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Summary 

Low temperature is recognized as one of the major barriers for the application of the 

anaerobic ammonium oxidation (anammox) process to treat mainstream wastewater. 

Studies are yet to reveal the underlying biological limitations and molecular 

mechanisms associated with the inhibition of low temperature on the anammox 

process. In this study, metaproteomics was used to examine proteome modulation 

patterns of the anammox community occurring at different temperatures. The 

anammox community remarkably altered their proteomes when the temperature 

decreased from 35 to 20°C. This was especially for proteins involved in energy 

conversion, transcription and translation, and inorganic ion transport. However, at 

15
o
C the anammox activities became distinctly inhibited, and there was evidence of 

energy limitations and severe stress in Candidatus Kuenenia and to a lesser degree in 

Candidatus Brocadia. Candidatus Jettenia exhibited more changes in its proteome at 

15°C. From the proteomes, at the lower temperatures there was evidence of stress 

caused by toxic nitrogen compounds or reactive oxygen species in the anammox 

bacteria. Hydroxylamine oxidoreductase (HAO)-like proteins and an oxidative stress 

response protein (a catalase) were in high abundance to potentially ameliorate these 

inhibitory effects. This study offers metaproteomic insight into the anammox 

community-based physiological response to decreasing temperatures.  

 

Originality-Significance Statement. 

Low temperature is recognized as one of the major barriers for the application of the 
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anammox process to treat mainstream wastewater. However, the underlying 

molecular mechanisms are not well understood currently. In this study, 

metaproteomics was used to examine proteome modulation patterns of the anammox 

community occurring at different temperatures. This study is the first to identification 

of proteome modulation of anammox bacteria, which allows us to fill the important 

gap between macroscopic characterization of anammox bacteria and underlying 

proteome modulation mechanisms response to the thermal decreases. Also, the 

analysis framework developed herein could be extended to other functional cultures 

and environmental samples. 
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Introduction 

The anaerobic ammonium-oxidizing (anammox) bacteria, discovered in the early 

1990s (Mulder et al., 1995; Strous et al., 1999a), form a deep-branching, 

monophyletic group within the Planctomycetes phylum. These are reported to 

anaerobically oxidize ammonium to dinitrogen gas with nitrite as an electron acceptor 

(Kuenen 2008; Strous et al., 2006). For the anammox reactions, the first step is the 

reduction of nitrite to nitric oxide by nitrate reductase (NirS). Then ammonium reacts 

with nitric oxide, catalyzed by hydrazine synthase (HZS), to form hydrazine. Finally, 

hydrazine is oxidized into dinitrogen gas by hydrazine dehydrogenase (HDH) or 

hydroxylamine oxidoreductase (HAO) (Strous et al., 2006). Anammox bacteria 

redetected in various environments including wetlands, open oceans and marine 

sediments, and wastewater treatment plants (WWTPs) (Dale et al., 2009; Kuypers et 

al. 2003, Lam et al., 2007; Kuenen 2008; Lackner et al., 2014; Nicholls and Trimmer 

2009; Penton et al., 2006; Zhu et al., 2011). The anammox process plays a significant 

role in global nitrogen cycling. Impressively, it is estimated that up to 67% of 

dinitrogen gas production is derived from the anammox process in marine 

oxygen-minimum zones (Dalsgaard et al., 2005; Francis et al., 2007). In addition to its 

significant ecological role, the application of anammox bacteria can provide an 

improved sustainable solution for nitrogen removal from wastewater. Compared with 

conventional nitrification-denitrification treatment processes, the anammox-based 

process has a number of operational and economic advantages that include less sludge 

production, no requirement of organic carbon, less aeration and lowered greenhouse 
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gas emissions (Kartal et al., 2010; Lackner et al., 2014).There are increasingly more 

WWTPs employing anammox to treat both sidestream and mainstream wastewater 

worldwide. 

 

However, it is observed that anammox bacteria can be very sensitive to fluctuations of 

temperature in engineered ecosystems (Strous et al., 1999b), and this may limit 

application of the process at WWTPs in countries with cooler climates (Cao et al., 

2017; Vlaeminck et al., 2012). For example, it is reported that the nitrogen removal 

performance of an anammox process was dramatically lowered ten times when the 

temperature decreased from 29 to 12.5
o
C (Laureni et al., 2015). Although low 

temperature is recognized as a critical barrier for the application of anammox for 

mainstream wastewater treatment, little is known about the underlying molecular 

mechanisms behind this limitation. Studies of this temperature effect have mainly 

focused on characterizing the overall nitrogen removal performance, or developing 

control strategies to improve the process stability under low temperatures (Dosta et al., 

2008; Gilbert et al.,2014; Lotti et al., 2014; Lotti et al., 2015). There are few studies 

attempting to elucidate the molecular details of anammox bacteria in relation to 

temperature (Rattray et al., 2010). Currently, there are no studies that are focused to 

understand the response of anammox bacteria to temperature changes at the proteomic 

level. 
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Recently, mass spectrometry based metaproteomic approaches are attracting particular 

attention for discovering microbial functions in mixed culture systems (Barr et al., 

2015; Mosier et al., 2015; Salerno et al., 2016; de Almeida et al., 2016). mRNA levels 

can respond rapidly and sensitively to environmental conditions changes, while 

changes in protein abundances can be comparatively much slower (Zhu et al., 2017). 

The correlation between mRNA and protein inventories in environmental microbial 

communities can be generally week (Zhu et al., 2017). It can be observed that mRNA 

levels do not always coincide with bacterial activities (Wang et al., 2016). Whereas 

protein expression can reflect specific microbial activities in a given ecosystem 

(Wilmes and Bond, 2006). Metaproteome expression states can be used to infer the 

actual functionality of an ecosystem, and may be more directly related to the 

microbial activity in comparison to information based on metagenomics (functional 

gene detection) or metatranscriptomics (mRNA expression) (Wilmes and Bond, 2006). 

Proteomics using isobaric tags for relative and absolute quantification (iTRAQ) has 

advanced through the improvement of measurement precision, accuracy and 

reproducibility (Ross et al., 2004). The approach has proven to be effective for 

conducting quantitative proteomic comparisons within complex environmental 

samples. Recently, a quantitative proteomic approach (similar to iTRAQ) was applied 

to discover the impacts of elevated temperatures on the physiology of individual 

microbial groups in acid mine drainage biofilms (Mosier et al., 2015). 

 

Mass spectrometry based protein identification relies upon an accurate database, 
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which is typically derived from the functional prediction of open reading frames 

(ORF) detected in genome sequence data. Currently, the genomes and corresponding 

protein sequences are available for anammox bacteria belonging to the genera of 

Candidatus Kuenenia (one genome, PRJNA16685) (Strous et al., 2006), Candidatus 

Brocadia (two genomes, PRJDB103 and PRJNA263557) (Ferousi et al., 2013; Oshiki 

et al., 2015), Candidatus Jettenia (one genome, PRJDB68) (Hira et al., 2012) and 

Candidatus Scalindua (one genome, PRJNA262561) (Speth et al., 2015). In mixed 

culture systems, an organism‘s response to changing conditions will be associated 

with its behavior within the microbial community. Thus, the understanding of 

functional and physiological changes needs to be determined within the ecosystem 

community. Consequently, the metaproteomics approach is most suitable to study the 

anammox microbial community and to gain insight for predicting the impact, 

resilience, and response of the anammox process at sub-optimal temperatures. 

