
Security in Software Defined Networks

Talal Alharbi

B.S. (Computer Science),

M.S. (Network and System Administration)

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2018

School of Information Technology & Electrical Engineering

Abstract

Software Defined Networking (SDN) is an emerging computer network paradigm and repre-

sents one of the most promising technologies to simplify network management and configu-

ration through increased network programmability and abstraction. In contrast to traditional

networks, in SDN, the control plane, which makes decisions on how to forward traffic, is

separated from the data plane, which transmits traffic to selected destinations. That makes

network control (via the SDN controller) more programmable, dynamic and centralised. With

the higher level of abstraction that SDN provides, network administrators can more eas-

ily configure network services and manage traffic flows without having to configure a large

number of individual network devices (switches and routers). The great potential of SDN has

led to significant deployments in data centres, wide area networks, etc., and it is growing at

a rapid pace.

Security is a critical aspect of networking in general and is particularly vital in SDN. Due to

its fundamentally new architecture, SDN presents new potential security vulnerabilities and

risks. Security in SDN has not received much attention yet, given that it is very distinct and

unique.

The goal of this PhD was to address this gap and analyse the security of the SDN infras-

tructure, identify vulnerabilities and weaknesses, and propose corresponding solutions and

improvements. The focus was on the fundamental aspects and components of SDN, in

particular the building blocks of the control plane components include Topology Discovery,

Address Resolution Protocol (ARP) Handling and Virtualisation Layer. Finally, the thesis

thoroughly explored and investigated the most common and effective attacks against the

SDN architecture.

i

Declaration by author

This thesis is composed of my original work, and contains no material previously published

or written by another person except where due reference has been made in the text. I have

clearly stated the contribution by others to jointly-authored works that I have included in my

thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical

assistance, survey design, data analysis, significant technical procedures, professional

editorial advice, financial support and any other original research work used or reported

in my thesis. The content of my thesis is the result of work I have carried out since the

commencement of my higher degree by research candidature and does not include a

substantial part of work that has been submitted to qualify for the award of any other degree

or diploma in any university or other tertiary institution. I have clearly stated which parts of

my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University

Library and, subject to the policy and procedures of The University of Queensland, the

thesis be made available for research and study in accordance with the Copyright Act 1968

unless a period of embargo has been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material. Where appropriate I have obtained copyright permission from

the copyright holder to reproduce material in this thesis and have sought permission from

co-authors for any jointly authored works included in the thesis.

ii

Publications during candidature

Peer-reviewed Papers:

[1] Talal Alharbi, Marius Portmann, and Farzaneh Pakzad, "The (in)security of Topology

Discovery in Software Defined Networks," in Proc. of the 40th conference on Local

Computer Networks (LCN), IEEE, 2015, pp. 502-505.

[2] Talal Alharbi, Dario Durando, Farzaneh Pakzad, and Marius Portmann, "Securing ARP

in Software Defined Networks," in Proc. of the 41st conference on Local Computer

Networks (LCN), IEEE, 2016, pp. 523-526.

[3] Talal Alharbi, and Marius Portmann, "SProxy ARP - Efficient ARP Handling in SDN,"

in Proc. of the 26th International Telecommunication Networks and Applications Conference

(ITNAC), IEEE, 2016, pp. 179-184.

[4] Talal Alharbi, Siamak Layeghy, and Marius Portmann, "Experimental Evaluation of

the Impact of DoS Attacks in SDN," in Proc. of the 27th International Telecommunication

Networks and Applications Conference (ITNAC), IEEE, 2017, pp. 1-6.

iii

Publications included in this thesis

Talal Alharbi, Marius Portmann, and Farzaneh Pakzad, "The (in)security of Topology Dis-

covery in Software Defined Networks," in Proc. of the 40th conference on Local Computer

Networks (LCN), IEEE, 2015, pp. 502-505. - Incorporated as Chapter 4.

Contributor Statement of contribution
Author Talal Alharbi (Candidate) Conception and design (70%)

Analysis and interpretation (80%)
Drafting and production (70%)

Author Marius Portmann Conception and design (20%)
Analysis and interpretation (10%)
Drafting and production (20%)

Author Farzaneh Pakzad Conception and design (10%)
Analysis and interpretation (10%)
Drafting and production (10%)

Talal Alharbi, Dario Durando, Farzaneh Pakzad, and Marius Portmann, "Securing ARP in

Software Defined Networks," in Proc. of the 41st conference on Local Computer Networks

(LCN), IEEE, 2016, pp. 523-526. - Incorporated as Chapter 5.

Contributor Statement of contribution
Author Talal Alharbi (Candidate) Conception and design (70%)

Analysis and interpretation (75%)
Drafting and production (70%)

Author Dario Durando Conception and design (10%)
Analysis and interpretation (5%)
Drafting and production (10%)

Author Farzaneh Pakzad Conception and design (10%)
Analysis and interpretation (5%)
Drafting and production (10%)

Author Marius Portmann Conception and design (10%)
Analysis and interpretation (15%)
Drafting and production (10%)

iv

Talal Alharbi, and Marius Portmann, "SProxy ARP - Efficient ARP Handling in SDN," in

Proc. of the 26th International Telecommunication Networks and Applications Conference

(ITNAC), IEEE, 2016, pp. 179-184. - Incorporated as Chapter 6.

Contributor Statement of contribution
Author Talal Alharbi (Candidate) Conception and design (80%)

Analysis and interpretation (80%)
Drafting and production (80%)

Author Marius Portmann Conception and design (20%)
Analysis and interpretation (20%)
Drafting and production (20%)

Talal Alharbi, Siamak Layeghy, and Marius Portmann, "Experimental Evaluation of the

Impact of DoS Attacks in SDN," in Proc. of the 27th International Telecommunication

Networks and Applications Conference (ITNAC), IEEE, 2017, pp. 1-6. - Incorporated as

Chapter 7.

Contributor Statement of contribution
Author Talal Alharbi (Candidate) Conception and design (80%)

Analysis and interpretation (80%)
Drafting and production (70%)

Author Siamak Layeghy Conception and design (10%)
Analysis and interpretation (10%)
Drafting and production (10%)

Author Marius Portmann Conception and design (10%)
Analysis and interpretation (10%)
Drafting and production (20%)

v

Contributions by others to the thesis

A/Prof Marius Portmann had input into the core conception and design of the work presented

in this thesis, data analysis and interpretation, and critical revision along with providing a

constructive feedback and valuable guidance.

Statement of parts of the thesis submitted to qualify for the award of another degree

None.

Research Involving Human or Animal Subjects

No animal or human subjects were involved in this research.

vi

Acknowledgements

This thesis would have been impossible without the support and guidance of remarkable

individuals whom I am profoundly grateful to and wish to acknowledge.

First and foremost, it is a privilege to express my sincere thanks and profound gratitude to my

principal advisor, A/Prof. Marius Portmann for his invaluable guidance and constant encour-

agement throughout the years I spent to complete my PhD. He has been very supportive

and helpful from the day one when we started brainstorming my research topic. During

my research tenure, he has provided me with an excellent working atmosphere, continu-

ous mentorship and intelligent critiques that significantly enhance my academic writing skills

and critical thinking. I have gained a professional and valuable experience from his vast

knowledge, scientific insight and superb skills that he shared with us on a daily basis.

I would like to extend my thanks to Prof. Jadwiga Indulska for allocating valuable time out

from her overloaded schedule to serve as my associate advisor and her constant advice

and academic supervision. I must express my sincere appreciation to Prof. Neil Bergmann

for serving as the committee chair and providing constructive feedback at each milestone

during my PhD study. I also want to thank the School of ITEE staff for their kind help

and assistance. A very special thank you goes out toward my fellow labmates, Mr Siamak

Layeghy, Mr Anees Al-najjar, Ms Farzaneh Pakzad and Mr Furqan Khan for the philosophical

arguments and the exchange of knowledge and skills during our regular group meeting.

My acknowledgements would be incomplete without thanking Majmaah University for the

award of the PhD scholarship which enabled me to undertake my PhD at the University of

Queensland.

Most of all, I owe a great deal to my parents, Abdi and Sitah who are the primary source of

unstinting support, encouragement and love that helped me survive and afford to undertake

this endeavour. My gratitude is equally extended to all my siblings for bearing with me and

cheering me up with their wishes whenever needed.

Last but not least, I am eternally grateful to my lovely wife for her forbearance, tolerance, and

reassurance during the most stressful time of my PhD journey. My most heartfelt gratitude

is for my first-born son, Alwaleed and my sweet and beautiful daughter, Rana. They are the

fount of my greatest joy and happiness.

vii

Financial support

This research was supported by Majmaah University through the Saudi Arabian Culture

Mission in Australia.

viii

Keywords

software defined networking, sdn, topology discovery, network security, security of topology

discovery, security of address resolution protocol, denial of service attack, network virtuali-

sation security

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 100503, Computer Communications Networks, 30%

ANZSRC code: 080503, Networking and Communications, 30%

ANZSRC code: 080303, Computer System Security, 40%

Fields of Research (FoR) Classification

FoR code: 0805, Distributed Computing, 70%

FoR code: 1005, Communications Technologies, 30%

ix

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Contributions . 3

1.2.1 Security of Topology Discovery . 3

1.2.2 Security of ARP . 4

1.2.3 Efficient ARP Handling . 5

1.2.4 Evaluation of Denial of Service Attacks 5

1.2.5 Security of Network Virtualisation . 6

1.3 Research Methodology . 6

1.4 Thesis Structure . 7

2 Background 9

2.1 Software Defined Networking (SDN) . 9

2.1.1 OpenFlow . 11

2.2 Network Security . 14

2.2.1 Types of Network Security Attacks . 14

2.2.2 Network Security Protocols and Technologies 16

3 Literature Review 18

3.1 Security via SDN . 19

3.2 Security of SDN . 22

3.2.1 Security of the Control Plane . 23

x

Table of Contents

3.2.2 Security of the Data Plane . 26

3.2.3 Security of the Application Layer . 27

3.2.4 Security of the Southbound Interface 29

4 Security of Topology Discovery 32

4.1 Introduction . 32

4.2 OpenFlow Discovery Protocol (OFDP) . 33

4.3 OFDP Link Spoofing - Basic Vulnerability . 35

4.3.1 Experimental Validation - Mininet . 37

4.3.2 Experimental Validation - OFELIA . 39

4.4 Impact on Routing . 40

4.4.1 Linear Topology . 41

4.4.2 Tree Topology . 43

4.4.3 Discussion . 45

4.5 Countermeasures . 45

4.5.1 Controller Checks . 46

4.5.2 LLDP Packet Authentication . 46

4.6 Related Works . 49

4.7 Conclusions . 49

5 Security of Address Resolution Protocol 51

5.1 Introduction . 51

5.2 Background . 52

5.2.1 Address Resolution Protocol (ARP) . 52

5.2.2 ARP Spoofing . 54

5.2.3 Traditional ARP Spoofing Countermeasures 54

5.3 ARP Handling in SDN . 55

5.4 ARP and NDP (NS/NA) Spoofing in SDN . 56

xi

Table of Contents

5.4.1 Experimental Platform . 56

5.4.2 Spoofing with Regular ARP . 57

5.4.3 Spoofing with Proxy ARP . 61

5.5 Countermeasure 1: SARP_DAI . 62

5.5.1 SARP_DAI Overhead . 63

5.6 Countermeasure 2: SARP_NAT . 67

5.6.1 ARP Request based Attack . 69

5.6.2 ARP Reply based Attack . 71

5.6.3 SARP_NAT Overhead . 72

5.6.4 Comparison with SARP_DAI . 74

5.7 Related Works . 75

5.7.1 DAI-like Approaches . 76

5.7.2 Proxy ARP-based Approaches . 77

5.8 Conclusions . 79

6 Efficient Address Resolution Protocol Handling 80

6.1 Introduction . 80

6.2 ARP Handling in SDN . 81

6.3 Switch-based Proxy ARP (SProxy ARP) . 82

6.4 Experimental Platform . 85

6.5 Evaluation . 86

6.5.1 ARP Response Time . 87

6.5.2 Controller Overhead . 88

6.6 Switch Memory-Performance Trade-off . 90

6.7 Related Works . 93

6.8 Conclusions . 93

7 Evaluation of Denial of Service Attacks 95

xii

Table of Contents

7.1 Introduction . 95

7.2 SDN Packet Forwarding . 96

7.3 DoS Attacks against SDN . 97

7.3.1 Attack on the Control Plane . 97

7.3.2 Attack on the Data Plane . 99

7.4 Experimental Evaluation . 99

7.4.1 Testbed . 99

7.4.2 Control Plane Attack . 100

7.4.3 Data Plane Attack . 105

7.5 Related Works . 107

7.6 Conclusions . 109

8 Security of Virtualisation 110

8.1 Introduction . 110

8.2 SDN Hypervisor Platforms . 111

8.2.1 FlowVisor . 111

8.2.2 OpenVirteX . 113

8.2.3 Other SDN Hypervisor Platforms . 114

8.3 SDN Virtualisation Vulnerabilities . 116

8.4 Related Works . 117

8.5 Experimental Platform . 118

8.6 Security of FlowVisor . 119

8.6.1 Topology Discovery . 119

8.6.2 Breaking Isolation . 122

8.6.3 Ping of Death . 125

8.7 Security of OpenVirteX (OVX) . 126

8.7.1 Topology Discovery . 126

8.7.2 Breaking Isolation . 128

xiii

Table of Contents

8.7.3 Ping of Death . 129

8.8 Conclusions . 130

9 Conclusion 132

Bibliography 135

xiv

List of Figures

2.1 Software Defined Network Architecture [1] . 10

2.2 OpenFlow Switch Components [2] . 11

2.3 Main Components of OpenFlow Entry . 12

2.4 Classification of Network Security Attacks . 14

3.1 Active Security Architecture [3] . 20

3.2 OrchSec Architecture [4] . 21

3.3 LivSec Architecture [5] . 22

3.4 Security Threat Vectors Map in SDN [6] . 23

4.1 LLDP Frame Structure . 33

4.2 Basic OFDP Example Scenario . 34

4.3 Basic Attack Scenario (Mininet) . 36

4.4 POX Debug Information (Mininet) . 38

4.5 Basic Attack Scenario (OFELIA) . 39

4.6 POX Debug Information (OFELIA) . 40

4.7 Linear Topology for Routing Experiment . 41

4.8 Tree Topology for Routing Experiment . 44

4.9 Computational Overhead of HMAC in OFDP 48

5.1 ARP Frame Structure . 53

5.2 Basic Example Scenario . 57

5.3 Poisoned ARP Cache (Mininet) . 58

xv

List of Figures

5.4 Poisoned ARP Cache (OFELIA) . 59

5.5 ARP Spoofing Attack on ONOS . 60

5.6 ARP Spoofing Attack on Floodlight . 60

5.7 Poisoned ARP Responder Table . 61

5.8 Linear Topology . 64

5.9 Tree Topology . 64

5.10 Controller CPU Load (SARP_DAI) . 65

5.11 RTT in Linear Topology (SARP_DAI) . 66

5.12 RTT in Tree Topology (SARP_DAI) . 67

5.13 Controller CPU Load (SARP_NAT) . 72

5.14 RTT in Linear Topology (SARP_NAT) . 73

5.15 RTT in Tree Topology (SARP_NAT) . 73

6.1 Example OpenFlow Rule for SProxy ARP . 84

6.2 Basic Experiment Scenario . 86

6.3 ARP Response Time . 87

6.4 ARP Response Time vs. Background Controller CPU Load 89

6.5 CPU Consumption with Sending Rate . 90

6.6 Total Packet size with Sending Rate . 91

6.7 ARP Request Distribution based on TPA . 91

7.1 Basic Attack Scenario . 98

7.2 Control Plane Attack, PDR . 101

7.3 Control Plane Attack, Controller CPU Load 102

7.4 Linear Topology . 102

7.5 Attack Amplification Effect on PDR . 103

7.6 Attack Amplification Effect on Controller CPU Load 104

7.7 Data Plane Attack, PDR . 105

xvi

List of Figures

7.8 Data Plane Attack, CPU Load . 107

8.1 FlowVisor Architecture . 112

8.2 OpenVirteX Architecture . 114

8.3 Network Infrastructure . 119

8.4 FlowVisor LLDP Frame Structure . 120

8.5 FlowVisor Database Attack . 121

8.6 Controller CPU Load . 124

8.7 FlowVisor Crash, Ping of Death . 126

8.8 OpenVirteX LLDP Frame Structure . 127

8.9 OpenVirteX Database Attack . 128

8.10 Network Traffic from Another Tenant . 129

8.11 OpenVirteX Crash, Ping of Death . 130

xvii

List of Tables

1.1 Software Tools used for Implementation Experiments in the Thesis 8

3.1 Summary of Proposed Security Measures for SDN Layers (Planes) 31

4.1 Software Tools used for Implementation and Experiments in Chapter 4 37

4.2 Connectivity After Attack . 42

4.3 Connectivity Loss Due to Link Spoofing Attack 44

5.1 Software Tools used for Implementation and Experiments in Chapter 5 57

5.2 Controller CPU Load Comparison . 75

5.3 Round Trip Time Comparison . 75

6.1 Software Tools used for Implementation and Experiments in Chapter 6 86

6.2 Memory Performance Trade-off . 92

7.1 Software Tools used for Implementation Experiments in Chapter 7 100

8.1 Classification of Network Virtualisation Threats 117

8.2 Software Tools used for Implementation and Experiments in Chapter 8 118

xviii

List of Abbreviations

The abbreviated terms are provided for reference throughout the thesis.

ARP Address Resolution Protocol

BGP Border Gateway Protocol

CPU Central Processing Unit

DAI Dynamic ARP Inspection

DHCP Dynamic Host Configuration Protocol

DoS Denial of Service

DU Data Unit

GUI Graphical User Interface

HMAC Hash-based Message Authentication Code

IPsec Internet Protocol Security

IP Internet Protocol

LLDP Link Layer Discovery Protocol

MAC Media Access Control

MAC Message Authentication Code

MITM Man in the Middle

NA Neighbour Advertisement

NAT Network Address Translation

NDP Neighbour Discovery Protocol

NOS Network Operating System

NS Neighbour Solicitation

OFDP OpenFlow Discovery Protocol

ONF Open Networking Foundation

ONOS Open Network Operating System

OVS Open vSwitch

xix

OVX OpenVirteX

PDR Packet Delivery Ratio

PKI Public Key Infrastructure

RAM Random Access Memory

RTT Round Trip Time

SDN Software Defined Networking

SEND Secure Neighbour Discovery

SHA Sender Hardware Address

SPA Sender Protocol Address

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

THA Target Hardware Address

TLS Transport Layer Security

TLV Type-length-value

TPA Target Protocol Address

UDP User Datagram Protocol

VLAN Virtual Local Area Network

xx

Chapter 1

Introduction

1.1 Motivation

In traditional networks, the deployment and management of infrastructure and services is

a complex task and requires the configuration of a large number of individual network de-

vices such as routers and switches, typically via proprietary interfaces. Packet forwarding

is controlled via complex, distributed routing protocols such as OSPF [7], BGP and EGP

[8]. The lack of a centralised global view of the network state, as well as the lack of rele-

vant networking abstractions, make it challenging to implement high-level forwarding policies

in traditional IP networks. As a result, the network is configured rather than programmed,

making innovation and the deployment of new networking services difficult and slow [9, 10].

Software Defined Networking (SDN) is a relatively new approach to manage and configure

computer networks, which aims to address this problem through removing the control intelli-

gence from forwarding elements, such as switches and routers, and placing it in a logically

centralised node, i.e. the SDN controller [11, 12]. The separation of the control plane and

the data plane in SDN makes the network more programmable. The complex and labour-

intensive task of configuring individual networking devices is now replaced by the simpler

and more efficient task of ’programming’ the network.

In SDN, the Network Operating System (NOS) hides the complexity and details of the under-

lying network infrastructure, by providing an abstraction layer and clearly defined interfaces.

1

Chapter 1: Introduction

Network services and policies are implemented as applications that sit on top of the Network

Operating System, running on the centralised controller. The controller communicates with

the forwarding elements, i.e. the data plane, through a well-defined interface, e.g. the

OpenFlow protocol [13].

As a result of the separation of the control plane and the data plane as well as the increased

level of abstraction, SDN make the network more agile, flexible and programmable, which

dramatically simplifies network management and configuration, and enables faster innova-

tion. The implementation and deployment of new network services and policies, which take

a considerable amount of time and effort in traditional networks, becomes a comparatively

manageable task in an SDN-enabled network.

SDN has gained tremendous momentum, both in the industry and the research community,

and has been successfully deployed in data centres and Wide Area Networks (WANs) [14].

For example, Google has deployed an SDN-based WAN in its internal backbone network

to globally connect its various data centres. As a result, network performance has been

enhanced dramatically, and the link utilisation has increased from 30 ∼ 40% to close to

100% [14]. This dramatic achievement came from the more fine-grained control over the

forwarding of network flows, and the increased network programmability provided by SDN.

It is likely that the growth of SDN will continue in the future, which is supported by the fact

that major networking vendors such as Cisco [15], Huawei [16], Juniper [17] and Hewlett

Packard [18] are increasingly supporting SDN-based products.

The fundamentally different approach to network management and configuration of SDN

has significant implications for network security. There are two separate aspects of this. In

the first one, to which we refer to as ’Security via SDN’, the logically centralised view and

programmability of SDN makes it easier to implement and enforce network-wide security

policies.

The second security aspect of SDN, which we refer to as ’Security of SDN’, considers the

security of SDN platform itself, and is the focus of this PhD. Our hypothesis is that a funda-

mentally different network architecture such as SDN is likely to have new security vulnerabil-

ities and provides a new range of attack vectors, and that past work on security in traditional

networks cannot fully capture the security aspects of SDN.

2

Chapter 1: Introduction

The goal of this thesis was to analyse the security of the SDN architecture, components and

services, and to identify security risks and vulnerabilities. A further goal was to practically

demonstrate the feasibility of attacks, discuss and quantify their potential impact, and if

possible, propose suitable countermeasures.

The security analysis in this thesis focuses on the following key SDN components, services

and aspects: Topology Discovery, Address Resolution Protocol (ARP) Handling and Net-

work Virtualisation. Furthermore, the thesis also specifically considers the problem of Denial

of Service (DoS) attacks against the SDN platform and their potential impact. The corre-

sponding research contributions are summarised in the following.

1.2 Research Contributions

1.2.1 Security of Topology Discovery

Topology discovery is a core service in SDN, and it underpins most network applications

such as routing, access control, etc., by providing a global view of the network and the ab-

straction of the network as a graph. All major SDN controllers implement topology discovery

using the OpenFlow Discovery Protocol (OFDP), making it the de-facto standard for topology

discovery in SDN [19].

OFDP uses the packet format of the Link Layer Discovery Protocol (LLDP) used in traditional

Ethernet networks [20], but operates completely differently. Given its important role in SDN,

a security analysis of the OFDP protocol is essential for ensuring the overall security of any

SDN platform.

In this thesis, key vulnerabilities of SDN’s current topology discovery approach are identified,

which are mostly due to the lack of authentication and integrity protection of LLDP packets.

A link spoofing attack is discussed, implemented and experimentally evaluated, where an

attacker can successfully corrupt the controller’s topology view of the network by injecting a

fabricated LLDP packet. The impact of this attack on higher level services is discussed and

demonstrated via the example of routing.

3

Chapter 1: Introduction

The thesis proposes a countermeasure, which can prevent this type of attack, based on

the addition of a Hash-based Message Authentication Code (HMAC) at the controller, which

provides integrity protection for LLDP messages. We show that our approach is not vulner-

able to replay attacks. Using experiments, we also quantify the computational cost of the

proposed security mechanism.

1.2.2 Security of ARP

The Address Resolution Protocol (ARP) is used in computer networks to map an interface’s

network layer address (typically IP), to its corresponding Layer 2 or Media Access Control

(MAC) address [21]. The vulnerability of ARP to spoofing attacks is a well-known problem

in traditional computer networks [22], mostly due to its stateless nature, and lack of authen-

tication and integrity protection. ARP spoofing attacks form a critical building block for a lot

of Denial of Service (DoS), and Man-in-the-middle (MITM) attacks [23, 24].

In this thesis, we consider ARP security from the specific perspective of SDN, in particular

its centralised control, which allows new approaches to ARP handling and providing security

for ARP. We initially demonstrate the vulnerability of current SDN platforms to ARP spoofing

attacks via experiments, for different approaches to ARP handling used in SDN, i.e. Regular

ARP and Proxy ARP.

We then investigate Dynamic ARP Inspection (DAI) [25], an ARP spoofing protection mech-

anism used in traditional IP networks, and explore its adoption to SDN. We show that DAI

can prevent ARP spoofing attacks in SDN, and we experimentally evaluate its overhead on

the SDN control plane. DAI relies on the availability of a trusted database of IP-to-MAC ad-

dress mappings. Such a database is not always available, and we, therefore, explore a new

method to secure ARP without such a requirement. The new method presented in this thesis,

called SARP_NAT, does not assume any trusted a-priori information of IP-to-MAC address

mappings and leverages SDN’s centralised control plane. The basic idea of SARP_NAT is

to prevent any potentially spoofed ARP information from coming into contact with end-hosts

and ARP handling components at the controller, and hence prevents the poisoning of the

corresponding ARP caches and databases. This is achieved by implementing a controller

component, which ’sanitises’ ARP requests and replies by overwriting potentially spoofed

4

Chapter 1: Introduction

fields. We demonstrate the viability of this new, SDN specific approach of securing ARP,

and present extensive experimental evaluations of its performance and cost.

1.2.3 Efficient ARP Handling

ARP handling in SDN is typically an expensive operation, depending on which approach is

chosen, i.e. Regular ARP or Proxy ARP. In the case of Regular ARP, significant network

bandwidth is required to broadcast ARP request messages in the network whereas Proxy

ARP imposes a significant computational load on the control plane since the SDN controller

handles ARP requests.

We developed a new OpenFlow-based approach for handling ARP in SDN, which achieves

much greater efficiency by offloading the task of answering ARP request to the data plane,

i.e. the SDN switches. Our experiments show that this approach significantly reduces the

time required to handle ARP requests, and significantly reduces the load on the SDN con-

troller, compared to the current state-of-the-art approach.

While this contribution is more of a general nature, and not exclusively focussed on secu-

rity, it does have important security implications and benefits. By significantly reducing the

load of the SDN controller, we can make the controller, and therefore the entire network,

less vulnerable to Denial of Service (DoS) attacks, as will be discussed in more detail in

Chapter 6.

1.2.4 Evaluation of Denial of Service Attacks

Denial of Service (DoS) attacks are a common problem in traditional networks. According

to [26], the estimated annual cost of the impact of DoS attacks is US $113 billion globally.

SDN, with its logically centralised control plane, represents a unique target for DoS attacks.

If an attacker manages to disable the controller, the entire network can be disrupted.

In this thesis, we provide an extensive experimental evaluation of the impact of DoS attacks

on different SDN controller platforms. We also consider the impact of the attacks on the

5

Chapter 1: Introduction

data plane, i.e. SDN switches. Our results show that an attacker, with relatively minimal

effort, can significantly disrupt modern SDN controllers, and their ability to forward legitimate

network traffic.

1.2.5 Security of Network Virtualisation

Network virtualisation is a highly desirable feature in today’s large-scale computer systems,

in particular in data centres. One of the key benefits of SDN is that it enables network

virtualisation. Using network virtualisation, multiple SDN controllers can share the same

physical network infrastructure. Network virtualisation is widely used in SDN, and the most

relevant SDN hypervisors are FlowVisor [27] and OpenVirteX [28]. With the new potential

that network virtualisation in SDN brings, they also represent a potential for new security

vulnerabilities.

In this thesis, we present a first extensive evaluation and analysis of the security of the

network virtualisation layer in SDN, with a focus on FlowVisor and OpenVirteX. By using

code analysis and fuzz testing [29], we found a number of new, critical security vulnerabilities

in FlowVisor and OpenVirteX. We show how an attacker can exploit these vulnerabilities to

break the isolation between virtual networks, and how a node on one virtual network can

successfully disrupt another virtual network, or in some cases, completely disable the entire

network. From our results, we can conclude that significant further efforts are required to

guarantee the security of SDN hypervisors.

1.3 Research Methodology

The research methodology used in this thesis for the evaluation of various security aspects

of SDN is largely experimental. This section provides a summary of the software tools, and

platforms that formed the basis of our experimental evaluation.

A key platform used for most of our experiments is Mininet [30], a Linux-based network

emulator. Mininet allows the creation of a network of virtual SDN switches and hosts, con-

6

Chapter 1: Introduction

nected via virtual links. An important advantage of Mininet is the ability to run real network

code, which allows experiments to be easily transferred to hardware SDN test-beds. Mininet

uses Open vSwitch (OVS) [31], a popular and widely supported software OpenFlow switch.

Some of our experiments have also been replicated on a hardware SDN test-bed. For this,

we used the OFELIA test-bed [32], a federated experimental SDN facility shared between a

number of SDN islands across various European countries (e.g. UK, Switzerland, Germany,

Belgium, Spain, and Italy), as well as Brazil. Each island is equipped with a range of SDN

hardware switches, supporting the OpenFlow 1.0 standard [2]. The model of the OFELIA

switches used in all our experiments was NEC IP8800//S3640-24T2XW. We used the re-

sources located at the OFELIA island in Trento, Italy. The SDN controller platforms used in

this thesis include POX [33], Ryu [34], ONOS [35], FloodLight [36], and OpenDaylight [37].

To implement and analyse different SDN security attacks, we used a range of software

tools, such as Scapy [38], Dsniff [39], PackETH [40], Tcpreplay [41], Stress-ng [42], and

Netcat [43]. Table 8.2 shows a summary of the key software tools that were used for the

experimental evaluations conducted in this thesis.

1.4 Thesis Structure

The structure of the remainder of this thesis is as follows:

• Chapter 2 provides the relevant background on Software Defined Networks, OpenFlow

and network security.

• Chapter 3 presents a general overview of the most relevant works on SDN security.

The works that are more specifically related to each of the specific contributions pre-

sented in this thesis are discussed in more detail in the corresponding chapters.

• Chapter 4 presents our security analysis of SDN’s current topology discovery mecha-

nism, as well as the implementation and evaluation of our proposed improvements.

• Chapter 5 presents the security analysis of ARP handling in SDN, as well as our pro-

posed countermeasures against ARP spoofing attacks.

7

Chapter 1: Introduction

Table 1.1: Software Tools used for Implementation Experiments in the Thesis

Software Function Version

Mininet [30] Network Emulator 2.1.0-2.2.2

Open vSwitch [31] Software SDN Switch 2.0.2-2.6.1

OFELIA [32] Hardware SDN Test-bed =======

POX [33] SDN Controller Platform dart branch

Ryu [34] SDN Controller Platform 3.19-3.22

ONOS [35] SDN Controller Platform 1.8.5-1.11.1

Floodlight [36] SDN Controller Platform 1.0

OpenDaylight [37] SDN Controller Platform Carbon SR1

Scapy Library [38] Packet Manipulation Tool 2.2.0

Dsniff Package [39] Network Sniffing Tool 2.4

PackETH [40] Packet Generator 1.8.1

Tcpreplay [41] Traffic Replay Tool 4.2.6

Stress-ng [42] Control Traffic Tool 0.02.26

Netcat [43] Network Sniffing Tool 5.59BETA1

VM-VirtualBox [44] Oracle Virtualisation 5.0.10

• Chapter 6 introduces a new, efficient approach to handle ARP in SDN.

• Chapter 7 presents an evaluation of the impact of DoS attacks against the control and

data plane in SDN.

• Chapter 8 presents new security vulnerabilities in the two most relevant SDN virtuali-

sation platforms and experimentally demonstrates their impact.

• Chapter 9 concludes the thesis and provides directions for potential future work.

8

Chapter 2

Background

2.1 Software Defined Networking (SDN)

Software Defined Networking (SDN) is a new approach to managing computer networks and

has recently gained tremendous momentum [45]. One of the essential concepts of the SDN

technology is the separation of the control plane from the data plane. The control plane

(intelligence), which determines how network packets are being forwarded, is removed from

the data plane, which is responsible for the actual forwarding of packets. The network control

function is (logically) centralised in an entity called the SDN controller that allows network

operators to programmatically configure network behaviour and directly manage the entire

network elements from a single management point [46, 47]. This concept facilitates network

evolution, boosts innovation processes, automates network management, and optimise net-

work configurations.

The conceptual architecture of SDN, as illustrated in Figure 2.1, consists of three layers

(infrastructure layer, control layer and application layer). The bottom layer, i.e. the infrastruc-

ture layer, is basically a set of forwarding elements, i.e. SDN switches, which provide basic

packet forwarding functionality based on decisions made by the control layer, i.e. forwarding

rules provided by the SDN controller.

The middle layer is the control layer, consisting of a logically centralised SDN controller, im-

plementing the functionality of a Network Operating System (NOS) [48]. The NOS deals with

9

Chapter 2: Background

Figure 2.1: Software Defined Network Architecture [1]

and hides the distributed nature of the physical network, and provides the abstraction of a

network graph to higher layer services, which sit at the application layer of the SDN archi-

tecture [49]. This abstraction makes the network much more programmable and simplifies

the implementation and deployment of new network services and applications. The SDN

controller manages and configures individual SDN switches by installing forwarding rules,

via the so-called southbound interface. The predominant standard for this is OpenFlow,

which allows the SDN controller to manipulate forwarding rules of the OpenFlow switches

[2]. OpenFlow is discussed further in the next section.

