
 

Accepted Manuscript

A lightweight rapid application development framework for biomedical
image analysis

Shekhar S. Chandra, Jason A. Dowling, Craig Engstrom, Ying Xia,
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Highlights

• The work presents a new biomedical image analysis and
visualization framework for multiple platforms with an
open-source license suitable for commercial use.

• This Simple Medical Imaging Library Interface (SMILI)
is designed for creating easy-to-use applications for clin-
ical end-users ideal for deploying biomedical image ana-
lysis algorithms to clinical partners for evaluation.

• This submission is also part of an open-source release of
the above library at SourceForge (http://smili-project.
sourceforge.net/) and GitHub (https://github.com/
shakes76/smili).

• The library is compared to other state-of-the-art biomed-
ical image analysis software packages and validated for
clinical usability in the context of measuring distances
and angles for bone deformities of the hip joint.
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Abstract

Biomedical imaging analysis typically comprises a variety of complex tasks requiring sophisticated algorithms and visualising high
dimensional data. The successful integration and deployment of the enabling software to clinical (research) partners, for rigorous
evaluation and testing, is a crucial step to facilitate adoption of research innovations within medical settings. In this paper, we
introduce the Simple Medical Imaging Library Interface (SMILI), an object oriented open-source framework with a compact suite
of objects geared for rapid biomedical imaging (cross-platform) application development and deployment. SMILI supports the
development of both command-line (shell and Python scripting) and graphical applications utilising the same set of processing
algorithms. It provides a substantial subset of features when compared to more complex packages, yet it is small enough to ship
with clinical applications with limited overhead and has a license suitable for commercial use. After describing where SMILI fits
within the existing biomedical imaging software ecosystem, by comparing it to other state-of-the-art offerings, we demonstrate its
capabilities in creating a clinical application for manual measurement of cam-type lesions of the femoral head-neck region for the
investigation of femoro-acetabular impingement (FAI) from three dimensional (3D) magnetic resonance (MR) images of the hip.
This application for the investigation of FAI proved to be convenient for radiological analyses and resulted in high intra (ICC=0.97)
and inter-observer (ICC=0.95) reliabilities for measurement of α-angles of the femoral head-neck region. We believe that SMILI is
particularly well suited for prototyping biomedical imaging applications requiring user interaction and/or visualisation of 3D mesh,
scalar, vector or tensor data.

1. Introduction

The eventual success of algorithms within the field of bio-
medical image analysis and visualisation depends on their wide-
spread adoption within clinical research and practice. Although
validation of these algorithms on large datasets is essential, this
alone is generally insufficient (for large scale implementation)
because of the challenges associated with clinical scenarios, such
as limited or variable operator training levels, time pressures and
large variations of anatomical and pathological features across
patients. Thus, applications deploying a package of such al-
gorithms to clinical research and practice environments usually
require very specific user interface design and/or have unique
processing requirements that are not easily generalisable, res-
ulting in complicated software designs. Moreover, analysis of
biomedical images tends to be a complex task, consisting of
sophisticated algorithms, whose re-implementation can be time
consuming if the source code is not available or not commer-
cially viable due to restrictive software licensing.

In this work, we present a lightweight biomedical imaging
analysis and visualisation library called Simple Medical Imaging
Library Interface (SMILI)1, which has a liberal open-source li-
cense suitable for commercial use. With a compact suite of core

∗Principal corresponding author
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1http://smili-project.sourceforge.net/

objects in the library, biomedical imaging developers can har-
ness the features listed in table 1, which demonstrates SMILIs
support of a substantial subset of features when compared to a
representative sample of other leading contemporary and com-
mercial biomedical image analysis software. By light-weight,
we mean that SMILI has a high ratio between features available
to the number of class objects required compared to the state-
of-the-art. It is a very high-level biomedical imaging interface
with a minimal footprint (in terms of memory and computation
overhead) and small number of objects with a simple structure
(see Classes Defined in table 1 for example), while still making
sophisticated features and algorithms more readily accessible.

SMILI achieves compactness in terms of number of classes
by utilising a data driven object oriented design mirrored at
two layers. The first layer is geared to be deployed via com-
mand line applications and scripts by providing image pro-
cessing features. It is a high level (non-Graphical User Inter-
face (GUI)) Application Programming Interface (API) wrapping
to the popular Insight Toolkit (ITK) [1] and the Visualisation
Toolkit (VTK) [2] libraries. The second layer provides very high
level pre-built GUI objects via the open-source version of the
Qt software framework (qt-project.org). This layer is geared
for GUI application development with pre-built components
that can be extended upon to rapidly create custom research
oriented (cross-platform) applications suitable for clinical end-
users. This overall design facilitates readable code, high level
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Slicer SMILI ITK-SNAP MITK MeVisLab

Classes Defined (Total/Core): 1000+/500+ 43/27 500+/300+ 2000+/1000+ 2000+/1000+

Licensing: Open-Source (BSD) Open-Source (BSD) Open-Source (GPL) Open-Source (BSD) Commercial
Installer Size: 170 MB 60 MB 20 MB 60 MB 1 GB
DICOM Reading/Convert/Anonymise 3 7 3 3

Image Processing 3 7 3 3

Image Measurement/Annotation 3 7 3 3

Interactive Segmentation 2D Image, Surfaces 3D Image 3D Image 3D Image
Scripting Python 7 Python Python
Volume Rendering 3 7 3 3

Screen Capture Functionality 3 3 3 3

Rigid and Non-rigid Registration 3 7 3 3

Landmark Registration 3 7 3 3

Semi-Automatic Segmentation 7 3 3 3

4D Image Viewer 3 7 3 3

Neuro-Imaging (Diffusion etc.) Diffusion, FODs 7 3 3

Cardiac-Imaging 7 7 3 3

Shape Analysis/Visualisation 3 7 7 7

Plugins/Extensions 3 7 3 3

Plugins/Extensions AppStore 7 7 7 7

Auto Window Levelling 3 3 3 3

Flexible Layouts and Slice Viewers Slice & Four Views only Slice & Four Views only Slice & Four Views only 3

Table 1: Comparison of features between 3D Slicer, SMILI and other leading contemporary open-source or commercial software packages.

scripting and reduces pre-requisite knowledge requirements of
image processing and computer graphics for biomedical imaging
developers. Details of SMILI will be described in the design
section of the paper (see section 2). We first review other work
in the area, especially in relation to the image analysis (and
visualisation) software packages presented in table 1.

