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 Abstract 

Cardiovascular diseases (CVD) are the leading cause of death worldwide and the 

atherosclerotic process that precedes CVD starts during childhood. Physical activity 

(PA), cardiorespiratory fitness (CRF) and exercise are well known as preventive 

strategies for CVD. One possible mechanism for such prevention is the role of PA, 

CRF and exercise on the arterial and autonomic systems. The aim of this thesis was 

to investigate using observational and experimental studies the role of PA, CRF and 

exercise on the autonomic and arterial systems of healthy adolescents. Chapter 4 

systematically reviewed observational cross-sectional studies and provided level one 

evidence for a significant and positive association between resting parasympathetic 

function and moderate-to-vigorous PA in youth. Chapter 4 also indicated that gaps 

exist in the literature such as the associations between PA intensities, CRF and heart 

rate variability (HRV). These findings were furthered in Chapter 5 which showed that 

vigorous PA (VPA) and moderate PA (MPA) were positively related with HRV at rest 

and cardiac autonomic recovery following exercise in adolescents. In Chapter 6 a high-

fat meal was used aiming to increase CVD risk in the postprandial state, and it was 

demonstrated that PA levels and CRF are not significantly associated with 

postprandial HRV and arterial stiffness in adolescents. Aiming to investigate possible 

associations between the vascular and autonomic system, measures of baroreflex 

sensitivity (BRS) were introduced. Chapter 7 showed that BRS and its autonomic and 

vascular components present a between-day coefficient of variation lower than 20% 

whilst within day coefficient of variations were lower than 34% in adolescents. In 

Chapter 8 acutely following high- and moderate-intensity interval exercise a decrease 
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in blood pressure was observed concomitantly with decreases in BRS. This was 

mainly mediated by decreases in the autonomic modulation, and the duration of the 

decreases in blood pressure was higher following high-intensity interval exercise. 

Chapter 9 extended these findings by demonstrating that the changes in BRS following 

the ingestion of glucose was not altered by the high or moderate-intensity exercise 

performed before glucose ingestion. Chapter 10 showed that following four weeks of 

high-intensity exercise interval training no improvements were observed in BRS and 

its autonomic and vascular components at rest or acutely following exercise. 

Collectively, the present thesis contributes significantly to the literature by providing 

novel evidence in healthy adolescents on the role of PA intensities, CRF and exercise 

on the arterial and autonomic systems at rest, acutely following exercise and in the 

postprandial state. The results gathered in this thesis indicate potential of the 

autonomic and vascular function as targets of CVD risk reduction in youth.   
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Chapter 1: Introduction 

Cardiovascular diseases (CVDs) are the leading cause of death by non-communicable 

diseases in the world. Around 17.8 million of deaths were attributed to CVD in 2012 

(WHO, 2014), and it has been previously estimated that over 23.3 million people are 

expected to die from CVDs in 2030 (Mathers and Loncar, 2006). In the UK, CVDs are 

responsible for 29% of all cause of mortality, and the treatment and management of 

CVDs within the National Health Service in 2012 – 2013 costed more than £6.8 billion 

(Bhatnagar et al., 2015). Although these numbers stress the health and financial 

burden of CVDs in modern society, CVD prevention is key with an estimated ~ 90% 

lowered lifetime risk of CVD for adults without the presence of traditional CVD risk 

factors, such as low-density lipoprotein (LDL), total cholesterol (TC), body mass index 

(BMI), and blood pressure (BP) (Lloyd-Jones et al., 2006).  

The underlying pathobiological cause of CVDs is the atherosclerotic process, which 

eventually culminates in the disease overtly appearing in late adulthood (Ross, 1993). 

Compelling evidence shows that the initial stages of atherosclerosis may have its 

origin during childhood (McGill et al., 2000), with atherosclerotic lesions present in 

nearly 70% of adolescents at the end of puberty (Stary, 2000). Furthermore, it is well 

established that the presence of four traditional CVD risk factors in children and 

adolescents (herein youth) increases the presence of arterial wall atherosclerotic 

lesions (Berenson et al., 1998). Traditional CVD risk factors have been shown to 

cluster in apparently health youth (Raitakari et al., 1994), and predict pre-clinical 

atherosclerosis later in adult life independently of adult CVD risk factor status (Li et al., 
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2003). Therefore, interventions to decrease CVD risk would be most effective to 

prevent CVD risk factors early in life (Magnussen et al., 2013, McGill et al., 2008). 

Regular physical activity (PA) and exercise training are well known as preventive 

strategies to lower CVD risk (Booth et al., 2012), with physical inactivity being 

considered the biggest health problem of the 21st century (Blair, 2009). A landmark 

investigation into the role of PA and CVD risk reduction was conducted by Morris et 

al. (1953), who demonstrated that physically active workers, such as bus conductors 

and postmen, had a lower incidence of coronary heart disease compared to less 

physically active workers, such as bus drivers, telephonists, and office workers. More 

recent epidemiological data shows that PA significantly lowers CVD risk in adults 

(Thompson et al., 2003), and the World Health Organisation recognises that physically 

active adults have a 30% lower chance of dying from all-cause mortality, with over 

three million deaths potentially being avoided by increasing current PA levels (WHO, 

2014).  

Similar to the overwhelming data in the adult literature, evidence exist showing that 

PA is inversely associated with traditional CVD risk factors in youth (Ekelund et al., 

2012), and current guidelines suggest that children and adolescents should perform a 

minimum of 60 min·day-1 of moderate-to-vigorous physical activity (MVPA) (WHO, 

2010). Despite this, over 80% of adolescents worldwide do not meet current guidelines 

for health (Hallal et al., 2012). Furthermore, strategies aimed at increasing PA levels 

in youth have led to a modest four min·day-1 overall increase in MVPA (Metcalf et al., 

2012), which suggests that alternative approaches to decrease CVD risk should be 

considered.  
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Recently, studies have suggested that the negative associations between PA and 

CVD risk in youth reflect the time spent performing vigorous PA (VPA) but not 

moderate PA (MPA) (Barker et al., 2018, Fussenich et al., 2016). For example, only ~ 

seven min·day-1 of VPA but not ~ 46 min·day-1 of MPA was associated with 57 and 

64% reduced risk of overweight and hypertension in children (Fussenich et al., 2016). 

Additionally, VPA is positively associated with cardiorespiratory fitness (CRF) (Aires 

et al., 2010) and VPA delivered as high-intensity interval exercise (HIIE) is a key 

component to increase cardiorespiratory fitness (CRF) (Costigan et al., 2015). This is 

important as CRF has recently been demonstrated to have negative associations with 

CVD risk in a sample of European adolescents independent of PA levels (Barker et 

al., 2018). However, guidelines for VPA frequency and amount are currently unclear 

in terms of CVD risk modification, with the only statement suggesting that children and 

adolescents should perform VPA at least three times per week for bone and muscular 

strength development (WHO, 2010). Given the above, there is a strong rationale to 

further investigate PA intensities and CVD risk in youth. 

In youth the likely mechanism of CVD risk reduction associated with PA and CRF is 

via modification of traditional CVD risk factors, which are typically expressed as a 

clustered score. However, improvements in traditional CVD risk factors accrued by PA 

in adults account for ~ 60% of CVD risk reduction, leaving a ~ 40% risk factor gap in 

current understanding (Mora et al., 2007). Recently, the improvements attributed to 

PA on the arterial and autonomic systems are suggested to, at least in part, explain 

the 40% risk factor gap in adults (Joyner and Green, 2009). Research involving 

adolescents has demonstrated increases in autonomic and vascular function 

independently of concomitant increases in traditional CVD risk factors (Bond et al., 

2015a), which suggests the autonomic and vascular systems may represent 
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components of the risk factor gap in youth. Furthermore, studies suggest the existence 

of a positive association between VPA levels and autonomic and arterial function in 

children and adolescents (Gutin et al., 2005, Hopkins et al., 2009). However, it remains 

to be investigated the role of PA intensities, exercise and CRF on a mechanism linking 

autonomic and arterial systems.  

One attractive approach to investigate a mechanistic association between the arterial 

and autonomic systems is the baroreflex assessed as the baroreflex sensitivity (BRS). 

The arterial BRS can be divided into a vascular and an autonomic component (Taylor 

et al., 2014) with the first obtained as vascular compliance, and the later as the 

autonomic responses to arterial stretching. Although in adults evidence shows an 

important role of regular exercise on BRS and its vascular and autonomic components 

(Monahan et al., 2001b, Hunt et al., 2001a, Komine et al., 2009), currently there is a 

dearth of investigations exploring the effects of exercise on the BRS in youth.  

Historically, the atherosclerotic process has been associated with traditional CVD risk 

factors such as blood concentration (herein concentration will be expressed as 

between []) of triacylglycerol (TAG) and glucose (GLU), and BP measured in the fasted 

state (Berenson et al., 1998). However, in adults the postprandial state has been 

suggested to increase CVD risk independently of fasted measurements (Ansar et al., 

2011, Uetani et al., 2012, Pirillo et al., 2014). In youth, longitudinal investigations have 

also shown that non-fasting [TAG] and postprandial GLU intolerance predicts CVD 

events during adulthood even after adjustment for adult CVD risk factors (Morrison et 

al., 2009, Franks et al., 2010). This suggests that the postprandial state may better 

reflect CVD risk due the fact that humans spent most of the day in the postprandial 

state (Nakamura et al., 2016).  
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In a similar manner to fasting CVD risk factors, exercise has been shown to modulate 

postprandial CVD risk in youth. For example, moderate and high-intensity exercise 

performed before the ingestion of a high-fat meal (HFM) or GLU load have been shown 

to decrease postprandial [TAG] and [GLU] respectively(Cockcroft et al., 2017b, 

Cockcroft et al., 2015, Tolfrey et al., 2014), suggesting a decreased CVD risk. 

Similarly, while an impairment in vascular function have been described in adolescents 

following a HFM (Bond et al., 2015b), performing moderate-intensity exercise before 

the meal maintains vascular function, whereas high-intensity interval exercise (HIIE) 

augments vascular function in the postprandial state (Bond et al., 2015b). However, it 

remains to be shown the possible effect of the postprandial state on the interactions 

between autonomic and vascular functions, as well as to investigate the effects of 

habitual PA and CRF on the postprandial responses. 

Given the above, the overall aim of this thesis is to address the role of PA intensities, 

CRF, and exercise on the autonomic and vascular systems. For this purpose, a series 

of original investigations were conducted aiming to address the following broad 

questions:  

1) Is there a role of the autonomic and arterial systems to the risk factor gap in 

adolescents?  

2) How different PA intensities, CRF and exercise modulates autonomic and vascular 

functions?  

3) Is there a dependence between the autonomic and vascular systems measured as 

the BRS?  
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4) Does PA, CRF and exercise modulate the postprandial changes in autonomic and 

vascular function?  

Addressing these questions is important given the position of the American Heart 

Association which stresses the need of identifying novel CVD risk factors in youth, to 

help the management of the initial process of atherosclerosis in this population 

(Balagopal et al., 2011).  
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Chapter 2: Literature Review 

The present literature review provides a comprehensive and critical justification for the 

work undertaken in this thesis. Where necessary, the reader is directed to 

contemporary reviews which offer a deeper discussion of the relevant themes. The 

literature review starts with a brief introduction of CVD and its childhood origins 

(sections 2.1 and 2.2) followed by discussion about the effects of PA, PA intensities, 

exercise and CRF on CVD risk reduction (section 2.3). The subsequent sections will 

discuss the risk factor gap concept and how PA intensities, exercise and CRF are 

associated with CVD risk reduction in adolescents by modifying the autonomic and 

vascular systems (sections 2.4 – 2.6). Finally, an overview of CVD risk and the 

postprandial state (section 2.7) will be introduced, with focus on the possible effects 

of PA intensities, exercise and CRF. When possible, paediatric literature will be 

critically scrutinised and gaps in the current evidence base highlighted. The aim of the 

literature review is to provide a context and rationale for each experimental chapter 

within this thesis (section 2.9).  

2.1 Cardiovascular diseases 

Cardiovascular diseases, including heart disease, cerebrovascular disease and 

peripheral vascular disease, share the underlying pathophysiological process of 

atherosclerosis. Atherosclerosis is a long lasting condition involving changes in the 

function and structure of the artery wall (Figure 2.1), culminating in CVD events such 

as myocardial infarction and stroke  (Ross, 1993). Although the clinical overt 

characteristics of atherosclerosis occur during adulthood, there is compelling evidence 
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indicating that the initial stages of the atherosclerotic process may have its origins 

during childhood.  

 

Figure 2.1: Stages of atherosclerosis. The initial stage is depicted in the top left which 

leads to a process of functional and structural changes to the vessel wall, resulting in 

a final stage of plaque rupture and thrombosis which is depicted in the bottom right. 

Adaptive thickening is the first observable structural change in the atherosclerotic 

process. Macrophage accumulation and lipid deposition with consequent formation of 

fatty streaks characterise type II lesions. Continued foam cell formation and 

macrophage necrosis can produce small extracellular pools of lipid in type III lesions. 

Areas of extracellular lipid represent the “core” of the atherosclerotic lesion in type IV. 

In this phase, a relatively thin tissue separation of the lipid core from the arterial lumen 

is observed. In type V lesions, a fibrous thickening of this structure forms and is also 

known as the lesion “cap”. Phase VI lesions exhibit architecture characterised by 



 
 

34 
 

calcified fibrous areas with visible ulceration. Reproduced from Stocker and Keaney 

(2004) with permission. 

2.2 Childhood origins of cardiovascular diseases 

A critical review of the evidence base for the childhood origins of atherosclerosis has 

been published by the Expert Panel on Integrated Guidelines for Cardiovascular 

Health and Risk Reduction in Youth (2011). Additionally, the initial atherosclerotic 

lesions in youth and the natural history of the disease have been reviewed (McGill et 

al., 2000). The evidence shows that the initial stages of atherosclerosis usually starts 

during childhood. Original data giving support to the prevalence of initial 

atherosclerotic lesions in the arterial wall measured post-mortem in young people 

have been collected in a series of epidemiological surveys by the Bogalusa Heart 

Study (Berenson et al., 1998, Berenson et al., 1992, Newman et al., 1991, Berenson, 

2002). From these surveys, a seminal publication by Berenson et al. (1998), showed 

that there is a significant predisposition towards higher prevalence of fatty streaks in 

the coronary arteries of participants who died of traumatic diseases at the age of 15 – 

19 years old (80% of prevalence) compared to participants who died at the age of 2 – 

15 years old (50% of prevalence). Although the cross-sectional comparison between 

the different age groups impedes the conclusion of a possible longitudinal age effect, 

the data suggest an increase in the presence of type III arterial lesions during the first 

two decades of life.  

Further support for the initial atherosclerotic progression in young people has been 

gathered in observational studies showing post-mortem histological adaptations of the 

arterial wall, which allowed classification of the lesion type according to the 

progression of atherosclerosis depicted in Figure 2.1. Phase III – IV lesions were not 
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present in children younger than 11 years old, and at the end of puberty these lesions 

were present in 69% of the participants (Stary, 2000). Although it is not possible to 

infer progression of lesions with ageing, the presence of type III – IV lesions in 95% of 

the 40 years old participants indicates that atherosclerosis lesions may follow the initial 

vessel adaptations observed at younger ages.  

The studies by the Bogalusa Heart Study, and later by the Pathobiological 

Determinants of Atherosclerosis in Youth Study, also demonstrated that the 

atherosclerotic lesions were positively associated with the presence of traditional CVD 

risk factors in young people, highlighting the importance of measuring and tracking the 

progression of traditional CVD risk factors from a young age (Berenson et al., 1992, 

Newman et al., 1991). 

2.2.1 Traditional cardiovascular disease risk factors 

The term risk factor refers to a “measurable biological characteristics of an individual 

that precede a well-defined outcome of a disease” (Balagopal et al., 2011, p.2750). 

Cardiovascular disease risk factors were first identified by the Framingham Heart 

Study over half a century ago, and since then have been used in the investigation, risk 

stratification and progression of CVD (Bitton and Gaziano, 2010). According to an 

American Heart Association statement (Balagopal et al., 2011), traditional CVD risk 

factors in youth can be divided into four categories: constitutional (i.e. family history, 

age and sex); behavioural (i.e. diet, PA, tobacco exposure and perinatal exposures); 

physiological (i.e. BP, blood [lipids], obesity, and GLU metabolism); and medical 

diagnoses (i.e. diabetes and kidney disease).   

Currently, evidence exist showing a positive association between post-mortem 

atherosclerosis lesions in youth and the presence of traditional CVD risk factors. 
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Specifically, the presence of one, two, three or four CVD risk factors (LDL, TC, BMI, 

and systolic and diastolic BP) increased significantly (~ 1.3% involvement with the 

presence of zero risk factors to ~ 11% with the presence of three or four risk factors) 

the percentage of intimal-surface involvement with fatty streaks in the coronary artery 

of participants who died at the ages of 2 – 39 years old (Berenson et al., 1998). In 

addition, the Pathobiological Determinants of Atherosclerosis in Youth Study proposed 

a CVD risk score derived from blood [lipids], BP, smoking, obesity and hyperglycaemia 

(i.e. modifiable risk factors) (McMahan et al., 2005). This score was developed to 

predict the likelihood of advanced arterial lesions in adolescents and young adults 

(<34 years old), rather than predict clinical CVD events (McGill et al., 2008). A higher 

risk score (> 11 points) was subsequently associated with ~ 10% probability of 

advanced atherosclerotic lesions (type III – IV) in the coronary artery of 15 – 19 years 

old individuals (McGill et al., 2008, McMahan et al., 2006). Collectively, these studies 

show a progressive association between atherosclerotic lesions and the number of 

traditional CVD risk factors in youth.  

Numerous studies have described the presence of clustered CVD risk in apparently 

healthy youth (Raitakari et al., 1994, Andersen et al., 2006, Andersen et al., 2004, 

Andersen et al., 2008), measured as the cluster of two (Andersen et al., 2004) or three 

traditional CVD risk factors (Raitakari et al., 1994), with a prevalence of 2 – 15% 

(Andersen et al., 2003, Raitakari et al., 1994, Andersen et al., 2004) of clustered CVD 

risk in this population. This is problematic, due to the established positive associations 

between the number of clustered CVD risk factors and atherosclerotic lesions 

(Berenson et al., 1998). Furthermore, clustered CVD risk has been described to track 

into adulthood (Andersen et al., 2004), meaning an adolescent with clustered CDV 

risk is more likely to present clustered CVD risk across subsequent ages. These 
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studies provide a strong rationale to target modification of clustered CVD risk factors 

during childhood and adolescence.  

Due to the childhood origin of atherosclerosis and its positive association with 

clustered CVD risk, the American Heart Association developed the concept of ideal 

cardiovascular health in 2010, aiming to determine metrics to measure, monitor and 

promote cardiovascular health (Lloyd-Jones et al., 2010). This concept stipulates 

seven cardiovascular health markers (four health behaviours: PA, diet, body 

composition and smoking, and three health factors: BP, blood [lipids] and GLU). An 

ideal cardiovascular health is identified with the presence of at least four ideal health 

markers. The number of adolescents, however, who achieve ideal cardiovascular 

health is concerning. For example, in Finland none of the adolescent participants (n = 

1,098) presented all seven ideal markers, whilst the presence of five ideal markers 

decreased from 60.2% of participants at 15 years old, to around 34% at 19 years old 

(Pahkala et al., 2013). Notably, the health markers that participants mostly failed to 

achieve were PA and diet.  

The consequences of a poor CVD risk profile observed in adolescence is reflected 

during adulthood. For example, the number of CVD risk factors  measured at the age 

of 12 – 18 years old significantly (P < 0.001 for trend analysis between the groups with 

different number of CVD risk factors) predicted carotid intima-media thickness (cIMT), 

a non-invasive marker of atherosclerosis, in adulthood independently of adult CVD 

risk factors (Raitakari et al., 2003). Additionally, a poor ideal cardiovascular health 

profile in adolescents has been associated with an increased cIMT in adulthood 

(Laitinen et al., 2012), with the adolescents who score one ideal cardiovascular health 

marker presenting an advanced vascular age (~ 12 years) compared to adolescents 
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with six ideal cardiovascular health markers (Laitinen et al., 2012). These studies 

demonstrate the negative impact of CVD risk measured in youth on the preclinical 

arterial adaptations into adulthood.   

In summary, atherosclerosis is a paediatric problem as its progression is positively 

associated with traditional CVD risk factors and clustered CVD risk during childhood 

and adolescence years (McGill et al., 2000). Early signs of a clustering of CVD risk 

factors are observed in the first decades of life which track into adulthood (Andersen 

et al., 2004), and predict preclinical atherosclerosis in adults (Pahkala et al., 2013). 

Therefore, strategies that reduce the burden of CVD should start by either preventing 

or modifying the development of CVD risk factors in young people (Magnussen et al., 

2013). Importantly, prevention strategies are likely to be more impactful compared to 

risk factor modification, given that CVD risk measured in adolescents is associated 

with preclinical atherosclerosis markers in adults independently of adult CVD risk 

factors (Pahkala et al., 2013). Furthermore, one unit of increase in ideal cardiovascular 

health in youth is associated with a 25% decrease in the chances of having a cIMT 

above the 80th percentile in adulthood. These findings were controlled for the changes 

in the ideal cardiovascular health score between youth and adulthood (Laitinen et al., 

2015), suggesting that CVD prevention in youth is paramount.  

2.3 Cardiovascular risk reduction via physical activity, cardiorespiratory fitness 

and exercise 

A lack of PA is considered a major cause of chronic disease, including CVD (Booth et 

al., 2012). In adults, as recently reviewed by the Physical Activity Guidelines Advisory 

Committee (Committee, 2018), strong evidence demonstrates a significant inverse 

relationship between MVPA and CVD mortality. Importantly, the evidence discussed 
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by the Committee involved the inclusion of 10 systematic reviews including nine meta-

analyses. The aim of this section is to focus on the paediatric literature supporting the 

role of PA intensities, CRF and exercise on CVD risk reduction.  

2.3.1 Physical activity 

Physical activity is defined as any bodily movement produced by skeletal muscles that 

results in increases in energy expenditure above baseline, and exercise is defined as 

a structured form of PA aiming to increase or maintain physical fitness (Caspersen, 

1989). Physical activity and exercise can be further divided into different intensities 

such as light, moderate and vigorous. Estimates of PA can be done using direct and 

indirect measures which have been reviewed elsewhere (Loprinzi and Cardinal, 2011). 

However, the best method available considering a trade-off between feasibility and 

validity is accelerometry (Hallal et al., 2012). However, controversy exists in the 

literature regarding the stratification of PA intensities, with the best approach to define 

PA intensity still open to debate (Schaefer et al., 2014). Regardless of these 

limitations, the following section will highlight the evidence regarding PA intensities 

and CVD risk reduction in youth. Where possible, direct methods of PA assessment 

will be discussed, considering the well documented overestimation of PA using indirect 

self-report methods such as questionnaires (Kavanaugh et al., 2015).    

Due to the lack of clinical manifestation of CVD in youth, the likely mechanisms by 

which PA decreases CVD risk in this population, and consequent future CVD risk in 

adulthood, is via modifying or preventing clustered CVD risk. A landmark investigation 

on the associations between PA and clustered CVD risk factors was conducted by 

Andersen et al. (2006). This study is interesting as it investigated the cross-sectional 

associations between objectively measured PA intensities and clustered CVD risk, on 
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the contrary to previous research investigating isolated CVD risk factors and using 

subjective estimates of PA. Furthermore, in this investigation a large cross-sectional 

sample of the European Youth Heart Study involving over 1,700 youth aged 9 – 15 

years old was investigated. The results demonstrated that youth in the first, second 

and third less active quintiles for MVPA presented 3.29, 3.13 and 2.51 higher odds of 

clustering of systolic BP (SBP), TAG, ratio of total cholesterol to high density 

lipoprotein (HDL), insulin sensitivity, sum of four skinfolds, and CRF compared to the 

most active quintile. 

These findings were later corroborated in other cross-sectional investigations by the 

European Youth Heart Study. In a sample of 1,769 youth aged 9 – 15 years old from 

three different countries, Andersen et al. (2008) showed that the least active quartile 

for mean acceleration counts obtained from accelerometers, presented ~ 80% higher 

chance of clustered CVD risk compared to the most active quartile. Importantly, the 

authors controlled the analysis for CRF and body fatness, meaning the observed 

associations were attributed to PA levels. Other studies have further corroborated an 

inverse association between total PA and clustered CVD risk in adolescents (Ekelund 

et al., 2007). Finally, evidence of the positive effects of PA on CVD risk reduction was 

obtained in a study with a pooled analysis of 14 cross-sectional investigations in which 

accelerometer data were available in 20,871 4 – 18-year olds. The results 

demonstrated that after controlling for age, sex, accelerometer wear time, body 

composition and sedentary time, MVPA was negatively associated with waist 

circumference (beta regression (β) = -0.54), SBP (β = -0.17), TAG (β = -0.03), and 

insulin sensitivity (β = -0.009) (Ekelund et al., 2012). Due to the inclusion of sedentary 

time as a covariate, the authors concluded that the associations between MVPA are 

independent of sedentary time, although sedentary behaviour was not considered.     
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In summary, these studies provide evidence of the cardio protective effects of PA, 

specifically MVPA. In general, these findings, amongst others (Janssen and Leblanc, 

2010), have been used to support the recommendation that children should perform a 

minimum of 60 min·day-1 of MVPA (WHO, 2010). However, one important finding by 

the European Youth Heart Study was that 15 year old adolescents who presented a 

lowered clustered CVD risk performed ~ 88 min·day-1 of MVPA (Andersen et al., 2006), 

which exceeds the minimum recommended. This is especially concerning, as the 

literature shows that over 80% of 13 – 15 years old from 105 countries do not meet 

the minimum 60 min·day-1 of MVPA (Hallal et al., 2012). Furthermore, PA levels have 

been shown to decrease during adolescence (Reilly, 2016), and intervention studies 

designed to increase PA have only led to four min·day-1 increase in PA levels (Metcalf 

et al., 2012).  

2.3.2 Physical activity intensity 

Recently, studies have suggested that the negative associations between MVPA and 

CVD risk may reflect time spent performing VPA but not MPA (Barker et al., 2018, 

Fussenich et al., 2016). This is especially problematic as most of the literature 

investigating CVD risk reduction in youth have focused on MVPA levels, although 

guidelines also suggest youth to perform VPA at least three times per week to improve 

bone and muscular health (WHO, 2010). Unlike guidelines for adults, e.g.(Bull, 2010), 

suggestions for VPA are not specific in terms of minimum duration, and studies 

investigating VPA and CVD risk in youth are less in number compared to MVPA. The 

aim of this section, therefore, is to provide a justification for the role of VPA on CVD 

risk reduction. 
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Few key studies have investigated the associations between VPA and traditional CVD 

risk factors in apparently healthy youth. For example, in a cross-sectional 

observational study, Hay et al. (2012) demonstrated that 12 year old adolescents in 

the highest compared to the lowest tertile of VPA presented 57 and 64% lower 

chances of being classified as overweight and hypertensive, respectively. Further 

analysis of the data revealed that the risk reduction associated with VPA was obtained 

with only ~ 7 min·day-1, but similar findings were not observed with ~ 46 min·day-1 of 

MPA. Although these results demonstrate associations between VPA, body weight 

status and BP, the authors did not investigate clustered CVD risk.  

Recently Fussenich et al. (2016) investigated the cross-sectional differences in CVD 

risk between PA intensities. The authors divided 182 children between 9 – 11 years 

old into quintiles based on MPA and VPA levels. The results demonstrated a 

significant five times higher odds of clustered CVD risk in the least active children in 

terms of VPA, but not MPA. Interestingly, the sharpest decline in risk (50%) was 

observed in the second least active compared to the least active quintile for VPA. The 

least active quintile performed ~ 11 min·day-1 of VPA compared to ~ 17 min·day-1  for 

the second least active quintile, leading to the suggestion that 17 min·day-1 of VPA 

may be associated with 50% reduction in clustered CVD risk (Fussenich et al., 2016). 

Furthermore, another recent investigation has demonstrated that VPA (standardised 

β (stβ) = -0.159) but not MPA (stβ = -0.05) was negatively associated with clustered 

CVD risk in 534 adolescents aged 12 – 17 years old (Barker et al., 2018). Interestingly, 

the significant negative association between VPA and clustered CVD risk disappeared 

when CRF was inserted into the regression models, and to date the different 

contributions of CRF and VPA are unclear (Barker et al., 2018). However, it may be 

speculated that a shared variance exists between VPA and CRF given that increases 
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in CRF are determined mostly by the intensity of the exercise stimulus (Costigan et 

al., 2015).     

Although the literature suggests that VPA is associated with CVD risk independently 

of MPA, causality cannot be inferred due to the cross-sectional nature of the 

investigations; for example, reverse causality may be present in that youth with a lower 

CVD risk perform more VPA. In contrast to cross-sectional investigations, longitudinal 

data may enable direction of causality to be inferred. In a two year longitudinal study 

involving 315 adolescents aged 9 – 15 years old, VPA measured at baseline was 

associated with better weight status (stβ ranging from -0.58 – -0.03 for the different 

VPA quartiles) and SBP (P = 0.06 for comparison between VPA quartiles) at follow 

up, whilst MPA was associated with weight status (P = 0.04 for comparison between 

MPA quartiles) (Carson et al., 2014). These results provide evidence of a casual 

association between VPA, weight status and SPB in youth. Several key aspects of 

Carson et al. (2014) study are worth noting. Firstly, the narrow range observed 

between the VPA quartiles (1 – 8 min·day-1) shows pronounced effects of seven 

min·day-1 of VPA, as opposed to ~ 25 min·day-1 necessary between MPA quartiles; 

and secondly, all regression models were controlled for the other PA intensities, 

suggesting that the observed VPA associations are independent of MPA. However, 

the lack of inclusion of clustered CVD risk indicates that causality between VPA and 

decreased clustered CVD risk is yet to be observed.  

Given the described associations and a possible causal effect of VPA, one attractive 

approach to deliver VPA is through high-intensity exercise. This can be achieved by 

isolating individual intensities via assessing an individual’s metabolic transition points 

to determine moderate (below ventilatory threshold) and high (above ventilatory 
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threshold) intensity exercise. In high-intensity exercise protocols, to increase session 

volume, studies normally use an interval approach, described as high-intensity interval 

exercise (HIIE). In adults, the effects of HIIE training on the prevention and 

management of CVDs, such as coronary artery disease, heart failure, stroke and 

hypertension have been reviewed elsewhere (Hussain et al., 2016). The conclusion is 

that HIIE leads to a similar, or in some cases superior, benefits compared to moderate 

exercise in adults.  

In youth, there is emerging research investigating the health benefits of HIIE training 

(Logan et al., 2014).A recent systematic review with meta-analysis investigated the 

effects of HIIE training compared to control or moderate-intensity interventions on CRF 

and body composition. In this review, 20 original studies were included, and the results 

were positive in favour of the HIIE training for improvements in CRF (pooled effect size 

(d) = 1.05; 95% confidence interval (CI) = 0.36 – 1.75), and body composition (pooled 

d = -0.37; 95% CI= -0.68 – -0.05). This meta-analysis provided level one evidence for 

the beneficial effects of HIIE training on body composition and CRF (Costigan et al., 

2015), although the effects of HIIE training on clustered CVD risk are yet less clear. 

Nevertheless, Logan et al. (2014) in a narrative review concluded that the current body 

of evidence demonstrates the efficacy of HIIE training to improve a multitude of CVD 

risk factors, such as body weight status, BP, CRF, body composition, blood lipids and 

GLU. However, numerous research questions still await to be addressed such as the 

optimum HIIE protocol in terms of duration, frequency and intensity. Finally, it is 

important to highlight that the current evidence in youth gives support to the 

proposition that HIIE training is an important determinant of improvement in CRF 

(Costigan et al., 2015).    
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2.3.3 Cardiorespiratory fitness 

Cardiorespiratory fitness can be defined as the integrated capacity of the 

cardiovascular and respiratory systems to supply oxygen to the contracting muscles, 

and the capacity of the muscles to use oxygen (Booth et al., 2012). Cardiorespiratory 

fitness is normally assessed as the maximum oxygen uptake (V̇O2max). Importantly, 

CRF is associated with CVD risk reduction independently of PA. This concept has 

been investigated in adults in a seminal meta-analysis involving 23 study cohorts and 

more than 1,300,000 participants per follow-up years in which the risk of coronary 

artery disease and CVD were the main outcomes. The results indicated that the risk 

of CVD and coronary artery disease drastically decreased in the first 25th percentile 

for CRF, and this decrease was not matched by the change in risk observed for PA 

levels reaching the 100th centile. The findings of the meta-analysis revealed a stronger 

impact of CRF compared to PA on CVD risk reduction (Williams, 2001). 

In youth, the literature also indicates that independent of PA, CRF is associated with 

a decreased CVD risk (Ekelund et al., 2007, Ruiz et al., 2014). For instance, cross-

sectional data from The European Youth Heart Study have shown a negative and 

significant association (stβ = -0.09) between CRF and clustered CVD risk in 1,709 

youth aged 9 – 15 years old (Ekelund et al., 2007). This association was still present 

when PA levels were included in the regression model. In this study, CRF was 

estimated as peak power obtained in a cycling test and expressed as W per kg of fat 

free mass per minute. In a similar investigation using data from the European Youth 

Heart Study, Hurtig-Wennlof et al. (2007) demonstrated that CRF, expressed as peak 

power per kg of body mass, was significantly associated with CVD risk in youth aged 

9-15 years old. From the canonical association it was demonstrated that 37% in the 

variance in CVD risk was explained by CRF. These findings were influenced by the 
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negative association between CRF and body fat (BF) expressed as the sum of biceps, 

triceps, subscapular, suprailiac and triceps surae skinfolds. Finally, a more recent 

study also corroborates the negative association between CRF and CVD risk in 

adolescents (Barker et al., 2018). In this later investigation, Barker et al. (2018) 

demonstrated that after controlling for PA levels an inverse association (stβ = -0.281) 

exists between clustered CVD risk and CRF, the later estimated from a 20m shuttle 

run test and expressed as mL·kg-1·min-1.  

Cardiorespiratory fitness has also been associated with better ideal cardiovascular 

health scores. For example, a positive linear association exists between the number 

of ideal cardiovascular health metrics and CRF obtained from the 20m shuttle test in 

a sample of 510 European adolescents aged 12 – 17 years old (Ruiz et al., 2014). In 

this later investigation, it was demonstrated that an ideal cardiovascular health is 

associated with a CRF threshold of 43 and 34.6 mL·kg-1·min-1 for boys and girls, 

respectively. These suggested thresholds are particularly important to monitor 

cardiovascular health in youth, given the role of the ideal cardiovascular health on 

CVD risk progression (see section 2.2.1). 

Longitudinal studies also evidence a possible effect of youth CRF on future CVD risk 

reduction. A systematic review conducted by Ruiz et al. (2009) provided strong 

evidence indicating that high levels of CRF during childhood predicts a better CVD risk 

profile in adulthood. Strong evidence was defined by the authors as evidence gathered 

from at least three studies deemed as high quality in the review. In addition to the 

longitudinal associations between CRF and CVD risk, a recent investigation has 

demonstrated that a one standard deviation increase in CRF (expressed as peak 

power per kg of body mass) measured in 743,498 adolescents at the age of 18 year 
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old was associated with an 18% decrease in risk of a myocardial infarction in a follow-

up of 34 years (Hogstrom et al., 2014). Collectively, these studies indicate a strong 

role of CRF on CVD risk reduction and CVD events both in cross-sectional and 

longitudinal investigations.  

The mechanisms by which CRF confers risk reduction via changes in traditional CVD 

risk factors is poorly understood. For example, in experimental exercise training 

studies, improvements in CRF are not paralleled by improvements in traditional CVD 

risk factors in adults with elevated CVD risk (Hartman et al., 2018), suggesting different 

pathways of cardiovascular protection. Additionally, the several different forms by 

which CRF is measured and expressed limits conclusions about CRF and CVD 

reduction. It has been argued that CRF per se may not be as important as body 

fatness. For example, when CRF is expressed against body mass using the ratio 

standard method (e.g. mL·kg-1·min-1) heavier children will inevitably present a lower 

CRF due to the phenomenon of ‘over-scaling’ (Loftin et al., 2016). Since lower CRF is 

associated with CVD risk, it seems plausible to question the inference of body fatness, 

which increases overall body weight and consequently decreases CRF. This scaling 

problem was recognized several decades ago (Armstrong and Welsman, 1994), and 

still clouds the interpretation of CRF in youth. Therefore, it is perhaps not surprising 

that Hurtig-Wennlof et al. (2007) found that adolescents with a lower CRF presented 

elevated CVD risk, as this is likely confounded by differences in BF content. Future 

investigations are encouraged to consider a size-free measure of CRF to investigate 

the mechanistic pathways by which CRF confers CVD risk reduction, either by scaling 

for fat free mass and/or using allometric approaches (Loftin et al., 2016). 



 
 

48 
 

In summary, the current evidence base indicates that MVPA, VPA and CRF all play 

an important role in modifying CVD risk in youth. However, it is not clear the duration 

and amount of VPA and HIIE important to consider when promoting CVD risk reduction 

in youth. 

2.3.4 The risk factor gap 

As evidenced above, PA intensities and CRF measured in youth are inversely 

associated with CVD risk factors in youth and later in adulthood. However, it is still 

debated whether improvements in traditional CVD risk factors fully translates into CVD 

risk reduction, with a risk factor gap being proposed in our current understanding of 

CVD risk reduction (Joyner and Green, 2009). The notion that improvements in 

traditional CVD risk factors do not fully explain risk reduction has been suggested in a 

narrative review (Swift et al., 2013). Swift et al. (2013) concluded that PA and CRF 

conferred CVD risk reduction between 12 – 60%, with traditional CVD risk factors 

accounting for 5 – 15% of the reduced risk (Swift et al., 2013). Importantly, the 

evidence presented by Swift et al. (2013) was gathered from longitudinal studies and 

systematic reviews, reinforcing the notion that improvements in traditional CVD risk 

factors does not fully explain CVD risk reduction.  

In addition to the narrative review by Swift et al. (2013), the percentage of contribution 

from different CVD risk factors towards CVD risk reduction caused by PA has been 

previously examined in a seminal investigation by Mora et al. (2007). These authors 

were the first to investigate, in a sample of 27,055 women, how PA contributes to 

reduction in CVD and coronary heart disease via improvements in traditional CVD risk 

factors (and novel risk factors such as inflammatory markers). PA levels were 

estimated using questionnaires at baseline and participants were followed-up for 
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nearly 11 years. After controlling for smoking, diet habits, family history, menopause 

and hormone use, the results indicated that improvements in CVD risk factors accrued 

by PA explained 59% of the CVD risk reduction. The conclusion was the presence of 

41% CVD risk reduction that could not be attributed to improvements in traditional 

CVD risk factors (Figure 2.2) (Mora et al., 2007).  

 

Figure 2.2: Reduction in cardiovascular disease associated with physical activity is 

only partially explained by traditional cardiovascular disease risk factors suggesting 

the existence of a risk factor gap. Reproduced from Mora et al. (2007) with permission. 

 

Several limitations should be considered before generalisation of the findings by Mora 

et al. (2007). For example, despite the large sample size of over 27,000 participants, 

PA was estimated using questionnaires and only women were included in the analysis. 

Additionally, PA was represented as gross energy expenditure in kilocalories per 

week, meaning the effect of PA intensity was not investigated. Despite these 
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limitations, Mora et al. (2007) was the first original investigation to demonstrate that 

improvements in traditional CVD risk factors do not fully explain CVD risk reduction. 