 

This study investigates the underlying molecular details of decreased 

temperature-induced physiological changes of bacteria directly in the anammox 

community. A lab-scale sequence batch reactor (SBR) was operated for over 450 days 

to obtain an enriched anammox culture (80% anammox bacteria). Multi-plexiTRAQ 

proteomic analysis was performed on six samples of an anammox culture that were 

exposed to temperatures ranging from the optimum of 35
o
C (Van de Graaf et al., 1996) 

to lower temperatures of 20°C and 15°C where stress may occur (Cao et al., 2017). 

Our findings provide insight of the response of anammox bacteria to temperature 
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changes within the community ecosystem. Understanding of proteome modulation 

patterns of the anammox community occurring at different temperatures will lead to 

process optimization by calibrating operational parameters and by enhancing 

preferring anammox pathways, which will result in robust anammox reactions even at 

relatively low temperate. 

 

Results and Discussion 

Reactor characterization and biomass response under low temperature 

A laboratory-scale SBR was operated for more than 450 days to enrich anammox 

bacteria. The operating temperature of the SBR was maintained at 35 ± 1°C. 

Quasi-steady state performance of the anammox system was confirmed by stable 

anaerobic nitrogen removal, which was maintained at approximately 0.22 ± 0.01 g 

N/g MLVSS/day. During this quasi-steady state, the influent contained around 360 

mg/L NO2
-
-N, and 300 mg/L NH4

+
-N, both of which were completely converted with 

△NO2
-
-N: △NH4

+
-N at around 1.26 (Figure S1, Supporting Information (SI)). 

Fluorescence in situ hybridization (FISH) indicated that anammox bacteria accounted 

for up to 80% of the total microbial community. Bacteria of the genera Candidatus 

Kuenenia and Candidatus Brocadia accounted for around 50% and 22% of the total 

community, respectively. Bacteria of the genus Candidatus Scalindua were not 

detected by FISH, indicating their low abundance or absence in the anammox 

enriched culture. The SBR performance and FISH results indicate a highly-enriched 

anammox culture was obtained. This enriched culture was suitable for the temperature 
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exposure experiments and the subsequent comparative investigations by quantitative 

proteomics. 

 

The anammox activities of the enrichment culture were determined after being 

subjected to the temperatures of 15 °C, 20°C or 35 °C. These were conducted in 

duplicate in a total of six sequencing batch incubations that lasted 15 days. The 

specific ammonium oxidation rates were determined for each of the batch incubations. 

At 20°C this rate was approximately half of that at 35°C (1.74 ± 0.24 vs. 3.71 ± 0.52 

mg N/g MLVSS/ h). At 15°C, the ammonium oxidation rate was much lower at about 

one-tenth of that observed at 35°C (Figure 1a). The corresponding specific nitrite 

reduction rates were also determined and were suppressed at the lower temperatures 

(Figure 1b). In these incubations, the observed nitrogen transformations were 

resulting from the activities of the mixed-culture anammox bacteria. To date, pure 

cultures of anammox organisms are yet to be isolated (Jetten et al., 2001; 2005). 

Consequently, application of molecular omic approaches are required to distinguish 

the nitrogen transformation pathways mediated by the different anammox species (Hu 

et al., 2012; Oshiki et al., 2015; Strous et al., 2006).  

 

Metaproteomic overview 

For the protein identifications, this study used a manually curated database 

constructed from the genome sequences of the anammox genera of Candidatus 

Kuenenia (Strous et al., 2006), Candidatus Brocadia (Ferousi et al., 2013; Oshiki et 
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al., 2015), Candidatus Jettenia (Hira et al., 2012) and Candidatus Scalindua (Speth et 

al., 2015). After the temperature exposure experiments of the batch incubations that 

were operated for 30 cycles (15 days), samples from the three temperature conditions 

(in total 6 samples) were collected for protein extraction and subsequent identification 

and quantification. Using the six-plexiTRAQ proteomic approach, we identified 1539 

anammox proteins (Table S1, SI). This is comparable with a recent metaproteomic 

study that used a similar peptide labeling approach for investigating laboratory-grown 

acid-mine drainage biofilms. In that instance, a total of 1724–1916 proteins were 

identified, which included 1596 uniquely assigned to one organism (Mosier et al., 

2015). It is worth to note that the abundance of proteins assigned to the different 

anammox genera within the three cultures was very similar (Table S2, SI). Similar to 

the FISH results, this indicated the cultures were dominated by Candidatus Kuenenia 

(~ 50%) and Candidatus Brocadia (~ 32%). Consequently, at the different enrichment 

temperatures, there seems to be little change regarding the main anammox community 

composition.  

 

Principal component analysis of the 1539 protein abundance values detected in the 

sequence batch incubations operated at 15°C, 20°C and 35°C was performed (Figure 

2). It can be seen, regarding protein abundance, that the 35 ˚C cultures were well 

separated from the 15 and 20 ˚C cultures, and this is along the axis showing the most 

differences, component 1 (Figure 2). These findings imply that the proteins produced 

by the enriched anammox bacteria are regulated by temperature changes and 
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potentially the different strains may be preferentially active at different temperatures.  

 

The metaproteomic analysis showed that heme-containing proteins were among the 

top 10 most abundant protein species detected at 35°C (Table 1). Many of the 

abundant proteins detected were associated with the anammox central catabolism for 

nitrogen conversions. This included nitrite reductase, hydrazine synthase and 

hydrazine dehydrogenase (Table 1). The high levels of these proteins implicate their 

importance in the roles of growth and maintenance for anammox bacteria.  

 

Proteome changes of the anammox enriched culture with decreasing 

temperature  

The metaproteomes were compared to identify those proteins that were statistically 

enriched in either the low or high temperature. A large number of proteins were 

differentially abundant at 20°C relative to 35 °C, followed by those at 15°C relative to 

35°C. There were fewer significant changes in protein abundance between cultures 

grown at 20°C and 15°C. There were 90 differentially abundant proteins detected 

between 35°C and 20°C, 71 were detected between 35°C and 15°C, and 13 between 

20°C and 15°C. 

 

The majority of proteins showing significant changes in abundance at lower 

temperatures belonged to the following Clusters of Orthologous Groups (COG) 

functional categories: energy production and conversion; translation, ribosomal 
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structure and biogenesis; inorganic ion transport and metabolism; replication, 

recombination and repair; and posttranslational modification, protein turnover and 

chaperones (Figure 3). In particular, at 20°C relative to 35°C, more than five times as 

many proteins involved in energy production and conversion (C), more than twice as 

many proteins involved in translation, ribosomal structure and biogenesis (J), and 

three times as many proteins involved in inorganic ion transport and metabolism (P), 

were found to have increased abundance in comparison to those with decreased 

abundance (Figure 3). 

 

Three anammox genera (Candidatus Kuenenia, Candidatus Brocadia and Candidatus 

Jettenia) were selected for further analysis due to their overall abundances in the 

present enriched cultures. Protein abundance was determined by normalizing 

individual proteins to the total protein abundance for each specific anammox genus. 

This allowed for evaluation of protein abundance within the individual genus.  

