gap of life years (i.e., 10 years in impaired health 
state vs. 2 months in the perfect health) may make the model sensi-
tive to potential non-attendance to duration then inflate the impact of 
severely impaired health states. To clear this concern, we re-analyzed 
parameter values for the DCE-duration format excluding choice tasks 
containing 2  months of duration in perfect health (i.e., choice tasks 
with the biggest differences in duration). Our findings were qualita-
tively the same and quantitatively also almost identical.

2  We used the mixed logit rather than other discrete choice mod-
els (i.e., conditional logit model) because it (1) does not exhibit the 
independence from irrelevant alternatives (IIA) property and the 
restrictive substitution pattern, (2) allows the correlation among coef-
ficients, and (3) can take potential correlated responses across obser-
vations from the same individual into account in the repeated choices 
situation [24].
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distribution, and the vector of individual-specific coefficients 
�i is assumed to follow a multivariate normal distribution 
with the population mean � and covariance matrix 

∑

 , that 
is, �i ∼ MVN

�

�,
∑
�

 . The same utility function was applied 
to the DCE-death approach; however, now Xijt includes a 
dummy indicating death options.

For the DCE-duration approach, the utility was specified 
as the function of the product of the number of life years 
( Tijt ) and its observed characteristics ( Xijt ) and their cor-
responding coefficients as follows:

Note that Xijt consists of dummies for the EQ-5D-5L instru-
ment and an intercept with the value 1, and the coefficient 
for the duration main effect represents the value respondent 
i assigns to living in perfect health for 1 year.

The specified models were estimated using the Bayes-
ian Markov chain Monte Carlo (MCMC) methods as imple-
mented in the R package bayesm [25]. Gibbs sampling was 
used to update � and 

∑

 , and a Metropolis–Hastings algo-
rithm was used to update �i . A multivariate normal prior 
(with a mean of zero and a variance of 100∙I) was used for 
� , and an inverse Wishart prior (with the dimension of 

∑

 
plus 3 degrees of freedom, i.e., �, and a location parameter 
�I ) was used for 

∑

 . Mean posterior estimates and 95% cred-
ible intervals were calculated by thinning the MCMC draws 
every fifth iteration for a total of 100,000 iterations. Con-
vergence was established using visual inspection of chains 
and the convergence diagnostics as implemented in the R 
package CODA [26].

For testing hypotheses, the values for health states 
derived from the DCE-death and DCE-duration approaches 
were rescaled on the QALY scale where death has a value 
of 0 and full health a value of 1. To rescale the values, we 
divided the EQ-5D-5L parameters by the absolute value of 
the parameter for ‘death’ for DCE-death, and by the param-
eter value for ‘duration’ for DCE-duration for each draw of 
the posterior distribution of parameters. Next, the hypoth-
eses that efficient design algorithms for the DCE-death and 
DCE-duration approaches tend to choose health states in 
skewed severity ranges was tested by comparing the dis-
tribution of values between designs with and without the 
severity stratification. For the hypothesis regarding the sen-
sitivity of extrapolated health state values to the selection of 
health states, differences in values for the same health states 
between the designs with and without severity stratification 
were examined.

As DCEs aim to predict the choice probabilities of alter-
natives among given choice sets, we compared the predic-
tive performance of estimates from the severity-stratified 
designs with those without that restriction using the mean 
errors (MEs), that is, the average deviation of predicted 

(2)Uijt =

(

TijtXijt

)

�i + �ijt

choice probability of a health state from the observed choice 
probabilities in each study arm. We used MEs to examine 
the direction of the bias that the estimates of each study 
arm produced.3 Specifically, when comparing the impaired 
health states with the death or perfect health states, positive 
(negative) MEs regarding the impaired health state suggests 
that the predicted model of the study arm is likely to under-
value (overvalue) the disutility of impaired states so that 
it over-predicts (under-predicts) the choice probability of 
living in the impaired health condition compared with the 
actual observation. Cross validation of the MEs was done by 
applying the valuation function obtained in one study arm 
to the data of the other study arm of the same DCE format. 
The posterior predictive choice probability distribution was 
obtained by simulating mixed logit probabilities for each 
sample of the parameters in the posterior distribution, from 
which the distribution of MEs was inferred. Whether MEs 
were significantly different from zero was determined based 
on the 95% level credible intervals of the distribution of 
MEs.

