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• Predicting how management will affect a network is a key challenge of modern 20 
conservation. 21 

• Fuzzy cognitive maps are a promising method to predict the outcome of network 22 
management. 23 

• There are two critical methodological issues with fuzzy cognitive maps. 24 
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• We describe these issues and show how to overcome them. 25 
• We demonstrate how to use a fuzzy cognitive map to inform management on 26 

Christmas Island. 27 

 28 

  29 



Abstract: 30 

Modern conservation requires robust predictions about how management will affect an ecosystem 31 

and its species. The large uncertainties about the type and strength of interactions makes model 32 

predictions particularly unreliable. In this paper, we show how fuzzy cognitive maps can produce 33 

robust predictions in complex and uncertain ecosystems. The use of fuzzy cognitive maps has been 34 

increasing markedly, but there are two critical issues with the approach: translation of expert 35 

knowledge into the FCM is often done incorrectly; and sensitivity analyses are rarely conducted. 36 

Translating expert knowledge is a constant challenge for ecological modellers, often because experts 37 

know about the behaviour of a system, but modellers need to know model parameters, which 38 

subsequently lead to system behaviour. We describe how to correctly incorporate expert knowledge 39 

into FCMs, and we describe how to appropriately conduct uncertainty and sensitivity analysis. We 40 

illustrate this process with a previously published network for feral cat and black rat control on 41 

Christmas Island.  Perverse indirect effects of conservation management are a key concern, and 42 

methods to help us make informed decisions are required. Fuzzy cognitive maps are a promising 43 

approach for this, but it requires the methodological improvements that we present here.  44 

 45 
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Introduction:  47 

Environmental systems are complex and interconnected, so even small changes to local processes 48 

can substantially change the future state of populations, ecosystems, and the environment (Shears 49 

& Babcock, 2003; Fortin et al., 2005; Holdo et al., 2009). Conservation initiatives are better 50 

resourced than ever before, but despite best intentions, unintended negative consequences of 51 

management sometimes occur (Dexter, Hudson, James, MacGregor, & Lindenmayer, 2013; Larrosa, 52 

Carrasco, & Milner-Gulland, 2016; Pech & Maitland, 2016). To avoid such perverse outcomes, we 53 

must account for species interactions that govern the dynamics of complex ecosystems. However, 54 



detail about how species affect each other is often lacking, and gathering ecological information can 55 

be expensive and time consuming (Caughlan & Oakley, 2001) – particularly for species interactions 56 

(Dambacher, Luh, Li, & Rossignol, 2003). Since this cost is high, it’s important to know whether data 57 

already exists to proceed with management, or whether more data is required. Making robust 58 

predictions about how any action will affect a whole system is vital for informed management 59 

decisions, but, doing this has been a key methodological challenge.  60 

Network models are important for informing system management, as they can predict how changes 61 

will proliferate throughout a complex system. For example in ecology and conservation, they have 62 

been applied to manage ecosystems for threatened species conservation (Ramsey & Norbury, 2009; 63 

Bode et al., 2016), and to help improve fisheries management (Smith, Sainsbury, & Stevens, 1999; 64 

Fulton et al., 2011; Punt, Butterworth, de Moor, De Oliveira, & Haddon, 2016). However, network 65 

models require detailed knowledge about many interactions, and different modelling software can 66 

produce qualitatively different predictions (Forrest, Savina, Fulton, & Pitcher, 2015). Hence, we must 67 

develop methods to make predictions in systems where data are scarce and the nature of 68 

interactions is unknown; fuzzy cognitive maps (FCMs) are a promising solution. 69 

A growing body of literature uses FCMs to analyse networks (see Supporting Information S1), and 70 

they have been applied broadly in conservation and ecology (Papageorgiou & Salmeron, 2013), 71 

facilitated by easily accessible software (eg S. A. Gray, Gray, Cox, & Henly-Shepard, 2013). FCMs 72 

utilise expert knowledge about whether entities have positive or negative interactions on each other 73 

to predict how changes will proliferate throughout a system (Kok, 2009). Ideal for systems with little 74 

data, they can help formalise expert reasoning and predictions (eg Game et al., 2017). For systems 75 

where highly parameterised models are unsuitable, they openly and transparently display the logic 76 

behind expert predictions - an important aspect of conservation decision-making (Blomquist et al., 77 