Over the last several decades, the arterial and autonomic nervous systems have 

emerged as putative novel CVD risk factors with improvements in these systems being 

proposed to explain benefits of PA on CVD risk reduction beyond the traditional risk 

factors (Green et al., 2008, Joyner and Green, 2009). Experimental data supporting 

the contribution of the arterial system to the risk factor gap have been gathered in a 

series of original investigations. These investigations demonstrated that in healthy 

adults, as well as adults with the presence of clinical CVD, a combination of aerobic 

and resistance exercise completed three times per week over a course of eight weeks, 

led to increases in arterial function (assessed non-invasively using flow mediated 

dilation (FMD)) with no concomitant improvements in traditional CVD risk factors 

(Green et al., 2003). To further demonstrate the important effects of exercise on FMD, 

the results of 13 exercise trials with a total of 183 participants were pooled and it was 

demonstrated that improvements in FMD were not significantly associated (r < 0.25) 

with improvements in traditional CVD risk factors such as CRF, blood GLU, BP, and 

body composition  (Green et al., 2014). This is especially important, given the fact that 

arterial dysfunction is positively associated with mortality and CVD events in adults, 

and is considered the sentinel event into the atherosclerotic process (Green et al., 

2011).  

Similarly, the role of cardiac autonomic function on CVD risk in adults has been 

reviewed with the suggestion that cardiac parasympathetic activity is negatively 

associated with all cause of mortality, as well as CVD risk factors (Thayer et al., 2010, 

Thayer and Lane, 2007). A possible mechanism by which a higher cardiac autonomic 
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function may decrease CVD risk independently of improvements in traditional CVD 

risk factors is via a decreased resting HR, cardiac work and myocardial oxygen 

demand (Buch et al., 2002). Another likely mechanism is a decreased sympathetic 

influence on the vessel and consequent improved vasodilatory capacity and 

maintenance of BP (Charkoudian et al., 2006). However, on the contrary to vessel 

function, there are a lack of original investigations demonstrating a possible influence 

of PA on the autonomic system independently of traditional CVD risk factors.  

The highlighted adult literature presents the possible role of the autonomic and arterial 

systems as components of the risk factor gap. In youth, the influence of these systems 

beyond traditional CVD risk factors has received little attention to date. A recent cross-

sectional investigation included FMD into a clustered CVD risk score in 9 – 11 years 

old and identified decreases in the composite CVD risk score across VPA groups 

(Fussenich et al., 2016). However, the authors did not aim to investigate whether the 

inclusion of FMD increased the magnitude of association between VPA and CVD risk. 

This would help to identify the unique variance in CVD risk attributed to the inclusion 

of FMD and traditional CVD risk factors.  

Another recent investigation in youth adds to the importance of autonomic and arterial 

functions on modification in CVD risk. It was demonstrated by Bond et al. (2015a) that 

improvements in both arterial and autonomic functions were observed after two weeks 

of HIIE training without concomitant improvements in traditional CVD risk factors and 

CRF (Bond et al., 2015a). The lack of significant relationships between the delta 

changes in arterial and autonomic function in this study showed that short-term 

adaptation in these systems may occur in an independent manner. However, further 

research is needed to investigate the possible contribution/associations between PA 



 
 

52 
 

intensities, CRF and the autonomic and vascular systems independently of traditional 

CVD risk factors, as well as a possible interdependence between these systems.  

2.4 Autonomic function 

The aim of this section is to introduce the reader to cardiac autonomic function. An 

overview of assessment approaches and physiological significance will be introduced, 

followed by a discussion on how PA intensities and CRF are associated with cardiac 

autonomic activity.  

2.4.1 Assessment of autonomic function 

The autonomic nervous system is divided into sympathetic and parasympathetic 

branches (Curtis and O'Keefe, 2002). For a more detailed review of the methods 

available to estimate autonomic function the reader is directed to Seals (2011). In this 

thesis, the specific autonomic effects on the heart will be addressed, with the 

sympathetic branch causing tachycardia whilst the parasympathetic branch leads to 

bradycardia. At rest, cardiac parasympathetic activity is predominant, and a 

diminished cardiac modulation by the parasympathetic activity has been positively 

associated with increased CVD risk and the progression of atherosclerosis in adults 

(Thayer and Lane, 2007, Thayer et al., 2010, Huikuri et al., 1999). In the following 

section, the use of heart rate variability (HRV) and heart rate recovery (HRR) to 

estimate the autonomic nervous system is discussed. Both HRV and HRR are 

particularly attractive outcomes due to their well-defined physiological determinants 

and prognostic value (Zulfiqar et al., 2010, Pecanha et al., 2017). The non-invasive 

nature of HRV and HRR measurements are also ideal for studies involving a paediatric 

population who have unique ethical considerations.  



 
 

53 
 

Although both HRV and HRR are mainly influenced by parasympathetic activity, the 

physiological determinants of each are distinct. While HRV is determined by the 

modulation of vagal tone, HRR is mainly determined by saturation of the cholinergic 

receptors in the heart (Malik and Camm, 1993, Dewland et al., 2007, Buchheit et al., 

2007b). For example, increase in parasympathetic activity in the sinoatrial node by 

selective inhibition of acetylcholinesterase (enzyme responsible for the breakdown of 

acetylcholine) leads to an increase in HRR, but not HRV (Dewland et al., 2007). 

Additionally, HRR is also related to the sympathetic influence on the HR during the 

exercise bout, as well as the contribution of anaerobic metabolism, including the 

phosphocreatine utilisation and lactate production during exercise (Buchheit et al., 

2007a). Reducing HRR to only a measure of parasympathetic reactivation is, 

therefore, questionable (Buchheit et al., 2007b). These studies also indicate that a 

comprehensive appraisal of cardiac autonomic function should involve measurements 

of both rest and recovery indices.  

2.4.1.1 Heart rate variability 

Heart rate variability is the measurement of the variations between the time for each 

ventricular depolarisation, which can be quantified using time and frequency domains, 

as well as nonlinear fractal approaches (Task-Force, 1996). Table 2.1 presents the 

HRV time and frequency domain indices and their physiological significance. Due to 

the well-known parasympathetic influence, two indices are highlighted. In the time 

domain, the square root of the mean of the sum of the squares of differences between 

adjacent heart beats (RMSSD) is derived from the mathematical average of the time 

in ms between each heartbeat. In the frequency domain, a mathematical approach 

(normally a Fast Fourier Transformation), is used to derive a frequency spectrum of 

the time in ms between each heartbeat. The frequency spectrum is then divided into 
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low (0.04 – 0.15 Hz) and high (0.15 – 0.40 Hz) frequencies, named LF and HF 

respectively. The power (ms2) in the HF band is used as the parasympathetic 

determinant, whilst the power in the LF component can infer baroreflex control of BP 

(see section 2.6) and overall autonomic modulation (Rahman et al., 2011, Goldstein 

et al., 2011). Therefore, caution should be taken when interpreting the physiological 

significance of the LF band, and the LF/HF ratio, which is commonly used as an 

indication of the sympathetic/parasympathetic balance (Billman, 2013). 

The parasympathetic contribution to the HF index has been described in studies using 

drug administration to block the autonomic influence on the heart. For example, 

administration of atropine, which blocks the acetylcholine receptors in the heart, 

abolishes the power in the HF band (Pomeranz et al., 1985, Akselrod et al., 1981). On 

the contrary, the administration of propranolol, a well-known beta blocker, does not 

change HF power. The RMSSD has been shown to present a strong and positive 

association (r = 0.87) with the HF component (Bigger et al., 1989) indicating similar 

parasympathetic determinants (Shaffer and Ginsberg, 2017).  

The measurement of HRV can be performed using two valid approaches. The first 

approach is by using a long-term (24 h) recording and the second approach is by a 

short-term (5 min) recording. For short-term HRV measurements, well controlled 

conditions are encouraged (Task-Force, 1996). For example, previous exercise (i.e. 2 

h before the measurements), caffeine and food ingestion, room temperature, length of 

the rest period preceding data collection, and breathing frequency all have the 

potential to alter HRV outcomes (Task-Force, 1996). However, it should be noted that 

debate exists (Shaffer and Ginsberg, 2017) on whether to control breathing frequency 

for HRV measures, with Williams and Lopes (2002) showing increases in HF when 
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breathing control was used in 15 year old adolescents. Table 2.1 provides an overview 

of HRV measurements using the short- and long-term approaches.  

Table 2.1: Summary of time and domain indices of heart rate variability. 

Indices  Domain Physiological 

determinant 

Data collection 

method 

Very low frequency Frequency  

(< 0.04 Hz) 

Renin angiotensin 

system/ temperature 

control 

Long-term 

Low frequency Frequency  

(0.04 – 0.15 Hz) 

Parasympathetic and 

sympathetic 

Long-term and 

short-term 

High frequency  Frequency  

(0.15 – 0.4 Hz) 

Parasympathetic Long-term and 

short-term 

Low frequency/ High 

frequency ratio 

Arbitrary units Parasympathetic and 

sympathetic 

Long-term and 

short-term 

Standard deviation of 

all inter-beat 

intervals. 

Time Parasympathetic and 

sympathetic 

Long-term and 

short-term 

RMSSD Time Parasympathetic Long-term and 

short-term 

Number of pairs of 

inter-beat intervals 

differing by more than 

50 ms 

Time Parasympathetic Long-term and 

short-term 

RMSSD: square root of the mean of the sum of the squares of differences between 

adjacent heart beats. 

Importantly, the control of confounding factors influences the reliability of HRV indices. 

For instance, previous food ingestion and exercise are known to decrease HRV (Bond 

et al., 2015a) which may lead to an erroneous risk stratification. Additionally, a recent 

meta-analysis involving 1,841 youth aged 5 – 18 years old showed that 
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inconsistencies in recording duration, prerecording acclimatisation, and frequency 

bandwidth selection, cloud the current interpretation of HRV reliability in youth (Weiner 

and McGrath, 2017). Nevertheless, HRV has been shown to present moderate 

(Fisher’s Z = 0.62 and r = 0.55 from pooled meta-analysis for HF) to high (Fisher’s Z 

= 1.00 and r = 0.76 from pooled meta-analysis for RMSSD) reliability obtained from a 

recent meta-analysis (Weiner and McGrath, 2017). However, despite being obtained 

from a meta-analysis including a large sample size (n = 1,841) based on 18 different 

studies, the pooled correlation reported by the authors provides an estimate of rank 

position and limits a comprehensive evaluation of mean bias (indicative for a 

learning/fatigue effect) and within-participant variability (variation at an individual level) 

of the HRV measures in the paediatric literature. The variability in HRV has recently 

been addressed in adolescents aged 14 – 19 years old, and the mean coefficient of 

variation (CV) obtained for RMSSD and HF was lower than 20% for short-term 

measurements (Farah et al., 2016).     

2.4.1.2 Heart rate recovery 

In addition to the resting HRV measurements, the post-exercise recovery indices of 

HRV and HRR can be used to measure parasympathetic recovery. During exercise 

there is a gradual intensity-dependent parasympathetic withdrawal, and in the first 

minute after exercise cessation there is a parasympathetic reactivation (Pecanha et 

al., 2017). Quantifying parasympathetic reactivation following exercise can be 

achieved using several measurements. For example, the number of heart beats 

recovered in the first minute of exercise (HHR60) (Cole et al., 1999), the slope of the 

linear association between heart rate recovery in the first 30 s (T30) (Imai et al., 1994), 

the short-term (i.e. 5 and 10 min) recovery of the RMSSD (Goldberger et al., 2006), 
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and the time HR (HRRt)takes to achieve its asymptote in the first 10 min of recovery 

(Javorka et al., 2003).   

The pros and cons of these measurements have been recently reviewed, as well as 

the physiological determinants and respectively prognostic value (Pecanha et al., 

2017). Parasympathetic tone is the main determinant of the T30 following exercise, and 

an interplay between parasympathetic reactivation and sympathetic withdrawal is what 

determines HRRt (Pecanha et al., 2017). Heart rate recovery indices present 

moderate reliability in adults (intraclass coefficient of correlation (ICC) for T30 and 

HRRt of 0.62 – 0.77 and 0.71 – 0.74, respectively) (Pecanha et al., 2017). In youth, 

reliability of post-exercise measurements of HRR has been demonstrated in one 

investigation involving 17 adolescents aged 15 years old (Buchheit et al., 2008). The 

results showed acceptable reliability for the HRR60 (ICC = 0.70), HRRt (ICC = 0.86), 

and T30 (ICC = 0.73), although CVs, which represent variation at an individual level, 

were not reported.  

The physiological factors during exercise that influence HRR in youth have been 

previously investigated. Buchheit et al. (2010) demonstrated that lactate concentration 

and blood pH throughout repeated sprints are significant related to HRRt in children 

aged nine years old. In this study, HRRt was positively associated with mean power 

output (r = 0.48), lactate concentration (r = 0.58), and blood pH (r = 0.48) obtained 

during repeated sprint exercise. Due to a lower mean output, lower lactate 

concentration and maintenance of pH values close to baseline, children presented a 

faster HRRt (~ 20 s) compared to adolescents (~ 40 s) and adults (~39 s), with no 

differences observed between adolescents and adults (Buchheit et al., 2010). 

However, it is not clear whether these findings of HRR obtained following repeated 
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sprints are replicable in other exercise modalities, such as HIIE and exercise to 

exhaustion. Given that the exercise characteristics influence HRR in youth, 

standardisation of the exercise bout is essential.  

In summary, measurements of HRV and HRR provide non-invasive and reliable 

estimates of the parasympathetic modulation and are suitable to investigate the role 

of the autonomic system as part of the risk factor gap in adolescents.  

2.4.2 Physical activity and autonomic function 

The role of PA and exercise on autonomic function has been extensively documented 

in the adult literature. For example, in a meta-analysis conducted over a decade ago, 

13 studies using exercise training interventions investigating whether exercise training 

alters autonomic modulation. A significant pooled effect was observed in favour of 

exercise training on resting HF (pooled d = 0.48) (Sandercock et al., 2005). In youth 

several original research studies have investigated whether PA and exercise training 

changes resting HRV, although less is known about HRR in this population. Estimates 

of PA by questionnaire show that daily PA or sports participation are positively related 

to an increase in resting HRV (Radtke et al., 2013a, Henje Blom et al., 2009). 

However, due to the overestimation of PA by self-reported methods (Corder et al., 

2009), investigations using objective measurements of PA are encouraged. Using 

accelerometer data, Gutin et al. (2005) showed a positive association between MVPA 

and RMSSD (stβ = 0.18) in a sample of 304 adolescents aged 14 – 18 years old. 

Importantly, all associations were controlled for sex, race, body composition and CRF. 

However, the authors did not compare the possible associations between PA 

intensities and sedentary outcomes which would provide relevant information about 

PA intensity (see section 2.3.2).  
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Other studies have investigated the associations between HRV and PA intensities. 

For example, Radtke et al. (2013b) investigated associations between MPA, VPA and 

resting RMSSD in adolescents aged 15 years old. The authors showed a significant 

association between MPA and RMSSD (stβ = 0.448) after controlling for age, sex, 

maturity status and body fatness. Significant associations between VPA and RMSSD 

were not observed (stβ = 0.011). On the contrary, Buchheit et al. (2007c) in a sample 

of pre-pubertal 12 year old children showed significantly higher HF for children 

performing more than 60 min·week-1 of VPA (HF/HF+LF = 0.50 ± 0.1 ms) compared 

to children performing less (HF/HF+LF = 0.42 ± 0.1 ms). These findings were adjusted 

for age, sex, and body fatness. The differences between the age of the participants, 

and data analysis (i.e. RMSSD and HF/total power ratio) and data collection 

(min·week-1 vsmin·day-1) approaches limits an overall conclusion to be achieved. 

Given that a considerable number of studies exist investigating PA, PA intensities and 

HRV in youth, a systematic review approach may help to elucidate the potential 

associations between PA, PA intensities and cardiac autonomic function in a 

paediatric population, as well as explore possible limitations in the current evidence 

base.   

Another limitation on our current understanding is that no studies have measured 

autonomic recovery, which would provide insight into associations between different 

PA intensities, resting and recovery indices of autonomic function in youth. Similarly, 

it remains to be determined whether any possible associations between PA, HRV and 

HRR exist after accounting for traditional CVD risk factors, or whether the associations 

are stronger compared to the associations between traditional CVD risk factors and 

PA.  
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Regarding exercise training, a meta-analysis with the inclusion of only two studies 

investigating aerobic training (n = 29) against a control group (n = 28) in pre-pubertal 

children revealed no significant improvements in any of the parasympathetic HRV 

measures (da Silva et al., 2014a). The strict inclusion criteria of the meta-analysis 

limits the findings to only pre-pubertal children and no systematic review has included 

mid or post-pubertal adolescents. If there are differences in HRV training responses 

between pre-pubertal, mid-pubertal and post-pubertal children, it is currently unknown. 

However, due to a higher HF reported in 16 years old (2858 ± 540 ms2) compared to 

8 years old (1559 ± 332 ms2) (Lenard et al., 2004),  it is plausible that the training 

responses in different age/maturity groups may also differ. In a recent study 

investigating HIIE training on RMSSD in 13 – 14 years old boys and girls, a significant 

improvement was observed following two weeks of training (pre = 66.2 ± 23.6, post = 

84.4 ± 27.2 ms) (Bond et al., 2015a). Research is still needed to elucidate exercise 

training characteristics such as intensity, duration, and frequency associated with HRV 

improvements in youth. 

2.4.3 Cardiorespiratory fitness and autonomic function 

The evidence for a possible association between CRF, HRV and HRR in youth is 

unclear. For example, Brunetto et al. (2005) showed that 15 year old adolescents 

divided into tertiles of V̇O2max, directly measured from an incremental running 

protocol and expressed as mL·kg-1·min-1,presented similar RMDDS values (1.7 ± 0.2; 

1.8 ± 0.2,  and 1.8 ± 0.1 ms) for the first, second and third tertile, respectively. On the 

contrary, in studies where confounders (i.e. age, sex, maturity status, and BP) were 

taken into consideration, positive associations were observed for CRF estimated 

indirectly and parasympathetic indices of HRV in youth (Gutin et al., 2005, Michels et 

al., 2013). These results highlight the existence of potential associations between CRF 
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and resting HRV in youth. However, contrary to the evidence base for the association 

between traditional CVD risk factors and CRF, which has been investigated in 

systematic reviews (Ruiz et al., 2009), no systematic review has addressed possible 

associations between CRF and autonomic function in youth.  

In youth, the possible associations between CRF and HRR are less clear compared 

to resting HRV. On the contrary, in adults an investigation by Buchheit and Gindre 

(2006) elegantly demonstrated the interplay between CRF, PA levels, HRR and HRV. 

These authors showed that CRF in mL·kg-1·min-1 measured directly from a cycling test 

was moderately related to resting HRV (r = 0.53), but not to HRRt (r = 0.01). The 

opposite was observed for weekly PA estimated via questionnaire, which was 

moderately related to HRRt (r = 0.55) but not to resting HRV (r = 0.01). The 

mechanisms behind these findings were not examined in the study, and to date it is 

unclear why CRF and PA present different associations with HRV and HRR. Finally, 

no studies have yet identified the possible associations between CRF, PA, HRR and 

HRV in youth. 

2.5 Arterial function 

The aim of this section is to introduce the reader to arterial function, with focus on 

arterial compliance and distensibility. Currently there is a plethora of evidence linking 

arterial dysfunction and stiffness (inverse of distensibility) to traditional CVD risk 

factors. For example, in 11-year olds with familial hypercholesterolemia (a well 

described CVD risk factor) arterial distensibility and compliance are decreased by 15% 

and 19%, respectively (Aggoun et al., 2000). Similarly, in 11 – 14 year olds, elevated 

BP is a significant predictor of arterial stiffness (β = 0.36) assessed using pulse wave 

velocity (PWV), when sex, body weight status, maturity status, and HR are controlled 
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for, showing early signs of arterial stiffening in children with traditional CVD risk factors 

(Phillips et al., 2015). Likewise, a meta-analysis provided level one evidence of an 

increased arterial stiffness in 1,281 obese youth aged 4 – 24 years old compared to 

956 healthy normal weight pairs (pooled d = 0.72; 95% IC = 0.29 – 1.42) (Cote et al., 

2015b). 

This section is structured with a short overview on the assessment and physiological 

significance of arterial stiffness, compliance and distensibility, followed by a discussion 

on how PA intensities and CRF are associated with arterial stiffness. Gaps in current 

knowledge will be highlighted. 

2.5.1 Assessment of arterial stiffness 

The arterial system is established not only as a conduit system to deliver blood, but 

also as a tissue that provides important physiological adjustment of blood flow and 

pressure (Wagenseil and Mecham, 2009). The arterial wall is structured in three 

distinct layers; the tunica intima, tunica media and tunica adventitia. The tunica intima 

is composed of a single layer of endothelial cells attached to a basal lamina  

(Wagenseil and Mecham, 2009). The endothelial cells are important for the production 

of endothelium-derived relaxing factors which possess atheroprotective roles 

(Vanhoutte et al., 2017). Nitric oxide (NO) is a well described endothelium-derived 

relaxing factor, and it is also an important determinant of arterial stiffness (Wilkinson 

et al., 2004).The tunica media is composed mostly of smooth muscle and elastin, 

which is responsible for changes in arterial tone via muscular contraction and 

relaxation. The tunica adventitia is the outmost layer and is composed mostly of 

collagen fibres (Wagenseil and Mecham, 2009). The different layers of the arterial wall 

ultimately give the elastic properties of the arterial tree. For instance, the large central 
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arteries such as the aorta are more elastic providing a cushioning to the blood flow, 

compared to stiffer conduit arteries, such as the radial artery (Oliver and Webb, 2003). 

Consequently, arterial compliance assessment can be altered depending on which 

segment of the arterial tree is used. For example a recent meta-analysis investigating 

the effects of an acute exercise bout on arterial stiffness revealed that in the first 5 min 

post-exercise upper body arterial stiffness increases, while arterial stiffness of the 

lower body decreases following the exercise bouts in adults (Mutter et al., 2017).   

Assessment of arterial stiffness can be performed in several ways, including regional 

(i.e. PWV) and local (i.e. common carotid artery (CCA) distensibility) measures. The 

PWV method measures the speed in which the pulse wave travels across a given 

arterial segment (Laurent et al., 2006). The gold standard method for PWV 

assessment is the measurement of central PWV, normally in the central aorta. For 

central PWV, the pulse at the carotid and femoral arteries are obtained and the time 

delay between the nadir of the wave (i.e. end diastole) is measured. The distance 

between the two arterial segments is then obtained as the superficial distance between 

the two arterial points, normally measured as the difference between the external 

notch and the carotid artery and the external notch and femoral artery. PWV in then 

expressed in m·s-1(Laurent et al., 2006) (Figure 2.3). All superficial arteries can be 

used to assess PWV, however, most of the reference values in the adult literature, as 

well as the associations with CVD risk, have been obtained using central PWV 

(Reference Values for Arterial Stiffness, 2010). However, due the intrusive nature of 

assessing femoral pulse in youth, central PWV is often limited to laboratory conditions. 
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Figure 2.3: Central pulse wave velocity assessed from the carotid to femoral artery. 

The superficial location of these arteries allows measurement of the pulse on the body 

surface using waveform transducers. Changes in time (Δt) is then calculated between 

the foot-to-foot of the waves obtained at the carotid and femoral sites. The length of 

the segment is obtained as the difference between from the distance of the strongest 

pulse measured in the body surface (ΔL). PWV = Δt/ΔL. Reproduced from Laurent et 

al. (2006) with permission. 

 

Due to their less intrusive nature, other peripheral arterial segments are often used in 

youth. Studies have used PWV from brachial to radial, carotid to ankle, and carotid to 

radial arteries (Mutter et al., 2017). The limitations of using different arterial segments 

is the lack of prognostic and reference values in the literature. Furthermore, a lower 

atherosclerotic manifestation exists in the muscular peripheral arteries compared to 

more elastic and central ones. Additionally, the reliability of peripheral PWV has not 

been addressed in youth, which can limit the interpretation of peripheral measures of 

PWV (Urbina et al., 2009). Finally, when assessing peripheral PWV, the specific 

arterial wall characteristics should be taken into consideration when interpreting the 
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results. This is because muscular peripheral arteries are stiffer compared to the central 

and more elastic ones (Urbina et al., 2009).  

Measures of local arterial stiffness provide information about the strain stress 

relationship of a specific artery (Laurent et al., 2006). Any superficial artery can be 

used; however, studies highlight the clinical value of assessing local stiffness of the 

CCA in both adults and youth (Urbina et al., 2009, Laurent et al., 2006). Several 

indices can then be obtained from the assumption that the absolute change in volume 

(strain) is caused by changes in pressure (stress), which depends on the viscoelastic 

characteristics of the arterial wall. To measure local stiffness, measurements of BP 

are performed simultaneously with measures of the arterial diameter. According to 

specific guidelines, assessment of local pulse pressure (PP) (i.e. with applanation 

tonometry) rather than brachial pressure is desired (Laurent et al., 2006). High 

resolution images of CCA are then obtained using ultrasound during the cardiac cycle 

to obtain a longitudinal image of the artery with clear presentation of the IMT to quantify 

systolic and diastolic lumen diameters (SLD and DLD, respectively). Similar to PWV, 

there is also a lack of paediatric investigations on the reliability of CCA measures 

(Urbina et al., 2009), and further research is needed to determine the between and 

within-day variability of local arterial stiffness, which is paramount for interpretation of 

research findings. 

The mechanisms by which arterial stiffness can occur are dependent on adaptations 

of the arterial wall to different stimuli, such as exercise or disease. As the collagen/ 

elastin ratio of the arterial wall reflects the stiffness of the vessel, changes in this ratio 

can explain arterial stiffness. This has been shown in animal models in which induced 

hypertension led to an over expression of collagen relative to elastin and a consequent 
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arterial stiffening (Xu et al., 2000). In addition, because elastin and collagen actively 

participate in the remodelling of the arterial wall induced by hemodynamic stimulus, it 

is likely that the inverse association between PA intensities and arterial stiffness 

(Ferreira et al., 2006, Ferreira et al., 2003, Ferreira et al., 2002) reflects adaptation of 

the artery towards an increase in elastin caused by a heightened stimulus on the 

arterial wall due to increases in shear stress during PA. The differences in elastin and 

collagen is also implicated in arterial stiffening with ageing (Zieman et al., 2005). 

In addition to the changes in the elastic components of the arterial wall, external 

influences can also alter local and regional arterial stiffness. Such influences are 

sympathetic activity, angiotensin, blood lipids, shear stress and luminal diameter, 

amongst others (Zieman et al., 2005). For instance, an increased oxidative stress in 

the postprandial state following ingestion of high-fat and/or high-sugar meals (see 

section 2.7) impairs endothelial function with a consequent increase in arterial muscle 

constriction (Wilkinson et al., 2004, Zieman et al., 2005, Wang and Fitch, 2004). 

Additionally, an elevated vasoconstriction stimulated by sympathetic activity also leads 

to arterial stiffness (Wang and Fitch, 2004). These later mechanisms are more likely 

to alter arterial stiffness in the short-term (i.e. hours or days). Examples of short-term 

changes in arterial stiffness are following exercise (Naka et al., 2003), when 

endothelial function is increased (Bond et al., 2015c), and sympathetic activity to the 

vessel is diminished (Buckwalter and Clifford, 2001). Collectively, these results 

highlight that short-term effects on arterial stiffness are caused by external factors and 

long-term changes in arterial wall components may reflect an adaptation to stimuli, 

either exercise, disease or ageing. How exercise changes arterial stiffness in youth 

both in the short and long- term, and the associated mechanisms, are still unclear.  
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Because of the characteristics and physiological determinants of local and regional 

arterial stiffness, several factors should be controlled when using these 

measurements. For instance, due to the dependence of arterial stiffness on BP, factors 

such as room temperature, food intake in the hours before the measurements, 

standardization of resting period, body position, time of the day and white coat effect, 

should be considered (Laurent et al., 2006). In addition, local arterial stiffness is 

dependent on technical ultrasound imaging skills of the researcher. All the mentioned 

factors may decrease reliability of the measurements if not controlled. Investigations 

in 12 – 15 year old adolescents that did not aim to test reliability of the PWV stated 

that when the CV was higher than 20% the measurement was rejected (Boreham et 

al., 2004). Similarly, Ried-Larsen et al. (2014) reported CVs lower than 5% for intra-

reader measures of CCA distensibility in 15-year old adolescents. Although these 

results do not provide specific information about reliability, they indicate that measures 

of arterial stiffness show the potential to be reliable, however, this is yet to be 

investigated.  

In summary, arterial stiffness can be assessed using local and regional measures 

which are non-invasive and ideally suited to investigations in youth. There is still very 

little information regarding the reliability of arterial stiffness measures in youth, which 

is concerning because measures of reliability are necessary for interpretation of 

research findings.  
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2.5.2 Physical activity and arterial function 

Due to the diverse mechanisms regulating arterial stiffness, the likely influence of PA 

intensities may be via changes in arterial wall structure (i.e. collagen/elastin) and/or 

function (i.e. NO dependent dilation). An interplay between function and structure 

appears to exist as evidenced by an increased cIMT observed only in adults with a 

combination of clustered CVD risk and impaired FMD, but not in adults with clustered 

CVD risk and maintained FMD (Juonala et al., 2004). These results suggest that 

impairment in endothelial function is a necessary step for arterial remodelling. On the 

contrary, in 10 year old healthy children, decreases in FMD obtained over four months 

(10.7 ± 4.3 at baseline vs 7.2 ± 3.5%) were not significantly associated (r = 0.14) with 

increases in cIMT observed after the 30 month follow-up (Hopkins et al., 2013). 

Collectively, these results appear to indicate the existence of a potential window of 

opportunity before arterial dysfunction leads to arterial remodelling in children. This is 

especially important, as PA and exercise can be used to prevent adverse arterial 

remodelling via maintenance of arterial function and stiffness.  

In adults, exercise training has been shown as an important strategy to increase 

endothelial function. One mechanism implicated is an up-regulation of endothelial 

nitric oxide synthase, stimulated by the exercise induced shear stress and circulating 

factors (i.e. hormones, cytokines, adipokines) (Padilla et al., 2011). An important 

notion, however, is that increases in NO-dependent vessel function can occur 

independent of concomitant improvements in traditional CVD risk factors in both adults 

(Green et al., 2003) and adolescents (Bond et al., 2015a). Collectively, these results 

suggest that PA and exercise can alter vessel function via a different mechanistic 

pathway compared to their effects on traditional CVD risk factors.  



 
 

69 
 

In adolescents, the evidence for associations between PA and arterial stiffness has 

been mostly obtained from longitudinal investigations. For example, van de Laar et al. 

(2011) investigated the effect of habitual PA on arterial compliance in a 24 years 

longitudinal investigation. In this study, the first PA estimates were completed when 

participants were 13 years old using face-to-face interviews, and repeated at the ages 

of 14, 15, 16, 21, 27, 32 and 36 years old. At the age of 36, participants were divided 

into tertiles of arterial compliance measured at the brachial (tertile one = 0.27, tertile 

two = 0.15, and tertile three = 0.09 mm·kPa-1) and femoral (tertile one = 0.78, tertile 

two = 0.46, and tertile three = 0.29 mm·kPa-1) arteries. The results demonstrated that 

participants with higher brachial and femoral compliance spent significantly more time 

during the 24 years follow-up performing VPA, but not light-to-moderate PA. A follow-

up analysis controlling for diet and traditional CVD risk factors did not alter the findings. 

In a similar investigation conducted by the same group, van de Laar et al. (2010) 

replicated the same findings for CCA compliance (tertile one = 0.72, tertile two = 0.97, 

and tertile three = 1.28 mm·kPa-1). These studies indicate that arterial compliance of 

central and peripheral arteries is increased due to VPA levels assessed longitudinally. 

Importantly, the decline in participants VPA observed after the age of 15 years was 

the main determinant of a decreased arterial compliance between the groups (Figure 

2.4). Therefore, strategies targeting VPA in youth may preserve arterial compliance 

later in adulthood, reinforcing the importance of considering PA intensities. 
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Figure 2.4: Longitudinal changes in A) light-to-moderate physical activity and b) 

vigorous physical activity for groups of high (triangles) and low (circles) values of 

common carotid compliance obtained at the age of 36 years old. In this analysis, only 

vigorous physical throughout follow-up was different between the tertiles of common 

carotid compliance at the age of 36 years old. This was attribute to the significant 

differences observed at the age of 15 despite no differences noted at the adult ages. 

Reproduced from van de Laar et al. (2010) with permission. 

 

The possible effects of exercise interventions on arterial stiffness are less clear 

compared to the demonstrated associations with habitual PA. Exercise interventions 

are normally limited to populations with elevated CVD risk, such as obesity and 

metabolic conditions, and are often undertaken in the adult population (Fernhall and 

Agiovlasitis, 2008). A meta-analysis involving eight trials on obese adults (49 – 75 

years old) revealed no significant effects of aerobic training on arterial stiffness 

compared to control (pooled d = -0.17; IC 95% = -0.39 – 0.06) (Montero et al., 2014a). 

A similar meta-analysis by the same group also revealed no significant effects of 

aerobic training on arterial stiffness for pre-hypertensive adults (pooled d = -0.19; IC 

95% = -0.39 – 0.01) (Montero et al., 2014b). However, the lack of post-hoc analysis 

on training mode, intensity, duration, and frequency limits further conclusions and to 
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date the effects of these factors and mechanisms that exercise changes arterial 

compliance is open to investigation.  

Extrapolating adult findings to healthy youth is challenging; however, due to a lack of 

decreases in arterial stiffness observed in two meta-analysis involving adults at 

elevated CVD risk, improvements in arterial compliance in healthy children due to 

exercise training may be difficult. However, this remains yet to be addressed.   

2.5.3 Cardiorespiratory fitness and arterial function 

Cardiorespiratory fitness measured during adolescence may not be longitudinally 

associated with CCA compliance in adulthood. For example, Ferreira et al. (2002) 

demonstrated that V̇O2max in mL·kg-2/3·min-1, directly measured from a running 

treadmill test at the age of 13 – 16 years old was not significantly associated with CCA 

compliance (stβ = -0.007) obtained at adulthood. On the contrary, in a subsequent 

analysis of the same data, it was concluded that improvements in V̇O2max from 

childhood to adulthood was positively associated with improvements in CCA 

compliance (β = 2.14), after controlling for adult traditional CVD risk factors (Ferreira 

et al., 2003). These studies are interesting as CRF is expressed using allometric 

scaling to adjust for the influence of body size and isolate the influence of CRF.  

In summary, VPA measured during childhood present important longitudinal 

associations with arterial compliance in adults and decreases in VPA after the age of 

15 years old negatively influences CCA compliance at the age of 36 years old. These 

results highlight that strategies targeting VPA are encouraged. Furthermore, CRF 

measured in adolescence is not associated with arterial compliance measured in 

adults; however, increases in CRF from adolescence to adulthood is positively 

associated with increases in CCA compliance. It can be speculated that the positive 
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influence of VPA on CRF (Aires et al., 2010) is a link between the studies. The likely 

mechanisms are unclear, as most of the studies are observational by design. 

Moreover, there is a paucity of information about PA characteristics such as frequency, 

duration and intensity, and possible training effects on arterial compliance.   

2.6 Interaction between autonomic and vascular systems 

The aim of this section is to introduce the reader to the BRS and how the baroreflex 

provides unique information about the interaction between the autonomic and vascular 

systems. A short overview of assessment methods and gaps in the literature will be 

addressed. At the end of the section, the effects of acute exercise and exercise training 

on BRS will be discussed. 

2.6.1 Baroreflex sensitivity 

An interesting approach to investigate how PA and exercise acutely and chronically 

changes the autonomic and arterial systems is to explore the arterial baroreflex by 

measuring BRS. The baroreflex is a reflex mechanism involved in the homeostatic 

regulation of arterial BP by triggering a series of mechanisms aimed at modifying 

cardiac output (Q̇) and total peripheral resistance (TPR). This reflex mechanism is 

orchestrated by a series of inputs from peripheral baroreceptors monitoring changes 

in arterial BP. Increases in BP results in decreased sympathetic activity to the heart 

and vessels and an increase in the parasympathetic drive to the heart. This leads to a 

diminished TPR, venous return, HR, and Q̇. By contrast, when BP decreases, a 

reduced baroreceptor activity leads to an increased sympathetic drive to the heart and 

vessels causing an increased TPR, HR and Q̇ (Benarroch, 2008, La Rovere et al., 

2008).  
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Important peripheral receptors orchestrating BRS are the baroreceptors located in the 

aorta and carotid arteries. Increased arterial BP causes the baroreceptors embedded 

in the adventitia of the carotid sinuses and arc of the aorta to stretch due to the 

mechanical deformation of the artery wall. This mechanical deformation (e.g. arterial 

stretch) leads to an increased firing rate of the baroreceptors and excitatory input to 

the central nervous system (Kornet et al., 2002, Bonyhay et al., 1996). The increased 

firing rate of the baroreceptors result in central adjustments in the autonomic nervous 

system.  

The adjustments in the autonomic responses to the baroreflex stimuli are performed 

in the autonomic centres located in the brain stem, which eventually will lead to 

changes in the sympathetic and parasympathetic branches of the autonomic nervous 

system (Pilowsky and Goodchild, 2002). Cardiac BRS has been shown to be 

exclusively dependent upon the fast action of the parasympathetic activity to the heart 

and is also known as cardiovagal baroreflex (Keyl et al., 2001). The sympathetic 

baroreflex reflects changes in the sympathetic drive to the vessels caused by BP 

stimuli. 

Cardiac BRS can be assessed by measuring the effects of changes in BP on 

adjustments in RR intervals, such as increases in BP are expected to lead to increases 

in the RR interval (decreases in HR). The degree of BP influence on HR is normally 

defined as the gain of the BRS and expressed as units of change in RR intervals in 

ms by units of change in BP (ms∙mmHg-1). An elevated BRS gain indicates that the 

vagal system responds promptly to changes in BP. To quantify sympathetic BRS gain, 

it is common to measure the effects of changes in beat-to-beat BP on the sympathetic 
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activity in superficial nerves, and to express the decreases in the sympathetic activity 

caused by units of changes in BP.  

From the association between changes in BP and HR, it is possible to model the full 

baroreflex arc at rest (Figure 2.5). Important information from the full baroreflex arc 

can be drawn by investigating the threshold, saturation, operating and centering 

points. The threshold point is the BP needed to cause a change in HR and the 

saturation point is the point where increases in BP lead to no more decreases in HR. 

The operating point is the pressure at which the baroreflex system operates and the 

centering point is the point at which increases in BP leads to an equal pressor and 

depressor response. The gain at the threshold and saturation is small (Figure 2.5 B), 

whereas the maximum gain is obtained at the centering point. It is important to notice 

that in Figure 2.5 B the operating point of high fit participants is located at a lower 

mean arterial pressure (MAP). The gain (BRS) of the association between BP and RR 

intervals can be calculated at any given point of the baroreflex curve as proposed by 

Kent et al. (1972). 
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Figure 2.5: A) representation of the full baroreflex curve. B) gain (BRS) of the 

baroreflex along the full baroreflex curve. The highest BRS gain is obtained at the 

operation point. HF = high fit participant, AF = average fit participants. Reproduced 

from A) Raven et al. (2006) and B) Smith et al. (2000) with permission. 

 

Due to the invasive nature of sympathetic BRS assessment, work conducted so far 

exploring the baroreflex in youth has been performed by measuring cardiovagal BRS, 

thus limiting current knowledge to the parasympathetic branch of the autonomic 

nervous system. Similarly, the focus of the present work is on the cardiovagal 
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baroreflex; its strengths and limitations, reliability, and associations with exercise will 

be discussed in the following subheadings.  

2.6.1.1 Assessment of baroreflex sensitivity 

Several techniques have been used to assess both cardiovagal and sympathetic BRS 

in humans. Although no gold standard exists amongst different BRS methods, an 

informative approach is the modified Oxford method. The Oxford method consists of 

infusion of vasodilator and vasoconstrictor drugs to decrease and increase BP, 

respectively. The changes in BP are then plotted against the correspondent values of 

RR intervals (Persson et al., 2001, Di Rienzo et al., 2001, La Rovere et al., 2008). One 

of the advantages of the Oxford method is the assessment of changes in HR over a 

wide range of BP. However, a major limitation of the Oxford method is its invasive 

nature, which limits application to studies involving youth. Additionally, due to artificial 

changes in BP via drug administration, the ecological validity of the method is 

questionable, and side effects, such as dizziness and syncope may occur. Besides 

the Oxford method, neck suction applied with neck collars provide important estimates 

of BRS over a wide range of BP (Raven et al., 2006). Figure 2.5 A provides an example 

of the full baroreflex arc obtained with the neck suction method. A limitation of the neck 

suction method is that it is impossible to obtain CCA ultrasound images in conjunction 

with BRS assessment (later in this section) due to the position of the neck collar.  