2.4 � Data Collection

The fieldwork was undertaken by Survey Sampling Interna-
tional (SSI) through an online platform during 2 weeks in 
December 2015. The target sample size was 3000 respond-
ents (i.e., 500 respondents per study arm) representative of 
the Dutch general population regarding age, gender, and 
education. Respondents were recruited from SSI’s online 
panel that contains representative panelists of the population 
aged 15–65 years and as many panelists aged over 65 years 
to resemble a nationally representative sample as much as 
possible. All respondents who gave consent for participation 
were asked about their demographics to enable stratification 
of the sample and were randomly assigned by SSI’s survey 
management software to one of the six study arms and to 
one of eight sub-designs within that arm. After receiving the 
information regarding EQ-5D-5L instruments, respondents 
completed the 21 choice tasks in a random order. A total 
of 693 respondents who did not complete the tasks were 
excluded from the analysis. The average response time of 
respondents was 27 min (50% of respondents completed 
within 10 min).

3  We also examined mean squared errors (MSE) by study arms (see 
the electronic supplementary material) to provide a full insight for the 
effect of imposing the severity-stratified restriction.
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Table 2   Descriptive statistics of 
respondents

Characteristics Subgroup Value

Overall sample vs. Netherlands population
Overall sample (N = 3122) Dutch populationa

 Age 15–20 197 (6.3%) 7.3%
20–40 1006 (32.2%) 29.5%
40–65 1390 (44.5%) 41.3%
65–80 472 (15.1%) 16.8%
Over 80 57 (1.8%) 5.2%

 Gender Female 1530 (49.0%) 54.9%
Male 1592 (51.0%) 45.2%

 Education Low 1026 (32.9%) 30.1%b

Medium 1402 (44.9%) 39.8%
High 694 (22.2%) 30.1%

 Self-rated health 0.819 ± 0.218 0.869 ± 0.170c

Standard DCE
Unstratified (N = 526) Severity-stratified (N = 520)

 Age 15–20 31 (5.9%) 30 (5.8%)
20–40 165 (31.4%) 186 (35.8%)
40–65 229 (43.5%) 223 (42.9%)
65–80 88 (16.7%) 68 (13.1%)
Over 80 13 (2.5%) 13 (2.5%)

 Gender Female 259 (49.2%) 254 (48.8%)
Male 267 (50.8%) 266 (51.2%)

 Education Low 167 (31.7%) 161 (31.0%)
Medium 235 (44.7%) 233 (44.8%)
High 124 (23.6%) 126 (24.2%)

 Self-rated health 0.815 ± 0.214 0.827 ± 0.218
DCE-death

Unstratified (N = 520) Severity-stratified (N = 518)
 Age 15–20 42 (8.1%) 36 (6.9%)

20–40 171 (32.9%) 158 (30.5%)
40–65 232 (44.6%) 235 (45.4%)
65–80 67 (12.9%) 83 (16.0%)
Over 80 8 (1.5%) 6 (1.2%)

 Gender Female 257 (49.4%) 267 (51.5%)
Male 263 (50.6%) 251 (48.5%)

 Education Low 174 (33.5%) 177 (34.2%)
Medium 232 (44.6%) 235 (45.4%)
High 114 (21.9%) 106 (20.5%)

 Self-rated health 0.821 ± 0.219 0.812 ± 0.221
DCE-duration

Unstratified (N = 521) Severity-stratified (N = 517)
 Age 15–20 25 (4.8%) 33 (6.4%)

20–40 164 (31.5%) 162 (31.3%)
40–65 238 (45.7%) 233 (45.1%)
65–80 86 (16.5%) 80 (15.5%)
Over 80 8 (1.5%) 9 (1.7%)

 Gender Female 252 (48.4%) 241 (46.6%)
Male 269 (51.6%) 276 (53.4%)

 Education Low 174 (33.4%) 173 (33.5%)
Medium 233 (44.7%) 234 (45.3%)
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3 � Results

Table 2 shows the background characteristics of respond-
ents. Respondents’ characteristics are comparable to those 
in the Dutch population, and no significant imbalance in 
respondents’ characteristics between unstratified and sever-
ity-stratified designs was found.

Figure 2 and Table 3 show the distributions of the mod-
eled values for all EQ-5D-5L health states. As shown in 
Fig. 2, the distribution of states included in the design more 
closely followed the distribution for all health states when 
the severity stratification was applied for all DCE formats. 
It is most apparent for the DCE-duration format, where the 
unstratified design has a much more skewed distribution than 
the severity-stratified design.

For DCE-duration, the mean and the standard deviation 
(SD) of the distribution of health state values included in the 
unstratified design (i.e., the black bars) were 0.31 and 0.44, 
respectively, whereas those in the severity-stratified design 
were 0.09 and 0.35. A similar effect was hypothesized to 
exist in the DCE-death approach, but no strong evidence was 
found (mean 0.41 and SD 0.30 for the unstratified design; 
mean 0.40 and SD 0.26 for the severity-stratified design).