At the top of the SDN architecture is the application layer, where high-level network policy

decisions are defined and applications and services such as Traffic Engineering (TE), rout-

ing, firewalling, etc., are implemented. The interface between the application layer and the

control layer is referred to as the northbound interface. In contrast to the southbound in-

terface, there is currently no well-established standard for this, and different SDN controller

platforms support different APIs [1, 10, 45, 46].

10

Chapter 2: Background

Figure 2.2: OpenFlow Switch Components [2]

2.1.1 OpenFlow

OpenFlow is the predominant southbound interface protocol for SDN. It provides the inter-

face between the infrastructure layer and the control layer as shown in Figure 2.1, which

allows the SDN controller to talk to the forwarding elements (switches). The OpenFlow stan-

dard is maintained by the Open Networking Foundation (ONF). OpenFlow is a wire protocol

that allows the SDN controller to manipulate network traffic across the forwarding elements,

i.e. via decisions that are translated into forwarding rules and actions. It also allows switches

to notify the controller about special events, e.g. the receipt of a packet that does not match

any installed rules [13]. The OpenFlow specification has evolved from version 1.0 to the

current version 1.5 at the time of writing this thesis.

The core components of an OpenFlow switch that perform a packet lookup and forwarding

operation are illustrated in Figure 2.2. They consist of one flow table (in the case of Open-

Flow switch v1.0) or more flow tables in a pipeline (in the case of OpenFlow switch v1.2 -

v1.5), a group table, and an OpenFlow channel, connecting the switch to an external SDN

controller.

OpenFlow switches are assumed to be configured with the IP address and TCP port num-

11

Chapter 2: Background

Figure 2.3: Main Components of OpenFlow Entry

ber of their assigned SDN controller. At initialisation, switches contact the SDN con-

troller, via this address and port, and establish a secure Transport Layer Security (TLS)

connection. As part of the initial protocol handshake, the controller sends an OpenFlow

OFPT_FEATURES_REQUEST message to each OpenFlow switch, requesting configura-

tion information, including the number of switch ports and corresponding MAC addresses

[50]. This initial handshake informs the controller of the existence of the nodes (switches) in

the network, but it does not provide any information about the active inter-switch links, i.e.

the network topology. Gathering this information is the role of OFDP, which will be discussed

in more detail later.

As mentioned above, OpenFlow allows controllers to access and configure the forwarding

rules, i.e. flow entries in the flow tables at SDN switches. These rules, which provide

fine-grained control over how packets are forwarded through the network, can be installed

reactively as a response to received packets, or proactively. Each forwarding rule consists

of three main parts: Match fields (rules), Action (instructions), and Statistics (counters), as

shown in Figure 2.3.

• The Match fields are basically the selectors that OpenFlow switches rely on to filter

incoming packets. The supported match fields include the switch ingress port and

various packet header fields, such as IP source and destination address, MAC source

and destination address, UDP/TCP source and destination port number and more, as

shown in the figure. The value of the header fields can be either fixed or set as wild-

cards, i.e. made to match any value [12, 46].

• The Action field defines how packets that match specified match field values are

12

Chapter 2: Background

treated. The main actions supported by an OpenFlow switch include forwarding a

packet on a particular switch port, dropping the packet, enqueuing the packet and or

modifying the value of a specific field. Switch ports can either be physical ports or

one of the following virtual port types: ALL (sends the packet out on all physical ports,

except the ingress port), CONTROLLER (sends the packet to the SDN controller),

FLOOD (same as ALL, excluding the ports disabled by the spanning tree protocol)

[1, 9].

• The Statistics field is typically a collection of counters, which can be per table, flow,

port, and queue to count how many packets and bytes passing through the switch

match this forwarding rule.

• The Priority field defines the matching precedence of the forwarding rule. For example,

a forwarding rule with a high priority is executed before the rest.

• The Timeout field specifies the idle and maximum time of the forwarding rule before it

is removed from the flow table.

• The Cookie field is data value selected by the controller and may be used to filter flow

statistics and flow modification.

OpenFlow switches support a basic match-action paradigm, where each incoming packet is

matched against a set of rules, and the corresponding action or action list is executed. The

default behaviour of OpenFlow switches is to send the packet to the controller when it does

not match any of the rules.

To send a data packet to the SDN controller, an OpenFlow switch encapsulates the packet

in an OpenFlow Packet-In message. OpenFlow also supports an OpenFlow Packet-Out

message, via which the SDN controller can send a data packet to an OpenFlow switch,

together with instructions (action list) on how to forward the packet [13, 46].

13

Chapter 2: Background

Figure 2.4: Classification of Network Security Attacks

2.2 Network Security

Network security is concerned with providing the core properties of secure communications,

such as confidentiality, integrity and availability [51]. In this context, confidentially aims to

ensure that network services and information are only accessible to authorised users, while

integrity aims to prevent unauthorised modification and deletion of data traversing the net-

work. Availability refers to the guaranteed and reliable access to the information and services

by authorised people.

A key tool to implement network security is cryptography, in which electronic data is en-

crypted in a particular form that makes the data only accessible to authorised entities. En-

cryption provides confidentiality, by preventing unauthorised entities from reading messages,

while cryptographic checksums or Message Authentication Codes (MAC) provide both data

integrity and authenticity [52]. Unfortunately, no simple cryptographic solution guarantees

availability, e.g. prevents Denial of Services (DoS) attacks.

In this section, we first provide a basic classification of network security attacks and then

discuss some of the key security protocols, standards and technologies that are used to

secure computer networks.

2.2.1 Types of Network Security Attacks

Network security attacks are classified based on the behaviour of the attacker, as shown in

Figure 2.4. The two main categories are Passive attacks and Active attacks [53, 54].

14

Chapter 2: Background

• Passive attacks are network exploits, in which an attacker passively observes network

traffic and captures data that is being transmitted over a network without involving any

modification or deletion of the data. Eavesdropping is a type of passive attack, where

the attacker aims to read the content of the messages to reveal sensitive information.

This can relatively easily be prevented via encryption. An attacker can still gain some

information by observing the flow of encrypted information. The traffic pattern can

reveal critical information, e.g. who is talking to whom, when, how often, etc. This kind

of passive attack is called traffic analysis. The detection of passive attacks is generally

difficult, due to the nature of the attack. [55].

• In active attacks, an attacker attempts to either modify or delete data. There are four

main types of active attacks:

1. In masquerade attacks, an attacker uses a false identity to gain unauthorised

access to services or information. This attack can be prevented by cryptographic

means, e.g. message authentication codes or digital signatures.

2. In modification attacks, an attacker modifies an intercepted message, e.g. the

packet header or the payload. This requires the attacker to be in the data path

between the sender and receiver, i.e. as a Man-in-the-Middle. This attack can also

be prevented by the same cryptographic means as used to prevent masquerade

attacks, i.e. message authentication codes or digital signatures.

3. In replay attacks, an attacker passively captures and intercepts a stream of mes-

sages transmitted between two legitimate users and fraudulently replays the mes-

sage back to one of the users. This attack is slightly more challenging to detect,

and basic methods based on message authentication codes are vulnerable to

reply attacks. This will be discussed in more detail in Chapter 4.

4. Denial of Service (DoS) attacks aim to remove or reduce the availability of services

to legitimate users. This is often done by simply overwhelming a server or a

network with illegitimate service requests or packets. As mentioned before, there

is no simple cryptographic method to prevent general DoS attacks.

In contrast to the passive attacks, active attacks can generally be more easily detected,

due to the active intervention of the attacker.

A more detailed overview of network security attacks is provided in [52, 55, 56]

15

Chapter 2: Background

2.2.2 Network Security Protocols and Technologies

There are a number of ways in which networks can be protected from different types of

attacks. As mentioned above, cryptography is a useful tool and can be implemented in

protocols at different layers of the network protocol stack [57]. Two of the most relevant

security protocols in this context are Transport Layer Security (TLS) / Secure Socket Layer

(SSL) and Internet Protocol Security (IPsec).

TLS (or SSL) [58] is a cryptographic protocol at the transport layer that establishes a secure

end-to-end connection across the network. TLS is the most widely used security protocol in

computer networks, and it provides data confidentiality, integrity and authenticity via a range

of cryptographic algorithms.

IPsec [59] is a suite of security protocols, which provide cryptographic security at the network

layer. IPsec supports key negotiation, authentication, encryption and data integrity similar to

TLS.

In addition to cryptographic tools, there are a number of other technologies used to provide

network security. Some of the key examples include Firewalls, Intrusion Detection Systems

(IDS) and Intrusion Prevention Systems (IPS).

A firewall is a device (software or hardware based) that monitors and filters the flow of pack-

ets based on some pre-defined security rules. Firewalls can operate at different layers of the

protocol stack, typically layers 3 and 4, and can be state-less or state-full. Firewalls can also

be host-based or network-based [60].

An Intrusion Detection System (IDS) passively monitors the flow of network traffic with the

aim of identifying any policy violations and detecting abnormal and suspicious network traf-

fic. The detection mechanism can either be signature based, in which packets are compared

against a special signature in the database, or anomaly based, in which packets are com-

pared against an established baseline network behaviour [61, 62, 63]. In contrast to typical

firewalls, IDSs also look at the packet payload, i.e. they do Deep Packet Inspection (DPI).

An Intrusion Prevention System (IPS) is similar to IDS, but in addition to alerting, it can ac-

16

Chapter 2: Background

tively prevent or mitigate network attacks, e.g. via blocking malicious traffic or disconnecting

infected hosts [64].

17

Chapter 3

Literature Review

The fundamental characteristic of the SDN architecture, i.e. the separation of the control

plane from the data plane, represents a two-sided concept from a security perspective. On

the one side, SDN allows the implementation of network security functions and policies

in a new and more simple approach, which has not been possible in traditional networks

[65, 66, 67]. We refer to this as ’Security via SDN’.

On the other hand, the new architecture of SDN brings a range of new potential attack

vectors, including attacks against the control plane and the data plane [68, 69, 70]. We refer

to this aspect of SDN security, i.e. the security of the SDN platform itself, as ’Security of

SDN’.

While there have been quite a lot of works exploring how SDN can be used to implement

different network security functionality, i.e. ’Security via SDN’, there has been relatively less

attention to the security of the SDN architecture and platform, i.e. ’Security of SDN’, which

is the focus of this thesis.

This chapter first provides a broad overview of key works related to ’Security via SDN’, and

then discusses key works related to the security of the SDN architecture itself, i.e. ’Security

of SDN’. More detailed discussions of works that are specifically relevant to the contributions

presented in this thesis are provided in the corresponding chapters.

18

Chapter 3: Literature Review

3.1 Security via SDN

SDN technology has emerged initially with the objective to improve network management.

One of the initial papers that laid the foundation of the current form of SDN is [71], where

Secure Architecture for the Network Enterprise (SANE) was proposed to ease the network

management and configuration of security middle-boxes of legacy networks through central-

ising the logical network functionality of access control decisions and policies.

SANE primarily concentrates on the registration and authentication mechanisms of network

elements to establish communication successfully. Therefore, no access to services is pro-

vided unless end-hosts grant an explicit permission, i.e. authenticated and registered at the

controller.

This new network architecture paradigm is considered a radical change to the traditional net-

work architecture and a catalyst for the development of Ethane [72], an extension of SANE.

Ethane is basically a security management architecture combining special Ethernet switches

that are extended to track flows in-progress. In Ethane, the network-wide policy decides the

network path that packets are supposed to follow. The proposed solutions resulted in the

widespread adoption of the SDN platform. More recently, SDN has been increasingly used

to enhance network security and to simplify the deployment of new security services [73, 74].

In this section, we provide a brief overview of the key works in this space.

Active security [3] is an SDN-based architecture that implements advanced security mech-

anisms through a centralised and unified programming interface to detect complex attacks

and protect the network infrastructure. Figure 3.1 shows the Active security architecture,

including its two layers: cyber infrastructure and Active security controller. The cyber infras-

tructure layer is a set of network forwarding devices, end-hosts, and security middle-boxes.

The next layer is the Active security controller, which is extended beyond its pivotal role

of controlling the network forwarding devices to communicate with the end-hosts and the

security middle-boxes. The controller, which constitutes the most significant part of the Ac-

tive security architecture, continuously and passively monitors network traffic and collects

information about the current state of the infrastructure. It additionally gathers forensic ev-

idence on-demand at runtime for attribution, while countering the attack through sophisti-

19

Chapter 3: Literature Review

Figure 3.1: Active Security Architecture [3]

cated mechanisms such as moving malicious and dangerous code to a walled-off system.

The authors create a preliminary prototype that goes beyond the SDN controller to automat-

ically interact and exchange the attack information with dedicated network security devices

such as the Snort Intrusion Detection System (IDS) [63] to detect anomalies and collect

forensic evidence.

When anomalies are detected in network traffic flowing across the infrastructure, the Snort

IDS reports the activity to the Active security controller, which is capable of analysing any

malicious traffic and isolates it from normal traffic to a quarantined machine. Based on the

results of collected data and forensic evidence of the attack statistics, the Active security

controller immediately takes a proper action and dynamically adjusts the configuration of the

infrastructure at runtime.

OrchSec [4] is an orchestrator-based architecture that mainly aims to improve network secu-

rity and increase the system performance, flexibility, reliability and reliance through abstract-

ing the control and network monitoring functions from the control plane and placing them at

an additional layer, i.e. the Orchestrator. The OrchSec architecture is composed of three

layers: infrastructure layer, control layer and orchestration layer, as shown in Figure 3.2. The

20

Chapter 3: Literature Review

Figure 3.2: OrchSec Architecture [4]

infrastructure layer is basically a collection of SDN forwarding elements, e.g. switches and

routers, that are responsible for forwarding network packets, not including any security de-

vices. The control layer includes multiple SDN controllers running over a virtualisation layer

and a network monitor that utilises sFlow [75] for network traffic sampling. The main function

of the controllers is to coordinate between the Orchestrator and the control plane through a

special application installed in all SDN controllers, i.e. the Orchestrator agent, and initiate

control traffic messages, e.g. flow rules. At the top is the orchestration layer (Orchestrator),

the component of the architecture where network security applications are implemented and

deployed.

LiveSec [5] is another SDN-based architecture that fundamentally aims to provide scalable

and flexible network security management in large-scale production networks through in-

teractive policy-enforcement, real-time traffic monitoring and distributed load-balancing. In

contrast to previous architectures, LiveSec basically appends a new layer to the traditional

network architecture, and thus the LiveSec architecture consists of three layers: legacy-

switching layer, access switching layer and control layer, as shown in Figure 3.3. The

access-switching layer is used to interconnect the control layer and the legacy-switching

layer through a set of OpenFlow-enabled switches. It provides legitimate interfaces for the

control plane, i.e. LiveSec controller to access the legacy-switching layer and the ability to

attach various security elements. The legacy-switching layer is a set of Ethernet switches

21

Chapter 3: Literature Review

Figure 3.3: LivSec Architecture [5]

that perform layer-2 forwarding. The integral part of the LiveSec architecture is the control

plane, i.e. the LiveSec Controller, which is responsible for identifying and locating the source

of real-time security events.

3.2 Security of SDN

As mentioned before, the different architecture of SDN with its logically centralised control

plane creates potentially new vulnerabilities and attack vectors that do not exist in traditional

networks, or not to the same extent.

In [6], seven main threat vectors are identified in the SDN design that potentially stand in the

way of achieving a secure network environment and keeping all network devices operating

properly. Figure 3.4 shows an overview of these threats, which are indicated respectively

as (1) forged or faked traffic flows, (2) attacks on vulnerabilities in switches, (3) attacks on

control plane communications, (4) attacks on vulnerabilities in controllers, (5) lack of trusted

mechanisms between controller and management applications, (6) attacks on vulnerabilities

in administrative stations, and (7) lack of trusted resources for forensics and remediation.

Inspired by this, we group our discussion of key works on the security of the SDN architecture

22

Chapter 3: Literature Review

Figure 3.4: Security Threat Vectors Map in SDN [6]

into four categories: security of the control plane, security of the data plane, security of the

application layer, and security of the southbound interface.

3.2.1 Security of the Control Plane

Aggregating the whole network function to a centralised entity (the SDN controller) appears

to present a double-edged sword to the SDN architecture. It evidently improves network

management and operation through the global view of the network [46, 76]. However, the

control plane, i.e. the SDN controller, becomes a serious single point of failure risk and a

prime target for attackers to exploit. The centralised nature of the control plane of the SDN

architecture can potentially degrade the reliability and scalability of SDN, particularly in data

centres [77].

To address this problem, Onix [78] was proposed as a logically centralised SDN controller,

that is a physically distributed system. HyperFlow [79] extended the idea further by maintain-

ing network control centralisation with distributed decision making, thereby minimising the

look-up overhead and the response time of data plane requests imposed by sending them

to the control plane. DISCO [80] is another distributed control plane, where each DISCO

controller manages and controls its network domain and coordinates with other DISCO con-

trollers to provide network services. A comprehensive analysis of various reactive and proac-

tive SDN controllers, with performance evaluation and scalability measurement, is presented

23

Chapter 3: Literature Review

in [81].

Despite the physical distribution of the SDN controller, its logical centralisation still presents

an interesting target for attackers, since bringing down the controller makes the entire net-

work ’headless’ and consequently disrupts the entire network. Therefore, the security of the

SDN control plane is absolutely critical for the security of SDN overall [82]. In the following,

we summarise some of the key works that have been done in this area, with a focus on DoS

attacks.

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks have recently be-

come a primary concern in SDN, due to the centralised nature of the control plane and the

lack of network intelligence at the data plane [68, 83]. Implementing robust DoS and DDoS

attack detection can be quite difficult, due to the similarity between normal and abnormal

traffic, i.e. malicious packets sent by compromised hosts, in which OpenFlow switches are

unable to expose during the packet forwarding process. For this reason, recent DoS and

DDoS attack detection solutions exploit traffic flow statistics to produce efficient and stable

DoS and DDoS protection system. Braga et al. [84] proposed a lightweight DDoS attack

detection method that is configured on traffic flow features to extract information with low

overhead. It basically monitors OpenFlow switches and retrieves active flow statistics at

regular intervals to increase the rate of detection and lower the rate of false alarms. Based

on flow statistics and flow manipulation functions, network traffic is then classified as legiti-

mate or malicious by using Self Organising Maps (SOM), an unsupervised machine learning

algorithm [85].

Another DDoS detection method is proposed in [86], where the Locator/ID separation proto-

col (LISP) [87] is used to analyse the frequency of network traffic and identify the malicious

source of the DDoS attack. Suh et al. [88] presented a content-oriented networking archi-

tecture (CONA) that is capable of creating flows for the host sending a request to the server

and the type of content requested. It then computes the difference between the request rate

and a pre-defined value, and a DDoS attack is detected when the request rate exceeds the

specified threshold.

The paper [89] discussed another approach to launch a DDoS attack against the control

plane of SDN, in which an attacker continually generates various network packets with ran-

24

Chapter 3: Literature Review

dom headers from multiple nodes to make the controller unable to handle normal network

traffic. To increase the resilience of SDN, the authors proposed the use of second SDN

controller (CPRecovery component) acting as a standby backup that replicates and synchro-

nises with the primary controller to maintain a consistent and up to date global network view.

In the event of a primary controller failure, the second controller is activated and becomes

the primary Network Operating System (NOS).

In [90], the authors extended the SDN architecture to improve network security by distributing

the security functions between the control plane and the data plane. In this architecture, a

local security detection agent, Local Frequent Sets Analyser (LFSA), is installed on each

SDN switch to primarily analyse network traffic patterns and identify vulnerabilities using

data mining. Another security detection agent, Global Frequent Sets Analyser (GFSA), is

installed globally on the SDN controller to continuously monitor the LFSA logs, which hold

information about detected traffic anomalies and triggers appropriate action as a response

to any detected network threat. A key limitation of this approach is that it does not work on

standard OpenFlow switches, and it requires a significant extension of the data plane, which

goes against the ’philosophy’ of SDN, separating control and data plane functionality.

Dotcenko et al. [91] presented a fuzzy logic-based information security management system

that performs intrusion detection and prevention and simultaneously evaluates the security

level of the network, aiming to provide a more secure network environment. The proposed

system at the beginning collects and aggregates statistical network data through real-time

capturing. It then relies on the combination of popular network anomaly detection algorithms

[92, 93], to distinguish between normal and abnormal traffic. Upon detecting an attack,

the system dynamically makes a decision based on fuzzy logic, regarding which counter-

measures, e.g. rate limiting should be applied. The authors claim that this requires less

computational overhead than other approaches.

Klaedtke et al. [94] discussed the fundamental security concepts of SDN controllers and

found that previous access control schemes are insufficient to provide SDN controllers with

a secure environment. This resulted in the proposal of a new network-level access control

scheme based on the OpenFlow protocol. The proposed policy enforcement is placed at

the control plane, which allows the SDN controller to access the flow tables and entries of

OpenFlow switches. It mainly aims to protect network flows and resolve conflicts derived

25

Chapter 3: Literature Review

from network component reconfiguration. The recommendation of the paper was that net-

work components (SDN applications), which are shared between users, should be logically

separated and users’ security requirements should be expressed and enforced.

3.2.2 Security of the Data Plane

In an OpenFlow-based SDN, switches simply forward packets based on match-action rules

installed in flow tables. Hardware SDN switches typically use Ternary Content Addressable

Memory (TCAM) to maximise forwarding speed. This memory is expensive and therefore

limited in size. This represents a target for DoS attacks, in which attackers try to exhaust the

TCAM memory resources. Also, OpenFlow switches generally need to buffer data packets

that do not match any pre-defined flow rules and wait until the controller finishes processing

the packets and issuing the corresponding flow rules. This could ultimately result in exhaust-

ing the switches’ resources, especially in large-scale networks [70]. In [95], the authors

analyse potential security vulnerabilities across the SDN platform, emphasising the impact

of the default forwarding process on the data plane. An attacker can readily perform a De-

nial of Service (DoS) attack against the data plane, via setting up a large number of new

unknown flows, which result in the installation of a large number of new flow rules by the

controller, thereby exhausting the memory of the switch.

DevoFlow [96] introduced an extension of the current OpenFlow protocol to minimise the

frequent interaction between OpenFlow switches and the SDN controller, as well as the

number of required TCAM entries through the use of wild-carded OpenFlow clone rules. In

the proposed implementation, DevoFlow-based OpenFlow switches replicate the active and

pre-installed flow rules for microflow rules that match the header fields of packets and then

use the microflow rules for updating and configuring global flow rules. Subsequently, the

SDN controller of the DevoFlow architecture is only responsible for the brunt of defining and

inserting flow rules and policies for the Quality of Service (QoS), which further devolves cen-

tralisation to avoid network overhead and increase scalability. Additionally, DevoFlow-based

OpenFlow switches include new mechanisms that allow the switches to perform routing de-

cisions locally, thereby avoiding controller involvement.

Similar to DevoFlow, DIFANE [97] extends the OpenFlow protocol and offloads some of

26

Chapter 3: Literature Review

the control plane functionality to the data plane through authorising a subset of switches

with sufficiently large memory and processing capabilities for handling a portion of network

traffic. When network traffic does not match any cached flow rules, the receiving switch

forwards the packet to one of these authorised switches, which handle the packet locally in

the data plane instead of contacting the controller. Like DevoFlow, this eventually results

in the reduction of the number of controller-switch interactions and the increase of network

scalability. The primary differences between DevoFlow and DIFANE are that the controller in

the DIFANE implementation is not involved in the process of installing new flow rules and the

network state is distributed among authority switches. As a result, DIFANE-based OpenFlow

switches are enabled to detect and learn topology changes, without relying on the controller

updates. Both of these approaches rely on putting intelligence in the switches, which violate

the philosophy of clear control and data plane separation of SDN.

AVANT-GUARD [98] is a proxy-based solution with an idea similar to DevoFlow and DIFANE,

in which the OpenFlow protocol is being extended. The main purpose of AVANT-GUARD is

to enhance OpenFlow networks’ scalability and resilience under control plane saturation

attacks such as TCP-SYN flooding. It adds intelligence to the data plane that enables se-

curity applications to respond to network threats dynamically. In AVANT-GUARD, OpenFlow

switches are essentially capable of performing forensic analysis on network traffic and in-

specting TCP sessions prior to notifying the controller. Thus, only flow requests that include

a complete TCP handshake are forwarded to the controller.

As mentioned above, these methods require significant changes to SDN and OpenFlow,

and propose moving away from the idea of separating control and data plane, which is an

essential concept in SDN.

3.2.3 Security of the Application Layer

The application layer, i.e. the application plane in SDN environment is basically a set of

software applications. They are programmed and designed to perform network policy de-

cisions and provide various network services such as Quality of Service (QoS), Traffic En-

gineering (TE), Intrusion Detection System (IDS), network security monitoring, firewalling,

and load-balancing [99]. SDN applications directly interact with the control plane through

27

Chapter 3: Literature Review

the Northbound interface and are enabled to manipulate the behaviour of underlying net-

work devices and network functions. In the following, we discuss key SDN applications that

provide network security services.

CloudWatcher [100] is an OpenFlow-based monitoring application for large-scale networks.

It relies on network traffic analysis technique for offering security and filtering incoming pack-

ets. Based on pre-installed security policies and controlling network flows, CloudWatcher

re-routes network packets to dedicated network security devices for inspection.

FLOWGUARD [101] is an OpenFlow-based firewall application for detecting global policy

violations in real-time and automatically resolving any discovered conflicts between all fire-

wall policies. It actively monitors the flow status in the data plane and records the source

and destination of each flow to enforce one consistent global behaviour across the network.

When a contradiction occurs with the firewall policies, FLOWGUARD does not simply block

and reject the update. Instead, it analyses the context of conflicts and acts accordingly.

Even though the OpenFlow protocol dramatically simplifies the design and the integration

of complex network security applications and reduces the complexity of security policy man-

agement, the current security policy enforcement in SDN is somewhat inefficient and limited.

In particular, malicious OpenFlow applications can contradict and override flow rules created

by other OpenFlow applications, which can result in allowing malicious traffic to pass through

the firewall. In the following, we discuss recent research focused on addressing this problem,

exclusively on security threats raised from malicious applications and address the proposed

security policy enforcement.

FortNOX [102] was introduced as a role-based authorisation and security constraint kernel

directly integrated into the SDN control plane, offering a security mediation and policy en-

forcement. The essential aim of the new mechanisms incorporated into FortNOX is to detect

potential flow rule contradictions within the data plane in real-time, through regularly check-

ing and analysing the flow table after every update. When a contradiction occurs within

a flow rule, FortNOX verifies this rule with flow rules in the security constraints table and

applies the rule with the highest priority.

FRESCO [103] is an OpenFlow-based security application development platform specifically

28

Chapter 3: Literature Review

designed to efficiently facilitate and enhance the implementation of OpenFlow-based secu-

rity applications through defining high-level security policies and creating innovative security

functions for threat detection and mitigation. FRESCO has access to all network events and

flow statistics, and attack detection is based on a comparison of current network state with

a database of historical network state information. When a threat is detected, the system

reacts with actions such as mirror, redirect or quarantine. In case the action is mirror, the

receiving switch explicitly creates a copy of the packet and forwards it to the packet analysis

system for conducting additional analysis. If the action is redirect, the packet is forwarded

directly to the destination host. However, if the action is quarantine, the packet can only tra-

verse to certain hosts that are equipped with special tools to keep the infected host isolated

from the network. This results in minimising the severity of the threats and simplifies the

management of network security functions in SDN.

3.2.4 Security of the Southbound Interface

The OpenFlow control channel, i.e. the Southbound Interface, is the interface that links

OpenFlow switches to an SDN controller to exchange control messages. Typically, the con-

nection between the SDN controller and OpenFlow switches is encrypted using Transport

Layer Security (TLS). The essential benefit of the TLS protocol is preventing attackers from

being able to take over the control of network switches without having the required authority.

As described in the OpenFlow specification [2], this security feature is optional and there is

no official standard defined for the TLS protocol in the OpenFlow implementation. Unfortu-

nately, some vendors of switches and controllers neglect to enforce the use of this protocol.

The lack of adopting of secure cryptographic protocols to the southbound interface makes

SDN susceptible to the following types of attacks [83, 104]:

• Man-in-the-middle (MITM) attacks, where the attacker actively intercepts the control

messages such as flow rules and applies desired changes before reaching the data

plane.

• Denial of Service (DoS) attacks, where the attacker mainly aims to break the connec-

tion between the control plane and the data plane and disrupt the installation of flow

29

Chapter 3: Literature Review

rules.

• Eavesdropping attacks, where the attacker sniffs valuable information such as the net-

work topology.

• TCP-level attacks, where the attacker exploits vulnerabilities of TLS and floods the

OpenFlow channel with attack packets.

Overall, these vulnerabilities leave avenues for an attacker to proactively and reactively ma-

nipulate the configuration of the switches, which ultimately results in modifying or disrupting

the network behaviour. It is therefore absolutely critical that the control channel is secured

via cryptographic protocols, which provide secure authentication, encryption and integrity

protection of control messages.

Table 3.1 summarises some of the key proposals and works that discuss potential security

threats of SDN technology, at the control plane, data plane, application layer, indicating the

key contribution as well as the proposed attack mitigation methods.

None of the works discussed in this chapter have paid close attention to the potential security

vulnerabilities of the fundamental components of SDN, such as Topology Discovery, ARP

handling and network virtualisation, which represent the key focus and contribution of this

thesis. More closely related works to these specific aspects are discussed in the context of

the corresponding chapters, where the contributions and technical details of this thesis are

presented.

30

Chapter 3: Literature Review

Table 3.1: Summary of Proposed Security Measures for SDN Layers (Planes)

SDN layer (Plane) Security Projects Main Contribution Mitigation Technique

Control Plane

Hybrid controller
[81]

Evaluating
OpenFlow controller
performance

Add mechanisms to
understand the
traffic behaviour
and set path
on-demand

DDoS Attacks
Detection [105]

Intrusion detection
and prevention
system

Use a window size
and threshold

Dynamic Controller
[106]

Traffic management
for multiple
controllers

Use integer linear
programming

ROSEMARY[107] Secure and high
performance SDN
controller

Use resource
utilisation
monitoring

Data Plane

FlowChecker [108] Configuration
Analyser of
OpenFlow switches

Use binary decision
diagram

Monitoring Model
[109]

Monitoring function
on OpenFlow
switches

Place a general
message generator
and processing
function

Packet-In Filtering
[110]

Filtering
mechanism on
OpenFlow switches

Extend the
OpenFlow
specification

Resonance [111] Dynamic access
control on
OpenFlow switches

Based on policies
the controller
installs

Application Plane

PermOF [112] Resource isolation
and access control

Minimise SDN
application
privileges

Veriflow [113] Flow rules checker Use prefix tree(an
ordered tree data
structure)

FLOVER [114] Flow rules checker Utilise the
satisfiability modulo
theories

Assertion [115] SDN application
debugger

Use VeriFlow
verification
algorithm

OF-testing [116] Automating the
testing of SDN
applications

Use simple traffic
models

31

Chapter 4

Security of Topology Discovery

4.1 Introduction

In the SDN architecture, it is essential for higher layer services such as routing to have an

accurate and up to date view of the network topology. One of the key network services of

a Network Operating System (NOS), i.e. SDN control layer, is to provide network topology

information to the application layer.

While there is no official standard for an SDN topology discovery mechanism, there is a de-

facto standard, which is sometimes informally referred to as Open Flow Discovery Protocol

(OFDP) [117, 118]. All major SDN controllers implement it in essentially the same way, most

likely due to the fact that it has been adopted from NOX, the original SDN controller [48].

The problem with OFDP is that it is fundamentally insecure, as is demonstrated in this chap-

ter. We show how an attacker can poison the topology view of the SDN controller and create

spoofed links by crafting special control packets and injecting them into the network via one

or more compromised hosts.

We show the feasibility of the attack, both via network emulation as well as test-bed ex-

periments, for both POX [33] and Ryu [34], two widely used SDN controller platforms. We

further demonstrate and evaluate the impact of the link spoofing attack on higher layer ser-

vices. We use shortest path routing as a case study and show that an attacker can relatively

32

Chapter 4: Security of Topology Discovery

Dst
MAC

Src
MAC

Ether-
type:

0x88CC

Chassis
ID

TLV

Port
ID

TLV

Time
to

live
 TLV

Opt.
TLVs

End of
LLDPDU

TLV

Frame

check
seq.

Preamble

Figure 4.1: LLDP Frame Structure

easily cause significant disruption of network connectivity. The impact, i.e. the level of con-

nectivity disruption is quantified in two example scenarios. A final contribution of the chapter

is the discussion and evaluation of countermeasures against the vulnerability.

The remainder of the chapter is organised as follows. Section 4.2 describes in detail the

operation of OFDP, the current state-of-the-art topology discovery mechanism in SDN. Sec-

tion 4.3 describes the vulnerability of OFDP and demonstrates a number of link spoofing

attacks. Section 4.4 investigates the impact of the attack on higher layer services, based

on the example of routing. Section 4.5 discusses countermeasures, Section 4.6 discusses

related works, and Section 4.7 concludes the chapter.