2010; Donlan, Luque, & Wilcox, 2014) 78 



While using expert knowledge to build a network model posits many advantages, relying on opinions 79 

of individuals has drawbacks: experts can be biased; translation of knowledge into the FCM can be 80 

non-intuitive; and appropriate sensitivity and uncertainty analysis must be conducted. This is 81 

important because people are biased in factual estimation (Martin, Burgman, et al., 2012), 82 

projection (McCarthy et al., 2004), and ecological decision-making (Burgman, 2005; Holden & Ellner, 83 

2016). Translating expert opinion into models is challenging because we intuitively interpret 84 

interactions as the effect of one node on another, rather than the per-capita interactions, as 85 

required for population models. Given these challenges, it is vital that appropriate sensitivity and 86 

uncertainty analyses are conducted. Unfortunately, these points are very rarely addressed in FCM 87 

analyses (but see Ramsey & Norbury, 2009; Ramsey et al., 2012; Sacchelli & Fabbrizzi, 2015). Given 88 

their widespread use and the potential for misinterpretation, accurate and robust results require 89 

updating of current methods. 90 

In this paper, we describe how use of fuzzy cognitive maps must change to produce robust 91 

predictions in complex systems. First, we offer an overview of the FCM method and describe the 92 

methodological issues in detail. We then suggest ways that help translate expert knowledge for 93 

FCMs and help to appropriately account for uncertainty. Finally, we illustrate the application of FCM 94 

with a case study of an invaded ecosystem on Christmas Island, Australia. We often need to act fast 95 

in conservation (Martin, Nally, et al., 2012), but quantitative data is lacking frequently. Utilising 96 

expert opinion is a potentially powerful way for making robust predictions in complex systems, and 97 

FCMs are a valuable tool for this. 98 

Material and methods  99 

Christmas Island  100 

The Australian Territory of Christmas Island is a small (135 km2), oceanic island about 350 km south 101 

of Java and 1,550 km north-west of mainland Australia. Being the top of an extinct underwater 102 

volcano the basalt island has never had a connection to the mainland and hence harbours a number 103 



of endemic species (James & McAllan, 2014), such as the Christmas Island flying fox (Pteropus 104 

natalis), the blue-tailed skink (Cryptoblepharus egeriae), the giant gecko (Cyrtodactylus sadleiri) and 105 

the Christmas Island imperial pigeon (Ducula whartoni), only to name a few. Having naturally small 106 

population sizes, endemic species are threatened by habitat loss, degradation, introduced diseases 107 

and invasive species (Misso and West 2014). These threats have already caused several extinctions 108 

on the island (Wyatt et al., 2008; Lunney, Law, Schulz, & Pennay, 2011), and the loss of the Christmas 109 

Island pipistrelle was particularly frustrating, given the rescue effort (Lindenmayer, Piggott, & 110 

Wintle, 2013). To avoid further extinctions, threatened species on Christmas Island now receive 111 

priority attention with management acting on the conservation of individual species, the restoration 112 

of degraded land and the removal of damaging invasive species, such as yellow crazy ants (Abbott, 113 

Green, & O’Dowd, 2014) and feral cats (Johnston, McCaldin, & Rieker, 2016).  114 

Well-documented and wide-ranging impacts of predator control indicate the potential for 115 

mesopredator release following the removal of the top-predator from the system. For example 116 

removing feral cats has been found to increase the predation pressure on native birds by releasing 117 

other invasive species from predation pressure, such as omnivorous black rats (Rattus rattus) 118 

(Courchamp, Langlais, & Sugihara, 1999; Fan, Kuang, & Feng, 2005; Rayner, Hauber, Imber, Stamp, & 119 

Clout, 2007; Ritchie & Johnson, 2009; Prior, Adams, Klepzig, & Hulcr, 2018). To test if mesopredator 120 

release is possible in the Christmas Island context, we consider a network of species interactions on 121 

Christmas Island (Figure 1) and test the impact of removing feral cats on threatened species and 122 

whether rat control would be necessary. The Christmas Island species network, adapted from Han 123 

(2016), is a simplification of the real ecosystem, and as with many interaction networks, it was 124 

generated to capture the most important and relevant interactions for conservation management 125 

(Drossel Barbara & McKane Alan J., 2005). 126 

The paucity of information on the strength of interactions between the species in the network 127 

makes analysing it particularly challenging. Hence, throughout our analysis we only use directional 128 



knowledge of species interactions – whether a species has a positive or negative affect on another – 129 

and three pieces of information about species impacts (expert opinion of Sarah Legge, Caitlyn Pink 130 

and Rosalie Wilacy): 131 

1) The negative effect of cats on rats is bigger than the positive effect of thrushes on cats; 132 

