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ABSTRACT 

There is a pressing need for simple and reliable risk transfer mechanisms that can pay out 

quickly after natural disasters without delays caused by loss estimation, and the need for long 

historical claims records. One such approach, known as parametric insurance, pays out when a 

key hazard variable exceeds a pre-determined threshold. However, this approach to catastrophe 

risk, based on making deterministic binary predictions of loss occurrence, is susceptible to basis 

risk (mismatch between payouts and realised losses).  

A more defensible approach is to issue probabilistic predictions of loss occurrence, which then 

allows uncertainty to be properly quantified, communicated, and evaluated. This study proposes 

a generic probabilistic framework for parametric trigger modelling based on logistic regression, 

and idealised modelling of potential damage given knowledge of a hazard variable. We also 

propose various novel methods for evaluating the quality and utility of such a 

frameworkpredictions as well as more traditional trigger indices.  

The methodology is demonstrated by application to flood-related disasters in Jamaica from 

1998-2016 using gridded precipitation data as the hazard variable. A hydrologically-motivated 

transformation is proposed for calculating potential damage from daily rainfall data. Despite 

the simplicity of the approach, the model has substantial skill at predicting the probability of 

occurrence of loss days as demonstrated by traditional goodness-of-fit measures (i.e. pseudo-

R2 of 0.55) as well as probabilistic verification diagnostics such as Receiver Operating 

Characteristics. Using conceptual models of decision-maker expenses, we also demonstrate that 

the system can provide considerable utility to involved parties, e.g., insured parties, insurers, 

risk managers. 

Keywords: parametric trigger, natural hazard risk, catastrophe risk transfer, flood, Caribbean 

islands 
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1. INTRODUCTION 

Economic losses due to natural hazards have shown an increasing trend since 1980, reaching 

an inflation-adjusted 10-year average of around $200 billion in 2014.(1,2) This trend is expected 

to continue, mostly due to more exposed assets in disaster-prone areas and the effects of climate 

change.(3–5) Recent years have seen greater worldwide commitment to reducing disaster losses, 

following the adoption of the Hyogo Framework for Action in 2005 and the Sendai Framework 

for Disaster Risk Reduction in 2015, the latter adopted by all UN member states.(6) Reducing 

disaster losses requires effective management of disaster risk at all levels, from mitigation and 

preparedness to response and recovery.(7,8) A crucial part of that task involves reducing financial 

vulnerability to disasters ex-ante, ensuring that necessary resources will be available following 

such events. This can be achieved through risk transfer instruments, such asnamely insurance 

and reinsurance cover, or capital market instruments, such as catastrophe bonds.(9)  

Risk transfer instruments can be based on different types of trigger. These determine the 

conditions under which payouts are made after an event. This paper focuses on so-called 

parametric triggers. These make payouts when a key hazard variable is observed to exceed a 

pre-defined threshold. A payout could be triggered, for example, by a variable such as rainfall 

amount, wind speed, or earthquake magnitude being observed to exceed a threshold at a given 

location. Aggregate measures derived from several locations in a region can also be used as a 

trigger variable; e.g., the sum of rainfall over several sites.(10–13) The payouts issued by 

parametric risk transfer products can be either fixed or based on a certain index value calculated 

for each event. In either case, they are not meant to offset actual losses, but instead to cover 

short-term liquidity gaps following a disaster, and are typically used as a part of more 

comprehensive risk management strategies.(14) 
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Parametric triggers have several important strengths. Firstly, the product structure is simple and 

transparent, which ensures prompt payouts and timely access to funding after a disaster occurs. 

Secondly, they do not require explicit exposure and vulnerability models, which are often 

unavailable in many parts of the world. Thirdly, they avoid typical problems in regular 

insurance, such as moral hazard and adverse selection.(15–17) For these reasons, it is not 

surprising that in recent years the number of countries that have adopted such programmes has 

rapidly increased.(18) 

The main drawback of parametric triggers is their susceptibility to basis risk,(19) which in this 

type of product occurs in natural hazards when there is a mismatch between payout and loss.(19) 

Basis risk arises in parametric triggers when is the risk that triggered payouts do not coincide 

with the occurrence of loss events.(20) This can lead toresult in situations where either a payout 

is issued when no loss event occurs (positive basis risk), or no payout is issued when a loss 

event does occur (negative basis risk), both having adverse consequences. The former leads to 

inefficient transactions as greater risk of overpayment brings higher product costs. The latter 

could result in a liquidity gap that overwhelms the capacity of the risk cedant to adequately 

respond to and recover from a disaster. Note that in parametric products where payouts are 

based on an index, basis risk may be considered to arise due to less than perfect correlation 

between the index value and the severity of the event. In this paper, which focuses on the 

prediction of event occurrence, the adopted definition is the one presented previously. 

Basis risk is unavoidable in parametric products, as these are based on simple models, relying 

on the threshold exceedance of an environmental variable, which have limited ability to predict 

the occurrence of rare events. Resulting predictions are therefore highly uncertain. Simple 

binary outcomes of the type “event” / “no event”, where this uncertainty remains unspecified, 

are inappropriate to describe such behaviour.(21) In this context, the use of probabilities can offer 

various advantages over traditional deterministic approaches, which are next described: 
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1. Straightforward model construction. Reducing basis risk requires that model predictive 

skill is improved, which can only be achieved if more robust triggers are employed. 