1.1. Background

In recent years, a number of biomedical image analysis lib-
raries have been developed to address many of the challenges
associated with deploying algorithms for clinical research. One
of the most complete is the open-source Medical Imaging In-
teraction Toolkit (MITK) [3], which provides a wrapping of
ITK and VTK [1, 2] with the goal of extending both libraries
for biomedical image analysis. The MITK library is mature,
feature rich and is rapidly becoming a defacto standard for both
libraries. It provides only limited support for deformable models
however, a valuable tool in medical image analysis [4–7]. In-
stead, it consists of a large number of classes based on a similar
design structure as these libraries and its use is dependent on
prior knowledge and/or experience of the ITK, VTK libraries
(such as filter names, pipelines etc.), as well as image processing
and computer graphics principles.

A similar open-source project with a liberal open-source
license is 3D Slicer [8], which delivers mature, feature complete
(see table 1) and stable medical image processing. However,
this comprehensive feature set results in a GUI that might be
complex to grasp and learn for some, while also requiring know-
ledge of underlying libraries such as the ITK to fully utilise
its capabilities as a library. Even though projects such as Sim-
pleITK [9] have made efforts to provide a high level interface for
ITK, they are implemented for use in interpreted languages only,

such as Java and Python, are intended for users new to ITK and
do possess singular easy-to-use objects within GUI applications.

Another promising software package is the commercially
developed MeVisLab [10], which provides a large range of pro-
cessing and visualisation algorithms in an easy-to-use manner
via a visual programming interface. It also has tools, such as
‘ToolRunner’ to easily deploy custom applications for clinical
partners once custom algorithms have been imported into MeVis-
Lab. However, it is only available via a non-commercial license
for non-commercial entities and the software development kit
is of significant size (1000+ classes, 1 GB). It is also optim-
ised for constructing imaging pipelines rather than for end users
such as clinicians without investing significant development re-
sources. That is, it is not built to directly provide an extensible
GUI application, but rather is a powerful software development
kit (SDK) that has a comprehensive set of tools necessary to
build one if experienced in developing MeVisLab modules. For
example, to visualise a medical image with a custom algorithm
applied to it, one has to create an ‘ImageLoad’ module, connect
it to an appropriate viewer module and a MeVisLab module
developed for your custom algorithm, and then deploy the ap-
plication using the ‘ToolRunner’ application. The user interface
for this application might not be intuitive for use by clinical
researchers unless specific efforts are made to ensure proper
design.

An open-source alternative to MeVisLab [10] is the DeVIDE
Python distribution. DeVIDE is a highly portable distribution
(also featuring ITK and VTK) for rapid prototyping of medical
imaging pipelines via a visual programming interface. This
versatile distribution however, requires porting existing librar-
ies to the Python programming language or providing Python
wrappers of existing algorithms. The distribution provides no
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wrapping of GUI libraries such as the Qt framework to aid in
user interface design of any clinical application that may be
required. Furthermore, the ability to rapidly prototype may not
necessarily translate well to large projects and commercial or
clinical deployment.

Further examples of image visualisation software include
the parallel visualisation package called Paraview [11, 12]. It
provides ways to visualise large datasets and polygonal surfaces
with a liberal open-source license, although applying image
processing algorithms to surfaces or to open complex medical
image formats such as DICOMs are not immediately apparent.
Visualising images as slices together with polygonal surfaces
also requires knowledge of the underlying visualisation library
and involves a series of steps that require knowledge of computer
graphics. OsiriX [13, 14] provides a Mac OSX only open-source
GUI environment optimised for picture archiving and commu-
nication systems (PACSs) and DICOM viewing and processing.
ITK-SNAP [15] and MRIcro provide applications specialised
for viewing, segmenting and contouring medical images across
platforms. In addition to image viewing and contouring, ImageJ
offers image processing, but has limited support for three dimen-
sional (3D) data and models (such as processing and animation).

1.2. Overview
In this paper, we present SMILI, a freely available, light-

weight library for (cross-platform) biomedical image analysis
application development. An example of an imaging applica-
tion constructed out of the main SMILI classes (one that also
ships with the library) called Simple Medical Imaging Library
X Viewer (sMILX) is shown in figure 1. The foundation of this
sMILX application is the milxQtMain object, one of the core
GUI classes in the compact suite of objects required for SMILI
based rapid application development. These GUI classes have a
very high level interface and provide essentially pre-built GUI
components that can be extended upon to rapidly create custom
research oriented (cross-platform) applications suitable for clin-
ical end-users. A custom main window object can be inherited
from the milxQtMain object to instantly create a fully featured
application as shown in figure 2. This has been recently demon-
strated by deploying a High Dynamic Range (HDR) algorithm
for magnetic resonance (MR) images [16]. The cross-platform
nature of SMILI allows the imaging data to be visualised and
processed identically across Windows, Linux and Mac OSX
operating systems. This very high level design also facilitates a
naturally scriptable API currently available for Python via a plu-
gin, which are also supported with SMILIs lightweight plugin
interface. These GUI components and scripting are discussed in
greater detail in section 2.2.

In the subsequent sections, we describe the dual layer (data
driven) object oriented design of SMILI (see sections 2.1 and 2.2)
and demonstrate its capabilities in common imaging tasks at the
command-line and GUI applications built from its main classes
(see section 4.1). We then compare SMILI to state-of-the-art
biomedical image analysis software packages (see for example
table 1) and discuss advantages and limitations of SMILI (see
section 4.2). We then utilise these GUI components to show
how clinical research applications can be developed rapidly, i.e.

within 10 hours of programming and testing (given a biomedical
imaging algorithm has already been developed), using SMILIs
generality and extensibility (see section 3.3). We validate this
custom application in a MR study of the hip focusing on manual
intra- and inter-rater measurements related to femoro-acetabular
impingement (FAI) (see sections 3.3 and 4.3).