2) Fruit resources (canopy) have a larger positive effect on flying foxes than flying foxes have a 133 

positive effect on cats;  134 

3) Brown boobies have a larger positive effect on cats than on rats.  135 

Given the large uncertainties, FCM is an appropriate way to proceed. 136 

 137 

Figure 1: Interaction network for the Christmas Island case study (reproduced from Han (2016)). The 138 

species are represented by nodes of invasive (red) and native species (blue). The grey nodes represent 139 

resources on the island. Links between species are displayed by solid (direct links) and dashed arrows 140 

(uncertain links). For the analysis in this paper, we assume that the uncertain links exist. The pointy 141 

end of an arrow indicates the species that receives a benefit from this interaction, the round end 142 

indicates a species that is harmed by the interaction.  143 

 144 



FCM method 145 

A FCM map consists of nodes representing species or other entities, which are connected by edges, 146 

representing the interactions between the nodes. The value of each node is typically restricted to be 147 

between 0 and 1, and the interactions strengths are between -1 and 1. A positive value means that a 148 

node has a positive impact on the target node, and a negative value shows a detrimental impact. 149 

Self-interactions are generally set to 0, though they can be set to be non-zero (Hobbs et al., 2002; 150 

Özesmi & Özesmi, 2004; Steven A. Gray et al., 2015). While predator-prey interactions are common, 151 

this framework allows for all types of interaction including commensalism, mutualism and 152 

competition (Herr et al., 2016). For example, to model mutualism between species 𝑖𝑖 and 𝑗𝑗, the 153 

interactions 𝑎𝑎𝑖𝑖,𝑗𝑗 and 𝑎𝑎𝑗𝑗,𝑖𝑖 would both be made positive. 154 

The value of each node is stored in a state vector, 𝒏𝒏, and the edge weights are stored in a matrix, 𝑨𝑨. 155 

The interaction effect of node 𝑗𝑗 on node 𝑖𝑖 is 𝑎𝑎𝑖𝑖𝑗𝑗. For example, if 𝑎𝑎𝑖𝑖𝑗𝑗 = −0.5, then species 𝑗𝑗 is having 156 

a negative impact on species 𝑖𝑖. The state of each node is given by the sum of all the interaction 157 

strengths, multiplied by the node value (see Translating knowledge into FCMs for further discussion 158 

about interactions). In maps representing interactions between species, the node value is some 159 

measure of the abundance of the species associated with that node, and the edges represent the 160 

per-capita influence on each other. 161 

 𝒏𝒏 = 𝑓𝑓(𝑨𝑨𝒏𝒏). (1) 

The function 𝑓𝑓 is the activation function. This function maps all states to values between 0 and 1, 162 

representing the minimum and maximum value for each node. While the true minimum and 163 

maximum abundance could be used, if known, FCMs are best used when in the absence of detailed 164 

information, (e.g. carrying capacities). If detailed knowledge is known, one should consider using a 165 

more mechanistic model. While there are a range of functions that have been used in the FCM 166 

literature, by far the most common is a logistic function: 167 



 𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒−𝜆𝜆𝜆𝜆
 , (2) 

 168 

where 𝜆𝜆 defines the shape of the curve. Typically 𝜆𝜆 is set to one, although other values have been 169 

explored. The choice of activation function has a major influence on results; this is discussed further 170 

in the Activation function section below. For a given set of interactions, 𝑨𝑨, we solve for the 171 

equilibrium state by searching for the vector, 𝒏𝒏, which satisfies equation (1). There are a range of 172 

ways to do this (see Supporting Information S2 for details). Once equilibrium has been obtained, we 173 

can simulate a management action by adding or removing nodes, by fixing the value of a certain 174 

node (eradicating species I would mean fixing 𝑛𝑛𝑖𝑖  =  0), or changing interactions. Once we do this, 175 

we can solve equation (1) again to get the new state of every node and compare it to the original 176 

state to see the effect of management (see Supporting Information S3 for details).  177 

In the following sections, we propose three modifications for FCMs. The first addresses model 178 

uncertainty, the second considers the distinction between the effect strength and interaction 179 

strength, while the third modification relates to the choice of activation function. 180 