 

Overall, among the three anammox genera 70 proteins had significant changes in 

abundance between 35°C and 20°C (Figure 4a–c), 42 proteins had significant changes 

between 35°C and 15°C (Figure 4d–f), and only seven proteins showed significant 

changes in abundance between 20°C and 15°C. The proteins with altered abundances 

spanned a broad range of functional COG categories (Figure 4). 
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All proteins quantified for the genus Candidatus Kuenenia were affiliated to the 

species K. stuttgartiensis. At 20°C relative to 35°C, 39 proteins of K. stuttgartiensis 

displayed significant changes in abundance (Figure 4a), this included 32 with 

increased and 7 with decreased abundances. Proteins involved in energy production 

and conversion (C), translation/ribosomal structure and biogenesis (J), and inorganic 

ion transport and metabolism (P) outnumbered those from other processes (Figure 4a). 

Eight other proteins also showed significant alterations in abundance; however, their 

functions were unknown (Figure 4a). At 15°C relative to 35°C, only 9 K. 

stuttgartiensis proteins showed significant changes in abundance, this included 4 with 

increased and 5 with decreased abundances (Figure 4d). For Candidatus Brocadia, 15 

proteins had significant changes in abundance at 20°C compared to 35°C, including 9 

with increased and 6 with decreased abundances (Figure 4b). The majority of these 

proteins were involved in energy production and conversion (C), amino acid transport 

and metabolism (E), posttranslational modification, protein turnover, chaperones (O), 

and signal transduction mechanisms (T) (Figure 4b). Compared to proteins at 35 °C, 5 

Candidatus Brocadia proteins had increased abundance, while 8 were decreased at 

15 °C (Figure 4e). Energy production and conversion (C) was also the most 

significantly affected process at 15°C (Figure 4e). Regarding Candidatus Jettenia, in 

total 16 proteins had significantly changed abundance at 20°C in comparison to 35°C 

(Figure 4c). Among these, 14 had increased abundance, while only 2 proteins had 

decreased levels (Figure 4c). The majority of the proteins with significant changes in 

abundance were involved in energy production and conversion (C), 
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translation/ribosomal structure and biogenesis (J), and transcription (Figure 4c). At 

15°C relative to 35°C, 20 proteins had significantly altered levels for Candidatus 

Jettenia (Figure 4f). Most of these proteins were associated in the categories of energy 

production/conversion (C) and signal transduction mechanisms (T) (Figure 4f). 

 

The dominant anammox bacteria had altered proteome profiles at the different 

temperatures of 35°C and 20°C. Particularly, the levels of proteins involved in energy 

production/conversion (C), transcription (K) and translation (J) were significantly 

altered. The differences in protein abundances of Candidatus Kuenenia, Candidatus 

Brocadia and Candidatus Jettenia, at 20°C relative to 35°C, were generally similar. A 

large number of proteins were significantly modulated, among which, the proteins 

with increased levels overwhelmingly outnumbered those with lowered abundance at 

the lower temperatures (Figure 4a–c). The results suggest that the anammox bacteria 

were remarkably altering their molecular processes to enable them to adapt to the 

effects of the decreased temperature. 

 

Adaptations of Candidatus Kuenenia to lower temperature 

In the SBR enrichment culture Candidatus Kuenenia was the most abundant of the 

bacteria, and the largest number of quantified proteins were detected against this 

anammox organism in the batch Incubations (Table S1, SI). In addition, all proteins 

quantified for this genus came from one species, K. stuttgartiensis, which allowed a 
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more detailed investigation of the temperature related proteome changes at the species 

level. 

 

For K. stuttgartiensis, no proteins associated with the central anammox reactions, i.e. 

NirS, HZS and HDH, were significantly altered during the batch incubations at 35 and 

20°C. Consequently, the stable levels of these key enzymes might be an adaption 

strategy by anammox bacteria, to maintain constitutively high levels across a range of 

temperatures. This strategy could maximize relevant metabolic activities at 

sub-optimal temperatures. In contrast, proteins involved in downstream electron 

transport networks had increased levels at the lower temperature. Among them, 

protein kuste2877 had similarities to an undeca-heme-containing cytochrome c 

protein, while kustc0457 was identified as a hydroxylamine oxidoreductase 

(HAO)-like protein (Table 2). Increased levels of these electron transport proteins 

suggest that parts of their energy harvesting processes are sensitive to decreased 

temperature. It is reported that low temperatures can impede electron transfer to cause 

electron imbalance at certain points of the respiratory chain, leading to production of 

reactive oxygen species (ROS) in aerobic microorganisms (Moreno-Sánchez et al., 

2013). Although K. stuttgartiensis are obligate anaerobes, the proteome expression 

profile at 20°C indicates an analogous scenario. It is possible that the downstream 

electron transfer proteins are more susceptible to decreased temperature than the 

anammox central enzymes, and this could cause in an electron transfer imbalance. 

Electrons of anaerobic reactions usually have low redox potential, and during 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 
 

imbalanced conditions, these maybe prone to be adventitious transfers (Imlay, 2003). 

In addition, there is a potential for establishment of the Fenton reaction with iron 

released from damaged or digested Fe-S cluster proteins. This would contribute to 

production of hydroxyl radicals (Imlay, 2003). Such events could account for the 

increase of the protein kustd1301 (Table 2), which has high similarity to catalase, an 

oxidative stress response protein that decomposes H2O2 into H2O and O2 (catalytic 

activity), and oxidizes H donors with consumption of peroxide (peroxide activity) 

(Aebi, 1984). Consequently, kustd1301 is likely contributing to alleviate oxidative 

stress in conditions of lower temperature. 

 

The K. stuttgartiensis genome encodes 10 different hao-like paralogs (de Almeida et 

al., 2011; Kartal et al., 2010) and these HAO-like proteins dominated the anammox 

bacterium proteome. Potentially these catalyze the three-electron oxidation of 

hydroxylamine to nitric oxide and nitrite (Maalcke et al., 2014; 2016). At 20°C, the 

reduced anammox reaction rates (when compared to that 35°C) may result in nitrite 

accumulation in both the cytoplasm and the anammoxsome. In the absence of 

corresponding upregulation of nitrite transporters (either uptake or efflux), the 

increased HAO activity may serve as a pathway for controlling nitrite levels in cell 

envelopes, performing the reversed reactions mentioned above, and thereby avoiding 

the potential damage induced by excessive nitrite. Consequently, this could explain 

the increased expression of HAO-like proteins at 20°C (Table 2). In addition, hao-like 

proteins are speculated to utilize hydrazine, although at lower catalytic rates than 
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hydroxylamine conversions (Maalcke et al., 2014; Kartal et al., 2011). This could be 

part of the organisms strategy for managing levels of inhibitory nitrogenous 

compounds (e.g. nitric oxide, nitrite and hydroxylamine) (Kartal et al., 2011). In 

addition to balancing these nitrogenous compound levels, the increased levels of 

HAOs are likely involved in providing nitric oxide for anammox reactions at the 

lower temperature of 20°C. 