Table 4 shows the parameter estimates and correspond-
ing 95% credible intervals for all six study arms. Almost all 
estimates are statistically significant, and all models resulted 
in logically consistent parameter estimates in the sense that 
worse levels of impairment are associated with larger utility 
decrements.

For the standard DCE, estimates in Table 4 are expressed 
on the latent utility scale, and therefore the obtained param-
eter estimates cannot be directly compared to the ones 
obtained in the other arms. However, the difference in scale 
between the unstratified and severity-stratified designs is 
very small, as can be seen from the values for state 55555 

(the worst EQ-5D-5L state) and the fact that the 95% cred-
ible intervals overlap for all parameters when comparing the 
models from both designs. Similar results were observed 
for the DCE-death estimates on the QALY scale. For DCE-
duration, estimated values for state 55555 are different and 
95% credible intervals for several parameters (i.e., level 4 of 
‘Mobility’ and level 5 of ‘Self-care’ and ‘Anxiety/depres-
sion’) do not overlap when comparing the unstratified design 
with the severity-stratified design.

Figure 3 shows scatter plots for each DCE format, com-
paring the values obtained by the designs with and without 
severity stratification. For the standard DCE and DCE-death 
formats, estimated values based on the severity-stratified 
design are close to those of the unstratified design. How-
ever, for the DCE-duration format, health state values of 
the severity-stratified design are higher than those of the 
unstratified design, especially on the range of states that are 
worse than death. The proportion of health states considered 
worse than death among 3125 health states was 56.0% for 
the unstratified design versus 42.8% for the severity-strati-
fied design.

Table 5 shows MEs by study arm to compare the in-sam-
ple and out-of-sample forecasting accuracy of the severity-
stratified design with those of the unstratified design. That 
is, column 4 shows the ‘unstratified’ model predicting the 
‘unstratified’ observed choice probabilities; column 5 shows 
the ‘severity-stratified’ model predicting the ‘unstratified’ 
observed choice probabilities; column 6 shows the ‘unstrat-
ified’ model predicting the ‘severity-stratified’ observed 
choice probabilities; column 7 shows the ‘severity-stratified’ 
model predicting the ‘severity-stratified’ observed choice 
probabilities.

For DCE-death and DCE-duration, MEs were com-
puted by separating health states into severity ranges: 
bad, medium, and better health state for QALY ≤ 0, 

Table 2   (continued) Characteristics Subgroup Value

High 114 (21.9%) 110 (21.3%)

 Self-rated health 0.835 ± 0.203 0.807 ± 0.232

Education: low = primary and junior secondary education including both general and vocational schools; 
medium = senior secondary education including general and vocational schools, and pre-university; 
high = bachelor’s, master’s and doctoral degree. Self-rated health: average values of respondents’ self-rated 
EQ-5D-5L health state that converted on QALY scale using a Dutch tariff [27]
DCE discrete choice experiment, QALY quality-adjusted life year
a Population rates in the Netherlands in 2017 were retrieved from the Statistics Netherlands (CBS) website. 
The distribution of age and gender were given for the population over 15 years old, while the distribution 
according to the level of education was available only for the population between 15 and 75 years old
b The population with unknown educational level (1.5%) was included. Also, the population with level 1 
diploma of the senior secondary vocational school was included, while respondents with that characteristic 
belonged to the middle education group in the study
c Reference values for the Dutch general population based on 979 respondents [27]. Note that this paper did 
not collect data stratified by respondents’ health state
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Fig. 2   Comparison of distributions of health state values between 
designs with and without severity-stratification. Distribution of mod-
eled values for all possible EQ-5D health states (red bars) and mod-
eled values for EQ-5D health states included in the designs (black 

bars). Health state values are on latent utility scales for the standard 
DCE (a), while they are on QALY scales for DCE-death (b) and 
DCE-duration (c). DCE discrete choice experiment, QALY quality-
adjusted life year

Table 3   Distribution of health states selected for the designs over severity strata

Bad health states for QALY ≤ 0, medium health state for 0 < QALY ≤ 0.5, and better health state for 0.5 < QALY. Because the standard DCE pro-
duces values on a latent scale, the division in three severity strata was omitted for those designs
DCE discrete choice experiment, QALY quality-adjusted life year

Standard DCE DCE-death DCE-duration

Unstratified Severity-stratified Unstratified Severity-stratified Unstratified Severity-stratified