Model uncertainty 181 

Since we have no information about the strength of most interactions, we generate every 182 

interaction (elements of 𝑨𝑨) from a uniform distribution between 0 and 1 or -1 to 0, depending on 183 

whether it is a positive or negative interaction, respectively. From this distribution, we draw 100,000 184 

parameters (discarding parameter combinations that do not satisfy any post-hoc constraints, as 185 

discussed in the following section). We refer to each randomly drawn matrix 𝑨𝑨 that passes all model 186 

constrains as a parameter set. For each of these 100,000 parameter sets, we then simulate two 187 

management actions: 1) cat control and 2) cat and rat control, comparing the current state to the 188 

state after the management interventions. For each parameter set, we store the relative change in 189 

each species’ state to obtain a distribution of change for each species across the 100,000 parameter 190 



sets – a standard approach in common network modelling procedures in conservation (Raymond, 191 

McInnes, Dambacher, Way, & Bergstrom, 2011; Baker, Gordon, & Bode, 2016). 192 

 193 

Translating knowledge into FCMs  194 

The difference between the effect strength and the interaction strength is somewhat subtle, yet 195 

important distinction. The interactions strengths – the elements of 𝑨𝑨 in the model – define how 196 

nodes in the network interact with each other. These per-capita interactions do not vary with the 197 

state. The effect strength, however, is the actual impact of one node on another: it is the product of 198 

the interaction strength and the state and it actually emerges from the model.  For example, 199 

suppose there were 3,000 cats on an island; the impact of the cats on the bird population is the 200 

effect strength. If there were 30,000 cats the effect strength would increase, or if there were only 201 

300 cats, the effect strength would be much smaller. In essence, the effect strength incorporates 202 

abundances, and it is what is often observed in the field. In contrast, interaction strengths are 203 

independent of the abundance; in this example, they would model the impact of a single cat on the 204 

bird population. In our framework, we assume that the impact does not change depending on how 205 

many other cats there are. Precisely how the effect of one species on another changes with 206 

abundance is known as a functional response, and there are a range of ways they are represented in 207 

the ecological literature (Holling, 1959; Liu & Tan, 2007). In this paper, the model is a Type 1 208 

interaction. Whatever functional response is used, there must be a clear distinction about whether 209 

observations correspond to innate aspects (i.e. the interaction strength) or emergent properties (i.e. 210 

the effect strength) of the model. 211 

This raises a problem because the model requires interactions strengths, which are notoriously 212 

difficult to estimate (Dambacher et al., 2003; Baker, Bode, & McCarthy, 2016), while effect 213 

strengths, which are much easier to estimate and observe, cannot be directly included in the model. 214 

Despite this problem, many studies ask experts to estimate effect strengths and use them as 215 



interaction strengths (eg Pacilly, Groot, Hofstede, Schaap, & Bueren, 2016; Game et al., 2017). In 216 

fact, we are not aware of any FCM study with expert knowledge that has not done this. As the effect 217 

strength emerges from the model, it is entirely possible that a node that has a ‘low strength’, could 218 

actually have a relatively large effect in the model, if entered as an interaction strength rather than 219 

effect strength. 220 

The three pieces of information about the Christmas Island interactions are all about effect 221 

strengths. We include them in the model as post-hoc constraints, i.e., for any candidate model, we 222 

calculate the effect strength of each interaction to ensure that the model is consistent with our post-223 

hoc constraints. For example, for each random realisation of 𝑨𝑨, we multiply the cat state by the 224 

interaction strength of cats on rats and compare that to the product of the state of thrushes and the 225 

interaction strength of thrushes on rats. If the magnitude of the latter is greater than the magnitude 226 

of the former, we deem the parameter set unviable and discard it. We repeat this for each of the 227 

three post-hoc constraints, only allowing the parameter set if it satisfies each post-hoc constraint. 228 

Activation function 229 

The choice of the activation function is crucial to the overall results. The commonly used logistic 230 

function (Eq. 2) contains the (shape) parameter, 𝜆𝜆, which is usually set equal to 1, but other values 231 

have been used (Buruzs, Hatwágner, & Kóczy, 2015). An informed choice for 𝜆𝜆 is critical because 232 

changing its value influences the results (Supporting Information S4).  Below we suggest a structured 233 

way for choosing its value. 234 

The maximum or minimum values of states are restricted by 𝜆𝜆 and the number of interactions, the 235 

latter is itself limited by the number of nodes. We suggest choosing 𝜆𝜆 such that the maximum 236 

allowable state for a node with an average number of interactions is 𝑝𝑝. The average number of 237 

interactions, 𝐼𝐼𝑛𝑛, is the number of non-zero elements of A, divided by the number of nodes. Hence, 238 

we choose 𝜆𝜆 to satisfy the following equation: 239 



1
1 + 𝑒𝑒−𝜆𝜆𝐼𝐼𝑛𝑛𝑝𝑝

= 𝑝𝑝, 240 

which leads to: 241 

𝜆𝜆 =
1
𝐼𝐼𝑛𝑛𝑝𝑝

log �
𝑝𝑝

1 − 𝑝𝑝
�. 242 

There is no ‘correct’ choice for 𝑝𝑝, but we suggest choosing reasonably high values. We draw it 243 

randomly for each parameter set from between 0.9 and 0.9999 using the following equation 244 