These may be based, for example, on a transformed environmental variable better able 

to explain loss occurrence, and/or on multiple environmental input variables. In this 

context, the use of probability to quantify uncertainty is advantageous, as it facilitates 

the construction of statistical models for capturing the occurrence of loss events using 

well-established techniques.(22)  

2. Transparent trigger optimization. A statistical model is able to issue consistent 

predictions of loss event occurrence for any trigger condition, as well as to quantify 

sensitivity in occurrence to changes in the associated input variable(s) straightforwardly. 

Therefore, model construction can be disentangled from the definition of the event-

triggering threshold, allowing this decision to be taken with the direct involvement of 

model users. This enables an objective and transparent trigger optimization procedure, 

where well-known issues with deterministic forecasts such as hedging and 

overforecasting are avoided.(21)  

3. Informative predictions. Basis risk can be difficult to explain to end-users, which is a 

well-known problem in parametric risk transfer. This often results in unrealistic 

expectations towards the product.(14) During operational period, less technically 

informed users may be frustrated and perceive the product as ineffective when a 

destructive event occurs but the model simply issues a “no event” prediction, resulting 

in no payout, even though this is a plausible scenario.(23) This issue can be largely 

overcome by quantifying uncertainty through probabilities, which makes the predictions 

more informative and basis risk easier to understand. 
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It is therefore important that the underlying basis risk is well understood and that unrealistic 

expectations are not created regarding the risk transfer programme. These, however, are 

difficult tasks in the of case parametric triggers.(20) 

Basis risk is unavoidable in parametric products based on deterministic models in which sources 

of uncertainty are neglected.(21) Furthermore, deterministic predictions of rare events do not 

provide uncertainty information required for optimal decision making, and are also easy to 

hedge rather than reflect true beliefs about losses.(22) These problems can be avoided by 

representing loss beliefs as probabilities, which then allow uncertainty to be quantified. It is 

necessary to construct a probabilistic framework that is able to address the following 

questions:Therefore, in this paper we propose a probabilistic framework for parametric 

catastrophe risk transfer and demonstrate how it can be used. The framework aims to address 

the following questions: 

- How best to construct probabilities of losses from hazard data? 

- How best to evaluate the performance of the resulting probabilities in predicting loss?  

- How best to choose decision thresholds on probabilities so as to maximize value for 

different end users? 

This paper proposes such a framework and demonstrates how it can be used. Our framework 

comprises a logistic regression model that can issue probabilities of occurrence of loss events, 

based on potential damage variables obtained from transformed environmental variables, and 

methods from the field of forecast verification, which allow the quality and utility of the 

predictive system to be evaluated. Parametric triggers are conceptually very similar to forecasts 

of binary events, which enables us to take advantage of the considerable vast body of literature 

on weather and climate forecast verification in the development of a novel evaluation procedure 

for application in the field of parametric catastrophe insurance.  
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The difference lies in that parametric triggers are based on observations or model estimations 

made available a posteriori, which are then compared with previously defined policy conditions 

that dictate when a payout is due. However, because actions triggered by the model are not 

influenced by what has happened in reality (i.e. whether a loss event has actually taken place), 

model results can be seen as a retrospective forecast.  

The paradigm proposed frameworkin this study recognizes uncertainties and allowsminimizes 

basis risk to be minimized while maintaining a simple and transparent procedure, which is 

fundamental in parametric programmes.(13) Its structure also allows users to better understand 

basis risk and its underlying causes, and to take part in the decision-making process that leads 

to the maximization of utility that can be obtained from the system in a scientifically sound and 

objective manner.  

The following section presents a motivating example for the development of the framework. 

Section 3 describes the methodology for model construction and evaluation. Section 4 depicts 

its application to the case study. Section 5 provides a summary of the framework presented and 

discusses possible extensions. 

2. MOTIVATING EXAMPLE – PARAMETRIC INSURANCE FOR JAMAICAN 

FLOODING 

We demonstrate the methodology by applying it to flood-related loss events caused by rainfall 

in Jamaica. Even if the methodology is, in principle, applicable to any hazard or region in the 

world, flooding in Jamaica is selected for various reasons. Jamaica is located in the Caribbean, 

a region where countries are particularly exposed to extreme rainfall and resulting floods. Such 

events are expected to increase in the future due to anthropogenic climate change.(24) There is 

therefore a pressing need to improve resilience for floods, especially in the developing world, 

and parametric risk transfer programmes can be instrumental in this context.(14,25) This is 
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confirmed by the fact that the Caribbean have a multi-country risk pool in place based on 

parametric insurance.(11) Jamaica is one of the largest islands in that region, it is highly 

vulnerable to natural hazards,(26) and availability of disaster data is reasonably good.  

Our methodology requires historical samples of concurrent environmental and loss event data. 