2. Design

The overall design philosophy adopted for SMILI aims to
maintain as few objects as possible, whilst having a data driven
approach to the main high level objects that are to form the core
of the library. These objects would then implement biomedical
image processing as operations on data and act as pre-built
components ready-to-use by biomedical imaging application
developers in their research areas. The goal is to create a library
that is lightweight in terms of the number of objects and is
straight-forward to learn and grasp conceptually. The resulting
code is made up of a series of high level operations, therefore
easy to construct and in more human readable form.

For example, listing 1 shows example API of the GUI file
and model objects for pre-processing surfaces as part of a larger
medical imaging processing pipeline. Surface data is opened

Listing 1: Example of the milxQt API for the milxQtModel class.

QPoin te r <milxQtFi le > r e a d e r = new m i l x Q t F i l e ;
QPo in te r <milxQtModel> model = new milxQtModel ;
s u c c e s s = r e a d e r −>openModel ( f i l e n a m e , model ) ;
model−>c l e a n ( ) ;
model−>smoothSinc ( 2 0 ) ; / / windowed s i n c 20 i t e r a t i o n s
model−>d e c i m a t e ( 0 . 5 ) ; / / 50% d e c i m a t i o n
model−>g e n e r a t e M o d e l ( ) ; / / t h i s i s r e q u i r e d b e f o r e d i s p l a y
model−>co lourMapToJe t ( ) ; / / co lourmap
model−>viewToCoronal ( ) ; / / view
model−>show ( ) ;

and then maintained in the GUI model class, namely the milxQt-
Model object, and operated on by its methods such as smoothing
and decimation, as well as options for visualisation (such as the
sub-windows in figure 1). This single class is the only object
that is required to be learned and utilised for all aspects related
to models. The steps within listing 1 are easy to follow and
understood because of the high level nature of the interface mak-
ing constructing solutions simpler. A similar class milxQtImage
exists for images. Together with the already mentioned milxQt-
Main and the milxQtFile object, these classes are the only objects
required to accomplish most of the major features compared to
other state-of-the-art packages (see table 1). The remaining parts
of this section discusses the relevant design areas that result in
the API within the aforementioned listing. It is intended that
the outcomes of such a philosophy results in the development
of a library that is easily ported to existing projects, extensible
to different use cases, yet maintaining a set of core features ne-
cessary for developing the most common types of biomedical
image analysis applications.

To reflect the design philosophy, SMILI is designed to facil-
itate biomedical imaging research and development mirrored at
two levels. Firstly, researchers often utilise different command-
line applications to process specific part(s) of medical imaging
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Figure 1: A screenshot of the sMILX GUI application for biomedical image analysis that can display assorted types of data in a variety of different representations,
such as n-D images, surfaces/models, fields and 2D/3D plots. This screenshot shows (from left to right in pairs) vector image with subsequent streamlines, visualisation
of orientation distribution functions (ODFs) for diffusion MRI and shape analysis with vector fields and plots.

Figure 2: A schematic representation of SMILI and what it provides for medical imaging application development. The blue diamond region lists a selection of the
main features available at the top-level in SMILI and the arrows indicate the small number of derivations (dashed lines for optional) required to generate a custom
medical imaging application with all these functionalities.

data and script them together to create an imaging pipeline. The
resulting pipeline is then run on cloud computing infrastruc-
ture with clinical researchers interacting with a web interface to
process their data and with the purpose of obtaining clinically
relevant finding(s) (see for example [17]). Secondly, the ma-
jority of biomedical imaging research requires interaction with
clinical research, as well as feedback, such as making manual
measurements or rapidly visualising results easily interpretable
in clinical practice. The latter often requires deploying custom
applications with GUI interfaces for clinical research sites to

evaluate.
As a result, the overall design of SMILI consists of pro-

cessing and GUI layers whose objects exist as duals at each
other, namely the milxSMILI and milxQt sub-libraries respect-
ively, to share common processing algorithms as summarised
in figure 3. This design features three main objects, namely the
Image, Model and File objects and their duals of the GUI layer,
namely the milxQtImage, milxQtModel and milxQtFile objects,
together with a main window object for applications (discussed
in section 2.2).
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Figure 3: The internal design of SMILI (white blocks) to facilitate code reuse
within both GUI and processing applications. The ‘milx’ designation is used by
convention as a prefix for all classes. The milxSMILI layer is GUI independent
and ideally suited for command-line applications. Both layers possess ‘Swiss-
army knife’ like image and model classes capable of processing their data with
a multitude of different algorithms. The milxQt layer allows for higher level use
either via the API or in GUI applications.

2.1. Processing Layer

The processing layer of SMILI, called milxSMILI, features
three main objects and an additional class for interaction between
models and images. Firstly, the File class wraps both ITK and
VTK to provide a unified interface for supporting a variety of
different file formats for images and polygonal/model data. This
is particularly useful for VTK, which does not have a single
mechanism to load various formats for polygonal models, such
as the Standford polygonal (PLY), Wavefront (OBJ), VTK poly-
gonal (XML and legacy) and Stereolithography (STL) data files,
the way ITK does for image formats using object factories.

Secondly, the Image object of milxSMILI is a single tem-
plated class designed to be used with the itk::Image class by both
experienced and new users to ITK with over fifty supported im-
age processing algorithms. For example, to open via the File and
then threshold a labelled image and produce a signed distance-
map, one would just issue the code in listing 2 (where template
arguments and parameters are omitted for brevity). Members

Listing 2: milxSMILI Image class usage example.

i t k : : S m a r t P o i n t e r <> l a b e l I m a g e ; / / s m a r t d e l e t i o n
i t k : : S m a r t P o i n t e r <> t h r e s h I m a g e ; / / s m a r t d e l e t i o n
i t k : : S m a r t P o i n t e r <> dis tMap ; / / s m a r t d e l e t i o n

s u c c e s s = milx : : F i l e : : OpenImage <>( labelName , l a b e l I m a g e ) ;

t h r e s h I m a g e = milx : : Image < > : : B ina ryThre sho ld Image < > ( . . . ) ;

d i s tMap = milx : : Image < > : : DistanceMap < > ( . . . ) ;

of Image, such as ‘DistanceMap’ in listing 2, reduce the ele-
ments of ITK directly required by wrapping different algorithms
available in a single interface.