𝑝𝑝 = 1 − 0.1𝑍𝑍 , 245 

where 𝑍𝑍~𝑢𝑢𝑛𝑛𝑖𝑖𝑓𝑓(1,4). Choosing 𝜆𝜆 in this way ensures that we account for uncertainty in a parameter 246 

which is inherently arbitrary. 247 

Results 248 

Christmas Island 249 

We use our FCM method to analyse the effect of i) cat removal and ii) cat and rat removal on the 250 

Christmas Island ecosystem. We draw random parameter sets, which each conform to the network 251 

structure (Figure 1). We filter out any that don’t satisfy the three post-hoc constraints and continue 252 

drawing until we reach 100,000 that are acceptable. For each parameter set, we record the 253 

percentage change in the abundance of each species when removing cats, and when removing cats 254 

and rats (Figure 2). The removal of cats alone has a moderate benefit for many species. However, 255 

the subsequent release of rats has a slight negative impact on nocturnal insects and fruit resources. 256 

Removing cats and rats together has much greater positive impact on most species. In this case, the 257 

only clear loser are kestrels, likely due to the loss of prey. 258 



 259 

Figure 2: Percentage median abundance change for each node following cat control (maroon) or cat 260 

and rat control (green). The error bars represent the 5th and 95th percentiles across the 100,000 261 

parameter sets. 262 

To analyse the confidence in an increase or a decrease of a species’ abundance following 263 

management, we investigated how frequently species increased in the parameter sets (Figure 3). 264 

This indicates that birds of prey (goshawks and hawk owls) are less likely to increase when both 265 

invasives are managed as compared to cat control alone, while the opposite is true for all other 266 

species. 267 

 268 

Figure 3: The percentage of simulations in which a species increases following cat control (maroon) 269 

or cat and rat control (green) across the 100,000 realisations. A bar at 0 means that this species 270 

never increased, while if the bar is at 100, it means that the species increased in every simulation. 271 

The error bars are calculated by resampling the model output with replacement 1,000 times, with 272 



each sample containing 10,000 model outputs. We calculate the frequency of increase for each 273 

sample, and the error bars show the 5th and 95th percentile. 274 

Post-hoc constraints 275 

In our Christmas Island analyses we included three post-hoc constraints. Adding these post-hoc 276 

constraints increases the computational time of doing the analysis. To better understand how 277 

computational time scales with the number of post-hoc constraints, we considered a further seven 278 

arbitrary post-hoc constraints and reran the analysis using zero to ten post-hoc constraints (see 279 

Supporting Information S5 for details). We find that the model runs quickly with only a few post-hoc 280 

constraints, adding additional constraints increases computational time approximately exponentially 281 

(Figure 4). On a typical computer, drawing 100,000 parameter sets can be done within an hour for 282 

up to five post-hoc constraints. However, increasing this to ten post-hoc constraints increases 283 

computational time to around two days. 284 

 285 

Figure 4: The effect of the number of post-hoc constraints on computational time. Top plot is the 286 

proportion of randomly drawn parameter sets that pass a set number of post-hoc constraints. For 287 

the three post-hoc constraints used in the Christmas Island example, about 25% of parameter sets 288 



are accepted. The bottom plot shows the approximate computational time for drawing 100,000 289 

acceptable parameter sets, running MATLAB on a computer with a 2.7GHz processor.  290 

 291 

Discussion 292 

In this paper, we have presented a way of altering FCM analysis to include expert knowledge of 293 

interactions and deal with parameter uncertainty. It is vital that uncertainty is modelled in 294 

conservation, and FCMs cognitive maps are no exception. We applied our FCM analysis to a species 295 

interaction network from Christmas Island to predict how feral cat and black rat management will 296 

affect the ecosystem. Despite large uncertainties in the system, we still showed that the removal of 297 

both species likely caused all other modelled species to increase, except for birds of prey, which may 298 

suffer some declines following rat removal. Our findings indicate that the system dynamics are very 299 

much a product of the network, and the precise interaction strengths are of lesser importance. 300 