To suit a parametric risk transfer programme, the environmental variable(s) should meet three 

basic requirements: a) span a sufficiently long historical period; b) be obtainable in near real-

time; c) be based on a dataset and methodology that is homogeneous throughout the entire 

period, i.e. both in the historical and the operational period. In this example, the environmental 

variable of interest is rainfall, for which we adopt CMORPH Version 1.0 data. CMORPH is a 

method that produces global precipitation estimates from passive microwave and infrared data 

at high spatial (~8 km) and temporal (30 minute) resolution.(27) Homogeneous precipitation 

estimates over time are available from January 1998 to the present(28) and new data can be 

obtained with just an 18-hour delay.(29) All the above requirements are thus met. CMORPH is 

widely used in meteorology, hydrology and other fields(30); an example is CCRIF SPC’s excess 

rainfall parametric insurance product, which utilizes CMORPH data as one of the model’s input 

variables.(11) Hence, we consider it a suitable option for use as the environmental variable in the 

construction of the model. Data from 01/01/1998 to 31/01/2016 are used, comprising 𝑛 = 6605 

days. Figure 1 illustrates daily rainfall obtained from CMORPH for the 177 cells with a ~8km 

resolution in Jamaica, on two days of particularly intense rainfall over the country. 
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 Figure 1: CMORPH daily rainfall (mm) in Jamaica on two illustrative days of intense rainfall. 

EM-DAT is adopted as the source for raw historical disaster data. It is one of the main public 

disaster databases, maintained by the Centre of Research on Epidemiology of Disasters (CRED) 

and compiled from various sources, such as the UN, governmental and non-governmental 

agencies, insurance companies, research institutes and press agencies. Disaster data are 

collected at a country-aggregated level.(31)  

The historical loss event catalogue used for model construction needs to contain data on past 

events that caused losses similar to or higher than those the risk cedant is interested in being 

covered against. In this study, events are selected assuming that the criteria for payout that the 

country of Jamaica is interested in matches EM-DAT’s inclusion criteria, which arerequire that 

one or more of the following occur: a) 10 or more fatalities; b) 100 or more people affected; c) 

the declaration of a state of emergency; d) a call for international assistance. 

In order to minimize basis risk it is crucial to perform the model fitting using historical event 

data that are as accurate as possible. Data quality control supported by independent sources is 

therefore carried out. This aims to ensure that the catalogue start and end dates refer to the event 

that the model is intended to identify, which in this case is the occurrence of loss due to flooding, 

as it is unlikely that the reported dates on any one database reflect this specific definition. As 
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an example, if a flood was caused by heavy rainfall due to a tropical cyclone, the reported start 

and end dates may refer to the days during which it passed over the country, rather than the 

days during which damage took place due to resulting floods, or to the days during which a 

state of emergency was in place.(32) Sources used to perform data quality control included 

situation reports and press releases issued by the Government of Jamaica during the events 

(available on ReliefWeb), reports from reputable sources such as the Economic Commission 

for Latin America and the Caribbean (ECLAC) or the National Oceanic and Atmospheric 

Administration (NOAA), local news articles, and research works. The historical event 

catalogue is shown in Table I.  

Table I: Historical event catalogue. Original EM-DAT disaster numbers, number of fatalities, people 

affected and loss are included for reference. 

EM-DAT 

Disaster No. Start date End date 

Duration 

(days) Fatalities 

People 

affected 

Loss 

(103 USD) 

2001-0615 29/10/2001 05/11/2001 8 1 200 55 487 

2002-0325 23/05/2002 02/06/2002 11 9 25 000 20 000 

2002-0656 18/09/2002 20/09/2002 3 4 1 500 30 

2002-0627 28/09/2002 30/09/2002 3     1 000 

2004-0415 11/08/2004 13/08/2004 3 1 126 300 000 

2004-0462 10/09/2004 12/09/2004 3 15 350 000 595 000 

2005-0351 07/07/2005 09/07/2005 3 1 8 000 30 000 

2005-0382 16/07/2005 18/07/2005 3 4 2 296 1 000 

2005-0585 16/10/2005 21/10/2005 6 1 100 3 500 

2006-0656 23/11/2006 24/11/2006 2 1 5 000   

2007-0360 19/08/2007 20/08/2007 2 4 33 188 300 000 

2007-0523 29/10/2007 04/11/2007 7 1     

2008-0352 28/08/2008 29/08/2008 2 12 4 000 66 198 

2010-0501 29/09/2010 30/09/2010 2 15 2 506 150 000 

2012-0410 24/10/2012 24/10/2012 1 1 215 850 16 542 

 

3. METHODS 

This section describes the proposed probabilistic framework, which involves model 

construction and evaluation. The objective of this work is first to develop a model that can issue 
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probabilities of occurrence of loss events given certain environmental variables. The model is 

then evaluated and its value to users quantified, and ultimately provides a simple framework 

for decision-making. The workflow is presented in Figure 2.  

 

Figure 2: Workflow. 

3.1. Model construction 

We start by proposing a generic probabilistic modelling framework, which is readily adaptable 

to different natural hazards.  