Lastly, the Model class has a similar design to the Image
object, but also maintains the current and previous states of
the model during processing and does not require templates
because it encapsulates a vtkPolyData object from VTK and
its operations. Listing 3 shows how the model objects can be
used in just several lines of code to clip, voxelise, convert and
compute a distance map of a surface inside the given image.
Listing 3 also shows how the clip member is very useful and

Listing 3: milxSMILI Model class usage example.

vtkSmartPointer <v t k P o l y D a t a C o l l e c t i o n > c o l l e c t i o n ;
/ / Can use F i l e : : OpenModel ( ) h e r e t o o i f open ing a s i n g l e model
milx : : F i l e : : OpenMode lCo l l ec t i on ( f i l e n a m e s , c o l l e c t i o n ) ;

vtkPolyData * s u r f a c e = c o l l e c t i o n −>GetNext I t em ( ) ;

milx : : DeformableModel model ( s u r f a c e ) ;
model . RemoveSca la rs ( ) ; / / a v o i d c a u s i n g prob lems wi th
/ / meshes ha v i ng s c a l a r s a l r e a d y
/ / s e t w e i g h t s a s s c a l a r s from image
model . M a r k S u r f a c e I n s i d e I m a g e <>(model . Ge tOutpu t ( ) , . . . ) ;
/ / MarkSur face s e t s i n s i d e p a r t s o f s u r f a c e as 1 . 0
model . C l i p ( 1 . 0 , 1 . 0 ) ;

/ / V o x e l i s e s u r f a c e
vtkSmartPointer <vtkImageData > voxelModel = model . V o x e l i s e ( . . . ) ;
LabelImageType : : P o i n t e r modelLabel =

milx : : Image < > : : ConvertVTKImageToITKImage ( voxelModel ) ;
/ / We c o n v e r t t o ITK image t o use ITK d i s t a n c e map a l g o r i t h m s

i t k : : S m a r t P o i n t e r <> modelDis tanceMap =

milx : : Image < > : : DistanceMap <>( modelLabel , . . . ) ;

straight-forward to use, but is actually non-trivial to achieve in
VTK unless one has in-depth knowledge of the library2.

In addition to the processing layer classes, the capabilities of
these objects are available via two command-line ‘Swiss-army
knife’ like applications to apply operations to multiple medical
images, namely the milxImageApp and milxModelApp applic-
ations. Examples of their use include those in the following
listings:

Listing 4: Multiple Otsu thresholding (four levels) of a set of Nifti images.

milxImageApp −−Otsu 128 * . n i i . gz −− l a b e l s 4 −p Ot su_128b in s_

Listing 5: Concatenating all surfaces in the current directory.

milxModelApp * . vtk −−c a t −o i n i t i a l . vtk

By ensuring that the command-line applications only depend on
non-GUI medical imaging libraries, these applications are ideal
for scripted processing pipelines and/or for deployment to the
cloud. Here they can be run on computing clusters accessed by
much less powerful machines via a web-interface or as part of
a cloud infrastructure, such as the Galaxy cloud platform [18].
SMILI already (intrinsically) supports Central Processing Unit
(CPU) multi-threading algorithms via implementations in ITK.
As such, SMILI will utilise as many threads as specified via
command-line arguments, usually half the number of available
threads by default. Similar porting of ITK related command-line
applications was recently demonstrated by Dowling et al. [17]
for this cloud platform.

In SMILI, an additional layer is built upon milxSMILI that
incorporates GUI capability. This GUI layer is discussed in
the next section and consists of objects that are duals of the
processing layer, while ensuring the library is structured clearly,
making incorporating SMILI into user projects straight-forward.

2In this case, one has to utilise the vtkThreshold object and pipe the result
into a vtkGeometryFilter object in order to obtain a clipped mesh.
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2.2. GUI Layer

The milxQt sub-library provides a higher level GUI layer in
SMILI by incorporating the Qt software framework (qt-project.org)
into the image and model classes for visualisation and processing
of their respective data. The primary objects in milxQt mirror
those of milxSMILI, providing milxQtImage, milxQtModel and
milxQtFile objects, augmented with two additional classes en-
gineered for creating applications.

In particular, the milxQtImage object instantiates standard
image pixel types (8-bit, RGB and float pixel types) using the
Image object, while having additional support for vector images
allowing loading and visualisation of n-D imaging data through
vector image representation of the data. The milxQtModel wraps
the Model object, while incorporating interactions with milxQ-
tImage and other milxQtModel objects allowing overlaying of
slices and meshes in respective windows (see the two middle
sub-windows in figure 1). Listing 1 shows example usage of the
milxQtFile and milxQtModel objects for pre-processing surfaces
as part of a larger medical imaging processing pipeline.

Both objects share common scientific visualisation display
options such as scalar bars, contouring and measuring quantities
like angles and distance from the view ports. These capab-
ilities are bundled into the base class for both objects called
milxQtRenderWindow, which can be thought of as milxQt’s com-
mon data object. The overall design of the classes is summarised
in figure 4. The milxQtRenderWindow class provides the basis

Figure 4: The class design structure of milxQt, the Qt based sub-library higher-
level layer in SMILI.

of extending the data model based design of SMILI from images
and models to other medical imaging data, such as shape models
(implemented as milxQtShapeModel objects), user specified data
or data types of the future.

Each milxQt object not only uses the relevant milxSMILI
classes for processing, but uses the QVTKWidget object from
VTK to display the data appropriately given the type of data and
the parameters. Thus, each of the milxQtImage and milxQtModel
objects manifest to the user as a GUI window that holds data,
processes this data and all members of the classes are available
as context menu options. A schematic representation of this
object oriented design with example MR hip image is shown
in figure 5. Crucially, with such a high level design, internal
uses of ITK and VTK are hidden as much as possible, allowing
the end-developer the freedom in writing applications for their
research with a reduced learning curve (such as listing 1).

The design also naturally provides a Python scripting inter-
face that is exposed automatically by the PythonQt library (py-
thonqt.sourceforge.net) accessible through a plugin for SMILI.
The result is that GUI elements are drivable by Python scripts
such as those shown in listing 6. In this listing, the entire sMILX

Listing 6: Python scripting example for scripting SMILI GUI elements.