Beyond making predictions about the system, which can help determine what management actions 301 

to take (removing cats vs removing cats and rats), it can inform future management of the system. 302 

For instance, in our network, if cats and rats are removed, hawk owls may decline due to a loss of 303 

food resources. Given this possibility, targeted monitoring could be implemented to track hawk owl 304 

abundance and additional feeding could be a possibility.  305 

While we have focused on how to represent expert knowledge of interactions in a FCM and how to 306 

incorporate uncertainty, FCMs face other challenges relating to eliciting expert knowledge. While 307 

guidance is available on how to elicit which nodes should be in a network (Prigent, Fontenelle, 308 

Rochet, & Trenkel, 2008; Kermagoret, Levrel, Carlier, & Ponsero, 2016), eliciting effect strengths, 309 

combining different expert opinions and conducting linguistic sensitivity analysis requires further 310 

work. Adding post-hoc constraints reduces the probability that a randomly generated set of 311 

interaction strengths will satisfy all post-hoc constraints, which increases the computational time 312 

exponentially. Since effect strength can only be incorporated as a post-hoc constraint its estimation 313 



increases the computational difficulty of the analysis considerably. We suggest to only use effect 314 

strengths when they are known with high certainty. As our results show, we can obtain consistent 315 

results from little information. 316 

If many effect strengths are being used in the model, we suggest that every interaction can be given 317 

a qualitative strength indicator, for example weak, medium or strong. Then, for each parameter set, 318 

it is required that all the weak interactions are smaller than the medium, which are in turn weaker 319 

than the strong. Since the probability of generating suitable parameter sets becomes very small with 320 

an increasing number of post-hoc constraints, two options exist to deal with this problem. Firstly, we 321 

may allow for an error rate; for example, if 90% of the interactions are in the correct order (ie 90% of 322 

the ‘strong’ effects are stronger than all of the ‘moderate’ effects), then it could be deemed a 323 

suitable parameter set. This in itself can be seen as a way of incorporating linguistic sensitivity into 324 

the analysis. Secondly, approaches akin to approximate Bayesian computation (Battogtokh, Asch, 325 

Case, Arnold, & Schüttler, 2002; Beaumont, 2010) could help find suitable parameter sets. 326 

Generating parameter sets and saving those that most closely meet the post-hoc constraints could 327 

help to draw new parameters. This process is repeated until parameter sets that satisfy all post-hoc 328 

constraints are obtained. Thirdly, experts can disagree about parameter values; for example, some 329 

experts might believe an interaction is strong, while others are convinced about it being medium. In 330 

these circumstances, we suggest allowing that effect strength to be either medium or strong in the 331 

model. 332 

The increased computational time associated with adding constraints also leads to the question of 333 

how many simulations should be done. Fundamentally, this boils down to whether the results would 334 

change with more simulations. One way to tackle this is to resample the simulations with 335 

replacement, as we did in Figure 3, and compare how the results change between different sub-336 

samples of the simulations. In our case, we found almost no variation in the frequency of increase 337 

and thus we are confident that have done enough simulations. 338 



Interpreting model results and understanding the limitations of FCMs is critical. In our case, 339 

predictions of increase or decrease are incredibly consistent across simulations. However, for many 340 

species the potential range of abundance change is large. For these species, the only conclusion that 341 

we can reach is that the data is insufficient to give a precise prediction of abundance change. With 342 

this in mind, stakeholders can chose to accept the level of uncertainty when they are making 343 

decisions or they can chose to spend more time and resources to reduce uncertainty. For the latter, 344 

these models can help pinpoint the best way to spend those resources to reduce uncertainty most 345 

effectively. 346 

FCMs have a range of weaknesses, including that they do not incorporate temporal dynamics and 347 

that they are phenomenological. Lacking a temporal component, the model cannot predict how long 348 

it will take to reach the new equilibrium state, or what path the system will take to get to the 349 

equilibrium. This is important because initial observations of the system could differ from model 350 

predictions – even if the equilibrium prediction of the model is accurate (Baker, Gordon, et al., 351 