Consider the occurrence of loss caused by a natural hazard on each day 𝑡 = 1, … , 𝑇 over some 

region 𝐺 and let 𝐿𝑡 be a binary variable defined as 

 𝐿𝑡 = {
 0     if loss occurs on day 𝑡 in 𝐺,

 1     if loss doesn't occur on day 𝑡 in 𝐺.
 (3.1) 

Page 12 of 35Risk Analysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

13 

 

 

More precisely “if loss occurs on day 𝑡” corresponds to “if day 𝑡 is within a loss event's start 

and end dates”. 

The aim is to predict the occurrence of loss based on a potential damage variable 𝑌𝑡 defined for 

time 𝑡. The following logistic regression model gives a natural representation of the occurrence 

of loss on day 𝑡: 

 𝐿𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑡), (3.2) 

with 

 𝑙𝑜𝑔 (
𝑝𝑡

1 − 𝑝𝑡
) = 𝛽0 + 𝛽1𝑌𝑡, (3.3) 

where coefficient 𝛽1 corresponds to the variable 𝑌𝑡. The parameters 𝛽0 and 𝛽1 can be estimated 

by fitting the model to historical samples of concurrent potential damage and loss data. This 

model is readily expanded expandable to include additional explanatory variables. 

The potential damage variable 𝑌𝑡 is obtained through the transformation of an environmental 

variable 𝑋𝑡, which represents the intensity of a certain natural hazard, so that 

 𝑌𝑡 = 𝐷(𝑋𝑡, Φ), (3.4) 

where 𝐷(. ) is a non-linear operator designed to capture some of the physical processes of how 

the hazard creates damage, and Φ is the set of parameters of the transformation function. Within 

this framework, the predictive ability of the system can be improved without using explicit 

hazard, exposure and vulnerability models, which are instead emulated. The flexibility of such 

a framework also allows the environmental variable 𝑋𝑡 to be directly used, which corresponds 

to the special case of 𝐷(𝑋𝑡, Φ) = 𝑋𝑡. An example application for floods is presented in Section 

4.  
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The models of (3.3) and (3.4) assume stationarity. This is to aid clarity and because the flooding 

study of Section 4 uses a relatively short data series for which stationarity is a reasonable 

assumption. However, the regression framework means that extensions to allow 

nonstationarity, such as trends or annual variations in environmental variables, or changes in 

loss occurrence due to changes in vulnerability, are relatively straightforward. 

3.2. Evaluation 

A logistic regression model constructed as described in Section 3.1 is able to produce predictive 

probabilities pt for the occurrence of loss events caused by any natural hazard. However, 

parametric programmes require an unambiguous definition of when payouts are due or not, 

meaning that . This means that a decision threshold probability q above which a loss event is 

considered to occur must be set, effectively converting the issued probabilities into binary 

outcomes. The evaluation procedure described in this section consists of quantifying the quality 

and utility of the binary predictive systems obtained with the different possible threshold 

probabilities, ultimately enabling users of the system to define the optimal one. The verification 

measures proposed in this section may also be used in the evaluation of traditional parametric 

triggers. 

3.2.1. Quality 

A large number of different verification measures are available in the literature and, in most 

cases, more than one is necessary to obtain an informed picture about the quality of a predictive 

system.(33,34) The measures anticipated to be most relevant to the proposed probabilistic 

framework for parametric catastrophe risk transfer are now presented. They are formulated as 

a function of the number of hits (a), false alarms (b), misses (c) and correct rejections (d), which 

represent the four possible outcomes or contingencies for an event, as shown in Table II.  
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We adopt a simple daily event definition to aid clarity, as this allows unambiguous comparison 

between observed and modelled events. It should be noted that in practice, clusters of daily 

events are usually considered single disaster events, and it may be desirable to adopt this 

definition instead. However, because such events persist for varying durations, counting 

observed or modelled non-events in that case is not straightforward. There is not yet a natural 

solution to this issue, which warrants further research.(35)  

Table II: Schematic contingency table for n binary events.  

Event predicted 

Event observed 

Yes No Total 

Yes a (Hits) b (False alarms) a + b 

No c (Misses) 

d (Correct 

rejections) c + d 

Total a + c b + d a + b + c + d = n 

 

Frequency bias, B, is the ratio between the number of predictions of occurrence and the number 

of actual occurrences: 

 𝐵 =
𝑎 + 𝑏

𝑎 + 𝑐
. (3.5) 

In general, a bias of 1 is desirable, meaning that events are predicted at the same rate at which 

they occur; in such cases, predictions are said to be unbiased. It should be noted that bias and 

skill are not necessarily related. A predictive system may be unbiased but have no skill, or vice-

versa; analysing both is therefore necessary. In the case of parametric programmes, for which 

no model is perfect, a risk cedant may be more tolerant to false alarms than to missed events, 

for example. Then a bias greater than 1 would be preferred, which corresponds to a lower 

decision threshold probability. In practice, this could result in higher insurance premiums, but 

also reduces the probability that no payout would be issued following an event. This could 
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maximize the value of the system to its users, which is the main objective of the probabilistic 

framework. 