An alternative non-invasive approach is to measure spontaneous BRS. This method 

quantifies the spontaneous oscillations in BP and RR intervals using time and 

frequency domains analyses (Persson et al., 2001). Time domain measurement (also 

known as sequence method), is obtained by plotting the natural increases or 

decreases in BP against the correspondent increases or decreases in the RR interval. 
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Frequency domain methods (or spectral methods) use the assumption that oscillations 

in BP at one determined frequency will cause oscillations in RR intervals at the same 

frequency (Robbe et al., 1987). The spontaneous method, however, has limitations, 

such as it does not estimate the saturation and threshold points (Figure 2.5), and the 

BRS gain obtained from spontaneous methods only reflects the gain at the operating 

point (Schwartz et al., 2013). This limitation should be considered when interpreting 

results using spontaneous methods. Nevertheless, the spontaneous method has been 

shown to be valid compared to the Oxford method in adults (Persson et al., 2001, 

Parlow et al., 1995). 

Although informative, the spontaneous method does not distinguish between the 

vascular and autonomic determinants of baroreflex. However, the development of 

techniques based on CCA ultrasound images (see section 2.5.1) acquired 

simultaneously with measurements of BRS, provides the foundation to quantify the 

contribution of the arterial and autonomic determinants of the baroreflex (Taylor et al., 

2014, Tzeng, 2012). The underpinning assumption is that changes in CCA diameter 

and compliance during the BRS assessments provide information regarding arterial 

wall deformation and consequently the degree of baroreceptors stimuli (Hunt et al., 

2001a, Bonyhay et al., 1996). With the implementation of ultrasound images it is 

possible to non-invasively divide spontaneous cardiovagal BRS into three different 

components in youth: the BRS gain (the association between changes in BP and RR 

intervals obtained either with the sequence or frequency methods and expressed as 

ms∙mmHg-1); the vascular component (estimated as CCA compliance and expressed 

as µm∙mmHg-1); and the autonomic component (estimated as the division between 

the BRS gain and the CCA compliance and expressed as ms∙µm -1) (Lenard et al., 

2004). Thus, the simultaneous measurement of carotid images and BRS can provide 
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unique non-invasive insights into the BRS gain at the operating point and the 

contribution of the vascular and autonomic branches of BRS (Taylor et al., 2014, 

Reneman et al., 2005). This non-invasive method although suitable to use in a 

paediatric population has not yet been validated and can be only used as a surrogate 

method of invasive measures of autonomic and vascular determinants of BRS.  

The possible role of CVD risk factors on BRS in youth has been recently reviewed 

(Honzikova and Zavodna, 2016). Specifically, spontaneous BRS has been shown to 

be lower in cross-sectional studies comparing children with obesity, hypertension, and 

diabetes to healthy pairs. For instance, Fitzgibbon et al. (2012) have shown that BRS 

is significantly lower in adolescents with elevated (10.5 ± 6.8 ms·mmHg-1) compared 

to adolescents with normal (15.1 ± 6.8 ms·mmHg-1) BP. Whether this is due to 

changes in the vascular and/or autonomic components of the BRS is currently unclear 

(Honzikova and Zavodna, 2016), and casualty cannot be determined due to the cross-

sectional design of the studies. However, results suggest that a decreased BRS is a 

sentinel event for hypertension development. For example, in normotensive young 

adults aged 22 years old who are offspring of hypertensive parents, BRS has been 

shown to be lower (~ 8.5 ms·mmHg-1 vs ~ 9.5 ms·mmHg-1) before manifestation of 

elevated BP (Boutcher et al., 2011). These results indicate that BRS not only provides 

information about the interaction of the arterial and autonomic systems but is also 

associated with the development or presence of CVD risk factors in youth. 

The reliability of spontaneous BRS has been investigated in youth. For example, in 11 

years old, spontaneous BRS measured with the frequency method has a test-retest 

CV of 14% (Dietrich et al., 2010). However, no studies have addressed the reliability 

of BRS and its autonomic and vascular determinants in adolescents. Similarly, less is 
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known regarding the within day reliability, which is concerning as a previous adult 

investigation has demonstrated diurnal variation in BRS and its autonomic and arterial 

determinants (Taylor et al., 2011), suggesting within-day measures may present 

different reliability compared to between-days.  

In summary, the BRS gain reflects the association between changes in BP and HR. 

Spontaneous BRS estimates are valid and their non-invasive nature makes this 

approach attractive for BRS measurement in youth. Furthermore, due to the arterial 

and autonomic determinants of the BRS, exploring BRS can provide further 

understanding about the effects of PA and exercise on CVD risk reduction that cannot 

be accounted for by traditional risk factors. Likewise, because baroreflex impairment 

is related to diverse health conditions (La Rovere et al., 2008), investigating BRS 

during childhood and adolescence, and how PA and exercise influences it, can 

increase our current pathophysiological understanding of CVD. There is, however, a 

lack of studies investigating the reliability of BRS and its autonomic and vascular 

determinants in youth.  

2.6.1.2 Physical activity and baroreflex 

The effect of habitual PA on the BRS gain during childhood has only been examined 

in two studies. Lucini et al. (2013) investigated BRS in 105 children aged 11 years old 

taking part in football training. The participants were divided into groups of overweight 

(n = 11) and normal weight (n = 94) and their PA levels were estimated using 

questionnaires. This investigation demonstrated that overweight children (~ 19 

ms·mmHg-1) had impaired BRS compared to normal weight pairs (~ 30 ms·mmHg-1). 

However, the estimated PA levels was similar between the groups meaning any 

conclusion about the effects of PA on BRS were not possible. In another study 
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exploring the effects of PA on BRS of preadolescents aged 10 – 13 years old, Dietrich 

et al. (2006) failed to find a statistically significant relationship (r = 0.05) between PA 

and BRS and concluded the main determinants of BRS are sex, age and body 

composition. Caution, however, should be taken when interpreting these results as PA 

was estimated using questionnaire. Additionally, the role of PA intensities was not 

addressed.  

2.6.1.3 Acute exercise 

Up to 24 h following exercise, arterial BP decreases below resting values 

characterising a state of post-exercise hypotension (Halliwill et al., 2013). The exact 

definition of post-exercise hypotension is unclear, but studies have defined this 

phenomenon as a decrease in BP below baseline values or below control when no 

exercise is performed (Kenney and Seals, 1993). The magnitude of post-exercise BP 

is normally 8 – 9 mmHg for healthy adults and is higher when BP before exercise is 

elevated, such as in those with hypertension(MacDonald, 2002). Post-exercise 

hypotension has been well described in the adult literature and the diverse 

mechanisms which underpin the changes in BP have been reviewed elsewhere 

(Halliwill et al., 2013). However, for this thesis a special focus will be given to the 

arterial and autonomic changes following exercise, which ultimately influences BRS. 

Given that the hours following exercise are proposed as a potential stimulus for 

training adaptation (Luttrell and Halliwill, 2015), how exercise acutely alters autonomic 

function, vascular compliance and the interplay between these systems (i.e. BRS), 

may provide unique mechanistic information about CVD risk reduction.  

Given that arterial stiffness at rest is dependent on BP (Oliver and Webb, 2003), it is 

likely that following exercise arterial stiffness decreases concomitantly with BP. A 
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recent meta-analysis including 43 investigations which assessed arterial stiffness 

following exercise in adults (20 and 35 years old) revealed an increase in central 

arterial stiffness in the first five min post-exercise, with a consequent decrease after 

five min (Mutter et al., 2017). Several limitations hamper interpretation and 

conclusions from this meta-analysis, however. For example, the multitude of exercise 

intensities and protocols (varying from HIIE, continuous cycling, maximal exercise to 

exhaustion and repeated short-duration sprints), the difference in exercise dose (from 

10 min up to two hours), the different approaches to measure arterial stiffness (central 

PWV, applanation tonometry, arterial compliance), the time of follow-up after exercise 

(from immediately after exercise, all the way up to one hour post), and the number of 

assessments in the post-exercise period.  

The extent to which adult findings can be translated to children is also questionable. 

For instance, Melo et al. (2016), investigated the effects of a maximal exercise 

treadmill test on arterial compliance 10 min following exercise in children aged seven 

years old compared to adults aged 25 years old. The authors showed that after 

adjustments for PP, MAP and stature, children presented elevated CCA distensibility 

at rest (adjusted means = 0.068 ± 0.004 vs 0.041 ± 0.003 mm2·KPa) and following 

exercise (adjusted means = 0.053 ± 0.003 vs 0.035 ± 0.002 mm2·KPa). Furthermore, 

adults presented an accentuated decline following exercise in CCA distensibility 

compared to children, and children also presented a distinct change in PP, which was 

always significantly higher compared to adults (data not shown). These results 

showed that the hemodynamic response to maximum exercise, as well as arterial 

compliance can be different between children and adults. The impact of these findings 

on the BRS and its autonomic determinant is unknown.  
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Additionally, it has not yet been identified whether there is an effect of exercise 

intensity on the acute changes in BRS and its autonomic and arterial components in 

youth. In 14 year old adolescents, Bond et al. (2015c) showed that HIIE exercise led 

to improvements in NO dependent endothelial function in a biphasic manner, using 

FMD. Specifically, immediately following HIIE, brachial artery FMD decreased 

significantly from ~8 to ~ 4%. On the contrary, at one (from ~8 to ~ 12%) and two hours 

(from ~8% to ~ 12%) following HIIE, FMD was significantly improved compared to 

baseline values for boys and girls. These findings were not observed for a bout of 

work-matched continuous moderate-intensity cycling. The decreased NO dependent 

dilation observed by Bond et al. (2015c) immediately following exercise may also 

explain the observed decreases in arterial compliance 10 min following maximal 

exercise in Melo et al. (2016). This, however, remains speculative. Additionally, future 

research is needed to investigate the possible impact of the reported intensity-

dependent changes in endothelial function on BRS and its autonomic and vascular 

determinants.  

In adults, the interplay between the vascular and autonomic components of BRS 

following exercise has been demonstrated. In a seminal investigation by Studinger et 

al. (2003), it was demonstrated that immediately after maximal cycling exercise CCA 

compliance was decreased compared to baseline (16.4 ± 1.2 vs 27.3 ± 2.7 µm·mmHg-

1). This was closely followed by a decrease in spontaneous BRS gain immediately 

post compared to baseline (5.8 ± 1.2 vs 17.1 ± 2.7 ms·mmHg-1). However, 60 min 

following exercise CCA compliance increased compared to baseline (17.1 ± 2.7 vs 

33.9 ± 1.4 µm·mmHg-1), which was paralleled with a recovery of BRS gain to baseline 

values. The results also revealed that changes in BRS gain and CCA compliance were 

significantly associated immediately and at 60 min post-exercise (r = 0.74 – 0.83). The 
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authors suggested that the vascular component was responsible for the observed 

changes in overall BRS gain. However, it can be argued that the lack of improvement 

in BRS at 60 min post, despite increases in CCA compliance, reflects a lowered 

autonomic determinant. 

2.6.1.4 Exercise adaptation on BRS and its autonomic and vascular determinants 

Whether the aforementioned post-exercise changes in the autonomic and vascular 

determinants of BRS influences training adaptations is not clear. In adults, the 

adaptation on the BRS and its autonomic and vascular determinants have been 

described. For example, Hunt et al. (2001b) have shown using the Oxford method in 

conjunction with ultrasound CCA images, that the BRS gain is lower in untrained 63 

years old compared to untrained 25 years old (6.8 ± 1.2 vs 15.7 ± 1.8 ms·mmHg-1). 

These results were attributed to decrements in both vascular (old untrained = 9.1 ± 

1.0 vs young untrained = 17.1 ± 2.4 µm·mmHg-1) and autonomic (old untrained = 0.6 

± 0.1vs young untrained = 0.9 ± 0.1 ms·µm-1) determinants of the BRS. However, BRS 

gain of 59 years old who were trained was similar to the BRS of the young untrained 

men (13.3 ± 2.4 vs 15.7 ± 1.8 ms·mmHg-1), due to a maintained autonomic (1.0 ± 0.2 

vs 0.9 ± 0.1 ms·µm-1), but not vascular (12.1 ± 1.4 vs 17.1 ± 2.4µm·mmHg-1) 

determinant. The authors concluded that regular PA in trained old men protected 

against impairments in BRS by improving its autonomic determinant. Other studies 

have shown an elevated autonomic determinant of the BRS in trained young men 

compared to non-trained pairs (Komine et al., 2009). However, the cross-sectional 

design of these studies impedes casualty about the effects of training on BRS 

adaptations.   
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2.6.1.5 Translational of adult findings to young people 

Because growth and maturation has been suggested to alter BRS gain, extrapolating 

adult BRS research findings to paediatric groups may be limited, highlighting the need 

for paediatric specific studies in this area. Lenard et al. (2004) have shown that 12-

year olds presented significantly lower BRS compared to 16-year olds (8.1 ± 0.7 vs 

16.2 ± 1.4 ms·mmHg-1). Because CCA compliance was smaller in the older group 

(25.1 ± 1.1 vs 23.0 ± 1.0 µm·mmHg-1) the authors attributed the observed increase in 

the BRS gain to an improved autonomic determinant. The authors, however, did not 

consider the effect of maturity, which has recently been shown to affect BRS in boys 

but not girls (Chirico et al., 2015). Chirico et al. (2015) demonstrated no differences 

between sexes when participants were grouped by age. By contrast, when participants 

were grouped according to maturity groups (pre, early, peri, late, and post measured 

by the Tanner scale), boys post maturity (~ 15.0 ms·mmHg-1) presented a significantly 

lower BRS gain compared to the early mature ones (~ 30 ms·mmHg-1). This was not 

observed for the girls. Chirico et al. (2015) however did not investigate the autonomic 

and vascular determinants of BRS.  

In summary, how exercise and the intensity of exercise alters BRS and its autonomic 

and vascular determinants post-exercise and following a period of exercise training is 

currently unclear in adolescents. Similarly, the possible role of the post-exercise 

responses on training adaptations have not been investigated in youth. 

2.7 Cardiovascular risk in the postprandial state 

The important role of PA, CRF and exercise on CVD risk reduction is reported in youth, 

both via improving traditional CVD risk factors and vascular function (Fernhall and 

Agiovlasitis, 2008, Ekelund et al., 2007, Andersen et al., 2011b). However, most of the 
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reduction in CVD risk accrued by PA, exercise and CRF in the youth population have 

been described in the fasted state. The aim of this section is to briefly describe 

evidence supporting the role of exercise, PA and CRF on postprandial outcomes, 

mainly the autonomic and vascular systems.  

Fasting measurements of blood markers provide the foundation linking traditional CVD 

risk factors to atherosclerosis and CVD outcomes. However, the transient increase in 

blood [lipids], blood [GLU] and BP during the postprandial state provide valuable 

information about CVD risk, even when controlling for fasted measurements of 

traditional CVD risk factors (Ansar et al., 2011). For example, increases in blood [TAG] 

after the ingestion of a HFM have been linked to the atherosclerotic process (Hyson 

et al., 2003). Similarly, postprandial lipaemia may have influences on CVD risk in early 

adolescence as evidenced by a longitudinal study showing that non-fasting [TAG] 

measured at the age of 15 years old, predicts CVD events in the fourth and fifth 

decades of life after adjustments for adult CVD risk factors (Morrison et al., 2009). 

Furthermore, in children postprandial GLU intolerance predicts adult mortality 

independently of adult CVD risk factors (Franks et al., 2010). Therefore, since humans 

spend most of the waking day in a postprandial state, it is important to explore non-

fasting CVD risk and examine whether PA, PA intensities, exercise and/or CRF may 

confer any risk reduction.  

The possible mechanism by which postprandial lipaemia and glycaemia changes 

vascular and autonomic functions may be via increases in oxidative stress. There is 

evidence of the atherogenic role of oxidative stress (Stocker and Keaney, 2004), 

suggesting a causal pathway, or at least postprandial oxidative stress as a CVD risk 

factor (Nakamura et al., 2016). The potential mechanisms by which the postprandial 
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state is linked to endothelial dysfunction has been reviewed elsewhere (Lacroix et al., 

2012). From the diverse mechanisms, it is believed that a lower NO bioavailability is 

the result of an overproduction of free radicals, such as super oxide, in the 

mitochondria (Figure 2.6). This lower NO bioavailability consequently limits the ability 

of the endothelial cell to stimulate smooth muscle relaxation via the NO pathway, 

leading to a constricted and stiff vessel. As discussed in the section 2.6, increases in 

arterial stiffness may be linked to a decreased BRS due to a lowered vascular 

component, which may be heightened in the postprandial state. Alternatively, blood 

[GLU] and insulin levels are known to alter central autonomic regulation which may 

also lead to decreases in BRS due to a decreased central nervous system modulation 

of parasympathetic tone (Wan and Browning, 2008). The influences of the 

postprandial state on vascular stiffness, autonomic function and BRS, as well as the 

mechanisms associated are less clear in youth.  
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Figure 2.6: Mechanistic link between postprandial state and endothelial dysfunction. 

ICAM, intracellular adhesion molecule; VCAM, vascular cell adhesion molecule; vWF, 

von Willebrand factor; HSFAM, high-saturated fat meal; ROS, reactive oxygen 

species; eNOS, endothelial NO synthase; VSMC, vascular smooth muscle cell. Ɨ 

indicate negative effect on normal endothelial function. Increases in reactive oxygen 

species due to mitochondrial dysfunction are well established mechanisms of 

postprandial endothelial dysfunction. Reproduced from Lacroix et al. (2012) with 

permission. 

 

2.7.1 Hyperglycaemia 

Several methodologies exist to investigate postprandial hyperglycaemia in 

adolescents. The overall aim is to induce increases in blood [GLU] and to measure 

the time until glucose (and/or insulin) returns to baseline. Amongst several methods, 

the oral glucose tolerance test (OGTT) is a safe and reliable method (between-day CV 

of 5.6% for the area under the curve of glucose concentration (Cockcroft et al., 2017a)) 

to investigate the physiological effects of acute rises in blood [GLU] in youth(Brown 

and Yanovski, 2014). The OGTT consists of the ingestion of up to 75 g of GLU, whilst 
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blood samples are collected at specific points either in a short (two hours with seven 

blood samples) or a long (four hours with 11 blood samples) version of the test (Dalla 

Man et al., 2005).  

2.7.1.1 Hyperglycaemia, autonomic and arterial systems 

In 23 years old young adults, the parasympathetic system has been shown to be 

depressed 120 min after an OGTT compared to pre-OGTT values (RMSSD = 53 ± 10 

ms vs 73 ± 11 ms, respectively) (Holwerda et al., 2015). Similar effects of [GLU] have 

been demonstrated on the BRS in adults (LFgain = 28 ± 4 ms∙mmHg-1 at pre-OGTT 

compared to 14 ± 2 at 120 min) (Holwerda et al., 2015). Interestingly, the decreased 

BRS during hyperglycaemia is mainly driven by the changes in [GLU], because when 

insulin increases but GLU is maintained at a fixed concentration using a euglycemic 

insulin clamp, BRS is maintained similar to baseline during the OGTT (Holwerda et 

al., 2015). However, when blood [GLU] increases, BRS significantly decreases 30min 

into the OGTT (Holwerda et al., 2015). These results highlight the important role of 

[GLU] on the overall BRS. However, research is needed to investigate how the 

vascular and autonomic determinants of BRS respond to increases in [GLU].  

The depression in vascular compliance and cardiovagal modulation caused by [GLU] 

may contribute to the observed autonomic dysfunction and arterial stiffness in insulin 

resistant and diabetic adults and adolescents (McCloskey et al., 2014, Shin et al., 

2010). However, most of the findings about the effects of OGTT on autonomic and 

vascular systems have been obtained in adults, and studies in youth are needed. 

2.7.1.2 Physical activity and hyperglycaemia 

Exercise can alter postprandial hyperglycaemia up to 24 h following the exercise bout. 

For example, in healthy adolescents both continuous moderate-intensity exercise and 
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HIIE have been shown to lower glucose and insulin excursions, and insulin resistance 

in the two and 24 h following the exercise session (Cockcroft et al., 2015, Cockcroft et 

al., 2017b). The mechanisms underpinning the observed two and 24 h effects of 

exercise on GLU excursions during the OGTT may also be different. For example, 

short-term influences of exercise can be attributed to differences in muscular insulin 

tolerance reflecting short-term glycogen repletion, as well as a lowered blood flow to 

the gastric tract and decreased gastric emptying of glucose. Whereas long-term action 

can be attributed to the slow phase of glycogen repletion that can last up to 40 h(Price 

et al., 1999), and improvements in insulin action.  

The effects of exercise on postprandial glycaemia can also alter postprandial 

autonomic and vascular functions, as well as BRS. The possible role of habitual PA in 

altering arterial function following glucose ingestion has been described in one recent 

adult study involving decreases in daily step count for five days (< 5000·day-1). 

Credeur et al. (2018) measured femoral and brachial arterial compliance 60 and 120 

min into the OGTT pre and post five days of reduced PA levels. At pre, the OGTT did 

not cause increases in femoral arterial stiffness; however, post five days of reduced 

daily steps, decreases in femoral compliance were observed at 60 and 120 min 

following the OGTT. However, using a similar approach to decrease daily steps, 

Holwerda et al. (2015) did not find any influence of decreasing daily steps on arterial 

BRS following glucose ingestion. These results highlight that PA levels may offer a 

protective effect on arterial compliance, which is not translated into BRS.  In youth, the 

possible long and short-term effects of PA on BRS and autonomic and vascular 

functions during the postprandial hyperglycaemic state remains to be elucidated.   
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2.7.2 Hyperlipaemia 

To test the effects of hyperlipaemia, a similar approach to OGTT may be used. This 

involves the ingestion of a HFM in which blood samples are collected to measure TAG 

hourly after the HFM ingestion (Kolovou et al., 2011). Although there is no gold 

standard method to assess postprandial outcomes using a HFM challenge, 

standardisation between studies is encouraged as the fat content is known to influence 

the postprandial responses (Kolovou et al., 2011). Similarly, other factors may alter 

the responses to the meal such as the time of the day and the fat content of the last 

meal (Kolovou et al., 2011). Furthermore, although no guidelines exist for the 

assessment of postprandial lipaemia, the use of four hour protocols is encouraged as 

the time TAG takes to achieve peak and return to baseline also provides valuable 

information (Kolovou et al., 2011). In youth a HFM delivered as a milk shake has been 

shown to provide important information on postprandial risk factors and the role of 

exercise intensity (Bond et al., 2014).   

2.7.2.1 Hyperlipaemia and autonomic and arterial functions 

Similar to the effects of [GLU], elevations in blood [TAG] following the ingestion of a 

HFM may negatively impact the arterial and autonomic systems. In a systematic 

review, Wallace et al. (2010) investigated the effects of a HFM on endothelial function 

and the associated mechanisms. The authors identified 20 studies investigating 

postprandial lipaemia and arterial function in adults. The results of the review 

presented level one evidence showing increases in [TAG] and oxidative stress and a 

consequent depressed vascular function in adults (Wallace et al., 2010). These results 

have been replicated in healthy adolescents, where the ingestion of a HFM delivered 

as a milk-shake led to a significant decrease in vascular function, measured using 
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FMD, three h after the ingestion of the meal (~ 7% compared to pre ~ 9%) (Bond et 

al., 2015b).  

Due to the physiological link between endothelial function and arterial stiffness via 

decreases in NO-dependent smooth muscle relaxation (Wilkinson et al., 2004), it is 

possible that a decrease in endothelial function following the ingestion of a HFM also 

increases arterial stiffness (Wilkinson et al., 2004); however, this has yet to be 

confirmed in adolescents. On the contrary, Augustine et al. (2014) reported an 

increased PWV of peripheral but not central arteries following the ingestion of a HFM 

in adults. The increases in PWV were moderately related (r = 0.44,) to increases in 

[TAG], suggesting that factors other than [TAG] may also be implicated in the observed 

augmented PWV. Furthermore, increases in arterial stiffness following a HFM appear 

to be depend on the type of measurement applied. For instance, local arterial stiffness 

assessed at the CCA in adults did not significantly change following a HFM (Murray et 

al., 2015). However, contrary to the acute effect of the meal, a chronic elevation in 

blood lipids may be associated with increases in local arterial stiffness, as an 

evidenced by I an increased CCA stiffness in children with dyslipidaemia (Nunez et 

al., 2010).  

Less is known about the effects of blood [TAG] on the autonomic function and BRS. 

One study involving healthy adolescents has reported a decreased RMSSD following 

the ingestion of a HFM (Bond et al., 2015a), which shows that acute increases in [TAG] 

also alters autonomic modulation. However, the mechanisms behind the effect of a 

HFM on autonomic function and BRS of youth are yet to be explained.  
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2.7.2.2 Physical activity and hyperlipaemia 

The possible effects of PA on postprandial lipaemia can be divided into two 

components: the short-term effect which is normally observed in the hours following 

the exercise bout; and the long-term effect which is normally observed 12 – 18 h 

following the exercise bout (Maraki and Sidossis, 2013). The mechanisms behind the 

short and long-term effect of exercise are likely to be different. For example, Tolfrey et 

al. (2014) reviewed the literature and found that when exercise is performed 12 – 16 

h before a HFM, the postprandial lipaemic response is reduced in adolescent boys 

and girls suggesting that the up-regulation of lipoprotein lipase, which peaks 4 – 18 h 

following the exercise bout (Maraki and Sidossis, 2013), is responsible for the 

postprandial TAG clearance. 

The short-term (i.e. up to four hours after exercise completion) effect of exercise on 

postprandial lipaemia is dependent on other mechanisms. For example, an increased  

hepatic oxidation rather than re-esterification of fatty acids culminates in a lower 

secretion of very-low density lipoprotein following exercise, despite a greater TAG 

availability (Magkos et al., 2006). Consequently, when exercise is performed an 

increased very-low density lipoprotein clearance maintains low plasma TAG 

concentration (Magkos et al., 2006). Recently, in 12 – 15-year-old adolescents high- 

but not moderate-intensity exercise has been shown to increase hepatic fatty acid 

oxidation, showing that exercise also influences this mechanism of TAG clearance in 

youth (Bond et al., 2015b), evidenced by the association (r = 0.61) between 3-

hydroxybutyrate, a marker of hepatic fat acid oxidation, and a lowered TAG 

concentration over a 3-h postprandial analysis. Another mechanism by which exercise 

alters short-term postprandial lipaemia is via an increase in the uptake and metabolism 

of TAG in the skeletal muscle (Horton et al., 2002). 
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Interestingly, in youth the short and long-term mechanisms of the exercise effects on 

postprandial lipaemia have been shown to be differently altered by sex. For example, 

in 12 – 15 years old, girls presented an elevated postprandial lipaemia compared to 

boys, however, high-intensity exercise performed 12 – 18 h before the HFM lowered 

postprandial lipaemia independent of sex (Thackray et al., 2018). On the contrary, 

when exercise is performed 1-h before the ingestion of a HFM, girls present a lowered 

postprandial response compared to boys(Bond et al., 2014), indicating that sex 

influences the mechanisms by which exercise alters postprandial lipaemia in youth. 

However, the effects of habitual physical activity on possible sex differences in 

postprandial lipaemia is currently unknown. 

As exercise acutely lowers postprandial lipaemia, it is reasonable to hypothesise that 

habitual PA and exercise training would be associated with a lowered postprandial 

lipaemia. In 70 year olds, postprandial lipaemia was 38% lower for the participants 

classified as active compared to the participants classified as inactive based on MVPA 

levels measured with accelerometers (Miyashita et al., 2011). These results highlight 

potential influences of habitual PA which may also be present in youth. However, in 

adolescents no investigation has identified whether habitual PA, PA intensities and 

CRF are associated with postprandial lipaemia. Similarly, the possible effects of PA 

and CRF, as well as PA intensities on the changes in the autonomic and vascular 

functions following a HFM is unclear. 

On the contrary the short-term effect of exercise intensity on arterial function has been 

demonstrated following the ingestion of a HFM in adolescents. For example, 

performing moderate-intensity cycling exercise one hour before the ingestion of a HFM 

protects the vascular dysfunction observed when exercise in not performed (FMD of 
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~9% for moderate-intensity compared to ~7% for control). However, when HIIE is 

performed, FMD is improved (~11%) following the ingestion of HFM compared to 

moderate-intensity exercise and control (Bond et al., 2015b). Similar protective effects 

of exercise intensity were observed for changes in BP after the ingestion of a HFM 

(Bond et al., 2014). These results highlight potential effects of exercise intensity to 

acutely protect against the postprandial changes in traditional and non-traditional CVD 

risk factors in adolescents. Given that endothelial dysfunction can also increase 

arterial stiffness (Wilkinson et al., 2004), it is possible that an increased vascular 

function following exercise may be able to maintain arterial compliance in the 

postprandial state. However, it is still unclear how habitual PA alters the postprandial 

effects on autonomic and vascular functions in adolescents.  

In summary, the literature highlights that the postprandial period is linked to decreases 

in autonomic function and BRS, as well as an increase in arterial stiffness. Most of the 

evidence on changes in autonomic and arterial functions have been gathered using 

hyperglycaemia challenges and in adult populations. The postprandial effects of [GLU] 

and [TAG] on autonomic function and vascular stiffness have been partially 

demonstrated in adolescents. However, the underpinning mechanisms are still 

unclear. Given atherosclerotic progression may be associated with postprandial 

outcomes (Hyson et al., 2003), understanding the postprandial state in youth is 

paramount for a better management of the disease.  

2.8 Theses rationale and aims 

It is well established that atherosclerosis may have its origins in childhood (McGill et 

al., 2000) and that changes in traditional CVD risk factors due to PA might not fully 

explain reductions in CVD risk (Mora et al., 2007, Bond et al., 2015a). Adult data show 
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that the autonomic and vascular systems are important candidates for the risk factor 

gap (Joyner and Green, 2009), and the BRS provides information about the interplay 

between these systems. In adolescents, improvements in these systems with no 

concomitant changes in traditional CVD risk factors implies that the risk factor gap 

may also exist in youth (Bond et al., 2015a). Furthermore, the identification of novel 

CVD risk factors is needed to help the management of the initial process of 

atherosclerosis in this population (Balagopal et al., 2011). This thesis, therefore, 

addresses the role of PA, PA intensity, CRF, and acute and chronic exercise in 

modifying the autonomic and arterial systems of adolescents. In addition, the 

postprandial state heightens CVD risk (Su et al., 2009) and measurements of 

traditional and novel CVD risk factors during the postprandial period may provide 

further valuable information about CVD risk reduction via PA and exercise in youth. 

Thus, this thesis also addresses the role of PA, exercise intensities, and/or CRF on 

traditional CVD risk factors, autonomic and arterial functions, and the possible 

interplay between these systems by measuring the BRS in the postprandial state. For 

this purpose, a series of novel experimental chapters were performed, and the aims 

of each chapter were: 

Chapter 4: To systematically review the literature to evaluate the potential associations 

between PA, PA intensities, CRF and cardiac autonomic function in adolescents.  

Chapter 5: To investigate the associations between habitual PA, PA intensities, CRF, 

HRV and HRR in health adolescents. In addition, this chapter also examined whether 

adding indices of autonomic function to a clustered CVD risk factor score based on 

traditional risk factors improved the strength of associations between CVD risk PA and 

CRF.     
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Chapter 6: To investigate the associations between PA intensities, CRF and 

postprandial TAG, HRV, and arterial stiffness. 

Chapter 7: To determine the between- and within-day reliability of the autonomic and 

vascular determinants of baroreflex sensitivity in adolescents.  

Chapter 8: To address how moderate and high-intensity interval running alters the 

post-exercise recovery of BP, BRS and its autonomic and vascular determinants.  

Chapter 9: To investigate whether the autonomic and vascular determinants of BRS 

are altered following an oral glucose challenge. This chapter also investigates whether 

exercise performed before the glucose challenge modifies the postprandial outcomes 

and is dependent on exercise intensity. 

Chapter 10: To investigate the autonomic and vascular adaptations of BRS in 

response to four weeks of HIIE training and two weeks of detraining. In addition, the 

acute changes in BRS following exercise and its autonomic and vascular determinants 

were also examined at before and after four weeks of HIIE training.   
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Chapter 3: Methods 

The aim of this chapter is to provide a general overview of the methodological 

approaches used in this thesis. The emphasis of the chapter is to provide additional 

information about study design, recruitment and data handling that are not presented 

in the forthcoming experimental chapters. Further details on the methods used are 

presented in Chapters 4 – 10. 

3.1 Study designs 

Chapter 4 is a systematic review of the literature and its methods have been presented 

in detail in Chapter 4 and as a registered study protocol (International Prospective 

Register for Systematic Review; reference CRD42015023614). Chapters 5 and 6 were 

cross-sectional observational studies. Chapter 7 – 10 were cross-over controlled trials 

with repeated measures. Chapter 10 was a randomised controlled trial. 

3.2 Inclusion/exclusion criteria and ethics 

All data collection within this thesis received institutional ethics approval from the Sport 

and Health Sciences Ethics Committee (Appendix 1, page 344). Exclusion criteria 

included the presence of any contraindications towards maximal exercise, any 

relevant allergies (i.e. lactose intolerance), use of any supplement or medication 

known to influence fat or carbohydrate metabolism, cardiac autonomic function, BP, 

and vascular function. For Chapters 5 and 6 there were no specific inclusion criteria 

apart from age (12 – 15 years). For Chapter 10 only boys were included. 
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3.3 Recruitment 

A convenient sampling method was used in Chapters 5 – 10. For this, local secondary 

schools were contacted and after consent form the Head Teacher and the Physical 

Education department, the recruitment procedures took place. Assemblies were 

conducted explaining the aims, benefits and risks of the project and at the end of each 

assembly, envelopes were delivered to potential participants. The envelopes 

contained information about the study, study design, rationale and procedures, contact 

details of the research team, a parent/guardian consent form, a participant assent form 

and a health screening form. A sample of the recruitment documents is presented in 

Appendix 2, page 346. After the return of the envelopes, parents and guardians were 

contacted and once agreement about study involvement was achieved, the 

procedures for data collection took place.  

For Chapter 5 and 6 a total of 260 envelopes were delivered. Eighty-eight (34%) were 

returned indicating an interest in taking part in the study. From 88 potential 

participants, 80 (31% from the initial number of envelopes) gave consent to take part 

in the study. From the 80 volunteers, 18 (22%) dropped out decreasing the final 

sample size to 62 (25 girls). Figures 5.1 and 6.1 provide the flow diagram of the 

recruitment process and the final sample size in Chapters 5 and 6. 

For Chapters 7 – 9 a total of 160 envelopes were delivered from which 16 (10%) were 

returned indicating an interest in taking part in the study. All 16 potential participants 

gave consent/assent. From the 16 initial participants one (6% of included participants) 

dropped out and the final sample size of Chapters 7 – 9 was 15 (two girls). Initially the 

study aimed to recruit 12 girls to compare the possible effects of sex, however, due to 
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lack of volunteers the study ended with the inclusion of 13 boys. The final sample size 

is described in the experimental Chapters 7 – 9.  

For Chapter 10, a total of 70 envelopes were delivered from which 21 (30%) were 

returned showing an interest in taking part in the study. All 21 participants gave 

consent/assent to take part in the study. From the 21 volunteers, two (10%) dropped 

out decreasing the final sample size to 19. In this study, only boys were included.  

3.4 Participants characteristics 

Anthropometrics, body composition and pubertal status measures were collected in 

Chapters 5 – 10. Body mass was obtained to the nearest 0.1 kg using commercial 

body mass scales (SECA, UK). For determination of stature a stadiometer was used 

to the nearest of 0.1 cm (SECA, UK). Pubertal status was determined using age from 

peak height velocity (PHV) in Chapters 5 and 6. For this, sitting height was obtained 

to the nearest of 0.1 cm (SECA, United Kingdom) and Equations 3.1 and 3.2 were 

used to determine the age from PHV for girls and boys, respectively (Mirwald et al., 

2002). The standard error of estimates for equation 3.1 and 3.2 are 0.57 and 0.59 

years, respectively. Assessment of PHV has strong (r2 = 0.89 for girls and boys) 

criterion-related validity with longitudinal measures of PHV (Mirwald et al., 2002). 

Participants were then classified as pre (-1 year), circa (-1 to +1 year), or post (+1 

year) PHV. In Chapters 7 – 10, pubertal status was determined by the self-assessment 

of secondary sexual characteristics using adapted drawings of pubic hair development 

(Morris and Udry, 1980).  
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PHV (years) = -9.376 + 0.0001882(leg length · sitting height) + 0.0022(age · leg length) 

+ 0.005841(age · sitting height) - 0.002658·(age · body mass) + 

0.07693(age/stature)·100 

Equation 3.1: Peak height velocity determination for girls. 

PHV (years) = -9.236 + 0.0002708(leg length · sitting height) + -0.001663(leg age · 

leg length) + 0.007216(age · sitting height) + 0.02292(body mass/stature)·100 

Equation 3.2: Peak height velocity determination for boys. 

For BF%, triceps and subscapular skinfold thickness were obtained in triplicate to the 

nearest of 0.1 mm (Holtain Ltd, Crymych, UK), and the average of the closest values 

calculated to determine BF % (BF%) using validated population specific equations 3.3 

– 3.6 (Slaughter et al., 1988). Assessment of BF% from skinfolds has strong (r2> 0.80) 

criterion-related validity with direct determination of body density and the error of 

estimate is  3.8% (Slaughter et al., 1988). In Chapter 10, body composition was 

obtained using air displacement plethysmography (BodPod®, Concord, California, 

USA). The BodPod® is a double chamber unit, with the chambers separated by a 

diaphragm which is electronically controlled and measures perturbations in 

pressurisation of the chamber for volumetric measurement. Prior to testing, the system 

was calibrated following the manufacturer’s instructions. For this, five measurements 

of a 49.887 L cylinder were performed, and the average and standard deviation 

obtained. The acceptable range for the obtained average was 49.787 to 49.987 L, with 

standard deviation lower than 75 mL. Participants wore a swimsuit and a swim cap, 

sat still in the chamber and body volume in L was determined in duplicate. When the 

duplicate measures differed more than 75 mL, a third measurement was obtained. 

After accounting for lung volume using the software sex specific equations, body 
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composition was obtained using equation 3.7 (Siri, 1993). Assessment of BF% from 

the BodPod has a strong (r2 = 0.82) criterion-related validity with body composition 

obtained from dual-energy X-ray absorptiometry (Ferri-Morales et al., 2018).  

BF (%) = -1.7 + 1.21(Sum of skinfolds) - 0.008(Sum of skinfolds2) 

Equation 3.3: Body fat % determination for pre-pubertal boys. 

BF (%) = -3.4 + 1.21(Sum of skinfolds) - 0.008(Sum of skinfolds2) 

Equation 3.4: Body fat % determination for pubertal boys. 

BF (%) = -5.5 + 1.21(Sum of skinfolds) - 0.008(Sum of skinfolds2) 

Equation 3.5: Body fat % determination for post-pubertal boys. 

BF (%) = -2.5 + 1.33(Sum of skinfolds) - 0.013(Sum of skinfolds2) girls 

Equation 3.6: Body fat % determination for girls. 

BF (%) = (495 / Body Density) – 450 

Equation 3.7: Siri’s equation. 