4.2 OpenFlow Discovery Protocol (OFDP)

Topology discovery is an essential service in SDN and underpins many higher layer ser-

vices. In this context, when we refer to topology discovery, we mean link discovery, since

the controller learns about the existence of network nodes (switches) by other means, as

discussed previously.

OpenFlow switches themselves do not support any topology (link) discovery functionality,

and it, therefore, needs to be implemented as a service at the controller. There is currently

no official standard for topology discovery in SDNs based on OpenFlow. However, there

is a de-facto standard, since all the major SDN controller platforms implement topology

discovery in essentially the same way, derived from the topology discovery mechanism in

NOX [48]. This mechanism is sometimes referred to informally as OpenFlow Discovery

Protocol (OFDP) in [118, 119], and for lack of an official term, we use it in this chapter.

OFDP uses the frame format defined in the Link Layer Discovery Protocol (LLDP) [120],

designed for link and neighbour discovery in Ethernet networks. However, except the frame

33

Chapter 4: Security of Topology Discovery

SDN
Controller

S2S1

P1P3

P2

P3

P2

P1

Packet-Out
with LLDP pkt

Packet-In
with LLDP pkt

Chassis ID = S1
Port ID = P1

LLDP pkt:

Chassis ID = S1
Port ID = P2

LLDP pkt:

Chassis ID = S1
Port ID = P3

LLDP pkt:

Figure 4.2: Basic OFDP Example Scenario

format, OFDP has not much in common with LLDP and operates quite differently.

The format of an LLDP frame, as used in OFDP, is shown in Figure 4.1. The LLDP payload

is encapsulated in an Ethernet frame with the EtherType field set to 0x88CC. The Ethernet

frame contains an LLDP Data Unit (LLDPDU) (shaded in grey in Figure 4.1), which has a

number of type-length-value (TLV) fields. The mandatory TLVs include Chassis ID, a unique

switch identifier, Port ID, a port identifier, and a Time to live field. These TLVs can be followed

by a number of optional TLVs and an End of LLDPDU TLV.

An OpenFlow switch, due to its lack of control intelligence and autonomous operation, cannot

initiate the sending and processing of link discovery packets, as is the case for traditional

Ethernet switches, and as specified in the LLDP standard [120]. In SDN, link discovery is

initiated by the controller. How this works in OFDP is illustrated via a basic example scenario

shown in Figure 4.2. Initially, the SDN controller creates a dedicated LLDP packet for each

port on each switch, in our example, a packet for port P1, a packet for port P2 and one

for port P3 on switch S1. All these LLDP packets have their Chassis ID, and Port ID TLVs

initialised accordingly.

The controller then uses a separate OpenFlow Packet-Out message to send each of the

LLDP packets to switch S1. Every OpenFlow Packet-Out message also includes an action,

which instructs the switch to forward the packet via the corresponding port. For example,

the LLDP packet with Port ID = P1 will be sent out on port P1, the packet with Port ID = P2

on port P2, etc.

34

Chapter 4: Security of Topology Discovery

Switches are pre-configured with a rule which states that any received LLDP packets are to

be sent to the controller via an OpenFlow Packet-In message. As an example, we consider

the LLDP packet which is sent out on port P1 on switch S1 and is received by switch S2

via port P3 in Figure 4.2. According to the pre-installed rule, switch S2 sends the LLDP

packet to the controller, encapsulated in an OpenFlow Packet-In message. This OpenFlow

Packet-In message also contains additional metadata, such as the ingress port where the

packet was received, as well as the Chassis ID of the switch sending the OpenFlow Packet-

In message. This information, combined with information about the origin switch and port,

contained in the payload of the LLDP packet (Chassis ID and Port ID TLVs) can be used by

the controller to infer the existence of a link between (S1, P1) and (S2, P3).

This process is repeated for every switch in the network, i.e. the controller sends a separate

OpenFlow Packet-Out message with a dedicated LLDP packet for each port of each switch,

allowing it to discover all available links in the network.1 The entire process is repeated

continuously, with a typical discovery interval of 5 seconds [33].

Most current SDN controller platforms such as NOX [48], POX [33], Ryu [34], ONOS [35],

OpenDaylight [37], Floodlight [36], and Beacon [121] implement the OFDP discovery mech-

anism as described above. A study of the source code of the different implementations

reveals only very minor variations, for example in regards to the timing of the sending of

the Packet-Out messages, or the encoding of Chassis ID and Port ID information in LLDP

packets.

4.3 OFDP Link Spoofing - Basic Vulnerability

The basic security problem with the current SDN topology discovery mechanism (OFDP) is

that there is no authentication of LLDP control messages. Any LLDP packet received by the

controller is accepted, and link information contained in it is used to update the controller’s

topology view.

More specifically, OFDP lacks the following two checks:

1The authors in [117] have demonstrated how the efficiency of this approach can be significantly improved.

35

Chapter 4: Security of Topology Discovery

SDN
Controller

S1 S2 S3
P2 P2 P2P3

P1P1 P1

h2 h3h1

Figure 4.3: Basic Attack Scenario (Mininet)

• OFDP does not check or enforce that only LLDP packets received via switch ports

connected to another switch are accepted for processing. Instead, LLDP packets from

host ports are also accepted and forwarded to the controller.

• There is no authentication or integrity check of LLDP control messages. The controller

has no way of verifying the origin of the packets.

As a result, it is relatively easy for an attacker to inject fabricated (spoofed) LLDP control

messages into the network and thereby corrupting the topology information of the controller.

We illustrate this via a simple example, shown in Figure 4.3. In this scenario, we assume

that host h1 has been compromised by an attacker, who aims to create a fake link between

switches S1 and S3.

The attack can be broken down into the following steps:

1. Host h1 injects an LLDP packet via port P1 on switch S1, where h1 is attached. The

injected packet follows the structure shown in Figure 4.1, but with the Chassis ID TLV

set to S3, and the Port ID set to P1.

2. Switch S1 receives the LLDP packet from h1, and following its installed rule, it forwards

the packet to the controller, encapsulated in an OpenFlow Packet-In message. Switch

S1 adds information to the OpenFlow Packet-In message, i.e. its own Chassis ID and

36

Chapter 4: Security of Topology Discovery

Table 4.1: Software Tools used for Implementation and Experiments in Chapter 4

Software Function Version

Mininet [30] Network Emulator 2.1.0

OFELIA [32] Hardware SDN Test-bed =======

Open vSwitch [31] Virtual SDN Switch 2.0.2

POX [33] SDN Controller Platform dart branch

Scapy Library [38] Packet Manipulation Tool 2.2.0

the Port ID of the ingress port via which the LLDP packet was received at switch S1.

In our scenario, this information is (S1, P1).

3. The controller receives the LLDP packet plus the additional information added by

switch S1. It identifies the source of the LLDP packet, and therefore the origin of

the link from the TLVs in the payload is (S3, P1). The information about the other end

of the link is taken from the metadata of the Packet-In message, and is identified as

(S1, P1). From this information, the controller concludes (wrongly) that there exists a

link between (S3, P1) and (S1, P1).

4.3.1 Experimental Validation - Mininet

To validate the feasibility of the link spoofing attack experimentally, we used Mininet [30] and

Open vSwitch (OVS) [31]. For our initial experiment, we used the POX controller platform

and its implementation of OFDP, i.e. the openflow.discovery component. We wrote a packet

generator in Python based on the Scapy library [38] to craft a special LLDP packet for the

attack. Table 8.2 summarises the relevant software tools that we used in the experiments of

this chapter. The Mininet experiments were run on a standard Dell PC (OptiPlex 780 with a

3 GHz Intel Core 2 Duo CPU and 4 GB of RAM), running Ubuntu Linux with kernel version

3.13.0.

Figure 4.4 shows the debug output of the POX controller, in particular the openflow.discovery

component which implements OFDP. No other POX component was running in this exper-

iment. From the output, we see that our three switches have connected to the controller,

37

Chapter 4: Security of Topology Discovery

root@mininet-vm:~/pox# ./pox.py openflow.discovery
POX 0.3.0 (dart) / Copyright 2011-2014 James McCauley, et al.
INFO:core:POX 0.3.0 (dart) is up.
INFO:openflow.of_01:[00-00-00-00-00-01 2] connected
INFO:openflow.of_01:[00-00-00-00-00-02 1] connected
INFO:openflow.of_01:[00-00-00-00-00-03 3] connected
INFO:openflow.discovery:link detected: 00-00-00-00-00-01.2 -> 00-00-00-00-00-02.2
INFO:openflow.discovery:link detected: 00-00-00-00-00-02.3 -> 00-00-00-00-00-03.2
INFO:openflow.discovery:link detected: 00-00-00-00-00-02.2 -> 00-00-00-00-00-01.2
INFO:openflow.discovery:link detected: 00-00-00-00-00-03.2 -> 00-00-00-00-00-02.3
INFO:openflow.discovery:link detected: 00-00-00-00-00-03.1 -> 00-00-00-00-00-01.1

Figure 4.4: POX Debug Information (Mininet)

with Chassis ID of 00-00-00-00-00-01 for switch S1, 00-00-00-00-00-02 for switch S2 and

00-00-00-00-00-03 for switch S3. This debug output is generated by the main POX compo-

nent.

The last five lines of the output are from the openflow.discovery component. Each line

indicates the detection of a unidirectional link, caused by the reception of a corresponding

LLDP packet at the controller. For example, the first of these lines indicates that a link from

(S1, P2) to (S2, P2), i.e. from port P2 on switch S1 to Port P2 on switch S2, has been

detected. The next line indicates a link from (S2, P3) to (S3, P2). The following two lines

indicate the detection of the same links in the reverse direction. This is consistent with our

topology, as shown in Figure 4.3.

The interesting part in Figure 4.4 is the last line (in bold), which appears after we run the

attack by injecting the fabricated LLDP packet from host h1 to switch S1. The line indicates

that a non-existent link from (S3, P1) to (S1, P1) is detected by the controller, and hence

the link spoofing attack has been successful. When we look at the topology view of the

controller, which is stored as a list of links, we see that the link has indeed been added.

It is important to note that the attacker can spoof the origin of the link (switch and port) ar-

bitrarily, simply by setting the relevant LLDP TLVs accordingly. However, the link destination

information is added as metadata to the OpenFlow Packet-In message by the ingress switch,

and hence cannot be changed by the attacker. For our example, this means that the spoofed

links, which host h1 can create are, limited to the set of unidirectional links terminating at port

P1 on switch S1.

38

Chapter 4: Security of Topology Discovery

SDN
Controller

S1
02-08-00-00-00-06

S2
02-08-00-00-00-01

S3
02-08-00-00-00-03P3 P3 P26P26

P1 P11

h1 h2

Figure 4.5: Basic Attack Scenario (OFELIA)

If an attacker wants to create a spoofed bidirectional link, for example, from switch S1 to

switch S3 in our scenario, the attacker needs to control both hosts h1 and h3. We discuss

this in more detail in Section 4.4.

We also performed the above attack with the Ryu SDN controller, with identical results.

However, we had to slightly modify our LLDP packet generation script, since Ryu uses a

different encoding format for the Chassis ID and Port ID values in the LLDP packet.

4.3.2 Experimental Validation - OFELIA

In addition to our emulation based experiments using Mininet, we also conducted the same

experiment on the OFELIA SDN test-bed [32]. Our goal was to replicate the topology shown

in Figure 4.3. We managed to do this, with the exception of a small detail. OFELIA provides

only three virtual machines to experimenters, of which one is used for the controller, leaving

only two for the use as hosts. Figure 4.5 shows our OFELIA topology, with the corresponding

Chassis IDs and Port IDs. The main difference to Figure 4.3 is that the host attached to

switch S2 is missing, which is not a problem, since it does not play an active role in this

attack scenario.

After configuring the topology, we conducted the same experiment as discussed in Sec-

tion 4.3.1, with the same POX controller code and configuration. We also used the same

packet injection code, with a small modification to account for the different interface name

39

Chapter 4: Security of Topology Discovery

root@POX:/ofelia/users/farzanehpakzad/pox# ./pox.py openflow.discovery openflow.debug POX
0.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.
INFO:core:POX 0.2.0 (carp) is up.
INFO:openflow.of_01:[02-08-00-00-00-06|520 1] connected
INFO:openflow.of_01:[02-08-00-00-00-01|520 3] connected
INFO:openflow.of_01:[02-08-00-00-00-03|520 2] connected
INFO:openflow.discovery:link detected: 02-08-00-00-00-06|520.3 -> 02-08-00-00-00-01|520.3
INFO:openflow.discovery:link detected: 02-08-00-00-00-01|520.3 -> 02-08-00-00-00-06|520.3
INFO:openflow.discovery:link detected: 02-08-00-00-00-01|520.26 -> 02-08-00-00-00-03|520.26
INFO:openflow.discovery:link detected: 02-08-00-00-00-03|520.26 -> 02-08-00-00-00-01|520.26
INFO:openflow.discovery:link detected: 02-08-00-00-00-03|520.11 -> 02-08-00-00-00-06|520.1

Figure 4.6: POX Debug Information (OFELIA)

on host h1.

Figure 4.6 shows the debug output from POX. We see that bidirectional links are created

between port P3 on switch S1 (02-08-00-00-00-06), and port P3 on switch S2 (02-08-00-

00-00-01), as well as between port P26 on switch S2 (02-08-00-00-00-01), and port P26 on

switch S3 (02-08-00-00-00-03). The last line again indicates that the attack was successful,

and there was a link created between switch S1 and switch S3. We have also verified the

creation of the fake link in the controller’s topology view. As with Mininet, we have replicated

the attack for Ryu, with the same results.

Our experiments have demonstrated the basic vulnerability of OFDP, the predominant SDN

topology discovery mechanism. As mentioned earlier, topology discovery is an essential

network service provided in SDN, upon which a lot of other services and applications rely.

In the following section, we discuss the potential impact of the vulnerability on such higher

layer services, using the example of shortest path routing.

4.4 Impact on Routing

Routing is a key network application that relies on the controller having an up to date and

accurate topology view. Shortest path routing in SDN is relatively trivial, compared to tra-

ditional networks. The challenge of dealing with a physically distributed system is done by

the topology discovery component, implemented by the controller platform. Given a network

topology as a graph, shortest path routing is essentially just computing the shortest path be-

tween the source and destination nodes, e.g. via Dijkstra’s algorithm [122]. In the following,

40

Chapter 4: Security of Topology Discovery

S1 S5S2 S3 S4

h1 h2 h3 h4 h5

SDN

Controller

P1 P1

P2

P1 P1P1

P2P2 P2P2 P3 P3P3

Figure 4.7: Linear Topology for Routing Experiment

we evaluate and quantify the impact of the attack on routing via two topology examples.

4.4.1 Linear Topology

For our next experiment, we consider a simple linear topology with five switches and a single

host attached to each switch, as shown in Figure 4.7. As before, we assume that host h1

is the attacker, which in this case injects a fabricated LLDP packet with the aim of creating

a false (unidirectional) link between (S5, P1) and (S1, P1). This spoofed link is shown as a

dashed line in Figure 4.7. As described in the previous section, the attacker simply needs to

set the Chassis ID to S5, and the Port ID to P1 in the fabricated LLDP packet for this attack.

We created this topology in Mininet and used the layer 2 shortest path routing component

in POX (l2_multi.py) for our experiment. This POX component computes shortest paths

between node pairs using the Floyd-Warshall algorithm [123].

Prior to launching the attack, we performed a ping test among all host pairs to verify the

connectivity. This was achieved via the pingall command in Mininet. We saw that we had

100% connectivity, and each host could reach every other host. After launching the attack

from host h1, which injected the fabricated LLDP packet, we verified that the topology dis-

covery service had indeed added a link from (S5, P1) to (S1, P1) to the controller’s topology

database.

41

Chapter 4: Security of Topology Discovery

Table 4.2: Connectivity After Attack

HHHHHHHHHHH

ping
src

ping
dst h1 h2 h3 h4 h5

h1 1 1 0 0

h2 1 1 1 0

h3 1 1 1 1

h4 0 1 1 1

h5 0 0 1 1

However, after running pingall again, we still saw a connectivity of 100%. Inspection of

the source code of l2_multi.py reveals that only bidirectional links are considered for path

computation, which is why the attack was unsuccessful.

In this case, to be able to disrupt network connectivity, the attacker needs to spoof a bidi-

rectional link. This is impossible to achieve with control over only a single host, due to the

fact that only one end point of the spoofed link, i.e. the source, can be chosen by the at-

tacker. The other end of the link is determined by the ingress port and switch where the

LLDP packet is injected by the attacker. Another way of expressing this is that an attacker

controlling a single host can create unidirectional links starting at any source, but they all

have to terminate at the switch and port, where the attacking host is connected to.

To establish a bidirectional link, the attacker needs to control at least two hosts. In this new

attack scenario, we assume the attacker has compromised and controlled hosts h1 and h5.

As in the previous case, h1 injects an LLDP packet with the Chassis ID and Port ID set to

S5 and P1, creating the unidirectional link from (S5, P1) to (S1, P1). In addition, h5 injects

an LLDP packet with the source set to (S1, P1), creating the link in the reverse direction.

We ran the pairwise ping test again, and the result is shown in Table 4.2. The leftmost

column indicates the source, and the topmost row indicates the destination of the ICMP

echo request message sent by ping. A ’1’ in the table indicates that there is connectivity

between the two hosts in the corresponding row and column, and a ’0’ indicates a lack of

connectivity. We can see that connectivity between a pair of hosts is disrupted when the

spoofed link (S1-S5) is part of the shortest path between the two hosts, as expected.

42

Chapter 4: Security of Topology Discovery

This attack on the topology discovery mechanism significantly disrupts connectivity for rout-

ing. In this scenario, almost 30% of all links are disrupted by the creation of a single spoofed

bidirectional link. We have also replicated the experiment in OFELIA, with an identical out-

come.

While often shortest path routing assumes bidirectional links, such as the POX component

we have considered here, this is a design decision rather an absolute requirement. Other

implementations, such as [124], also consider unidirectional links in their computation of

shortest paths. In this case, the attacker only needs to control a single host and can disrupt

connectivity via creating unidirectional spoofed links.

4.4.2 Tree Topology

We also considered a tree topology, as shown in Figure 4.8. The topology consists of 15

switches, organised in a binary tree of depth 4 and fan-out 2, with a host attached to each

leaf switch. In this experiment, we tried to quantify the connectivity disruption impact of the

link spoofing attack.

We created bidirectional fake links between all host pairs, one at the time. For each of those

scenarios, i.e. for each case with a different fake link in the network, we ran a complete ping

test (pingall) between all host pairs, resulting in a total of 56 pings. We then considered how

many of those pings failed, due to the creation of each individual fabricated link.

The results are shown in Table 4.3, which shows the percentage (rounded to the nearest

integer) of connectivity loss, i.e. failed pings, due to each of the possible fabricated links.

For example, we see that if a single fake link is generated between hosts h1 and h8, 29% of

the connectivity between host pairs is disrupted.

We observe that there are only three distinct values in the table, 4%, 11% and 29%, which

correspond to 3 different scenarios in our example. We get 4% (rounded) in the case where

the fake link is between 2 hosts that are attached to the same switch at level 3 in the topology,

for example hosts h1 and h2, or hosts h3 and h4, etc. In this case, the spoofed link forms

part of the shortest path for only 2 out of the total of 56 ping paths, i.e. from h1 to h2, and h2

43

Chapter 4: Security of Topology Discovery

S2 S9

h1 h2 h3 h5

P1

S3 S6

S4 S5 S7 S8 S11 S12 S14 S15

S1

S10 S13

h4 h6 h7 h8

P1 P1 P1 P1P1P1P1

Level 1

Level 2

Level 3

Level 4

Figure 4.8: Tree Topology for Routing Experiment

Table 4.3: Connectivity Loss Due to Link Spoofing Attack

@
@
@
@

@
@
@@

fake
link
src

fake
link
dst h1 h2 h3 h4 h5 h6 h7 h8

h1 4% 11% 11% 29% 29% 29% 29%

h2 4% 11% 11% 29% 29% 29% 29%

h3 11% 11% 4% 29% 29% 29% 29%

h4 11% 11% 4% 29% 29% 29% 29%

h5 29% 29% 29% 29% 4% 11% 11%

h6 29% 29% 29% 29% 4% 11% 11%

h7 29% 29% 29% 29% 11% 11% 4%

h8 29% 29% 29% 29% 11% 11% 4%

to h1.

For the case where the fake link is between two hosts connected via a common switch at

level 2 of the topology, e.g. hosts h1 and h3 via switch S2, we observe that the fake link is

part of the shortest path of 6 out of the total of 56 source-destination pairs, resulting in a loss

of 11% connections.

Finally, if a fake link is created between hosts that are located in different main branches of

the tree, i.e. if they are connected via switch S1 at level 1 of the topology, 29% (16 out of

56) connections are disrupted. This is due to the fact that the spoofed link provides a shorter

path or shortcut for a larger number of source-destination pairs.

44

Chapter 4: Security of Topology Discovery

The exact numbers are obviously specific to this particular example. However, it demon-

strates the potential power of the link spoofing attack in terms of connectivity disruption for

routing in SDN. By creating multiple spoofed links, the impact would obviously be com-

pounded. The example also shows that by targeting the location of the spoofed link(s) in the

network topology, an attacker can maximise the impact.

4.4.3 Discussion

We have demonstrated that the vulnerability of OFDP translates into a vulnerability of routing,

which relies heavily on the topology discovery service provided by the controller. An attacker

can relatively easily disrupt network connectivity since the attacker only needs to gain control

over a small number of hosts. This is typically much easier to achieve than gaining control

over network infrastructure devices, i.e. switches or controllers. Since all the open source

controller platforms that we have investigated implement OFDP in essentially the same way,

the vulnerability discussed in this chapter is shared by all of them, and hence the problem is

significant.

We have used the example of routing to demonstrate the potential impact of the link spoofing

attack, but it is clear that other services, which rely on the topology discovery service, are

also vulnerable to the attack. We have done some preliminary investigation into the spanning

tree component in POX and found it to be vulnerable as well. This is critical, given the fact

that many services rely on the spanning tree mechanism, such as the L2_learning switch

component in POX.

4.5 Countermeasures

As mentioned previously, the vulnerability of OFDP is due to the lack of any checks about

the origin of received LLDP packets. We discuss two basic approaches to address this.

45

Chapter 4: Security of Topology Discovery

4.5.1 Controller Checks

The link spoofing attack, as presented in this chapter, could be rendered impossible if LLDP

packets were only accepted via switch ports that connected to other switches.

This check could be implemented via installing a simple rule on each switch, or alternatively,

it could be performed at the controller. The problem with this approach is that it assumes

knowledge about each port on each switch, and to what type of node it is connected to.

In a network with a dynamic topology, there is no simple and secure way to keep track of

that, to the best of our knowledge. For example, services that keep track of hosts, such as

the host_tracker component in POX, are themselves vulnerable to attacks [125], and hence

cannot be assumed to provide reliable information.

4.5.2 LLDP Packet Authentication

The problem of lacking the authenticity of LLDP messages can relatively easily be over-

come by adding a cryptographic Message Authentication Code (MAC) to each LLDP packet

that the controller sends out. Such a MAC provides authentication as well as integrity for

each packet. We have implemented this mechanism in POX using a Hash-based Message

Authentication Code (HMAC) [126]. The MAC is computed as follows:

HMAC(K, m) = h((K⊕ opad)|h(K⊕ |ipad)|m)

K is the secret key, and m is the message over which the HMAC is calculated. In our case, m

consists of the relevant LLDP TLVs, i.e. the Chassis ID and the Port ID. h() is a cryptographic

hash function, ‘|’ denotes concatenation and ‘⊕’ denotes the XOR operation. opad and ipad

are constant padding values [126].

It is important to note that the basic HMAC is vulnerable to replay attacks. In the scenario

shown in Figure 4.3, a replay attack can be used against a topology discovery mechanism

protected with a basic HMAC. The attack requires control over two hosts, e.g. hosts h1 and

h3. As part of the normal OFDP protocol, host h1 will receive LLDP packets with Chassis

ID set to S1 and Port ID set to P1. Here, we assume that the LLDP packet is secured with

46

Chapter 4: Security of Topology Discovery

a HMAC, computed over the relevant LLDP TLVs, using the secret key K. Host h1 can then

send this LLDP packet to its colluding partner host h3 via an out-of-band channel. Host h3

then injects the packet to switch S3 via port P1. Since the packet has a valid MAC, the

controller accepts it, and a spoofed link from (S1, P1) to (S3, P1) is successfully created.

The reverse link can be created in the same way. We have implemented this attack and

verified its feasibility.

The traditional approach to prevent replay attacks in the HMAC is via the use of a unique

message identifier (or nonce) over which the HMAC is computed, to ensure that each HMAC

value is unique. This message identifier needs to be sent as cleartext to the receiver as part

of the message, causing additional overhead.

We, therefore, use an alternative approach in our implementation. Instead of using a unique

message identifier, we replace the static secret key K with a dynamic value Ki,j, which is ran-

domly chosen for every single LLDP packet i, in every topology discovery round j. The best

chance for an attacker to compute a valid MAC and launch a successful link spoofing attack

is via guessing the correct value of the random numbers Ki,j. This is virtually impossible if

we use a high-quality random number generator that provides sufficient entropy. Any wrong

guess by an attacker can easily be detected by the controller.

To verify the authenticity of a received LLDP packet and compute its HMAC value, the con-

troller needs to know the corresponding value of Ki,j. This is achieved by the controller

keeping track of which key is used for which packet. The combination of Chassis ID and

Port ID provides the necessary identifier.

We used MD5 as our hash functions. While MD5 has been shown to be vulnerable to a range

of collision attacks, it can still be considered sufficiently secure in the context of HMAC [126],

since HMAC does not rely on the collision resistance property [127]. 2

We have implemented this HMAC based mechanism in the topology discovery component

in POX. To accommodate the MAC, we defined a new, optional TLV in the LLDP packet.

We have conducted extensive tests and have verified that OFDP with the added HMAC

(OFDP_HMAC) is indeed able to detect the injection of any fabricated LLDP packets from

2It would obviously be trivial to replace MD5 with another hash function such as SHA3.

47

Chapter 4: Security of Topology Discovery

 0

 100

 200

 300

 400

 500

 600

 700

C
um

ul
at

iv
e

D
is

co
ve

ry
 C

P
U

 T
im

e
(m

s) OFDP
OFDP-HMAC

Figure 4.9: Computational Overhead of HMAC in OFDP

an attacker.

When creating an LLDP packet, the controller chooses a value N, computes HMAC, and

adds the result to the TLV.

Whenever the controller receives an LLDP packet via an OpenFlow Packet-In message, it

computes the MAC over the relevant TLVs in the LLDP packet, using the corresponding

value of Ki,j. If the computed value matches the MAC in the packet, the authenticity of the

packet is validated, and its content is used to update the controller’s topology view. If not,

the packet is discarded, and an alarm can be raised.

We have also evaluated the computational overhead on the controller caused by this mech-

anism. For this, we used a 21 node tree topology in Mininet, with depth 2 and fan-out 4, and

ran both the original OFDP mechanism in POX, as well as OFDP_HMAC. Figure 4.9 shows

the total cumulative controller CPU time used by each version, over an experiment period

of 300 seconds. The experiment was repeated 20 times, and the figure shows the 95%

confidence interval. The absolute values are not that interesting since they are hardware

dependent. However, we see that in relative terms, the overhead of HMAC adds an extra

8% in CPU load to the low computational cost of the topology discovery mechanism. We

believe this is an acceptable cost to pay for the increased level of security.

48

Chapter 4: Security of Topology Discovery

4.6 Related Works

There have been a number of works that address various security aspects of SDN. However,

only very few recent papers have addressed the security of the core SDN service of topology

discovery.

The paper [128] discusses a range of attacks against SDN, and proposes SPHINX, a

generic SDN attack alert system, which compares network behaviour with predefined or

learned ‘normal’ behaviour, defined as policies. The paper also mentions the possibility

of attacks against topology discovery via spoofing of LLDP packets, as discussed in this

chapter. The paper does not address the specific technical details of the attack, such as

provided in this chapter, nor does it explore and quantify the impact of the attack on network

connectivity.

In [125], the authors also discuss a range of attacks against SDNs, including ARP spoofing

attacks as well as link spoofing attacks. Due to the wide scope of the paper, it does not

specifically consider, evaluate or quantify the impact of the link spoofing attack on routing

and hence network connectivity, as we have done in this chapter. Furthermore, in contrast

to our work, the experiments in [125] are limited to software switches only. The authors

of [125] also discuss potential countermeasures against the link spoofing attack, and also

suggest a HMAC based packet authentication mechanism. However, their proposed method

uses a static secret key, without a nonce, for the computation of the HMAC, and is therefore

vulnerable to replay attacks, as discussed in the previous section.

4.7 Conclusions

Topology discovery is an essential service in SDN, and a variety of other services and ap-

plications, such as routing, rely on it. In this chapter, we have discussed OFDP, the current

de-facto standard of topology discovery in SDN, implemented by most SDN controller plat-

forms. We have discussed the vulnerability of OFDP to link spoofing attacks, which only

requires an attacker to have control over one or more hosts (physical or virtual) in the net-

work.

49

Chapter 4: Security of Topology Discovery

Through experiments in both emulated network scenarios using Mininet, and an SDN test-

bed (OFELIA), we have demonstrated the feasibility of the attack. We have shown that the

controller’s topology view can be successfully poisoned by the attacker, and non-existent

links can be added to the controller’s topology database. We have further evaluated the

impact of this attack on the operation of an SDN, in particular with the example of routing.

Finally, we discussed potential countermeasures and implemented a simple mechanism that

provides authentication using a Hash-based Message Authentication Code (HMAC). We

have also discussed and verified its ability to prevent the link spoofing attack demonstrated

in this chapter. Finally, we have measured the computational cost of implementing the mea-

sure.

50

Chapter 5

Security of Address Resolution Protocol

5.1 Introduction

The resolution of network layer addresses to link-layer addresses is an essential function

in packet switched networks. In IPv4 networks, this service is provided by the Address

Resolution Protocol (ARP) [21]. When a host wants to send a frame to another node on

the local network, it broadcasts an ARP request, specifying the targeted destination node’s

IP address, as well as the source node’s MAC address. Upon receiving the ARP request,

the node with the specified (target) IP address, will respond with an ARP reply message,

containing its own MAC address. This information is then added to the sending node’s ARP

cache, and the layer 2 frame can be sent.

In IPv6, this address mapping service is implemented via the Neighbour Discovery Pro-

tocol (NDP), in particular via Neighbour Solicitation (NS) and Neighbour Advertisement

(NA) [129, 130], which allows the discovery of the link layer address of a node on the same

local network. Similar to ARP, an IPv6 node can multicast a Neighbour Solicitation message

on the local network, specifying the target IP address. In response, the node with the spec-

ified target IP address sends a Neighbour Advertisement message, containing its link-local

address.

Both ARP and NDP (NS/NA) are vulnerable to spoofing or poisoning attacks, where an at-

tacker can create false entries in a host’s ARP cache in IPv4 or Neighbour Cache in the

51

Chapter 5: Security of Address Resolution Protocol

case of IPv6 [131]. The vulnerability is due to the fact that both ARP and NDP are stateless

protocols and neither of the two (in their basic version) support any cryptographic authenti-

cation mechanism. In the context of ARP, an attacker can send an ARP message (request

or reply) in the local network, with a false IP-to-MAC address binding. This information is

accepted by nodes, receiving the message, and their ARP cache is updated accordingly.

As a result, they are poisoned. Similarly, a host can send a fabricated NDP Neighbour So-

licitation or Neighbour Advertisement message, thereby associating an IP address with the

layer 2 address of another host. As a result of a successful attack, packets are sent to a

malicious node instead of the intended destination. This can be used to launch Denial of

Service (DoS) and Man-in-the-middle (MITM) attacks. While some of the technical details

vary, the basic mechanism of ARP and NDP (NS/NA) and their vulnerabilities to spoofing

attacks are very similar.

In this chapter, we explore ARP spoofing detection and mitigation mechanisms in the con-

text of SDN. The outline of the chapter is as follows. Section 5.2 discusses the relevant

background of ARP, ARP spoofing, and traditional countermeasures. Section 5.3 discusses

the basic approaches for ARP handling in SDN. Section 5.4 demonstrates ARP and NDP

spoofing in SDN. Sections 5.5 and 5.6 present our two proposed countermeasures and their

evaluation. Section 5.7 discusses related works and Section 5.8 concludes the chapter.

5.2 Background

5.2.1 Address Resolution Protocol (ARP)

Figure 5.1 shows the Ethernet frame structure of ARP packets. As can be seen in the figure,

the ARP payload is encapsulated in an Ethernet frame with an Ether Type field of 0x0806.

The payload includes Sender Hardware Address (SHA) and Target Hardware Address (THA)

fields, which are the MAC addresses of the sender and the intended receiver, i.e. target.

The frame also contains the Sender Protocol Address (SPA) and Target Protocol Addresses

(TPA) fields, which represent the IP addresses of the sender and the target. The Operation

field indicates if the packet is an ARP request, with a value of 1, or an ARP reply, with a

52

Chapter 5: Security of Address Resolution Protocol

Hardware Type Protocol Type

Sender Hardware Address (SHA)

Protocol
Length

Operation
(Request 1, Reply 2)

Hardwre
Length

Sender Protocol Address (SPA)

Target Hardware Address (THA)

Target Protocol Address (TPA)

Dest MACPreamble Src MAC Ether Type
(0x0806)

Frame check sequence

Figure 5.1: ARP Frame Structure

value of 2.