# Load t h e j o i n t s and mydata module i n t o s m i l x f i r s t
e x e c f i l e ( "filenames.py" ) # module s h i p p e d wi th SMILI

meshPath = "parameterisations_surf/"
o u t p u t E x t = ".vtk"
o u t p u t P r e f i x = "prostate_"

d i r s = os . l i s t d i r ( meshPath )
f o r f i l e in d i r s :

MainWindow . l o a d F i l e ( meshPath+ f i l e ) # l o a d mean mesh

c u r r e n t M o d e l = MainWindow . a c t i v e M o d e l ( ) # g e t l o a d e d mesh

# f i n d c a s e i d i n f i l e n a m e and remember i t
c a s e = ge tCase ID ( f i l e , 0 ) # f i l e n a m e s module

outputName = o u t p u t P r e f i x + s t r ( c a s e )+ o u t p u t E x t

# p r o c e s s model
c u r r e n t M o d e l . c l e a n ( )
c u r r e n t M o d e l . smoothSinc ( 2 0 ) #windowed s i n c
c u r r e n t M o d e l . d e c i m a t e ( 0 . 2 5 )
c u r r e n t M o d e l . smoothSinc ( 2 0 ) #windowed s i n c
c u r r e n t M o d e l . d e c i m a t e ( 0 . 2 5 )
c u r r e n t M o d e l . smoothSinc ( 2 0 ) #windowed s i n c

m i l x Q t F i l e . saveModel ( outputName , c u r r e n t M o d e l ) # save r e s u l t

c u r r e n t M o d e l . c l o s e ( ) # c l o s e ( s i n c e i t s d e l e t e on c l o s e )

application (via the MainWindow variable) is driven by the script
to load all meshes in a folder, process each mesh and save it as a
separate mesh. Each result can be loaded and viewed on-the-fly
or hidden as required, as well as adjusting the camera and other
visualisation options. The milxQtFile object is automatically
loaded into the Python environment to allow file I/O.

Of the two additional classes for application creation, the
first is a plotting class called milxQtPlot derived from milxQt-
Model that supports volume (rendering), surface and scatter plots
(see figure 4). The other is the milxQtMain class designed for
supporting all the aforementioned data classes in a user friendly
main window for image viewer applications for developers. This
class is the primary class for rapidly developing clinical applica-
tions and is discussed in detail in the next section in creating a
prototype viewer for general biomedical imaging end-users.

2.3. sMILX - A Simple Medical Imaging Viewer

The primary viewer shipped with SMILI is the sMILX ap-
plication built solely out of the milxQtMain class. This class
is shown as the main window in figure 1 and effectively brings
together the multi-instance display of the milxQtImage, milxQt-
Model and milxQtPlot objects, their interactions, as well as
providing a GUI frontend for end-users to use for general med-
ical image visualisation and processing. The viewer can also be
Python scripted as shown in listing 6.

A custom main window object can be inherited from the
milxQtMain object to instantly create a fully featured applic-
ation as shown in figure 2. This object has mechanisms for
maintaining tabbed workspaces, each one allowing the display
of multiple windows, which can be milxQtImage, milxQtModel
objects or any derivative of their base object if implementing
one’s own window. It implements interfaces, such as buttons,
toolbars and dock windows, for loading, saving and converting
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Figure 5: A schematic of the display and processing capabilities of SMILI for n-D images represented as milxQtImage object, which are also available as right click
(context menu) options. Each GUI object in SMILI manifests as a window with the show() member using the Qt framework and all members mirror those of the right
click options.

imaging data, as well as various view options such as taking
screenshots, tiling and linking views of windows. The class also
has mechanisms to load plugins via a compact plugin interface
implemented in the milxQtPluginInterface class.

Figure 6 shows the result of window interaction (by double
clicking and dragging) between the data objects, such as milxQ-
tImage and milxQtModel, to create overlays containing multiple
data combined into a single window. In this case, the windows
are aware of what type of display they should transfer to other
windows (such as an image slice for images) and (automatic-
ally) update other windows if the view is changed accordingly.
Two additional milxQt command-line applications, namely the
milxOverlay and milxAnimate, also offer the same capability for
overlaying multiple data for (off-screen rendered) screenshots
and movies respectively.

The additional milxQtPluginInterface provides the ability to
extend milxQt and the milxQtMain based applications with plu-
gins, but is not essential to SMILIs core functionality. A number
of plugins are already provided for DICOM viewing/conversion
(including DICOM-RT), animation, Python scripting and image
registration.

3. Method

To demonstrate (the functionality of) SMILI and validate
the framework in a clinical use case, we conducted three exper-
iments. To show the code re-use, flexibility in user workflows
and duality in object oriented design, we show and compare
medical imaging use cases of processing MR images via the
command-line and GUI applications. We then do a feature set
comparison with some popular medical imaging software pack-

ages to show how SMILIs light-weight design permits a rich
feature set. Finally, we discuss the design and implementation
of a custom clinical application in manual image annotation and
measurement within musculoskeletal use case and describe these
results in section 4.

3.1. Duality in Object Oriented Design

In a typical medical imaging use case, a researcher needs
to convert a DICOM series and pre-process the resulting MR
image(s). In the following experiment, we show how these oper-
ations are achieved using the same algorithms for two workflows
incorporating the command-line and GUI applications, mainly
through the sMILX viewer, respectively. The data set chosen for
this experiment comprise shoulder MR images utilised in [19].
In another typical medical imaging use case, we evaluate the
computational and time performance of SMILI command-line
and sMILX applications in handling large studies consisting
of hundreds of MR images by processing and visualising this
data. The data set chosen for this experiment comprised pel-
vic MR images (including the prostate) utilised in [20] of 38
patients each having eight timepoints (i.e. 304 3D MR Im-
ages totalling 4.5 GB of compressed storage and approximately
9.5GB of uncompressed storage at 256x256x128 resolution per
image). A similar experiment was also conducted with sMILX.
High resolution multi-channel data from a Sampling Perfection
with Application optimized Contrasts using different flip angle
Evolution (SPACE) knee scan at 7T (total of 28 images, each
approximately 115 MB each in size compressed, 3.2 GB on
compressed storage at 464x640x192 resolution and 0.5 mm iso-
tropic acquisition per channel) were simultaneously visualised
in sMILX and the performance of the visualisation was noted.
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Figure 6: The overlay capability of the milxQtMain object (and hence the sMILX application) for supported data forms. The above schematic shows an example of
an MR prostate dataset (A), its corresponding manual segmentation (B) (and surface representation (D)) and the non-rigid registration deformation field (C) (and
streamlines seeded from the slice in view (E)) visualised in sMILX. The red arrows indicate the operations applied and direction of data placed into the central
window (F) (with a volume rendering of (C)) for overlay. The data is transferred between windows by a double click and drag mouse operation or via context menus
such as (G).