3.5 Cardiorespiratory fitness 

In Chapters 5 and 6 CRF was determined using a validated steep ramp test (Bongers 

et al., 2013). This test was chosen due to feasibility in a school-setting. For this, 

participants cycled to exhaustion on an electromagnetic braked cycle ergometer 

(Lode, The Netherlands). After three min of warm-up at 25 W, participants started the 

test, which consisted of a predetermined increment in work-rate per minute. The work-

rate increments were determined according to participant stature: 60 W if <120 cm, 90 
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W if between 120 and 150 cm, and 120 W if >150 cm. Participants were asked to 

maintain a pedalling frequency of 80 revolutions per minute. The protocol ended when 

participants dropped the pedalling frequency for five s below 60 revolutions per min 

despite strong verbal encouragement. Maximal effort was considered when 

participants showed subjective signs of intense effort (e.g., unsteady cycling, 

sweating, and clear unwillingness to continue despite encouragement). This method 

has been shown to have strong (r2 = 0.92) criterion-related validity with directly 

measured CRF (Bongers et al., 2013). The peak power in W obtained at the end of 

the ramp test was used to estimate peak V̇O2 in mL using equation 3.8 with an error 

of estimate of 237 mL. 

V̇O2max (mL·min-1) = (8.262 · peak power) + 177.096 

Equation 3.8: Determination of maximum oxygen uptake using power output from the 

steep ramp test. 

For Chapters 8 and 9 CRF was determined as the V̇O2max obtained from a combined 

incremental and supramaximal test to exhaustion (Barker et al., 2011), on a motorised 

treadmill (Woodway GmbH, Germany). The incremental test started at 6-km·h-1 with 

1% inclination after a three min warm-up at 4-km·h-1. Increments of 0.5-km·h-1 were 

completed every 30 s until participants reached exhaustion. At exhaustion, MAS was 

determined and participants completed a three min cool down period at 4 km·h-1. The 

cool down was followed by 10 min of recovery. Participants then completed a running 

bout to exhaustion with 5% inclination at the MAS obtained in the incremental test. 

V̇O2max in L·min-1 was determined as the highest value obtained during the 

incremental or supramaximal test. An example of the V̇O2max obtained with this 

protocol is presented in Figure 3.1. 
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Figure 3.1: Representative oxygen consumption obtained from the incremental and 

supramaximal test. From this oxygen uptake trace, maximal oxygen uptake is 

determined as the maximum value obtained from either the ramp or the supramaximal 

test. 

 

Pulmonary oxygen uptake and carbon dioxide production (V̇O2 and V̇CO2, 

respectively) were obtained breath-by-breath throughout the incremental and 

supramaximal test (Cortex Metalyzer III B; Cortex, Germany). Before testing, the 

equipment was calibrated according to the manufacturer instructions. Breath-by-

breath data were exported in bins of 10 s and the gas exchange threshold (GET) 

identified as the disproportionate increase in V̇CO2 relative to V̇O2. The latter was 

performed by two independent researchers.  
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3.5.1 Normalisation of cardiorespiratory fitness 

Cardiorespiratory fitness taken as absolute V̇O2in L·min-1 is positively associated with 

body size (r = 0.58; Figure 3.2 A). To account for the effects of body size, CRF is 

normally is expressed relative to body mass using a ratio standard approach (i.e. 

mL·kg·min-1). However, as shown in Figure 3.2 B, CRF relative to body mass does not 

produce a size free measurement of CRF, but rather leads to a lower CRF in heavier 

participants (r = -0.55). To overcome this problem of ‘over-scaling’, CRF was further 

expressed in Chapters 5 and 6 using an allometric scaling approach. Allometric scaling 

was obtained by calculating a sample specific scaling exponent using log-linear 

regression between body mass and CRF controlling for sex. Allometric scaling with 

this new size exponent (β = 0.58), better controlled for the influence of body mass on 

CRF, as evidenced by the non-significant association between CRF and body mass (r 

= 0.07; Figure 3.2 C).   
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Figure 3.2: Dependence of CRF on body size. A) positive association between body 

mass and CRF; B) negative association between ratio expressed CRF in mL·kg-1·min-

1 and body mass; C) lack of association between allometric expressed CRF in mL·kg-

0.58·min-1 and body mass. Data presented are obtained from Chapters 5 and 6. 
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3.6 Physical activity 

In this thesis, PA was measured using accelerometers either to characterise habitual 

PA levels of the participants (Chapter 5 and 6), or to standardise testing procedures 

(Chapters 7 – 9). Physical activity was objectively measured using a wrist-worn 

accelerometer (GENEActiv, Cambridge, UK). The device was set to record PA for 

seven (or three when used to test standardisation) consecutive days at a frequency of 

100 Hz. Participants were instructed to wear the device on their non-dominant wrist, 

including sleeping h and water activities. The device was then retrieved, and the raw 

acceleration data transformed into epochs of 60 s using the GENEActiv software 

(version 2.9, GENEActiv; UK). The 60 s epoch files were then imported into a freely 

available spreadsheet (available at: https://open.geneactiv.org/) to calculate the time 

spent performing sedentary time, and LPA, MPA and VPA. Age-specific cut-off points 

of <420 g·min-1 for sedentary time, between 420 and 1,140 g·min-1 for LPA, between 

1,140 and 3,600 g·min-1 for MPA and >3,600 g·min-1 for VPA were used (Phillips et 

al., 2013). Participants were included in the final analysis with a minimum of three days 

wear time defined as 12 h per day of valid data which has been shown to produce 

reliable assessment of PA levels in a large cohort of British children (Rich et al., 2013). 

3.7 Experimental manipulations 

3.7.1 High-fat meal and oral glucose tolerance test 

In Chapter 6, participants consumed within 15 min a HFM consisting of a milkshake of 

three parts Cornish ice cream and one-part double cream, providing 1.50 g of fat (70% 

total energy), 1.20 g carbohydrate (25%) and 0.21 g of protein (5%) per kg of body 

mass (80 kJ∙kg-1). This meal replicated previous studies from our research group, 

which demonstrated impairments in endothelial function and postprandial lipaemia in 

https://open.geneactiv.org/
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healthy adolescents (Bond et al., 2015b, Bond et al., 2014, Bond et al., 2015d). To 

test the effects of the meal on postprandial lipaemia, [total cholesterol], [TAG], [HDL] 

and [GLU] were determined in whole capillary blood using a validated portable system 

(CardioChek, Polymer Technology Systems, IN, USA) (Panz et al., 2005). For this, 40 

(for lipid profile) or 25 µL (for [GLU]) of blood were collected into micro-tubes 

(CardioChek, Polymer Technology Systems, IN, USA) and pipetted into straps that 

determined either [lipid] or [GLU]. The range for each outcome using the CardioChek 

are as follows:  TAG = 0.57 – 5.65 mmol·L-1; TC =2.59 – 10.36 mmol·L-1; HDL =0.39 

– 2.59, and GLU =1.11 to 33.3 mmol·L-1. Samples were measured in duplicate and 

the CVs between the duplicate measures was lower than 7%.  

In Chapter 9 participants completed an OGTT according to previous work from our 

research group (Cockcroft et al., 2015, Cockcroft et al., 2017b). For this, 75 g of GLU 

was diluted in 300 mL of water and participants ingested the drink within five min. 

Seven capillary blood samples were collected via fingertip capillary sampling at 0, 10, 

20, 30, 60, 90 and 120 min post GLU ingestion. These time points are known to provide 

an accurate estimate of insulin secretion and action (Dalla Man et al., 2005). Capillary 

blood samples (~ 600 µL) were collected into heparin fluoride coated microvettes (CB 

300 tubes, Sarsted Ltd, UK). After collection, blood samples were promptly analysed 

for blood [GLU] (YSI 2300 Stat Plus, Yellow Springs, OH, USA). The YSI measures 

GLU within the range of 0 to 30 mmol·L-1 from a 25 µL sample. As GLU data were 

obtained over time, the total area under the curve (tAUC) and the incremental area 

under the curve (iAUC) were calculated using the trapezium rule (GraphPad prism, 

CA, USA). Glucose tAUC and iAUC responses to an OGTT have been shown to be 

reliable (CVs from 5 – 7%) in a sample of healthy adolescents (Cockcroft et al., 2017a). 
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3.7.2 Exercise conditions 

In Chapters 8 and 9, participants completed HIIE and moderate-intensity interval 

exercise (MIIE) on a motorised treadmill (Woodway GmbH, Germany). The HIIE 

protocol, consisting of 8 bouts of high-intensity work intervals, was based on previous 

work in our group (Bond et al., 2015b, Bond et al., 2015c, Cockcroft et al., 2015, 

Cockcroft et al., 2017b), except in the present thesis running exercise was chosen as 

it better reflects typical PA of adolescents. The HIIE protocol consisted of three min 

warm up at 4-km·h-1 followed by the completion of eight bouts of 1-min at 90% of the 

MAS obtained from the incremental test (section 3.3.2), interspersed by 75 s of active 

recovery at 4 km·h-1. Participants finished the protocol with two min cool down at 4 

km·h-1. The duration of the HIIE was 23 min.  

The MIIE protocol was prescribed so the participants would complete the work-

intervals of for the exercise bout below the GET determined from the incremental test 

(see section 3.5). For this, participants performed bouts of 1-min at 90% of GET 

interspersed by 75 s of active recovery at 4 km·h-1. The number of bouts in MIIE was 

tailored to each participant to match the total distance covered in the HIIE condition. 

MIIE was also preceded by three min warm-up and followed by two min cool down at 

four km·h-1.  

In Chapter 10, participants performed a training intervention involving the completion 

of 12 training sessions using a similar HIIE protocol as for Chapters 8 and 9. Maximum 

aerobic speed was obtained from a 20 m shuttle run test performed at the sports hall 

at the University of Exeter. For this, participants ran back and forth to cones set 20 

meters apart with the speed guided using a pre-recorded audio. Speed increased by 

1-km·h-1 at the end of each stage. Maximum aerobic speed was obtained for training 
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guidance as previously performed in a paediatric population (Mandigout et al., 2002). 

Participants completed the HIIE training running back and forth to the cones with the 

distance individualised to match the speed associated with 90% of the MAS obtained 

from the shuttle run test. In each training session, participants completed three min 

warm up at 4 km·h-1, followed by the completion of 8 – 12 (from week one to four) 1-

min boutsat 90% of the MAS. The bouts were interspersed by 75 s of active recovery, 

which consisted of walking between the cones. The speed was controlled using 

whistles. During all training sessions in Chapter 10, participants wore heart rate 

monitors. 

3.7.3 Chapters checklist 

The experimental manipulations used in each experimental chapter is described in 

Table 3.1. 

Table 3.1: Checklist of experimental manipulations in each experimental chapter. 

 
Chapter 

Five 
Chapter 

Six 
Chapter 
Seven 

Chapter 
Eight 

Chapter 
Nine 

Chapter 
Ten 

High-fat meal  X     

OGTT     X  

Exercise 
conditions 

   X X X 

OGTT: oral glucose tolerance test. 

3.8 Outcomes 

3.8.1 Standardisation 

All protocols for determination of HRV, BRS and arterial stiffness followed strict 

standardised procedures. In all experimental chapters, participants were transported 

to the laboratory following an overnight fast and were instructed to avoid extraneous 

exercise in the 48 h preceding data collection. In Chapters 7 – 9, participants were 
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also asked to keep a similar diet in the 24 h preceding the protocols, according to food 

diaries obtained in the first visit. Food diaries were analysed for the determination of 

total calories, and the absolute and relative contribution from carbohydrates, lipids and 

proteins using validated nutrition software (CompEat Pro, Nutrition Systems, UK). All 

participants in the experimental chapters reported compliance with the standardisation 

procedures.  

In Chapters 5 and 6 before HR data collection, participants were given five min of 

supine rest, followed by five min of data acquisition according to published guidelines 

(Task-Force, 1996). In Chapters 7 – 10, participants rested supine for 10 min before 

data collection took place. During HRV and BRS data acquisition in Chapters 5 – 10, 

participants maintained a breathing frequency at 12 cycles per min (0.2 Hz). This 

breathing frequency is known to increase autonomic modulation of heart rate in 

adolescents (Williams and Lopes, 2002). This breathing frequency was also used for 

BRS determination because it shifts breathing frequency above the frequency at which 

BRS influences HR (0.04 – 0.15 Hz) (Keyl et al., 2001), as suggested when examining 

spontaneous BRS (Bothova et al., 2010, Tzeng et al., 2009).  

Arterial stiffness assessment with PWV was conducted following 15 min of supine rest 

in Chapters 5 – 6. In Chapters 7 – 10, arterial stiffness assessment was preceded by 

10 min of supine rest. For both arterial stiffness assessments, measurements of BP 

were obtained. In Chapter 5 and 6, BP was measured three times after a 10 min supine 

rest (A&D Medical Co., 140 LTD, Japan). The average of the two closest SBP and 

diastolic BP (DBP) was used to calculate PWV. In Chapters 7 – 10, arterial BP was 

reconstructed from finger plethysmography (Finometer PRO, Netherlands) as 
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occurred simultaneously with arterial images for determination of local arterial 

stiffness.   

3.8.2 Heart rate variability and recovery 

Heart rate variability was calculated in all experimental chapters, except Chapter 7. To 

calculate HRV, beat-by-beat HR was obtained. In Chapters 5 and 6, HR was obtained 

using HR transmitters (Polar Team2, Polar, Kempele, Finland). This device measured 

HR at a frequency of 1,000 Hz, and inter-beat intervals in ms were obtained using 

specific software (Polar Precision Performance 5.0, Polar, Kempele, Finland). In 

Chapters 8 – 10, HR was obtained using a three-led ECG device. Data were recorded 

at a frequency of 1,000 Hz using the ECG module for PowerLab (PowerLab, 

ADInstruments). Inter-beat intervals were then automatically obtained by an R wave 

detection algorithm using purposely build macros in Chart 5 (Chapters 7 – 9) or Chart 

8 (Chapter 10) (PowerLab, ADInstruments).  

Inter-beat intervals were exported to Excel (Microsoft, USA), where data were visually 

checked for ectopic beats, and all errors were manually corrected by linear 

interpolation using adjacent intervals. Signals with more than 3% of errors were 

discarded from analysis. Once manually edited, data were exported to .txt files and 

uploaded to Kubios v 3.0 (Biosignal Analysis and Medical Imaging Group at the 

Department of Applied Physics, University of Kuopio, Kuopio, Finland) for HRV 

analysis. In Chapters 7 – 10, RR intervals used in Kubios were exported to .txt files 

and saved for BRS analysis.  

HRV was obtained in both time and frequency domains. The time domain indices 

obtained were RMSSD and SDNN (standard deviation of all RR intervals). For the 

frequency domain, data were interpolated at 4 Hz and Fast 
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Fourier Transformation using a Welsh’s periodogram with hamming windows of 

300sand 50% overlapping applied (Tarvainen et al., 2014). The area under the low 

frequency (LF = 0.04 – 0.15 Hz) and high frequency (HF = 0.15 – 0.50 Hz) bands were 

obtained and calculated in absolute (ms2) and normalised units (nu), as well as a ratio 

(LF/HF). 

Heart rate recovery was obtained in Chapter 5 following the steep ramp test. The same 

procedures of error correction for the HRV data were applied. Error free HR traces 

were analysed using two different methods. For the first, a regression between the 

natural logarithm of HR and time in s was obtained in the first 30 s of recovery, and 

the inverse of the beta coefficient (i.e. -1/slope) expressed as the T30 (Imai et al., 1994). 

For the second, a mono-exponential function was fitted to the 10 min HRR trace. For 

this, beat-by-beat HR was interpolated into one beat per second and the mono-

exponential curve obtained according to equation 3.9 using GraphPad prism 

(GraphPad prism, CA, USA). The time constant (t)reflecting 63% of the time HR took 

to reach its asymptotic value, was used as an indicator of the HRRt (Javorka et al., 

2003).  

HR = HRmin + Aexp[-time/tau] 

Equation 3.9: Mono-exponential model for HRR. Where HR is the dependent variable; 

HRmin is the HR at which asymptote is obtained; A is the amplitude between 

maximum heart rate and asymptote; and tau (t) is the time constant reflecting 63% of 

the time HR took to its asymptotic value. 

In addition to the HRR, HRV at the recovery period was calculated using the time 

domain analysis. For this, RMSSD was calculated every 30 s throughout the full 10 

min of recovery (RMSSD30). RMSSD30 was calculated in Kubios as described above. 
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RMSSD30 was transformed into natural logarithm and a median filter was applied 

following recommendations (Goldberger et al., 2006). Figure 3.3 presents the HRR of 

a representative participant including the calculation of all HRR indices.  

 

Figure 3.3: Representative sample of a heart rate recovery analysis. The black line 

represents T30 linear fit and the red dashed line represents the mono-exponential 

curve from which HRRt (t) was obtained. Open circles: heart rate in beats per minute. 

In B) the natural logarithm (LN) of the RMSSD was obtained for the whole 10 min 

recovery. 

 

3.8.3 Baroreflex protocol 

To investigate the autonomic and vascular determinants of BRS, a BRS protocol was 

adopted based on previous work (Lenard et al., 2004). For this, simultaneous 

measures of arterial BP, ECG and CCA images were obtained. The BRS protocol 

started after 10 min of supine rest (see section 3.8.1) and consisted of: 1) a 
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measurement of brachial BP; 2) CCA images recorded for 15 cardiac cycles; and 3) 

five min of simultaneous ECG and BP recordings while participants paced breathing 

frequency at 12 cycles per minute. The procedures were completed in the described 

order, lasting for a total duration of ~ 20 min (including the standardisation period).  

For the BRS protocol, beat-to-beat BP was measured continuously using finger 

plethysmography (Finometer PRO, Netherlands). The Finometer uses the volume-

clamp method to continuously measure BP. For this, the diameter of the digital artery 

is kept constant by adjusting pressure in the cuff surrounding the artery. Changes in 

diameter are measured using infrared photo-plethysmography, and small increases in 

diameter leads to a counter pressure applied by the cuff to avoid arterial distension 

(Truijen et al., 2012). The artery can be clamped at any diameter, however, for a 

precise estimation of BP, the artery needs to be clamped at the diameter where the 

transmural pressure is decreased, and the internal and external arterial pressures are 

equivalent. Because smooth muscle tone changes during BP monitoring, the 

Finometer adjusts the ideal diameter by applying a Physiocal function (Truijen et al., 

2012). Physiocal stops continuous monitoring of BP and changes the cuff pressure to 

a constant pressure regardless of arterial diameter. As such, Physiocal constantly (i.e. 

every minute) adjusts the ideal volume clamp for BP estimation. Physiocal procedures 

can last up to three cardiac cycles, and therefore, the continuous beat-to-beat BP 

monitoring is lost. For this reason, during BRS (last five min of simultaneous BP and 

ECG), Physiocal function was turned off. A recent investigation has shown that in well 

controlled situations (i.e. supine rest), Physiocal does not influence the outcomes of 

BP analysis (Kiviniemi et al., 2014).  
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Because the BP measured at the finger differs from the value obtained at the brachial 

artery, the Finometer was calibrated using a measurement of brachial pressure before 

data collection took place. This was performed automatically two times using 

Finometer return to flow calibration, according to manufacturer’s instructions. During 

data collection, participants kept their hands at heart level. For data analysis, the 

reconstructed brachial pressure obtained from the Finometer was used (Guelen et al., 

2008). The Finometer has been validated in children against the auscultatory method 

(Tanaka et al., 1994).    

Simultaneously with beat-by-beat BP, ECG signals were obtained. Both BP and ECG 

signals were collected using a Power Lab system (PowerLab, ADInstruments) which 

acquired data at a frequency of 1,000 Hz. Figure 3.4 shows an example ECG and BP 

trace. Beat-by-beat SBP in mmHg and RR intervals in ms were automatically obtained 

in Chart 5 (Chapters 7-9) or Chart 8 (Chapter 10) (PowerLab, ADInstruments). Data 

were exported to Excel (Microsoft, USA) and manually checked for errors in data 

extraction and ectopic beats. Systolic BP errors were manually interpolated, and RR 

intervals were obtained from Kubios (section 3.3.5.2) after HRV analysis was 

completed.   

 

Figure 3.4: Beat-by-beat electrocardiographic and blood pressure trace obtained from 

Power Lab. Red trace indicates finger blood pressure. Blue trace indicates 

electrocardiography signal. Green trace indicates reconstructed brachial pressure. 
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In Chapters 7 – 10, BRS was determined as the transfer function between the SBP 

and RR. For this, the gain between the SBP and RR data was calculated as the 

LFgain, from the final five min of the BRS protocol. For this purpose, beat-to-beat RR 

intervals and brachial reconstructed SBP were interpolated at 2 Hz and a Fast-Fourier 

Transformation similar to HRV analysis was applied to obtain the power spectrum in 

the low frequency band for both signals (LF =0.04 – 0.15 Hz). A cross-spectral transfer 

function was then applied and the mean cross-spectrum (LFgain) in the range where 

the coherence was > 0.5 was expressed as the baroreflex gain (BRS) in ms mmHg-1. 

This index was chosen due to its established validity compared to BRS assessment 

using vasoactive drugs (Robbe et al., 1987). LFgain was calculated using a 

homemade routine (MatLab R2017a). 

In Chapter 10, BRS was also obtained as the sequence method. For this, sequences 

of three or more beats where SBP and RR interval increased (Seq++) or decreased 

(Seq--) more than one mmHg and five ms were computed. The coefficient of the linear 

regression when r2> 0.9 between SBP and RR was used as the sequence method. 

The sequence method was obtained using freely available software (CardioSeries 

v2.4, http://www.danielpenteado.com). 

3.8.4 Arterial imaging 

In Chapters 7 – 10 local arterial compliance and distensibility were obtained at the 

CCA in accordance with established guidelines (Urbina et al., 2009). All arterial images 

were acquired during the BRS protocol.  

CCA images were obtained ~ 2 cm distal from the carotid bulb using a high-resolution 

(13 MHz) linear array transducer (Apogee, 1000, SIUI, China). The images were 

obtained over 15 cardiac cycles recorded at 15 Hz. Subsequently CCA images were 

http://www.danielpenteado.com/
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analysed using validated wall tracking software (Carotid Analyzer - Medical Imaging 

Applications LLC) (Mancini et al., 2004) for determination of DLD and SLD. The 

average of 3 – 7 cardiac cycles with clear definitions of the near and far walls 

were used. Figure 3.5 shows a representative carotid scan with the respective 

analysis of DLD and SLD.  

 

Figure 3.5: Example of a common carotid artery and the respective intra-media 

thickness and arterial diameter during 15 cardiac cycles. In A) a sample image is 

obtained, and the region of interest is shown in green. The arterial diameter is then 

obtained using the purple lines and lumen diameter using the yellow lines. The near 

(N) and far (F) intra-media thickness are obtained automatically by the software as the 

distance between the purple and yellow lines. In B) continuous diameter trace is 

obtained frame-by-frame from the monitoring of the region of interest from A. In C) the 

automatic track provides the values of carotid intra-media thickness and arterial 

diameter. 
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During the 15 cardiac cycles, beat-to-beat brachial reconstructed systolic and diastolic 

BP were obtained from the Finometer and averaged to determine PP. Equations 3 – 

10 and 3 – 11 were used to determine CCA compliance and distensibility.  

AC (μm∙mmHg-1) = ΔD/PP 

Equation 3.10: Arterial compliance. Where ΔD is SLD minus DLD and PP the 

measures pulse pressure. 

AD (mmHg·10-3) = ΔCSA/PP·CSAmin 

Equation 3.11: Arterial distensibility. Where CSA in the cross sectional CCA artery 

calculated as CSA = πr2 being r = diameter/2 and ΔCSA the systolic CSA 

minus diastolic CSA (CSAmin).  

In addition, in Chapter 10 the young elastic modulus was calculated using equation 

3.13.  

Young elastic modulus (mmHg:10-3) = [3(1+CSAmin/WIMT)]/AD 

Equation 3.12: Young elastic modulus. Where WIMT is the IMT cross sectional area 

in mm2 obtained as π(IMT2)/4 and AD is the calculated arterial distensibility. 

 

3.8.5 Pulse wave velocity 

In Chapters 5 and 6 PWV was calculated between the carotid and radial arteries 

(Complior SP, Artech Medical, France). Two probes were positioned on the region 

with the strongest pulse on these arteries and the distance from the external notch to 

the carotid probe was subtracted from the distance from the external notch to the radial 

probe and used to calculate PWV. The difference in time between the upstroke of the 
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waveform recorded at the carotid and radial arteries was obtained by the software. 

Only waveforms with clear baseline, maximum amplitude, and a reasonable 

configuration were accepted by the software for PWV calculation. Measurements were 

taken three times with the two closest values averaged and retained for analysis.  

3.8.6 Chapter checklist 

The outcome measurements using in each experimental Chapter are described in 

Table 3.2.  

 

Table 3.2: Checklist of the outcomes in each experimental chapter. 

 
Chapter 

Five 
Chapter 

Six 
Chapter 
Seven 

Chapter 
Eight 

Chapter 
Nine 

Chapter 
Ten 

HR 
monitors 

X X       

ECG   X X X X 

BP    X X X X 

Arterial 
imaging 

  X X X X 

PWV X X     

ECG: electrocardiography. BP: blood pressure. PWV: pulse wave velocity. HR: heart 

rate. 

3.9 Statistics analyses 

All statistical analyses were performed on SPSS (Chicago, USA) and Excel 

spreadsheets available at (http://www.sportsci.org/resource/stats/). HHRt, tAUC and 

iAUC were obtained using GraphPad (Prism, GraphPad Software, San Diego, 

California, USA). Data are presented as mean and standard deviation, unless 

otherwise stated. In addition to the null hypothesis testing used in the experimental 

chapters, effect sizes (ES) were obtained as the difference in means divided by the 

pooled standard deviation. Effect sizes are an important addition to null hypothesis as 

http://www.sportsci.org/resource/stats/
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it describes the magnitude and direction of changes as previously suggested (Hopkins 

et al., 2009). All relevant statistical analysis and interpretation are presented in the 

experimental chapters.  
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Chapter 4: Is Cardiac Autonomic Function 

Associated with Cardiorespiratory 

Fitness and Physical Activity in 

Children and Adolescents? A 

Systematic Review of Cross-Sectional 

Studies 

4.1 Abstract 

This Chapter aimed to systematically address the associations between HRV, PA and 

CRF in children and adolescents. Data sources Medline, EMBASE, SportDISCUS and 

CINAHLPlus were searched on 5th September 2015 and updated on 4th August 2016. 

Eligibility criteria Observational studies comparing HRV in different groups of PA and 

CRF, and/or studies investigating the association between PA, CRF and HRV. Sports 

practices and PA intensities were also included. The RMSSD, HF, LF, and the LF/HF 

ratio were included. Risk of bias was assessed using the adapted Newcastle-Ottawa 

Scale (NOS). The results demonstrated that heterogeneity exists in the assessment 

of the exposures and outcomes, and sample characteristics. Risk of bias was 

observed in most of the studies. Studies with low risk of bias showed positive 

associations between moderate-to-vigorous PA and RMSSD. The evidence for the 

associations between PA and frequency indices is weak. Similarly, the evidence for 

the association between CRF and HRV is weak. Conclusions Despite the 

heterogeneity in the studies, moderate-to-vigorous PA is positively associated with 
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RMSSD, but less clear are the associations between CRF and HRV, as well as other 

PA intensities. Further research is needed to clarify the role of PA and CRF on HRV 

in children and adolescents. 

4.2 Introduction 

Cardiovascular diseases are the main cause of mortality worldwide and the process 

of atherosclerosis has been found to originate in childhood (McGill et al., 2000, 

Berenson et al., 1998, Berenson et al., 1992). Strong evidence exists for the benefits 

of PA and CRF on CVD risk reduction in children and adolescents via modifying 

traditional risk factors such as body fatness, BP, blood lipids, and insulin resistance 

(Janssen and Leblanc, 2010). Although improvements in traditional CVD risk factors 

related to PA and CRF are associated with a decreased CVD risk, changes in 

traditional CVD risk factors do not fully explain CVD risk reduction (Mora et al., 2007). 

This has created a ‘risk factor gap’ in our knowledge of how PA and CRF confer CVD 

risk reduction (Green et al., 2008). In addition, the American Heart Association 

recognises that further research is needed to explore novel CVD risk factors in youth 

in order to advance pathophysiological understanding and CVD management in this 

population (Balagopal et al., 2011). 

Cardiac autonomic function, assessed by HRV, has been suggested as a potential 

candidate which may help explain the risk factor gap (Joyner and Green, 2009). In 

contrast to the research base for traditional CVD risk factors which have been explored 

in systematic reviews (Janssen and Leblanc, 2010, Andersen et al., 2011b, Ruiz et 

al., 2009), the evidence for the associations between childhood HRV, PA and CRF 

have yet to be systematically evaluated. A systematic approach is crucial, as while 

some studies have shown relationships between PA, CRF and HRV in children and 
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adolescents (Michels et al., 2013, Gutin et al., 2005), others have found no 

relationships (Krishnan et al., 2009, Cayres et al., 2015, Brunetto et al., 2005), 

meaning conclusions are not yet clear.  

The aim of this study was to systematically review observational studies to investigate 

the following question: is HRV related to PA and CRF in children and adolescents? 

Examining this association will increase our current knowledge of how PA and CRF 

are related to HRV indices of cardiac autonomic function in children and adolescents, 

as well as providing level one evidence that may be used to inform current PA 

guidelines for health in children and adolescents. Evidence shows that HRV is 

inversely related to CVD risk factors, decreased in children with congenital heart 

disease (Zhou et al., 2012, Massin et al., 1999), and inversely related to CVD mortality 

in adults (Thayer et al., 2010). In addition, HRV has been suggested as a factor that 

may provide further evidence into CVD risk reduction accrued by PA (Joyner and 

Green, 2009), and therefore the present hypothesis is that HRV will be positively 

associated with CRF and PA in children and adolescents. 

4.3 Methods 

The review was conducted following best practice (Dissemination, 2008), and reported 

here in accordance with the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) recommendations (Liberati et al., 2009). The protocol for 

the review was registered with PROSPERO (International Prospective Register for 

Systematic Review; reference CRD42015023614). 

4.3.1 Search 

A systematic search was originally completed on 5th September 2015 and later 

updated on 4th August 2016 in the following databases: Medline [Ovid], EMBASE 
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[Ovid], SportDISCUS [Ebscohost] and Cumulative Index to Nursing and Allied Health 

Library (CINAHL Plus) [Ebscohost]. The search was restricted to studies published in 

English, but with no date restriction. A copy of the search strategy used in Medline is 

shown in Appendix 3, page 359. Supplementary searching involved forward and 

backward citation of the included studies. 

4.3.2 Participants, exposures, comparators and outcomes – PECO 

4.3.2.1 Participants 

Participants were healthy children and adolescents aged between 5 – 18years old. 

This age range was chosen to reflect current PA guidelines for health in children and 

adolescents (Bull, 2010). Studies exclusively investigating obese and overweight 

children were eligible for inclusion as previous research suggests that PA and CRF 

are related to HRV independently of body fatness in children (da Silva et al., 2014b, 

Gutin et al., 2005). Furthermore, body weight status was included as a possible 

mediator of associations between PA, CRF and HRV in the current review. However, 

children and adolescents with any specific diseases or long-term conditions, such as 

diabetes, hypertension, congenital heart disease, metabolic syndrome, amongst 

others were excluded. Exposures: physical activity and cardiorespiratory fitness 

Studies assessing PA and CRF using either objective or subjective measures were 

included. We considered accelerometers, pedometers, doubly labelled water, global 

positioning system (GPS) devices, and heart rate monitors as objective measures of 

PA. Questionnaires and interviews were considered subjective measures of PA. Time 

spent in subdivisions of PA intensities, including light PA (LPA), MPA, VPA, and 

MVPA, were included. Sedentary time and behaviour were also considered but none 

of the studies measured these exposures. Sports practice was considered as a 
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subcomponent of PA and was treated as an independent exposure. Studies examining 

the influence of sports practice without the inclusion of a control group of non-athletes 

for comparison were not included. Sports practices as quantified through training loads 

with GPS and heart rate monitors were considered as objective methods, whereas the 

use of questionnaires or interviews was considered as subjective. For the inclusion of 

CRF studies, both direct and indirect assessments were included. Measurements of 

peak oxygen uptake (V̇O2peak) with direct quantification of gas exchange were 

considered as a direct measurement, whereas indirect estimation using either 

validated equations or submaximal tests were considered. Surrogate markers of CRF 

such as performance in field-based tests (e.g. 20 m shuttle run test) were also included 

in the analysis.  

4.3.2.2 Outcomes: heart rate variability 

Studies were considered eligible when HRV measurements were conducted in 

accordance to published guidelines (Task-Force, 1996). Time and/or frequency 

domain indices were considered for analysis but other HRV measurements, such as 

non-linear, fractal analysis amongst others were not included. We decided a priori to 

limit the analyses to the RMSSD, HF and LF using either absolute (ms2) or normalized 

units (nu), and the LF/HF ratio. The RMSSD and HF are known to reflect 

parasympathetic modulation and the LF is considered a marker of overall autonomic 

activity. The LF/HF ratio is normally used as a marker of the sympatho-vagal balance 

(Task-Force, 1996). We used these four indices to aid data pooling as well as due to 

the established prognostic value of these indices, albeit in adults (Thayer and Lane, 

2007).  
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4.3.2.3 Study designs 

Quantitative studies allowing mean comparison or relationships between the 

exposures and HRV were included in the review. The definition described by the 

Centre for Reviews Dissemination guidance for undertaking reviews in health care for 

study designs was used (2008). Observational studies examining HRV in children 

using correlational/regression analyses to investigate associations with PA levels and 

CRF, and cross-sectional investigations comparing different groups according to PA 

levels, sports practice or CRF were included. Case studies and reports with insufficient 

data, such as abstracts and conference papers, were not considered eligible for 

inclusion.  

4.3.3 Study selection 

Titles and abstracts were reviewed and studies not meeting the eligibility criteria were 

discarded. The remaining studies were kept for a second round, where the full texts 

were obtained. Two reviewers (RSO, KMW) independently performed these stages. 

All disagreements were discussed, and a consensus formed. EndNote reference 

manager was used to complete these steps. Kappa coefficient of agreement between 

the reviewers was 0.78 (95% CI = 0.72 – 0.84).  

4.3.4 Data extraction and categorization 

Using a bespoke form, the following information was extracted: authors, aim, design, 

sample characteristics, recruitment procedures, criteria for exclusion and inclusion of 

participants, measurement of outcomes and exposures, confounders and how the 

studies dealt with them, statistical approach and main results. Studies were divided 

according to the exposures (i.e. CRF, total PA, PA intensities and sports practice). A 

post-hoc division was performed aiming to classify the studies according to the 
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analysis into: regression analysis; bivariate relationships; and group comparisons. 

Several investigations were categorized into more than one of these categories.      

4.3.5 Quality assessment 

Risk of bias was evaluated using a modified version of NOS (Appendix 4) previously 

used by Perera et al. (2015). Agreement was achieved between two researchers (RSO 

and ARB). The NOS contained four domains of risk assessment. In each domain, the 

scale measures the likelihood of bias with four possible scores ranging from 0 – 3 

representing high and low risk of bias, respectively. The following domains were 

included:  

Selection bias: This domain contained one subdomain regarding the source of the 

population. Low risk of bias was considered when random sampling was used, and 

high risk of bias when a convenience sample was used without explanation of the 

recruitment procedures undertaken.  

Performance bias: This domain contains two subdomains: one regarding the sample 

size and one about confounders. Low risk of bias was considered when the study 

provided an appropriate power analysis for sample size calculation, and when the 

study controlled for important confounders using appropriate statistical methods (see 

detection bias below).  

Detection bias: This domain contained two subdomains: one regarding the statistical 

approach and one about missing data. Low risk of bias was considered when an 

appropriate statistical approach was used, and the authors properly described how 

missing cases were handled. Studies not mentioning missing cases were considered 

to have a low risk of bias.  
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Information bias: This domain contains two subdomains: one about the appropriate 

assessment and the other about the objective measurement of the exposures. Low 

risk of bias was considered when the exposures were objectively measured, and 

sufficient details provided to enable the measurement to be replicated by the reader. 

In addition, the appropriate subdomain for the measurement of HRV was duplicated. 

In this case, low risk of bias was considered when studies presented sufficient details 

of the procedures taken before and during the measurement of HRV according to 

published guidelines (Task-Force, 1996).  

The score of the individual subdomains were added to create a risk of bias score. The 

highest score was 24 (low risk of bias) including three from selection bias, six from 

performance bias, six from detection bias, and nine from the information bias (six from 

the exposure and three from the HRV assessment). The scores of each subdomain 

are presented in Figure 4.2. Studies were not excluded based on the risk of bias, but 

bias was considered in the synthesis of results and interpretation of the findings. 

4.3.6 Data analysis 

From the studies using regression analysis the beta coefficient (raw or standardised) 

and the significance of the association were extracted. For the studies using bivariate 

correlation, the coefficient of relationship and the significance of the association were 

extracted. Finally, from the studies comparing groups, data were pooled to report 

whether a significant difference existed between the groups and the direction of the 

difference. Due to the differences in the measurement of PA, CRF and HRV and the 

different designs employed between studies, a meta-analytical approach was not 

possible in the current review. Rather, a narrative synthesis of the data is provided. In 

order to investigate possible factors modifying the associations, subgroup analyses 
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were performed based on age, sex and body weight status. Body weight status 

subgroup analysis was performed using the studies that explicitly included overweight 

and obese participants.  

4.4 Results 

4.4.1 Study selection 

A PRISMA flow diagram is presented in Figure 4.1. The original search yielded 4,915 

studies of which, after screening for eligibility and duplicate removal, 17 studies met 

the criteria for inclusion. The search update identified a further 300 studies, from which 

one eligible study was found. Subsequently 18 studies were included in the review. All 

studies were published after the year 2000. Ten studies investigated the association 

between PA and HRV (Buchheit et al., 2007c, Cayres et al., 2015, Farah et al., 2014, 

Gutin et al., 2000, Gutin et al., 2005, Henje Blom et al., 2009, Iwasa et al., 2005, 

Krishnan et al., 2009, Michels et al., 2013, Radtke et al., 2013a), four between CRF 

and HRV (Brunetto et al., 2005, da Silva et al., 2014b, Gutin et al., 2000, Michels et 

al., 2013), and six between sports practice and HRV (Alom et al., 2011, Cayres et al., 

2015, Nagai and Moritani, 2004, Radtke et al., 2013a, Vinet et al., 2005, Sharma et 

al., 2015). From the PA studies, eight used regression models (Buchheit et al., 2007c, 

Farah et al., 2014, Gutin et al., 2000, Gutin et al., 2005, Henje Blom et al., 2009, 

Krishnan et al., 2009, Michels et al., 2013, Radtke et al., 2013b), six used bivariate 

relationships (Cayres et al., 2015, Chen et al., 2012, Gutin et al., 2000, Henje Blom et 

al., 2009, Iwasa et al., 2005, Krishnan et al., 2009), and two divided the participants 

according to different levels of PA (Buchheit et al., 2007c, Radtke et al., 2013b). From 

the CRF studies, two used regression models (Gutin et al., 2005, Michels et al., 2013), 

one used bivariate relationships (da Silva et al., 2014b), and one divided the 
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participants according to tertiles of CRF (Brunetto et al., 2005). From the sports 

practice  studies, one used regression models (Cayres et al., 2015), one used bivariate 

relationships (Cayres et al., 2015), and six divided the participants according to sports 

practice groups (Alom et al., 2011, Cayres et al., 2015, Nagai and Moritani, 2004, 

Radtke et al., 2013a, Vinet et al., 2005, Sharma et al., 2015). A summary of the 18 

studies is presented in the Table 4.1. 

4.4.2 Risk of bias 

The risk of bias is presented in Figure 4.2. The median risk of bias was 12, with the 

highest and lowest being 22 and six out of 24. The main source of bias was in the 

participants’ recruitment, with only three studies reporting random sampling (Buchheit 

et al., 2007c, Krishnan et al., 2009, Michels et al., 2013). Additionally, nine studies did 

not control for confounders (Alom et al., 2011, Brunetto et al., 2005, Chen et al., 2012, 

da Silva et al., 2014b, Henje Blom et al., 2009, Iwasa et al., 2005, Krishnan et al., 

2009, Nagai and Moritani, 2004, Vinet et al., 2005, Sharma et al., 2015), and eleven 

presented bias in the assessment of the exposure, either by not providing sufficient 

information or by using subjective assessment methods (Alom et al., 2011, Cayres et 

al., 2015, Chen et al., 2012, Farah et al., 2014, Gutin et al., 2000, Henje Blom et al., 

2009, Iwasa et al., 2005, Nagai and Moritani, 2004, Vinet et al., 2005, Radtke et al., 

2013a, Sharma et al., 2015). Five studies did not explain with detail the procedures 

preceding the HRV measurements (Gutin et al., 2000, Iwasa et al., 2005, Radtke et 

al., 2013a, Radtke et al., 2013b, Vinet et al., 2005). 
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Figure 4.1: PRISMA flow diagram of the included studies. 