 

Candidatus Jettenia exhibits a greater proteome response at lower temperature, 

compared to Candidatus Kuenenia and Candidatus Brocadia 

Decreasing the temperature to 15°C had severe adverse effects on the activities of the 

enriched anammox culture with much reduced ammonium oxidation rates detected 

(Figure 1). Generally, it may be expected that an increased stress condition, such as 

lower temperature, would induce a larger number of proteins with changes in 

abundance (Mosier et al., 2015). Surprisingly, the total number of significantly altered 

Candidatus Kuenenia proteins at 15°C (Figure 4d) was much smaller than that at 

20°C (9 and 39, respectively). Of these 9 proteins, kustc0824 and kustc0827 had 

significantly decreased levels and these have high similarity to subunits of the 

proton-translocating NADH dehydrogenase I, NuoC and NuoF. NADH 

dehydrogenase I is a key electron transfer unit that translocates two H
+
/e

-
(Friedrich et 

al., 1995), for generating a proton motive force (PMF). As anammox bacteria 

conserve energy by utilizing the PMF, decreased levels of this NADH dehydrogenase 

would result in reduced energetic capabilities and reduced cellular activities. Thus, 
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during low-temperature stress conditions, cells may shut down most physiological 

processes and enter into a stagnant state (Valledor et al., 2013). Additionally, this may 

result in the organism‘s proteome remaining largely unchanged and explain why 

fewer proteins had significantly altered levels at 15°C. The results suggest that 

Candidatus Kuenenia is energy limited at this low temperature, which could explain 

the much lower levels of the ammonium oxidation and nitrite reduction rates detected 

in the culture (Figure 1a). 

 

The proteome profile of Candidatus Brocadia at 15°C relative to 35 ˚C was seen to 

feature more proteins with lowered abundance in comparison to proteins with 

increased levels (Figure 4e). However, two proteins associated with translation, the 

50S ribosomal proteins L11 and L17, two HAO-like proteins and one aldehyde 

dehydrogenase had significantly higher levels at the lower temperature. Potentially, 

the increased HAO-like proteins may be serving to relieve the cells of inhibitory 

nitrite levels, such as was observed at 20°C. Aldehyde dehydrogenase belongs to a 

family of NAD(P)
+
-dependent enzymes with a broad substrate specificity that 

catalyze the oxidation of various toxic aldehydes to carboxylic acids (Perozich et al., 

1999). Thus, at the lower temperature the increased levels of the dehydrogenase may 

serve as a defense strategy for the detoxification of excessive aldehydes. 

 

In contrast, the proteome profile for Candidatus Jettenia was very different to those of 

the other two anammox genera. Twenty proteins were significantly altered at 15 °C 
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relative to 35 °C, which is greater than the number (16) of significantly altered 

proteins at 20 °C relative to 35 °C (Figure 4c, f). Compared to 35°C, chaperonin 

GroEL was significantly more abundant at 15 °C (Table 3). The chaperonin is 

involved in restoring protein structure and stability (Hendrick and Hartl, 1993). 

Protein folding and stability are both temperature-dependent, and in vitro studies have 

characterized cold denaturation in addition to the better-known heat denaturation (Dill 

et al., 1989; Privalov, 1990). The increased levels of the chaperonin suggest that the 

low temperature denatured proteins, and that Candidatus Jettenia was responding to 

maintain accurate protein structure. 

 

At low temperatures, it is possible that energy conservation processes are 

compromised. This is likely occurring here for Candidatus Jettenia, as we detected 

increased levels of five proteins from the energy production and conversion COG 

category (Figure 4f). These proteins included a pyruvate ferredoxin/flavodoxin 

oxidoreductase, a putative cytochrome c, an F0F1-ATP synthase B subunit, a 

dihydrolipoamide dehydrogenase, and a hydroxylamine oxidoreductase (Table 3). The 

high levels of pyruvate ferredoxin/flavodoxin oxidoreductase at low temperatures 

would support the metabolism of pyruvate, which is a central metabolite involved in 

various anabolic and catabolic reactions. This activity would provide acetyl-CoA and 

carbon for other physiological processes. The high levels of HAOs at 15°C would 

enable the detoxification of inhibitory nitrogenous compounds. These increased 
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activities are likely improving the energetic capacity of these anammox bacteria at the 

low temperature. 

 

Low temperature can adversely affect transcription by impeding the unwinding of the 

DNA, making it difficult for RNA polymerase to bind (Feller and Gerday, 2003). 

Indeed, we identified increased levels of the RNA polymerase sigma 70 subunit 

(RpoD) at the lower temperature of 15°C (Table 3). RpoD is an indispensable 

component of the transcriptional machinery, binding to the DNA, and higher levels of 

this may ensure efficient transcription. Low temperature would also pose problems for 

translation (Jones and Inouye, 1994). High levels of translation initiation factor (IF-3) 

were observed in the current study in the culture maintained at 15°C (Table 3). These 

observed changes suggest that this anammox bacterium, Candidatus Jettenia, was 

altering its transcription and translational abilities to adapt to the low temperature.  

 

The intention of the sequencing batch incubations at the different temperatures was to 

detect proteome wide changes from the different bacteria in the anammox enrichment. 

These were short term incubation experiments (15 days) and were not designed to 

cause microbial community changes. Indeed, our metaproteomic analysis indicates 

that the communities remained similar at the different temperatures, and this is logical 

given the potential slow growth of these organisms (Strous et al., 1999b). However, 

we did detect differences in the genus specific proteome profiles at the low 

temperature, in particular there was evidence that more changes of Candidatus 
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Jettenia proteome was observed at 15˚C in comparison to the other two anammox 

genera studied here. Consequently, different anammox bacteria may have particular 

advantages and be selected for at different temperatures. It is seen that anammox 

bacteria isolated from wastewater treatment reactors have an optimum temperature of 

about 35°C (Strous et al., 1999b), e.g. Candidatus Brocadia anammoxidans (Schmid 

et al., 2005) and Kuenenia stuttgartiensis (Schmid et al., 2000). However, anammox 

bacteria in natural ecosystems such as Northern European soils and marine sediments, 

thrive at low temperatures, for example Candidatus Scalindua spp., are detected in 

environments at<10 °C (Van De Vossenberg et al., 2008). 

 

In summary, a metaproteomic analysis was used to detect the impact of different 

temperatures on the global protein expression profiles of an enriched anammox 

culture, which allows us to fill the important gap between macroscopic 

characterization of anammox bacteria and underlying proteome modulation 

mechanisms response to the thermal decreases. We detected the key responses of the 

anammox community when decreasing the temperate from 35°C (Figure 5). In 

particular, it was seen that at the lower temperature of 20°C the integrity of the 

proteins within anammox bacteria was maintained through degradation and recycling 

rather than through the repair of malfunctioning proteins. At the lower temperatures 

of 20°C and 15°C, the anammox bacteria maintained constant levels of most key 

enzymatic proteins involved in the central anammox reactions, this included nitrite 

reductase, hydrazine synthase, and hydrazine dehydrogenase. At the lower 
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temperatures, stress due to toxic nitrogen compounds and/or reactive oxygen species 

is likely occurring within the anammox bacteria. HAO-like proteins and an oxidative 

stress response protein (a catalase) were at significantly higher levels to compensate 

for the adverse effects. Additionally, many of the proteins with significantly altered 

levels at the lower temperatures had unknown functions, and these could be 

interesting targets for future characterization. 

 

It is likely that anammox bacteria from distinct genera mutually benefit each other in 

mixed culture in natural or engineered ecosystems (Guo et al., 2016; Luo et al., 2017). 