We then discuss the advantages and limitations of each approach
and comment on which code executed is common within each
workflow.

3.2. Feature Set Comparisons

To compare SMILIs feature set to the state-of-the-art, each
major feature of 3D Slicer [8] was compared to the following
popular software packages: ITK-SNAP [15], MITK [3], MeVis-
Lab [10], as well as SMILI. The packages were chosen to
represent a feature complete medical imaging library and viewer,
a popular fast medical image viewer, a feature complete bio-
medical imaging library and a commercial package, respectively.
Table 1 was constructed to show current features in 3D Slicer,
which is mature and feature complete at the time of writing,
and compared with these software packages. The classes in
these packages were analysed using Visual Studio Code Metrics
(Microsoft) and SourceMonitor (Campwood Software LLC).
The numbers for defined classes were computed from respective
software package sources without extensions/examples/applic-
ations and then for a more minimal set of core libraries and
modules that still comprise the feature set within 3D Slicer. The

advantages and limitations of SMILI was then discussed when
compared to these software packages.

3.3. Custom Clinical Application

To demonstrate the implementation of SMILIs applied to a
practical clinical use case, a custom end-user application was
constructed. The application allowed measurements related to
FAI, where bone lesions of the femur (cam-type) and acetabulum
(pincher-type) have been associated with osteoarthritis (OA) in
the hip joint of young adults [21]. Specifically, manual measure-
ments of α-angles between the femoral neck axis and the most
cephalic point of femoral head asphericity determined from mul-
tiple planes through the femoral head (see figure 7) [22, 23])
were to be calculated from automatically generated standardised
radial 2D slices from 3D MR images. Cam-lesion severity is
commonly determined using a two-dimensional (2D) α-angle
with a threshold value of 50° as an indicator for asphericity of
the femoral head-neck junction [24]. A schematic representation
of FAI and α-angle calculation is given in figure 7.

The dedicated application, called “Impinge”, was developed
to standardise manual assessment of α-angles of the femoral
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Figure 7: A schematic of a bony cam lesion of the femoral head-neck junction,
which may predispose patients with FAI to hip OA [21]. The blue region
indicates a cam deformity impinging into structures such as the acetabular labrum
and joint cartilage. This can restrict movement (see dashed arrows), frequently
becoming symptomatic and may be associated with chronic degeneration of
the cartilage (in pink). The red dot indicates the femoral head centre that can
be used to characterise the asphericity due to the lesion as an α-angle from the
femoral neck axis.

head-neck region from 3D MR images from 31 volunteers (in-
cluding healthy active individuals and high performance athletes
involved in sports such as rugby and water polo). Impinge
provided a streamlined alternative method to a previous cum-
bersome multi-software approach, which involved extracting
radial views using the OsiriX software [13, 14] and then annot-
ating these views using the Synedra View Personal software
(non-commercial and non-medical use license), while switching
between the Mac OSX and Windows platforms.

In the current work, an experienced musculoskeletal anatom-
ist used Impinge to manually measure the α-angles from T2-
weighted water-excited Double-Echo Steady State (weDESS)
MR images acquired with a Siemens 3T Trio scanner [25] in a
study approved by the medical research ethics committee of the
University of Queensland. The MR images were automatically
segmented using an algorithm previously developed by the au-
thors [25] to obtain the relevant regions of the bone surface of
the proximal femur.

The Impinge application provided the necessary radial views
of the 3D MR image data and GUI (on-slice) measurement
instruments to allow clinical researchers to easily and quickly
make α-angle measurements for quantification of cam lesion
severity. Once the views are extracted, GUI instruments for
image annotation, such as distance, angle and circle widgets, are
available to the researcher(s) from a menu to make cam lesion
related measurements.

4. Results

In the following subsections, we show how SMILI supports
multiple workflows and maximal code reuse (in section 4.1), how
SMILIs feature set is a substantial subset of features available
relative to its size compared to much larger biomedical imaging
packages (in section 4.2) and how it can be used to build a fully
functional clinical research application in less than 10 hours of
development (in section 4.3) for manual image annotation tasks
from radiological experts.

4.1. Duality in Object Oriented Design

The duality of object oriented design and internal state are
summarised using diagrams for the image and model (lines,
surfaces etc.) data types in figure 8. These diagrams visually
represent the separation of visualisation (via milxQt) and pro-
cessing (via milxSMILI) layers for imaging and model data in
command-line and GUI applications, but allowing the same
interface and algorithms. To the best of our knowledge, no
other software package for biomedical imaging offers a similar
capability.

Storage

itk::Image

Load Data

vtkImageData

vtkRendererWindow

Draw

Display

InteractRender

Algorithm

Process

Update

Update

Algorithm

. . .

Storage

ScreenshotSave Data

GUI - milxQt

CMD - milxSMILI

(a) Image States

Storage

vtkPolyData

Load Data

vtkMapper

vtkRendererWindow

Mapping

Display

InteractRender

Process

Update

Algorithm

. . .

Storage

ScreenshotSave Data

CMD - milxSMILI

Draw

GUI - milxQt

Algorithm

(b) Model States

Figure 8: The state diagrams for (a) image and (b) model (lines, surfaces etc.)
data represented in SMILI. Imaging data utilises ITK to ensure medical images
are maintained in their correct patient spaces to prevent loss of information.
Model data natively utilises VTK for rapid processing and display.
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The processing steps necessary in a typical medical ima-
ging use case were performed using the SMILI command-line
applications in the following way:

• Shoulder MR data were converted to Nifti images using
the milxDICOMApp as listing 7. Options such as image
info and the option of exporting DICOM tags is also avail-
able.