 

4.4.3 Participants 

The average age of the participants ranged from 7.5 (Iwasa et al., 2005) to 16.5 years 

old (Farah et al., 2014). The age of the participants included in one study was not 

clearly stated (Chen et al., 2012). Most of studies included both males and females, 

but three investigated males only (Alom et al., 2011, Farah et al., 2014, Vinet et al., 

2005). Three studies investigated exclusively healthy weight children (Brunetto et al., 

2005, Radtke et al., 2013a, Radtke et al., 2013b), three investigated exclusively 

obese/overweight children (Chen et al., 2012, da Silva et al., 2014b, Gutin et al., 2000), 

and one included both obese and healthy weight children (Nagai and Moritani, 2004). 
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In 10 studies it was not clear whether overweight or obese participants were included 

(Alom et al., 2011, Buchheit et al., 2007c, Cayres et al., 2015, Farah et al., 2014, Gutin 

et al., 2005, Henje Blom et al., 2009, Iwasa et al., 2005, Krishnan et al., 2009, Michels 

et al., 2013, Vinet et al., 2005). 

 

Figure 4.2: Risk of bias of the individual studies. The maximal value of 24 reflects the 

lowest risk of bias. Studies are ranked according to the observed risk of bias. 
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Table 4.1: Summary of the included studies. 

Author/aims Study design Participants Exposure 
measurement 

HRV measurement Risk 
of 

bias 
Physical activity     

Michels et al. (2013) 
Aims: To investigate the 
association of age, sex, 

time point, body 
composition, PA and 

CRF to HRV in children 

Multiple regression models 
to investigate the 

associations of PA and 
HRV 

Healthy children 
n=460 

n girls? (age=8.0±?) 
n boys? (age= 8.1±?) 

Uniaxial accelerometer 
15 s epochs. 

3 consecutive days 
Wear time? 
MPA >2296 
counts·min-1 
VPA >4012 
counts·min-1 

MVPA used for 
analysis 

 
Indirect assessment of 
V̇O2max using Leger 
equation from 20 m 

shuttle test 
performance 

Duration: 5-min 
Time of the day: 9am-6pm 

Position: Supine 
Breathing control: No 

Pre measurement:No VPA on the measurement day 
Day of measurement: Each child was individually 

examined in a quiet room in the supine position for 10 
min 

Device: Polar Wearlink 31 
Error correction: The RR series detrended with 

Smoothness priors (alpha = 300). Interpolation at 4 
Hz. Quality and stationarity checked: no large RRI 
outliers, an equidistance between consecutive RRI 

points, minimal variation, stable mean and unimodal, 
Gaussians RRI and HR distribution graphics 

Time domain: RMSSD 
Frequency domain: LF (0.04-0.15 Hz), HF (0.15-0.4 

Hz) 
LF/HF ratio 

22/24 

Gutin et al. (2005) 
Aims: To determine the 

association between 
HRV, race, sex, free-
living PA, CRF, %BF, 

subcutaneous and 
abdominal adiposity in 

adolescents 

Multiple regression models 
to investigate the 

associations of PA and 
HRV 

Healthy children 
n=304 

n girls=171 (age: 
white=16.2±1.1 y; 
black=16.3±1.3 y) 
n boys=133 (age: 

white=16.4±1.3 y; black 
=16.0±1.1 y) 

 

Uniaxial accelerometer 
1-min epochs 

5 days 
Wear time? 

MPA 3–6 METs 
VPA 6–9 METs 
MVPA used for 

analysis 
 

CRF: V̇O2 recorded at 
heart rate of 170 bpm 
during a multistage 

treadmill test 

Duration: 256 RR intervals 
Time of the day? 
Position: Supine 

Breathing control: No 
Pre measurement? 

Day of measurement: Measures performed after 10 
min of quiet rest 
Device: ECG 

Error correction: Any ectopic beats automatically 
identified and rejected 

Time domain: RMSSD 
Frequency domain: HF (0.15-0.4 Hz); LF (0.05-0.15 

Hz) and LFnu/HFnu 
 

19/24 
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Buchheit et al. (2007c) 
Aims: To evaluate in 12-
year-old the association 
between PA intensities 

and health-related 
indexes 

 

Multiple regression models 
to investigate association 

between PA and HRV 
indices. Participants 
divided into groups 

according to criteria of 
MPA and VPA levels 

Healthy children 
n=67 (age=11.5±0.8 y) 

n girls=42 
n boys=25 

 
Groups of PA 

n low MPA= 16 (boys? girls?) 
n high MPA= 52 (boys? 

girls?) 
n low VPA= 21(boys? girls?) 

n high VPA= 56 (boys? 
girls?) 

 

Triaxial accelerometer 
Epoch length? 

Days? 
Wear time? 

MPA > 4 METs 
VPA > 6 METs 

 
 

Duration: Short 5-min 
Time of the day: 8-9am 

Position: Supine 
Breathing control: No 

Pre measurement? 
Day of measurement: Avoid running or other VPA 

when coming to school. Light breakfast. HR recorded 
in a comfortable quiet room 

Device: Polar 810s 
Error correction: Ectopic beats replaced with 

interpolated RR interval 
Time domain: RMSSD 

Frequency domain: LF (0.04-0.15 Hz); HF (0.15-0.4 
Hz); HF/(LF+HF) ratio 

17/24 

Radtke et al. (2013b) 
Aims: To evaluate the 
relationship of different 
levels of PA intensity on 

CRF, microvascular 
endothelial function, and 

HRV in adolescents 
 

Multiple regression models 
to investigate association 

between PA and HRV 
indices. Participants 
divided into groups 

according to criteria of 
MVPA and VPA levels 

Healthy children 
n = 45 

Girls=28 (age=14.5±0.7 y) 
Boys=24 (age= 14.5±0.7 y) 

Groups of PA 
n low MVPA=22 (boys=7; 

girls=15) 
n high MVPA=22 (boys=9; 

girls=13) 
n low VPA=22 (boys=7; 

girls=15) 
n high VPA=23 (boys=10; 

girls=13) 

Uniaxial accelerometer 
5 s epoch averaged in 

60 s 
5 days including one 

weekend day 
>9 h of wear time 

MVPA >3,000 
counts·min-1 
VPA >5,200 
counts·min-1 

 
 

Duration: 24-h 
Time of the day: 24-h 
Position: Not applied 

Breathing control: Not applied 
Pre measurement? 

Day of measurement? 
Device: ECG 

Error correction: Sinus beat identified and 
eliminated. 

Time domain: RMSSD 
Frequency domain: Not used 

15/24 

Farah et al. (2014) 
Aims: To determine the 

relationship between 
HRV measures and the 

clustering of RFs for 
cardiovascular disease in 

adolescent boys 
 

Multiple regression models 
to investigate the 

associations of PA and 
HRV 

Healthy children 
n=1152 
n girls=0 

n boys=1152 (age=16.6±1.2) 

Subjective 
Face-to-face interview: 

7-days recall 
How many days active 
for a total of at least 60 

minutes? 

Duration: 5-min 
Time of the day? 
Position: Supine 

Breathing control? 
Pre measurement: No caffeinated beverages 12 

hours prior. No PA 24 prior 
Day of measurement: Approximately 30 minutes of 

supine rest 
Device: Polar RS800cx 

Error correction: Stationary periods of the 
tachogram with at least 5 minutes 

Time domain: RMSSD 
Frequency domain: LF (0.04-0.15 Hz); HF (0.15-0.4 

Hz) and LF/HF 

15/24 
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Krishnan et al. (2009) 
Aims: To evaluate 

gender differences in the 
association between 
HRV and adiposity in 

children 

Multiple regression models 
to investigate the 

associations of PA and 
HRV. Parametric 

relationships between PA 
and HRV 

Healthy children 
n=208 

n girls=101 (age=9.0±0.3 y) 
n boys=107 (age=9.0±0.3 y) 

Accelerometers 
60 s epochs 
Seven days 
Wear time? 
LPA < 1000 
counts·min-1 
MPA <2500 
counts·min-1 
VPA >2500 
counts·min-1 

Duration: 5-min 
Time of the day? 

Position? 
Breathing control: No 

Pre measurement? 
Day of measurement: Subjects rested for 10 min 

before the start of each recording 
Device: ECG 

Error correction: Absence of ectopic beats and 
stationarity of the time series 

Time domain: RMSSD 
Frequency domain: LF (0.05-0.15 Hz) and HF 

(0.15-0.40 Hz) 

14/24 

Gutin et al. (2000) 
Aims: To determine the 
relations of pre training 

HRV to body 
composition and PA in 

obese children 
 
 

Multiple regression models 
to investigate the 

associations of PA and 
HRV. Parametric 

relationship between PA 
and HRV 

Obese children 
n=78 (age=9.5±1) 
n girls=53 (age?) 
n boys=26 (age?) 

Groups of PA 
n MPA=71 (age? boys? 

girls?) 
n VPA=71 (age? boys? 

girls?) 

Subjective 
Face-to-face interview: 

7-days recall 
Activities >10-min in 

duration of: 
MPA (walking) 
VPA (running) 

>VPA (between 
walking and running). 

Time spent in VPA and 
>VPA were summed to 

derive a VPA index 

Duration: Over 256 RR intervals 
Time of the day? 
Position: Supine 

Breathing control? 
Pre measurement? 

Day of measurement: 10-min of quiet rest Device: 
ECG 

Error correction? 
Time domain: RMSSD 

Frequency domain: Not used 

13/24 

Henje Blom et al. (2009) 
Aims: To investigate 
whether there is an 

impact of lifestyle (PA, 
eating habits, sleeping 

pattern and smoking) on 
HRV 

 

Multiple regression models 
to investigate the 

associations of PA and 
HRV. Parametric and non-
parametric relationships 
between PA and HRV 

Healthy children 
n=71 (age=16.5±?) 
n girls=47 (age?) 
n boys=24 (age?) 

Subjective 
Five-point scale: The 

frequency of exercising 
with hard breathing 

and sweating (“never”, 
“seldom”, “once a 

week”, “twice a week” 
and “more than twice a 

week”) 

Duration: 2-min 
Time of the day? 
Position: Sitting 

Breathing control? 
Pre measurement: Tobacco, caffeine intake, and 
beta stimulant asthma medication not allowed 1 h 

prior 
Day of measurement: 15 min of quiet rest 

Device: ECG 
Error correction: Ectopic beats and artefacts 

replaced with cubic spline interpolation 
Time domain: Not used 

Frequency domain: HF (0.15-0.4 Hz) and LF (0.04-
0.15 Hz) 

10/24 
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Chen et al. (2012) 
Aims: To explore the 

effects of PA on HRV for 
those who have an 

abnormal autonomic 
nervous system function 

 

Simple linear regression to 
investigate the association 
between PA and HRV in 
the pubertal overweight 

participants 

Overweight children 
n=21 

n girls? (age?) 
n boys? (age?) 

 
 

Subjective 
Physical Activity 
Questionnaire of 

Children 
7-days recall 

Nine items: Sports and 
games, physical 

activities in school, and 
leisure activities 

Frequency: (none) to 
five (>7 times/week) 

PA measured by 
determining the mean 
score for the 9 items 

Duration: 5-min 
Time of the day: Morning 

Position: Supine 
Breathing control: No 

Procedures: 
Pre measurement:No VPA and caffeinated 

beverages 2 h prior 
Day of measurement: 15 min of quiet rest 

Device: ECG 
Error correction: Automatically and manually 

inspected 
Time domain: Not used 

Frequency domain: LF (0.04-0.15 Hz); HF (0.15-0.4 
Hz) 

8/24 

Iwasa et al. (2005) 
Aims: To investigate the 
association of HRV at 

night and PA in children 
 

Non-parametric 
relationships between PA 

and HRV 

Healthy children 
n=29 (age=7.5±1.4) 

n girls=12 (age?) 
n boys=17 (age?) 

Pedometer 
11 grade exercise 

levels 
2 min intervals 

The amounts of energy 
consumption (kCal) 
every 4 s The most 

frequent value over 2 
min classified into: 

Rest: 0–0.5 
Gait, 1–3 

Fast gait, 4–6 
Intense exercise, 7–9 

Duration: Overnight 
Time of the day: Midnight- 5am 

Position: Supine 
Breathing control: No 

Pre measurement? 
Day of measurement? 

Device: ECG 
Error correction? 

Time domain: Not used 
Frequency domain: LF (0.04-0.15 Hz); HF (0.15-0.4 

Hz); and LF/HF 
 

8/24 

Cardiorespiratory fitness     
Brunetto et al. (2005) 

Aims: To systematically 
evaluate the effects of 

gender and aerobic 
fitness on resting and 
head-up tilt HRV in 
healthy adolescents 

Participants divided into 
groups according to tertiles 

of fitness 

Healthy children 
n=41 

n girls=21(age=15.2±1.1) 
n boys=20 (age=15.4±0.8) 

 
Tertiles of fitness 

n low=14 (age? boys? girls?) 
n mod=13 (age? boys? 

girls?) 
n high=14 (age? boys? 

girls?) 

CRF: Objective 
assessment of 

V̇O2max using Bruce 
treadmill protocol 

Duration: 5-min 
Time of the day: Between 2-5pm 

Position: Supine 
Breathing control: Yes 

Pre measurement: No caffeinated and/or alcoholic 
beverages on the day. No VPA on the day prior 

Day of measurement: 15 min of quiet rest 
Device: Polar S810 

Error correction:R-R intervals that differed by ±20 
beats from the mean of the analysed period deleted. 

Recordings that required filtering of more than 10% of 
the R-R intervals were discarded 

Time domain: RMSSD 
Frequency domain: LF (0.04-0.15 Hz); HF (0.15-0.4 

Hz); and LF/HF 

16/24 
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da Silva et al. (2014b) 
Aims: To investigate 

HRV and its association 
with CRF,PA, insulin, 

and hemodynamic profile 
in overweight and obese 

adolescent boys and 
girls 

Non-parametric 
relationship between CRF 

and HRV indices 

Healthy children 
n=28 

n girls=18 (age=14±2 y) 
n boys=10 (age=13.2±2 y) 

 

CRF: Indirect 
assessment of 

V̇O2max using Leger 
equation from 20 m 

shuttle test 
performance 

Duration: 5-min 
Time of the day: Between 4-5pm 

Position: Sitting 
Breathing control: No 

Pre measurement: No VPA or beverages containing 
caffeine 24 h prior. No food 2 h prior 

Day of measurement: 10 min of quiet rest. 
Controlled temperature (23 °C) 

Device: Polar RS800 CX 
Error correction: Ectopic beats (deviation higher 
than 20 % of adjacent intervals) interpolated by 

adjacent R–R intervals 
Time domain: RMSSD 

Frequency domain: LF (0.04-0.15 Hz); HF (0.15-0.4 
Hz), and LF/HF 

11/24 

Sports practice      

Cayres et al. (2015) 
Aims: To analyse the 
relationship among 

sports practice, physical 
education class, habitual 
PA and cardiovascular 

risk in adolescents 
 

Participants divided into 
groups according to sports 

practice. Multiple 
regression models to 

investigate association 
between sports practice 

and HRV 

Healthy children 
n=120 

n girls? (age?) 
n boys? (age?) 

 
Sports practice =60 

(age=12±1) 
Inactive=60 (age=11±1) 

Sports practice: 
Subjective assessment 
Do you participate in 

sports activities outside 
of the school 
environment? 

Number of days (1-5) 
in the week used for 

analysis 
 

Habitual PA was 
evaluated by a 

pedometer over a 
period of 7 days 

Duration: 1000 RR intervals 
Time of the day: Morning 

Position: Supine 
Breathing control: No 

Pre measurement: No VPA and caffeinated 
beverages for 2 h prior to testing 

Day of measurement: 30-min quite rest 
Device: Polar RS800 

Error correction: Digital filtering, visually checked 
and removed abnormal intervals 

Time domain: RMSSD 
Frequency domain: Not used 

15/24 

Radtke et al. (2013a) 
Aims: To compare the 

benefits of high-volume 
sports club participation 
vs. low-volume sports 
club participation on 

HRV in active, normal-
weight children 

 

Participants divided into 
groups according to sports 

practice  

Healthy children 
n= 49 (age=11±1.0) 

n girls=29 
n boys=20 

 
Sports practice =23 
n girls=14 (age?) 
n boys=9 (age?) 

Inactive=26 
n girls=15 (age?) 
n boys=11 (age?) 

 

Sports practice: 
Subjective defined as 

sports club 
participation 

(min/week) and leisure-
time PA within the last 

year based on their 
individual weekly 

volume of PA within a 
sports club 

 
Low volume: <180 

min/week High volume: 
>180 min/week 

Duration: 5-min 
Time of the day: Between midnight and 5am 

Position: Supine 
Breathing control: No 

Pre measurement? 
Day of measurement? 

Device: ECG 
Error correction? 

Time domain: Not measured 
Frequency domain: LF (0.04-0.15 Hz) and HF 

(0.15–0.4 Hz) 
 

11/24 
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Nagai and Moritani 
(2004) 

Aims: To investigated 
whether HRV was 

altered in obese and/or 
in physically inactive 

children 

Participants divided into 
groups according to sports 
practice  and weight status 

Healthy and obese children 
n=96 

n of girls=34 
n of boys=62 

 
Sports practice: 

n lean=24 (age=9.6±1.3; 
boys=23; girls=1) 
n overweight=24 

(age=9.5±1.4; boys=23; 
girls=1) 
Inactive: 

n lean=24 (age=9.4±1.8; 
boys=8; girls=16) 
n overweight=24 

(age=9.3±1.7; boys=8; 
girls=16) 

Sports practice: 
Subjectively defined as 

frequency sports 
activities higher than 
three times a week, 

and more than 60 min 
each time. 

‘Intensive activity’ was 
defined as ‘intensive 
practice or exercise 
with heart thumping’ 

 
Inactive: No children 
regularly engaged in 

various sports activities 
or exercises 

Duration: 5-min 
Time of the day: Morning 

Position: Sitting 
Breathing control: No 

Pre measurement? 
Day of measurement: Controlled temperature (25 

°C) quite and comfortable 
Device: ECG 

Error correction? 
Time domain: Not used 

Frequency domain: LF (0.03-0.15 Hz); HF (0.15-0.5 
Hz) 

7/24 

Alom et al. (2011) 
Aims: To measure 

resting HRV in healthy 
adolescents’ male 
athletes who were 
exposed to regular 

physical exercise and 
also in healthy 

adolescent male with 
sedentary lifestyle 

Participants divided into 
groups according to sports 

practice  

Healthy children 
n=92 

 
Spots participation=30 boys 

(age=14.9±2.2) 
Inactive=62 boys 
(age=15.1±2.5) 

 

Sports practice: 
Subjectively defined as 
regular exercise for at 

least one year 
 

Inactive: Participants 
recruited due to 

sedentary lifestyle 

Duration: 5-min 
Time of the day: Between 9-11 am 

Position: Supine 
Breathing control: No 

Pre measurement: No coffee or tea prior to 
measurement 

Day of measurement: 20-min of quiet rest prior 
Device: ECG 

Error correction? 
Time domain: Not used 

Frequency domain: HF (?), LF (?) 
 

7/24 

Vinet et al. (2005) 
Aims: To compare HRV 

parameters in highly 
trained swimmer boys 

and untrained 
counterparts 

Participants divided into 
groups according to sports 

practice  

Healthy children 
20 

n girls= 0 
 

Sports practice 
=11(age=11.9±0.9) 

Inactive=9 (age=11.6±1.1) 

Sports practice: 
Swimmers for 4 years 
4–5 sessions/week (1h 

30 min) 
 

Inactive: Did not 
practice more than 2 h 

of PA per week and 
formal training or 
organized sport 

Duration: 6-min 
Time of the day: Overnight 

Position: Supine 
Breathing control: No 

Pre measurement? 
Day of measurement? 

Device: ECG 
Error correction: Automatically and manually edited 

Time domain: RMSSD 
Frequency-domain: LF (0.04-0.15 Hz) and HF 

(0.15-0.4 Hz) 

7/24 
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Sharma et al. (2015) 

Aims: To provide 
normative data for HRV 

for adolescents based on 
sex and sports practice  

Participants divided into 
groups according to sports 

practice  

 
Healthy children 

439 
n girls=189 

 
Sports practice =79(age? 

boys=45; girls=34) 
Inactive=360 (age? 

boys=205; girls=155) 

 
Sports practice: 
Represented the 
school at state, 

national or international 
level athletic 

interscholastic sport 
event and was 

undergoing supervised 
physical training 

 
Inactive? 

 
Duration: 5-min 

Time of the day? 
Position: Supine 

Breathing control: No 
Pre measurement: No VPA for 24 hours and no 
caffeinated beverages or stimulant 12 hours prior 

Day of measurement:Empty bladder and sit 
comfortably in a dim lighting and temperature 

controlled room (24–26 °C) 
Device: ECG 

Error correction: Artefacts and ectopic beats 
excluded 

Time domain: RMSSD 
Frequency-domain: LF (0.04-0.15 Hz); HF (0.15-0.4 

Hz) 

 
6/24 

? = Information could not be retrieved. HRV: heart rate variability; RMSSD: square root of the mean of the sum of the squares of 

differences between adjacent RR intervals; HF; high frequency; LF: low frequency; ECG: electrocardiogram; CRF: cardiorespiratory 

fitness; PA: physical activity; LPA: light physical activity; MPA: moderate physical activity; VPA: vigorous physical activity; MVPA 

moderate-to-vigorous physical activity.  
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4.4.4 Physical activity and heart rate variability 

4.4.4.1 Regression analyses 

The results of the studies using regression models are presented in Table 4.2. The 

RMSSD was positively and significantly associated with MVPA in all three studies 

investigating this association (Gutin et al., 2005, Michels et al., 2013, Radtke et al., 

2013b). Additionally, RMSSD was positively and significantly associated with total PA 

in the only study investigating this association (Farah et al., 2014). In contrast, RMSSD 

was not significantly associated with LPA, MPA or VPA in the three studies 

investigating these separate PA intensities (Gutin et al., 2000, Krishnan et al., 2009, 

Radtke et al., 2013b). The HF (normalized and absolute) was not significantly 

associated with MVPA in the two studies investigating this association (Gutin et al., 

2005, Michels et al., 2013). PA as measured using total energy expenditure was not 

associated with HF (nu) in the only study investigating this association (Buchheit et 

al., 2007c). The HF (nu) was significant and positively associated with total PA in one 

study (Farah et al., 2014), but not in the other (Henje Blom et al., 2009). The LF (nu) 

was significant and negatively associated with total PA in the two studies investigating 

this association (Farah et al., 2014, Henje Blom et al., 2009). The LF/HF ratio was 

positively and negatively associated with MVPA in the two studies investigating this 

association (Gutin et al., 2005, Michels et al., 2013), but was not associated with total 

PA in the only study that investigated this association (Farah et al., 2014). 

4.4.4.2 Correlational analyses 

The studies assessing bivariate relationships are presented in Table 4.3. From two 

studies, RMSSD was positively and significantly associated with total PA in one 

(Krishnan et al., 2009), but not with steps per day in another (Cayres et al., 2015). The 

RMSSD was not significantly associated with VPA and MPA in the only study 
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examining these associations (Gutin et al., 2000). Both HF and LF (normalized and 

absolute) were significant and positively associated with total PA in the two studies 

examining these associations (Chen et al., 2012, Henje Blom et al., 2009). The HF 

(ms2) and LF/FH were not significantly associated with VPA in the only study 

investigating this association (Iwasa et al., 2005).       

4.4.4.3 Group analyses 

The studies dividing participants in groups of PA are presented in Table 4.4. RMSSD 

was significantly higher for the group performing more compared to the group 

performing less MVPA, but not for VPA according to the specific cut-off points (Radtke 

et al., 2013b). Another study did not find significant differences for RMSSD and HF 

(nu) between the groups performing more or less than 210 min·day-1 of MPA (Buchheit 

et al., 2007c). HF(nu) was higher for the groups performing more compared to the 

group performing less than 60 min·day-1 of VPA (Buchheit et al., 2007c). 
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Table 4.2: Predictors of heart rate variability in the studies using multiple linear regression. 

 Author Predictors HRV indices Controlled for Results Risk of 
bias 

PA Michels et al. 
(2013) 

MVPA (min·day-1) RMSSD (ms), HF 
(ms2), LF/HF 

Boys and girls analysed 
in separate models; Age; 

Heart rate; %BF; Time 
point 

Boys 
MVPA and RMSSD: ß? (P<0.05) 

MVPA and HF: ß? (P>0.05) 
MVPA and HF/LF: ß? (P<0.05) 

Girls 
MVPA and RMSSD: ß? (P>0.05) 

MVPA and HF: ß? (P>0.05) 
MVPA and HF/LF: ß? (P>0.05) 

22/24 

Gutin et al. (2005) MVPA (min·day-1) RMSSD (ms); HFnu; 
Ln HF/LF 

Sex; Age; Tanner stage; 
%BF; BP; Race; Heart 

rate 

MVPA and RMSSD: ß=0.18 (P<0.05) 
MVPA and HF: ß? (P>0.05) 

MVPA and HF/LF: ß=-0.0018 (P<0.05) 

19/24 

Buchheit et al. 
(2007b) 

PAEE (kcal·day-1); 
PAL (kcal·day-1) 

HF(nu) Sex; Age; %BF PAEE and HF: ß? (P>0.05) 
PAL and HF: ß? (P>0.05) 

17/24 

Radtke et al. 
(2013b) 

MVPA; VPA (min·day-

1) 
RMSSD (ms) Sex; Age; Tanner stage; 

Sum of skinfolds 
MVPA and RMSSD: ß=0.553 (P<0.05) 
VPA and RMSSD: ß=0.018 (P>0.05) 

 

15/24 

Farah et al. (2014) PA (day·w-1) RMSSD (ms); HFnu; 
LFnu; HF/LF 

Age; Period of the day 
when HRV was collected 

PA and RMSSD: ß=1.54 (P<0.05) 
PA and HF: ß=0.56 (P<0.05) 
PA and LF: ß=-0.56 (P<0.05) 

PA and LF/HF: ß=-0.03 (P>0.05) 

15/24 

Krishnan et al. 
(2009) 

LPA(au); MPA (au); 
VPA (au) 

RMSSD (ms) Heart rate; Boys and girls 
analysed in separate 

models 

Boys and girls 
LPA and RMSSD: ß? (P>0.05) 
MPA and RMSSD: ß? (P>0.05) 
VPA and RMSSD: ß? (P>0.05) 

14/24 

Gutin et al. (2000) VPA; MPA (h·w-1) RMSSD (ms) Sex; Age; %BF; BP; 
Race; Heart rate 

VPA and RMSSD: ß? (P>0.05) 
MPA and RMSSD: ß? (P>0.05) 

13/24 

 
 
 
 
 

Henje Blom et al. 
(2009) 

 
 
 
 
 
 

PA 
(Frequency index) 

 
 
 
 
 
 

Log HFnu; log LFnu 

 
 
 
 
 
 

Heart rate; Glucose 

 
 
 
 
 
 

First measurement 
PA and LF: ß? (P<0.05) 

 
 
 
 
 
 

10/24 
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PA and HF: ß? (P>0.05) 
Second measurement 

PA and LF: ß? (P<0.05) 
PA and HF: ß? (P>0.05) 

CRF Michels et al. 
(2013) 

CRF (ml·kg·min-1) RMSSD (ms), HF 
(ms2), LF (ms2), LF/HF 

Boys and girls analysed 
in separate models; Age; 

Time point 

Boys: 
CRF and RMSSD: stß=0.17 (P<0.05) 

CRF and HF: stß=0.16 (P<0.05) 
CRF and LF: stß=0.12 (P>0.05) 

CRF and HF/LF: stß=-0.06 (P>0.05) 
Girls: 

CRF and RMSSD: stß=0.10 (P>0.05) 
CRF and HF: stß=0.06 (P>0.05) 
CRF and LF: stß=0.14 (P>0.05) 

CRF and HF/LF: stß=-0.12 (P>0.05) 
 

22/24 

Gutin et al. (2005) CRF (ml·kg·min-1 at 
170 bpm) 

RMSSD (ms); HFnu; Sex; Age; Tanner stage; 
%BF; BP; Race; Heart 

rate 

CRF and RMSSD: ß=0.85 (P<0.05) 
CRF and HF: ß? (P>0.05) 

19/24 

Sports 
practice  

Cayres et al. 
(2015) 

Sports practice 
(day·w-1) 

RMSSD (ms) Sex; Age; Race; Peak 
growth velocity;  

maturation, age, %BF 

Sports practice and RMSSD: 
ß=0.039(P<0.05) 

15/24 

? = Information could not be retrieved. RMSSD: square root of the mean of the sum of the squares of differences between adjacent 

RR intervals; HF; high frequency; LF: low frequency; CRF: cardiorespiratory fitness; PA: physical activity; LPA: light physical activity; 

MPA: moderate physical activity; VPA: vigorous physical activity; MVPA moderate-to-vigorous physical activity.  
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Table 4.3: Relationship coefficients between physical activity, cardiorespiratory 

fitness, sports practice and heart rate variability. 

 Author Predictors HRV indices Results Risk of 
bias 

PA (Cayres et al., 
2015) 

PA 
(steps·day-

1) 

RMSSD (ms) PA and RMSSD: r=0.01(P=0.78) 15/24 

(Krishnan et al., 
2009) 

Total PA 
(au) 

RMSSD (ms) Boys 
PA and RMSSD: r=0.364 

(P=0.002) 

Girls 
PA and RMSSD: r? (P=0.525) 

14/24 

(Gutin et al., 
2000) 

VPA; MPA 
(h·week-1) 

 

RMSSD (ms) VPA and RMSSD: r= -0.03 
(P>0.05) 

MPA and RMSSD: r=0.13 
(P>0.05) 

13/24 

(Henje Blom et al., 
2009) 

PA 
(Frequency 

index) 

Log HFnu; log 
LFnu 

First measurement 
PA and LF: r=0.35 (P<0.05) 
PA and HF: r=0.26 (P<0.05) 

Second measurement 
PA and LF: r=0.29 (P<0.05) 
PA and HF: r=0.30(P<0.05) 

10/24 

(Chen et al., 
2012) 

PA? Log HF(ms2); 
log LF(ms2) 

PA and LF: r=0.62 (P<0.05) 
PA and HF: r=0.49 (P<0.05) 

8/24 

(Iwasa et al., 
2005) 

VPA 
(min·day-1) 

HF (ms2), 
LF/HF 

VPA and HF: r? (P>0.05) 
VPA and LF/HF: r? (P>0.05) 

8/24 

CRF (da Silva et al., 
2014b) 

CRF 
(ml·kg·min-

1) 

RMSSD (ms), 
HF (ms2), LF 
(ms2), LF/HF 

CRF and RMSSD: r=0.42 
(P<0.05) 

CRF and HF: r=0.38 (P<0.05) 
CRF and LF: r=-0.38 (P<0.05) 

CRF and HF/LF: r=-0.37 (P<0.05) 

11/24 

Sports 
practice 

(Cayres et al., 
2015) 

Sports 
practice 
(day·w-1) 

RMSSD (ms) Sports practice and RMSSD: 
r=0.22(P<0.05) 

15/24 

? = Information could not be retrieved. RMSSD: square root of the mean of the sum 

of the squares of differences between adjacent RR intervals; HF; high frequency; LF: 

low frequency; CRF: cardiorespiratory fitness; PA: physical activity; LPA: light physical 

activity; MPA: moderate physical activity; VPA: vigorous physical activity. 

4.4.5 Cardiorespiratory fitness and heart rate variability 

4.4.5.1 Regression analyses 

The results of the studies using regression models are presented in Table 4.2. RMSSD 

was significantly and positively associated with CRF in the two studies investigating 

this association (Gutin et al., 2005, Michels et al., 2013). The HF (ms2) was 

significantly and positively associated with CRF in one study (Michels et al., 2013), but 

not in the other (Gutin et al., 2005). The LF (ms2) and LF/HF were not significantly 
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associated with CRF in the only study examining these associations (Michels et al., 

2013). 

4.4.5.2 Correlational analyses 

The only study investigating bivariate relationship is presented in Table 4.3. The 

RMMSD and HF (ms2) were significantly and positively associated with CRF. The 

LF(ms2) and LF/HF were negatively and significantly associated with CRF (da Silva et 

al., 2014b).  

4.4.5.3 Group analyses 

The only study that divided the participants according to CRF levels is presented in 

Table 4.4. There were no differences in RMSSD, HF, LF (normalized and absolute) 

and LF/HF between CRF groups (Brunetto et al., 2005).  

4.4.6 Sports practice and heart rate variability 

4.4.6.1 Regression and correlation analyses 

One study investigated the association using regression and correlational analyses 

(Tables 4.2 and 4.3). Both analysis showed RMSSD to be significantly and positively 

associated with  sports practice, measured in days per week (Cayres et al., 2015).  

4.4.6.2 Group analyses 

The studies that divided participants according to sports practice are presented in 

Table 4.4. RMSSD was higher for the group engaged in sports activities in the two 

studies comparing this index (Cayres et al., 2015, Sharma et al., 2015). The HF and 

the LF (normalized or absolute) were significantly higher for the sports practice group 

in four studies (Alom et al., 2011, Nagai and Moritani, 2004, Radtke et al., 2013a, 

Sharma et al., 2015), but not in one (Vinet et al., 2005). The only study investigating 
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LF/HF between the groups did not find differences between the groups (Vinet et al., 

2005).  

Table 4.4: Studies using comparisons between groups of physical activity, 

cardiorespiratory fitness and sports practice. 

  HRV indices  
  RMSSD HF LF HF/LF Risk of bias 

MVPA Radtke et al. (2013b) ↑ - - - 15/24 

MPA 
 

Buchheit et al. (2007c) ↔ ↔ - - 17/24 

VPA 
 
 

Buchheit et al. (2007c) ↔ ↑ - - 17/24 

Radtke et al. (2013b) ↔ - - - 15/24 

CRF Brunetto et al. (2005) ↔ ↔ ↔ ↔ 16/24 

Sports 
practice  

 

Cayres et al. (2015) ↑ - - - 15/24 

 Radtke et al. (2013a) - ↑ ↑ - 11/24 

 Nagai and Moritani (2004) - ↑ ↑ - 7/24 

 Nagai and Moritani (2004) - ↔ ↔ - 7/24 

 Alom et al. (2011) - ↑ ↑ - 7/24 

 Vinet et al. (2005) ↔ ↔ ↔ ↔ 7/24 

 Sharma et al. (2015) ↑ ↑ ↑ - 6/24 

↑ indicates significant higher values for the groups with higher PA, CRF and sports 

practice; ↔ indicates no significant differences between the groups based on PA, CRF 

and sports practice. – not measured. RMSSD: square root of the mean of the sum of 

the squares of differences between adjacent RR intervals; HF; high frequency; LF: low 

frequency; CRF: cardiorespiratory fitness; PA: physical activity; LPA: light physical 

activity; MPA: moderate physical activity; VPA: vigorous physical activity; MVPA 

moderate-to-vigorous physical activity.   



 
 

147 
 

4.4.7 Possible moderating factors 

4.4.7.1 Age 

From the five studies investigating children below 12years old, only one reported 

significant associations between RMSSD, LF/HF and MVPA (Michels et al., 2013). 

The remaining four studies in children aged below 12 years old did not find significant 

associations between PA and HRV (Buchheit et al., 2007c, Gutin et al., 2000, Iwasa 

et al., 2005, Krishnan et al., 2009). In contrast, all four studies investigating children 

above 12 years old found significant associations between PA measures and HRV 

indices (Farah et al., 2014, Gutin et al., 2005, Henje Blom et al., 2009, Radtke et al., 

2013b). No study has formally examined the associations between PA, CRF and HRV 

across different age groups.  

4.4.7.2 Sex 

In the two studies comparing PA in boys and girls separately, RMSSD was significantly 

and positively related to MVPA (Michels et al., 2013) and total PA (Krishnan et al., 

2009) among boys but not girls. Similarly, RMMSD and HF (ms2) were significantly 

and positively associated with CRF among boys but not girls in the only study dividing 

participants according to sex (Michels et al., 2013). The only study to separate boys 

and girls into groups of sports practice found higher RMSSD, HF and LF (normalized 

and absolute units) for the groups of sports practice compared to the control group for 

both sexes (Sharma et al., 2015).   

4.4.7.3 Body weight status 

Two studies investigated the associations of PA and HRV in obese children (Chen et 

al., 2012, Gutin et al., 2000). Chen et al. (2012) reported significant and positive 

associations between total PA, HF and LF (ms2). Gutin et al. (2000) did not find 
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significant associations between RMSSD, VPA and MPA. One study included obese 

and healthy children in different groups of sports practice and showed that HF and LF 

(ms2) were not significantly different between the groups of active and inactive obese 

children (Nagai and Moritani, 2004). One study included obese and overweight 

children and found significant associations between CRF and RMSSD, HF (ms2), and 

LF/HF ratio (Table 4.3) (da Silva et al., 2014b).  

4.5 Discussion 

This is the first review to systematically examine the associations of PA and CRF with 

HRV derived indices of cardiac autonomic function in children and adolescents. The 

main findings were: 1) robust evidence shows that RMSSD is significantly and 

positively related to MVPA; 2) weak and inconclusive evidence was found for the 

association between PA, CRF and the frequency domain indices; 3) RMSSD was 

significantly associated with CRF, however, differences in the participants 

characteristics and CRF assessment might be clouding the evidence; and 4) the 

evidence for the influence of age, sex and weight status is inconclusive.  

4.5.1 Physical activity and heart rate variability 

Robust evidence from three out of three low risk of bias studies using regression 

analysis and controlling for confounders show that the RMSSD is significantly and 

positively associated with MVPA (Gutin et al., 2005, Michels et al., 2013, Radtke et 

al., 2013b). The evidence for an association between the HF (normalized and 

absolute) and PA is weak, with just one out of four studies presenting significant and 

positive associations. A high dependence of methodological choices to derive 

frequency indices such as breathing control, mathematical approach and data 

handling might explain these findings (Task-Force, 1996). In accordance to current PA 
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guidelines for improvements in traditional CVD risk factors in children and adolescents 

(Bull, 2010), the present results also show an important role of the combined MVPA 

on HRV in children and adolescents. However, as the evidence is from cross-sectional 

observation studies, longitudinal studies are required to confirm this finding. The 

mechanisms behind the associations between RMSSD and MVPA remains to be 

elucidated. However, an improved RMSSD might reflect a better vagal control of blood 

pressure, and therefore a better vagal balance is desirable. Additionally, 

improvements in RMSSD but not traditional CVD risk factors after exercise training 

suggest that in adolescents exercise increases vagal modulation independently of 

traditional risk factors (Bond et al., 2015a), which strengthens the concept that 

autonomic function might increase our knowledge about cardiovascular risk during 

childhood.   

In contrast to MVPA, in the present review there was no evidence for associations 

between LPA, MPA and HRV. Recently, VPA has been shown to be significantly 

associated with traditional CVD risk factors independently of MPA (Fussenich et al., 

2016), however, in the present results the evidence for the influences of VPA on HRV 

is weak. Just one study using group comparison showed significant differences in the 

HF (nu) (Buchheit et al., 2007c). Discrepancies between the included studies 

examining VPA exist regarding the age of the participants, confounders and 

parameters used to measure PA levels. Caution should be taken when interpreting 

the results of the two studies (Gutin et al., 2000, Iwasa et al., 2005) using subjective 

measurements (Kavanaugh et al., 2015). Similarly, bias might be present in the 

studies that objectively measured PA with accelerometers using 60 s epoch 

acquisition due to the likelihood of underreporting the VPA activities (Sanders et al., 

2014). Alternatively, the weak evidence might indicate that VPA per se is not 
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associated with HRV, as the studies that combined MPA and VPA found positive and 

significant associations between MVPA and HRV despite using 60 s epoch data (Gutin 

et al., 2005, Radtke et al., 2013b). Further research is needed to clarify the relationship 

of PA intensities and HRV outcomes using shorter epochs (< 5s) to better capture VPA 

in children and adolescents.  