Additionally, niche differentiation of anammox bacteria would allow for 

asynchronous responses to fluctuating conditions, which would assist to maintain 

function of the community across changing environments. Importantly, our study 

revealed that the different anammox genera reacted differently at the lowered 

temperature. This was especially at 15°C where limited proteome wide changes were 

detected for Candidatus Kuenenia and Candidatus Brocadia. In comparison, 

Candidatus Jettenia exhibited many changes of protein abundance at the low 

temperature. This supports the hypothesis that different anammox bacteria will be 

favored at different temperatures. This is particularly significant in the optimization of 

the operation and performance of WWTPs and for understanding anammox activities 

in natural environments.  

 

Indeed, when regarding the operation performance of anammox bioreactors, many 
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studies report that when the temperature is lowered the reactor performance can 

deteriorate at first and then after time improve or at least stabilize. This is the case 

when the final lowered temperature was higher than 12°C (Dosta et al., 2008; Hu et 

al., 2013; Hendrickx et al., 2012). However, when the temperature is further 

decreased to be less than 10°C, the reactor performance is reported to deteriorate and 

finally result in failure of anammox (Lotti et al., 2014). It is not clear how anammox 

bacteria would respond the long-term exposure of low temperature at the protein level 

in those studies, but likely the culture would experience change to the anammox 

community composition as we suggest herein. 

 

For the full-scale operation of anammox process, the strategy to avoid performance 

deterioration is to keep the temperature stable or above an appropriate level. However, 

this is not practically useful for anammox implementation in cold regions. In the next 

steps, we need to consider how to optimize the reactor operation under low 

temperature. This may be achieved by further understanding these molecular 

mechanisms with a view to manipulate those. 

 

Experimental procedures 

Reactor operation 

Anammox bacteria enrichment cultures were generated within a laboratory-scale 

anammox sequencing batch reactor (SBR) (15 L). In the SBR the mixed liquid 

volatile suspended solid (MLVSS) concentration was maintained at approximately 5.5 
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g/L, the temperature was at 35 ± 1°C and the pH controlled at 7–8. The SBR was 

operated with three cycles per day (8 h for each cycle), that consisted of five 

consecutive phases of: filling (20 min), anoxic mixing (360 min), settling (60 min), 

effluent decanting (20 min), and an idle phase (20 min). The decanting volume was 50% 

of the working volume. The synthetic medium contained 640 mg/L of nitrogen, which 

was provided as NH4
+
 (nitrogen: 280 mg/L) and NO2

-
 (nitrogen: 360 mg/L). The other 

mineral components of the medium were as described previously (Van de Graaf et al., 

1996). The reactor was operated for more than 450 days.  

 

Fluorescence in situ hybridization (FISH) 

Fixation and hybridization of biomass samples were conducted as previously 

described (Joss et al., 2011; Nielsen et al., 2009). Prior to hybridization, the fixed 

samples were placed on ice and homogenized by ultrasonic dispersion to disrupt large 

aggregates. The FISH probes used were: EUB338 mix for the detection of all bacteria 

cells (Daims et al., 1999); Amx368, specific for the currently known anammox genera 

(Schmid et al., 2003); Amx820, specific for Candidatus Kuenenia and Candidatus 

Brocadia (Schmid et al., 2003); KST157, specific for Candidatus Kuenenia (Schmid 

et al., 2003); Ban162 (Schmid et al., 2001) and Bfu613 (Kartal et al., 2008), specific 

for Candidatus Brocadia; and Sca1309 (Schmid et al., 2003), specific to Candidatus 

Scalindua (Table S3, SI). FISH preparations were visualized with a Zeiss LSM 510 

Meta confocal laser-scanning microscope (CLSM) using a Plan-Apochromat 63× oil 

(NA1.4) objective. Thirty images were taken from each sample for quantification. The 
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percentage of anammox bacteria was determined via FISH image analysis using 

image-analyzing software (Image-Pro Plus, V6.0, Media Cybernetics). The standard 

error of the mean (SEmean) was calculated as the standard deviation divided by the 

square root of the number of images. The detailed procedure of FISH is described in 

the Supporting Information. 

 

Temperature treatments of the anammox enrichment 

Anammox bacteria enrichment culture (2L) was taken from the parent SBR during 

one idle phase, and then washed with 1x Phosphate Buffered Saline to remove 

residual components. Fresh medium was introduced to make a total volume of 3.6 L, 

and the mixed culture was divided equally into six aliquots of 600ml into 1000ml 

serum bottles. Initially, all bottles were purged with an Ar/CO2 (95/5%) gas mixture to 

establish anoxic conditions, the pH was adjusted to 7.2 and the bottles were then 

sealed with gas-tight rubber stoppers. Groups of two reactor bottles were incubated at 

either 35°C, 20°C or 15°C and shaken at 200 rpm. Media was added to the bottles to 

achieve nitrogen concentrations of 80 mg/L nitrogen from NO2
-
, and 110 mg/L 

nitrogen from NH4
+ 

(other mineral components of the media were identical to those in 

the parent SBR). The reactor bottles were incubated for a total of 15 days during 

which two incubation cycles per day were performed. At the end of each cycle, half of 

the medium was carefully replaced with fresh medium. To do this, the reactor medium 

was forced out through a needle immerged in the liquid culture (internal diameter 

2mm) by providing high purity dinitrogen gas through another needle (0.6 mm 
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internal diameter) positioned in the upper gas phase of the bottle reactor. Both needles 

were stainless steel, and fixed through the upper gastight rubber stopper. Following 

that fresh media was injected into the bottle reactors using a 500ml syringe connected 

to a needle immerged in the liquid phase, while gas was released through another 

needle inserted into the rubber stopper. Anoxic conditions were maintained in the 

reactor bottles by purging the media with Ar/CO2 (95/5%) gas mixture and 

maintaining gastight conditions. The reactor pH was monitored at the end of each 

cycle and adjusted to around 7.2 with hydrochloric acid and sodium bicarbonate. 

Stable biomass concentrations were maintained in the bottle reactors during the 

incubation period as the MLVSS measured at the experiment start and end was 

approximately 2000 mg/L. Analysis of the nitrogen species and MLVSS of the 

cultures were conducted as described previously (Wang et al., 2016). At the 30
th

 cycle, 

sludge samples of approximately 0.5 g were taken from each bottle reactor maintained 

at the three temperatures (six reactors in total included biological duplicates) for the 

6-plex iTRAQ proteomic analysis.  

 

Protein extraction and preparation 

Proteins were extracted from the temperature-treated anammox bacteria enrichment 

cultures (35°C, 20°C, 15°C) using an SDS protein extraction protocol based on a 

previously reported method (Chourey et al., 2010). Following protein digestion by 

trypsin, peptide-labeling using the iTRAQ 6-plex labeling reagents (AB SCIEX, 

Foster City, California, USA) was performed according to the manufacturer‘s 
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instructions. The labeled peptides were fractionated by ultra-performance liquid 

chromatography using a C18 column (Waters BEH, C18, 2.1x50mm,1.7µm) (Waters 

Corporation, Milford, Massachusetts, USA). The absorbance at 214 nm was 

monitored, and a total of 10 fractions were collected (the detailed protein extraction 

and preparation procedures are in the Supporting Information). 