• A high resolution scan was then selected and smoothed
using anisotropic diffusion [26] as listing 8 with the −1
option used to auto select the timestep. Other options
for smoothing include bilateral and median denoise al-
gorithms.

Listing 7: DICOM conversion with SMILI via the command-line.

milxDICOMApp −− c o n v e r t s h o u l d e r \ S u b j e c t 2 −p o u t p u t \ s h o u l d e r _

Listing 8: Image denoising with SMILI via the command-line.

milxImageApp −−smooth −1 s h o u l d e r _ 2 . n i i . gz −o p r e p r o c _ 2 . n i i . gz

The same operations were achieved with the GUI application
sMILX or via the GUI API made available with milxQt in the
following way:

• Shoulder MR data were converted to Nifti images using
the DICOM plugin in sMILX or the milxQtMain openSer-
ies() member via the milxQt API.

• The high resolution scan was then smoothed using an-
isotropic diffusion [26] with the sMILX context menu
for images (Right Click→Operations→Smoothing via
Anisotropic Diffusion). The same option is available via
the milxQtImage anisotropicDiffusion() member via the
milxQt API.

Both command-line and GUI instances of DICOM conver-
sion and image smoothing utilise the same ITK code present
in milxSMILI. For example, the DICOM was opened using
the milx :: File :: OpenDICOMSeries<>(...) member in the File class in
both workflows. This allows all the members to be utilised
in command-line applications with or without GUI elements,
Python scripting via the sMILX application Python plugin or
in custom GUI applications, thus ensuring maximal code reuse
while supporting multiple workflows, all the while with a co-
hesive interface. Indeed, the Python plugin allows direct access
to all the milxQt classes and their members, since it is built
using the PythonQt library that provides automatic access to Qt
derived classes within a Python environment (see listing 6 for
example). This allows users to automate all aspects of sMILX,
much like defining macros, as they would for a word processing
application, but using Python scripting.

For the other typical medical imaging use case for a large
study, a total of 304 3D MR images (38 by 8 weeks, approx-
imately 26 MB in size compressed each utilising 4.5 GB of

disk space when compressed) were processed at once using
the milxImageApp with median denoising (see listing 9). The

Listing 9: Denoising a large study with SMILI via the command-line.

milxImageApp *_Week?_LFOV . n i i . gz −−median 1 −p o u t p u t /

command-line application was found to use a maximum of 10.2
GB of memory when loading all the data and taking a total time
of 12 minutes to process all 3D images. The majority of the time
was found to be taken in writing out the processed images to
storage. The visualisation of the multi-channel data was found
to take up 20.1 GB of RAM and 2 minutes to load. All image
sub-windows could be tiled within the sMILX and viewing done
as per usual, including the linking of the views of each sub-
window while traversing the 3D imaging data. The processing
was done on a 3.6GHz Intel Xeon desktop computer running
Ubuntu Linux with 32 GB RAM.

In terms of time complexity of loading and maintaining data
in SMILI applications, the milxSMILI layer is O(N), where N is
the total number of voxels, while the visualisation layer milxQt
is of O(2N) as the imaging data needs to be updated to VTK
image structures for visualisation (such as vtkImageData, see
image state diagram in figure 8). This can be seen in the memory
usage for the experiments for large studies using milxImageApp
and multi-channel data using sMILX, where memory usage is
double in the latter, while noting that imaging data in memory
must be in uncompressed form. The time complexities for the
processing is dependent on the algorithms utilised.

The duality approach has two main limitations however.
Firstly, only those members implemented at all levels are avail-
able for multiple workflows. For example, the Gaussian smooth-
ing algorithm is available in milxSMILI and milxQt, and thus in
sMILX, but an option is not implemented in the milxImageApp
as of yet. This is because the filter is rarely used for medical
images, but can be made available with relatively little effort.
The second limitation involves the number of members in the
Image and Model classes. As the number of algorithms suppor-
ted increases, the classes grow in size. This can be overcome in
the future by treating these classes as base classes implementing
the core algorithms required for biomedical imaging and other
derived classes implementing less often used algorithms can be
included.

4.2. Feature Set Comparisons

Table 1 shows that although SMILI does not have all the fea-
tures that larger libraries such as MITK, MeVisLab and 3D Slicer
offer, it does have a large number of important medical imaging
features with two orders of magnitude less number of classes
defined. We also found that the start-up times were also notably
different between Slicer and sMILX with the former taking ap-
proximately 6 seconds on an idle start (no image loaded) while
the latter taking only 1 second using the same computer as the
previous subsection. For example, tasks such as semi-automated
or automated segmentation algorithms are often sophisticated
and generic implementations are not often useful, so that their
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inclusion is not essential for biomedical imaging frameworks.
They are also the types of algorithms that often need deploy-
ment in a clinical setting, for which SMILI has been designed
to augment. This re-enforces the potential of SMILI having a
faster uptake and a reduced learning curve, while still allowing
the construction of feature rich clinical applications deploying
biomedical imaging algorithms.

4.3. Custom Clinical Application

A screenshot of the Impinge application that is derived from
sMILX, running on the Mac OSX platform, as well as a α-
angle measurement, is shown in figure 9. The application was

Figure 9: The Impinge Mac OSX application demonstrating an α-angle measure-
ment of 46.1° on a radial MR view commonly utilised for investigating cam-type
FAI.

developed in under 10 hours of development time and featured
very little additional code. Due to the design of SMILI and
object oriented design of Impinge, very little maintenance was
required of the single function housing the FAI related code,
namely the 2D radial orientation view generation from 3D MR
image inputs. The Impinge application was also successfully
run and packaged for multiple platforms without any issues
encountered.