2016). This makes it harder for monitoring populations, since it is unclear what decision is to take 352 

when a population initially decrease. For Christmas Island, understanding the timescale of recovery 353 

requires more information, and managers would need to consider growth rates of species when 354 

thinking about how long it would take to move to the new equilibrium. FCMs are designed to be 355 

phenomenological, in the sense that we can use expert knowledge of a phenomenon (one node 356 

impacts another node) to create a model. We do not have detailed quantitative information on 357 

precisely how all the nodes interact (i.e., the mechanisms), and there is no clear way to incorporate 358 

this kind of information if it were available. FCM simplifies complex interactions, and is suited to 359 

study systems where detailed information is not available, yet, decisions must be made (Martin, 360 

Nally, et al., 2012). 361 

Our suggestions regarding the changes to the FCM methodology are not to give better ‘results’, but 362 

help to make FCM into a more reliable methodology that properly handles uncertainty. As we have 363 



described, actually setting accurate values for interactions parameters is incredibly difficult and, 364 

particularly in these low-information situations, uncertainty will always exist. Using point estimates 365 

of parameters can give results that are simple to communicate, but not explicitly accounting for the 366 

uncertainty means those results give a false sense of certainty about the impact of management 367 

(Baker, Bode, et al., 2016). Our methodology clearly shows the limits of what you can conclude from 368 

a FCM in a specific situation. However, learning what we don’t know isn’t a dead-end – in fact it can 369 

provide a clear path forward, illuminating the steps required to make an open and transparent 370 

decision. 371 

Conservation decision-making will always involve trade-offs and carry risks (Hirsch et al., 2011; 372 

McShane et al., 2011). Networks of multiple interacting species, or different stakeholders exacerbate 373 

this complexity. Mathematical modelling can help predict management outcomes, but any model is 374 

only as good as its input data. Hence, it is vital that methods are updated to both translate expert 375 

opinion into modelling frameworks and account for the large uncertainties that are present. If this is 376 

done, FCMs can become an important decision-making tool. 377 

Data Accessibility 378 

Code to reproduce all of the results in this paper has been included as online supporting 379 

information. https://doi.org/10.6084/m9.figshare.5674681  380 
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S1: Literature search 553 

We performed a literature search to get an indication of how use of fuzzy cognitive maps has 554 
changed through time in conservation and ecology, and to quantify the prevalence of sensitivity and 555 
uncertainty analysis in the field. We conducted the search using Web of Science on the 14th of 556 
March, 2017. Our search criteria were: 557 

TOPIC: (fuzzy cognitive map*) AND TOPIC: (ecology OR environment* OR conservation) Timespan: 558 
1996-2017. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-559 
EXPANDED, IC.  560 

While this did not return every paper in conservation and ecology that has used fuzzy cognitive 561 
maps, it does give an indication of change in use over time. This search returned 248 records, and 562 
we removed 161 records manually which, based on the title, clearly did not relate to our search 563 
(many of which were from the education field, about e-learning environments). We then 564 
downloaded each of the remaining 87 articles and kept those which used fuzzy cognitive maps in an 565 
environmental or conservation management context, or if they were explanations on how to use 566 
fuzzy cognitive maps. We also recorded whether each article conducted any type of sensitivity or 567 
uncertainty analysis. The full list of articles is given in Supplementary Table S1. Following this, 50 568 
articles remained. 5 of these had a sensitivity or uncertainty analysis. There has been clear increase 569 
fuzzy cognitive maps through time, although there has been no clear increase in the number of 570 
papers conducting sensitivity or uncertainty analysis (Figure 1).  571 

 572 

 573 

Figure 5: The number of papers published in each year using fuzzy cognitive maps since 1997. The 574 
blue bars represent the number of papers, and the orange bars are the number of papers that 575 

included a sensitivity or uncertainty analysis.  576 
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S2: Solving for steady state 579 

The equation 580 

 𝒏𝒏 = 𝑓𝑓(𝑨𝑨𝒏𝒏) (3) 

is a non-linear equation, and as such, there is no direct method to solve it. Rather, iterative methods 581 
are used. The most common method is fixed point iteration. This is done by starting from an initial 582 
guess, 𝒏𝒏0, and iterating the following 583 

 𝒏𝒏𝑖𝑖+1 = 𝑓𝑓(𝑨𝑨𝒏𝒏𝑖𝑖) (4) 

Until |𝒏𝒏𝑖𝑖+1 − 𝒏𝒏𝑖𝑖| < 𝜂𝜂, where 𝜂𝜂 is a very small number, such as 10−6. Another option is to use a 584 
Gauss-Seidell scheme with the parameter 𝜔𝜔 < 1: 585 