 

Protein identification and quantification 

Each fraction was separated by nano-high performance liquid chromatography 

(Eksigent of AB Sciex, California, USA) on a secondary reversed-phase analytical 

column (Eksigent, C18, 3µm, 150mmx 75µm) according to the manufacturer‘s 

instructions. Subsequently, peptides were eluted using a 5–45% gradient of solvent B 

(98% ACN with 0.1% formic acid), over 5–100 min. The total flow rate was 

maintained at 300 nL/min. An electrospray voltage of 2.5 kV versus the inlet of the 

mass spectrometer was used. The Q Exactive mass spectrometer (Thermo Scientific, 

Bremen, Germany) was operated in information-dependent data acquisition mode to 

switch automatically between mass spectrometry (MS) and tandem mass spectrometry 

(MS/MS) acquisition. MS spectra were acquired across the mass range of 350–1250 

m/z. The 10 most intense precursors were selected for fragmentation per cycle, with a 

dynamic exclusion time of 30s. The mass spectrometry proteomics data have been 

deposited to the Proteome Xchange Consortium (Vizcaino et al., 2014) via the PRIDE 

partner repository with the dataset accession numberPXD006032. 
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Protein database, mapping and analysis 

All MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; 

version 2.3.0). Mascot was set up to search the concatenated database containing 

27,827 protein sequences determined from the genome sequences of Candidatus 

Kuenenia, Candidatus Brocadia, Candidatus Jettenia, and Candidatus Scalindua. 

Mascot searches were conducted with a fragment ion mass tolerance of 0.05 Da, and a 

parent ion tolerance of 10.0 PPM. Carbamidomethyl cysteine and iTRAQ 6-plex 

labeling of lysine at the N-terminus were specified in Mascot as fixed modifications. 

Oxidation of methionine and iTRAQ 6-plex labeling of tyrosine were specified as 

variable modifications. 

 

Scaffold (version Scaffold_4.4.5, Proteome Software Inc., Portland, OR, USA) was 

used to validate the MS/MS based peptide and protein identifications. Peptide 

identification was accepted at a false discovery rate of <1.0% as determined by the 

Scaffold Local FDR algorithm. Protein probabilities were assigned by the Protein 

Prophet algorithm (Searle, 2010). Protein identifications were accepted if they could 

be established at greater than 90.0% probability and contained at least 2 identified 

peptides. Functional categories of identified proteins were determined using the 

Clusters of Orthologous Groups (COG) database and the BLAST algorithm. 

Differentially abundant proteins were defined as those with normalized total intensity 

ratios that were either ≥ 1.2 or ≤ 0.8, and having a Rank Product P-value <0.05 

(Mosier et al., 2015). In this study, we assumed that the total amount of protein per 
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cell is stable, in the cultures incubated at the different temperatures. Protein 

abundance was normalized at the community level to determine each protein‘s 

abundance relative to all proteins in the sample. This normalization just considers 

biomass differences between samples, rather than differences in each organism‘s 

abundance. When analyzing the changes of protein abundance at the genus level, 

protein abundance was determined by normalizing individual proteins to the total 

protein abundance from each specific anammox genus within a same sample.  
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Table 1. The ten most abundant proteins quantified from three anammox genera within the sludge 

incubated at 35°C 

Accession Gene tags Identified Proteins 
MS signal 

intensity 

Candidatus Kuenenia 

gi|91202984 kustd1878 Porin 2.09E+08 

gi|564731309 — Chain A, Hydroxylamine Oxidoreductase 1.11E+08 

gi|939186673 — Chain A, Hydrazine Synthase  1.23E+08 

gi|91200563 kuste2860 hypothetical (di heme) protein  1.08E+08 

gi|939186674 — Chain B, Hydrazine Synthase  8.64E+07 

gi|91203321 kustd2215 
strongly similar to 10 kDa chaperonin 

(GroES protein)  8.54E+07 

gi|91202446 kustd1340 
similar to hydroxylamine oxidoreductase 

hao 6.73E+07 

gi|91203786 kustc0694 hydrazine dehydrogenase (HDH) 7.51E+07 

gi|91203216 kustd2110 conserved hypothetical protein 5.74E+07 

gi|91202620 kustd1514 S-layer protein  5.67E+07 

Candidatus Brocadia 

gi|816980804 BROFUL_00700 hypothetical protein BROFUL_00700  1.90E+08 

gi|762180876 BROSI_A1433 hypothetical protein BROSI_A1433  1.67E+08 

gi|762180077 BROSI_A0629 hydrazine synthase alpha subunit  1.11E+08 

gi|816981233 BROFUL_00383 hydrazine synthase subunit B  9.46E+07 

gi|816981561 BROFUL_00163 Chaperonin GroES 9.24E+07 

gi|364505647 — hydrazine synthase subunit A, partial  6.90E+07 

gi|762181769 BROSI_A2345 hydrazine-oxidizing enzyme  5.07E+07 

gi|816979735 BROFUL_01551 
hydroxylamine oxidoreductase-like protein, 

partial  4.61E+07 

gi|816979507 BROFUL_01720 Putative transposase, partial  4.17E+07 

gi|762183013 BROSI_A3601 Chaperonin GroEL 3.54E+07 

Candidatus Jettenia 

gi|386406010 KSU1_B0536 conserved hypothetical protein   2.05E+08 

gi|164605312 — similar to hypothetical (di heme) protein  1.18E+08 

gi|164605314 — hydroxylamine oxidoreductase  1.17E+08 

gi|164605313 — similar to hypothetical (di heme) protein  1.08E+08 

gi|386405673 KSU1_B0199 putative heme protein  9.41E+07 

gi|118123413 — hydrazine-oxidizing enzyme  8.50E+07 

gi|386403142 KSU1_D0441 putative hydrazine hydrolase C subunit  4.44E+07 

gi|386404695 KSU1_C0935 alkylhydroperoxide reductase  3.12E+07 

gi|386403047 KSU1_D0346 RNA polymerase sigma 70 subunit RpoD 3.00E+07 

gi|386405720 KSU1_B0246 Chaperonin GroEL 2.51E+07 
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Table 2. Differentially abundant proteins detected within the batch incubations at 20°C relative to 

35°C 

 

Accession Gene tags Identified Proteins 
Fold 

change* 

Candidatus Kuenenia 

gi|91200176 kuste2473 hypothetical protein kuste2473  1.5  

gi|91203443 kustc0351 conserved hypothetical protein 1.4  

gi|91203550 kustc0458 similar to hydroxylamine oxidoreductase  1.2  

gi|91200659 
kuste2956 

strongly similar to 50S ribosomal protein 

L7/L12  
1.2  

gi|91203549 
kustc0457 

hydroxylamine oxidoreductase hao-like 

protein 
1.3  

gi|91200580 
kuste2877 

similar to undeca heme containing 

cytochrome c protein 
1.2  

gi|91202775 kustd1669 conserved hypothetical protein  1.2  

gi|91204318 kustc1226 conserved hypothetical 1.2  

gi|91200695 
kuste2992 

strongly similar to 50S ribosomal protein 

L17  
1.3  

gi|91200668 kuste2965 strongly similar to 50S ribosomal protein L4 1.3  

gi|91204335 
kustc1243 

strongly similar to Methyl-accepting 

chemotaxis protein 
1.7  

gi|91200042 kuste2339 similar to pyruvate synthase alpha chain 1.2  

gi|91204079 kustc0987 

strongly similar to 1-(5-phosphoribosyl)-5- 

[(5-phosphoribosylamino) 

methylideneamino) 