The validation of the Impinge application was made by
analysing α-angle data from the weDESS MR images for the
anterior-superior (45°) and anterior (90°) positions by an expert
rater C.E. and a trainee S.C. The expert rater repeated α-angle
measurements on the Mac OSX platform. The intra-rater reliab-
ility was (ICC(1, 1) = 0.98; 95% CI: 0.96-0.99, p < 0.01) for
the anterior-superior position and (ICC(1, 1) = 0.97; 95% CI:
0.95-0.98, p < 0.01) for the anterior position. This intra-rater
reliability was found to be consistent with that of the previous
(cumbersome) approach of using two different applications on
two different platforms [27]. A similar trend in agreement with
the view orientations was found with the independent meas-
urements of the trainee S.C. The inter-rater correlations of the
trainee and the expert rater are summarised in the plots shown

(a)

(b)

Figure 10: Correlations between manual α-angle measurements of an expert and
a trainee at the (a) anterior-superior and (b) anterior positions of the femoral head-
neck junction. The manual measurements show minor differences between the
expert rater and the trainee based on the automatic view orientation processing
within Impinge for bilateral weDESS images of both sides of 31 participants.

in figures 10. The measurements of the trainee had strong cor-
relations (statistically significant) with the instructor and expert
rater C.E. It suggests that reliable α-angle measurements can
be made with limited training when using Impinge and demon-
strates that SMILI is able to create clinical applications with
minimal effort suitable for use with limited training, while avail-
able open-source.

The versatility of SMILI makes it ideally suited for a range
of biomedical studies and has already been successfully util-
ised for a number of other applications since its release. It
has been employed for advanced 3D in vivo visualisation of
structures and models in musculoskeletal radiology [28, 29],
computing and visualising surface distances between models
and bone shape [30, 31], as well as in recent work on deform-
ation fields in radiotherapy treatment planning [32, 33]. The
latter has clinical value in not only understanding the effects of
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distortion for the purposes of MR alone treatment planning, but
also demonstrates that end-users can utilise SMILI built applic-
ations, such as sMILX, for clinical research. Recent work has
been completed in using SMILI and its milxQtMain class (as de-
scribed in figure 2) to deploy HDR algorithms for multi-channel
and multi-sequence MR images [16, see also GitHub].

Finally, an example of integrating SMILI into a biomedical
processing workflow is given by Chandra et al. [20]. A number
of key steps are required during the segmentation and visual-
isation stages of the workflow. The segmentation is performed
in stages by hierarchically weighting the surface fitting of the
organs from largest, most easily discernible, to smallest, most
difficult, progressively until the prostate is obtained in isolation.
The algorithm depends on a series of preset weights for each
organ at each stage (see figure 2 of [20]) and the organs are
represented by a single hybrid (combined) surface (see figure
1 of [20]). A brief summary of the overall multi-object work-
flow is shown in figure 11 with the key components provided
by SMILI shown in bold black boxes. The workflow was im-

Load Weights for Each 
Stage from Atlas Surface

Foreach 
Hierarchical

Stage

Focused Shape 
Model Fit Per Stage

Input
MRI

MRI 
Segmentation

Visualise Results
(Animation and Overlays)

milxOverlay & milxAnimate

milxModelApp

Preprocessing milxImageApp

Figure 11: The workflow of Chandra et al. [20], where bold black boxes show
the elements utilising SMILI and the corresponding application(s). Every in-
put MR image is preprocessed using image smoothing algorithms available in
milxImageApp. During multi-object segmentation via a hybrid surface made of
multiple objects, weights are transferred from atlas surfaces representing each
stage via ’scalarcopy’ in milxModelApp. A custom application does the weighted
shape learning segmentation fit as described in [20]. The resulting segmentation
and the surfaces (per iteration of the fit) are visualised using the animate and
overlay applications available in SMILI.

plemented using a Python script that ties all the executables
together. This facilitates easier execution and maintenance on a
cloud based platform. The entire workflow could also have been
implemented directly as a C++ executable by calling the relevant
members of SMILI and custom algorithms, but would have re-
quired handling the multi-threaded queueing of individual stages
(that is blocks in figure 11) within this executable rather than via
Python, which has a much simpler interface.

In summary, we believe SMILI is well suited in developing
biomedical applications requiring the use of new algorithms or
graphical user improvements in a timely and developmentally
efficient manner for clinical interaction. For example, this could

include (but not limited to) deploying new image analysis or
image fusion techniques to clinical research sites for evaluation.
Or new manual assessment techniques and algorithms as GUI
applications to clinical sites. These applications will immedi-
ately have cross platform and cross desktop manager support.
For example, see figures 1, 6, 10 and [16, figure 2] for Ubuntu
Unity (Linux), Ubuntu KDE4 (Linux), Mac OSX and Windows
10 environments respectively. Applications not well suited to
be developed with SMILI are those requiring new visualization
techniques in the realm of computer graphics. This will require
implementing new classes and structures in VTK, which is not
trivial.

For datasets that cannot fit into RAM, SMILI currently does
not provide such capability directly yet. Streaming off storage
devices is supported in ITK and VTK libraries and could be
enabled within the processing and reading filters that are utilised
in SMILI. Libraries built on VTK that support parallel and
networked streaming of storage devices, such as Paraview [11,
12], could also be integrated as a plugin or derived classes to
stream very large datasets for processing and visualisation, but
this would be future work on our proposed framework.

Further work is required so that the majority of ITK and VTK
features are available at all layers of SMILI, including streaming
large datasets. More plugins for cloud interaction and specific
anatomy (such as Neuro-imaging) is also under development for
broader appeal. The authors have secured a grant for the long-
term development of SMILI and are committed to maintaining
it for the duration of its software lifetime.

Conclusion

This paper presented a lightweight open-source library for
(cross-platform) biomedical imaging application development
entitled SMILI. This framework aims to allow rapid construc-
tion of biomedical imaging applications (see figure 2) by provid-
ing just a few main pre-built processing and GUI components
with very high level interfaces suitable also for Python scripting.
SMILI also provides a substantial subset of features to existing
open-source and commercial alternatives, while having a com-
mercially viable license and being substantially more compact
(see table 1). It supports different user workflow types through
the duality of objects at multiple API layers built into its ob-
ject oriented design. SMILI was validated for clinical research
application developed for the measurement of α-angles of the
femoral head-neck region for assessment of cam-type lesions
via image annotation. This application not only had comparable
accuracy as a previous more cumbersome approach, but also
resulted in time savings and greater convenience important for
clinical users.
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