Number of unique 
health states

284 (100%) 319 (100%) 275 (100%) 319 (100%) 256 (100%) 310 (100%)

Better
health state

– – 127 (46.2%) 112 (35.1%) 88 (34.4%) 44 (14.2%)

Medium
health state

– – 114 (41.5%) 188 (58.9%) 125 (48.8%) 145 (46.7%)

Bad
health state

– – 33 (12%) 19 (6.0%) 43 (16.8%) 121 (39.0%)
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0 < QALY ≤ 0.5, and QALY > 0.5, respectively. In addi-
tion, comparisons of the choice tasks were separately 
included: choice probabilities of impaired health states 
in A-B comparison tasks and B-C comparison tasks.

When we computed MEs across all health states, all 
six study arms produced insignificant MEs that were very 
close to zero because positive and negative errors offset 
each other. However, when we divided health states into 
severity ranges, some errors were found to be signifi-
cantly different from zero. An expected result was that 
the out-of-sample predictions are more likely to show 
significant errors than the in-sample predictions, regard-
less of whether the severity stratification was applied. 
Beyond that, we found few noticeable differences between 
designs in most cases. However, for the DCE-duration, we 
found that the unstratified design produced significant 
negative errors for bad health states (i.e., column 4, itali-
cized) while errors in the severity-stratified design were 
not significant (i.e., column 7, italicized), especially on 
B-C tasks. Also, for B-C tasks, the out-of-sample predic-
tions produced by the severity-stratified design (0.0028) 
were much better than the unstratified design (− 0.0559) 
suggesting that the latter overestimated the willingness 
to trade-off life years to avoid bad health states signifi-
cantly. These results suggest that the skewed health states 

selection for the DCE-duration introduced a downward 
bias on estimated values.

4 � Discussion

This paper investigated the effect of imposing the severity 
stratification on Bayesian D-efficient DCE designs cre-
ated for valuing health. We found that imposing sever-
ity stratification on DCE-duration was required to ensure 
that the selected set of health states covered the severity 
range well. The model estimates derived from the severity-
stratified design also demonstrated better predictive per-
formance than unstratified designs, especially regarding 
the choice probability of bad health states, preventing a 
downward bias on the values for poor health states. In the 
other investigated DCE types, we find less evidence of 
favoritism in the selection of health states, and imposing 
severity stratification had no substantial effect on values. 
The results suggest that efficient design algorithms need to 
be implemented carefully in the contexts of DCE-duration 
studies for health valuation.

It is instructive to reflect on the reasons why it matters 
so much to impose severity stratification on an efficient 
design algorithm used to construct a DCE with dura-
tion for health valuation. The low accuracy of predicted 

Fig. 3   Comparison of values for 
all EQ-5D health states between 
designs with and without sever-
ity-stratification. The 45° line is 
omitted from the graph on the 
left, which shows the impact of 
the severity-stratified restric-
tion in the standard DCE choice 
task, because both sets of values 
are on a latent scale and adding 
a 45° line might be misleading 
as a basis for comparison. DCE 
discrete choice experiment
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values of poor states based on a pro-mild set of health 
states reveals an extrapolation issue. Extrapolation per se 
does not cause a bias; it only does so when the model is 

misspecified. Hence, our findings indicate that the model 
was misspecified and that we can mitigate this problem by 
better spreading the data, thus ensuring that the resulting 

Table 5   Mean signed errors for 
predicting choice probability

All = choice probabilities of impaired health states (regardless of comparison tasks); A–B = choice prob-
abilities of impaired health states in A–B comparison tasks; B–C = choice probabilities of impaired health 
states in B–C comparison tasks
Note, bad health states for QALY ≤ 0, medium health state for 0 < QALY ≤ 0.5, and better health state for 
0.5 < QALY. Because the standard DCE produces values on a latent scale, the division in three severity 
strata was omitted for those designs
DCE discrete choice experiment, QALY quality-adjusted life year
a Significant at 5% level

Parameter estimates used Choice sets predicted

Unstratified choice sets Severity-stratified choice sets

Unstratified Severity-stratified Unstratified Severity-stratified

Standard DCE 0.3446 × 10− 18 0.1850 × 10− 18 −  0.9972 × 10− 18 −  1.3217 × 10− 18

DCE-death
 All health states
  All 0.7730 × 10− 18 1.0810 × 10− 18 0.1181 × 10− 18 1.1725 × 10− 18