imidazole-4-carboxamid e isomerase 

1.2  

gi|91202378 kustd1272 conserved hypothetical protein  1.5  

gi|91201300 kuste3597 conserved hypothetical protein  1.8  

gi|91203635 kustc0543 Predicted orf 1.4  

gi|91204285 
kustc1193 

similar to heme d1 synthesis protein 

nirH/nirL 
1.2  

gi|91200051 
kuste2348 

conserved hypothetical protein putative 

tatA/E 
1.3  

gi|91202407 kustd1301 strongly similar to catalase 1.4  

gi|91202665 kustd1559 similar to 30S ribosomal protein RpsT 1.4  

gi|91200676 
kuste2973 

strongly similar to 30S ribosomal protein 

S17 
1.3  

gi|91204599 
kusta0082 

strongly similar to nucleoside diphosphate 

kinase 
1.3  

gi|91200672 
kuste2969 

strongly similar to 50S ribosomal protein 

L22  
1.3  

gi|91200422 kuste2719 similar to octaprenyl diphosphate synthase  1.4  

gi|91203548 kustc0456 hypothetical protein kustc0456 1.4  
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gi|91203213 kustd2107 hypothetical protein kustd2107  1.2  

gi|91202431 kustd1325 unknown protein  1.4  

gi|91202894 kustd1788 unknown protein 1.2  

gi|91204453 kustb0208 unknown protein 1.4  

gi|227248568 PRK02304 unnamed protein product 1.3  

gi|91200177 kuste2474 unknown (diheme) protein  1.4  

gi|91200757 kuste3054 unknown protein  1.3  

gi|91201139 kuste3436 hypothetical protein kuste3436  0.8  

gi|91202579 kustd1473 hypothetical protein kustd1473  0.8  

gi|91201141 kuste3438 conserved hypothetical protein 0.8  

gi|91204195 kustc1103 strongly similar to ribonuclease PH  0.8  

gi|91200245 kuste2542 similar to acetolactate synthase 0.8  

gi|91200488 kuste2785 unknown protein 0.8  

gi|91201134 kuste3431 unknown protein 0.8  

Candidatus Brocadia 

gi|816979735 
BROFUL_01551 

hydroxylamine oxidoreductase-like protein, 

partial 
1.6  

gi|816978248 BROFUL_02744 putative heme protein small subunit NaxS 1.3  

gi|816981232 BROFUL_00382 hydrazine synthase subunit C  1.2  

gi|816980468 BROFUL_00960 Putative peptidyl-prolyl cis-trans isomerase 1.3  

gi|816978241 BROFUL_02750 putative cytochrome c 1.4  

gi|816978823 BROFUL_02271 translation elongation factor G  1.3  

gi|816977992 BROFUL_02942 hypothetical protein BROFUL_02942 1.3  

gi|816981195 BROFUL_00400 hypothetical protein BROFUL_00400 1.3  

gi|816980082 BROFUL_01278 hypothetical protein BROFUL_01278  1.3  

gi|762180583 BROSI_A1140 phosphomannomutase 0.8  

gi|816980820 BROFUL_00716 nitrogen regulatory protein  0.8  

gi|816978461 BROFUL_02592 hypothetical protein BROFUL_02592 0.7  

gi|816978084 BROFUL_02869 hypothetical protein BROFUL_02869 0.7  

gi|816979507 BROFUL_01720 Putative transposase, partial  0.6  

gi|816979291 BROFUL_01865 putative heme protein  0.8  

Candidatus Jettenia 

gi|164605314   — hydroxylamine oxidoreductase  1.3  

gi|386403047 KSU1_D0346 RNA polymerase sigma 70 subunit RpoD 1.4  

gi|386404247 KSU1_C0487 conserved hypothetical protein   1.2  

gi|386405356 KSU1_C1596 conserved hypothetical protein   1.3  

gi|386403132 KSU1_D0431 conserved hypothetical protein   1.4  

gi|386403895 KSU1_C0135 hypothetical protein KSU1_C0135   1.6  

gi|386406021 KSU1_B0547 putative 30S ribosomal protein S6   1.3  

gi|386404637 KSU1_C0877 RNA-binding protein   1.3  

gi|386402929 KSU1_D0228 cobyrinic acid a, c-diamide synthase   1.3  

gi|386404089 KSU1_C0329 acetyl coenzyme A synthase alpha subunit   1.7  

gi|386406136 KSU1_B0662 3-isopropylmalate dehydratase large subunit   1.3  

gi|386405739 KSU1_B0265 putative cytochrome c   1.3  
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gi|386403880 KSU1_C0120 ATPase   1.4  

gi|386404050 KSU1_C0290 two-component sensor kinase   1.4  

gi|386402762 KSU1_D0061 conserved hypothetical protein   0.8  

gi|386403147 KSU1_D0446 putative heme protein   0.7  

*Fold change, is the ratio of the abundance of the protein identified from the 20
o
C incubation 

culture to that from the 35
o
C incubation culture. Differentially abundant proteins were those with 

normalized total intensity ratios of ≥ 1.2 or ≤ 0.8, combined with a Rank Product P-value <0.05. 
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Table 3. Proteins detected within the batch incubations with significantly altered levels at 15°C 

relative to 35°C 

Accession Gene tags Identified Proteins 
Fold 

change* 

Candidatus Kuenenia 

gi|91202276 kuste4574 similar to hydroxylamine oxidoreductase hao 1.2  

gi|91203443 kustc0351 conserved hypothetical protein  1.2  

gi|91202431 kustd1325 unknown protein   1.4  

gi|91200757 kuste3054 unknown protein   1.3  

gi|91201139 kuste3436 hypothetical protein kuste3436   0.8  

gi|91203919 kustc0827 
similar to proton-translocating NADH  

dehydrogenase I, 51 kDa subunit (NuoF)   
0.8  

gi|91201095 kuste3392 hypothetical protein kuste3392  0.7  

gi|91203916 kustc0824 
strongly similar to proton-translocating 

NADH dehydrogenase I chain C (NuoC)  
0.8  

gi|91200097 kuste2394 hypothetical protein kuste2394  0.8  

Candidatus Brocadia 

gi|816979735 
BROFUL_01551 

hydroxylamine oxidoreductase-like protein, 

partial  
1.3  

gi|816979724 BROFUL_01552 aldehyde dehydrogenase   1.9  

gi|816979734 BROFUL_01550 hydroxylamine oxidoreductase-like protein   1.3  

gi|816978815 BROFUL_02263 50S ribosomal protein L11   1.3  

gi|816979249 BROFUL_01894 50S ribosomal protein L17   1.8  

gi|762180589 BROSI_A1146 protein contains FOG domain  0.6  

gi|762179911 BROSI_A0457 transaldolase 0.8  

gi|762180583 BROSI_A1140 phosphomannomutase 0.8  

gi|816980209 BROFUL_01178 formate dehydrogenase   0.7  

gi|762181905 BROSI_A2482 site-specific tyrosine recombinase 0.5  

gi|816979744 BROFUL_01545 putative peptidase   0.7  

gi|762179705 BROSI_A0251 Dihydrolipoamide acetyltransferase 0.6  

gi|816979887 BROFUL_01449 alcohol dehydrogenase   0.8  

Candidatus Jettenia 

gi|386404435 
KSU1_C0675 

Pyruvate ferredoxin/flavodoxin 

oxidoreductase  
1.4  

gi|386403129 KSU1_D0428 methenyl tetrahydrofolatecyclohydrolase 2.9  

gi|164605314 — hydroxylamine oxidoreductase  1.2  

gi|386403047 KSU1_D0346 RNA polymerase sigma 70 subunit RpoD 1.5  

gi|386405967 KSU1_B0493 putative cytochrome c   1.4  

gi|386404247 KSU1_C0487 conserved hypothetical protein  1.3  

gi|386406255 KSU1_A0041 conserved hypothetical protein  1.8  

gi|386405720 KSU1_B0246 Chaperonin GroEL 1.4  

gi|386402843 KSU1_D0142 glycoside hydrolase   1.3  

gi|386405114 KSU1_C1354 two-component sensor kinase   1.3  

gi|386405356 KSU1_C1596 conserved hypothetical protein   1.3  
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gi|386404677 KSU1_C0917 F0F1 ATP synthase B subunit  1.5  