In terms of skill, we first calculate the hit and false alarm rates. The hit rate, H, is the proportion 

of correctly predicted event occurrences, and is given by 

 𝐻 =
𝑎

𝑎 + 𝑐
. (3.6) 

The false alarm rate, F, is the proportion of incorrectly predicted non-occurrences, given by 

 𝐹 =
𝑏

𝑏 + 𝑑
. (3.7) 

By calculating these two measures for different decision threshold probabilities over the range 

0 to 1, and plotting them against one another, a Receiver Operating Characteristic (ROC) curve 

is obtained.(36)  A curve above the diagonal H = F represents presence of skill, i.e., a better than 

random predictive system. However, caution needs to be exercised in its interpretation. While 

hit and false alarm rates are useful for understanding predictive performance, they are 

unsuitable as performance measures on their own. One reason is that they are degenerate for 

vanishingly rare events.(34) In other words, when the base rate 𝑠 = (𝑎 + 𝑐) 𝑛⁄  decreases toward 

0, so do H and F. This is likely to affect modelling of triggering events for parametric 

programmes due to the inherent rare nature of disasters caused by natural hazards. For this 

reason, to complete the analysis of model performance, we adopt the extremal dependence 

index, or EDI, which is given by   

 𝐸𝐷𝐼 =
𝑙𝑜𝑔𝐹 − 𝑙𝑜𝑔𝐻

𝑙𝑜𝑔𝐹 + 𝑙𝑜𝑔𝐻
. (3.8) 

Due to its properties, which include non-degeneracy, base-rate independency and asymptotical 

equitability, the EDI is particularly suited for the verification of predictions of rare binary 
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events.(37) It takes values in the interval [-1, 1], where zero distinguishes better- and worse-than-

random predictions.  

3.2.2. Utility 

In Section 1, we defined basis risk as the risk associated with the mismatch between payout and 

loss, which, in the case of parametric triggers, arises when triggered payouts do not coincide 

with the occurrence of loss events. Basis risk should first be quantified using a suitable measure 

before it is minimized. 

At first glance, a measure of prediction quality appears reasonable. Prediction quality can be 

defined as the degree of correspondence between predictions and observations, which directly 

relates with the definition of basis risk. However, the goodness of any forecast system is related 

not only with its predictive quality, but also to its utility, which is the economic value that it 

brings to its users. In fact, for users, a measure of value is generally more important than a 

measure of quality, as they are primarily concerned with the expected benefit that such a system 

will bring in the context of their respective decision-making problems.(33) Even though quality 

and utility are related, predictions with greater accuracy or skill may not necessarily be the most 

valuable to end users.(38) Therefore, defining the optimal decision threshold can only be 

achieved by maximizing utility, which goes beyond the standard definition of basis risk and 

leads to an objective maximization of the economic benefit that users can obtain from the 

system. 

The general framework that allows users of a binary predictive system to quantify the value 

that they can obtain from it is now described. Table II shows the four possible of combinations 

of event prediction and occurrence. Each outcome has an associated expense, which can be 

expressed in the form of an expense matrix (Table III). 
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Table III: Schematic expense matrix.  

Event  

predicted 

Event observed 

Yes No 

Yes Ea Eb 

No Ec Ed 

 

The mean expense of using a certain predictive system can be obtained by multiplying the 

expected relative frequencies as expressed in Table II by the corresponding expenses in Table 

III,(39) so that 

 𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑎

𝑛
𝐸𝑎 +

𝑏

𝑛
𝐸𝑏 +

𝑐

𝑛
𝐸𝑐 +

𝑑

𝑛
𝐸𝑑. (3.9) 

While Equation (3.9) allows calculating the mean expense, it is also helpful to calculate a 

measure of value, which corresponds to the economic benefit obtained by using the predictive 

system. To do so, let us first define a baseline for the definition of the value of the predictions. 

Although different possibilities could be chosen, here we assume that the baseline corresponds 

to a case where loss events are never predicted to occur (i.e. H = 0; F = 0). In this case, the 

average expense is given by 

 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = s𝐸𝑐 + (1 − 𝑠)𝐸𝑑. (3.10)  

Value can then be defined as 

 𝑉 = 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐸𝑠𝑦𝑠𝑡𝑒𝑚. (3.11)  

The mean expense associated with a perfect predictive system, in which model predictions and 

observations always agree (i.e. H = 1; F = 0), can also be informative, and is given by 

 𝐸𝑝𝑒𝑟𝑓𝑒𝑐𝑡 = s𝐸𝑎 + (1 − 𝑠)𝐸𝑑, (3.12) 
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which corresponds to the absolute upper bound on the value that can be obtained from the 

system. 

When presented with predictions in the form of probabilities, users face the question of what is 

the decision threshold probability q that maximizes the value that they can obtain from it. 

Varying the threshold over the range 0 to 1 allows a sequence of values V(q) to be calculated. 

This allows the maximum value to be found, which corresponds to the optimal decision.  