  A–B 0.8205 × 10− 18 0.6095 × 10− 18 0.5434 × 10− 18 1.2958 × 10− 18

  B–C 0.7217 × 10− 18 1.6624 × 10− 18 − 0.3774 × 10− 18 1.0441 × 10− 18

  All 0.7730 × 10− 18 1.0810 × 10− 18 0.1181 × 10− 18 1.1725 × 10− 18

 Bad health states
  All 0.0056 0.0130a −  0.0039 −  0.0098
  A–B 0.0062a 0.0142a 0.0043a 0.0012
  B–C 0.0045 0.0097 −  0.0259 −  0.0331

 Medium health states
  All 0.0015 −  0.0030 0.0103a 0.0049
  A–B −  0.0025a −  0.0025a 0.0021a 0.0020a

  B–C 0.0097 −  0.0044 0.0289a 0.0110
 Better health states
  All −  0.0017 −  0.0087a 0.0022 −  0.0028
  A–B −  0.0005 −  0.0016a −  0.0044a −  0.0037a

  B–C −  0.0067 −  0.0265a 0.0178 −  0.0008
DCE-duration
 All health states
  All −  0.6185 × 10− 18 −  1.2218 × 10− 18 0.1516 × 10− 18 0.2327 × 10− 18

  A–B −  1.0474 × 10− 18 −  2.0947 × 10− 18 0.4598 × 10− 18 1.2122 × 10− 18

  B–C −  0.1624 × 10− 18 −  0.2443 × 10− 18 −  0.1796 × 10− 18 −  0.7710 × 10− 18

 Bad health states
  All −  0.0122a 0.0015 −  0.0200a −  0.0052
  A–B −  0.0012 0.0009 −  0.0029a −  0.0012a

  B–C −  0.0347a 0.0028 −  0.0559a −  0.0135
 Medium health states
  All 0.0028 0.0151a −  0.0086 0.0035
  A–B 0.0038a 0.0060a 0.0048a 0.0060a

  B–C 0.0007 0.0345a −  0.0365a −  0.0017
 Better health states
  All 0.0041 0.0049 0.0032 0.0038
  A–B −  0.0041a −  0.0075a −  0.0074a −  0.0162a

  B–C 0.0228 0.0355a 0.0309a 0.0449a
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QALY tariffs are less affected by extrapolation. In par-
ticular, the DCE-duration model seems to be sensitive to 
the assumptions made regarding duration preferences, as 
immediate death is not included so that the anchor point 
for the QALY scale is completely defined by extrapolation. 
The efficient optimization of the DCE design with a fixed 
(perfect health) comparator has aggravated the extrapola-
tion problem, because it is efficient to include a skewed 
selection of relatively healthy health states. This reflects 
the special characteristic of DCE-duration models that 
utilities are derived using a multiplicative utility function 
with life years acting as a multiplier of the health state util-
ity. Issues with utility dominance may arise in this context 
more easily than in standard applications of DCEs.

A limitation of this study is that it was beyond its scope 
to explore the extent to which our results are specific to the 
matched pairwise choice format that was used in this study. 
Having full health as a fixed alternative and the relatively 
long duration (i.e., 10 years) assumed for the impaired health 
states might have exaggerated issues that led to skewed 
selection of health states. Furthermore, we have not consid-
ered the merit of efficient designs in this context relative to 
other design generating approaches that do not require the 
implementation of strategies to enhance the spread of the 
data. The need to impose severity stratification makes con-
struction of efficient designs for DCE-duration studies more 
difficult, and hence may influence the trade-offs between 
pros and cons of efficient versus other designs. Third, we 
did not find evidence of health state selection in the DCE-
death approach, but we do not know if this result holds when 
valuing health states derived from other descriptive systems 
(e.g., disease-specific ones, where the mass of health states 
may be on a different location on the full health–dead scale). 
Fourth, assuming the normal distribution for parameters’ 
distribution may be inappropriate to specify the monotonic 
attribute-level effect due to its unbounded nature. Using 
more flexible distribution with a fixed bound can be consid-
ered to avoid the potential violation of monotonicity. Last, 
we measured respondents’ preference on the length of life 
using both months and years as the temporal unit in the per-
fect health state and converted months to years in the analy-
sis. However, respondents may not treat values in months 
and the equivalent amount of years in the same way when 
valuing health states; thus, be cautious in further study [28].

5 � Conclusion

We conclude that differences in how well selected health 
states span the severity range can explain part of the differ-
ences in values across DCE (duration) studies. Imposing 
‘severity stratification’ on DCE-duration designs ensures 
robustness of the results against extrapolation from a 

misspecified model. Until we know how widespread associ-
ated extrapolation issues are in reported value sets, we need 
to be careful in the use of DCE-derived health state values.
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