 𝒏𝒏𝑖𝑖+1 = 𝜔𝜔𝑓𝑓(𝑨𝑨𝒏𝒏𝑖𝑖) + (1 −𝜔𝜔)𝒏𝒏𝑖𝑖. 
(5) 

This alternative method can help convergence.  586 

Apart from these two iterative methods, most scientific programming languages include numerical 587 
methods for solving nonlinear equations that could be used. For example, the function ‘fsolve’ in 588 
MATLAB. 589 

  590 



S3: Solving for equilibrium under management 591 

There are three broad management situations that can be easily modelled using a FCM: node 592 
removal, node addition and node manipulation. The first two situations are easily solved. Adding or 593 
removing a node creates a new network, and to find the state of the new network, one would simply 594 
follow the procedure outlined in S2 for the new network. To run the analysis with node manipulation 595 
is a small extension. For example, from our case study, if we wanted to predict the effect of 596 
suppressing cats by 50%, we would firstly calculate the equilibrium state of the system and store the 597 
cat abundance. We would then fix cat abundance at 50% and solve Eq. (1) for all of the other node 598 
values, given the fixed cat abundance. 599 

 600 

  601 



S4: Activation function 602 

The activation function can have a big impact on the results. Here, we show results from a simple 603 
network (from Baker et al. 2016) to demonstrate this. We use a small network for this as it easier to 604 
see differences between sets of results on a small network and because this is to demonstrate what 605 
the phenomenon is and that it can arise in real networks. This network is to help understand about 606 
the role of dingoes in Australian ecosystems, and we show results the difference between network 607 
nodes when dingoes are included, compared to when dingoes are absent, using a fuzzy cognitive 608 
map. Rather than draw 𝜆𝜆 randomly, as we suggest, here we genereate results using three distinct 609 
values to show what effect 𝜆𝜆 has on model outputs (Figure 2). The absolute change in the system 610 
state varies dramatically with the value of 𝜆𝜆. 611 

 612 

Figure 6: The percentage change in state for each node, after the introduction of the dingo to the 613 
network for different values of 𝝀𝝀. The circles show the median and the error bars depict the 5th and 614 

95th percentile.  615 

Next, instead of considering percentage change, we look at how frequently a node increased with 616 
dingo introduction (Figure 3). We find that this is remarkably robust to changing 𝜆𝜆. Hence, 617 
predictions about whether nodes increase or decrease with management appear to be much more 618 
robust, compared to predictions of the change in the state of nodes.619 

 620 



Figure 7: The frequency that nodes increase with the introduction of dingoes in the dingo network 621 
(Baker et al. 2016) across 10,000 parameter sets for varying values of 𝝀𝝀. 622 
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S5: Computational impact of post-hoc constraints 624 

To test the computational burden of adding post-hoc constraints, we supplement the list of 625 
Christmas Island post-hoc constraints to get a list of 10: 626 

1) Cats have a bigger (negative) effect on rats than thrushes have a (positive) effect.  627 
2) Fruit resources (canopy) have a larger positive effect on flying foxes than flying foxes 628 

have a positive effect on cats; Thrushes are more strongly predated by rats than cats.  629 
3) Brown boobies have a larger positive effect on cats than on rats.  630 
4) Goshawks have a bigger impact on Tropicbirds than Rats do. 631 
5) Insects (diurnal) have a bigger positive for Thrushes than on white eyes. 632 
6) Fruit has a bigger positive impact on frugivorous birds than cats have negative impact 633 

on frugivorous birds, 634 
7) Rats have a bigger impact on geckos than on insects. 635 
8) Thrushes have a bigger impact on insects than white eyes do. 636 
9) Cats benefit more from tropicbird than from gecko. 637 

We emphasise that these are simply to test computational times, and are not representative of 638 
Christmas Island. 639 

We test the computation time to generate acceptable parameter sets for 0 through 10 constraints. 640 
For each number of constraints, we generate 10,000 acceptable parameter sets. For each parameter 641 
set, we also randomise which constraints are being used (e.g. if we are using four constraints, we 642 
randomly sample four from the above list each time). We only draw 10,000 parameter sets due to 643 
the computational time required, particularly with many constraints. For each number of parameter 644 
sets, we record the number of attempts were required to get 10,000 acceptable sets. To estimate 645 
the time required to generate 100,000 parameter sets, we divide the time to get 100,000 parameter 646 
sets with not constraints by the proportion of acceptable parameter sets for each number of 647 
constraints. 648 

 649 