We illustrate the framework for value evaluation through a simplified model of the decision 

process from the perspective of two of the users of a hypothetical parametric insurance product:  

1. The insured party or risk cedant, which is interested in transferring part of its risk of 

sustaining losses due to a certain natural hazard;  

2. A catastrophe risk manager, the technical expert responsible for setting up and running 

the model that triggers payouts based on the occurrence of a pre-defined condition. 

We now define the expense matrices associated with the predictive system, starting with the 

insured party. Let EA represent the payout that the country wants to receive from the insurer 

should a loss event occur. For simplicity, wWe consider that in case of correspondence between 

event prediction and occurrence, an insurance payout takes place corresponding to post-disaster 

funding expectations from the country, the insurance payout perfectly offsets the losses, and 

that therefore there is no net gain or loss for the country. Now suppose that EP defines the 

insurance premium, which is the amount of money that the country must pay for the insurance 

policy. This is given by 

 𝐸𝑃(𝑞) =
𝑎(𝑞) + 𝑏(𝑞)

𝑛
𝐸𝐴𝑚 = 𝐵(𝑞)𝑠𝐸𝐴𝑚, (3.13) 

where m corresponds to the relative margin of profit of the insurer (m > 1). To aid clarity, this 

illustrative pricing model does include factors such as volatility. Lastly, suppose that EN > EA 
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is constant and represents the losses that the country will sustain when a loss event occurs but 

no payout is issued. Thus EN includes indirect economic costs that may arise as a consequence 

of lack of funding to finance post-disaster response and recovery.(40)  

Let us now define the expenses for the second party, the catastrophe risk manager. Suppose that 

EC is the operational cost related with administrative actions that need to be taken whenever the 

model triggers a payout, ER is the cost associated with the reputational loss and model 

recalibration, which is incurred whenever the model triggers a payout that does not correspond 

to an actual loss event, and EL is the cost associated with the reputational loss and potential loss 

of client, which may happen if the model fails to trigger a payout when a loss event occurs. 

Table IV shows the expense matrices for the two parties. Substitution into Equation (3.9) allow 

mean expenses to be calculated. 

Table IV: Expense matrices for different users of the system.  

User Event  

predicted 

Event observed 

Yes No 

Insured 

party 

Yes EP(q) EP(q) – EA 

No EP(q) + EN EP(q) 

Risk 

manager 

Yes EC EC + ER 

No EL 0 

 

Note that in parametric risk transfer products only one threshold can be set in the policy 

conditions. It is possible that no single threshold will be optimal for users with different expense 

matrices. This means that the overall maximum value may not correspond to the maximum 

value for all individual users. Nevertheless, even in situations where this cannot be achieved, 

this framework provides a means to take decisions on probability thresholds that are acceptable 

and beneficial to all users. 
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4. RESULTS 

This section illustrates the framework by applying it to flooding in Jamaica. 

4.1. Model construction 

Suppose that the study region, 𝐺, corresponds to the country of Jamaica and let 𝑋𝑡(𝑔𝑗) represent 

the rainfall amount accumulated over cell 𝑔𝑗 on day 𝑡. Now suppose that 𝐿𝑡 defines whether 

day 𝑡 coincides with a flooding event.  

Before proceeding with the model fitting, it is sensible to analyse the environmental variable 

vis-à-vis the historical disaster data. Even if the former is not expected to be the best predictor 

for the latter, as described below, in the case of floods one can reasonably expect that on loss 

event days, rainfall is higher than on most other days. Examining the conditional probability 

distributions of rainfall on event and non-event can serve as a useful sanity check. In Figure 3, 

quantile-quantile plots and kernel density plots of such distributions for CMORPH daily rainfall 

data above 5 mm are presented, showing that daily rainfall is in fact higher on loss event days. 

This suggests that rainfall is likely to be informative for loss.  
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Figure 3: CMORPH daily rainfall above 5 mm. (a) Quantile-quantile plots. (b) Kernel density plots. 

Flood damage is not directly caused by rainfall, but rather from different actions originated by 

water flowing and submerging assets located on land that is usually dry. Therefore, even if here 

we study flood damage caused by rainfall, rainfall itself – the environmental variable – is 

undoubtedly not the best predictor for the model. Within more traditional flood risk models, 

hydrologic and hydraulic models, which route rainwater to the exposed assets, are combined 

with exposure and vulnerability models, which represent the built environment and the 

damaging phenomena.(41–43) These models tend to be quite complex and so have various 

drawbacks. These include decision-makers potentially finding models difficult to interpret; 

development or implementation being arduous; large amounts of data being required in order 

to estimate models, which may not always be available; or that resulting estimates may still be 

accompanied by large uncertainties.(44,45) We therefore propose a variable transformation that 

aims to emulate the physical processes behind the occurrence of flood damage due to rainfall. 

It is divided into two steps: estimation of potential runoff based on daily rainfall, and of a 

potential damage index, given runoff. These are described below. 
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The rainfall-runoff mechanism is a key physical process that has been widely studied in 

hydrology(46,47) and depends on several geomorphological and climatic parameters. For 

simplicity, we only aim to capture what are considered its two dominant effects(48): 1) 

infiltration of rainfall in the soil, which makes the relationship between rainfall and runoff 

strongly non-linear; 2) overland flow, which produces a spatial and temporal aggregation of the 

rainfall. 