Notably, the studies comparing sports practice groups and HRV outcomes presented 

the highest risk of bias. Bias arising from sample size, statistical approach, exposure 

and outcome assessments, and dealing with important confounders, hampers the 

interpretation of the results, meaning any positive relationship between sports practice 

and HRV in children and adolescents remains controversial. The studies with low risk 

of bias in this subcategory suggest that RMSSD, HF and LF are improved for the 

sports practice group compared to the inactive controls (Cayres et al., 2015, Radtke 

et al., 2013a). However, more robust studies are needed to establish whether these 

effects can be replicated.     

No study has directly explored the effects of biological maturation on the relationship 

between PA and HRV. In contrast, all studies investigating children above 12 years 

old found significant associations between PA and HRV. Such findings were not 

observed for children < 12 years old, with only one out of four studies finding positive 

and significant associations. Improvements in autonomic modulation and decrements 

in PA levels across childhood might underpin these findings suggesting an effect of 

age (Lenard et al., 2004, Reilly, 2016, Silvetti et al., 2001). These results are in 

accordance with a meta-analysis that showed no significant improvements in HRV of 

pre-pubertal children after exercise training (da Silva et al., 2014a), and suggest that 

in young children PA levels do not change HRV indices. However, caution should be 
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taken when interpreting the results due to the higher risk of bias in the studies including 

young children. The influence of age and maturation on the relationships between 

HRV, CRF and PA have yet to be tested within a study using the same methodology 

and controlling for important confounders.  

The evidence for the influence of weight status on the observed associations is weak. 

The two studies that found positive and significant associations between PA and HRV 

in overweight children presented high risk of bias (Chen et al., 2012, Nagai and 

Moritani, 2004), whilst the study with a lower risk of bias did not find significant 

associations (Gutin et al., 2000). This is worth investigating in futures studies, as 

weight status is documented to be related to lower HRV and PA levels (Metcalf et al., 

2011, Iellamo and Volterrani, 2013). Regarding the effects of sex on the associations, 

the two studies which analysed boys and girls separately observed significant and 

positive associations for boys but not for girls. The associations between HRV and sex 

are clouded by the possible influences of age. HRV has been demonstrated to 

increase throughout adolescence, reflecting maturation of the autonomic nervous 

system (Silvetti et al., 2001, Lenard et al., 2004). However, in the studies that analysed 

boys and girls separately, participants were eight and nine years old which may 

suggest that in young children, the associations between PA and HRV are sex-

dependent. The apparent sex differences in the associations might be explained by 

the higher amount of MVPA performed by boys compared to girls (Abbott and Davies, 

2004).  However, this has yet to be tested within a single study with control for 

biological maturation.    
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4.5.2 Cardiorespiratory fitness and heart rate variability 

Significant associations were observed between RMSSD and CRF. However, one 

study did not control for confounders (da Silva et al., 2014b), and the CRF 

assessments varied between the studies which used indirect (e.g. 20 m shuttle test) 

or submaximal (e.g. V̇O2 at heart rate of 170 bpm) estimates, meaning bias in the 

measurement of CRF across the studies may be present. The study using direct 

assessment of CRF failed to find differences in HRV outcomes between the groups 

(Brunetto et al., 2005), however, confounders were not controlled for and the true 

effects of CRF might have been clouded. Although the results are unclear, the 

observed associations are in accordance with adult literature (Buchheit and Gindre, 

2006). The most commonly suggested mechanisms of this association is the genetic 

determinants of CRF and HRV (Singh et al., 1999, Hautala et al., 2009), however 

relevant studies in paediatric samples are currently lacking. 

Inferences about the effects of sex, age and weight status on the observed 

associations between CRF and HRV is limited due to the number of studies. The only 

study analysing boys and girls separately found associations for young (6.7 – 9.2years 

old) boys but not for girls (Michels et al., 2013). Regarding weight status, one study 

(da Silva et al., 2014b) showed significant associations between CRF and HRV in 

obese children, and Gutin et al., (Gutin et al., 2005) showed significant associations 

between HRV and CRF after controlling for body fatness. This suggest that CRF is 

significantly associated with HRV independently of body fatness. However, caution 

should be taken due to the limited number of studies exploring the effect of weight 

status on the relationship between PA, CRF and HRV measures of autonomic 

function. Similarly, all included studies normalized CRF by body mass (i.e. mL·kg-

1·min-1) which may not adequately control for body composition and body size 
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(Welsman and Armstrong, 2000), and therefore might be influencing the analysis. 

Likewise, PA and CRF are known to independently predict traditional CVD risk factors, 

suggesting that they operate through separate pathways (Ekelund et al., 2007). The 

present review, however, does not allow conclusions about independent relationships 

of CRF and PA on HRV indices. Future studies are needed to clarify the effects of 

CRF on HRV in children and adolescents, controlling for important confounders in the 

associations, including PA.   

4.5.3 Strengths and limitations 

This is the first systematic review to address the relationships between PA, CRF and 

HRV in children and adolescents. The organization of the studies into categories 

according to the methodological approach used (e.g. regression analysis) is a strength 

of the current review and provides unique information for the reader to draw 

conclusions regarding the strength of the current evidence base. Similarly, we followed 

the best practice recommendations when elaborating and conducting the review.  

Different methodological approaches used to measure the exposure and outcome 

variables as well as the different source of bias in the included studies are the main 

limitations. At the outcome level, most studies did not present detail about the 

conditions preceding HRV assessments. This increases the risk of bias, as factors 

such as prior exercise and food consumption are known to decrease resting HRV 

indices (Al Haddad et al., 2009, Bond et al., 2015a). Additionally, discrepancies 

regarding body position, time and duration of measurement, breathing frequency, error 

correction and omission of the mathematical parameters for the frequency analysis 

limit the conclusions that can be drawn (Task-Force, 1996). Finally, selective reporting 

and publication bias may be present.  
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At the exposure level, subjective measurements tend to overestimate the amount of 

PA performed by children and adolescents (Kavanaugh et al., 2015). Likewise, 

insufficient information about epoch length, minimal amount of days, and hours for 

data acquisition, were noted in most of the accelerometer studies. These factors are 

known to influence the PA outcomes (Rich et al., 2013, Sanders et al., 2014). 

Approaches to measure CRF were different between the studies and confounders 

were not controlled. Future studies are encouraged to use objective assessments of 

the exposures, and report the PA measurements in detail, using appropriate 

methodological approaches for epoch length, days per week, and hours per day. 

4.6 Conclusions 

This review provides evidence to show that MVPA plays an important role on 

cardiovascular health via improvements in autonomic function in children and 

adolescents. However, there is insufficient evidence to conclude a dose-response 

effect. Furthermore, the evidence for the association of time spent in other PA 

intensities with HRV is not sufficiently strong and should be investigated in future 

research. The evidence for the association between CRF and HRV is weak and 

inconsistent. Overall, heterogeneity in the study samples, exposure and outcome 

assessments, limits conclusions and highlights the need for further research, 

especially of a prospective nature, in order to guide policymakers. Although a 

considerable number of studies have investigated the associations between PA, CRF 

and HRV, research is still needed to elucidate the possible influences of age, sex, 

biological maturation, body weight status and the potential physiological mechanisms.  
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Chapter 5: Cardiac Autonomic Function, 

Cardiovascular Risk and Physical 

Activity in Adolescents 

5.1 Abstract 

This Chapter aimed to investigate in adolescents: 1) the relationships of PA and CRF 

to traditional CVD risk factors, rest and recovery autonomic function; and 2) whether 

autonomic function strengthens the associations between PA, CRF and CVD risk. 

Fifty-four (22 girls) adolescents had traditional CVD risk factors, rest and recovery 

autonomic function evaluated. CRF was measured using a steep ramp cycle test and 

PA was assessed with accelerometers. Resting HRV (and RMSSD30) and heart rate 

recovery (T30, HHRt) were used. Clustered traditional (CVDRtrad) and autonomic 

(CVDRauto) risk scores were created and added to form a composite clustered CVD 

risk score (CVDRcom). PA and CRF were significantly and negatively associated to 

traditional CVD risk factors (stβ ranging from -0.276 to -0.765). Moderate (MPA) and 

vigorous (VPA) were positively related to resting RMSSD (stβ = 0.402 and 0.453, 

respectively), and negatively related to T30 (stβ = -0.356 and -0.433, respectively) and 

HHRt (stβ = -0.311 and -0.406, respectively) (all P<0.05). RMSSD30 recovered faster 

in the high compared to low median split for VPA (P< 0.05). Stronger associations for 

CVDRcom compared to CVDRtrad were observed for MPA (CVDRcom: r2=0.32, P<0.001; 

CVDRtrad: r2=0.17, P=0.002), and VPA (CVDRcom: r2=0.18, P=0.001; CVDRtrad: 

r2=0.06, P=0.08). These findings strengthen the proposed additional beneficial effects 

of PA on autonomic function above traditional CVD risk factors. 
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5.2 Introduction 

The pathobiological process of atherosclerosis starts during childhood and is related 

to traditional CVDrisk factors such as blood lipids, BP and body composition 

(Berenson et al., 1998). Physical activity and CRF confer CVD risk reduction during 

childhood by modifying individual or clustered CVD risk factors (Janssen and Leblanc, 

2010).However, in adults the summed improvements in traditional CVD risk factors 

accounts for ~ 60% of the reduction in CVD risk (Mora et al., 2007), meaning there is 

a 40% risk factor gap in the explanation of PA benefits (Joyner and Green, 2009). The 

autonomic and arterial systems have been proposed as components of the risk factor 

gap and may be considered as novel risk factors (Joyner and Green, 2009). While 

arterial function has recently been added to a clustered score of traditional CVD risk 

factors in an attempt to improve the associations between PA and CVD risk in children 

(Fussenich et al., 2016), the influence of autonomic function above traditional CVD 

risk factors is unknown.  

Assessment of cardiac autonomic function by measuring rest and recovery HRV as 

well as HRR provides distinct and complementary information (Dewland et al., 2007). 

While positive relationships between PA and CRF with resting HRV have been 

demonstrated in youth (Buchheit et al., 2007c, Radtke et al., 2013b, Gutin et al., 2005, 

Oliveira et al., 2017), further understanding about the potential relationships of PA and 

CRF to cardiac autonomic function during recovery following exercise is needed. 

Similarly, the effects of PA intensity on HRV and HRR is not clear. In adolescents, one 

study reported positive effects for MVPA but not VPA (Radtke et al., 2013b), whereas 

in another study with pre-adolescents, VPA but not MPA, presented stronger effects 

(Buchheit et al., 2007c), and a recent systematic review suggests that the associations 

of PA intensity, CRF and HRV are unclear, as few studies considered PA intensities, 
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ST and CRF, and bias exist in the assessment of cardiac autonomic function, PA and 

CRF(Oliveira et al., 2017). Additionally, none of these studies measured cardiac 

autonomic recovery following exercise nor combined measures of cardiac autonomic 

function with traditional CVD risk factors.  

The aims of this study were: 1) to investigate the relationship of PA intensity and CRF 

to traditional CVD risk factors, as well as novel CVD risk factors using measurements 

of autonomic function at rest and recovery; and 2) to investigate whether adding 

autonomic function measures to a clustered score of traditional CVD risk factors 

strengthens the associations between PA, CRF and CVD risk.  

5.3 Methods 

5.3.1 Participants 

Participants were recruited from two secondary schools in the South West of England. 

The volunteers were informed about the study via an assembly and study information 

sheets were distributed. A flow diagram of the recruitment process with the final 

number of participants included in the study is presented in Figure 5.1. Participant 

descriptive data are presented in Tables 5.1 and 5.2. Exclusion criteria included an 

existing musculoskeletal injury, presence of cardiometabolic disease, taking 

medications, and showing any contraindications to exercise. Before the study 

commenced, all participants and their parents/guardians provided written assent and 

consent, respectively. The study received ethics approval from the institutional Ethics 

Committee (Ref No: 141022/B/07), and all procedures performed meet the ethical 

standards of the International Journal of Sports Medicine (Harriss and Atkinson, 2015). 
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Figure 5.1: Flow chart of recruitment and sample size in the final analysis. 

 

5.3.2 Study design 

This is a cross-sectional study where participants completed three visits to a school-

based laboratory over a one-week period as follows: 

Visit-1: Participants had stature, body mass, sitting height, and waist circumference 

(WC) measured followed by triceps and subscapular skinfolds. Peak height velocity 

was used as an indicator of somatic maturity according to equations 3.1 and 3.2 

(Mirwald et al., 2002) and participants were classified as pre (-1 year), circa (-1 to +1 

year), or post (+1 year) PHV. Body fat percentage was obtained using equations 3.3 

– 3.7 (Slaughter et al., 1988).  

Visit-2: Participants reported to the laboratory in a fasted state (>10 h) and lay supine 

for 10min. Resting heart rate was recorded followed by measurements of BP. Next, a 
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fingertip capillary blood sample was collected to measure lipid profile and glucose 

concentration. In the 48-h preceding Visit-2 participants were instructed to refrain from 

performing organised sport and vigorous exercise. 

Visit-3: A cycle test to exhaustion (see Section 3.5) was performed to determine CRF. 

Following exhaustion, participants sat for 10min for assessment of HRR. At the end of 

this session, participants were given an accelerometer and instructed to wear the 

device for seven consecutive days for PA measurements.  

5.3.3 Traditional cardiovascular disease risk factors 

Blood pressure was measured as described in Section 3.8.1.Systolic and DBP values 

were retained for analysis and MAP calculated. The observed CV between the 

measurements of SBD and DBP were all <4%. Capillary blood samples were used to 

determine total cholesterol (TC), HDL, TAG and GLU (CardioChek® PA, PTS 

Diagnostics, USA) as described in section 3.7.1.  

5.3.4 Autonomic function 

A 10-min resting period of heart rate measurements (Polar Team2, Kempele, Finland) 

obtained during the second visit was used to calculate HRV. Participants were asked 

to pace their breathing frequency at 12 cycles per min using a metronome. Resting 

heart rate variability was measured using RMSSD, HF, LF as well as the LF/HF as 

described in Section 3.8.2. HRV measurements performed by our group have been 

demonstrated to be reliable (CV = 17.6%) (Bond et al., 2017b). 

Heart rate recovery was obtained as described in Section 3.8.2 after the steep ramp 

test described in Section 3.5.  
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Table 5.1: Characteristics of the participants according to sex. 

 All (n=53) Girls (n=23) Boys (n=31) 

Demographic characteristics     

Age (y) 13.1±0.8 12.9±0.8 13.1±0.9 

Stature (cm) 156.6±9.6 153.8±7.8 158.6±10.5 

Body mass (kg) 49.2±12.1 50.1±13.8 48.5±11.0 

Pubertal status 

Pre (n (%)) 

Circum (n (%)) 

Post (n (%)) 

 

18(33.3) 

27(50) 

9(16.7) 

 

1(4) 

15(65) 

7(31) 

 

17(56) 

12(39) 

2(5) 

 

Traditional CVD risk factors 

 
  

BMI (kg·m-2) 19.9±3.5 21.0±4.3 19.1±2.6 

Body fat (%) 20±7.6 23.2±6.9 17.8±7.4 

WC (cm) 68.5±9.5 68.3±10  68.5±8.9 

SPB (mmHg) 113±9 113±9 113±9 

DPB (mmHg) 68±7 70±7 67±7 

TC (mmol·L-1) 3.4±0.5 3.4±0.6 3.4±0.5 

HDL (mmol·L-1) 1.4±0.3 1.3±0.4 1.4±0.3 

TAG (mmol·L-1) 0.7±0.2 0.8±0.3 0.8±0.5 

Glucose (mmol·L-1) 4.3±0.4 4.2±0.5 4.3±0.4 

 

Non-traditional CVD risk 

factors  

 

  

RMSSD (ms) 77.8±40.4 64.7±32.4 87.6±43.4 

HF (ln) 7.8±1.1 7.5±1.1 8.0±1.0 

LF (ln) 7.1±0.9 6.8±0.9 7.4±0.9 

HF (nu) 64.9±16.2 65.2±15.4 64.7±17.0 

LF (nu) 34.8±16.2 34.6±15.4 34.9±17.0 

LF/HF 0.7±0.7 0.6±0.5 0.7±0.9 

T30 (s) 192±88.8 193.3±57.5 191.1±107.4 

HRR τ(s) 70.8±29.6 66.1±15.8 74.4±36.5 

BMI, body mass index; WC, waist circumference; SPB, systolic blood pressure; DBP, 

diastolic blood pressure; TC, total cholesterol; HDL, high-density lipoprotein; TAG, 

triglycerides; RMSSD, square root of the mean of the sum of the squares of differences 

between adjacent RR intervals; HF, High-frequency; LF, Low-frequency.  

5.3.5 Cardiorespiratory fitness 

Peak oxygen uptake (peak V̇O2) was estimated using a validated steep ramp test 

described in Section 3.5. CRF was subsequently normalised for body mass using a 

ratio standard (mL·kg-1·min-1) and an allometric method as described in Section 3.5.1. 
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Table 5.2: Fitness and physical activity characteristics of the participants. 

 All (n=54) Girls (n=22) Boys (n=31) 

CRF (mL·kg-1·min-1) 46.3±8.1 42.5±9.2 49.2±5.9 

CRF (mL·kg-0.58·min-1) 235.1±36.1 215.9±35.9 249.4±29.3 

ST (min·day-1) 329.6±110.4 330.7±105.5 328.9±115.7 

LPA (min·day-1) 278.7±112.2 305.2±104.7 259.1±115.2 

MPA (min·day-1) 104.6±33.4 92.0±36.0 114.0±28.5 

VPA (min·day-1) 11.2±10.4 5.5±6.3 15.4±11.0 

MVPA (min·day-1) 115.8±41.1 97.6±39.8 129.4±37.2 

CRF, cardiorespiratory fitness; ST, sedentary time; LPA, light physical activity; MPA, 

moderate physical activity; VPA, vigorous physical activity; MVPA, moderate to 

vigorous physical activity. 

5.3.6 Physical activity 

Habitual PA was measured using a wrist-worn accelerometer as described in Section 

3.6. 

5.3.7 Statistical analyses 

All data are presented as mean and SD unless otherwise stated. Normality of 

distribution was checked using Shapiro Wilk’s test and skewed data were transformed 

prior to analysis. A clustered traditional CVD risk score (CVDRtrad) was calculated as 

the sum of the following sex-specific standardized z-scores: fasted [GLU], [TAG], 

[HDL], %BF and BP ([SBP+DBP]/2) (Ekelund et al., 2012). A clustered autonomic risk 

score (CVDRauto) was created by adding the sex-specific standardized z-scores of 

resting RMSSD, T30 and HRRt. Z-scores were inverted when appropriate. In order to 

explore the effects of PA, ST and CRF beyond the traditional CVD risk factors, the 

CVDRtrad was combined to the CVDRauto to produce a composite CVD risk score 

(CVDRcom). This is in accordance with a recent study that has included novel CVD risk 

factors into a composite CVD risk score (Fussenich et al., 2016).  
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Separate linear regressions were performed for PA intensities, ST and CRF as the 

predictor variables. For this purpose, a base model adjusting for sex and maturation 

was created and the predictors inserted separately. The outcome variables included 

were: the traditional CVD risk-factors (BMI, %BF, WC, MAP, TC, HDL, TAG and GLU), 

non-traditional CVD risk-factors (HRV and HHR) and the clustered CVD risk scores 

(CVDRtrad, CVDRauto and CVDRcom). The following variables were log transformed 

prior to entry into the model: VPA, RMSSD, T30, HRRt, HDL, WC, BMI and TAG. %BF 

did not present a significant relationship to the outcome variables after adjusting for 

PA/CRF and was not included as a covariate.  

In order to test the effects of PA intensities and CRF on the time course of 

parasympathetic reactivation as measured by the RMSSD30, participants were divided 

into groups below and above the sex-specific median split for PA intensities and CRF. 

Median splits were chosen aiming to create equal sample sizes between the CRF 

groups as well as no thresholds are available in the literature for the allometric scaled 

CRF used in the present investigation. Repeated measures ANCOVA controlling for 

sex and maturation were used to examine a time (0 to 600 s) by group (above or below 

median split) interaction effect for RMSSD30. The alpha level was set at 0.05 for all 

analyses which were performed using SPSS version 22. 

5.4 Results 

5.4.1 Traditional cardiovascular disease risk factors 

Regression coefficients for PA intensities, ST, CRF and traditional CVD risk factors 

after adjusting for sex and maturation are presented in Table 5.3. ST and LPA were 

not significantly associated to any of the traditional CVD risk factors. By contrast, MPA 

was significantly and negatively associated to BMI, %BF, WC and MAP. VPA was 
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significantly and negatively associated to %BF. Both ratio and allometric scaled CRF 

were significantly and negatively associated to BMI, %BF and WC. However, the 

associations between allometric scaled CRF and the body composition variables were 

weaker compared to the ratio scaled CRF.  

5.4.2 Non-traditional cardiovascular disease risk factors 

Regression coefficients for the PA intensities, CRF and non-traditional risk factors 

after adjusting for sex and maturation are presented in Table 5.3. ST, LPA and CRF 

(ratio standard and allometrically scaled) were not significantly related to any of the 

rest or recovery autonomic indices. Both MPA and VPA were significantly and 

positively related to RMSSD and significantly and negatively related to HRRt and T30. 

The time course of parasympathetic reactivation using the RMSSD30 is presented in 

Figure 5.2. There was no group (below vs. above) by time interaction for ST, LPA, 

MPA, or CRF for RMSSD30 (all P>0.05). In contrast, there was a group by time 

interaction (P=0.01) for VPA, with the above the median group presenting a higher 

RMSSD30 after the first 60 s of recovery after exercise (all P<0.05).  

5.4.3 Clustered cardiovascular disease risk scores 

Regression coefficients for the PA intensities, CRF and the CVD risk scores after 

adjusting for sex and maturation are presented in Table 5.3. ST time and LPA were 

not significantly related to any of the clustered CVD risk scores. MPA was significantly 

and negatively associated to CVDRtrad, CVDRauto and CVDRcom. VPA was significantly 

and negatively associated to CVDRauto and CVDRcom, but not with CVDRtrad (P=0.08). 

While ratio scaled CRF was negatively related to CVDRtrad, allometrically-scaled CRF 

was not associated to any of the clustered CVD risk scores. After combining CVDRtrad 
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and CVDRauto to form CVDRcom the coefficient of determination increased from 17 to 

32 % and 6 to 18 % for MPA and VPA, respectively.  

5.5 Discussion 

The key findings of the present investigation were: 1) MPA and VPA were related to 

traditional CVD risk factors, as well as rest and recovery autonomic function, 2) Girls 

and boys preforming VPA above the median split presented faster RMSSD30;3) MPA 

and VPA were strongly and negatively related to CVD risk when rest and recovery 

autonomic indices were added to the traditional CVDR score; and 4) CRF was only 

significantly and negatively related to traditional CVD risk score, however, when 

allometrically scaled the significant relationship disappeared. 

 



 
 

165 
 

Table 5.3: Standardised regression coefficients. 

 ST (min∙day-1)  
LPA 

(min∙day-1) 
 

MPA  
(min∙day-1) 

 
VPA  

(min∙day-1) 
 

CRF  
(ml∙kg∙min-1) 

 
CRF  

(ml∙kg-0.58∙min-1) 
 

Traditional CVD 
risk factors 

β (P) r2 β (P) r2 β (P) r2 β (P) r2 β (P) r2 β (P) r2 

BMI (kg∙m2) -0.017 (0.90) 0.01 0.029 (0.83) 0.01 -0.276 (0.04) 0.07 -0.229 (0.15) 0.03 -0.706 (<0.001) 0.41 -0.430 (0.004) 0.13 

%BF (%) 0.022 (0.86) 0.01 0.024 (0.85) 0.01 -0.310 (0.02) 0.09 -0.384 (0.01) 0.10 -0.701 (<0.001) 0.40 -0.602 (<0.001) 0.25 

WC (cm) -0.050 (0.72) 0.01 0.091 (0.52) 0.01 -0.316 (0.03) 0.09 -0.300 (0.07) 0.06 -0.765 (<0.001) 0.48 -0.496 (0.001) 0.17 

MAP (mmHg) -0.023 (0.87) 0.01 0.142 (0.30) 0.02 -0.326 (0.02) 0.09 0.182 (0.27) 0.02 -0.191 (0.20) 0.03 -0.170 (0.29) 0.02 

TC (mmol∙L-1) 0.062 (0.66) 0.01 0.062 (0.66) 0.03 0.041 (0.78) 0.01 -0.162 (0.34) 0.02 -0.09 (0.56) 0.01 -0.236 (0.15) 0.04 

HDL (mmol∙L-1) 0.177 (0.20) 0.03 -0.169 (0.23) 0.02 0.209 (0.15) 0.04 0.037 (0.83) 0.01 0.138 (0.37) 0.02 -0.026 (0.87) 0.01 

TAG (mmol∙L-1) -0.145 (0.28) 0.02 -0.024 (0.86) 0.01 -0.158 (0.26) 0.02 -0.204 (0.22) 0.03 -0.135 (0.37) 0.01 -0.08 (0.63) 0.01 

Glucose 
(mmol∙L-1) 

-0.106 (0.45) 0.01 -0.046 (0.75) 0.01 -0.184 (0.21) 0.03 -0.165 (0.34) 0.02 -0.189 (0.22) 0.03 -0.097 (0.57) 0.01 

             
Non-traditional 
CVD risk factors 

            

RMSSD (ms) -0.005 (0.97) 0.01 0.006 (0.96) 0.01 0.402 (0.003) 0.14 0.453 (0.005) 0.13 0.237 (0.11) 0.05 0.299 (0.06) 0.06 

HRRτ (s) -0.139 (0.33) 0.02 0.149 (0.30) 0.02 -0.311 (0.03) 0.08 -0.406 (0.02) 0.11 -0.034 (0.83) 0.01 0.109 (0.22) 0.01 

T30 (s) -0.111 (0.42) 0.02 0.100 (0.49) 0.01 -0.356 (0.02) 0.11 -0.433 (0.01) 0.12 0.081 (0.61) 0.01 0.207 (0.22) 0.03 

             
Clustered CVD 
risk scores 

            

CVDRtrad -0.152 (0.28) 0.02 0.041 (0.78) 0.01 -0.447 (0.002) 0.17 -0.340 (0.08) 0.06 -0.438 (0.004) 0.15 -0.277 (0.11) 0.05 

CVDRauto -0.115 (0.42) 0.01 0.102 (0.48) 0.01 -0.483 (0.001) 0.20 -0.563 (0.001) 0.20 -0.070 (0.67) 0.01 0.020 (0.91) 0.01 

CVDRcom -0.142 (0.32) 0.02 0.041 (0.78) 0.01 -0.601 (<0.001) 0.32 -0.540 (0.001) 0.18 -0.313 (0.05) 0.08 -0.153 (0.38) 0.02 

Standardised regression coefficients are adjusted for maturation and sex. ST, sedentary time; LPA, light physical activity; MPA, 

moderate physical activity; VPA, vigorous physical activity; CRF, cardiorespiratory fitness; BMI, body mass index; BF, body fat; WC, 

waist circumference; MAP, mean arterial pressure; TC, total cholesterol; HDL, high-density lipoprotein; TAG, triglycerides; RMSSD, 

square root of the mean of the sum of the squares of differences between adjacent RR intervals. 
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Figure 5.2: Parasympathetic reactivation for the groups above (solid circles) and below 

(open circles) the sex specific median split of: A) VPA (min·day-1); B) MPA (min·day-

1); and C) CRF (mL·kg-0.58·min-1). *P<0.05 for the comparison between groups from 

60 to 600s (except at 510 s, P=0.053). Values are mean and SD. 
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In the current investigation, ST and LPA were not significantly related to the health 

outcomes which corroborates with previous literature (Ekelund et al., 2012), and 

supports the focus of current PA guidelines on time spent performing MVPA to 

promote CVD health in adolescents. Both MPA and VPA were negatively associated 

to %BF highlighting the benefits of PA on CVD risk via lower body composition scores. 

Although these observations are  in accordance with the literature (Janssen and 

Leblanc, 2010),  causality cannot be inferred as increased %BF may lead to reduced 

MPA and VPA (Metcalf et al., 2011). The lack of significant associations between PA 

intensities and blood lipids is in accordance with the literature (Ekelund et al., 2007). 

Importantly, in adolescents with favourable lipoprotein profile, body composition have 

been associated to CVD risk (McGill et al., 2001). Altogether, our present results 

highlight the important role of PA on cardiovascular health, via negative associations 

with body composition in this population, independent of blood lipid profile. 

In addition to the traditional CVD risk factors, MPA and VPA were significantly related 

to resting HRV. This is reflected in other studies reporting the associations of 

combined MVPA and resting HRV in youth (Gutin et al., 2005, Radtke et al., 2013b). 

In contrast to the present results, Radtke et al. (2013b) did not find associations 

between VPA and resting HRV in 15 years old adolescents. Discrepancies between 

the results might lie in the different levels of total MVPA performed by the participants, 

and different cut-off points used to define PA intensities, as this has been shown to 

affect the interpretation of PA results (Banda et al., 2016). Significant associations 

between CRF and resting autonomic function were not observed in the present study 

which is in line with the literature showing no consensus for this relationship (Brunetto 

et al., 2005, Gutin et al., 2005). Interestingly, when CRF was allometrically scaled the 

positive association between CRF and RMSSD approached significance (P=0.06). As 
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allometric models are superior in controlling for the effect of body size on CRF, this 

indicates that body size has a confounding effect on the CRF-HRV associations when 

using the ratio standard method and needs further investigation. 

A novel finding in the current study is the significant and negative associations of HRRt 

and T30 to MPA and VPA. These observations show that MPA and VPA are related to 

neural control of vagal modulation (measured by resting HRV), as well as vagal tonus 

in adolescents (Dewland et al., 2007). The group above the median split of VPA, which 

equated to two and 12 min per day for girls and boys respectively, presented faster 

RMSSD30 with no observed differences between the MPA and CRF groups (see 

Figure 5.2). This is the first study to investigate the effects of PA intensity and CRF on 

parasympathetic reactivation throughout 10 min of recovery. In contrast to MPA and 

VPA, CRF, LPA and ST had no significant associations with HRR and 

parasympathetic reactivation. As parasympathetic reactivation provides CVD 

prognostic information (Dewey et al., 2007, Lahiri et al., 2012, Pecanha et al., 2017), 

the present results suggest an important role for VPA and novel mechanisms by which 

this intensity is associated with cardiovascular health in adolescents. Possible 

explanations for the observed associations are the hemodynamic and hormonal 

alterations occurring during and after VPA. It may be speculated that these alterations 

are related to an increased catecholamine response, increased cardiac output, 

redistribution of blood flow to skin and muscles, and the higher demand on the 

respiratory muscles amongst others, posing important stresses on the autonomic and 

cardiovascular systems. The current cross-sectional study and measures, however, 

impede us of testing these mechanisms.   
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Further to the traditional and non-traditional CVD risk factors, a traditional CVD risk 

score (CVDRtrad) as it is known to differentiate CVD risk in children was used 

(Andersen et al., 2011a). The observed MPA but not VPA relationship possibly reflects 

the observed association of MPA to BP which was not found for VPA. Similarly, CRF 

was negatively and significantly related to CVDRtrad, which is in line with evidence of 

associations between CVD profile and CRF in youth (Ruiz et al., 2014). However, 

when CFR was expressed using an allometric model, the observed significance of the 

relationship disappeared. This observation shows that scaling for body size has an 

important influence on the CRF-CVDRtrad association, which is not typically accounted 

for in the literature (Ruiz et al., 2014). Future studies should account for the 

confounding effects of body size in youth because CRF normalized by body mass, 

using a ratio standard approach, might reflect differences in body size occurring during 

adolescence rather than the ‘true’ CRF score.  

A recent study has included endothelial function into a CVD risk score in children and 

examined the associations between MPA, VPA and this new composite CVD score 

(Fussenich et al., 2016). The authors did not present the changes in the PA 

relationships to the risk score after the inclusion of endothelial function to the 

composite risk score so additional explanation could not be inferred. In contrast, our 

current data show that after combining RMSSD, T30 and HRRt to the CVDRtrad score, 

providing a composite risk score (CVDRcom), the coefficient of determination rose from 

17 to 32% for MPA and 6 to 18% for VPA. This increase in the strength of the 

association shows that in adolescents, MPA and VPA have important influences on 

autonomic function. This is in accordance with a recent study showing improvements 

in HRV but not traditional CVD risk factors in this population following an exercise 

intervention (Bond et al., 2015a). Altogether, these results contribute to the possible 
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role of PA on CVD risk in adolescents via autonomic function beyond changes in 

traditional CVD risk factors.  

Some limitations must be considered when interpreting the current findings. For 

instance, the possible influence of the menstrual cycle in females was not possible to 

be taken into consideration. Specific types of sedentary behaviours (e.g. TV viewing) 

were not examined in the current study and the 60 s epoch used for the PA analyses 

may have underestimated the PA status of the participants. Additionally, the 

participants were recruited using a convenience sample and therefore sample bias 

might be present and the maturation measure applied might have misclassified some 

of the participants. Finally, the cross-sectional design limits causality between the 

observed associations.  

5.6 Conclusions 

This is the first study to examine the associations of PA intensities and CRF to cardiac 

autonomic function together with traditional CVD risk factors in this population. 

Complementary to the observed relationships between PA and traditional CVD risk 

factors, the current study highlights the strong associations of MPA and VPA to 

autonomic function at rest and recovery in adolescents, but not CRF, ST and LPA. 

Additionally, this is the first study to demonstrate the associations between VPA and 

a more rapid 10 min parasympathetic reactivation. A two and a threefold increase in 

the association between MPA, VPA and the composite CVD risk score after adding 

autonomic function to the traditional CVD risk score was observed. These are novel 

findings and suggest using of cardiac autonomic function within a composite CVD risk 

score in studies examining associations with PA and CRF. However, in contrary to 

adult literature, the clinical significance of cardiac autonomic measures in this 
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population is still unclear. Nevertheless, the present results provide information for 

health policy advocating the importance of MPA and VPA during adolescence. Finally, 

although our study provides original data, longitudinal studies are warranted to clarify 

the causality of the relationships.   
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Chapter 6: Postprandial Lipaemia, Arterial 

Stiffness and Heart Rate Variability in 

Adolescents: Associations with 

Physical Activity and Cardiorespiratory 

Fitness 

6.1 Abstract 

The aim of this Chapter was to examine whether daily PA and CRF are associated 

with [TAG], HRV and arterial stiffness following a HFM. Fifty-one adolescents (22 girls) 

aged 12 – 15 years volunteered to participate, completing three visits to a school-

based laboratory over one-week. In the first visit, anthropometric measures were 

performed. In the second visit, in the following order, HR (for HRV measurements), 

BP, PWV, and a capillary blood sample were collected pre and 2-h post the ingestion 

of a HFM. In the third visit, CRF was measured using a cycling test to exhaustion and 

accelerometers distributed for PA measurement over 7 days. HRV was calculated 

using time and frequency domains and PWV assessed at the carotid and radial 

arteries. The HFM led to increases (P<0.001) in [TAG] (pre-HFM =0.80±0.27; post-

HFM =1.39±0.55for girls; and pre-HFM = 0.66 ±0.14; post-HFM = 1.15 ±0.49 for boys), 

decrease(P<0.001)  in RMSSD (pre-HFM = 62.5 ± 31.4; post-HFM = 52.1±26.4 for 

girls; and pre-HFM = 93.9±40.2; post-HFM = 67.9±29.1 for boys) but no 

change(P=0.96) in PWV(pre-HFM = 7.7 ± 1.1; post-HFM = 7.8 ± 0.9 for girls; and pre-

HFM = 9.0 ± 1.7; post-HFM = 9.0 ± 2.0 for boys) . Fasting [TAG] was positively 
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associated with postprandial [TAG] in boys (stβ=0.628; P<0.001) and girls (stβ=0.741; 

P<0.001). PA intensities and CRF were not significantly associated with postprandial 

[TAG], HRV or PWV (stβ ranging from 0.094 to -0.629; P>0.05). However, for boys 

MPA (stβ=-0.539) and VPA (stβ=-0.498) were negatively associated (P<0.001) with 

the delta changes in RMSSD. PA and CRF are not associated with postprandial 

cardiovascular risk factors in adolescents, however, MPA and VPA are associated 

with a higher parasympathetic withdrawal at the postprandial state. 

6.2 Introduction 

The pathophysiological process of atherosclerosis is known to start during childhood 

(Berenson et al., 1998), and fasted [TAG] measured in schoolchildren predicts CVD 

events in the fourth and fifth decades of life (Morrison et al., 2009). Although fasted 

[TAG] is a strong predictor of CVD, non-fasting [TAG] has been associated with pre-

clinical markers of atherosclerosis independently of fasted [TAG] (Pirillo et al., 2014). 

As most of the day is spent in the postprandial state (Nakamura et al., 2016), strategies 

to lower postprandial [TAG] in youth are warranted to decrease future CVD burden.  

In adolescents, exercise is an important modulator of lipid metabolism, with a single 

bout of moderate and high-intensity exercise performed before the ingestion of a HFM 

lowering postprandial [TAG] in boys and girls (Tolfrey et al., 2014). The effect of 

exercise on postprandial [TAG] is normally attributed to the last bout. For instance, 

when adults are asked to refrain from exercise in the 48 – 60 h preceding HFM 

ingestion, no effect of training status is observed (Tsetsonis et al., 1997, Herd et al., 

2000, Maraki and Sidossis, 2013). In contrast, PA is associated with a lower 

postprandial [TAG] in the elderly, even when participants refrained from exercise in 

the days preceding the ingestion of the HFM (Miyashita et al., 2011). The difference 
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between ages in the literature suggests that [TAG] responses in youth may be 

dependent on PA levels. In youth, fasted [TAG] and lower [HDL] are the key predictors 

of increases in postprandial [TAG] (Couch et al., 2000), and one possible mechanism 

that PA alters postprandial [TAG] is via improvements in fasted lipid [HDL] and [TAG] 

in youth with higher levels of PA, specially vigorous intensity VPA (Barker et al., 2018). 

Likewise, higher levels of CRF is also positively associated with [HDL] and negatively 

associated with [TAG] (Ekelund et al., 2007), suggesting an association between CRF 

and postprandial lipemia may also exist, however this has yet to be explored. 

Furthermore, exercise also alter postprandial lipaemia via other mechanisms than a 

lowered fasted [HDL] and [TAG], such as hepatic fatty acid oxidation an up-regulation 

of the lipoprotein lipase. Although these mechanisms are related to the last bout effect, 

differences between boys and girls have been observed (Bond et al., 2014, Thackray 

et al., 2018)which may indicate that effects of habitual PA on postprandial lipaemia 

may be sex dependent. 

In addition to postprandial [TAG], elevated postprandial BP is considered a novel CVD 

risk factor (Uetani et al., 2012). Because PA and CRF are inversely related to resting 

BP (Janssen and Leblanc, 2010), it is plausible to hypothesize that postprandial BP 

and the changes in BP after a HFM will be inversely related to PA and CRF levels. 

Similarly, novel CVD risk factors such as vascular function and stiffness, as well as 

heart rate variability (HRV), are transiently impaired after a HFM (Bond et al., 2015a, 

Augustine et al., 2014). The mechanism underpinning the HFM effects on the 

vasculature is an elevation of oxidative stress and a decreased nitric oxide dilatory 

capacity at the postprandial state (Bae et al., 2001). This observation occurs 

concomitantly with decreases in HRV (Bond et al., 2015a), reflecting a lower vagal 

modulation to the heart (Task-Force, 1996). On the contrary, high, but not moderate, 
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intensity exercise performed one hour before the ingestion of the HFM has been 

shown to lead to augmented postprandial arterial function via improvements in nitric 

oxide-dependent vasodilation (Bond et al., 2015b). This finding shows that habitual 

PA, and possibly CRF, might confer protection against the deleterious effects of the 

HFM on arterial stiffness, HRV and BP in youth.  