When a host wants to deliver an IP datagram as an Ethernet frame to another host on the

same subnet, whose MAC address is unknown, it broadcasts an ARP request with the SHA

field set to its own MAC address and the SPA field set to its own IP address. The TPA field is

set to the IP address of the intended destination node, while the THA field is initialised with

a dummy value (00:00:00:00:00:00), representing the unknown target MAC address. Each

node that receives the ARP request will learn about the IP-MAC address mapping of the

sending node (SHA and SPA) and will add the information to its ARP cache. Each recipient

node will check if the TPA value in the request matches its own IP address, and if so, will

respond with an ARP reply message.

The fields of the ARP reply message are initialised by swapping the roles of the sender and

target. The SHA field is set to the MAC address of the node that received the ARP request

and represents the answer to the question posed in the request. The SPA field is set to

the corresponding IP address and is copied from the TPA field in the corresponding ARP

request. Finally, the THA and TPA fields of the ARP reply are initialised as the SHA and SPA

fields of the corresponding ARP request. The ARP reply is then unicast to the MAC address

of the sender of the ARP request (THA in ARP reply = SHA in ARP request). The recipient

of the ARP reply will update its ARP cache and add the newly learned SPA-SHA address

mapping [132] [133]. ARP also supports gratuitous replies, which are unsolicited messages

without a corresponding request.

53

Chapter 5: Security of Address Resolution Protocol

We refer to the ARP handling approach discussed above as Regular ARP, in order to con-

trast it with Proxy ARP. Proxy ARP is a mechanism where a node, typically a router, answers

ARP requests intended for another host on behalf of that node. Both Regular ARP and Proxy

ARP are supported and widely used in SDN, and we cover both methods in this chapter.

5.2.2 ARP Spoofing

The basic security problem with ARP (and NDP) is that it is a stateless protocol, i.e. it treats

each request or reply independently from any previous communication. As a consequence,

a host will readily accept information from gratuitous ARP replies, without having sent a

corresponding request. Furthermore, the ARP protocol has no mechanism to authenticate

the sender of an ARP request or reply message or to check the integrity and validity of the

provided information. As a result, it is relatively easy for an attacker to poison a host’s ARP

cache with a false IP-MAC address mapping. All the attacker needs to do is to craft an ARP

message with a false SPA field. A node receiving the message will simply trust the content

and update its ARP cache accordingly.

ARP spoofing attacks can be done via ARP request messages or ARP reply messages. To

launch an ARP request based attack, the attacker sets the SHA and SPA fields to the desired

values and broadcasts the message. As a result, the ARP cache of every node on the same

subnet will be poisoned. An attacker can use either a gratuitous or non-gratuitous ARP

request message for such an attack. The ARP spoofing attacks allow an attacker to redirect

traffic from a target host to any arbitrary node, thereby enabling DoS or MITM attacks [23].

5.2.3 Traditional ARP Spoofing Countermeasures

Arguably, the strongest protection against ARP or NDP spoofing is via cryptographic authen-

tication and integrity mechanisms. S-ARP [134] proposes such a cryptographic protection.

It uses public key cryptography and relies on each node having a public/private key pair.

The ARP packet format is extended and adds a digital signature field, providing message

authenticity and integrity. S-ARP only protects ARP reply messages and therefore remains

54

Chapter 5: Security of Address Resolution Protocol

vulnerable to ARP request based spoofing attacks. The other key limitation of this approach

is its reliance on a Public Key Infrastructure (PKI), in particular a Certificate Authority (CA)

for its operation. This requirement has proven to be impractical for a low-level protocol such

as ARP, as is demonstrated by the lack of adoption of S-ARP and related ideas.

A similar cryptographic solution exists for the protection of the NDP (NS/NA) protocol in IPv6.

The Secure Neighbour Discovery (SEND) protocol is a security extension of NDP [135].

This approach shares similar practical challenges with S-ARP, imposed by the problem of

bootstrapping and key management [136].

A number of non-cryptographic ARP spoofing detection and prevention have been proposed

for traditional IP networks [137, 138, 139, 140, 141, 142, 143]. A survey of these measures

is provided in [22]. One of the most prominent and widely used ARP spoofing mitigation

approaches is Dynamic ARP Inspection (DAI) [25]. DAI is implemented in Ethernet switches

and checks ARP packets against a trusted database of IP-MAC address mappings. Any

ARP packets with information (in particular SHA and SPA fields) that is inconsistent with

the database is dropped. DAI uses a technique called DHCP-Snooping [144] to build and

maintain its trusted IP-MAC address database. While DAI is one of the most promising

non-cryptographic solutions to mitigate ARP spoofing attacks, its drawbacks include its pro-

prietary nature and relatively high cost [22, 145].

5.3 ARP Handling in SDN

There are two basic approaches to handling ARP in SDN. The first, which we refer to as

Regular ARP, is as discussed in Section 5.2.1. Here, a host broadcasts an ARP request on

the local network, and the host that has the matching IP address specified in the TPA field

responds with a unicast ARP reply containing its own MAC address. The role of SDN and in

particular the controller in this context is simply to provide the packet forwarding functionality.

The second approach to handle ARP in SDN is Proxy ARP, which is well suited to SDN, due

to its centralised control plane. Proxy ARP can easily be implemented in SDN by installing

rules on each SDN switch to forward any ARP request to the controller via an OpenFlow

55

Chapter 5: Security of Address Resolution Protocol

Packet-In message. The controller, with its global view of the network, can generate the

corresponding ARP reply message with the required MAC address of the target node. It

then encapsulates the ARP reply packet in an OpenFlow Packet-Out message and sends

it to the switch, where the request was received from together with instructions (actions) to

send it back to the sender of the ARP request message via the port where that request was

received on.

Proxy ARP handling is implemented in most SDN controllers, including POX [33], Ryu [34],

ONOS [35], Floodlight [36] and OpenDaylight [37], which we consider in our experiments.

The benefit of Proxy ARP in SDN is a significant reduction in broadcast traffic that decreases

the ARP response time, which we discuss in the next chapter. In this chapter, we consider

the security of both ARP handling approaches in SDN, i.e. Regular ARP as well as Proxy

ARP.

5.4 ARP and NDP (NS/NA) Spoofing in SDN

In order to motivate our work, we demonstrate the vulnerability of SDN to ARP and NDP

(NS/NA) spoofing attacks via experiments, for both Regular and Proxy ARP.

5.4.1 Experimental Platform

For this and all our experiments in this chapter, we used Mininet [30] and Open vSwitch

(OVS) [31]. We further used POX [33], Ryu [34], ONOS [35], Floodlight [36], and OpenDay-

light [37] as our SDN controllers. To craft ARP packets for our attacks, we used the Scapy

packet manipulation library [38] and Dsniff package [39]. Table 5.1 summaries the relevant

software tools that we used in the experiments of this chapter. All our experiments were run

on a PC (OptiPlex 9020 with a 3.6 GHz Intel Core i7-4790 CPU and 16 GB of RAM), running

Ubuntu Linux 14.04 with kernel version 3.13.0. For our initial experiments, we use a simple

scenario with three switches and three hosts shown in Figure 5.2.

56

Chapter 5: Security of Address Resolution Protocol

Table 5.1: Software Tools used for Implementation and Experiments in Chapter 5

Software Function Version

Mininet [30] Network Emulator 2.2.0

OFELIA [32] Hardware SDN Test-bed =======

Open vSwitch [31] Virtual SDN Switch 2.1.1

POX [33] SDN Controller Platform dart branch

Ryu [34] SDN Controller Platform 3.19-3.22

ONOS [35] SDN Controller Platform 1.8.5

Floodlight [36] SDN Controller Platform 1.0

OpenDaylight [37] SDN Controller Platform Carbon SR1

Scapy Library [38] Packet Manipulation Tool 2.2.0

SDN
Controller

S1 S2 S3
P2 P2 P2P3

P1 P1

h1 h3h2

P100-00-00-00-00-01
10.0.0.1
h1-eth0

00-00-00-00-00-02
10.0.0.2
h2-eth0

00-00-00-00-00-03
10.0.0.3
h3-eth0

Figure 5.2: Basic Example Scenario

5.4.2 Spoofing with Regular ARP

For the regular ARP handling case, we initially used POX as the SDN controller platform

and its l2_learning component to implement the packet forwarding functionality. With the

l2_learning controller component, OpenFlow switches emulate the behaviour of traditional

Ethernet learning switches. Consequently, ARP requests are broadcast to all hosts in the

network, and ARP replies are unicast to the originator of the ARP request.

In our example, we assume that host h1 has been compromised and wanted to poison

host h2’s ARP cache by creating an entry that maps IP address 10.0.0.3 to MAC address

57

Chapter 5: Security of Address Resolution Protocol

mininet> h2 arp -a
? (10.0.0.1) at 00:00:00:00:00:01 [ether] on h2-eth0
? (10.0.0.3) at 00:00:00:00:00:01 [ether] on h2-eth0

Figure 5.3: Poisoned ARP Cache (Mininet)

00:00:00:00:00:01. As a result, all packets from host h2 addressed to host h3 will be sent to

the attacking host h1 instead.

We implemented the attack by crafting an ARP request with TPA=10.0.0.2, SPA=10.0.0.3,

and SHA=00:00:00:00:00:01, and injecting from host h1 to switch S1 via port P1.

Switch S1 sends the packet as an OpenFlow Packet-In message to the controller, which

then sends it back to switch S1 as an OpenFlow Packet-Out message, with an instruction

(action) to flood the packet. This is repeated on switch S2, where it is finally sent to host

h2 via port P1. Host h2 updates its ARP cache and adds an entry mapping the IP address

10.0.0.3 to the MAC address 00:00:00:00:00:01. We can verify the success of the attack by

printing h2’s ARP cache, as shown in Figure 5.3.

As a result, all packets from host h2 sent to host h3 are redirected to host h1, which dis-

rupts connectivity between host h2 and host h3, representing a DoS attack. Using the ARP

spoofing attack, an attacker can also launch a MITM attack, by additionally poisoning h3’s

ARP cache, and adding an entry which maps the IP address of host h2 to the MAC address

of the attacker h1. As a result, all traffic between hosts h2 and h3 is sent via host h1, which

can read and alter the traffic before relaying it to the intended destination node. We also

performed this attack and confirmed its feasibility in our SDN context. We further replicated

these experiments for IPv6 and NDP (NS/NA), with identical results.

To validate the feasibility of the attack on real networks, we also conducted the basic attack

on the OFELIA test-bed [32]. In our experiment, we replicated the ARP spoofing attack

scenario discussed above and shown in Figure 5.2. The difference is only in regards to

the respective host addresses, i.e. the attacking host h1 has IP address 10.216.12.56 and

MAC address 02:03:00:00:00:60, while h2 has IP address 10.216.12.58 and MAC address

02:03:00:00:00:63, and host h3 has addresses 10.216.12.57 and 02:03:00:00:00:5d.

58

Chapter 5: Security of Address Resolution Protocol

root@Host2:~# arp -a
?(10.216.12.56) at 02:03:00:00:00:60 [ether] on eth0
?(10.216.12.57) at 02:03:00:00:00:60 [ether] on eth0
? (10.216.12.1) at 00:25:90:33:b4:bc [ether] on eth0

Figure 5.4: Poisoned ARP Cache (OFELIA)

We were able to successfully replicate the attack on the OFELIA test-bed. Figure 5.4 shows

the spoofed ARP cache of host h2.

Our discussion of spoofing with regular ARP handling so far has been based on POX. We

also investigated regular ARP handling of other controllers, i.e. Ryu, ONOS, Floodlight, and

OpenDaylight. While Ryu implements regular ARP handling essentially in the same way as

POX, ONOS, OpenDaylight and Floodlight use a slightly different approach of forwarding

ARP requests in the network. In the case of POX and Ryu, the controller simply returns any

ARP request to the switch, where the packet was received from, with an action to flood it

via all its ports, except the ingress port. At every other switch where the ARP request is

received, this iterative process is repeated, until the entire network is covered.

Both Floodlight and OpenDaylight, operate similarly, with only slight differences in the way

ARP request packets are broadcast. In contrast, ONOS uses an approach where the con-

troller, after receiving an ARP request, will send it out to all the switches in parallel, with a

set of actions that send the packet out on all host ports. This avoids the iterative approach

of the other controllers and is hence more efficient.

Irrespective of these differences in the forwarding of ARP requests in the network, we were

able to successfully replicate the POX-based ARP spoofing attack with all the other men-

tioned controllers, which we confirmed via the hosts’ ARP caches.1

We illustrate the success of the attack via a screenshot of the Web GUI of ONOS and

Floodlight, as shown in Figures 5.5 and 5.6 respectively. Before the attack, we see that the

MAC address of host h1 (the attacker) is associated only with its own IP address of 10.0.0.1.

After the attack, we see that it is also associated with the IP addresses of hosts h2 and h3,

i.e. 10.0.0.2 and 10.0.0.3. As a result, traffic destined to those hosts will be redirected to

1We used the default forwarding components for all controllers, e.g. fwd for ONOS and forwarding for
Floodlight.

59

Chapter 5: Security of Address Resolution Protocol

(a) Before the Attack

(b) After the Attack

Figure 5.5: ARP Spoofing Attack on ONOS

(a) Before the Attack (b) After the Attack

Figure 5.6: ARP Spoofing Attack on Floodlight

host h1, and hence the attack was successful.

60

Chapter 5: Security of Address Resolution Protocol

mininet@mininet-vm:~/pox$./pox.py proto.arp_responder
forwarding.l2_learning
POX 0.3.0 (dart) / Copyright 2011-2014 James McCauley, et
al.
INFO:core:POX 0.3.0 (dart) is up.
INFO:openflow.of_01:[00-00-00-00-00-03 1] connected
INFO:openflow.of_01:[00-00-00-00-00-01 3] connected
INFO:openflow.of_01:[00-00-00-00-00-02 2] connected
INFO:proto.arp_responder:00-00-00-00-00-01 learned 10.0.0.3

Figure 5.7: Poisoned ARP Responder Table

5.4.3 Spoofing with Proxy ARP

Proxy ARP is a commonly used approach to handling ARP in SDN since the centralised

controller is ideally placed to handle ARP requests on behalf of hosts. That has the benefit

of significantly reducing ARP traffic in the network. POX implements Proxy ARP functionality

via the arp_responder component, which we used in this experiment.

The arp_responder component works as follows. All ARP requests are sent to the controller

via an OpenFlow Packet-In message. The component uses its local ARP table to look up the

matching MAC address for the address specified in the TPA field of the request and creates

an ARP reply message with this information in the SHA field. The ARP reply message is

then sent back to the switch, together with the instruction of sending it to the requesting host.

arp_responder builds its local ARP table by extracting IP-to-MAC address mappings from ob-

served ARP requests, leaving it vulnerable to ARP spoofing attacks. We launched the same

ARP poisoning attack as described in the previous section, but in this case, with the POX

arp_responder component running. Figure 5.7 shows the log file of the POX arp_responder

after the attack. The last line (in bold) shows the poisoned entry, mapping the IP address

10.0.0.3 of host h3 to the MAC address 00:00:00:00:00:01 of the attacker h1. The controller

will henceforth reply to any ARP request asking for the MAC address of host h3 with the

MAC address of host h1.

We further replicated the same ARP spoofing attack scenario on the Proxy ARP components

of ONOS and Floodlight, which work in the same way as POX’s arp_responder component.

The results were identical, and we were able to spoof the controller’s IP-to-MAC address

61

Chapter 5: Security of Address Resolution Protocol

mapping database.

In the following sections, we discuss two countermeasures which aim to mitigate against the

above shown ARP poisoning attacks in the specific context of SDN.

5.5 Countermeasure 1: SARP_DAI

We present SARP_DAI, our adoption of Dynamic ARP Inspection (DAI), to the context of

SDN. The goal of SARP_DAI is not to provide ARP handling itself, but to transparently

provide security for existing ARP handling mechanisms. DAI relies on a trusted database

of IP-MAC address mappings. ARP packets with invalid information, i.e. SPA and SHA

pairs that are inconsistent with the trusted database, are discarded. This checking of ARP

packets in DAI is implemented in Ethernet switches. This is not practical in SDN, due to the

limited ‘intelligence’ and feature set of OpenFlow switches. We, therefore, need to push this

functionality to the SDN controller. In order to be able to check every single ARP packet,

we install a high priority OpenFlow rule on each switch, which sends ARP packets to the

controller.

In traditional networks, DAI maintains its trusted database of IP-MAC address mappings

with methods such as DHCP-Snooping [144]. While DHCP-Snooping can be implemented

in SDN, this is beyond the scope of this thesis. For our implementation, we simply assume

that we have such a trusted database (arp_db) of IP and MAC address pairs.

We implemented SARP_DAI as a separate component in the POX controller platform. We

configured the SARP_DAI POX component with the highest priority, which ensures that its

Packet-In event handler is called before any other components. Algorithm 1 shows the basic

processing of ARP packets by the SARP_DAI component.

If the received packet is an ARP packet, and the address specified in the SPA field is in our

trusted database arp_db (line 2), we look up the corresponding value for SHA (line 3). If the

SHA value in the packet does not match the corresponding value in the database, we drop

the ARP packet (lines 4 and 5). If, however, the information in the ARP packet is consistent

62

Chapter 5: Security of Address Resolution Protocol

Algorithm 1 SARP_DAI
1: for all received pkt do
2: if pkt.type = ARP ∧ pkt.arp.spa ∈ arp_db then
3: shatrusted ← lookupSHA(arp_db, pkt.arp.spa)
4: if pkt.arp.sha ̸= shatrusted then
5: drop ARP packet
6: else
7: continue
8: end if
9: end if

10: end for

with the value in arp_db, the packet handling routine returns, and the packet is passed to the

next POX Packet-In event handler in the chain.

As mentioned, SARP_DAI relies on the availability of a trusted list of IP-to-MAC address

mappings. If this is available, it is clear that SARP_DAI can successfully prevent any ARP

spoofing attack, since it can easily identify and drop any ARP packet with spoofed and invalid

information, i.e. the SPA and SHA fields. This requires that every single ARP packet is sent

to the SDN controller, which incurs overhead and cost. In the following, we discuss and

experimentally quantify this cost of SARP_DAI.

5.5.1 SARP_DAI Overhead

To evaluate the overhead and cost of SARP_DAI, we have performed a number of experi-

ments using the experimental environment described in Section 5.4.1. We considered two

overhead metrics in our evaluation, the additional CPU load generated at the controller by

our SARP_DAI component, as well as the additional end-to-end Round Trip Time (RTT)

measured via ping. Since we delete the ARP cache prior to each ping, the RTT gives us

an indication of the increased delay caused by SARP_DAI. For our experiments, we defined

two network topologies in Mininet, a linear topology of 64 switches and hosts, as shown in

Figure 5.8, and a tree topology with nine switches and 64 hosts, with eight hosts connected

to each of the eight access switches, as shown in Figure 5.9.

We evaluated the overhead for both Regular ARP handling as well as Proxy ARP. For the

Regular ARP case, we used POX’s l2_learning component to provide packet forwarding

63

Chapter 5: Security of Address Resolution Protocol

S1 S64S2 S63

h1 h2 h63 h64

SDN

Controller

Figure 5.8: Linear Topology

h1

S2 S3 S4 S5 S6 S7 S8 S9

S1

SDN

Controller

h8 h9 h16 h17 h24 h25 h32 h33 h40 h41 h48 h49 h56 h57 h64

Figure 5.9: Tree Topology

functionality. For the Proxy ARP case, we used the arp_responder POX component. In

our experiments, we generated 500 ARP requests per second at a constant rate. This

corresponds to an ARP load of a reasonably large network. All ARP requests were initiated

by host h1 and sent to hosts h2, h3, ..., h64 consecutively and continuously.

Figure 5.10 shows the average controller CPU load during our experiment. It is important

to note that the absolute values are not that relevant here since they are determined largely

by the level of the ARP load as well as the hardware. We are more interested in the relative

increase in load due to our proposed security mechanism.

For the linear topology and Regular ARP handling, we see that the CPU load increases

from around 22% to just over 41%. In the Proxy ARP case, the increase is from 4% to just

under 10%. Not surprisingly, Proxy ARP creates a much smaller controller load compared

to Regular ARP, since each ARP request is only handled once by the controller. In contrast,

in Regular ARP along with the l2_learning component, each ARP packet is sent to the

controller for checking at each switch along the path. The linear topology represents the

worst case scenario for this since it has maximum length paths.

64

Chapter 5: Security of Address Resolution Protocol

 0

 10

 20

 30

 40

 50

Linear Tree

C
P

U
 C

on
su

m
pt

io
n

in
 (%

)

Regular ARP
Regular ARP+SARP_DAI

Proxy ARP
Proxy ARP+SARP_DAI

Figure 5.10: Controller CPU Load (SARP_DAI)

For the tree topology, we see a lower absolute CPU load, due to a shorter average path

length. The increase in CPU load due to SARP_DAI for Regular ARP is from 8% to 14%.

The corresponding increase for Proxy ARP is from 4% to 5%. In summary, we can say

SARP_DAI imposes a significant computational load increase on the controller compared to

traditional ARP handling. This is unavoidable, due to the centralised nature of SDN, where

ARP packet checking can only be done at the controller.

In addition to the impact on controller CPU load, we also measured the additional end-to-

end delay caused by SARP_DAI. We run ping from host h1, sending ICMP echo requests

consecutively to all other hosts h2, h3, ..., h64. Since we delete the ARP cache every time

before a new ICMP echo request is sent, we measure the time of the ICMP echo reply and

request, as well as the time of the ARP exchange. Assuming that the transmission and

processing time for the ICMP packets are the same no matter if SARP_DAI is enabled or

not, we can use the difference in the RTT measurements as an indication of the additional

delay incurred by SARP_DAI.

Figure 5.11 shows the RTT results for the linear topology for our four scenarios: Regular

ARP, Regular ARP + SARP_DAI, Proxy ARP and Proxy ARP + SARP_DAI. As mentioned

above, host h1 is the originator of all ICMP echo requests and ARP requests. The x-axis

in the figure represents the host ID of the target host, ranging from hosts h2 to h64. As

expected, we see a linear increase of the RTT with the index of the destination node. For

65

Chapter 5: Security of Address Resolution Protocol

 0

 1000

 2000

 3000

 4000

 5000

 6000

h10 h20 h30 h40 h50 h60

R
ou

nd
 T

rip
 T

im
e

(m
s)

host #

Regular ARP
Regular ARP+SARP_DAI
Proxy ARP
Proxy ARP+SARP_DAI

Figure 5.11: RTT in Linear Topology (SARP_DAI)

our linear topology, this directly corresponds to the path length. The absolute values of the

RTT are very high, for all the four variants considered. This is largely due to the somewhat

inefficient implementation of the l2_learning component, which forwards each broadcast

packet to the controller, at every switch along the path. Consequently, the RTT for Proxy

ARP is smaller since only the ICMP packet needs to be forwarded across the multiple hops,

whereas the ARP request is directly answered by the controller via the first switch. As above,

our focus is not on the absolute values, but rather on the relative increase due to SARP_DAI

compared to the corresponding scenario without it. For Regular ARP, the increase is on

average 12%, and for Proxy ARP, it is 16%.

Figure 5.12 shows the corresponding results for the tree topology. The key difference here

is that we do not have a linear increase with the path length, but rather a bimodal behaviour,

with a low delay for destination hosts h2 to h8, and a higher, roughly constant delay for

destination hosts h9 to h64. This is due to the fact that hosts h2 to h8 are attached to the

same access switch as host h1, the sender of all ARP requests, and hence only one switch

needs to be traversed by all packets.

As expected in this case, Regular ARP has higher RTTs, since ARP packets are exchanged

end-to-end between hosts, instead of being answered by the controller via the first switch in

the path. Again, we focus on the relative increase in the RTT due to SARP_DAI instead of

the absolute values. Average increase of the RTT caused by SARP_DAI for Regular ARP is

66

Chapter 5: Security of Address Resolution Protocol

 0

 50

 100

 150

 200

 250

 300

h10 h20 h30 h40 h50 h60

R
ou

nd
 T

rip
 T

im
e

(m
s)

host #

Regular ARP
Regular ARP+SARP_DAI
Proxy ARP
Proxy ARP+SARP_DAI

Figure 5.12: RTT in Tree Topology (SARP_DAI)

1%. For Proxy ARP it is 9%.

Similar to the CPU overhead, SARP_DAI also causes a significant increase in the delay of

the ARP request/reply exchange, as measured via ping in our experiment. As mentioned

above, this is due to the architecture of SDN and its centralised control plane.

However, it is easy to see that SARP_DAI is secure and can prevent the ARP spoofing

attacks, as long as it has a trusted mapping of all IP and MAC address pairs, against which

all ARP packets can be checked. Such as trusted database might not easily be available in

all cases. In the following section, we explore a mitigation strategy that does not assume or

rely on such a trusted database.

5.6 Countermeasure 2: SARP_NAT

In SARP_DAI, we assumed that the trusted mapping of IP-to-MAC addresses, which can be

used to check the validity of every ARP packet is provided. However, such a trusted mapping

might not be available in all scenarios. In this section, we propose a different method to mit-

igate against ARP spoofing attacks in SDN, which does not require any externally acquired

67

Chapter 5: Security of Address Resolution Protocol

Algorithm 2 SARP_NAT
1: for all received pkt do
2: if pkt.type = ARP.REQUEST then
3: add entry in pend_req list
4: pkt.arp.spa = spasa f e

5: pkt.arp.sha = shasa f e

6: end if
7: if pkt.Type = ARP.REPLY then
8: if pkt /∈ pend_req then
9: Gratuitous ARP reply, drop
10: else
11: pkt.arp.tpa = lookupSPA(pend_req, pkt.arp.spa)
12: pkt.arp.tha = lookupSHA(pend_req, pkt.arp.spa)
13: deleteEntry(pend_req, TPA)
14: addEntry(handled_req, pkt, thandled)
15: send ARP reply to pkt.arp.tha via Packet-Out
16: if pkt ∈ handled_req then
17: expSHA = lookupSHA(handled_req, pkt.arp.spa)
18: if pkt.arp.sha ̸= expSHA then
19: Duplicate ARP reply attack detected, drop
20: Delete potentially poisoned host ARP cache
21: else
22: Genuine duplicate ARP reply, drop
23: end if
24: else
25: Gratuitous ARP reply, Drop Packet
26: end if
27: end if
28: end if
29: end for

trusted ARP database. As before, the goal is to implement a controller component, which

does not handle ARP itself, but provides security for ARP handling in SDN, in particular

Regular ARP and Proxy ARP.

As mentioned, ARP spoofing attacks occur either via ARP request or reply messages. In

both cases, the attacker spoofs the SPA and SHA fields in the ARP message to create

an invalid address mapping. The key idea of our proposed mechanism is to prevent the

potentially spoofed information in the SHA and SPA fields to come into contact with any

hosts and thereby poisoning of their ARP cache. Similarly, in the Proxy ARP case, we want

to avoid potentially poisoned information in the SPA and SHA fields to come into contact

with an ARP handling controller component, i.e. the POX’s arp-responder component that

will implicitly trust this information. Our proposed solution is loosely inspired by Network

Address Translation (NAT), and we therefore call it SARP_NAT. As in the case of SARP_DAI,

in SARP_NAT ARP packets received by an SDN switch are sent to the controller. Algorithm 2

shows the packet processing of SARP_NAT at the controller and is explained below.

68

Chapter 5: Security of Address Resolution Protocol

5.6.1 ARP Request based Attack

To explain the basic operation of SARP_NAT, we consider the scenario shown in Figure 5.2

and refer to the relevant lines in Algorithm 2. We assume the Regular ARP handling is used,

and host h1 attempts to launch the same ARP request based spoofing attack, described in

Section 5.4.2, by injecting a poisoned ARP request with an invalid SPA field to switch S1.

Due to a pre-installed rule at the switch, the ARP request is sent to the controller, where it is

first handled by the SARP_NAT component. The SARP_NAT component stores each ARP

request in a list of pending ARP requests (pend_req), consisting of the following 6-tuples

for each entry: (tpa, spa, sha, s, in_port, trec) (line 3 in Algorithm 2). The elements tpa, spa

and sha represent the corresponding fields in the ARP request, s and in_port represent the

switch ID and ingress port via which the request was received, and trec is the time at which

the request was received.

The SARP_NAT component then ‘sanitises’ the ARP request message by overwriting the

potentially poisoned fields SPA and SHA, with safe dummy values, spasa f e and shasa f e (lines

4,5). These safe values are constant and can be any IP and MAC address pair that is

not used on the local network. In our implementation, we used spasa f e = 11.11.11.11 and

shasa f e = 00:11:22:33:44:55. The Target Protocol Address (TPA) remains unchanged. The

SARP_NAT component then passes the sanitised ARP packet to the next controller compo-

nent or the event handler for processing. If we are using Regular ARP handling and a corre-

sponding forwarding component, this will result in the ARP request packet being broadcast

in the network, where it will eventually be received by host h2, the target node (TPA).

According to the pre-installed ARP rule, each ARP packet is sent to the controller for check-

ing. However, this is not necessary for packets that have been sanitised by the SARP_NAT

component and contain safe SPA and SHA values of spasa f e and shasa f e. We, therefore,

modify the default ARP forwarding rule to specify that ARP packets with safe values are

exempted, and are being forwarded as the normal forwarding rules.

If we assume Regular ARP handling, the ARP request is forwarded to the target host with

IP address TPA, host h2 in our example. Host h2 then parses the ARP request packet and

adds the specified SPA-SHA mapping in its ARP cache. This is the point where normally the

ARP spoofing attack would have succeeded. However, in this case, host h2 simply adds the

69

Chapter 5: Security of Address Resolution Protocol

safe dummy values to its ARP cache, which has no impact.

When host h2 creates an ARP reply message, it assumes that it is responding to the (non-

existent) host with IP address spasa f e and MAC address shasa f e, and initialises the ARP

reply accordingly, i.e. with TPA=spasa f e and THA= shasa f e. According to the standard ARP

behaviour, the sender of the ARP reply (h2) initialises the fields SPA and SHA with its own

IP and MAC address, in our example SPA=10.0.0.2 and SHA=00:00:00:00:00:02. The ARP

reply is then sent as a unicast frame via switch S2. Since the SPA and SHA fields are not

the safe values spasa f e and shasa f e, the ARP reply is forwarded to the controller by switch

S2, where it is processed by the SARP_NAT component. For an ARP reply, SARP_NAT first

checks if it is a reply to a genuine request, i.e. if it is in pend_req (line 8). If that is not the

case, we have a gratuitous ARP reply, which we cannot trust and therefore drop. If, however,

the ARR reply matches an entry in pend_req, the component performs the reverse address

translation, by replacing the dummy values in the TPA and THA fields with the original values

stored in pend_req, consisting of the set of (tpa, spa, sha, s, in_port, trec) 6-tuples (lines 11,12).

In our example, the values are set as follows: TPA=10.0.0.3 and THA=00:00:00:00:00:01.

The corresponding entry is now deleted from pend_req (line 13), and a new entry is created

in a list of handled ARP requests handled_req (line 14).2 In addition to the information in

pend_req, the list handled_req also contains the resolved MAC address obtained from the

ARP reply, as well as the time when the reply was received. We discuss how this is used

below. Finally, the ARP reply is directly forwarded to host h1, via an OpenFlow Packet-Out

message to s = S1, with instructions to send it out via port in_port, i.e. port P1 in this case

(line 15). The processing by SARP_NAT is completely transparent to hosts, and h1 receives

the same reply as it would have sent via the traditional ARP handling approach.

The above discussion considered the case of Regular ARP handling. The proposed

SARP_NAT mechanism can also be used for Proxy ARP handling. This required minor

modifications arp_responder component in our implementation. Normally, arp_responder

implicitly trusts the information in the SPA and SHA fields in any ARP request it receives

from switches, and the (potentially poisoned) information is used to update its local ARP ta-

ble. We modify arp_responder to only trust and use IP-MAC address mappings in ARP reply

messages which are sent in response to a genuine ARP request. This prevents spoofing

attacks using ARP request messages against Proxy ARP handling. Attacks based on ARP

2The entry has a time out of tdup, after which it is deleted from the list.

70

Chapter 5: Security of Address Resolution Protocol

reply messages will be discussed below.

5.6.2 ARP Reply based Attack

In most ARP implementations, ARP spoofing can be done simply via gratuitous ARP replies,

i.e. by sending an unsolicited reply to a host. To prevent such attacks, SARP_NAT will only

accept ARP replies for which it has seen a corresponding request, i.e. for which there is an

entry in the list of pending ARP requests pend_req. If this is not the case, it simply drops the

ARP reply (line 9).

To avoid this check, an attacker could simply respond to a genuine ARP request with a

spoofed reply. In this case, the SARP_NAT component receives two ARP replies with differ-

ent values for the SHA field, one from the genuine target host, and one from the attacker.

Unfortunately, it is impossible for the SARP_NAT component to determine which one is the

genuine reply and which one is the spoofed one. SARP_NAT simply accepts the first ARP

reply it sees for a pending request, processes and forwards it. In addition, it enters the in-

formation in the reply into its handled_req list (line 14), in particular the corresponding SHA

value and the time it was received.