gi|386405097 KSU1_C1337 translation initiation factor IF-3  1.6  

gi|386403132 KSU1_D0431 conserved hypothetical protein   1.3  

gi|386406074 KSU1_B0600 conserved hypothetical protein  1.4  

gi|386404633 KSU1_C0873 two-component sensor kinase   1.3  

gi|386405443 KSU1_C1683 dihydrolipoamide dehydrogenase  1.4  

gi|386406010 KSU1_B0536 conserved hypothetical protein   0.8  

gi|164605312 — similar to hypothetical (di heme) protein   0.8  

gi|386405654 KSU1_B0180 conserved hypothetical protein  0.6  

*Fold change, is the ratio of the abundance of the protein identified from the 15
o
C incubation 

culture to that from the 35
o
Cincubation culture. Differentially abundant proteins were those with 

normalized total intensity ratios of ≥ 1.2 or ≤ 0.8, combined with a Rank Product P-value <0.05. 

 

 

  

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



  

FIGURE LEGENEDS 

 

Figure 1 The ammonium oxidation (a) and nitrite reduction (b) rates detected in the 

six sequence batch incubations as the temperatures of 15°C, 20°C and 35°C. A 

decrease of both ammonium oxidation and nitrite reduction rates with decreasing 

temperature was evident. 

 

Figure 2 Principal component analysis of the 1539 protein abundance values detected 

in the sequence batch incubations operated at 15°C, 20°C and 35°C 

 

Figure 3 The number of proteins associated with all anammox genera assigned to 

categories of Clusters of Orthologous Groups (COG)with significantly different 

abundance at lower temperatures. The COG categories are J: Translation, ribosomal 

structure and biogenesis; K: Transcription; L: Replication, recombination and repair; 

D: Cell cycle control, cell division, chromosome partitioning; V: Defense mechanisms; 

T: Signal transduction mechanisms; M: Cell wall/membrane/envelope biogenesis; N: 

Cell motility; Z: Cytoskeleton; W: Extracellular structures; U: Intracellular trafficking, 

secretion and vesicular transport; O: Posttranslational modification, protein turnover, 

chaperones; C: Energy production and conversion; G: Carbohydrate transport and 

metabolism; E: Amino-acid transport and metabolism; F: Nucleotide transport and 

metabolism; H: Coenzyme transport and metabolism; I: Lipid transport and 

metabolism; P: Inorganic ion transport and metabolism; and Q: Secondary metabolites 

biosynthesis, transport and catabolism. 
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Figure 4 The number of proteins associated with individual anammox genus assigned 

to Clusters of Orthologous Groups (COG) categories with significantly different 

abundances at lower temperatures. Protein abundance changes from Candidatus 

Kuenenia at 20 ˚C in comparison to 35 ˚C (a) and at 15 ˚C in comparison to 35 ˚C (d). 

Protein abundance changes from Candidatus Brocadia at 20 ˚C in comparison to 35 

˚C (b) and at 15 ˚C in comparison to 35 ˚C (e). Protein abundance changes from 

Candidatus Jettenia at 20 ˚C in comparison to 35 ˚C (c) and at 15 ˚C in comparison to 

35 ˚C (f). The COG categories are those referred to in Figure 3. 

 

Figure 5 Summary of metaproteomic insights into the physiological response of 

anammox bacteria to decreased temperature. Green shapes are proteins with nearly 

unchanged abundance; Yellow shapes are proteins with decreased abundance; and red: 

Proteins are those with increased abundance. Nar: Nitrate reductase; Nir: Nitrite 

reductase; HZS: Hydrazine synthase; HDH: Hydrazine dehydrogenase; HAO: 

Hydroxylamine oxidoreductase; NADH: Nicotinamide adenine dinucleotide; ROS: 

reactive oxygen species 
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Figure 1 The ammonium oxidation (a) and nitrite reduction (b) rates detected in the 

six sequence batch incubations as the temperatures of 15°C, 20°C and 35°C. A 

decrease of both ammonium oxidation and nitrite reduction rates with decreasing 

temperature was evident 
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Figure 2 Principal component analysis of the 1539 protein abundance values detected 

in the sequence batch incubations operated at 15°C, 20°C and 35°C 
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Figure 3 The number of proteins associated with all anammox genera assigned to 

categories of Clusters of Orthologous Groups (COG)with significantly different 

abundance at lower temperatures. The COG categories are J: Translation, ribosomal 

structure and biogenesis; K: Transcription; L: Replication, recombination and repair; 

D: Cell cycle control, cell division, chromosome partitioning; V: Defense mechanisms; 

T: Signal transduction mechanisms; M: Cell wall/membrane/envelope biogenesis; N: 

Cell motility; Z: Cytoskeleton; W: Extracellular structures; U: Intracellular trafficking, 

secretion and vesicular transport; O: Posttranslational modification, protein turnover, 

chaperones; C: Energy production and conversion; G: Carbohydrate transport and 

metabolism; E: Amino-acid transport and metabolism; F: Nucleotide transport and 

metabolism; H: Coenzyme transport and metabolism; I: Lipid transport and 

metabolism; P: Inorganic ion transport and metabolism; Q: Secondary metabolites 
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biosynthesis, transport and catabolism; R: General function prediction only; and S: 

Function unknown.  
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Figure 4 The number of proteins associated with individual anammox genus assigned 

to Clusters of Orthologous Groups (COG) categories with significantly different 

abundances at lower temperatures. Protein abundance changes from Candidatus 

Kuenenia at 20 ˚C in comparison to 35 ˚C (a) and at 15 ˚C in comparison to 35 ˚C (d). 

Protein abundance changes from Candidatus Brocadia at 20 ˚C in comparison to 35 

˚C (b) and at 15 ˚C in comparison to 35 ˚C (e). Protein abundance changes from 

Candidatus Jettenia at 20 ˚C in comparison to 35 ˚C (c) and at 15 ˚C in comparison to 

35 ˚C (f). The COG categories are those referred to in Figure 3. 
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Figure 5 Summary of metaproteomic insights into the physiological response of 

anammoxbacteria to decreased temperature. Green shapes are proteins with nearly 

unchanged abundance; Yellow shapes are proteins with decreased abundance; and red: 

Proteins are those with increased abundance. Nar: Nitrate reductase; Nir: Nitrite 

reductase; HZS: Hydrazine synthase; HDH: Hydrazine dehydrogenase; HAO: 

Hydroxylamine oxidoreductase; NADH: Nicotinamide adenine dinucleotide; ROS: 

reactive oxygen species 
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