Therefore, the aim of this study is to examine the associations in boys and girls 

between time spent in moderate and vigorous habitual PA and CRF, and postprandial 

changes in [TAG], HRV and arterial stiffness. It was hypothesized that habitual 

moderate and vigorous PA, as well as CRF would be positively associated to 

postprandial changes in HRV, arterial stiffness, and [TAG].  

6.3 Methods 

6.3.1 Participants 

Participants were recruited from two secondary schools in the South West of England. 

Participants were contacted in an assembly at the schools and a flow diagram of the 

recruitment process with the final number of participants included in the analysis is 

presented in Figure 6.1. Exclusion criteria included an existing musculoskeletal injury, 

presence of cardiometabolic disease, taking medications, and showing any 

contraindications to exercise. All participants and their parents/guardians provided 

written assent and consent, respectively, to participate. The study received ethics 

approval from the institutional Ethics Committee (Ref No: 141022/B/07).  
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Figure 6.1: Flow chart of recruitment and sample size in the final analysis. 

 

6.3.2 Study design 

This is a cross-sectional study where participants completed three visits to a school-

based laboratory over a one-week period.  

In the first visit participants had stature, body mass, sitting height, and waist 

circumference (WC) measured followed by triceps and subscapular skinfolds. Peak 

height velocity was used as an indicator of somatic maturity according to equations 

3.1 and 3.2 (Mirwald et al., 2002) and participants were classified as pre (-1 year), 

circa (-1 to +1 year), or post (+1 year) PHV. Body fat percentage was obtained using 

equations 3.3 – 3.7 (Slaughter et al., 1988). At the end of this visit, participants were 

given information of the procedures to follow on the 48h preceding the second visit. 

Specifically, participants were instructed to avoid organised exercise activities in the 



 
 

177 
 

48h before the second visit and to follow a >10 h overnight fast. Parents were 

contacted and reminded to reinforce the participants to follow the procedures before 

the second laboratory visit.  

Before the start of the second visit, participants were asked if they followed the 

instructions in the 48h preceding the second visit. All participants reported compliance 

with the instructions. Volunteers then lay supine for 10min. Resting heart rate was 

recorded followed by measurements of BP and PWV. Next, a fingertip capillary blood 

sample was collected. Participants then consumed, within 15min, a HFM and walked 

to their classes before returning to the laboratory two hours later for repeat 

measurements of heart rate, BP, PWV and blood sampling. During the two hours 

break, participants completed their schoolwork whilst sitting. No exercise activities or 

additional food consumption was permitted during this period. The two hours post-

HFM was used because feasibility in a school setting, which limited the hours between 

the measurements. Additionally, measurements obtained two hours following the HFM 

can be used as a surrogate of the area under the curve response. In house data show 

a strong correlation (r=0.94 and r=0.98 for boys and girls) between two hours post 

[TAG] and the four-hours area under the curve response following the ingestion of a 

HFM [taken from (Bond et al., 2015b, Bond et al., 2014)].  

In the third and final visit a cycle test to exhaustion was performed to determine CRF. 

At the end of this session, participants were given an accelerometer and instructed to 

wear the device for seven consecutive days for measurement of their habitual PA.   
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6.3.3 Autonomic function 

Resting heart rate variability was measured using the RMSSD, HF, LF as well as the 

LF/HF as described in Section 3.8.2. HRV measurements performed by our group 

have been demonstrated to be reliable (CV = 17.6%) (Bond et al., 2017b). 

6.3.4 High-fat meal 

The HFM protocol was performed as described in Section 3.7.1 according to previous 

work. Previous work has demonstrated that the ingestion of this HFM increases peak 

[TAG] in two hours and also impairs vascular and autonomic functions (Bond et al., 

2014, Bond et al., 2015b, Bond et al., 2015d).  

6.3.5 Blood pressure and pulse wave velocity 

Blood pressure was measured three times as described in Section 3.8.1 and PWV 

obtained as described in Section 3.8.5.  

6.3.6 Blood outcomes 

Capillary blood samples were used to determine total cholesterol (TC), HDL, TAG and 

GLU (CardioChek® PA, PTS Diagnostics, USA) as described in section 3.7.1.. The 

observed inter-assay CV was 5.1, 5.7, 7.4 and 4.3 % for [TC], [HDL], [TAG] and [GLU], 

respectively.    

6.3.7 Cardiorespiratory fitness 

Peak oxygen uptake (peak V̇O2) was estimated using a validated steep ramp test 

described in Section 3.5. CRF was subsequently normalised for body mass using a 

ratio standard (mL·kg-1·min-1) and an allometric method as described in Section 3.5.1.  
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6.3.8 Physical activity 

Habitual PA was measured using a wrist-worn accelerometer as described in Section 

3.6. 

6.3.9 Statistical analyses 

All data are presented as mean and standard deviation unless otherwise stated. 

Normality of distribution was checked using Shapiro Wilk’s test and skewed data were 

transformed prior to analysis. Sex differences between variables were examined using 

independent samples t-tests. Effect sizes were calculated for the sex comparisons and 

interpreted as <0.2 trivial, ≥0.2 small, ≥0.5 moderate, and ≥0.80 large (Cohen, 1977). 

Pre- and post-HFM changes and time by sex interactions were assessed using 

repeated measures ANOVA.  

As  differences between sexes exist for levels of PA and CRF (Reilly, 2016), and that 

the HFM responses of girls and boys are differently altered by acute exercise (Bond 

et al., 2014), multiple linear regression models for boys and girls were performed 

separately. PA intensities, CRF, fasting [TAG] and [HDL], were used as the 

independent predictors and inserted separately into the models. Post-HFM [TAG], BP, 

PWV and HRV were inserted into the models as dependent variables. In addition, 

delta changes were calculated as the post- minus the pre-HFM values and included 

as dependent variables. All regression models were controlled for maturity status and 

BF%. This was because preliminary analyses showed differences between the 

maturity groups for the main predictors and body fatness has been shown to affect the 

postprandial [TAG] of adolescents (Moreno et al., 2001). The following variables were 

log transformed prior to entry into the models: VPA, BF%, RMSSD, PWV, and [TAG]. 
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The alpha level was set at 0.05 for all analyses. All analyses were performed using 

SPSS version 22. 

6.4 Results 

6.4.1 Participants 

From the initial 62 volunteers, three did not meet the criteria for the PA analysis and 

four declined to complete the HFM ingestion and four did not adhere to the remainder 

of the protocol. Thus, 51 (22 girls) participants were included in the final analysis 

(Figure 6.1). Participants’ characteristics are presented in Table 6.1. No significant 

differences were observed between sexes for age and BMI; however, the percentage 

of girls post PHV was higher than boys (girls=32% vs. boys=7%; P<0.001). Girls 

presented significantly higher %BF, performed significantly less VPA, MPA, and had 

a significant lower CRF compared to boys. The average HFM caloric content was 

949.7±228.8 kcal. Overall, the meal was well tolerated but four participants declined 

to consume the HFM.   

Table 6.1: Participants’ characteristics pre and post high-fat meal. 

  Girls (n = 22) Boys (n = 29) P  Effect size 

Age (yeas) 12.9±0.8 13.2±0.8 0.24 -0.38 

BMI (kg∙m2) 21.1±4.3 19.1±2.0 0.051 0.62 

Body mass (kg) 50.5±14.0 48.8±10.0 0.62 0.14 

BF (%) 23.2±7.1 17.0±6.2 <0.001 0.93 

VPA (min·day-1) 5.7±6.4 16.3±11.0 <0.001 -1.13 

MPA (min·day-1) 91.9±36.8 117.1±28.1 0.011 -0.78 

Accelerometer wear time (min) 812.4±90.4 837.8±112.3 0.38 -0.25 

CRF (mL·kg-0.58·min-1) 217.2±36.2 254.7±27.1 0.002 -1.19 

CRF (mL·kg·min-1) 42.6±9.4 49.9±4.7 0.002 -1.02 

BMI: body mass index. BF: body fatness. VPA: vigorous physical activity. MPA: 

moderate physical activity. CRF: cardiorespiratory fitness  
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Pre- and Post-HFM values for [TAG], [HDL], RMSSD, PWV and BP are presented in 

Table 6.2. There were no significant sex differences for [HDL] and SBP pre- and post-

HFM. Pre-, but not post-HFM, girls presented significantly higher [TAG] and lower 

RMSSD compared to boys. No significant differences were observed for HF (nu) and 

LF/HF ratio between sexes. Girls had significantly lower PWV compared to boys both 

pre- and post-HFM.  

6.4.2 Postprandial outcomes 

The HFM increased [TAG] and decreased RMSSD in both sexes (P<0.001 for time 

effect). In contrast, PWV (P=0.96) and SBP (P=0.12) did not change after the HFM 

(Table 6.2). The standard regression coefficients are presented in Table 6.3. In girls 

and boys, fasting [TAG] was positively related to postprandial [TAG] (P<0.001) after 

controlling for BF% and maturity. No associations were observed for fasting [TAG] and 

[HDL] with the postprandial RMSSD and PWV for both sexes (all P>0.05). MPA, VPA, 

and CRF were not significantly associated with any of the postprandial outcomes in 

both sexes (P>0.05).   
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Table 6.2: Mean and standard deviation of traditional and novel cardiovascular 

disease risk factors pre and post the high-fat meal. 

 Girls (n = 22) Boys (n = 29) P  Effect size 

TAG (mmol∙L-1)     

Fasting 0.80±0.27 0.66±0.14 0.02 0.68 

2 h  1.39±0.55* 1.15±0.41* 0.08 0.51 

∆2h 0.59±0.35 0.49±0.33 0.29 0.31 

HDL (mmol∙L-1)     

Fasting 1.31±0.39 1.44±0.28 0.15 -0.40 

2 h  1.30±0.39 1.46±0.28 0.10 -0.46 

∆2h 0.01±0.01 0.02±0.09 0.46 -0.20 

SBP (mmHg)     

Fasting 114±9 113±9 0.71 0.10 

2 h  113±8 112±9 0.63 0.14 

∆2h -0.9±5.1 -1.1±4.0 0.90 0.03 

PWV (m∙s-1)     

Fasting 7.7±1.1 9.0±1.7 0.01 -0.88 

2 h  7.8±0.9 9.0±2.0 0.02 -0.68 

∆2h 0.1±0.7 -0.1±1.4 0.57 0.16 

RMSSD (ms)     

Fasting 62.5±31.4 93.9±40.2 0.01 -0.85 

2 h  52.1±26.4* 67.9±29.1* 0.05 -0.57 

∆2h -10.4±10.1 -26.0±26.3 0.01 0.82 

HF (nu)     

Fasting 66.1±15.1 66.0±15.1 0.98 0.09 

2 h  65.3±15.9 65.8±13.9 0.90 -0.04 

∆2h -0.2±0.5 -0.6±1.1 0.86 -0.05 

LF/HF     

Fasting 0.6±0.5 0.6±0.5 0.96 -0.01 

2 h  0.6±0.5 0.6±0.6 0.90 0.03 

∆2h 0.0±0.3 0.0±0.7 0.85 0.05 

*P<0.05 compared to fasting values. Probability (P) and effect sizes (ES) are for 

comparisons between sexes. TAG: triacylglycerol. HDL: high-density lipoprotein. SBP: 

systolic blood pressure. PWV: pulse wave velocity. RMSSD: square root of the mean 

of the sum of the squares of differences between adjacent RR intervals. HF: high 

frequency.   
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Table 6.3: Associations of physical activity, cardiorespiratory fitness, fasting [TAG], and [HDL] to the delta to postprandial outcomes 

in adolescent boys and girls. 

 Girls 

 
MPA  

(min·day-1) 

VPA 

(min·day-1) 

CRF 

(mL·kg-0.58·min-1) 

CRF 

(mL·kg-1·min-1) 

Fasting TAG 

(mmol∙L-1) 

Fasting HDL 

(mmol∙L-1) 

2-h TAG (mmol∙L-1) -0.134 0.094 -0.380 -0.629 0.741* -0.355 

2-h RMSSD (ms) 0.353 0.305 0.279 0.371 -0.277 0.083 

2-h HF (nu) 0.106 -0.023 0.360 0.441 0.350 0.182 

2-h LF/HF -0.238 -0.025 -0.334 -0.387 0.238 -0.126 

2-h PWV (m∙s-1) -0.265 -0.174 -0.034 -0.122 0.336 0.145 

2-h SBP (mmHg) -0.362 -0.334 -0.413 -0.606 -0.394 -0.032 

 Boys 

 
MPA  

(min·day-1) 

VPA 

(min·day-1) 

CRF 

(mL·kg-0.58·min-1) 

CRF 

(mL·kg-1·min-1) 

Fasting TAG 

(mmol∙L-1) 

Fasting HDL 

(mmol∙L-1) 

2-h TAG (mmol∙L-1) 0.181 -0.125 0.280 0.090 0.628* -0.104 

2-h RMSSD (ms) 0.258 0.240 0.265 0.329 0.059 0.136 

2-h HF (nu) -0.229 -0.122 0.131 0.274 0.255 0.007 

2-h LF/HF 0.301 0.185 -0.073 -0.258 0.132 0.022 

2-h PWV (m∙s-1) 0.182 0.690 -0.366 -0.104 -0.044 0.377 

2-h SBP (mmHg) -0.078 0.125 0.465 0.144 0.283 -0.415 

Values are standard beta controlled for maturation and body fat%. *P<0.05. VPA: vigorous physical activity. MPA: moderate physical 

activity. CRF: cardiorespiratory fitness. TAG: triacylglycerol. HDL: high-density lipoprotein. SBP: systolic blood pressure. PWV: pulse 

wave velocity. RMSSD: square root of the mean of the sum of the squares of differences between adjacent RR intervals. HF: high 

frequency.   
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Table 6.4: Associations of physical activity, cardiorespiratory fitness, fasting [TAG], and [HDL] to the delta changes after the HFM in 

adolescent boys and girls. 

 Girls 

 
MPA  

(min·day-1) 

VPA 

(min·day-1) 

CRF 

(mL·kg-0.58·min-1) 

CRF 

(mL·kg-1·min-1) 

Fasting TAG 

(mmol∙L-1) 

Fasting HDL 

(mmol∙L-1) 

∆TAG -0.47 -0.094 -0.517 -0.509 0.380 0.318 

∆RMSSD 0.070 -0.195 -0.163 -0.136 0.010 -0.398 

∆HF -0.398 -0.430 0.097 0.125 -0.238 -0.050 

∆Ratio 0.349 0.410 -0.183 -0.297 0.267 0.010 

∆PWV -0.216 0.005 -0.733* -0.865* 0.252 -0.069 

∆SBP 0.324 0.054 0.141 0.065 -0.222 0.117 

 Boys 

 
MPA  

(min·day-1) 

VPA  

(min·day-1) 

CRF 

(mL·kg-0.58·min-1) 

CRF 

(mL·kg-1·min-1) 

Fasting TAG 

(mmol∙L-1) 

Fasting HDL 

(mmol∙L-1) 

∆TAG -0.199 -0.194 0.165 -0.034 0.134 -0.063 

∆RMSSD -0.539* -0.498* -0.037 -0.017 -0.017 0.082 

∆HF -0.330 -0.064 -0.113 0.081 0.115 0.200 

∆Ratio 0.324 0.183 0.169 -0.063 0.059 -0.055 

∆PWV 0.109 0.231 -0.015 0.131 -0.109 0.317 

∆SBP 0.260 -0.065 0.127 0.093 -0.443 -0.251 

Values are standard beta controlled for maturation and body fat%. *P<0.05. VPA: vigorous physical activity. MPA: moderate physical 

activity. CRF: cardiorespiratory fitness. TAG: triacylglycerol. HDL: high-density lipoprotein. SBP: systolic blood pressure. PWV: pulse 

wave velocity. RMSSD: square root of the mean of the sum of the squares of differences between adjacent RR intervals. HF: high 

frequency. 
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Standard regression coefficients for the delta changes pre- and post-HFM are 

presented in the Table 6.4. Fasting [TAG] and [HDL] were not associated with the 

[TAG], SPB, RMSSD, and PWV in both sexes (all P>0.05). In girls, both 

allometric and ratio scaled CRF were significantly and negatively associated with 

PWV (P=0.018 and P=0.023, respectively) and in boys, MPA (P=0.005) and VPA 

(P=0.009) were negatively associated with RMSSD.  

6.5 Discussion 

This study measured novel and traditional CVD risk factors in the fasted and 

postprandial state and investigated the associations of these markers with PA and 

CRF levels in adolescent boys and girls. The key findings were: 1) Fasting [TAG] was 

positively associated with postprandial [TAG]; 2) No significant associations were 

observed for MPA, VPA and CRF to postprandial [TAG], RMSSD, PWV and BP; 3) 

MPA and VPA were inversely related to the delta change in RMSSD after the HFM in 

boys but not girls; and 4) CRF was inversely associated to the delta changes in PWV 

after the HFM in girls but not boys. 

In adolescents, meals varying in fat and carbohydrate content are normally used to 

measure postprandial outcomes. It is important to standardise the meal because fat 

content, as well as carbohydrate load, is implicated in vascular and [TAG] changes 

after the meal (Peddie et al., 2012). A lipid load between 30 g and 50 g of fat leads to 

a dose dependent change in the rise in [TAG], with doses higher than 80 g causing an 

exacerbated [TAG] response (Peddie et al., 2012). In the present study, the HFM was 

delivered with a milk-shake known to provide lipid content higher than 50 g per 

participant (Bond et al., 2014, Bond et al., 2015d), which is known to increase [TAG] 

and decrease vascular function and HRV (Bond et al., 2015a, Bond et al., 2014, Bond 
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et al., 2015d). However, the HFM did not change peripheral PWV in the current study, 

which is in accordance with postprandial findings in adults and indicates that central 

PWV might be more sensitive to the HFM challenge (Baynard et al., 2009). 

Alternatively, PWV might not be altered in the postprandial state, and other local 

measures of stiffness are desirable (e.g. carotid to femoral PWV) (Murray et al., 2015).   

In the present investigation, no significant differences were found between sexes in 

the postprandial [TAG] concentration, despite girls presenting higher fasted [TAG], as 

typically observed in the literature (Ekelund et al., 2012). While adult women present 

different postprandial responses compared to men (Herd et al., 2000), the present 

investigation corroborates youth data showing no differences between boys and girls 

for postprandial [TAG] (Bond et al., 2014). In children, a combination of a higher fasted 

[TAG] and lower [HDL] has been shown to cause a pronounced postprandial [TAG] 

excursion, even when the confounding effects of body composition are controlled for 

(Couch et al., 2000). In the present study, none of the participants presented elevated 

[TAG] alongside lower [HDL], and the main predictor of the rise in [TAG] was the fasted 

[TAG] (Table 6.2). This is in accordance with the literature (Couch et al., 2000), and 

alludes to a possible mechanism by which PA and/or CRF may alter postprandial 

[TAG], via reductions in fasted [TAG] (Ekelund et al., 2012, Ekelund et al., 2007).  

However, in the present study PA and CRF were not significantly associated with 

postprandial outcomes. This is contrary to the well documented reduction in boys and 

girls postprandial [TAG] when exercise is performed 12 – 16 h before the HFM (Tolfrey 

et al., 2014). Our results are therefore in accordance with investigations in adults 

showing that when participants refrain from an exercise bout ~ 60h preceding the 

HFM, no protective effects of the training status on the responses to the meal is 
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observed (Tsetsonis et al., 1997, Peddie et al., 2012, Herd et al., 2000). Collectively, 

these results show that habitual PA has no significant associations with postprandial 

[TAG] when the acute effects of the activity are eliminated by asking the participants 

to refrain from moderate to vigorous activities. To the contrary, in elderly participants 

PA is inversely related with postprandial outcomes even when participants refrain from 

exercise in the days preceding the HFM (Miyashita et al., 2011). These results indicate 

that the mechanism that PA alters postprandial responses varies between youth and 

the elderly.  

In addition to postprandial lipemia, we investigated the associations of PA and CRF 

with postprandial novel risk factors using measures of HRV, BP and PWV. Despite no 

significant alterations in PWV after the HFM, in girls the delta changes in PWV were 

inversely related to CRF. While CRF might have a protective effect on PWV after the 

meal, the lack of significant changes in PWV post-HFM indicates that the inverse 

association observed between CRF and changes in PWV may have minimum 

physiological or clinical relevance. Our present study and other investigations indicate 

that the commonly observed exercise protection against the postprandial decreases 

in arterial endothelial function and stiffness (Mc Clean et al., 2007, Bond et al., 2015b) 

are likely mediated by the acute effects of the exercise and not habitual PA or CRF. 

Similarly, the lack of association between PA, CRF and changes in HRV pre- and post-

HFM is in accordance with training data (Bond et al., 2015a), and shows that the meal 

challenge will lower autonomic activity regardless of amount of PA or CRF. In boys, 

however, both MPA and VPA were inversely related to changes in HRV, indicating a 

higher delta change for the most active adolescents. This finding corroborates with 

training data showing that the increases in HRV after exercise training led to larger 
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delta changes in HRV after the ingestion of a HFM compared to pre-training values 

(Bond et al., 2015a). Therefore, decreases in the cardiac parasympathetic control are 

necessary in the postprandial state, as previously shown in adults (Lu et al., 1999). 

The dense HFM caloric load (80 kJ∙kg-1) delivered in the present study might explain 

the reductions in HRV, as increases in heart rate after the meal are positively 

associated with the energy content of the meal (Lu et al., 1999). This indicates that 

HRV will decrease to a certain point required to achieve the hemodynamic changes 

needed in the digestive processes and transport of the lipid load.  

A limitation of the present study was the lack of control of the activities that participants 

performed in the two days before the ingestion of the HFM. Although all participants 

reported they refrained from exercise in the 48h preceding data collection, it is possible 

that some participants performed bouts of PA physical activity. However, this is 

unlikely to influence the results, because when adolescents performed 45 min·day-1 in 

the 48h preceding a similar HFM protocol (Bond et al., 2015d) no differences were 

observed in TAG excursion compared to the present study. Likewise, we were not 

able to rigidly control the two hours postprandial period when participants returned to 

normal school-based lessons, although only light intensity PA was performed (i.e. 

walking from and to the lessons). Whilst this increased the external validity of the 

investigation compared to laboratorial controlled settings, this may have also 

introduced errors in the analyses, due the lack of control of the activities during the 

break, a period when sedentary activities are usually performed. In addition, the effects 

of the HFM on traditional and novel CVD risk factors were measured two hours after 

the meal. The time of the post-HFM measurement was decided because in healthy 

adolescents (Sahade et al., 2013, Bond et al., 2014), [TAG] has been shown to peak 

two hours after the ingestion of a HFM. Indeed, the postprandial hypertriglyceridemia 
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observed in the present study (1.25 mmol∙L-1) was similar to measures obtained 2 – 4 

h after the ingestion of a similar meal in other laboratory based investigations (Bond 

et al., 2015d, Bond et al., 2014). The measurement of PWV is not able to discriminate 

endothelial function and the measurement of flow mediated dilation would provide 

greater mechanistic information but requires equipment not ideally located within a 

school setting. Additionally, the participants were recruited using a convenience 

sample and therefore sample bias might be present. Finally, the cross-sectional 

design limits causality between the observed associations.  

6.6 Conclusions 

Contrary to the hypothesis that habitual PA or CFR would be associated with 

postprandial outcomes, neither PA nor CRF were significantly related to HRV, PWV, 

and [TAG] after a HFM. The main predictor of postprandial [TAG] in youth is fasted 

[TAG]. Strategies to lower fasted [TAG] may be desirable to reduce postprandial [TAG] 

excursions. Finally, in boys a higher delta changes in HRV pre and post meal were 

negatively associated with MPA and VPA levels which might reflect the higher pre-

meal HRV of active boys.  
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Chapter 7: Reliability of Autonomic and 

Vascular Components of Baroreflex 

Sensitivity in Adolescents 

7.1 Abstract 

This Chapter aimed to investigate between- and within-day reliability of BRS and its 

autonomic and vascular determinants in adolescents. Thirteen male adolescents (14.1 

±0.5 years) participated in this study. For between-day reliability, participants 

completed four experimental visits separated by a minimum of 48-h. For within-day 

reliability, participants repeated BRS assessments three times in the morning with one 

hour between the measures. BRS was evaluated using the cross-spectral gain 

(LFgain) between blood pressure and heart rate interval. BRS was further divided into: 

1) vascular component using AC; and 2) autonomic component measured as LFgain 

divided by AC (LFgain/AC). LFgain, AC, and LFgain/AC presented between-day CV 

of 20, 17, and 20%, respectively. Similarly, variables associated with BP such as PP 

(14.4%), Q̇ (11.6%), MAP (7.4%), HR (5.7%) and TPR (14.4%) presented CVs ranging 

from 6 to 15%. Within-day reliability was poorer compared to between-day for LFgain 

(25%), AC (27%), and LFgain/AC (34%), as well as all hemodynamic variables (CVs 

from 11-22%, except heart rate with presented CV of 6%). The present study indicates 

suitable between- and within-reliability of BRS and its autonomic and vascular 

determinants, as well as hemodynamic variables associated with BRS, in adolescents.  
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7.2 Introduction 

Atherosclerosis starts in childhood and traditional CVD risk factors in this age group 

are associated with atherosclerotic progression in adolescence (Berenson et al., 1998) 

and adulthood (Raitakari et al., 2003). Improvements in traditional CVD risk factors 

following an intervention such as exercise, however, only partially explains CVD risk 

reduction with the existence of ~40% risk factor gap (Joyner and Green, 2009). The 

American Heart Association recognizes that exploring novel CVD risk factors in youth 

will further contribute to the pathophysiological understanding and CVD management 

in this population (Balagopal et al., 2011). As improvements in autonomic and vascular 

functions were found following an exercise intervention with no changes in traditional 

CVD risk factors in adolescents (Bond et al., 2015a), this highlights the importance of 

these systems as a target for interventions designed to modify CVD risk. 

The interplay between the vascular and autonomic systems can be assessed by 

measuring BRS. Baroreflex sensitivity is the ability to regulate BP and can be non-

invasively assessed using spectral methods (Persson et al., 2001). Specifically, 

oscillations in BP at a low frequency (0.05 – 0.15 Hz) are known to cause oscillations 

in inter-beat intervals (i.e. RR intervals) in the same frequency (Robbe et al., 1987). In 

this scenario, BRS is the gain of the cross-spectrum (LFgain) between BP and RR 

intervals expressed in ms∙mmHg-1. Using CCA ultrasound images, BRS gain can be 

further divided into its vascular and autonomic components (Taylor et al., 2014, Tzeng, 

2012). The underlying theory is that carotid distensibility is a surrogate of arterial wall 

stretching and baroreceptors stimuli (Hunt et al., 2001a, Bonyhay et al., 1996). It is 

then possible to quantify and express changes in CCA diameter per unit of pressure 

(i.e. vascular determinant in µm∙mmHg-1), and changes in RR per unit of CCA diameter 

(i.e. autonomic determinant in ms·µm-1).  
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Separating the determinants of BRS can provide non-invasive mechanistic insight of 

physiological changes in the vascular and autonomic systems in children and 

adolescents. For instance, it has been suggested that throughout adolescence, the 

LFgain is maintained via improvements in the autonomic branch (Lenard et al., 2004). 

While this study provided valuable insights on the maturation of vascular and 

autonomic systems, there is a dearth of information about test-retest reliability of BRS 

and its autonomic and vascular determinants. This lack of information is problematic, 

as reliability is necessary in informing sample size calculations and in the interpretation 

of results of interventions designed to modify CVD risk. In children, LFgain has been 

shown to have substantial absolute (i.e. CV <20%) and relative (i.e. intraclass 

coefficient of correlation (ICC) between 0.6 – 0.8) between-day reliability (Dietrich et 

al., 2010). Less is known about within-day reliability, with one study including 

participants with a large age range (7 – 27 years old) showing a CV of 21.1% (Rudiger 

and Bald, 2001). However, mixing adults and children in the same sample can limit 

the findings due to the known differences in BRS components between the groups 

(Lenard et al., 2004). Additionally, no study has investigated the relative and absolute 

reliability of the autonomic and vascular BRS components in youth. 

The aim of this study was to assess between- and within-day reliability of BRS and its 

autonomic and vascular determinants in adolescents. In addition, as BRS ultimately 

regulates BP via changes in cardiac output (Q̇; the product of HR and stroke volume 

(SV)), MAPand total peripheral resistance (TPR), the within- and between-day 

reliability of these hemodynamic outcomes will also be investigated.  
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7.3 Methods 

7.3.1 Participants 

Thirteen male adolescents (14.0±0.5 years old) volunteered to take part in this study 

Participants, with assistance from their parents/guardians, completed a health 

questionnaire before participation and were free of conditions, such as asthma, 

congenital heart disease, hypertension, amongst others that could alter autonomic and 

vascular functions. All procedures conducted in the present investigation were 

approved by institutional Ethics Committee and assent and consent forms were 

obtained from adolescents and their parents/guardians, respectively. Two weeks 

before starting the experimental visits, participants were then familiarized to the BRS 

protocol. In this same visit, participants had their stature, body mass, skinfolds (to 

estimate body composition) and maximum oxygen uptake (V̇O2max) measured. 

V̇O2max was obtained and verified breath-by-breath (Cortex Metalyzer III B, Leipzig, 

Germany) using a combined incremental-supramaximal treadmill protocol (Barker et 

al., 2014). Pubertal status for the sample was determined by self-assessment of 

secondary sexual characteristics (Morris and Udry, 1980).  

7.3.2 Experimental design 

To establish between-day reliability, participants completed four experimental visits 

separated by a minimum of 48h, and with no longer than two weeks in between. For 

each visit, participants were driven to the laboratory following 12h overnight fast, and 

all measurements were performed between 8 – 9 am. For within-day reliability, in one 

of the four visits participants were randomly asked to complete the BRS protocol (see 

Section 3.8.3) three times with a one-hour interval in each measurement. Participants 

were instructed to avoid extraneous exercise and to wear accelerometers 

(GENEActiv, UK) in the 48-h preceding testing. Accelerometer data were treated as 
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described in Section 3.6. Additionally, in the 48-h preceding Visits 2 – 4 participants 

were instructed under parental supervision to keep a similar diet to the 48-h preceding 

Visit-1.  

7.3.3 Baroreflex sensitivity protocol 

A finger pressure device (Finometer PRO, Netherlands) and a three-led ECG were 

fitted and the BRS protocol started after a 10-min supine rest in a temperature (21 – 

24°C) and light controlled room. The BRS protocol is fully described in Section 3.8.3 

and procedures of standardisation were followed by the participants as described in 

Section 3.8.1.Briefly, the BRS protocol consisted of: 1) measurement of brachial BP 

to calibrate Finometer BP assessment (Guelen et al., 2008), which has been validated 

in paediatric groups (Tanaka et al., 1994); 2) after BP calibration, CCA ultrasound 

images were recorded for 15 cardiac cycles; and 3) following CCA images, participants 

were instructed to pace breathing frequency at 12 cycles per min for five min. This 

breathing frequency is known to increase autonomic modulation of heart rate in 

adolescents (Williams and Lopes, 2002), and also shifts breathing frequency above 

the LF range, as suggested when examining spontaneous BRS (Bothova et al., 2010, 

Tzeng et al., 2009).. 

7.3.4 Baroreflex sensitivity analysis 

Baroreflex sensitivity was obtained using the cross-spectral transfer function 

described in Section 3.8.3 using previous validated methods (Lenard et al., 2004, 

Chirico et al., 2015, Robbe et al., 1987, Saul et al., 1991).  

7.3.5 Vascular and autonomic determinants 

CCA images were recorded ~ 2 cm distal from the carotid bulb using a high-resolution 

(~ 13 MHz) linear array transducer (Apogee, 1000, SIUI, China) as described in 
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Section 3.8.4. The vascular components of BRS were determined using equations 

3.10 and 3.11 according to published guidelines (Laurent et al., 2006). 

During the BRS protocol, beat-to-beat Q̇ was obtained from the Finometer and SV was 

calculated as Q̇ divided by the HR from the ECG trace. Total peripheral resistance 

was calculated as MAP divided by Q̇. Hemodynamic variables (Q̇, HR, SV, MAP and 

TPR) were averaged over the same 15 cardiac cycles used for analysis of the CCA 

outcomes and saved for later analysis. 

The autonomic and vascular determinants of BRS were determined according to 

previous study (Lenard et al., 2004). Briefly, AC was considered as the vascular 

component of the BRS and expressed as μm∙mmHg-1. To calculate the autonomic 

determinant, LFgain was divided by the AC and expressed as LFgain/AC in ms∙μm-1.  

7.3.6 Statistical analyses 

Data are presented as mean and standard deviation unless otherwise stated. 

Differences between MVPA and food diary outcomes were compared using ANOVA 

with repeated measures. Sphericity was tested using Mauchly’s test and when violated 

Greenhouse-Geisser correction was applied. SPSS version 22 was used for analyses, 

and an alpha level of 0.05 was considered significant.  

Following recommendations by Hopkins (2000), between- and within-day reliability 

were calculated as: 1) systematic error as changes in mean and tested using repeated 

measures ANOVA with least significance differences post hoc comparisons; 2) 

absolute reliability assessed as random error calculated as the within-subject variation 

expressed in absolute (typical error (TE)) and normalised as CV; and 3) relative 

reliability calculated as test-retest correlation using Pearson’s correlation. Data were 
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log transformed and analysed using freely available spreadsheets 

(http://sportsci.org/resource/stats/).  

7.4 Results 

7.4.1 Between-day reliability 

Participant characteristics are presented in Table 7.1. From the 13 initial participants, 

two were not included in the CCA analysis due to technical issues with the ultrasound, 

and another did not complete one of the visits, for reasons unrelated to the study. The 

final number of participants included was 10. For the BRS measures, in addition to the 

participant excluded for not completing the visit, another was excluded due to errors 

being >3% in the ECG data. The number of participants included in the BRS between-

day reliability was therefore 11.   

http://sportsci.org/resource/stats/
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Table 7.1: Participants’ characteristics. 

 Between-day reliability 

 All (n=13) CCA (n=10) BRS (n=11) 

Age (y) 14.0±0.5 14.1±0.3 14.1±0.4 

Stature (cm) 162.2±10.5 163.6±10.8 162.4±10.9 

Body Mass (kg) 46.6±13.2 52.1±14.2 49.9±14.1 

Body Fat (%) 12±4.7 12.7±4.8 12±4.8 

V̇O2max (mL·kg·min-1) 50.1±5.2 52.1±3 50.1±5.3 

Stage of maturation 

2=3 

3=1 

4=8 

5=1 

2=2 

3=1 

4=6 

5=1 

2=3 

3=0 

4=7 

5=1 

 Within-day reliability 

 All (n=13) CCA (n=12) BRS (n=12) 

Age (y) 14.0±0.5 14±0.4 14±0.5 

Stature (cm) 162.2±10.5 161.7±10.8 161.7±10.7 

Body Mass (kg) 46.6±13.2 50.4±13.5 49.2±13.7 

Body Fat (%) 12±4.7 12.5±4.6 11.7±4.7 

V̇O2max (mL·kg·min-1) 50.1±5.2 50.9±5.3 50.6±5.3 

Stage of maturation 

2=3 

3=1 

4=8 

5=1 

2=3 

3=1 

4=7 

5=1 

2=3 

3=0 

4=8 

5=1 

CCA: Common carotid artery. BRS: Baroreflex sensitivity.  

Physical activity and diet records are presented in Table 7.2. There were no 

differences for MVPA in the 48h preceding the experimental visits. For this analysis, 

however, just seven participants had repeated data in the four visits. Similarly, energy 

intake and the proportion of the energy derived from carbohydrate, lipid and protein 

were not different between visits (all P>0.05).   
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Table 7.2: Average physical activity and food consumption in the 48h preceding the 

experimental visits. 

  Day 1 Day 2 Day 3 Day 4 P 

n=7 MVPA (min·day-1) 116.1±56.1 99.8±51.3 126.1±29.7 132.2±75.1 0.46 

n=12 
Total kcal 
(kcal·day-1) 

2025±177 2150±178 1944±134 1975±114 0.68 

n =12 Carbohydrate (%) 51±2 50±2 50±2 51±2 0.72 

n =12 Lipids (%) 32±2 34±2 32±2 31±1 0.34 

n =12 Protein (%) 16±1 15±1 17±1 17±1 0.67 

MVPA: moderate-to-vigorous physical activity  

Between-day reliability data are described in Table 7.3. There was no significant mean 

bias between the visits for any of the variables (all P>0.05). All variables had an 

absolute reliability between 2 – 20%, with the most reliable measurement being vessel 

diameter (DLD = 2.4% and SLD = 2.3%). All variables presented a relative reliability 

ranging between r=0.50 and r=0.91, except for PP (r=0.37).  

7.4.2 Within-day reliability 

Participant characteristics are presented in Table 7.1. From the 13 participants, one 

participant was excluded from the CCA analysis due to technical issues with the 

ultrasound. One participant excluded from BRS due to errors >3% in the ECG trace. 

The number of participants included in the within-day reliability was 12 (Table 7.1). 
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Table 7.3: Between-day reliability of BRS gain and its autonomic and vascular determinants. 

  Day 1 Day 2 Day 3 Day 4 
P value 
ANOVA 

r CV TE 

n=10 DLD (µm) 5288.0±278.5 5260.0±300.4 5190.0±313.6 5262.0±420.8 0.39 0.91 2.4 127.0 

n = 10 SLD (µm) 6133.0±308.4 6129.0±337.5 6087.0±320.3 6115.0±448.4 0.78 0.90 2.3 143.5 

n = 10 Delta diameter (µm) 845.0±126.8 869.0±128.3 897.0±144.6 853.0±154.3 0.32 0.80 7.7 63.0 

n = 10 Diastolic CSA (mm) 22.0±2.3 21.8±2.5 21.2±2.6 21.9±3.4 0.40 0.91 4.9 1.1 

n = 10 Systolic CSA (mm) 29.6±3.0 29.6±3.3 29.2±3.1 29.5±4.5 0.78 0.89 4.7 1.4  

n = 10 Delta CSA (mm) 7.6±1.3 7.8±1.4 7.9±1.4 7.6±1.6 0.62 0.81 8.7 0.64 

n = 10 Arterial Strain (%) 16.0±2.6 16.6±2.5 17.4±3.2 16.3±3.4 0.17 0.84 8.0 1.3 

n = 10 AC (µm·mmHg-1) 18.9±4.5 20.0±3.6 19.3±3.9 19.7±5.0 0.85 0.50 16.8 3.1 

n = 10 AD (10-3/mmHg) 7.7±1.8 8.3±1.5 8.1±1.9 8.2±2.7 0.80 0.60 17.2 1.3 

n = 11 LFgain (ms·mmHg-1) 23.6±5.7 21.4±5.9 21.0±5.4 21.1±6.8 0.34 0.63 20.4 3.9 

n = 9 LFgain/AC (ms·µm-1) 1.32±0.49 1.13±0.35 0.96±0.52 1.21±0.45 0.11 0.87 19.8 0.2 

n = 11 HR (beats·min-1) 66±9 66±5 66±8 67±6 0.84 0.83 5.7 4 

n = 11 Q̇ (L·min-1) 3.0±0.8 3.2±0.7 3.0±0.6 3.0±0.7 0.41 0.82 11.6 0.3 

n = 11 SV (mL) 46.6±13.8 48.1±11.6 45.3±9.0 44.8±11.8 0.27 0.87 10.2 4.2 

n = 11 PP (mmHg) 46.0±8.2 43.9±6.3 47.0±4.0 44.2±7.3 0.45 0.37 14.7 5.9 

n = 11 MAP (mmHg) 78.9±5.4 79.6±6.6 80.8±9.9 77.5±7.8 0.55 0.50 7.4 5.6 

n = 11 TPR (units) 27.8±7.4 26.3±5.8 28.0±5.1 26.9±4.4 0.64 0.63 14.4 3.6 

LDD: lumen diastolic diameter; LSD: lumen systolic diameter; PP: pulse pressure; AC: arterial compliance; AD: arterial distensibility.  
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Within-day reliability statistics are presented in Table 7.4. Systematic error was 

identified for DLD (P=0.02) and LSD (P=0.04) at 120min post compared to baseline. 