If during a given time window tdup another ARP reply for the same request is received, but

with a different IP-to-MAC address mapping (lines 17-19), a duplicate ARP reply attack is

detected. Since it is not possible to determine which of the ARP replies was spoofed, we

make the conservative assumption that it was the first one forwarded to the host.

To mitigate the impact, the SARP_NAT component overwrites the potentially poisoned entry

in the host’s ARP cache by sending a new ARP reply with the same SPA but the safe value

shasa f e (line 20). This stops any packets from being forwarded to the potentially wrong MAC

address, thereby preventing a MITM attack. As a downside, it also prevents the host from

communicating to the target host, until the next, valid ARP reply is received. The only way

for this kind of attack to go undetected is if the attacker can prevent the genuine host from

sending its valid ARP reply. This, however, is a significant challenge and greatly raises the

bar for an ARP spoofing attack. SARP_NAT’s protection against ARP reply based spoofing

attacks works for both Regular ARP handling as well as Proxy ARP handling.

71

Chapter 5: Security of Address Resolution Protocol

 0

 5

 10

 15

 20

 25

Linear Tree

C
P

U
 C

on
su

m
pt

io
n

in
 (%

)
Regular ARP

Regular ARP+SARP_NAT
Proxy ARP

Proxy ARP+SARP_NAT

Figure 5.13: Controller CPU Load (SARP_NAT)

5.6.3 SARP_NAT Overhead

In order to evaluate the overhead imposed by SARP_NAT, we performed the same set of

experiments we did for SARP_DAI. Figure 5.13 shows the average controller CPU load

for the scenarios with and without SARP_NAT running. As in the case of SARP_DAI, we

considered Regular ARP and Proxy ARP, for both our linear and tree topology.

We consider the results for the linear topology first. Surprisingly, we see that for Regular

ARP, running SARP_NAT results in a significant reduction in CPU load. This is due to the

fact that we install a rule which immediately forwards broadcast ARP request packets that

have been ’sanitised’ by the controller, instead of sending them to the controller at every

switch, as is the behaviour POX’s l2_learning component. In this case, adding security has

the benefit of a significant controller overhead reduction, without sacrificing any generality of

the solution. For Proxy ARP, SARP_NAT does not provide any reduction in CPU load, since

the packet forwarding is the same for both cases. Here, we see that SARP_NAT minimally

increases the CPU load by well below 1%.

For the tree topology and Regular ARP, we also see a reduction in CPU load due to

SARP_NAT. However, the reduction is smaller compared to the linear topology since the

average path length is shorter, resulting in less number of OpenFlow Packet-In messages

72

Chapter 5: Security of Address Resolution Protocol

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

h10 h20 h30 h40 h50 h60

R
ou

nd
 T

rip
 T

im
e

(m
s)

host #

Regular ARP
Regular ARP+SARP_NAT
Proxy ARP
Proxy ARP+SARP_NAT

Figure 5.14: RTT in Linear Topology (SARP_NAT)

 0

 50

 100

 150

 200

 250

 300

h10 h20 h30 h40 h50 h60

R
ou

nd
 T

rip
 T

im
e

(m
s)

host #

Regular ARP
Regular ARP+SARP_NAT
Proxy ARP
Proxy ARP+SARP_NAT

Figure 5.15: RTT in Tree Topology (SARP_NAT)

processed by the controller. For Proxy ARP, we see a small load increase of less than 1%.

We also measured the impact of SARP_NAT on the RTT, using the same scenario as for

SARP_DAI. Figure 5.14 shows the results for the linear topology. We see that Regular ARP

without SARP_NAT has the highest overall RTT values, due to the forwarding behaviour

of the l2_learning component. The advantage of SARP_NAT is reflected here, with a re-

duction of 32% on average compared to the basic Regular ARP case. For Proxy ARP,

73

Chapter 5: Security of Address Resolution Protocol

SARP_NAT imposes a minimal overhead of 2% on average. For the tree topology scenario

in Figure 5.15, we see a smaller efficiency gain of SARP_NAT over basic Regular ARP of

an average of 13%, as expected. For Proxy ARP, SARP_NAT processing at the controller

results in a small increase in the RTT by 10% on average compared to the basic Proxy ARP

case.

Overall, we can say that SARP_NAT achieves a significant performance gain over the basic

Regular ARP case, and imposes a minimal overhead for Proxy ARP.

5.6.4 Comparison with SARP_DAI

In this subsection, we provide a brief qualitative and quantitative comparison of SARP_NAT

with SARP_DAI.

The important point to stress here is that neither SARP_NAT nor SARP_DAI aim to provide

ARP handling functionality. They are orthogonal to the provisioning of ARP handling, and

simply provide a layer of security for whatever ARP handling approach is chosen.

As mentioned above, the key advantage of SARP_NAT compared to SARP_DAI is that it

does not rely on a trusted database of IP-to-MAC address mappings to distinguish spoofed

ARP packets from legitimate ones. This makes it a lot easier and practical to deploy in a

production network.

Tables 5.2 and 5.3 provide a direct quantitative comparison of SARP_NAT with SARP_DAI

in terms of controller CPU overhead as well as the RTT. The tables provide a different view

of the experimental results shown and discussed in this and the previous section, with the

aim of providing a direct comparison of SARP_NAT and SARP_DAI.

Table 5.2 shows that controller CPU overhead (in %) of SARP_NAT is consistently lower

than for SARP_DAI, and the difference is particularly significant for Regular ARP and the

linear topology scenario. This can be attributed to the reduction in the number of OpenFlow

Packet-In messages processed by the controller in the case of SARP_NAT.

74

Chapter 5: Security of Address Resolution Protocol

Table 5.2: Controller CPU Load Comparison

SARP_DAI SARP_NAT

Topology Regular ARP Proxy ARP Regular ARP Proxy ARP

Linear 41.3% 9.6% 6.5% 4.2%

Tree 13.7% 5.2% 6.4% 4.8%

Table 5.3: Round Trip Time Comparison

SARP_DAI SARP_NAT

Topology Regular ARP Proxy ARP Regular ARP Proxy ARP

Linear +12% +16% -32% +2%

Tree +1% +9% -13% +10%

Table 5.3 shows the corresponding table for the RTT measurements. The numbers (in

%) show the relative increase or decrease in the RTT due to SARP_NAT or SARP_DAI,

compared to the reference case without any ARP security mechanism in place.

With the exception of the Proxy ARP and the tree topology case, where SARP_DAI has a

slightly lower RTT overhead (9% vs 10%), SARP_NAT outperforms SARP_DAI in all other

scenarios. This difference is particularly significant, for Regular ARP, where SARP_NAT

even manages to lower the RTT value, due to the more efficient forwarding of ARP mes-

sages, as discussed earlier in this chapter.

Overall, we can say that SARP_NAT provides better performance and a lower overhead

compared to SARP_DAI. This is in addition to its benefit of not relying on a trusted IP-to-

MAC database.

5.7 Related Works

The problem of ARP security has been well studied and discussed in the context of traditional

networks, and we discussed the corresponding key works in Section 5.2.3. Here, we discuss

works which consider the problem of ARP spoofing in the specific context of SDN, and

are hence more closely related to our work. For our discussion, we classify the proposed

75

Chapter 5: Security of Address Resolution Protocol

approaches into two separate categories. The first category, which we refer to as DAI-

like Approaches, relies on a trusted IP-MAC address database to check the validity and

integrity of ARP packets in the network. This is the same basic idea used in our proposed

SARP-DAI module. The second category, Proxy ARP-based Approaches, proposes a central

Proxy ARP handler at the controller. The assumption here is, as in the DAI-like Approaches,

that a trusted IP-MAC address mapping is available, based on which ARP requests can be

answered. This is in contrast to our proposed SARP_NAT, which is separate from the ARP

handling mechanism, and can protect ARP packets without relying on a trusted IP-MAC

database. In the following, we briefly discuss key recent papers for these two categories.

5.7.1 DAI-like Approaches

The authors of [146] propose a method for mitigating ARP spoofing attacks by validating ARP

request and reply packets based on a number of consistency checks, e.g. the mechanism

verifies if the MAC source and destination addresses in the Ethernet header are consistent

with the corresponding addresses in the ARP payload. The most important rule is the one

that checks if the IP-MAC address mapping in the ARP packet is consistent with the one in

the trusted database.

SPHINX [128], as discussed in Chapter 3, is a proposal to detect a range of attacks against

SDN, including ARP poisoning. As the previous approach, SPHINX relies on a trusted IP-

MAC address mapping database, against which each ARP packet in the network is validated

by the controller. The paper has a broad scope, and ARP spoofing represents only a small

subsection. As a result, the approach is discussed in only limited technical detail, and no

quantitative evaluation is provided.

In [147], a similar ARP poisoning mitigation method is proposed. While the authors provide

some basic functional evaluation via experiments, they do not consider the overhead and

impact on network performance of the proposed approach.

The same concept is presented in FICUR [148], an approach to observe ARP traffic and

seek to protect the SDN controller against various ARP attacks. The main weakness of

those studies is the failure to prevent the ARP spoofing attack deployed via an ARP reply

76

Chapter 5: Security of Address Resolution Protocol

message, which the attacker could easily spoof and accomplish the ARP spoofing attack.

It has taken no account of that the first packets received by the controller could be already

spoofed, which in this case the database would eventually include wrong information.

All the above works propose the same basic idea to prevent ARP poisoning or spoofing, by

adopting the concept of DAI [25] to the SDN context, which is essentially the same as our

SARP_DAI approach.

In contrast to our work, none of the papers mentioned above provide an experimental and

quantitative evaluation of the computational overhead on the controller of this approach

(DAI), as well as its impact on network performance, i.e. end-to-end Round Trip Time (RTT).

5.7.2 Proxy ARP-based Approaches

In [149], the authors propose a centralised approach to ARP handling in SDN, with the

main aim of improving efficiency and reducing overhead, which it successfully achieves.

All ARP requests are sent to the SDN controller, which then creates ARP replies based

on its IP-MAC address database. The paper specifically considers a data centre scenario,

and assumes that the database is available from "the data centre management framework".

While the paper does not specifically consider the security aspects of ARP handling, it could

be extended to do so and form the basis of a secure Proxy ARP handler. Since all ARP

requests are handled centrally and the trusted IP-MAC database is available, the controller

is able to provide trusted and valid ARP replies. However, the approach would need to be

extended in regards to the handling of gratuitous ARP replies, and a mechanism would need

to be provided to guarantee that potentially spoofed ARP request messages are quarantined

from other hosts. Furthermore, if the approach was to be generalised for other types of

network scenarios, another way would need to be found to establish the trusted IP-MAC

address mapping.

In [150], the author briefly investigates the security issues with the current implementation

of ARP and attempts to reduce ARP broadcast traffic via centralised ARP handling. In con-

trast to [149], ARP requests are not handled by the controller, but by a dedicated server

instead, which also handles DHCP requests. In this approach, OpenFlow rules are installed

77

Chapter 5: Security of Address Resolution Protocol

on all switches dropping all ARP replies which are not originating from the ARP server. The

proposed approach also relies on a trusted database of IP-MAC address mappings. The au-

thor suggests that this information can be learned by simply observing network traffic, and

extract the IP-MAC address pairs from packets. The problem with this method is that the

initially observed packets can already be spoofed, which then poisons the database. An-

other limitation of the proposal is its dependency on DHCP, and its reliance on an additional

dedicated server, which is in addition to the standard SDN infrastructure.

More recently, the authors of [151] propose a centralised ARP handling approach via the

SDN controller, with the aim of preventing ARP spoofing attacks. The approach in [151] for-

wards all ARP request to the controller. If the controller has the required IP-MAC mapping, it

will create the corresponding ARP reply message. Otherwise, the ARP request is broadcast

as in the regular ARP handling approach. The problem is that this approach still allows ARP

poisoning via ARP request packets since only ARP reply messages are checked. Further-

more, the approach also relies on observing the ARP packets in the network to build up its

IP-MAC database. The paper does not provide a solution to the problem of trust bootstrap-

ping, since the initial ARP packets could already be spoofed.

In [152], a distributed ARP handling approach for SDN is proposed, where multiple DR-ARP

responder entities are in charge of handling ARP requests. The motivation for a distributed

approach is not made very clear, especially since a centralised approach, e.g. via the con-

troller, seems a natural fit for SDN. The proposed method requires ARP requests to be

tagged with meta-data, e.g. the switch ingress port. Furthermore, the approach requires a

subset of all network traffic to be mirrored to the DR-ARP entities, in order for them to learn

the IP-MAC address mapping. This raises questions about the practicality and scalability of

the approach, in addition to the problem of trust bootstrapping, which is not addressed.

In summary, the above approaches propose to handle ARP requests via Proxy ARP, where

ARP replies are created based on a database of IP-MAC address mappings. The security of

these approaches relies on the availability of a trusted source of information to populate the

database. This is a very challenging problem, and none of the discussed papers provides a

solution that is generic and provides absolute security guarantees.

This is in contrast to our SARP_NAT approach, which does not handle ARP request itself,

78

Chapter 5: Security of Address Resolution Protocol

but provides a layer of security to the ARP handling mechanism. The key distinction and

benefit of SARP_NAT compared to all these related approaches is that it does not rely on

the availability of a trusted IP-MAC address database. Finally, none of the related works have

provided an experimental evaluation of the computational cost of their proposed mechanism,

as is provided in this chapter for both SARP_DAI and SARP_NAT.

5.8 Conclusions

While SARP_DAI, an adoption of an existing solution used in traditional networks, can suc-

cessfully prevent all such attacks, it imposes a significant overhead on the controller, and it

relies on a trusted database of IP-to-MAC address mappings. Since this cannot always be

assumed, we presented SARP_NAT, an active, SDN-specific mitigation approach that does

not rely on any trusted a-priori information. SARP_NAT can defend against ARP request

based spoofing attacks, and against gratuitous ARP reply attacks. While it is impossible to

prevent attacks based on ARP replies sent to genuine ARP requests, SARP_NAT can detect

such duplicate ARP reply attacks and mitigate the impact by overwriting the affected host’s

ARP cache. SARP_NAT’s active address translation approach provides a novel solution to

the problem of ARP spoofing in SDN.

79

Chapter 6

Efficient Address Resolution Protocol

Handling

6.1 Introduction

Layer 3 to Layer 2 address mapping is a critical functionality in packet switched networks.

In IPv4, this service is provided via the Address Resolution Protocol (ARP), and in IPv6

via Neighbour Discovery Protocol (NDP). While our discussions in this chapter focus on

ARP, our proposed method can equally be applied to NDP in IPv6, in particular Neighbour

Solicitation (NS) and Neighbour Announcement (NA).

ARP imposes a significant overhead on Ethernet networks. For example, [153] reports that

ARP traffic represents 88% of all broadcast traffic. Efficient handling of ARP is therefore

critical for the scalability of networks. In the context of SDN, a widely used approach to

handle ARP and address the problem of extensive broadcast traffic is by using Proxy ARP,

where the SDN controller handles ARP requests on behalf of hosts. While Proxy ARP in

SDN manages to reduce the ARP induced broadcast traffic, it places a significant load on

the controller, limiting overall network performance and scalability and making the entire

network vulnerable to DoS attacks [154].

To address this problem, we explore the idea of offloading Proxy ARP functionality from the

control plane (SDN controller) to the data plane (switches). We refer to our proposed solution

80

Chapter 6: Efficient Address Resolution Protocol Handling

as Switch-based Proxy ARP (SProxy ARP).

For our work, we assume an SDN with an OpenFlow-based southbound interface [2]. Open-

Flow provides a very limited interface to program switch functionality via its basic match-

action paradigm. This chapter demonstrates how the limited OpenFlow interface can be

utilised to successfully implement SProxy ARP, without requiring any further, non-standard

modifications to switches.

Our experimental evaluations show the potential performance benefits of SProxy ARP, with

a reduction of ARP response time of more than an order of magnitude, while providing a

significant reduction of controller load.

The rest of the chapter is organised as follows: Section 6.2 discusses the state-of-the-art

in ARP handling in SDN, and Section 6.3 describes SProxy ARP and its implementation.

Section 7.4 briefly describes our experimental platforms and Section 6.5 presents our eval-

uation results. Section 6.6 discusses the memory-performance trade off in SProxy ARP.

Section 8.4 discusses related works, and Section 8.8 concludes the chapter.

6.2 ARP Handling in SDN

As discussed in Chapter 5, there are two basic methods for handling ARP in OpenFlow-

based SDNs. The first method, which we call Regular ARP, in which a host broadcasts an

ARP request on the local subnet, and the host with the IP address specified in the TPA field

responds with a unicast ARP reply containing its own MAC address as the answer. There

is nothing SDN-specific in this approach, and it works as in traditional networks. The role

of the SDN controller here is just to provide the packet forwarding functionality, e.g. via a

learning switch component, for ARP request and ARP reply messages between hosts. This

approach suffers from the same problem of high broadcast traffic load as is the case in

traditional networks.

The second approach to handle ARP in SDN is via Proxy ARP. In this case, ARP requests

are sent to the controller when they are received at a switch from a host. The controller

81

Chapter 6: Efficient Address Resolution Protocol Handling

maintains a database of IP-MAC address mappings and is then able to directly create the

corresponding ARP reply message. This ARP reply is sent back to the switch, encapsulated

in an OpenFlow Packet-Out message, together with the instruction of sending it out to the

ingress port via which the ARP request was received. This approach is well suited to the

centralised nature of SDN. The key benefit is that it avoids excessive broadcast traffic in

the network and the associated overhead. However, a key drawback of this approach is the

increased controller load, since the controller needs to handle every single ARP request, in

addition to handling other load.

Proxy ARP is widely used in SDN and is implemented by most SDN controller platforms.

Our investigations showed that the following controllers support Proxy ARP: POX [33], Ryu

[34], ONOS [35], Floodlight [36], OpenDaylight [37], and Beacon [121].

In the following section, we discuss SProxy ARP, our simple and practical proposal to miti-

gate the key limitations of Proxy ARP in SDN.

6.3 Switch-based Proxy ARP (SProxy ARP)

The key idea in SProxy ARP is to offload the ARP handling functionality, at least partially,

from the control plane (SDN controller) to the data plane (switches).

In SProxy ARP, the switch directly replies to the ARP request with the corresponding ARP

reply message, without involving the controller. The problem is that OpenFlow provides

a very narrow interface to program switch functionality, limited to basic primitives that can

be implemented, via its match-action paradigm. For example, OpenFlow does not provide

a mechanism to create a new message in response to another message. Furthermore,

its packet matching functionality is generally limited to packet headers and does not allow

access to payload information. However, since OpenFlow version 1.3, there is an important

exception to this rule, i.e. ARP payload fields such as SPA, SHA, TPA, THA, etc. are added

as match fields. Since OpenFlow supports the operation of rewriting of packet fields that are

defined as match fields, this mechanism allows us to answer ARP requests at the switch.

We are able to rewrite the fields of the ARP request to convert it into the corresponding ARP

82

Chapter 6: Efficient Address Resolution Protocol Handling

Algorithm 3 SProxy ARP Request Processing
1: for all received pkt do
2: if pkt.type = ARP ∧ pkt.arp.operation=1 then
3: THA← lookupMAC(pkt.arp.tpa)
4: TPA← pkt.arp.tpa
5: SHA← pkt.arp.sha
6: SPA← pkt.arp.spa
7: pkt.op← 2
8: pkt.eth_src← THA
9: pkt.eth_dst← SHA

10: pkt.arp.tpa← SPA
11: pkt.arp.tha← SHA
12: pkt.arp.spa← TPA
13: pkt.arp.sha← THA
14: end if
15: end for

reply message and send it back to the host, via the ingress port on which the ARP request

was received.

The process is shown in Algorithm 3. If the packet is an ARP request (line 2), we look up the

value for THA in the local IP-MAC database and store it as the temporary variable THA (line

3). We also read the values of TPA, SHA and SPA from the ARP payload and store them

in temporary variables (lines 4-6). Now we convert the packet from an ARP request into an

ARP reply by rewriting the operation field (line 7). Next, we set the source and destination

MAC address of the Ethernet frame which carries the ARP payload to the value of THA and

SHA respectively (lines 8-9). Finally, the TPA, THA, SPA, and SHA fields of the converted

ARP reply messages are set accordingly (lines 10-13), as discussed in Chapter 5.

Unfortunately, we cannot directly implement Algorithm 3 in OpenFlow, since it does not sup-

port a database and lookup mechanism (line 3), nor does it support variables (lines 3-6).

Instead, we need to install a dedicated OpenFlow rule for each TPA we want to handle at

the switch, with the corresponding values for THA, SHA and SPA ’hard-coded’ in the rules

as literals. To illustrate this, Figure 6.1 shows an example of such an OpenFlow rule, defined

for a TPA of 10.0.0.2, with its corresponding match and action components. Lines 1 and 2

represent the match rules, and lines 3-11 are the corresponding actions.1

Line 1 in the figure matches on ARP request packets, corresponding to line 1 in Algorithm 3,

1The syntax used in the figure is as provided by the dpctl tool, we only add the line breaks and line numbers.

83

Chapter 6: Efficient Address Resolution Protocol Handling

1: arp, arp_op=1
2: arp_tpa=10.0.0.2
3: actions=
4: set_field:2->arp_op
5: set_field:00:00:00:00:00:02->eth_src
6: set_field:ff:ff:ff:ff:ff:ff->eth_dst
7: set_field:10.0.0.2->arp_spa
8: set_field:00:00:00:00:00:02->arp_sha
9: set_field:10.255.255.255->arp_tpa
10: set_field:ff:ff:ff:ff:ff:ff->arp_tha
11: IN_PORT

Figure 6.1: Example OpenFlow Rule for SProxy ARP

and Line 2 matches on a particular value of TPA (10.0.0.2), in this example. The rest of the

rule specifies the actions for initialising the ARP reply for this particular IP address.2 From

line 3 onwards, we see the OpenFlow actions for creating, initialising and forwarding the

corresponding ARP reply message. Line 4 sets the ARP type to ’reply’. Line 5 in Figure 6.1

sets the Ethernet source MAC address as the hard-coded value corresponding to the TPA

of 10.0.0.2, which is 00:00:00:00:00:02 in this example. Line 6 sets the destination MAC

address of the Ethernet frame as the broadcast address. This differs from the corresponding

line 9 in Algorithm 3, where we use the corresponding unicast address. Due to the limitation

of OpenFlow, we cannot copy that value from the ARP request packet, and we, therefore,

need to use the broadcast address as a constant, hard-coded value. Similarly, we need

to use the corresponding broadcast address for the values of TPA and THA. While this

is a deviation from the regular approach to initiate ARP replies, it provides the identical

functionality. Finally, line 11 in Figure 6.1 tells the switch to send the ’ARP request-turned-

ARP reply’ packet out to port IN_PORT, i.e. the ingress port, where the request was received

on.

For SProxy ARP, we assume that the controller maintains a database of IP-MAC address

mappings, as implemented in traditional Proxy ARP, i.e. via DHCP-Snooping [155] or via

learning the information from passively observing data packets. The controller decides for

2As mentioned previously, this approach requires the installation of a separate rule for each TPA to be
handled at the switch.

84

Chapter 6: Efficient Address Resolution Protocol Handling

which IP addresses (TPAs), a corresponding rule for ARP handling is to be installed on the

switches. For now, we assume a rule is installed for each TPA, which means that all ARP

requests can be handled by the switch. In Section 6.6, we discuss the consequences of

relaxing that assumption. We implement SProxy ARP as a separate component in the Ryu

controller platform.

6.4 Experimental Platform

We evaluated SProxy ARP both in an emulated network using Mininet [30], as well as a

dedicated hardware test-bed. For our experiments, we configured the simple scenario shown

in Figure 6.2, with an SDN controller running Ryu, an OpenFlow switch S1 and two hosts h1

and h2.

Since we are evaluating the performance of Proxy ARP, there is no need to consider more

complex topologies. In fact, the basic process of handling ARP requests from a host involves

only the corresponding access switch and the controller and is therefore independent of the

rest of the network. We further used the PackETH tool [40] to generate an ARP request from

host h1 to host h2 at various rates.

For our emulation experiments, we used Mininet [30] and Open vSwitch (OVS) [31]. Table

8.2 summarises the relevant software tools we used in the experiments of this chapter. All

experiments were run on a Dell server (PowerEdge R320 with a 12-core Xeon E5-2400 CPU

and 32GB of RAM), running Ubuntu Linux 16.04 with kernel version 3.16.0.

For our hardware test-bed experiments, we used two Dell R320 servers, with specifications

as mentioned above, one as host h1 and the second one as the OVS switch S1. We further

used 2 Dell laptops with an Intel 2.6GHz dual-core CPU and 4GB of RAM, one as the SDN

controller running Ryu and the other one as host h2. With these nodes, we configured the

scenario shown in Figure 6.2.

85

Chapter 6: Efficient Address Resolution Protocol Handling

Table 6.1: Software Tools used for Implementation and Experiments in Chapter 6

Software Function Version

Mininet [30] Network Emulator 2.2.2

Open vSwitch [31] Software SDN Switch 2.5.2

Ryu [34] SDN Controller Platform 3.19

PackETH [40] Packet Generator 1.8.1

Stress-ng [42] Control Traffic Tool 0.02.26

S1

SDN
Controller

P1

h1 h2

P1 P1

P2

10.0.0.1
00:00:00:00:00:01

10.0.0.2
00:00:00:00:00:02

Figure 6.2: Basic Experiment Scenario

6.5 Evaluation

In this section, we first consider the improvement in the ARP response time that SProxy

ARP achieves compared to the traditional Proxy ARP approach in SDN. We also look at

the reduction in controller overhead of SProxy compared to Proxy ARP, with different ARP

request sending rates.

To achieve this goal, we performed a number of experimental evaluations of SProxy ARP.

For these experiments, we installed OpenFlow rules for all values of TPA that we used in our

experiments, which made sure that all ARP requests can be answered by the switch. This

represents a best-case scenario.

86

Chapter 6: Efficient Address Resolution Protocol Handling

 0

 1

 2

 3

 4

 5

Real Test-bed Mininet

A
R

P
 R

es
po

ns
e

Ti
m

e
(m

s)
Proxy ARP

SProxy ARP

Figure 6.3: ARP Response Time

6.5.1 ARP Response Time

In this experiment, we measured the ARP response time δ at host h1 by taking the difference

δ = t2 − t1 between the time t1 when the ARP request is sent and the time t2 when the

corresponding ARP reply is received at the host.

Figure 6.3 shows the results for both Proxy ARP and SProxy ARP, from both our hardware

test-bed as well as Mininet. The figure shows the average over ten individual measurements,

with the corresponding 95% confidence interval. As expected, we see a significant reduction

in the ARP response time achieved by SProxy ARP, from 3.25ms to 0.18ms on the real test-

bed, and from 2.28ms to 0.14ms in Mininet. This is achieved by avoiding the extra round

trip time to the controller, and the necessary parsing of OpenFlow Packet-In and Packet-Out

messages. The lower value of ARP response time of Proxy ARP in Mininet compared to the

hardware test-bed can be explained by the fact that the control channel over which OpenFlow

Packet-In and Packet-Out messages are sent is faster since it is done via an emulated link

rather than a physical link.

In the above experiment, the controller was idle and did not perform any other functionality.

This is a somewhat unrealistic assumption, since in a real network, the controller would

typically be busy, e.g. handling table-miss events and installing new forwarding rules on

87

Chapter 6: Efficient Address Resolution Protocol Handling

switches. We therefore want to investigate how the ARP response time is affected by various

levels of background load on the controller. We used the Stress-ng tool [42] to create various

levels of control traffic and hence CPU load.

Figure 6.4 shows the ARP response time for Proxy ARP as well as SProxy ARP, measured

in both Mininet and the hardware test-bed. The x-axis shows the increasing controller CPU

background load generated by the Stress-ng tool. The figure shows the average over ten

measurements, with the corresponding 95% confidence interval.

We see that an increased controller background load results in an increased ARP response

time for Proxy ARP, as expected. For a controller load of 100%, the ARP response time is

double the amount as for the idle controller case. The increase is approximately linear for

both the Mininet and hardware test-bed case, reaching more than double the ARP response

time for a maximum controller load compared to the case of an idle controller.

Also as expected, the ARP response time for SProxy ARP is constant and independent

of the controller load since ARP requests are handled by the switch without any controller

involvement. In fact, the SProxy ARP figures are almost identical for both Mininet and the

hardware test-bed, and we, therefore, do not differentiate between the two.

We observe that in the case of 100% controller load, SProxy ARP reduces the ARP response

time by a factor of more than 36 (hardware test-bed), compared to traditional Proxy ARP.

6.5.2 Controller Overhead

Here, we consider the computational overhead placed on the SDN controller by the tradi-

tional Proxy ARP handling approach. The controller CPU load is caused by the parsing of

ARP request packets encapsulated in OpenFlow Packet-In messages, looking up the MAC

address corresponding to the TPA, and creating and sending the ARP reply message encap-

sulated in an OpenFlow Packet-Out message to the switch. That gives us an indication of

the potential controller load reduction of SProxy ARP, which in the ideal case places virtually

no load on the controller.

88

Chapter 6: Efficient Address Resolution Protocol Handling

 0

 1

 2

 3

 4

 5

 6

 7

0 10 20 80 90 100

A
R

P
 R

es
po

se
 T

im
e

(m
s)

30 40 50 60 70

Proxy ARP (Hardware Test-bed)
Proxy ARP (Mininet)
SProxy ARP

Background Controller CPU Load in (%)

Figure 6.4: ARP Response Time vs. Background Controller CPU Load

Figure 6.5 shows the controller CPU load caused by ARP handling via Proxy ARP, for differ-

ent ARP request sending rates, ranging from 200/s up to 1600/s. As before, the figure shows

the average over 10 experiment runs, with 95% confidence intervals. As expected, we see

a linear increase in the controller CPU load with an increased ARP request sending rate for

Proxy ARP in both scenario, Mininet and the hardware test-bed. While the absolute CPU

load values depend on the specific controller hardware, we see that Proxy ARP handling

can create a significant CPU load. This has a negative impact on network scalability and the

ability of the SDN controller to react timely to other important network events, e.g. table-miss

events.3 In contrast to Proxy ARP, we see that SProxy ARP creates no controller load in this

scenario, as expected.

In addition to the CPU load imposed on the controller by Proxy ARP, we also considered

its overhead in terms of ongoing control traffic between switches and the controller.4 Figure

6.6 shows the amount of control traffic as a function of the ARP request sending rate, for

the same scenario as used in Figure 6.5. As expected, we again see a linear increase in the

control traffic overhead for Proxy ARP and a constant value of 0 for SProxy ARP.

3While an ARP request sending rate of 1600/s is arguably very high, our own measurements of networks
at the University of Mjamaah and the University of Queensland have shown ARP rates of several hundred per
second.

4We ignore traffic required for the initial installation of rules, since this is a one-off cost, compared to contin-
uous traffic overhead of Proxy ARP.

89

Chapter 6: Efficient Address Resolution Protocol Handling

 0

 20

 40

 60

 80

 100

200 400 1200 1400 1600

C
on

tro
lle

r C
P

U
 L

oa
d

in
 (%

)

600 800 1000

Proxy ARP (Hardware Test-bed)
Proxy ARP (Mininet)
SProxy ARP

ARP Request Sending Rate (pkts/s)

Figure 6.5: CPU Consumption with Sending Rate

In summary, we can conclude that SProxy ARP achieves a number of key improvements

over traditional Proxy ARP handling in SDN. It achieves a better than the order of magnitude

reduction in the ARP response time, while also significantly reducing the overhead on the

controller, both in terms of CPU load as well as in regards to the control traffic. Reducing

controller load, which makes the network roust against DoS attacks, is a critical issue for

network scalability in SDN.

However, so far we have assumed that all ARP requests are handled by the switch, and

consequently a rule for each requested IP-MAC address mapping is installed on the relevant

switch. This is a somewhat idealistic assumption. While memory in software switches such

as OVS might not be such a limiting factor, TCAM memory in hardware OpenFlow switches is

certainly a limited and expensive resource. The following section explores the corresponding

memory-performance trade-off in SProxy ARP.

6.6 Switch Memory-Performance Trade-off

In this section, we discuss the trade-off between the number of rules installed and required

switch memory, versus the possible performance and efficiency gain. To investigate the

90

Chapter 6: Efficient Address Resolution Protocol Handling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 200 400 600 800 1000 1200 1400 1600

C
on

tro
l T

ra
ffi

c
O

ve
rh

ea
d
(M

bp
s)

ARP Request Sending Rate (pkts/s)

Proxy ARP
SProxy ARP

Figure 6.6: Total Packet size with Sending Rate

0

50k

100k

150k

200k

250k

300k

350k

400k

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

A
R

P
 R

e
q
u
e
st

s

Target Protocol Address of ARP Request

Figure 6.7: ARP Request Distribution based on TPA

memory-performance trade-off of SProxy ARP, we collected a 33-hour trace of ARP traffic

from a core switch at the School of ITEE at the University of Queensland.

Figure 6.7 shows the distribution of ARP requests based on the TPA. We see a power-law-

like distribution, a small number of IP addresses (TPAs) with a high number of ARP requests,

and a long tail of addresses with a small number of requests each.