Regarding the first, not all the rainfall produces runoff, but part of it infiltrates into the soil 

according to its characteristics (e.g. porosity, hydraulic conductivity) and water content. The 

simplest approach to reproduce this effect is to adopt a constant parameter 𝑢, which represents 

the daily rate of the infiltration. The resulting potential runoff, or amount of rainwater estimated 

to remain over the surface, is 

 𝑅𝑡(𝑔𝑗) = 𝑚𝑎𝑥{𝑋𝑡(𝑔𝑗) − 𝑢, 0}. (4.14) 

Concerning the second, overland flow accumulates the excess of rainfall over the surface of the 

hydrological catchment. In hydrology, this process is modelled by the convolution of the 

rainfall with a function representing the hydrological response of the catchment. We reproduce 

it through a weighted moving time average, which preserves the accumulation effect and allows 

the contribution of rainfall on previous days to be weighted according to transformation 

parameters. We restrict the moving average to a three-day period, which is reasonable for the 

size of the study area. Including additional days did not improve the model fit. The potential 

runoff volume accumulated over cell 𝑔𝑗 over days 𝑡, 𝑡 − 1, 𝑡 − 2 is given by 

 𝑅𝑡
∗(𝑔𝑗) = 𝜃0𝑅𝑡(𝑔𝑗) + 𝜃1𝑅𝑡−1(𝑔𝑗) + 𝜃2𝑅𝑡−2(𝑔𝑗), (4.15) 

where 𝜃0, 𝜃1, 𝜃2 > 0 and 𝜃0 + 𝜃1 + 𝜃2 = 1. 
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Finally, let 𝑌𝑡 be an explanatory variable related to potential damage for day 𝑡, which is defined 

as 

 𝑌𝑡 = ∑
𝑅𝑡

∗(𝑔𝑗)
𝜆

− 1

𝜆

𝐽

𝑗=1

, (4.16) 

where the Box-Cox transformation offers a flexible, non-linear approach to converting runoff 

to potential damage for each cell without requiring explicit exposure and vulnerability models. 

The summation in equation (4.16) is designed to capture the belief that damage accumulates 

over grid cells. 

In order to obtain the 𝑌𝑡 variable that best describes potential flood losses due to rainfall, the 

transformation parameters 𝑢, 𝜃1, 𝜃2 and 𝜆, defined in the previous subsection, are optimized to 

give the final logistic regression model. This is achieved my by maximizing the likelihood using 

a quasi-Newton algorithm. Pseudo-𝑅2 is calculated for a first assessment the goodness-of-fit of 

the model. The statistic proposed by Nagelkerke(49) is adopted, which gives 𝑅2 = 0.548. This 

suggests that the model has good predictive skill. It is worth nothing noting that pseudo-𝑅2 

values for logistic regression models cannot be interpreted in the same way as the non-pseudo-

𝑅2 used for linear regression models, as they are normally lower.(50) 

The computed parameters of both the variable transformation procedure and the logistic 

regression model are shown in Table VTable I. The logistic regression model is plotted in 

Figure 4. It can issue probabilities of occurrence of flooding loss events due to rainfall for any 

given day. In Figure 5, both the input data and the results obtained along the model construction 

process are shown in the form of a time series covering two events that took place in September 

of 2002 (Hurricane Isidore and Hurricane Lili). The figure illustrates all the steps presented in 

Section 3.1 in a simple way. The bottom panel shows the probabilities of loss that the model 

would have estimated for each day over the displayed period, including for those two events. 
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Table V: Parameters of both the variable transformation procedure and logistic regression model.  

Variable transformation 

𝑢 8.396 

𝜃0 0.554 

𝜃1 0.277 

𝜃2 0.169 

𝜆 -0.132 

Logistic regression 

model 

𝛽0 -7.277 

𝛽1 0.016 

 

 

Figure 4: Constructed logistic regression model. 
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Figure 5: Time series showing two flooding loss events that took place in Jamaica in 2002:  (a) Mean 

daily rainfall (blue) and mean daily runoff (red) over all the grid cells in the country. (b) Potential 

damage index. (c) Predictive probabilities of loss events produced by the logistic regression model. 

Grey areas represent event days. 

4.2. Evaluation 

We next evaluate the model’s predictive quality as well as the utility it brings to users when 

different decision threshold probabilities 𝑞 over the range of 0 to 1 are used. Figure 6 shows the 

frequency bias B over this range of probabilities. An unbiased predictive system, with B = 1, 

will not necessarily correspond to the optimal one, but can still serve as a useful reference. In 

this case, an unbiased system would be obtained for a threshold probability q = 0.27. Assuming 
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stationarity, a lower value would lead to a rate of event prediction higher than that of event 

occurrence, and vice versa.  

 

Figure 6: Frequency bias.  