91

Chapter 6: Efficient Address Resolution Protocol Handling

Table 6.2: Memory Performance Trade-off

Number of Rules(n) Fraction of ARP Requests Covered
10 22.7%
20 31.4%
30 37.8%
40 42.5%
50 45.5%
60 48.1%
70 50.2%
80 51.9%
90 53.2%

100 54.2%
200 62.4%
300 68.2%
400 72.8%
500 76.5%
600 80.1%
700 83.2%
800 86.0%
900 88.8%
1000 91.4%

This seems to indicate that by installing a relatively small number of switch rules for SProxy

ARP handling, a significant proportion of ARP traffic can be handled at the switch, and hence

a significant performance gain can be achieved at a limited memory cost.

Table 6.2 shows the percentage of ARP requests that can be handled at the switch by

installing rules for the n most requested IP addresses, for different values of n. We see

that by installing rules for the n = 50 most common IP addresses, more than 46% of all

ARP request can be offloaded to the switch, and therefore more than 46% of the associated

performance gains and controller load reduction can be achieved. For n = 100, we can

cover more than 50% of all ARP requests. As can be seen in Figure 6.7, the marginal gain

of installing additional rules is very low for n approaching 100 and below. We have collected

further ARP traces from other networks, and the qualitative property of the distribution with

a small number of high demand IP addresses and a long tail of rarely requested addresses

has been consistent.

The optimal value of n and the corresponding memory-performance trade-off for SProxy

ARP depend on the specifics of the network scenario, e.g. if we are dealing with software

or hardware switches, with more constrained TCAM memory. A detailed evaluation of this is

92

Chapter 6: Efficient Address Resolution Protocol Handling

beyond the scope of this thesis and represents future work.

6.7 Related Works

There have been a number of works that address the issue of controller load and scalability.

Some of these address the problem by distributing the control plane functionality across mul-

tiple physical nodes, such as [78] and [156]. Kandoo [157] proposes a hierarchical controller

architecture with two layers of controllers, one responsible for local control applications, deal-

ing with frequent, low-level events. The other control layer is responsible for managing global

aspects of the network.

More directly related to our work are [158] and [159]. Both papers consider the offloading

of control plane functionality to the data plane (switches), and both papers discuss ARP

handling as an example. However, the approach taken in these papers is fundamentally

different to SProxy ARP. Both [158] and [159] require a significant modification to switches,

and the offloading is achieved by additional software agents placed on the SDN switches.

In contrast, our approach (SProxy ARP), is fully OpenFlow standard compliant and can be

easily implemented in any controller and switch that supports OpenFlow version 1.3 and

higher.

6.8 Conclusions

In this chapter, we presented SProxy ARP, a new approach to handling ARP traffic in SDN.

Through offloading the ARP functionality from the SDN controller to the switches, we have

demonstrated that SProxy ARP can achieve greater than the order of magnitude reduction

in the ARP response time. In addition, our approach significantly reduces the controller

overhead, thereby increasing network scalability and robustness, which are paramount to

enhance security in SDN.

We have demonstrated how offloading the control plane functionality to the data plane is

93

Chapter 6: Efficient Address Resolution Protocol Handling

achieved without requiring any modifications to the switch. SProxy ARP is completely Open-

Flow standard compliant, which makes it a highly practical and easy to deploy in a production

network. While the discussions in this chapter have focussed on ARP and hence IPv4, the

proposed mechanism can be directly applied to IPv6 to provide the corresponding layer 3

to layer 2 address mapping via NDP (NS/NA), since the relevant protocol match fields are

supported in OpenFlow. The implementation of SProxy ARP for IPv6, as well as for other

SDN controller platforms, represents ongoing and future work.

94

Chapter 7

Evaluation of Denial of Service Attacks

7.1 Introduction

The SDN architecture provides a different Denial of Service (DoS) attack surface compared

to traditional networks. In particular, the centralised controller represents an attractive target

for DoS attacks. By bringing down the controller, an attacker can bring down, or at least

significantly disrupt, the entire network.

DoS attacks are a significant problem in traditional networks, with an estimated annual cost

of $113 billion globally [26]. With rapidly increasing deployment, it can be expected that

SDNs will become the target of significant DoS attacks. It is therefore critical to investigate

and understand the threats and the potential impact of these attacks. Towards this goal,

this chapter presents an experimental evaluation of the impact of DoS attacks on SDN. We

consider two types of DoS attacks, attacks against the control plane (SDN controller), as well

as attacks against the data plane (switches). In both attacks, the attacker aims to exhaust

the resources of the target. In the case of the control plane attack, this results in the inability

of the controller to handle new flows and to install new forwarding rules reactively. In the

attack against the data plane, we consider two different aims of an attacker, exhaustion of

memory to store forwarding rules, as well as exhaustion of computing resources required to

perform the packet forwarding. Since the memory exhaustion attack has been well studied in

the literature [68, 160, 161, 162, 163, 164], we focus on the attack on the CPU resources of

software SDN switches. This is relevant since software SDN switches running on commodity

95

Chapter 7: Evaluation of Denial of Service Attacks

x86 hardware are increasingly widely deployed.

In our experiments, we quantify the impact of these attacks on the ability of the SDN con-

troller to handle regular network traffic, under varying attack rates. We perform our exper-

iments for the following key SDN controller platforms, Ryu [34], ONOS [35] and Floodlight

[36]. To the best of our knowledge, such as comparison has not been presented before.

Another contribution of this chapter is a discussion and investigation of the amplification

effect of DoS attacks against the control plane, where the impact of the attack increases

with the network size, i.e. the number of switches.

The rest of the chapter is organised as follows. Section 7.2 provides some basic back-

ground on SDN packet forwarding. Section 7.4 presents and discusses the results of our

experiments. Section 7.5 gives an overview of key related works, and Section 8.8 concludes

the chapter.

7.2 SDN Packet Forwarding

The OpenFlow protocol allows the controller to install forwarding rules on the switches via

flow-mod messages. These rules follow a simple match-action paradigm, where the match

part can consist of layer 2-4 packet header fields (supporting wild-cards), plus other param-

eters, such as the ingress port. Rules can be installed in a proactive or reactive approach. In

the proactive approach, forwarding rules are pre-installed, prior to the arrival of any packets.

In the reactive approach, which is more common, forwarding rules are installed on-demand.

When a packet arrives at a switch, and there is no matching rule (a table-miss event), the

packet is sent to the controller via an OpenFlow Packet-In message. The controller then

sends the packet back to the switch in an OpenFlow Packet-Out message, with instructions

on how to forward the packet. The controller also installs a set of corresponding forward-

ing rules on switches along the path, to handle any subsequent packets belonging to the

new flow [2, 50]. A table-miss event and the corresponding OpenFlow messages are rela-

tively expensive operations for a controller. As we will see later, this can be exploited by an

attacker.

96

Chapter 7: Evaluation of Denial of Service Attacks

The exact behaviour of the controller in regards to handling flows is determined by the for-

warding application running in the controller. Common SDN reactive forwarding applications

supported by most controller platforms include a L2 learning switch and L3 shortest path

routing. For our experiments, we use the default reactive forwarding application of the con-

trollers we are considering, as discussed later.

7.3 DoS Attacks against SDN

As mentioned before, we consider two types of attacks in this chapter. The first attack aims

to exhaust the resources of the SDN controller, while the second attack aims to exhaust the

computing resources of a software switch, i.e. the data plane. In the following, we describe

these attacks in more detail, based on a simple example scenario.

7.3.1 Attack on the Control Plane

We consider the example network topology shown in Figure 7.1, with three hosts attached

to a single OpenFlow switch, which is in turn connected to a controller. The IP and MAC

addresses of the hosts are as indicated.

Here, host h1 is the attacker, whose aim is to create a maximum workload for the controller.

This is achieved by creating a table-miss event for every single packet, resulting in the packet

being sent to the controller in an OpenFlow Packet-In message, and taking up the controller

computing resources in the process. In order to achieve this, the attacker spoofs the source

IP and MAC addresses of the packets, by choosing the addresses uniformly randomly for

each individual packet.1 The destination IP and MAC addresses are also chosen randomly.

In our example, we assume that the controller runs a learning switch forwarding application,

which is the default in most SDN controller platforms. Below is a step-by-step account of

what happens during the attack.

1Choosing different source addresses for every packet makes simple countermeasures implemented by
common controller platforms ineffective.

97

Chapter 7: Evaluation of Denial of Service Attacks

SDN Switch

SDN

Controller

P1

h1

P1 P1

P3

10.0.0.1
00:00:00:00:00:01

h3h2

P2

P1

10.0.0.2
00:00:00:00:00:02

10.0.0.3
00:00:00:00:00:03

Figure 7.1: Basic Attack Scenario

1. The attacker h1 crafts an IP packet (UDP or TCP), with randomly chosen source and

destination IP and MAC addresses, and sends the packet to the switch, where it is

received via port P1. Due to the randomly chosen addresses, there is no matching

rule installed in the switch, which causes the packet to be sent to the controller.

2. The controller sends the packet back to the switch via an OpenFlow Packet-Out mes-

sage, with an action which instructs the switch to flood the packet, i.e. send it out on

all ports except the ingress port.2

3. The switch now sends the packet out on ports P2 and P3, reaching hosts h2 and h3,

neither of which is the destination.3 As a result, no response to the packet is sent,

which also means no flow rule is installed in the switch.

By increasing the attack packet sending rate, the attacker can consume an increasing

amount of controller resources, up to the point where it becomes unable to handle legiti-

mate flows.
2SDN learning switches only install a forwarding rule once it has observed packets in both directions of the

flow.
3With negligible probability.

98

Chapter 7: Evaluation of Denial of Service Attacks

7.3.2 Attack on the Data Plane

A widely discussed attack on the SDN data plane is via exhaustion of the TCAM memory in

hardware SDN switches [165, 166]. In contrast, we consider the exhausting of computing re-

sources in a software SDN switch and the resulting impact on its ability to forward legitimate

packets.

In order to consider this kind of attack, we need to slightly change our scenario. Here, we

only want to consider the impact of the attack on the switch’s ability to forward packets,

independently of the controller. We, therefore, assume that the relevant forwarding rules

to handle legitimate traffic are pre-installed on the switch. This means these packets can

be forwarded by the switch, independently of the controller, and we can isolate the attack’s

impact on the switch.

Attack packets are created by host h1 in the same way as in the control plane attack sce-

nario. As a result, the switch sends each attack packet to the controller, encapsulated in an

OpenFlow Packet-In message. Sending this OpenFlow Packet-In message and receiving

and processing the corresponding OpenFlow Packet-Out message from the controller also

take significant computing resources at the switch. In a software switch, the available com-

puting resources are shared between the packet forwarding and the processing of OpenFlow

control messages. Therefore, the attack can result in the disruption of the forwarding capa-

bility of the switch. In the following section, we discuss our experiments in which we quantify

the impact of these attacks, considering three different SDN controllers.

7.4 Experimental Evaluation

7.4.1 Testbed

For our experiments, we used Mininet [30] and OpenvSwitch (OVS) [31]. The controllers

evaluated include three modern SDN controllers, i.e. Ryu [34], ONOS [35], and Flood-

light [36]. We used the default forwarding applications in these controllers, which are sim-

99

Chapter 7: Evaluation of Denial of Service Attacks

Table 7.1: Software Tools used for Implementation Experiments in Chapter 7

Software Function Version

Mininet [30] Network Emulator 2.2.2

Open vSwitch [31] Software SDN Switch 2.5.2

OFELIA [32] Hardware SDN Test-bed =======

Ryu [34] SDN Controller Platform 3.22

ONOS [35] SDN Controller Platform 1.10.0

Floodlight [36] SDN Controller Platform 1.0

Scapy Library [38] Packet Manipulation Tool 2.2.0

Tcpreplay [41] Traffic Replay Tool 4.2.6

ple_switch_13 in Ryu, fwd in ONOS and forwarding in Floodlight.

Initially, we used the Scapy library [38] to craft and send the attack packets. However,

the maximum packet sending rate in this approach was limited to around 500 pkts/s. We,

therefore, used an alternative approach where we created a pcap file with attack traffic prior

to the experiment, and then used Tcpreplay [41] to inject the packets into the network at the

desired rate. With this approach, we were able to achieve a packet sending rate of well above

70,000 pkts/s. Table 8.2 summarises the relevant software tools we used in the experiments

of this chapter. All our experiments were carried out on a Dell server (PowerEdge R320 with

a 12-core Xeon E5-2400 CPU and 32GB of RAM), running Ubuntu Linux 17.04 with kernel

version 3.16.0. Each process (ovs-switch, controller, packet injection) was allocated to a

dedicated CPU core to avoid any interference.

7.4.2 Control Plane Attack

In our first experiment, we want to measure the impact of a DoS attack on the controller’s

ability to handle legitimate traffic. For this, we consider the scenario shown in Figure 7.1.

We run ping between hosts h2 and h3, at a rate of 10 ICMP Echo requests per second

and measure the packet delivery ratio (PDR). We slightly modified the controller behaviour

to avoid the installation of forwarding rules for the ping traffic. This forces the ping packets

to be sent to the controller via OpenFlow Packet-In messages and requires the controller’s

100

Chapter 7: Evaluation of Denial of Service Attacks

 0

 20

 40

 60

 80

 100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ac

ke
t D

el
iv

er
y

R
at

io
 in

 (%
)

Attack Sending Rate (pkts/s)

Ryu
ONOS

Floodlight

Figure 7.2: Control Plane Attack, PDR

involvement in order to forward the packets. We can, therefore, measure the impact of the

DoS attack on the controller via the PDR of the ping packets, for a range of attack sending

rates.

Figure 7.2 shows the PDR of network traffic between hosts h2 and h3 with different attack

sending rate, ranging from 1000 pkts/s up to 10,000 pkts/s for the three considered con-

trollers. We see that from the attack sending rate of around 7000 pkts/s, all the controllers

are essentially overwhelmed with handling OpenFlow Packet-In and Packet-Out messages

caused by attack traffic. As a result, they are unable to handle any legitimate traffic, and

the PDR drops close to 0%. However, we see a significant difference between the three

controllers.

The PDR for ONOS drops relatively sharply, starting from the attack sending rate of only

2000 pkts/s. Ryu performs slightly better, with the PDR drop starting from 3000 pkts/s.

Floodlight appears to be the most resilient controller, with the ability to handle a much higher

attack sending rate before it completely loses the ability to handle traffic.

We also measured the CPU load of the SDN controllers for the same range of the attack

sending rates. Figure 7.3 shows the result. For all the controllers, we see a near-linear

increase in the CPU load as a function of the attack packet rate. All controllers reach close

101

Chapter 7: Evaluation of Denial of Service Attacks

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
on

tro
lle

r C
P

U
 L

oa
d

in
 (%

)

Attack Sending Rate (pkts/s)

Ryu
ONOS

Floodlight

Figure 7.3: Control Plane Attack, Controller CPU Load

S1 S10S2 S8

h1 h2

SDN

Controller

h3

Figure 7.4: Linear Topology

to 100% for the attack sending rate of 10,000 pkts/s.

While there is a clear correlation between the CPU load and the PDR drop, we see that the

CPU load by itself does not completely explain the drop in the PDR. In particular for ONOS,

we see that the PDR drops well before the CPU load reaches 100%. We believe this is due

to differences in the implementation of OpenFlow message handling among the controllers.

So far, we have only considered the simple network topology with a single switch, as shown

in Figure 7.1. We now consider a larger topology in order to explore the effect of the network

size on the impact of the DoS attacks. For the next experiment, we consider a linear topology

102

Chapter 7: Evaluation of Denial of Service Attacks

Figure 7.5: Attack Amplification Effect on PDR

with 2, 4, 6, 8 and 10 switches. The example with ten switches is shown in Figure 7.4. As

before, the attacker h1 injects UDP packets with random IP and MAC addresses at various

attack sending rates, and we measure the impact of the attack via the PDR of legitimate

traffic sent between hosts h2 and h3. We are interested in how the network size, i.e. number

of switches, affects the impact of the DoS attack.

Figure 7.5 shows the PDR results for the attack sending rates of 1000, 2000, 3000 and 4000

pkts/s on linear topologies of size 10, 8, 6, 4 and 2 switches. We reversed the order on the

axis showing the number of switches to increase legibility.

We see that for all controller platforms, an increasing number of switches results in a more

significant drop in the PDR, which corresponds to a substantial impact of the attack. We

refer to this as the attack amplification effect.

As expected, in the case of reactive forwarding applications, each attack packet causes a

pair of OpenFlow Packet-In and Packet-Out messages from each switch to be handled by

the controller. For example, in the case of a learning switch forwarding application, if host h1

sends an attack packet, it will cause a table-miss event at switch S1, with the packet being

sent to the controller as an OpenFlow Packet-In message. Since the controller does not have

sufficient information to install any flow rules at this stage, it will send it back to the switch

103

Chapter 7: Evaluation of Denial of Service Attacks

Figure 7.6: Attack Amplification Effect on Controller CPU Load

in an OpenFlow Packet-Out message, with instructions to flood it. As a result, the packet is

sent to switch S2, where it again causes a table-miss event, with another OpenFlow Packet-

In and Packet-Out message, and so forth. As we can see in the graph, the relationship

between the network size and the PDR is roughly linear. We also observe differences in

the attack impact between the three SDN controller platforms, which is consistent with our

previous experiment for the basic topology. We see that ONOS suffers from the most notable

impact of the attack, followed by Ryu and Floodlight.

As for the previous experiment, we also measured the controller CPU load, as shown in

Figure 7.6.4 As expected, we observe an increased controller CPU load for larger networks,

for the same attack sending rate. In summary, we can say that the larger the network, the

easier it is for an attacker to launch a successful attack on the controller, due to the attack

amplification effect. This is in stark contrast to traditional networks, where the control plane

is distributed.
4Note reverse order on the axis showing the number of switches.

104

Chapter 7: Evaluation of Denial of Service Attacks

 0

 20

 40

 60

 80

 100

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

P
ac

ke
t D

el
iv

er
y

R
at

io
 in

 (%
)

Attack Sending Rate (pkts/s)

Ryu
ONOS

Floodlight

Figure 7.7: Data Plane Attack, PDR

7.4.3 Data Plane Attack

As mentioned before, the aim is to explore the impact of DoS attacks on the data plane.

We particularly consider an attack that tries to exhaust the CPU resources of software SDN

switches, where the computing resources are shared between both the handling of Open-

Flow control messages as well as the forwarding of data packets. We are investigating what

extent an attack, which overwhelms the switch with control message processing, can disrupt

the switch’s packet forwarding capability.

For this experiment, we used the basic scenario in Figure 7.1, with the same assumption that

the attack packets are injected by host h1. Again, we measured the PDR of ping packets

exchanged between hosts h2 and h3. Here, in contrast to the attack on the control plane,

we allow permanent forwarding rules for packets between hosts h2 and h3 to be installed

proactively on the switch. This means that the controller is not involved in the forwarding

of these packets, and any drop in the PDR can be directly attributed to the switch, i.e. the

impact of the DoS attack on the switch.

Figure 7.7 shows the PDR values for the three SDN controller platforms, for different attack

packet sending rates. We again performed the experiment for the three different controllers,

ONOS, Ryu and Floodlight. These might seem strange, since we are attacking the switch,

105

Chapter 7: Evaluation of Denial of Service Attacks

and are not concerned about the controller in this experiment. However, we noticed that

each controller reacts differently to the OpenFlow Packet-In messages sent by the switch.

In particular, their rate of sending the corresponding OpenFlow Packet-Out messages back

to the switch can vary significantly, which in turn results in varying loads on the switch.

We observe that for the attack to result in a close to 0% PDR for all controllers, an attack

rate of more than 65,000 pkts/s is required. This is significantly higher than in the control

plane attack scenario. A possible explanation for this is that OVS, which is written in C and

implemented in the Linux kernel, is more efficient in handling OpenFlow control messages,

compared to the controllers.

We also see that for the ONOS controller, a higher attack rate is needed to achieve the

same PDR drop, compared to the other two controllers, Ryu and Floodlight. This does not

necessarily show that the ONOS controller platform is better in that regard. The ONOS

controller simply causes a lower load on the switch, due to its reduced rate of sending

OpenFlow Packet-Out messages, and hence reduces the impact of the DoS attack on the

switch. This is the result of a rate control mechanism that ONOS implements. In contrast,

both Ryu and Floodlight have a higher rate of OpenFlow Packet-Out messages, and hence

cause a higher load on the switch, resulting in a considerable PDR drop for lower attack

rates.

We also measured the switch CPU load during the experiment, and the result is shown in

Figure 7.8. As expected, we see an increase in the switch CPU load with an increasing attack

sending rate.5 Consistent with the results in Figure 7.7, we see that the load is smallest for

the ONOS controller, due to its reduced rate of OpenFlow Packet_Out messages. As for

the PDR results, the Ryu and Floodlight controllers behave similarly. We observe a clear

correlation between the switch CPU load and the PDR drop of ping packets. It is interesting

to note that a significant disruption of the switch’s ability to forward packets, as measured

via the PDR, starts to happen well before the switch CPU is fully saturated.

5To be more precise, this refers to a CPU core. As mentioned, before, OVS is allocated a dedicated CPU
core, so that we can isolate the CPU load.

106

Chapter 7: Evaluation of Denial of Service Attacks

 20

 30

 40

 50

 60

 70

 80

 90

 100

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

S
w

ic
h

C
P

U
 L

oa
d

in
 (%

)

Attack Sending Rate (pkts/s)

Ryu
ONOS

Floodlight

Figure 7.8: Data Plane Attack, CPU Load

7.5 Related Works

There are a number of papers that have considered the problem of DoS attacks in the context

of SDN. This section provides a brief overview of key related works.

The authors of [105] propose a lightweight method to detect distributed DoS attacks against

the control plane, based on an entropy-based anomaly detection approach. The entropy

is calculated from destination IP addresses of incoming packets, and a simple threshold is

used to detect an attack, i.e. an attack is detected if the entropy falls below the defined

threshold. The proposed approach is not able to detect the attack proposed in this chapter,

due to the fact that network traffic generated in our approach has maximum entropy since IP

addresses are uniformly generated for each packet. Despite the title, which indicates DoS

attacks against SDN controllers are considered, the main focus of the paper is on attacks

against end-hosts in the context of SDN.

The paper [165] discusses DoS attacks in SDN, considering the exhaustion of control chan-

nel bandwidth as well as switch memory, which are both different from the DoS attacks

considered in our work. The paper proposes mitigation strategies based on rate limiting as

well as choosing optimal time-out values of flow rules.

107

Chapter 7: Evaluation of Denial of Service Attacks

FloodGuard [167] is a defence mechanism designed to protect the SDN controller from

DoS attacks, in particular it aims to prevent resource exhaustion attacks against the switch-

controller control channel. This is in contrast to our work, which specifically considers the

attack on the computing resources of the SDN controller and switches. The paper further

proposes a mitigation approach based on rate limiting control messages.

Similarly, [168] also consider DoS attacks against the SDN control channel. The authors

introduce LineSwitch, which is a mitigation approach based probabilistic proxying and black-

listing. To implement this, a special proxy module needs to be installed on edge switches.

A potential hurdle to adoption is the fact that the approach requires a modification to the

OpenFlow standard in order to be implemented. The paper does not provide a quantitative

evaluation of the attack impact for different SDN controller platforms.

In [98], the authors present AVANT-GUARD, an OpenFlow switch extension with the aim

to mitigate against DoS attacks in SDN. The basic idea is similar to LineSwitch. A key

component in AVANT-GUARD is the connection migration module, which adds intelligence

to the data plane to differentiate source nodes who likely complete the TCP connections

from the ones who perform a TCP SYN flooding attack. The mechanism is implemented via

a TCP proxy functionality deployed on the OpenFlow switches. The paper does not address

the kind of simple volumetric DoS attacks that are discussed and demonstrated, and neither

does it provide an experimental comparison of the attack impact for different SDN controller

platforms.

In summary, there are a lot of related works on DoS attacks in SDN, proposing a number of

attack detection and mitigation mechanisms. However, none of the works have presented

a detailed experimental evaluation on the quantitative impact of DoS attacks against the

computing resources of the SDN control plane and data plane. To the best of our knowledge,

no paper has presented a detailed comparison of the impact of DoS attacks for the three

SDN controller platforms considered in this chapter.

108

Chapter 7: Evaluation of Denial of Service Attacks

7.6 Conclusions

DoS attacks are a critical problem in traditional networks and are likely to become an even

bigger one in SDN, due to the centralisation of network control functionality at the controller.

It is therefore important to understand the types of DoS attacks that are possible against the

SDN infrastructure and to have an understanding of the quantitative impact of the attacks. In

this chapter, we presented detailed experimental evaluations of DoS attacks against SDN.

We considered attacks against the control plane (SDN controller) as well as attacks against

the data plane (switches). For the latter case, we considered an attack scenario that has not

been well studied so far, i.e. an attack that aims to exhaust the computing resources of an

OpenFlow-based software switch.

A key novel contribution of our work is the comparison of the impact of the DoS attacks for

three different SDN controller platforms, i.e. Ryu, ONOS and Floodlight. While we found

significantly different results for the different controllers, the overall conclusion is that an at-

tacker controlling a single host can completely disrupt the forwarding capability of a network

with relatively limited resources. We also discussed the attack amplification effect, which

results in a roughly linear increase in the attack impact with an increase in the network size.

This is an important consideration, especially for large-scale SDNs. It is also a major dif-

ference to traditional networks with a distributed control plane. We believe that our findings

provide further insights into the problem of DoS attacks against SDNs, and can hopefully be

used to inform the development of DoS mitigation mechanisms and countermeasures.

109

Chapter 8

Security of Virtualisation

8.1 Introduction

Network virtualisation (NV) is a key functionality enabled by SDN. NV allows multiple entities

(tenants) to have their own individual virtual network, based on a shared physical network

infrastructure. In the context of SDN, this means that multiple SDN controllers can run

concurrently, each controlling its own dedicated and isolated virtual network. This approach

essentially hides the underlying network complexity and the characteristics of the forwarding

elements by subdividing or slicing the physical network into multiple virtual networks. It

provides an abstraction layer that allows multiple logical networks to run simultaneously on

the same physical infrastructure [169, 170, 171].

The main drivers behind the growth of NV include cost-effectiveness, network deployment

speed and flexibility. Thus, users are free to efficiently and dynamically aggregate net-

work resources and request different network services from the same underlying physical

infrastructure without interfering with each other and worrying about the characteristics of

underlying hardware infrastructure.

A key requirement of NV in regards to security is the maintenance of isolation of the different

virtual networks. An attacker on one virtual network should not be able to bypass the virtual-

isation layer (hypervisor), and interact with and possibly disrupt nodes or controllers on other

virtual networks. This is similar to the corresponding requirement in compute virtualisation

110

Chapter 8: Security of Virtualisation

[172], which has been widely studied.

This chapter aims to provide an initial exploration of network virtualisation security in SDN

that has received very limited or no attention. In particular, we consider FlowVisor [27] and

OpenVirteX (OVX) [28], the two most relevant SDN hypervisor platforms commonly deployed

in network test-beds, e.g. OFELIA [32], GENI [118], FITS [173], etc. OVX is an integrated

component of the widely used ONOS SDN controller platform. We consider these network

hypervisors together with key SDN controller platforms such as Ryu [34], ONOS [35] and

Floodlight [36].

Our exploration identifies a number of significant security vulnerabilities in the current imple-

mentation of SDN hypervisors, which are either due to design flaws or implementation bugs.

A further contribution is the practical demonstration of the feasibility of the attacks, and an

evaluation of their potential impact.

The chapter is organised as follows. Section 8.2 provides a brief overview on the current

state-of-the-art of network virtualisation mechanisms in SDN. Section 8.3 presents a classi-

fication of security threats towards network virtualisation in SDN, and Section 8.4 discusses

related works. Section 8.5 briefly presents our experimental platform. Section 8.6 and Sec-

tion 8.7 describe the vulnerability of the current SDN hypervisors, i.e. FlowVisor and Open-

Virtex respectively, and demonstrate a number of potential attacks. Section 8.8 concludes

the chapter.

8.2 SDN Hypervisor Platforms

8.2.1 FlowVisor

The first OpenFlow-based hypervisor platform that provides virtualisation for SDN is FlowVi-

sor [27], which uses a typical multi-tenancy technique that enables multiple SDN controllers

to share the hardware resources of a particular physical infrastructure. FlowVisor allows vir-

tualisation of bandwidth, topology, traffic, device CPU and forwarding tables, with no modifi-

cation applied to the control plane and the data plane. It acts as a proxy between forwarding

111

Chapter 8: Security of Virtualisation

C1C0

Slice
1

Slice
2

Slicing Policies

Logic Abstraction

Flowsapce
Resources

limitation

Switch

Switch Switch

Switch
Switch

Controller Layer

FlowVisor

Infrastructure Layer

Figure 8.1: FlowVisor Architecture

elements and controllers and is, therefore, able to inspect and rewrite all OpenFlow mes-

sages sent between the control plane and the data plane. In this way, it can enforce isolation

of the different network slices and can make sure that packets stay within their configured

virtual networks. The key virtualisation mechanism in FlowVisor works via the slicing of the

flow space, which is made up of the OpenFlow packet header bits. Therefore, slicing can be

done based on IP addresses, MAC addresses, VLAN tags, etc.

Figure 8.1 illustrates the general FlowVisor architecture. The bottom layer, i.e. Slicing Poli-

cies, allocates a fraction of link bandwidth, network topology and number of forwarding en-

tries per slice, and ensures no slice monopolises the entire hardware resources. The layer

also determines where to forward a packet based on a set of flow rules, i.e. flow space. At

the top of the FlowVisor architecture is the logic abstraction layer, which presents a logical

copy of routers and switches, i.e. a virtually sliced networks to each of the different ten-

ant controllers, configured individually based on information provided by the Slicing Policies

layer.

Upon receiving an OpenFlow message from an SDN controller, FlowVisor parses the packet

header and makes a policy check to decide which slice is the message belongs to. In this

process, FlowVisor also verifies that the flow definition of the message is within the allocated

flow space of the sender tenant. Packets are generally rewritten and forwarded to adhere the

slice policy. For example, if slicing is done using VLAN tags, a packet sent from a controller

112

Chapter 8: Security of Virtualisation

will be modified, and the corresponding VLAN tag will be set. One of the limitations of

OpenFlow is that it only supports network slices with disjoint flow spaces.

8.2.2 OpenVirteX

OpenVirteX (OVX) [28] is a network hypervisor that takes virtualisation in SDN a step further.

Similar to FlowVisor, it acts as a transparent proxy between OpenFlow switches and SDN

controllers. The key improvement of OVX over FlowVisor is that it supports full flow space

virtualisation, which means it supports multiple slices with overlapping flow spaces, e.g. IP

and MAC address range, VLAN ID, etc.

OVX assigns each virtual network a global unique identifier, i.e. an ID (tenant ID) for each

tenant. Instead of allocating packets based on flow space matching, the key limitation of

FlowVisor, OVX places a new functionality at SDN edge switches, that explicitly rewrites the

header fields on incoming packets into its own, unique format. This rewriting is reversed

when packets are sent to the respective destination slices, i.e. hosts or controller.

The OVX architecture consists of two logical layers, OVX virtual networks and OVX physical

networks, as shown in Figure 8.2. The OVX virtual networks layer provides tenants with a

completely isolated virtual network, consisting of virtual switches and links. As a result, each

tenant can specify its own, unique virtual network topology. The OVX physical networks

layer provides a network topology, equivalent to the physical infrastructure and maintains

the mapping of OpenFlow messages between OVX and the data plane. The information

that allows this bridging is maintained in the OVXMap, which also records the (tenant IDs)

to track the state of the OVX physical networks (e.g. network topology) and correspondingly

update the OVX virtual networks.

Upon receiving a packet via an OpenFlow message from an SDN controller, OVX parsers the

packet and maps it to the corresponding tenant ID, re-writes the header fields and validates

that isolation is maintained between the different virtual networks. When OVX receives a

message from an SDN switch, it uses the tenant ID to determine the corresponding virtual

network, and therefore how the packet is to be handled [28].

113

Chapter 8: Security of Virtualisation

C1C0

Virtual
Network

Virtual
Network

OVX Virtual Networks

Switch

Switch Switch

SwitchSwitch

Controller Layer

OpenVirteX

Infrastructure Layer

OVX Physical Networks

OVXMap

Figure 8.2: OpenVirteX Architecture

The key difference between OVX and FlowVisor lies in the flexibility of the topology customi-

sation and addressing scheme, which has implications for traffic isolation. By leveraging

OVX, each tenant is provided with a fully virtualised network and is free to implement the

desirable topology regardless of the physical topology, and choose any addressing scheme

for their hosts, regardless if there is an overlap with other virtual networks. However, in

FlowVisor, tenants are only allowed to specify a topology that is isomorphic to the actual

physical network topology. The entire flow space is essentially sliced into non-overlapping

flow spaces.

In this chapter, we focus on the security of FlowVisor and OVX, since they are the most

relevant and widely used SDN hypervisors. We also briefly discuss other SDN hypervisors

and related proposals in the following section.

8.2.3 Other SDN Hypervisor Platforms

VeRTIGO [174] extends the network slicing techniques of FlowVisor and introduces addi-

tional abstraction features to improve and overcome the FlowVisor’s limitation. With VeR-

TIGO, each SDN controller basically operates on a disjoint subset of network and is provided

with a logical representation of the physical topology. Therefore, the full virtual network that

includes virtual links and nodes is presented to the SDN controller.

114

Chapter 8: Security of Virtualisation

Advanced FlowVisor (ADVisor) [175] is also an extension of FlowVisor that mainly relies on

the tag-based virtualisation to distinguish between tenants. OpenFlow switches are pro-

grammed to add the VLAN ID for traffic entering the network.

Similarly, the FlowN architecture [176] is proposed to improve the tag-based virtualisation.

FlowN is a container-based virtualisation that communicates directly with the tenant con-

troller over a special OpenFlow API, rather than the OpenFlow protocol. Instead of simulta-

neously running multiple SDN controllers, FlowN allows only one SDN controller with multiple

containers to share the kernel space with independent namespaces. Based on the VLAN

ID, FlowN virtualises the physical network infrastructure and allows tenants to specify the

addressing scheme and the network topology. FlowN basically tags traffic entering the net-

work with the VLAN ID and removes the VLAN ID when traffic leaves the network. The key

benefit of FlowN is that the mapping of OpenFlow messages traverse the control channel

between the physical and virtual networks is no longer required, resulting in the reduction of

the memory and computing overhead.

AutoSlice [177] is an SDN virtualisation layer that distributes the functionality of the hypervi-

sor through the segmentation of the physical infrastructure into multiple SDN domains. Each

SDN domain includes a controller proxy to essentially manage OpenFlow messages be-

tween the SDN controller and switches. To optimise network resource utilisation, AutoSlice

dynamically assigns virtual sources to each separate SDN domain.

AutoVFlow [178] is an extension of AutoSlice that grants the tenants of wide-area networks

a full control of their own virtual SDNs. In contrast to AutoSlice, where the flow space

is shared, and controller tenants are restricted to the permissible header values of data

packets, AutoVFlow provides each controller proxy of each SDN domain with the ability

to freely utilise the entire flow space, similar to OpenVirteX, i.e. allowing overlapping flow

spaces.

115

Chapter 8: Security of Virtualisation

8.3 SDN Virtualisation Vulnerabilities

Most security vulnerabilities in software systems arise from either improper design or imple-

mentation bugs, i.e. software flaws, due to the fact that the system designer and the software

programmer are humans and can make mistakes [179]. As a result, attackers can readily

exploit the software bugs and produce unpredictable inputs to passively modify the system

behaviour as desired. Despite the fact that Heartbleed [180], the most impactful security bug

in OpenSSL’s history, was simple and uncomplicated to remediate, the impact was extremely

severe. In general, software flaws are notoriously difficult to discover and are often the root

cause of major system disruptions and outages. Therefore, writing bug-free and reliable

software remains a critical challenge [181]. Due to the ’softwareisation’ of networks in SDN,

the problems of software design and implementation flaws become an increasingly critical

security threat. SDN controllers are complex software systems, with a significant potential

for flaws and bugs.

In virtualised SDN networks, the network hypervisor appears as a controller to the data plane

and as forwarding elements to the control plane, which in this case represents a single point

of failure. By successfully attacking the SDN network hypervisor, an attacker can disrupt or

potentially bring down the entire network, including all virtual networks controlled by different

tenants. This provides a key motivation for the work presented in this chapter.

Table 8.1 provides a brief summary with representative examples of threat categories applied

to the SDN virtualisation layer. It is apparent from the table that the attacker can masquerade

and falsify packets information of other tenants running on a completely separate network

simply after breaking the isolation mechanism. As a result, we believe that applying an ef-

fective and efficient testing mechanism to any SDN controller platforms is crucial and should

be conducted through the software development life cycle. For our security analysis of SDN

hypervisors, we used a combination of code analysis and fuzz testing [29].

116

Chapter 8: Security of Virtualisation

Table 8.1: Classification of Network Virtualisation Threats

Threat categories Definitions
Examples in SDN Virtualisa-
tion

Unauthorised Dis-
closure

An unauthorised user gains ac-
cess to protected information

A malicious tenant intercepts
network traffic that belongs to
other tenants

Deception
An authorised user receives that
data is being altered without the
user’s knowledge

A malicious tenant breaks the
isolation mechanism and mod-
ifies network packets of other
tenants

Disruption
Interrupt the communication and
cause a system failure

A malicious tenant launches De-
nial of Service (DoS) attacks
against other tenants

8.4 Related Works

In this section, we particularly focus on describing the most relevant work on the area of

network virtualisation security in the SDN context. We only found a very limited number of

works, which specifically consider the security of current SDN hypervisor platforms.

The paper [182] briefly mentions potential vulnerabilities in FlowVisor that can violate the

isolation mechanism through the VLAN ID and rewriting fields. The proposed solution is an

independent extension of FlowVisor, which basically limits the number of actions supported

in the OpenFlow protocol. The paper does not provide clear technical details on how the

VLAN ID and rewriting fields can break the isolation mechanism, as provided in this chapter.

The paper also does not discuss or evaluate the impact of those vulnerabilities, nor does it

investigate other vulnerabilities in FlowVisor.

The authors of [183] mention a potential attack against FlowVisor, where it is assumed that

an administrator configures virtual networks with overlapping flow spaces. The 2-page paper

lacks details and does not provide an evaluation of the potential impact of the attack.

Existing work on the security analysis of FlowVisor is very limited. Furthermore, to the best

of our knowledge, there is no previous work on vulnerability assessment of OpenVirteX.

117

Chapter 8: Security of Virtualisation

Table 8.2: Software Tools used for Implementation and Experiments in Chapter 8

Software Function Version

Mininet [30] Network Emulator 2.2.2

Open vSwitch [31] Software SDN Switch 2.6.1

Ryu [34] SDN Controller Platform 3.22

ONOS [35] SDN Controller Platform 1.11.1

Floodlight [36] SDN Controller Platform 1.0

FlowVisor [27] SDN Hypervisor 1.2.0

OpenVirteX [28] SDN Hypervisor branch 0.0-MAINT

Netcat [43] Network Sniffing Tool 5.59BETA1

8.5 Experimental Platform

For all our experiments discussed later in this chapter, we used Mininet [30] and

Open vSwitch (OVS) [31]. The standard network topology used in our experiments con-

sists of three OpenFlow switches with two hosts attached to each switch, as shown in Figure

8.3. Each host is assigned to a different virtual network.

We used FlowVisor and OVX as our SDN hypervisors to provide isolation that allows tenants,

Tenant 1 and Tenant 2 to run two virtual networks in parallel, i.e. Virtual Network 1 and Virtual

Network 2 over the same physical network infrastructure. Each virtual network runs its own

tenant controller.

The SDN controller platforms we considered to run on top of Virtual Network 1, i.e. Tenant

1 are Ryu [34], ONOS [35], and Floodlight [36], with the default forwarding applications,

simple_switch in Ryu, fwd in ONOS and forwarding in Floodlight. We further used Netcat

[43], a network tool for collecting network traffic. Table 8.2 summarises the relevant software

tools we used in the experiments of this chapter.

All our experiments were conducted on a Dell server (PowerEdge R320 with a 12-core Xeon

E5-2400 CPU and 32GB of RAM), running Ubuntu Linux 17.10 with kernel version 3.16.0.

To minimise interference, we allocated each key process (ovs-switch, controllers, FlowVisor,

OVX) to a dedicated CPU core. The following sections present our results and a demonstra-

118

Chapter 8: Security of Virtualisation

NV

S1 S2 S3

P1

h3 h5h1

P3 P3

P2 P1 P2

P4 P3

h4h2 h6

P1 P2

C1

S1 S2 S3

P1

h3 h5h1

P3 P3

P2 P1 P2

P4 P3

h4h2 h6

P1 P2

C0

S1 S2 S3

P1

h3 h5h1

P3 P3

P2 P1 P2

P4 P3

h4h2 h6

P1 P2

Physical Topology C1C0

--- -------------

Virtual Network 1

Tenant 1

Virtual Network 2

Tenant 2

Figure 8.3: Network Infrastructure

tion of the feasibility of attacks using the identified vulnerabilities in FlowVisor and OVX.

8.6 Security of FlowVisor

By analysing the source code of FlowVisor and using fuzz testing, we exposed previously

unknown security vulnerabilities that make the system susceptible to various attacks. In the

following, we discuss these vulnerabilities and demonstrate how they can be exploited.

8.6.1 Topology Discovery

FlowVisor discovers the topology of the physical network infrastructure via utilising the Open-

Flow Discovery Protocol (OFDP) and builds its own link database based on the information

provided in the corresponding LLDP packets. FlowVisor relies on this database to pro-

vide tenant controllers with the underlying topology. It mainly precludes any SDN controller

running the topology discovery component from directly retrieving the actual topology of

119

Chapter 8: Security of Virtualisation

Dst
MAC

Src
MAC

Ether-
type:

0x88CC

Chassis
ID

TLV

Port
ID

TLV

Time
to live
 TLV

Opt.
TLVs

End of
LLDPDU

TLV

Frame
check
seq.

Preamble
Open
Netw
TLV

Trailer

Figure 8.4: FlowVisor LLDP Frame Structure

the physical network itself. For example, when a tenant controller runs topology discovery,

which sends its own LLDP packets, FlowVisor intercepts them, and creates LLDP packets

in response, in order to ’emulate’ the virtual topology that this controller is supposed to see.

The format of the LLDP frame used in FlowVisor is similar to the original LLDP format,

described earlier except that FlowVisor adds a trailer to its own LLDP packets as shown

in Figure 8.4. The trailer consists of two new fields, the first one carries the "FlowVisor"

name and the second one carries the "Slice" name, to distinguish between LLDP packets

generated by FlowVisor and LLDP packets generated by SDN controllers running their own

topology discovery. The basic security problem with the current implementation of OFDP is

that it is fundamentally insecure due to the lack of any authentication and integrity protection

mechanism, as demonstrated previously.

The trailer that FlowVisor adds to the LLDP packets does not add any security mechanism,

and hence any LLDP packet with a trailer is accepted by FlowVisor for processing. The

information provided in the packet is used to update the FlowVisor’s link database. As a

consequence, it is relatively easy for an attacker to inject a fabricated LLDP packet, resulting

in a poisoning of the topology information of the FlowVisor database.

The method of the attack is essentially the same as the one discussed previously in Chapter

4, but the key difference here is that we are attacking the SDN hypervisor, instead of the

SDN controller. As a result, all virtual networks and tenants are impacted by the attack and

are presented with invalid network topology information.

To demonstrate the feasibility of the attack, we used the virtual network test-bed and the net-

work topology described in Section 8.5. For this example scenario, FlowVisor is configured

to slice the network based on the VLAN ID. In this case, we have two virtual networks, Vir-

tual Network 1 with VLAN ID 100, and Virtal Network 2 with VLAN ID 200, and each virtual

120

Chapter 8: Security of Virtualisation

ubuntu@sdnhubvm:~[18:45]$ fvctl list-links

Password:

[

 {

 "dstDPID": "00:00:00:00:00:00:00:01",

 "dstPort": "2",

 "srcDPID": "00:00:00:00:00:00:00:03",

 "srcPort": "1"

 },

 {

 "dstDPID": "00:00:00:00:00:00:00:03",

 "dstPort": "3",

 "srcDPID": "00:00:00:00:00:00:00:02",

 "srcPort": "4"

 },

 {

 "dstDPID": "00:00:00:00:00:00:00:02",

 "dstPort": "4",

 "srcDPID": "00:00:00:00:00:00:00:03",

 "srcPort": "3"

 },

 {

 "dstDPID": "00:00:00:00:00:00:00:02",

 "dstPort": "3",

 "srcDPID": "00:00:00:00:00:00:00:01",

 "srcPort": "3"

 },

 {

 "dstDPID": "00:00:00:00:00:00:00:01",

 "dstPort": "3",

 "srcDPID": "00:00:00:00:00:00:00:02",

 "srcPort": "3"

 }

Figure 8.5: FlowVisor Database Attack

network runs its own ONOS SDN controller instance.

For this experiment, we assume that the attack is generated via host h2, which injects an

LLDP packet with the structure shown in Figure 8.4, aiming to fabricate a fake link from

switch S1 on port P2, and switch S3 on port P1.

As mentioned, the attack steps are quite similar to the attack discussed in Chapter 4, except

that we need to include the relevant FlowVisor LLDP trailer, i.e the "magic flowvisor1" and

"fvadmin" fields.

When the packet arrives at switch S1, which adds its own Chassis ID and Port ID, according

to its pre-defined rule, it forwards the packet to the controller, encapsulated in an OpenFlow

Packet-In message. FlowVisor intercepts the packet and updates its links database based

on the information provided in the payload of the received LLDP packet.

121

Chapter 8: Security of Virtualisation

Figure 8.5 shows the FlowVisor link database after launching the attack.1 Each group rep-

resents detailed information, e.g. source and destination of ports and switches of a uni-

directional link. For example, the first line (in bold) indicates that there is a unidirectional

link between switch S3 on port P1 and switch S1 on port P2. Hence, the attack has been

successful, since such a link does not exist in the topology. This is the network information

that FlowVisor will provide to the tenants when they query the underlying topology, resulting

in a poisoning of all controllers’ topology information. The potential impact of this has been

discussed in detail in Chapter 4.

8.6.2 Breaking Isolation

Another security problem with the current design of FlowVisor is that there is no detailed

security check implemented to investigate the content of packet sent from a controller to a

switch in the form of an OpenFlow packet. In particular, FlowVisor fails to properly check

the OpenFlow actions (action list) associated with the packet and eventually installed on

switches.

This is a problem, if the action list contains a ’set-filed’ action, which provides direct access to

the header fields of a packet and overwrites specified fields with arbitrary values. Therefore,

it is relatively easy for an attacker to redirect his own traffic to another virtual network. This

is particularly simple if the network is sliced based on the VLAN IDs, which the attacker can

alter by adding a set_VLAN ID action to a match rule.

To experimentally demonstrate this vulnerability, we used the same network scenario as

mentioned above. We assume that the attack comes from Virtal Network 2 (Tenant 2), and

the aim is to break FlowVisor’s isolation and inject network traffic into Virtual Network 1

(Tenant 1).

The attack can be broken down into the following steps:

1. Controller C1 initially installs an OpenFlow rule with a high priority on all switches,

switch S1, switch S2 and switch S3, to match on the VLAN ID of 200, which explicitly

1This is obtained by a FlowVisor command, i.e. fvctl list-links.

122

Chapter 8: Security of Virtualisation

matches all packets sent by any hosts, belonging to its own network, i.e. Virtal Network

2. The corresponding action list associated with this rule has two actions: (1) set

the VLAN ID to 100, and (2) forward the packet to the controller. In this case, all

packets traversing through Virtual Network 2 are redirected to the controller C0 of

Virtual Network 1.

2. The attacker now needs to generate traffic either from a hosts (h2, h4 or h6) or from

the controller C1. For our experiment, we assume that the attack is generated via the

controller, by injecting an ARP packet, encapsulated in an OpenFlow Packet-Out mes-

sage at different sending rates. The problem with this scenario is that the OpenFlow

rule installed previously to modify the VLAN ID is not executed, and hence the packet

is treated according to the action list associated with this packet. The simple solution

to this is to set the action of the output port to OFPP_TABLE, which allows the switch

to handle the packet as if it was received via any of the switch’s regular ports, and

processes the packet according to the rules in its forwarding table. In this case, we

can ensure that involved switches rewrite the VLAN ID from 200 to 100 and then send

the packet to the controller.

3. FlowVisor receives the packet, and based on the VLAN ID, it forwards the packet to

the switches S1, S2 and S3. Each switch receives a copy of the packet and performs

the actions as specified in the forwarding table, which includes modifying the VLAN

ID from 200 to 100 and sending the packet back to the controller, encapsulated in an

OpenFlow Packet-In message.

4. FlowVisor receives three OpenFlow Packet-In messages and checks the VLAN ID to

know where to forward the packets to, either Virtual Network 1 or Virtual Network 2.

Since the VLAN ID is 100 and FlowVisor is unable to detect the VLAN ID modification,

the packets are forwarded to Virtual Network 1, and hence the attack is successful.

Being able to direct traffic to a controller of a foreign virtual network can be used for DoS

attacks. To quantify the severity of such an attack, we consider the CPU load on the target

controller C0, caused by the processing the DoS packets, i.e. the process of parsing re-

ceived OpenFlow Packet-In messages, generated by the malicious controller C1, as well as

transmitting the corresponding OpenFlow Packet-Out messages.

123

Chapter 8: Security of Virtualisation

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Co
nt

ro
lle

r
CP

U
 lo

ad
 in

 %

Attack Sending Rate pkts/s

Ryu
ONOS

Floodlight
FlowVisor

Figure 8.6: Controller CPU Load

Figure 8.6 shows the controller CPU load under the attack, depending on the attack sending

rate, ranging from 1000 to 10,000 pkts/s. We repeated the experiment with three SDN

controller platforms, i.e. Ryu, ONOS and Floodlight, and the corresponding CPU load values

are shown in the graph. In addition, the graph also shows the CPU load for FlowVisor. All

experiments were repeated 15 times, and the graph shows the mean value as well as the

95% confidence intervals.

As can be seen in the figure, with an increase in the attack sending rates, the controller CPU

load increases roughly linearly. In this scenario, the attacker is able to saturate the controller

CPU with the rate of 10,000 pkts/s, which can be done with relatively minimal effort. The

attacker can achieve the same impact with a much lower attack rate, by adding multiple

forward actions to the action list of the OpenFlow Packet-Out messages. For example, if

each OpenFlow Packet-Out message contains 100 forward actions, the impact is multiplied

by a factor of 100. This amplification potentially allows attackers with relatively minimal

computing resources and bandwidth to saturate high-powered controllers. As mentioned,

the attack can equally be launched from any of the hosts.

124

Chapter 8: Security of Virtualisation

8.6.3 Ping of Death

Using fuzz testing, we also found that a single malformed message can crash FlowVisor.

We refer to this attack as ’Ping of Death’. The result of this is quite severe since the entire

network is disabled.

For the attack, we create an LLDP packet, with the format shown in Figure 8.4, but sim-

ply without a trailer. For our experimental evaluation of the attack, we used our previous

scenario.

The attack can be generated either from the tenant controller or any of the hosts. For this

experiment, we assume that the attack comes from Virtual Network 2 (Tenant 2), and is

generated via our controller component running as the tenant controller of Virtual Network 2.

The impact of this attack is only on FlowVisor, and there is no need to consider different

SDN controller platforms for Virtual Network 1. In this scenario, we used ONOS as the

tenant controller of Virtual Network 1. The controller C1 injects the attack LLDP packet,

encapsulated in an OpenFlow Packet-Out message and forwards it to the switch. FlowVisor

intercepts the packet and parses the packet header.

As a result, FlowVisor immediately throws an exception and shuts down, as shown in the

FlowVisor log messages in Figure 8.7. Since FlowVisor represents a single point of failure,

the entire network is taken down as a result, with potentially severe consequences.

We found this vulnerability using fuzz testing with a relatively small effort. It is likely that more

extensive investigation would reveal further bugs and vulnerabilities. Our example highlights

the importance of secure coding practices for critical network infrastructure services such as

hypervisors in SDN.

125

Chapter 8: Security of Virtualisation

CRIT:2017-04-17T22:25:19.549:none:: MAIN THREAD DIED!!!

CRIT:2017-04-17T22:25:19.552:none:: restarting after main thread died

WARN:2017-04-17T22:25:19.552:TopoDiscovery:: shutting down

WARN:2017-04-17T22:25:19.552:topoDpid=00:00:00:00:00:00:00:01:: shutting down

WARN:2017-04-17T22:25:19.553:topoDpid=00:00:00:00:00:00:00:03:: shutting down

WARN:2017-04-17T22:25:19.553:topoDpid=00:00:00:00:00:00:00:02:: shutting down

WARN:2017-04-17T22:25:19.553:TopoDiscovery:: shutting down

WARN:2017-04-17T22:25:19.553:classifier dpid=00:00:00:00:00:00:00:01::tearing down

WARN:2017-04-17T22:25:19.554:classifier dpid=00:00:00:00:00:00:00:03::tearing down

WARN:2017-04-17T22:25:19.556:classifier-dpid=00:00:00:00:00:00:00:02::tearing down

Figure 8.7: FlowVisor Crash, Ping of Death

8.7 Security of OpenVirteX (OVX)

We conducted the same basic approach to analyse the security of OVX as we did for FlowVi-

sor. In the following, we discuss the results.

8.7.1 Topology Discovery

Like FlowVisor, OVX utilises OFDP to discover the underlying topology to build its own topol-

ogy database. By intercepting LLDP packets sent by tenant controllers’ topology discovery

service, and by creating the corresponding responses, OVX let the controllers see any arbi-

trary virtual network topology.

The format of the LLDP packets used in OVX is similar to the format used in FlowVisor, and

in the original LLDP format, with only two additional TLVs, as shown in Figure 8.8.

The first TLV field, OpenNetw1 TLV, carries the OpenVriteX name, while the second one,

OpenNetw2 TLV, carries the Switch ID. Upon receiving an LLDP packet from a switch, OVX

processes the packet and extracts link information, i.e. Switch ID (the value specified in the

OpenNetw2 TLV), and Port ID from the payload of the packet. The link information is stored

in the OVX database.

As mentioned previously, the current implementation of OFDP is insecure, and adding extra

TLVs fields cannot protect topology discovery from the link spoofing attack. The attacker is

still able to craft an LLDP packet that includes two additional TLV fields to deceive OVX to

126

Chapter 8: Security of Virtualisation

Dst
MAC

Src
MAC

Ether-
type:

0x88CC

Chassis
ID

TLV

Port
ID

TLV

Time
to live
 TLV

Opt.
TLVs

End of
LLDPDU

TLV

Frame
check
seq.

Preamble
Open

Netw1
TLV

Open
Netw2

TLV

Figure 8.8: OpenVirteX LLDP Frame Structure

poison the topology information in the OVX database.

We demonstrated the vulnerability of OVX against the topology poisoning or link fabrication

attack via a simple experiment, via our standard experiment scenario used for FlowVisor.

For this, we created two virtual networks, Virtual Network 1 and Virtual Network 2. Similar to

the FlowVisor case, the impact of this attack does not depend on the controller, and thus we

used ONOS in both virtual networks.

For this experiment, we used the assumption that the attack is launched via host h2, which

belongs Virtual Network 2 controlled by malicious controller C1. The attacker aims to fabri-

cate a fake link from switch S1 on port P2 to switch S3 on port P2. The only difference in

the attack steps to the FlowVisor case is that the OpenNetw1 field included "OpenVirteX "

and the OpenNetw2 field included the sender switch ID, which in this case is the ID of switch

S3. This makes the packet looks like it was sent out on port P2 of switch S3. The packet is

forward to the controller by switch S1, encapsulated in an OpenFlow Packet-Out message

that includes the Chassis ID and the Port ID of switch S1. Upon receiving the packet, OVX

extracts the link information and incorrectly updates its links database.

Figure 8.9 shows the OVX topology database after launching the attack.2 The highlighted

line (in bold), which appears after the attack is performed, indicates the success of the attack,

and there is a physical link from S3, P1 to S1, P2, which is incorrect. As mentioned in the

case of FlowVisor, poisoning the hypervisor topology database will also poison the topology

view of all tenant controllers, potentially resulting in the disruption of network operation and

packet forwarding.

2This is obtained through the OVX command line interface, i.e. the getPhysicalTopology command.

127

Chapter 8: Security of Virtualisation

ubuntu@sdnhubvm:~/OpenVirteX/utils[21:15] (0.0-MAINT)$ python

ovxctl.py getPhysicalTopology

Password:

{"switches": ["00:00:00:00:00:00:00:03", "00:00:00:00:00:00:00:01",

"00:00:00:00:00:00:00:02"], "links": [{"linkId": 3.0, "dst":

{"port": "3", "dpid": "00:00:00:00:00:00:00:01"}, "src": {"port":

"3", "dpid": "00:00:00:00:00:00:00:02"}}, {"linkId": 2.0, "dst":

{"port": "4", "dpid": "00:00:00:00:00:00:00:02"}, "src": {"port":

"3", "dpid": "00:00:00:00:00:00:00:03"}}, {"linkId": 1.0, "dst":

{"port": "3", "dpid": "00:00:00:00:00:00:00:03"}, "src": {"port":

"4", "dpid": "00:00:00:00:00:00:00:02"}}, {"linkId": 4.0, "dst":

{"port": "2", "dpid": "00:00:00:00:00:00:00:01"}, "src": {"port":

"1", "dpid": "00:00:00:00:00:00:00:03"}}, {"linkId": 0.0, "dst":

{"port": "3", "dpid": "00:00:00:00:00:00:00:02"}, "src": {"port":

"3", "dpid": "00:00:00:00:00:00:00:01"}}]}

Figure 8.9: OpenVirteX Database Attack

8.7.2 Breaking Isolation

As discussed in the previous section, OVX’s topology discovery mechanism is vulnerable to

the poisoning attacks, where an attacker can fabricate fake links. Here, we show how this

can be exploited to break the isolation mechanism between two virtual networks. Using this

attack, we can create a fake link between S1, P2 and S3, P1, using our standard scenario.

We use the fact that tenant controllers build their topology database based on the (poisoned)

topology information provided by OVX, thereby including the fake link between S1, P2 and

S3, P1.

While this does not allow us to inject traffic from one network to another, it still allows the

attacker h2 to passively observe traffic from Virtual Network 2, traversing through the fake

link. In order to achieve this, the attacking host h2 simply needs to be disconnected from its

network, and its interface needs to be set to promiscuous mode.

To show the ability to break the isolation and intercept network packets, we established

a TCP connection between hosts h1 and h5, which both belong to Virtual Network 1. In

parallel, we ran Netcat [43] on the attacker h2 that belongs to Virtual Network 2 to collect

network traffic transmitted between hosts hosts h1 and h5. As a result, all packets from host

h1 destined to host h5 pass through host h2, as shown in the first two lines of Figure 8.10.

We also ran ping between the hosts, and the corresponding ICMP packets were also seen

by host h2, as shown in the last 7 lines of the figure.

128

Chapter 8: Security of Virtualisation

23:38:34.554139 IP 10.0.0.1.57246 > 10.0.0.5.1234: Flags [S],seq

1288162783, win 29200, options [mss 1460,sackOK,TS val1336219ecr

0,nop,wscale 9], length 0

23:38:35.858258 IP 10.0.0.1.57246 > 10.0.0.5.1234: Flags [S],seq

1288162783, win 29200, options [mss 1460,sackOK,TS val1336721ecr

0,nop,wscale 9], length 0

23:38:36.275558 IP 10.0.0.1 > 10.0.0.5: ICMP echo request,id

29105, seq 1, length 64

23:38:37.284092 IP 10.0.0.1 > 10.0.0.5: ICMP echo request,id

29105, seq 2, length 64

23:38:38.292113 IP 10.0.0.1 > 10.0.0.5: ICMP echo request,id

29105, seq 3, length 64

23:38:39.300131 IP 10.0.0.1 > 10.0.0.5: ICMP echo request,id

29105, seq 4, length 64

23:38:40.595273 ARP, Reply 10.0.0.1 is-at 00:00:00:00:00:01 (oui

Ethernet), length 28

23:38:41.595261 ARP, Reply 10.0.0.1 is-at 00:00:00:00:00:01 (oui

Ethernet), length 28

23:38:42.568291 ARP, Reply 10.0.0.1 is-at 00:00:00:00:00:01 (oui

Ethernet), length 28

Figure 8.10: Network Traffic from Another Tenant

Providing isolation between virtual networks is a key security requirement for any network

hypervisor. Our example shows that this is not provided in OVX, and an attacker can observe

traffic from another network, thereby potentially revealing sensitive information.

8.7.3 Ping of Death

As FlowVisor, OVX is vulnerable to a ’Ping of Death’ attack, in which a single malformed

LLDP packet results in a fatal system error, i.e. a system crash that completely stopped

OVX, and hence it brings the entire network down. As before, we found this vulnerability

using fuzz testing.

OVX expects all LLDP packets include a Switch ID field in the OpenNetw2 TLV with the ID

of a valid switch. If the Switch ID field is set to a value other than one of the existing switches

in the network, it will force OVX to restart, which causes all network configuration to be lost,

as shown in Figure 8.11. The consequences of this are essentially the same as in a system

crash.

In essence, these software bugs are coding errors, such as failure to properly parse received

packets, which should be caught by thorough code review and testing. The result of these

vulnerabilities can be extremely severe. OVX, for example, is part of the ONOS controller

129

Chapter 8: Security of Virtualisation

22:35:25.787 [pool-5-thread-145] ERROR SwitchChannelHandler - Error while

processing message from switch DPID : 1, remoteAddr : /127.0.0.1:35596

state ACTIVE

java.lang.NullPointerException

22:35:25.811 [pool-5-thread-145] INFO PhysicalNetwork - removing port 1

22:35:25.812 [pool-5-thread-145] INFO PhysicalNetwork - removing port 2

22:35:25.812 [pool-5-thread-145] INFO PhysicalNetwork - removing port 3

22:35:25.813 [pool-5-thread-145] INFO PhysicalNetwork - removing port 4

22:35:25.814 [pool-5-thread-145] INFO PhysicalNetwork - Removing

physical link between 00:00:00:00:00:00:00:01/3 and

00:00:00:00:00:00:00:02/3

22:35:25.815 [pool-5-thread-145] INFO PhysicalSwitch - Switch

disconnected 1

22:35:25.816 [pool-5-thread-145] INFO StatisticsManager - Stopping Stats

collection thread for 00:00:00:00:00:00:00:01

22:35:25.818 [Thread-20] INFO OVXPort - Cleaning up flowmods for sw

00:00:00:00:00:00:00:01 port 1

22:35:25.820 [Thread-19] ERROR DBManager - Failed to remove from db:

Write operation to server /127.0.0.1:27017 failed on database OVX

22:35:25.825 [Thread-19] INFO OVXPort - Cleaning up flowmods for sw

00:00:00:00:00:00:00:01 port 2

22:35:25.836 [Thread-19] INFO OVXPort - Cleaning up flowmods for sw

00:00:00:00:00:00:00:01 port 3

22:35:26.421 [pool-5-thread-128] INFO PhysicalSwitch - Switch connected

with dpid 1, name 00:00:00:00:00:00:00:01 and type Open vSwitch

22:35:26.426 [pool-5-thread-129] INFO PhysicalNetwork - Adding physical

link between 00:00:00:00:00:00:00:01/3 and 00:00:00:00:00:00:00:02/3

22:35:27.209 [pool-5-thread-131] INFO PhysicalNetwork - Adding physical

link between 00:00:00:00:00:00:00:02/3 and 00:00:00:00:00:00:00:01/3

Figure 8.11: OpenVirteX Crash, Ping of Death

platform, which is a ’carrier-grade’ SDN controller and is widely used in large-scale networks.

Being able to disable such a network via the sending of a single message is definitively a

problem. This work hopefully provides the motivation for a more thorough code analysis and

testing of key SDN infrastructure components such as network hypervisors.

8.8 Conclusions

Network virtualisation is an essential service in SDN, and it provides a number of key bene-

fits. Given their critical position in the SDN architecture, representing a single point of failure,

the security analysis of SDN hypervisors is critical for the security and reliability of SDN in

general. In this chapter, we provided the results of our security analysis of FlowVisor and

OVX, the two most widely used SDN hypervisor platforms.

Our analysis found a number of new vulnerabilities in both FlowVisor and OVX, which allow

an attacker to significantly disrupt or disable networks, as demonstrated in our experiments.

130

Chapter 8: Security of Virtualisation

Given the increasingly critical role SDN hypervisors in large-scale networks, our findings

provide an important motivation for a more careful testing and analysis of hypervisor code,

prior to deployment in production systems.

131

Chapter 9

Conclusion

SDN is an important new networking paradigm with very large potential impact and is gain-

ing rapid adoption. Network security is absolutely critical, given the increased number and

sophistication of cyber attacks. While there has been a lot of research exploring SDN to

implement a range of security features and functionality, there has been a limited amount

of work exploring the security of the SDN platform itself. SDN provides a very different ap-

proach to managing network, with its logically centralised control plane. As a result, security

in SDN is potentially very different from security in traditional networks, with potentially new

attack vectors.

This thesis tries to address a gap in the SDN literature, by providing a security analysis of

the current SDN architecture and platforms. The aim was to thoroughly analyse the security

of critical SDN building blocks, services and components, such as Topology Discovery, ARP

handling, and network hypervisors. As a result, we have identified new, critical SDN security

vulnerabilities and attacks. For some of the vulnerabilities, we were able to demonstrate

the attacks and discuss and quantify the impact while for others, we were able to propose

efficient countermeasures and mitigation strategies.

For the critical SDN service of topology discovery (OFDP), which is a core component of

all current SDN controller platforms, we demonstrated the feasibility of topology poisoning

attacks, where an attacker can create fake links in a controller’s topology database. We pro-

posed a mitigation approach, which provides authentication and integrity protection to LLDP

packets, by adding a hash-based message authentication code (HMAC). We demonstrated

132

Chapter 9: Conclusion

that the method is secure against replay attacks, and is computationally efficient.

We have further discussed how current ARP handling approaches in SDN are vulnerable

to ARP spoofing attacks. As an initial solution, we have adopted Dynamic ARP Inspection

(DAI) mechanism, used in traditional networks to detect and mitigate ARP spoofing attacks

through relying on a trusted database of IP-to-MAC address mappings, to the SDN archi-

tecture. By leveraging the key features of SDN, such as centralised nature of the control

plane functionality, we have also developed a novel SDN-specific method, which does not

require a trusted database of IP-to-MAC address mappings. Instead, it sanitises potentially

spoofed fields of ARP requests and replies. This method prevents ARP spoofing attacks

from poisoning the end-host ARP caches and ARP handling approaches. It significantly

achieves better network performance compared to the current state-of-the-art ARP handling

components without security and imposes a minimal control CPU load.