The ROC curve, shown in Figure 7a, is markedly above the diagonal H = F, strongly suggesting 

that the constructed model has good predictive skill. However, the low value of the base rate, 

which in the Jamaica case study is 𝑠 = 59 6605⁄ ≃ 0.0089, inevitably leads to low values of 

H and F and potentially contributes to this behaviour. To complement the analysis, we also 

calculate the Extremal Dependency Index EDI over the range of decision threshold 

probabilities. As shown in Figure 7b, EDI is considerably higher than 0 over the entire range, 

supporting the idea that the model has good predictive skill. Its value tends to decrease as the 

threshold probability increases. 
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Figure 7: Skill measures: (a) Receiver Operating Characteristic (ROC) curve. (b) Extremal 

Dependency Index (EDI).  

The proposed verification procedures show that the logistic regression model illustrated in this 

section is skilful, and should be able to support a hypothetical parametric programme for 

Jamaica. The final step is to define the decision threshold probability. To do so, as previously 

discussed, analysing quality measures is insufficient: utility must also be quantified. However, 

based on quality measures alone, threshold probabilities between 0.10 and 0.30 appear 

reasonable due to relatively high skill (high H and low F, EDI close to the maximum) and low 

bias (around 1). 

In order to quantify utility, consider the following hypothetical expenses from the perspective 

of two users, an insured party, in this case the government of Jamaica, and a risk manager, as 

described in Section 3.2.2: EA = $1 000 000; EN = $ 2 000 000; m = 1.15; EC = $5 000; ER = 

$20 000; EL = $350 000. Figure 8 shows the expenses for the two users over the range of 

decision threshold probabilities. 
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Figure 8: User expenses over the range of decision threshold probabilities. The plus sign in blue 

corresponds to the lowest expense for each user: (a) Insured party. (b) Risk manager.  

In this case, the optimal decision threshold for the insured party is q = 0.18, corresponding to 

an expected expense E = $14 170.0 (Figure 8a). This means that the maximum possible benefit 

for the country is objectively achieved by defining that payouts should occur when the model 

issues a probability of occurrence of loss events q above 0.18. However the above threshold is 

not optimal for the risk manager. Instead their threshold probability that would maximize value 

is q = 0.05, which corresponds to an expected expense E = $1 130.0 (Figure 8b).  

The above example illustrates how different users of an imperfect predictive system may have 

different optimal decision thresholds. However, how can this issue be addressed when only one 

threshold can be set, as in the context of parametric triggers? The answer is case dependent. A 

possible approach could be to select the threshold that maximizes the sum of value over all 

users. Yet, in some cases, this could be unfair to some of the users, possibly even resulting in 

negative value. On the other hand, in a hypothetical scenario where no single threshold can be 

agreed upon, users may take advantage of the information provided by the system in order to 
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adjust their expense matrices. In this example suppose that the risk manager is unable to 

persuade the country, who is the main client, into defining a threshold other than q = 0.18. In 

that case, the information provided by the system could be used by the risk manager to adjust 

their expense matrix, in order to align the optimal decision threshold with the insured party’s. 

This could be achieved by promoting training actions that would improve understanding of the 

model, for example, thus reducing reputational losses associated with failure to correctly predict 

a loss event occurrence.  

5. CONCLUSION 

This framework has been designed to provide a probabilistic basis for a parametric insurance 

product. The framework quantifies natural hazard event occurrence using environmental 

variables. This is achieved using logistic regression to establish a relationship between the 

probability of an event occurring and the environmental variables. This relationship may be 

directly established or via potential damage variables constructed from the environmental 

variables. For example, when modelling flooding over Jamaica, the probability of a flooding 

event is related to rainfall run-off, which is derived from gridded rainfall data aggregated over 

Jamaica and over a three-day period. 

The framework also includes an explicit approach for users to calculate mean expenses from 

predicted probabilities. Often this will require that users only specify expenses for scenarios 

that are relatively straightforward to elicit. This is demonstrated by considering optimal pay-

out criteria for an insured party and risk manager in the case of a parametric insurance product 

covering Jamaican flooding. Within the framework we can also verify predictions and ensure 

that they are fit for purpose. Methods from the forecast verification literature are drawn upon 

to achieve this. These verify both the accuracy and reliability of predictions quality, which in 

turn ensures the reliability quality of subsequent loss calculations.  
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Various extensions may improve the proposed framework. A by-product of a logistic regression 

model is that uncertainty in the relationship between event occurrence and environmental or 

damage variables may be quantified. Such uncertainty is readily propagated through to loss 

occurrence estimates. This has been neglected here in favour of brevity and to aid clarity. Such 

uncertainty is likely to be largest with natural hazards that have low occurrence rates or are 

supported by relatively short data records. Due to the latter we assume stationarity in occurrence 

rates when modelling Jamaican flooding, which corresponds to an aggregate assumption of 

stationarity for environmental variables and vulnerabilities. However, fFor other natural 

hazards, or where data records are longer, capturing nonstationarity may improve loss estimate 

precision. Improved precision may also be achieved when event occurrence data are scarce by 

extending the framework so that data are pooled (for example, over multiple countries, or by 

allowing serial dependence over time) or deficiencies in data are recognised (which motivated 

rigorous quality control of Jamaican flood start and end dates in Section 2). 
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