While exploring ARP handling in SDN, we have discovered a new, significantly more efficient

method of ARP handling in SDN. By offloading ARP handling functionality from the control

plane to the data plane, we achieved an order of magnitude reduction in the ARP response

time, as well as a significant reduction in the computational overhead at the controller. This

has the important side effect of making the SDN controller more resilient against resource

exhaustion attacks. Furthermore, we have investigated a range of Denial of Service (DoS)

attacks against the SDN architecture, both the control plane and the data plane. We have

demonstrated the attacks, and have analysed and quantified their impact on different modern

SDN controller platforms. Our experiments have shown that an attacker can successfully

disrupt the operation of an OpenFlow-enabled network with DoS attacks, using relatively

modest resources.

Finally, the thesis presents an evaluation of the security of the network virtualisation layer

in SDN, i.e. network hypervisors. We specifically considered FlowVisor and OpenVirteX,

the two most important SDN hypervisors in terms of practical relevance. Using simple tech-

niques such as code analysis and fuzz testing, we have identified a number of new, critical

vulnerabilities that allow an attacker to disrupt an entire network, as well as break the iso-

lation between virtual networks. We hope this work provides the required motivation for

future work in this space. If SDN is to be widely adopted, the security of its infrastructure is

absolutely critical.

133

Chapter 9: Conclusion

While this thesis made significant steps towards securing and protecting the SDN architec-

ture from various attack types, more investigation needs to be done. Critical areas of future

work include providing a higher degree of resilience to DoS attacks, as well as securing

critical SDN components such as network hypervisors.

134

Bibliography

[1] SDN: Transforming Networking to Accelerate Business Agility. Available from: http://

www.opennetsummit.org/archives/mar14/site/why-sdn.html [20 May 2018].

[2] OpenFlow Switch Specification . Available from: https://www.opennetworking.org

/software-defined-standards/specifications/ [20 May 2018].

[3] R. Hand, M. Ton, and E. Keller, “Active security,” in Proc. of the Twelfth Workshop on

Hot Topics in Networks. ACM, 2013, p. 17.

[4] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “Orchsec: An orchestrator-based

architecture for enhancing network-security using network monitoring and sdn control

functions,” in Proc. of the Network Operations and Management Symposium (NOMS).

IEEE, 2014, pp. 1–9.

[5] K. Wang, Y. Qi, B. Yang, Y. Xue, and J. Li, “LiveSec: Towards effective security man-

agement in large-scale production networks,” in Proc. of the 32nd International Con-

ference on Distributed Computing Systems Workshops (ICDCSW). IEEE, 2012, pp.

451–460.

[6] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable software-

defined networks,” in Proc. of the second SIGCOMM workshop on Hot topics in soft-

ware defined networking. ACM, 2013, pp. 55–60.

[7] J. Moy, “OSPF version 2,” 1997.

[8] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),” Tech. Rep.,

2005.

[9] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey

of software-defined networking: Past, present, and future of programmable networks,”

IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

135

Bibliography

[10] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking: State

of the art and research challenges,” Computer Networks, vol. 72, pp. 74–98, 2014.

[11] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” Queue, vol. 11, no. 12,

p. 20, 2013.

[12] N. McKeown, “Software-defined networking,” INFOCOM keynote talk, 2009.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,

J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed software defined

WAN,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 3–14,

2013.

[15] Cisco Open SDN Controller. Available from: https://www.cisco.com/c/en/us/products/

cloud-systems-management/open-sdn-controller/index.html [20 May 2018].

[16] Huawei Agile Modular Switch Stays Ahead of Competition in SDN by Re-

ceiving OpenFlow v1.3 Certification. Available from: http://e.huawei.com/en-

IN/news/global/2015/201511241041 [20 May 2018].

[17] OpenFlow Support on Juniper Networks Devices. Available from: https://www.juniper.

net/documentation/enUS/release-independent/junos/topics/reference/general/junos-

sdn-openflow-supported-platforms.html [20 May 2018].

[18] Run Both Worlds with Hybrid SDN. Available from: https://www.hpe.com/us/en/net-

working/infrastructure.html [20 May 2018].

[19] O. N. Fundation, “Software-defined networking: The new norm for networks,” ONF

White Paper, vol. 2, pp. 2–6, 2012.

[20] P. Congdon, “Link Layer Discovery Protocol,” RFC 2922, July, Tech. Rep., 2002.

[21] D. Plummer, “Ethernet Address Resolution Protocol: Or converting network protocol

addresses to 48. bit Ethernet address for transmission on Ethernet hardware,” 1982.

136

Bibliography

[22] C. L. Abad and R. I. Bonilla, “An analysis on the schemes for detecting and prevent-

ing ARP cache poisoning attacks,” in Proc. of the 27th International Conference on

Distributed Computing Systems Workshops (ICDCSW’07). IEEE, 2007, pp. 60–60.

[23] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “Inferring internet

denial-of-service activity,” ACM Transactions on Computer Systems (TOCS), vol. 24,

no. 2, pp. 115–139, 2006.

[24] A. Ornaghi and M. Valleri, “Man in the middle attacks Demos,” Blackhat [Online Doc-

ument], vol. 19, 2003.

[25] Dynamic ARP Inspection. Available from: http://www.cisco.com/c/en/us/td/docs/swit-

ches/lan/catalyst6500/ios/12-2SX/configuration/guide/book/dynarp.html [20 May

2018].

[26] Cyber Security, Terrorism, and Beyond: Addressing Evolving Threats to the

Homeland. https://www.fbi.gov/news/testimony/cyber-security-terrorism-and-beyond-

addressing-evolving-threats-to-the-homeland [20 May 2018].

[27] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and

G. Parulkar, “Flowvisor: A network virtualization layer,” OpenFlow Switch Consortium,

Tech. Rep, 2009.

[28] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow, and G. Parulkar,

“OpenVirteX: A Network Hypervisor,” Open Networking Summit, 2014.

[29] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX

utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, 1990.

[30] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for

software-defined networks,” in Proc. of the 9th SIGCOMM Workshop on Hot Topics in

Networks. ACM, 2010, p. 19.

[31] Open vSwitch. Available from: http://www.openvswitch.org [20 May 2018].

[32] M. Suñé, L. Bergesio, H. Woesner, T. Rothe, A. Köpsel, D. Colle, B. Puype, D. Sime-

onidou, R. Nejabati, M. Channegowda et al., “Design and implementation of the OFE-

LIA FP7 facility: The European OpenFlow testbed,” Computer Networks, vol. 61, pp.

132–150, 2014.

137

Bibliography

[33] S. Kaur, J. Singh, and N. S. Ghumman, “Network programmability using POX con-

troller,” in Proc. of the International Conference on Communication, Computing & Sys-

tems (ICCCS), no. s 134. IEEE, 2014, p. 138.

[34] Ryu SDN Controller. Available from: https://osrg.github.io/ryu [20 May 2018].

[35] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,

P. Radoslavov, W. Snow et al., “ONOS: towards an open, distributed SDN OS,” in Proc.

of the third workshop on Hot topics in software defined networking. ACM, 2014, pp.

1–6.

[36] “Floodlight SDN Controller,” Available from http://www.projectfloodlight.org/floodlight

[20 May 2018].

[37] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards a model-driven

sdn controller architecture,” in Proc. of the 15th International Symposium on A World

of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2014, pp. 1–6.

[38] Scapy Library. Available from: http://www.secdev.org/projects/scapy/doc/usage.html

[20 May 2018].

[39] B. Hatch, J. Lee, and G. Kurtz, Hacking Linux exposed: Linux security secrets &

solutions. Osborne/McGraw-Hill New York, 2001.

[40] PACKETH. Available from: http://packeth.sourceforge.net/packeth/Home.html [20

May 2018].

[41] A. Turner, M. Bing, and F. Klassen. Tcpreplay - Pcap editing and replaying utilities.

Available from: http://tcpreplay.appneta.com [20 May 2018].

[42] Stress-ng Tool. Available from: http://manpages.ubuntu.com/manpages/wily/man1/st-

ress-ng.1.html [20 May 2018].

[43] J. Kanclirz Jr, Netcat power tools. Syngress, 2008.

[44] “VirtualBox,” Available from: https://www.virtualbox.org [20 May 2018].

[45] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig, “Software-defined networking: A comprehensive survey,” Proc. of the IEEE,

vol. 103, no. 1, pp. 14–76, 2015.

138

Bibliography

[46] H. Kim and N. Feamster, “Improving network management with software defined net-

working,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, 2013.

[47] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and openflow: From

concept to implementation,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4,

pp. 2181–2206, 2014.

[48] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker,

“NOX: towards an operating system for networks,” ACM SIGCOMM Computer Com-

munication Review, vol. 38, no. 3, pp. 105–110, 2008.

[49] S. Shenker, M. Casado, T. Koponen, N. McKeown et al., “The future of networking,

and the past of protocols,” Open Networking Summit, vol. 20, pp. 1–30, 2011.

[50] Open Networking Foundation. Available from: https://www.opennetworking.org [20

May 2018].

[51] C. Douligeris and D. N. Serpanos, Network security: current status and future direc-

tions. John Wiley & Sons, 2007.

[52] W. Stallings, Cryptography and network security: principles and practices. Pearson

Education India, 2006.

[53] R. W. Shirey, “Internet security glossary, version 2,” 2007.

[54] W. Stallings, Network security essentials: applications and standards. Pearson Edu-

cation India, 2007.

[55] V. L. Voydock and S. T. Kent, “Security mechanisms in high-level network protocols,”

ACM Computing Surveys (CSUR), vol. 15, no. 2, pp. 135–171, 1983.

[56] D. Senie and P. Ferguson, “Network ingress filtering: Defeating denial of service at-

tacks which employ IP source address spoofing,” Network, 1998.

[57] M. Kaeo, Designing network security. Cisco Press, 2003.

[58] E. Rescorla, SSL and TLS: designing and building secure systems. Addison-Wesley

Reading, 2001, vol. 1.

[59] N. Doraswamy and D. Harkins, IPSec: the new security standard for the Internet,

intranets, and virtual private networks. Prentice Hall Professional, 2003.

139

Bibliography

[60] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith, “Implementing a dis-

tributed firewall,” in Proc. of the 7th conference on Computer and communications

security. ACM, 2000, pp. 190–199.

[61] C. H. Rowland, “Intrusion detection system,” Jun. 11 2002, uS Patent 6,405,318.

[62] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on software engi-

neering, no. 2, pp. 222–232, 1987.

[63] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.” in Lisa, vol. 99,

no. 1, 1999, pp. 229–238.

[64] G. M. Jackson, “Intrusion prevention system,” Nov. 25 2008, uS Patent 7,458,094.

[65] L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse? Revisiting security aspects

of Software-Defined Networking,” in Proc. of the 10th International Conference on Net-

work and Service Management (CNSM). IEEE, 2014, pp. 382–387.

[66] M. Suh, S. H. Park, B. Lee, and S. Yang, “Building firewall over the software-defined

network controller,” in Proc. of the 16th International Conference on Advanced Com-

munication Technology (ICACT). IEEE, 2014, pp. 744–748.

[67] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-fying mid-

dlebox policy enforcement using SDN,” ACM SIGCOMM computer communication re-

view, vol. 43, no. 4, pp. 27–38, 2013.

[68] S. Shin and G. Gu, “Attacking software-defined networks: A first feasibility study,”

in Proc. of the second ACM SIGCOMM workshop on Hot topics in software defined

networking. ACM, 2013, pp. 165–166.

[69] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and S. Guizani, “Securing

software defined networks: taxonomy, requirements, and open issues,” IEEE Commu-

nications Magazine, vol. 53, no. 4, pp. 36–44, 2015.

[70] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (SDN) and dis-

tributed denial of service (DDoS) attacks in cloud computing environments: A survey,

some research issues, and challenges,” IEEE Communications Surveys & Tutorials,

vol. 18, no. 1, pp. 602–622, 2016.

140

Bibliography

[71] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown, and

S. Shenker, “SANE: A Protection Architecture for Enterprise Networks,” in Proc. of

USENIX Security Symposium, vol. 49, 2006, p. 50.

[72] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane:

Taking control of the enterprise,” in Proc. of SIGCOMM Computer Communication

Review, vol. 37, no. 4. ACM, 2007, pp. 1–12.

[73] M. Cheminod, L. Durante, L. Seno, F. Valenza, A. Valenzano, and C. Zunino, “Lever-

aging SDN to improve security in industrial networks,” in Proc. of the 13th International

Workshop on Factory Communication Systems (WFCS). IEEE, 2017, pp. 1–7.

[74] F. Hao, T. Lakshman, S. Mukherjee, and H. Song, “Secure Cloud Computing with a

Virtualized Network Infrastructure,” in Proc. of HotCloud, 2010.

[75] M. Wang, B. Li, and Z. Li, “sFlow: Towards resource-efficient and agile service fed-

eration in service overlay networks,” in Proc. of 24th International Conference on Dis-

tributed Computing Systems. IEEE, 2004, pp. 628–635.

[76] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and openflow: From

concept to implementation,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4,

pp. 2181–2206, 2014.

[77] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software defined net-

works: A survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2317–

2346, 2015.

[78] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,

Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Distributed Control Platform for Large-scale

Production Networks,” in Proc. of OSDI, vol. 10, 2010, pp. 1–6.

[79] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control plane for OpenFlow,”

in Proc. of the internet network management conference on Research on enterprise

networking, 2010, pp. 3–3.

[80] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain sdn con-

trollers,” in Proc. of Network Operations and Management Symposium (NOMS).

IEEE, 2014, pp. 1–4.

141

Bibliography

[81] M. P. Fernandez, “Comparing openflow controller paradigms scalability: Reactive and

proactive,” in Proc. of the 27th International Conference on Advanced Information Net-

working and Applications (AINA). IEEE, 2013, pp. 1009–1016.

[82] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in software defined

networks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 623–654,

2016.

[83] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A survey,” in Proc.

of SDN For Future Networks and Services (SDN4FNS). IEEE, 2013, pp. 1–7.

[84] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack detection using

NOX/OpenFlow,” in Proc. of the 35th Conference on Local Computer Networks (LCN).

IEEE, 2010, pp. 408–415.

[85] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1, pp. 1–6, 1998.

[86] C. YuHunag, T. MinChi, C. YaoTing, C. YuChieh, and C. YanRen, “A novel design for

future on-demand service and security,” in Proc. of the 12th International Conference

on Communication Technology (ICCT). IEEE, 2010, pp. 385–388.

[87] D. Farinacci, D. Lewis, D. Meyer, and V. Fuller, “The locator/ID separation protocol

(LISP),” 2013.

[88] Y. Choi, “Implementation of content-oriented networking architecture (CONA): a focus

on DDoS countermeasure,” in Proc of 1st European NetFPGA Developers Workshop,

2010.

[89] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication component for re-

silient OpenFlow-based networking,” in Proc. of Network Operations and Management

Symposium (NOMS). IEEE, 2012, pp. 933–939.

[90] K. Cabaj, J. Wytrebowicz, S. Kuklinski, P. Radziszewski, and K. T. Dinh, “SDN Archi-

tecture Impact on Network Security,” in FedCSIS Position Papers, 2014, pp. 143–148.

[91] S. Dotcenko, A. Vladyko, and I. Letenko, “A fuzzy logic-based information security

management for software-defined networks,” in Proc. of the 16th International Confer-

ence on Advanced Communication Technology (ICACT). IEEE, 2014, pp. 167–171.

142

Bibliography

[92] S. Schechter, J. Jung, and A. Berger, “Fast detection of scanning worm infections,” in

Proc. of Recent Advances in Intrusion Detection. Springer, 2004, pp. 59–81.

[93] M. M. Williamson, “Throttling viruses: Restricting propagation to defeat malicious mo-

bile code,” in Proc. of the 18th Annual Computer Security Applications Conference.

IEEE, 2002, pp. 61–68.

[94] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, “Towards an access control scheme

for accessing flows in SDN,” in Proc. of 1st Conference on Network Softwarization

(NetSoft). IEEE, 2015, pp. 1–6.

[95] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,

M. Miller, and N. Rao, “Are we ready for SDN? Implementation challenges for software-

defined networks,” IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[96] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Baner-

jee, “DevoFlow: Scaling flow management for high-performance networks,” ACM SIG-

COMM Computer Communication Review, vol. 41, no. 4, pp. 254–265, 2011.

[97] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based networking

with DIFANE,” ACM SIGCOMM Computer Communication Review, vol. 40, no. 4, pp.

351–362, 2010.

[98] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable and vigilant

switch flow management in software-defined networks,” in Proc. of the SIGSAC con-

ference on Computer & communications security. ACM, 2013, pp. 413–424.

[99] I. Alsmadi and D. Xu, “Security of software defined networks: A survey,” computers &

security, vol. 53, pp. 79–108, 2015.

[100] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using OpenFlow

in dynamic cloud networks (or: How to provide security monitoring as a service in

clouds?),” in Proc. of 20th International Conference on Network Protocols (ICNP).

IEEE, 2012, pp. 1–6.

[101] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: building robust firewalls for

software-defined networks,” in Proc. of the third workshop on Hot topics in software

defined networking. ACM, 2014, pp. 97–102.

143

Bibliography

[102] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A security en-

forcement kernel for OpenFlow networks,” in Proc. of the first workshop on Hot topics

in software defined networks. ACM, 2012, pp. 121–126.

[103] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson, “FRESCO:

Modular Composable Security Services for Software-Defined Networks,” in Proc. of

NDSS, 2013.

[104] K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability assessment,” in Proc. of

the second workshop on Hot topics in software defined networking. ACM, 2013, pp.

151–152.

[105] S. M. Mousavi and M. St-Hilaire, “Early detection of DDoS attacks against SDN con-

trollers,” in Proc. of the International Conference on Computing, Networking and Com-

munications (ICNC). IEEE, 2015, pp. 77–81.

[106] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, and

R. Boutaba, “Dynamic controller provisioning in software defined networks,” in Proc. of

9th International Conference on Network and Service Management (CNSM). IEEE,

2013, pp. 18–25.

[107] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran, J. Noh, and

B. B. Kang, “Rosemary: A robust, secure, and high-performance network operating

system,” in Proc. of the SIGSAC conference on computer and communications secu-

rity. ACM, 2014, pp. 78–89.

[108] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and verification of

federated OpenFlow infrastructures,” in Proc. of the 3rd workshop on Assurable and

usable security configuration. ACM, 2010, pp. 37–44.

[109] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takács, and P. Sköldström, “Scalable

fault management for OpenFlow,” in Proc. of the international conference on Commu-

nications (ICC). IEEE, 2012, pp. 6606–6610.

[110] D. Kotani and Y. Okabe, “A packet-in message filtering mechanism for protection of

control plane in openflow networks,” in Proc. of the 10th symposium on Architectures

for networking and communications systems. ACM, 2014, pp. 29–40.

144

Bibliography

[111] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: dynamic access

control for enterprise networks,” in Proc. of the 1st workshop on Research on enter-

prise networking. ACM, 2009, pp. 11–18.

[112] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure controller platform

for openflow applications,” in Proc. of the second SIGCOMM workshop on Hot topics

in software defined networking. ACM, 2013, pp. 171–172.

[113] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying network-wide

invariants in real time,” ACM SIGCOMM Computer Communication Review, vol. 42,

no. 4, pp. 467–472, 2012.

[114] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model checking invariant

security properties in OpenFlow,” in Proc. of International Conference on Communica-

tions (ICC). IEEE, 2013, pp. 1974–1979.

[115] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker, “An assertion

language for debugging SDN applications,” in Proc. of the third workshop on Hot topics

in software defined networking. ACM, 2014, pp. 91–96.

[116] M. Canini, D. Kostic, J. Rexford, and D. Venzano, “Automating the testing of Open-

Flow applications,” in Proc. of the 1st International Workshop on Rigorous Protocol

Engineering (WRiPE), no. EPFL-CONF-167777, 2011.

[117] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topology discovery

in software defined networks,” in Proc. of the 8th International Conference on Signal

Processing and Communication Systems (ICSPCS). IEEE, 2014, pp. 1–8.

[118] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R. Ricci,

and I. Seskar, “GENI: A federated testbed for innovative network experiments,” Com-

puter Networks, vol. 61, pp. 5–23, 2014.

[119] O. N. Fundation, “Software-defined networking: The new norm for networks,” ONF

White Paper, vol. 2, pp. 2–6, 2012.

[120] “IEEE Standard for Local and Metropolitan Area Networks– Station and Media Ac-

cess Control Connectivity Discovery,” IEEE Std 802.1AB-2009 (Revision of IEEE Std

802.1AB-2005), pp. 1–204, Sept 2009.

145

Bibliography

[121] D. Erickson, “The beacon openflow controller,” in Proc. of the second SIGCOMM work-

shop on Hot topics in software defined networking. ACM, 2013, pp. 13–18.

[122] S. Skiena, “Dijkstraś algorithm,” Implementing Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica, Reading, MA: Addison-Wesley, pp. 225–227,

1990.

[123] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5, no. 6,

p. 345, 1962.

[124] Using Bellman-Ford to Find a Shortest Path. Available from: http://csie.nqu.edu.tw/

smallko/sdn/sdn.htm [20 May 2018].

[125] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning Network Visibility in Software-Defined

Networks: New Attacks and Countermeasures,” in Proc. of the Annual Network and

Distributed System Security Symposium (NDSS’15), 2015.

[126] H. Krawczyk, R. Canetti, and M. Bellare, “HMAC: Keyed-hashing for message authen-

tication,” IETF RFC 2104, 1997.

[127] S. Turner and L. Chen, “Updated Security Considerations for the MD5 Message-Digest

and the HMAC-MD5 Algorithms,” IETF RFC 6151, 2011.

[128] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting security attacks

in software-defined networks,” in Proc. of the Annual Network and Distributed System

Security Symposium (NDSS’15), February 2015.

[129] S. E. Deering, “Internet protocol, version 6 (IPv6) specification,” 1998.

[130] T. Narten, W. A. Simpson, E. Nordmark, and H. Soliman, “Neighbor discovery for IP

version 6 (IPv6),” 2007.

[131] F. A. Barbhuiya, S. Biswas, and S. Nandi, “Detection of neighbor solicitation and adver-

tisement spoofing in IPv6 neighbor discovery protocol,” in Proc. of the 4th international

conference on Security of information and networks. ACM, 2011, pp. 111–118.

[132] K. R. Fall and W. R. Stevens, TCP/IP illustrated, volume 1: The protocols. addison-

Wesley, 2011.

146

Bibliography

[133] K. Kwon, S. Ahn, and J. W. Chung, “Network security management using ARP spoof-

ing,” in Proc. of the International Conference on Computational Science and Its Appli-

cations. Springer, 2004, pp. 142–149.

[134] D. Bruschi, A. Ornaghi, and E. Rosti, “S-ARP: a secure address resolution protocol,”

in Proc. of the 19th Annual Computer Security Applications Conference. IEEE, 2003,

pp. 66–74.

[135] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “Secure neighbor discovery (SEND),” Tech.

Rep., 2005.

[136] P. Nikander, J. Kempf, and E. Nordmark, “IPv6 neighbor discovery (ND) trust models

and threats,” Tech. Rep., 2004.

[137] M. G. Gouda and C.-T. Huang, “A secure address resolution protocol,” Computer Net-

works, vol. 41, no. 1, pp. 57–71, 2003.

[138] W. Lootah, W. Enck, and P. McDaniel, “Tarp: Ticket-based address resolution proto-

col,” Computer Networks, vol. 51, no. 15, pp. 4322–4337, 2007.

[139] B. Issac and L. A. Mohammed, “Secure unicast address resolution protocol (S-UARP)

by extending DHCP,” in Proc. of the 13th International Conference on Networks, Jointly

held with the 7th Malaysia International Conference on Communication, vol. 1. IEEE,

2005, pp. 6–pp.

[140] V. Ramachandran and S. Nandi, “Detecting ARP spoofing: An active technique,” in

Proc. of the International Conference on Information Systems Security. Springer,

2005, pp. 239–250.

[141] V. Goyal and R. Tripathy, “An efficient solution to the ARP cache poisoning problem,”

in Proc. of Australasian Conference on Information Security and Privacy. Springer,

2005, pp. 40–51.

[142] S. Y. Nam, D. Kim, J. Kim et al., “Enhanced ARP: preventing ARP poisoning-based

man-in-the-middle attacks,” IEEE communications letters, vol. 14, no. 2, pp. 187–189,

2010.

[143] A. P. Ortega, X. E. Marcos, L. D. Chiang, and C. L. Abad, “Preventing ARP cache poi-

soning attacks: A proof of concept using OpenWrt,” in Proc. of the Network Operations

and Management Symposium, Latin American. IEEE, 2009, pp. 1–9.

147

Bibliography

[144] P. Saunderson and J. P. Smith, “Network including snooping,” Sep. 29 2009, US Patent

7,596,614.

[145] Y. Taniguchi, H. Tsutsumi, N. Iguchi, and K. Watanabe, “Design and Evaluation of a

Proxy-Based Monitoring System for OpenFlow Networks,” The Scientific World Jour-

nal, 2016.

[146] A. M. AbdelSalam, A. B. El-Sisi, and V. Reddy. Mitigating ARP Spoofing Attacks in

Software-Defined Networks. Available from: http://www.researchgate.net/publication/

299369116_Mitigating_ARP_Spoofing_Attacks_in_Software-Defined_Networks [20

May 2018].

[147] M. Z. Masoud, Y. Jaradat, and I. Jannoud, “On preventing ARP poisoning attack uti-

lizing Software Defined Network (SDN) paradigm,” in Proc. of Jordan Conference on

Applied Electrical Engineering and Computing Technologies (AEECT). IEEE, 2015,

pp. 1–5.

[148] A. Nehra, M. Tripathi, and M. Gaur, “FICUR: Employing SDN programmability to se-

cure ARP,” in Proc. of the 7th Annual Computing and Communication Workshop and

Conference (CCWC). IEEE, 2017, pp. 1–8.

[149] H. Cho, S. Kang, and Y. Lee, “Centralized ARP proxy server over SDN controller to cut

down ARP broadcast in large-scale data center networks,” in Proc. of the International

Conference on Information Networking (ICOIN). IEEE, 2015, pp. 301–306.

[150] A. Coxhead, “Improving the Security and Efficiency of Network Clients Using Open-

Flow, BCMS(Hons) thesis, The University of Waikato, Hamilton, New Zealand, 2013,”

2013.

[151] M. Matties, “Distributed responder ARP: Using SDN to re-engineer ARP from within

the network,” in Proc. of the International Conference on Computing, Networking and

Communications (ICNC). IEEE, 2017, pp. 678–683.

[152] R. OLIVEIRA, A. A. Shinoda, C. M. Schweitzer, R. L. Iope, and L. R. Prete, “L3-

ARPSec–A Secure Openflow Network Controller Module to control and protect the

Address Resolution Protocol,” XXXIII Simpósio Brasileiro De Telecomunicações, pp.

158–162, 2015.

148

Bibliography

[153] K. Elmeleegy and A. L. Cox, “Etherproxy: Scaling Ethernet by Suppressing Broadcast

Traffic,” in Proc. of INFOCOM, 2010, pp. 1584–1592.

[154] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX to the Datacen-

ter,” in Proc. HotNets, 2009.

[155] B. Issac, “Secure ARP and secure DHCP protocols to mitigate security attacks,” arXiv

preprint arXiv:1410.4398, 2014, 2014.

[156] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards an Elastic

Distributed SDN Controller,” in Proc. of SIGCOMM Computer Communication Review,

vol. 43, no. 4. ACM, 2013, pp. 7–12.

[157] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a Framework for Efficient and Scalable

Offloading of Control Applications,” in Proc. of the first workshop on Hot topics in

software defined networks. ACM, 2012, pp. 19–24.

[158] J. Yang, Z. Zhou, T. Benson, X. Yang, X. Wu, and C. Hu, “FOCUS: Function Offloading

from a Controller to Utilize Switch Power,” Technical Report CS-TR-2016.001, Duke

University, February 2016.

[159] R. Bifulco, J. Boite, M. Bouet, and F. Schneider, “Improving SDN with InSPired

Switches,” ACM SIGCOMM SOSR, 2016.

[160] R. Mohammadi, R. Javidan, and M. Conti, “SLICOTS: An SDN-Based Lightweight

Countermeasure for TCP SYN Flooding Attacks,” IEEE Transactions on Network and

Service Management, 2017.

[161] Q. Yan and F. R. Yu, “Distributed denial of service attacks in software-defined net-

working with cloud computing,” IEEE Communications Magazine, vol. 53, no. 4, pp.

52–59, 2015.

[162] Y. Afek, A. Bremler-Barr, S. L. Feibish, and L. Schiff, “Detecting Heavy Flows in the

SDN Match and Action Model,” arXiv preprint arXiv:1702.08037, 2017.

[163] S. Gao, Z. Peng, B. Xiao, A. Hu, and K. Ren, “FloodDefender: protecting data and

control plane resources under SDN-aimed DoS attacks,” in Proc. of International Con-

ference on Computer Communications (INFOCOM). IEEE, 2017.

149

Bibliography

[164] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A Survey on the

Security of Stateful SDN Data Planes,” IEEE Communications Surveys & Tutorials,

2017.

[165] R. Kandoi and M. Antikainen, “Denial-of-service attacks in OpenFlow SDN networks,”

in Proc. of the IFIP International Symposium on Integrated Network Management (IM).

IEEE, 2015, pp. 1322–1326.

[166] T. A. Pascoal, Y. G. Dantas, I. E. Fonseca, and V. Nigam, “Slow TCAM Exhaustion

DDoS Attack,” in Proc. of the IFIP International Conference on ICT Systems Security

and Privacy Protection. Springer, 2017, pp. 17–31.

[167] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention extension in

software-defined networks,” in Proc. of the 45th Annual IFIP International Conference

on Dependable Systems and Networks (DSN). IEEE, 2015, pp. 239–250.

[168] M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran, “Lineswitch: tackling con-

trol plane saturation attacks in software-defined networking,” IEEE/ACM Transactions

on Networking, vol. 25, no. 2, pp. 1206–1219, 2017.

[169] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the Internet Im-

passe Through Virtualization,” Computer, vol. 38, no. 4, pp. 34–41, 2005.

[170] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual network

embedding: A survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp.

1888–1906, 2013.

[171] Q. Hu, Y. Wang, and X. Cao, “Resolve the virtual network embedding problem: A

column generation approach,” in Proc. of INFOCOM. IEEE, 2013, pp. 410–414.

[172] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on concepts, taxon-

omy and associated security issues,” in Proc. of Second International Conference on

Computer and Network Technology (ICCNT). IEEE, 2010, pp. 222–226.

[173] P. H. V. Guimaraes, L. H. G. Ferraz, J. V. Torres, D. M. Mattos, I. D. Alvarenga, C. S.

Rodrigues, O. C. M. Duarte et al., “Experimenting content-centric networks in the fu-

ture internet testbed environment,” in Proc. of the International Conference on Com-

munications Workshops (ICC). IEEE, 2013, pp. 1383–1387.

150

Bibliography

[174] R. D. Corin, M. Gerola, R. Riggio, F. De Pellegrini, and E. Salvadori, “Vertigo: Network

virtualization and beyond,” in Proc. of the European Workshop on Software Defined

Networking. IEEE, 2012, pp. 24–29.

[175] E. Salvadori, R. D. Corin, A. Broglio, and M. Gerola, “Generalizing virtual network

topologies in OpenFlow-based networks,” in Proc. of Global Telecommunications Con-

ference (GLOBECOM). IEEE, 2011, pp. 1–6.

[176] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization in software-

defined networks,” IEEE Internet Computing, vol. 17, no. 2, pp. 20–27, 2013.

[177] Z. Bozakov and P. Papadimitriou, “Autoslice: automated and scalable slicing for

software-defined networks,” in Proc. of the conference on CoNEXT student workshop.

ACM, 2012, pp. 3–4.

[178] H. Yamanaka, E. Kawai, and S. Shimojo, “AutoVFlow: Virtualization of large-scale

wide-area OpenFlow networks,” Computer Communications, vol. 102, pp. 28–46,

2017.

[179] M. Caesar and J. Rexford, “Building bug-tolerant routers with virtualization,” in Proc.

of the workshop on Programmable routers for extensible services of tomorrow. ACM,

2008, pp. 51–56.

[180] B. Grubb. Heartbleed Disclosure Timeline. Available from http://www.smh.com.au/it-

pro/security-it/heartbleed-disclosure-timeline-who-knew-what-and-when-20140414-

zqurk [20 May 2018].

[181] J. Wack, M. Tracy, and M. Souppaya, “Guideline on network security testing,” Nist

special publication, vol. 800, no. 42, pp. 13–14, 2003.

[182] V. T. Costa and L. H. M. Costa, “Vulnerabilities and solutions for isolation in FlowVisor-

based virtual network environments,” Journal of Internet Services and Applications,

vol. 6, no. 1, p. 18, 2015.

[183] Y. Qian, W. You, and K. Qian, “FlowVisor vulnerability analysis,” in Proc. of IFIP Sym-

posium on Integrated Network and Service Management (IM). IEEE, 2017, pp. 867–

868.

151