Similarly, LFgain was higher at 120mincompared to 60min (P=0.03). All variables had 

an absolute reliability between 2 – 34%, with the most reliable measures being vessel 

diameters (DLD = 2.3% and SLD = 2.2%) and HR (CV = 6%). All variables presented 

relative reliability ranging between r=0.50 and r=0.89, except for MAP (r=0.42).  

7.5 Discussion 

This is the first study to investigate between- and within-day reliability of BRS 

assessment and its autonomic and vascular determinants, as well as the reliability of 

hemodynamic variables associated with BRS, in adolescents. The key findings of the 

present investigation were: 1) BRS and its autonomic and vascular determinants 

presented between-day CVs <20%; 2) vessel diameter presented the best between- 

and within-day reliability; 3) within-day BRS reliability was poorer compared to 

between-days; and 4) hemodynamic variables presented between- and within-day 

CVs <20%.  
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Table 7.4: Within-day reliability of BRS gain and its autonomic and vascular determinants. 

  Baseline 60 min 120 min 
P value 
ANOVA 

r CV TE 

n=12 DLD (µm) 5220.0±329.9 5269.2±332.6 5360.8±373.0* 0.038 0.89 2.3 126.7 

n = 12 SLD (µm) 6086.7±340.2 6135.0±346.1 6235.0±387.0* 0.051 0.87 2.2 134.0 

n = 12 Delta diameter (µm) 866.7±126.1 865.8±125.8 874.2±138.1 0.93 0.79 7.3 60.3 

n = 12 Diastolic CSA (mm) 21.5±2.7 21.9±2.8 22.7±3.2* 0.048 0.89 4.6 1.12 

n = 12 Systolic CSA (mm) 29.2±3.3 29.7±3.3 30.7±3.4 0.06 0.88 4.4 1.39 

n = 12 Delta CSA (mm) 7.7±1.3 7.8±1.3 8.0±1.4 0.56 0.80 8.1 0.61 

n = 12 Arterial Strain (%) 16.7±2.8 16.5±2.7 16.4±3.0 0.85 0.82 7.9 1.2 

n = 12 AC (µm·mmHg-1) 20.0±3.7 20.8±9.5 19.9±4.4 0.82 0.57 25.4 6.0 

n = 12 AD (10-3/mmHg) 8.3±1.4 8.5±3.7 8.1±1.8 0.77 0.45 26.1 2.5 

n = 12 LFgain (ms·mmHg-1) 21.7±5.8 20.3±7.9 24.4±8.2** 0.051 0.74 25.1 4.1 

n = 11 LFgain/AC (ms·µm-1) 1.18±0.36 1.26±0.72 1.28±0.53 0.67 0.81 31.4 0.57 

n = 12 HR (beats·min-1) 66±5 65±8 63±6 0.11 0.79 6.0 4 

n = 12 Q̇ (L·min-1) 2.9±0.8 2.8±0.8 2.7±0.6 0.56 0.67 19.2 0.4 

n = 12 SV (mL) 44.1±13.6 43.4±14.8 44.5±12.3 0.90 0.77 17.7 5.8 

n = 12 PP (mmHg) 44.4±9.0 46.4±14.0 44.9±9.3 0.77 0.63 22.0 7.4 

n = 12 MAP (mmHg) 78.2±6.7 80.1±7.1 78.8±6.8 0.43 0.83 4.4 3.37 

n = 12 TPR (units) 28.9±7.5 31.2±8.9 29.6±5.4 0.61 0.53 18.8 6.05 

LDD: lumen diastolic diameter; LSD: lumen systolic diameter; PP: pulse pressure; AC: arterial compliance; AD: arterial distensibility. 

*P<0.05 compared to baseline. **P<0.05 compared to 60min.
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7.5.1 Between-day reliability 

No between-days systematic error was observed for BRS and its autonomic and 

vascular components. In the present study, participants completed a habituation to the 

protocol in the weeks before the start of the study. This may have precluded a possible 

learning effect and caused no systematic changes in the BRS and its autonomic and 

vascular determinants. The present investigation conducted in a sample of healthy 

adolescents, showed poorer reliability (20% CV and r=0.63) of the LFgain compared 

to adults (CV = 5.4% and ICC = 0.76) (Maestri et al., 2009, Reynolds et al., 2016). 

However, our reliability results are similar to that observed in 11 years old of a CV of 

13.8% and ICC of 0.49 for the LFgain (Dietrich et al., 2010). This highlights the 

importance of population-specific studies investigating the reliability of BRS 

assessment.  

The observed CVs <20% contain biological and technical variability which might be 

augmented if important sources of errors before and during BRS assessment are not 

controlled. For instance, aiming to decrease biological variability participants were 

asked to keep a similar diet and physical activity in the days preceding data collection, 

and report to the laboratory at the same time of the day following an overnight fast. 

This was done because prior physical activity and diet can alter autonomic and 

vascular functions (Al Haddad et al., 2009). Similarly, aiming to decrease technical 

errors, breathing frequency was kept outside LF range to increase reliability of BRS 

and autonomic modulation (Davies et al., 1999, Pinna et al., 2007), and participants 

were familiarized to this procedure before the experiment. Additionally, all data trace 

was free of >3% errors and all analysis performed by the same researches. The 

present study indicates that BRS assessed with LFgain presents acceptable between-
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day reliability in adolescents; however, the above important factors before and during 

the measurements should be controlled or the error is likely to be larger. 

The present investigation is the first to calculate the magnitude of systematic and 

random error in the measurements of the autonomic and vascular BRS determinants 

in adolescents. The measures of the vascular determinant used were AC and AD, as 

previously reported in this population (Lenard et al., 2004). AC and AD measures 

presented CVs of 16.8 and 17.2%, without any systematic error between visits (Table 

6.3). The reliability observed for AC and AD measures reflect small between-day 

variation in vessel diameters, and the main source of errors in AC and AD calculation 

derived from PP measures. These results indicate that factors affecting PP should be 

minimised when designing studies to further improve reliability. For instance, due to 

hydrostatic pressure Finometer readings of PP at the finger level exacerbate the 

differences between systolic and diastolic pressure (Imholz et al., 1998). To minimize 

this, participants were asked to keep their hands at the heart level during BRS 

protocol. The autonomic determinant measured using LFgain/AC presented an 

absolute and relative reliability of 19.8% CV and r=0.87 and did not systematically 

change between-days. Despite being calculated with a series of other measurements, 

this is the first study to demonstrate that LFgain/AC is a robust index that can be 

reliably used to investigate autonomic determinant of BRS in adolescents.  

7.5.2 Within-day reliability 

Notably all parameters (except vessel size) presented poorer within-day compared to 

between-day reliability. LDD, LSD and LFgain presented systematic changes two 

hours after the initial measurement suggesting circadian changes are present. To our 

knowledge the current study is the first to report this observation in healthy 
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adolescents. This is in accordance with previous adult literature suggesting an 

increase in BRS and its autonomic and vascular determinants throughout day (Taylor 

et al., 2011). The mechanisms underlying circadian changes are beyond the scope of 

the present investigation, but might involve a heightened sympathetic tone and 

vascular constriction in the early morning compared to late morning (Panza et al., 

1991). This might also explain the increased carotid diameter observed 120min post 

compared to baseline. Similarly, random errors were exacerbated in the within-day 

protocol for all measures with the BRS autonomic component presenting CV of 34% 

and r=0.80. This arises from a sum of factors, such as PP, AC, and LFgain, which 

were altered between the time assessments. These results highlight that a control 

group is essential when changes throughout day are investigated (i.e. the effects of 

exercise or diet intervention on acute BRS changes), and that time of the day should 

be strictly controlled in between-days protocols.  

7.5.3 Reliability of hemodynamic outcomes 

BRS assessment and interpretation can be influenced by a diversity of factors. 

Specifically, BRS is the ability to adjust MAP by triggering a series of mechanisms to 

modulate Q̇ and TPR (Persson, 1996). Poor reliability of MAP, Q̇ and TPR therefore 

would hamper BRS interpretation. In the present investigation MAP, Q̇, TPR, SV and 

HR presented CVs <15% between-days and <21% within-days. The main sources of 

error in these measurements would be technical and biological variations between 

days which would affect the observed CV. As all variables (except HR) are determined 

from finger plethysmography, technical errors can derive from positioning of the cuff, 

cuff size, and movements during the calibration, as well as possible differences in 

finger temperature between-days (Imholz et al., 1998). In the current study, aiming to 

decrease technical errors cuff placement were performed by the same researcher, 
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with adequate cuff size and participants were thoroughly instructed to stay as quite as 

possible during BRS protocol and Finometer calibration. Additionally, room 

temperature was maintained in a narrow range between- and within-days. 

7.5.4 Limitations 

The present sample comprised only boys, and therefore studies involving girls are 

needed. There are considerable technical skills required to operate the ultrasound, as 

well as data processing, which might hamper the application of the BRS protocol. The 

autonomic gain calculated as the ratio between LFgain and AC although theoretically 

sound and previously used in this population (Lenard et al., 2004), has not been 

validated. One alternative would be the use of methods with infusion of vasoactive 

drugs to test the neural component, however such methods raise ethical concerns for 

use in a pediatric population. Similarly, CCA measures were used with no information 

about aorta distensibility (Klassen et al., 2016). Finally, we acknowledge that for AC 

and AD measurements it is desirable to assess PP at the carotid site, however, others 

have suggested that BP derived from Finometer is a valid measure of intra-arterial 

pressure (Guelen et al., 2008), and our present results are comparable to methods 

measuring PP at the carotid site (Lenard et al., 2004).   

7.5.5 Practical applications 

The current study provides practical information to aid interpretation of interventions, 

and in sample size calculation for future trials. Sample size can be calculated 

considering between-subject variation (i.e. pooled standard deviation) and the 

observed CV for each outcome. Applying the principle of Cohen’s effect sizes of 0.2 

(small), 0.5 (moderate), and 0.8 (large) (Cohen, 1977), and using Hopkins between 

and within variation formulas (available at 
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http://sportsci.org/resource/stats/ssdetermine.html#long), the number of participants 

needed to achieve statistical power of 0.80 at an alpha level of 0.05 in a randomized 

controlled trial investigating changes in LFgain with a control and an experimental 

group will be 423, 63, and 22 per group, respectively. For AC, the number of 

participants needed is 537, 80, and 29 and for LFgain/AC the number of participants 

needed will be 191, 27, and 9. Finally, the calculated sample sizes should be inflated 

by 20% considering possible data loss due to errors in the ECG and BP trace, as well 

as in images acquisition.     

7.6 Conclusion 

There was acceptable (i.e. CV<20%) between-day reliability of BRS and its autonomic 

and vascular determinants in male adolescents. Similarly, all components of the BP 

equation, namely MAP, Q̇, HR, SV and TPR, presented adequate between-day 

reliability. CCA diameter was the most reliable variable in the present study and the 

main source of error in the arterial distensibility and compliance coefficients was PP. 

Within-day reliability was poorer compared to between-days for all BRS and 

hemodynamic measurements, possibly due to circadian rhythm. The present results 

will help future research for sample size calculation and clinical interpretation of 

findings of interventional studies. Our results also highlight that a control group is 

essential when changes throughout day are investigated due to the observed diurnal 

variation.   

http://sportsci.org/resource/stats/ssdetermine.html#long
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Chapter 8: Mechanisms of Blood Pressure 

Control Following Acute Exercise in 

Adolescents: Effects of Exercise 

Intensity on Hemodynamics and 

Baroreflex Sensitivity 

8.1 Abstract 

This Chapter aimed to investigate the time course of changes in BRS and its vascular 

and autonomic components after different exercise intensities in adolescents. Thirteen 

male adolescents (age = 13.9±0.5 years) completed on separate days in a 

counterbalanced order: 1) HIIE: 8x1-min running at 90% of maximal aerobic speed 

with 75s of active recovery; 2) MIIE: 10 – 12 bouts of 1-min running at 90% of gas 

exchange threshold with 75s of active recovery; and 3) CON. Supine heart rate and 

blood pressure were monitored continuously at baseline, and 5- and 60-min following 

the conditions. A cross-spectral method (LFgain) was used to determine BRS gain. 

Arterial compliance was assessed as the BRS vascular component. LFgain divided by 

AC (LFgain/AC) was used as the autonomic component. LFgain decreased 5-min post 

the exercise bouts (HIIE: baseline = 24.4 ± 6.1 ms·mmHg-1, 5-min post = 7.7 ± 4.9 

ms·mmHg-1,P<0.001; MIIE: baseline = 21.0 ± 5.1 ms·mmHg-1, 5-min post = 10.2 ± 4.7 

ms·mmHg-1,P=0.002),but returned to baseline at 60-min post (22.4 ± 9.6 ms·mmHg-1 

and 21.4 ± 7.1 ms·mmHg-1 for HIIE and MIIE at 60-min post, respectively). A time 

effect was observed for AC at 5-min post (P=0.048) without a time group interaction 
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(P=0.54), and returned to baseline at 60-min post. LFgain/AC decreased 5-min post 

exercise bouts (HIIE: baseline = 1.32 ± 0.49 ms∙μm-1, 5-min post = 0.31 ± 0.10 ms∙μm-

1, P < 0.001; MIIE: baseline = 1.07 ± 0.40ms∙μm-1, 5-min post = 0.44 ± 0.22 ms∙μm-1, 

P = 0.004), but returned to baseline at 60-min post (1.16 ± 0.61 ms∙μm-1 and 0.94 ± 

0.30ms∙μm-1 for HIIE and MIIE at 60-min post, respectively). Mean arterial pressure 

was lowered by both exercise intensities at 5-min post (HIIE: baseline = 79.6 ± 6.7 

mmHg, 5-min post = 74.4 ± 6.0 mmHg, P < 0.001; MIIE: baseline = 79.4 ± 9.7 mmHg, 

5-min post = 72.1 ± 7.3 mmHg, P = 0.004), but remained decreased at 60-min post 

following HIIE only (75.0 ± 6.1 mmHg and 82.1 ± 7.5 mmHg for HIIE and MIIE at 60-

min post, respectively). Conclusion: BRS decreases 5-min following exercise in 

adolescents independent of exercise intensity and is mainly driven by a lowered 

autonomic response. At 60-min post exercise, the ability of BRS to regulate BP is 

restored after MIIE but not after HIIE, indicating exercise-intensity dependent 

mechanisms. 

8.2 Introduction 

Following exercise, arterial BP decreases below resting values characterizing a state 

of post-exercise hypotension (Halliwill et al., 2013). Understanding this phenomenon 

has implications for the health benefits of the exercise bout, as well as exercise 

induced syncope (Halliwill et al., 2013). Post-exercise hypotension is well 

characterized in the adult literature, and is mainly driven by a decreased total TPR 

despite increases in Q̇ (Halliwill, 2001). The contributions of HR and SV to Q̇ following 

exercise also appears to be dependent on exercise intensity, as SV has been shown 

to be decreased following supramaximal but not moderate-intensity cycling exercise 

which may be associated with an increased likelihood of syncope (Crisafulli et al., 
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2004). limited data also suggests that post-exercise hypotension is present in children 

and may last up to 40minfollowing exercise (Rauber et al., 2014). Furthermore, post-

exercise hypotension in youth is associated with a lowered BP response to stressful 

situations such as the cold stressor test and the ingestion of a HFM (Bond et al., 2014, 

Rauber et al., 2014), which may be clinically important as these stressful conditions 

have been positively associated with hypertension development in adults (Menkes et 

al., 1989, Uetani et al., 2012). Finally, although exercise intensity may alter the BP 

response following exercise in youth (Bond et al., 2014), the specific contribution of 

hemodynamic factors (e.g. SV, Q̇ and TPR) have not been reported in this population. 

Therefore, studies are needed to investigate the duration of exercise-induced 

hypotension and to characterize the contributions of SV, Q̇ and TPR in youth.  

The mechanisms of post-exercise hypotension are well documented in adults, 

involving a diminished sympathetic influence on the vasculature, increases in 

myogenic vascular function, release of vasodilatory substances, and improved 

vasodilatory arterial function (Halliwill et al., 2013, Halliwill, 2001, Halliwill et al., 1996a, 

Persson, 1996). Collectively, these physiological changes indicate that critical 

mechanisms of BP control are influenced by the exercise bout. For example, BRS 

which is responsible for the beat-by-beat adjustments in BP fluctuations, may also be 

influenced by the exercise stimulus (Reynolds et al., 2017, Halliwill et al., 1996b, 

Niemela et al., 2008). However, because BRS is composed of a vascular (measured 

as changes in arterial diameter per changes in units of BP) and an autonomic 

(measured as changes in HR per units of vascular diameter) component (Kornet et 

al., 2002, Bonyhay et al., 1996, Taylor et al., 2014), their different contribution to the 

total BRS gain following exercise is still controversial. For example, in adults 

decreases in BRS following exercise have been attributed to either both components 
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(Willie et al., 2011), or to the vascular component (Studinger et al., 2003), with both 

components returning to baseline values 60minpost-exercise (Studinger et al., 2003, 

Willie et al., 2011). The difference between exercise modalities, intensities and 

duration makes comparisons between the results challenging, as these exercise 

characteristics are likely to impact BRS regulation (Halliwill et al., 2013).  

To our knowledge, no study has investigated the role of BRS associated mechanisms 

on BP control following exercise in a youth population. The translation of adult findings 

to the youth population is questionable, as BRS has been shown to decrease with 

maturation in males (Chirico et al., 2015), or to be maintained across different age 

groups via improvements in the autonomic component (Lenard et al., 2004). 

Furthermore, the time-course of BRS changes post-exercise, and the effect of 

exercise characteristics (i.e. intensity) that contributes to BRS in the post-exercise 

period are unclear in youth. Whether there is an exercise intensity dependent effect 

on time-course of BRS responses in the post-exercise period, as well as the 

underpinning mechanisms are important questions considering the accentuated 

hypotension observed following HIIE compared to moderate-intensity exercise (Bond 

et al., 2014, Rauber et al., 2014), and the higher cardiorespiratory demands during 

HIIE in adolescents (Malik et al., 2017).  

Therefore, the overall purpose of this study was to investigate the mechanisms 

underlying the recovery of BP following moderate and high-intensity exercise in 

healthy adolescents. Specifically, the time course of changes in BRS and its 

autonomic and vascular components, Q̇, and TPR were investigated at five and 60min 

following moderate and high-intensity interval running in adolescents. Based on the 

described intensity-dependent effects of exercise on vascular and autonomic functions 
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in youth (Guilkey et al., 2015, Bond et al., 2015c), it was hypothesized that HIIE would 

augment the vascular and decrease the autonomic BRS determinants in the hour 

following the exercise bout, resulting in an overall decrease in the baroreflex gain 

compared to moderate-intensity interval exercise (MIIE).  

8.3 Methods 

8.3.1 Ethical approval 

All adolescents who volunteered to take part in the present investigation and their 

parents/guardians provided signed assent and consent forms, respectively. All 

procedures performed in the present investigation were approved by the institutional 

ethics committee (Ref No: 160217/B/04). The study conformed to the standard set by 

the Declaration of Helsinki, except for a registration in a database.  

8.3.2 Participants 

Thirteen male adolescents volunteered to take part in this study. Pubertal status for 

the sample was: stage 2=3; stage 3=1; stage 4=8; and stage 5=1, as determined by 

self-assessment of secondary sexual (pubic hair) characteristics (Morris and Udry, 

1980). Health questionnaires were completed before participation and all volunteers 

were free of conditions affecting cardiac autonomic and vascular systems, such as 

asthma, congenital heart disease, and hypertension.  

8.3.3 Experimental overview 

Participants completed four experimental visits with a minimum of three days apart 

and took no longer than four weeks to finish the study. The visits consisted of:  

Visit 1: Participants were familiarized to the BRS protocol and treadmill running. 

Participants characteristics were obtained as described in Section 3.4. At the end of 
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Visit 1, participants received food diaries and accelerometers, which were used in the 

48h preceding Visits 2 – 4.  

Visits 2 – 4: Following an overnight fast, participants were transported to the laboratory 

and completed the BRS protocol as described in Section 3.8.3 between 8 – 9 am.  

After the baseline measurement, participants performed, in a counterbalanced order, 

the following conditions on separate days: 1) HIIE; 2) MIIE; and 3) control (CON) which 

are described in details in Section 3.7.2. For CON, participants pursued sedentary 

activities whilst seated in the laboratory, such as computer and board games.  

Participants repeated the BRS protocol, including 10min of rest, starting at 5 (5-min 

post) and 60 min (60-min post) following the conditions. These time points were 

chosen because in adults it has been reported that the time-course adjustments in the 

BRS and its vascular and autonomic determinants differ between 5 and 60 min 

following exercise (Willie et al., 2011, Studinger et al., 2003). However, the 10min rest 

preceding the BRS protocol resulted in the measurements starting at 15 and 75min 

post the conditions. In between the post-exercise measures, participants were seated 

in the upright position and pursued sedentary activities such as playing board and 

virtual games.  

8.3.4 Baroreflex sensitivity analysis 

Baroreflex sensitivity was obtained using the cross-spectral transfer function 

described in Section 3.8.3. 
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8.3.5 Vascular and autonomic determinants 

Common carotid images were recorded as described in Section 3.8.4. The vascular 

components of BRS were determined using equations 3.10 and 3.11 according to 

published guidelines (Laurent et al., 2006).  

The autonomic and vascular determinants of BRS were determined according to a 

previous study (Lenard et al., 2004). Briefly, AC was considered as the vascular 

component of the BRS and expressed as μm∙mmHg-1. To calculate the autonomic 

determinant, LFgain was divided by the AC and expressed as LFgain/AC in ms∙μm-1.  

8.3.6 Hemodynamic and autonomic modulation 

During CCA images acquisition, beat-by-beat Q̇ was obtained and averaged for later 

analysis. In adults, Q̇ obtained with the Finometer has been validated (Jansen et al., 

2001). TPR was calculated as MAP divided by Q̇. Heart rate variability was obtained 

as described in Section 3.8.2 as the area under the low (LF =0.04 – 0.15 Hz), and high 

frequency (HF =0.15 – 0.50 Hz) bands in absolute (ms2), normalized (nu), and as the 

LF/HF ratio.  

8.3.7 Physical activity and dietary intake 

For standardisation PA and dietary intake were completed as described in Section 

3.8.1.  

8.3.8 Statistical analyses 

Data are presented as mean and standard deviation unless otherwise stated. Mean 

differences between the physiological responses to the conditions were tested using 

paired Student’s t-tests. Mean differences between MVPA and food diary outcomes 

between days were compared using ANOVA with repeated measures. The main 

effects of experimental condition and time, as well as their interaction were tested 
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using repeated measures ANOVA with two within-subject factors (time and condition), 

and three levels for each factor (time: Pre, 5-min and 60-min Post; and condition: HIIE, 

MIIE, and CON). When an interaction was observed, a series of repeated ANOVAs 

were performed to compare the effects of time and condition, followed by pairwise 

comparisons with least square differences. Mauchly’s test was used to test sphericity 

and when violated Greenhouse-Geisser correction was used. SPSS v.22 was used 

for these analyses. The sample size was calculated based on detecting a large effect 

size (ES, Cohen’s d > 0.8) for the change in BRS after exercise (Niemela et al., 2008), 

with an alpha of 0.05 and power of 0.8 (G-power). Finally, ES were calculated to 

interpret the magnitude of the pairwise comparisons as small <0.2, moderate >0.5, 

and large >0.8 (Cohen, 1977).  

8.4 Results 

The mean (SD) age of the group was 13.9±0.5 years, BF: 12.0±4.9 % and V̇O2max 

50.1±5.2 mL·kg-1∙min-1. One participant was excluded from the BRS assessment due 

to errors in the ECG signal, and two from the CCA analysis due to technical issues 

with the ultrasound. For clarity, the final sample size for each analysis is described in 

the Figures 8.1 – 8.3 and Tables 8.1 and 8.2. In the 48h before the experimental visits, 

there were no significant mean differences in the amount of MVPA (P=0.91), energy 

intake (P=0.55) and macronutrient contribution (P>0.39) (see Table 8.1). 
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Table 8.1: Mean (SD) physical activity and food consumption in the 48 h preceding 

the experimental visits. 

 HIIE MIIE CON P 

MVPA (min·day-1)(n=9) 117±49 117±32 111±45 0.91 

Total (kcal·day-1) (n=13) 1987±732 1912±458 2079±643 0.55 

Carbohydrate (%) (n=13) 52±7 50±5 51±8 0.72 

Lipids (%) (n=13) 32±1 32±1 33±1 0.55 

Protein (%) (n=13) 16±3 17±3 16±4 0.39 

MVPA: moderate-to-vigorous. HIIE: high-intensity interval exercise. MIIE: moderate-

intensity interval exercise. CON: control. 

By design, HIIE elicited significantly greater peak V̇O2 [% of max] (2.2±0.2 [89%] vs 

1.6±0.1 [66%] L·min-1; P<0.001), and average HR (154±3 [78%] vs 128±5 [64%] bpm; 

P<0.001) compared to MIIE. HIIE was significantly shorter in duration (21.8±0 vs 

28.0±1.8 min; P<0.001), but the total distance was matched for both conditions 

(2,763±249 m).  

8.4.1 Hemodynamic outcomes 

Hemodynamic data are presented in Table 8.2 and Figure 8.1. There was a time by 

condition interaction for MAP (P<0.001). At baseline, no differences were observed 

between conditions (P=0.91). MAP decreased 5-min post HIIE (P=0.014; ES=0.81) 

and MIIE (P<0.001; ES=0.85) compared to baseline. Consequently, MAP 5-min post 

HIIE and MIIE were lower compared to CON (P=0.003, ES=0.87; and P<0.001, 

ES=1.12, respectively). At 60-min post, MAP remained decreased after HIIE 

compared to baseline (P=0.015; ES=0.71) and was lower compared to MIIE (P=0.001; 

ES=1.04) and CON (P=0.016; ES=0.62). 
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Figure 8.1: Baseline, 5-min and 60-min post the experimental conditions for mean 

arterial pressure (n = 13). *P< 0.05: HIIE vs CON. #P< 0.05: HIIE vs MIIE. **P< 0.05: 

MIIE vs CON. a: within HIIE compared to baseline. b: within HIIE compared to 5-min 

post. c: within MIIE compared to baseline. d: within MIIE compared to 5-min post. Error 

bars represent SD. For P values and effect sizes refer to text. 
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Table 8.2:  Mean (SD) hemodynamic and autonomic modulation pre and post the experimental conditions. 

 HIIE MIIE CON 

 Pre 5-min post 
60-min 

post 
Pre 5-min post 

60-min 
post 

Pre 5-min post 60-min post 

HR (bpm) n=12 65±9 85±9a*# 67±8* 65±8 74±9c** 66±9 66±5 65±8 63±6 

SV (mL) n=12 45.7±13.5 39.5±10.6a 44.0±10.7 44.4±9.1 36.9±7.2c 42.5±9.8 46.4±12.6 45.8±13.0 44.5±12.3 

Q̇ (mL·min-1) n=13 3.0±0.8 3.4±0.9a*# 3.0±0.7b 2.9±0.6 2.7±0.6 2.8±0.7 3.0±0.8 2.8±0.8 2.7±0.6 

TPR (units) n=13 28.3±7.0 23.3±6.0a*# 26.1±5.2b 28.1±5.3 27.2±5.9 31.2±8.0d 28.4±7.4 30.6±8.7 28.8±6.9 

PP (mmHg) n=11 45.6±8.0 35.1±7.1a 44.7±6.4 46.5±4.2 36.7±6.4c 43.5±5.1 42.8±7.1 43.7±11.0 47.9±16.2 

HFln (ms2) n=12 8.4±1.0 6.6±1.5a*# 8.5±1.0b 8.5±0.9 7.5±1.5 8.5±1.0 8.6±0.7 8.2±1.0 8.5±0.7 

LFln (ms2) n=12 7.4±1 5.9±1 7.3±1 7.2±1 6.6±1 7.2±1 7.6±1 7.3±1 7.5±1 

HF (nu) n=12 71.1±15 63±16 74.9±9 78.3±8 68.2±19 76±10 71.2±12 69.8±10 69.7±12 

LF (nu) n=12 28.7±14 36.2±16 24.9±9 21.5±8 31.6±19 23.4±10 28.6±12 30.1±10 30.0±13 

LF/HF n=12 0.48±0.4 0.71±0.6 0.35±0.2 0.29±0.1 0.61±0.7 0.33±0.2 0.44±0.2 0.46±0.2 0.47±0.3 

*P<0.05: HIIE vs CON. #P<0.05: HIIE vs MIIE. **P<0.05: MIIE vs CON. a: within HIIE compared to baseline. b: within HIIE compared 

to 5-min post. c: within MIIE compared to baseline. d: within MIIE compared to 5-min post. For P values and effect sizes refer to text. 
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There was a time by condition interaction for TPR (P=0.035). At baseline, no 

differences were observed between conditions (P=0.99). TPR decreased 5-min post 

HIIE (P=0.003; ES=0.77). Consequently, TPR 5-min post HIIE was lower compared 

to MIIE (P=0.009; ES=1.12) and CON (P=0.029; ES=0.98). At 60-min post, TPR 

returned to baseline after HIIE (P=0.09, ES=0.30). Conversely, TPR increased 60-min 

after MIIE compared to 5-min post (P=0.034; ES=0.56). 

There was a condition by time interaction for Q̇ (P=0.023). At baseline, no differences 

were observed between conditions (P=0.86). Q̇ increased 5-min post HIIE (P=0.036; 

ES=0.48). Consequently, Q̇ 5-min post HIIE was higher compared to MIIE (P=0.001; 

ES=0.87) and CON (P=0.035; ES=0.72). At 60-min post, Q̇ returned to baseline after 

HIIE (P=0.91, ES=0.02). As there was no time by condition interaction for SV (P=0.08), 

the observed Q̇ responses were mediated by a time by condition interaction for HR 

(P<0.001). At baseline, no differences were observed between conditions for HR 

(P=0.55). HR increased 5-min post HIIE (P<0.001; ES=2.19) and MIIE (P<0.001; 

ES=1.01). Consequently, HR 5-min post HIIE and MIIE were higher compared to CON 

(P<0.001, ES=2.43; and P=0.005, ES=1.07, respectively). HIIE elicited a greater 

increase in HR 5-min post compared to MIIE (P<0.001; ES=1.22). At 60-min post, HR 

returned to baseline after HIIE (P=0.21; ES=0.24) and MIIE (P=0.96; ES=0.01) but 

stayed elevated after HIIE compared to CON (P=0.005; ES=0.66). A significant main 

effect of time (P=0.014) was also present for SV, which was decreased at 5-min post 

compared to baseline (P=0.015; ES=1.57) but returned to baseline at 60-min post 

(P=0.20; ES=0.59).   
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8.4.2 Baroreflex sensitivity outcomes 

BRS and its autonomic and vascular components are depicted in Figure 8.2. There 

was a time by condition interaction for LFgain (P<0.001). At baseline, no differences 

were observed between conditions (P=0.09). LFgain decreased 5-min post HIIE 

(P<0.001; ES=3.02) and MIIE (P=0.002; ES=2.18). Consequently, LFgain 5-min post 

HIIE and MIIE were lower compared to CON (P=0.001, ES=1.91; and P=0.004, 

ES=1.56, respectively). At 60-min post, LFgain returned to baseline after HIIE (P=0.99, 

ES=0.09) and MIIE (P=0.49, ES=0.24). LFgain increased 60-min post CON compared 

to 5-min post (P=0.046, ES=0.50). 

There was no time by condition interaction for AC (P=0.63). However, a significant 

main effect of time (P=0.012), but not condition (P=0.69), was present. At 5-min post, 

AC increased compared to baseline (P=0.016; ES=0.96) but returned to baseline at 

60-min post (P=0.39; ES=0.20). These increases were mainly driven by the exercise 

conditions as observed by the large effect sizes for HIIE (ES=0.84), MIIE (ES=1.00) 

but not CON (ES=0.17). 

There was a time by condition interaction for LFgain/AC (P<0.001). At baseline, no 

differences were observed between conditions (P=0.07).LFgain/AC decreased 5-min 

post HIIE (P<0.001; ES=2.84) and MIIE (P=0.001; ES=2.00). Consequently, LFgain/AC 

5-min post HIIE and MIIE were lower compared to CON (P=0.004, ES=1.89; and 

P=0.008, ES=1.54, respectively). At 60-min post, LFgain/AC returned to baseline after 

HIIE (P=0.84, ES=0.28) and MIIE (P=0.41, ES=0.38).   
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Figure 8.2: Baseline, 5-min and 60-min post the experimental conditions for A) BRS 

gain (n=12); B) BRS vascular component (n=11); and C) BRS autonomic component 

(n=10). *P< 0.05: HIIE vs CON. #P< 0.05: HIIE vs MIIE. **P< 0.05: MIIE vs CON. a: 

within HIIE compared to baseline. b: within HIIE compared to 5-min post. c: within MIIE 

compared to baseline. d: within MIIE compared to 5-min post. e: within CON compared 

to 5-min post. Error bars represent SD. For P values and effect sizes refer to text. 
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8.4.3 Carotid artery outcomes 

Common carotid artery properties are depicted in Figure 8.3. There was a time by 

condition interaction for DLD (P=0.014). At baseline, no differences were observed 

between conditions (P=0.11). DLD decreased 5-min post HIIE (P=0.022; ES=0.53). 

Consequently, DLD 5-min post HIIE was smaller compared to MIIE (P=0.025; 

ES=0.30) and CON (P=0.043; ES=0.51). At 60-min post, DLD increased after HIIE 

compared to baseline (P=0.047; ES=0.39) and 5-min post (P<0.001; ES=0.86). 

Likewise, DLD increased 60-min after MIIE compared to baseline (P=0.047; ES=0.67).  

There was a time by condition interaction for SLD (P=0.001). At baseline, no 

differences were observed between conditions (P=0.45). SLD decreased 5-min post 

HIIE (P=0.005; ES=0.70). Consequently, SLD at 5-min post HIIE was smaller 

compared to MIIE (P=0.002, ES=0.69) and CON (P=0.013, ES=0.74). At 60-min post, 

SLD increased for HIIE and MIIE compared to baseline (P=0.016, ES=0.47; and 

P<0.001, ES=0.74, respectively) and 5-min post (P<0.001, ES=1.13; P=0.001, 

ES=0.68, respectively).  

There was no time by condition interaction for AD (P=0.47). However, a significant 

main effect of time (P=0.002), but not condition (P=0.50), was present. At 5-min post, 

AD increased compared to baseline (P=0.010; ES=0.82) but returned to baseline ate 

60-min post (P=0.94; ES=0.20).   
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Figure 8.3: Baseline, 5-min and 60-min post the experimental conditions for A) Arterial 

distensibility (n = 11); (n = 11); B) common carotid artery diameter (n = 11). *P< 0.05: 

HIIE vs CON. #P < 0.05: HIIE vs MIIE. a: within HIIE compared to baseline. b: within 

HIIE compared to 5-min post. c: within MIIE compared to baseline. d: within MIIE 

compared to 5-min post. Symbols and letters apply to both systolic and diastolic 

diameter. Error bars represent SD. For P values and effect sizes refer to text. 

 

8.4.4 Heart rate variability 

Heart rate variability is presented in Table 8.2. There was a time by condition 

interaction for HF (P=0.006). At baseline, no differences were observed between 

conditions (P=0.69). Compared to baseline, HF decreased 5-min post HIIE (P<0.001; 
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ES=1.43) and MIIE (P=0.005; ES=0.84). HIIE elicited a greater decrease in HF 5-min 

post compared to MIIE (P=0.019; ES=0.64). Likewise, HF 5-min post HIIE was lower 

compared to CON (P=0.003; ES=1.25). At 60-min post, HF returned to baseline after 

HIIE (P=0.54, ES=0.11) and MIIE (P=0.79, ES=0.03). No time, or time by condition 

interactions were observed for the other HRV indices (Table 8.2).  

8.5 Discussion 

This is the first study to investigate the time course of changes in BP following HIIE 

and MIIE and the associated mechanisms in a sample of healthy adolescents by 

focussing on BRS and its autonomic and vascular determinants. The novel findings of 

this study were: 1) MAP was lower 5-min post HIIE and MIIE due to a decreased TPR, 

as both HR and Q̇ were elevated. At 60-min post, MAP remained lower after HIIE only, 

but Q̇ and TPR had returned to baseline; 2) BRS gain was reduced 5-min following 

HIIE and MIIE, but was restored to baseline 60-min after exercise; 3) the reduction in 

BRS gain immediately post HIIE and MIIE was mainly driven by changes in the 

autonomic component, as LFgain/AC was reduced; 4) 5-min after HIIE, but not MIIE, 

the CCA was constricted but 60-min after exercise CCA was vasodilated for both 

exercise intensities. 

8.5.1 5-min post responses 

In the present study, MAP decreased 5-min post HIIE and MIIE. The observed 

decreases in MAP are in accordance with adult literature (Halliwill et al., 2013), 

however the observed mechanisms underpinning post-exercise hypotension were 

different between HIIE and MIIE. Specifically, MAP decreases observed 5-min 

following HIIE were caused by a lowered TPR despite the observed increased in Q̇ 

(Halliwill, 2001), whereas 5-min post MIIE, a fall in SV (ES=0.90) and a consequent 
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maintained Q̇ explained the decreased MAP. The divergent Q̇ responses were caused 

by a heightened vagal withdrawal following HIIE, which is reflected in the observed 

reduced HF and a consequent elevated HR. The observed parasympathetic withdraw 

following HIIE corroborated with the well documented responses to exercise (Pecanha 

et al., 2017). The different mechanisms for post-exercise hypotension between the 

exercise intensities is a novel finding of the present investigation and is in accordance 

with a previous adult investigation showing a decreased pre-load due to a lowered 

venous return which was matched by an increased HR and Q̇ following supramaximal, 

but not submaximal exercises (Crisafulli et al., 2004).  

Our novel findings are the first to show an intensity independent decrease in LFgain 

in the first five min of recovery following MIIE and HIIE in adolescents. This observation 

is in accordance with evidence from adult literature showing decreases in BRS up to 

60min following both aerobic and resistance exercises (Studinger et al., 2003, Niemela 

et al., 2008, Reynolds et al., 2017). The increased AC and AD in the first min of 

recovery following HIIE and MIIE indicates that the baroreceptors stimuli due to arterial 

stretching did not lead to adjustments in RR intervals. This is reinforced by the 

observed lowered LFgain/AC at 5-min following HIIE and MIIE indicating an autonomic 

dependent reduction in BRS gain. Our data is different to adult literature, which 

showed both autonomic and vascular changes contribute to the BRS decrements after 

exercise (Studinger et al., 2003, Willie et al., 2011). Some limitations arise from 

comparing the current findings to the adult literature. For example, differences 

between exercise mode (i.e. running vs cycling; interval vs continuous) and intensity 

(i.e. maximum to exhaustion (Studinger et al., 2003), and moderate (Willie et al., 

2011)), as well as the methods used to measure BRS and its autonomic and vascular 

determinants. However, because adolescents present a higher arterial distensibility 
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and a less mature autonomic function (Lenard et al., 2004), the higher dependence 

on the autonomic determinant observed in the present investigation may represent 

developmental characteristics between children and adults. Future studies directly 

comparing adolescents and adults would be useful to support this claim. 

The observed autonomic-dependent decrease in BRS following HIIE and MIIE may 

reflect a decreased autonomic central processing due to BRS resetting (Hart et al., 

2010), and/or a lowered vagal influence on the heart due to local substances released 

by sympathetic stimulation (Herring and Paterson, 2009). However, this remains 

speculative as our present findings do not extend to the cross-talk between vagal and 

sympathetic systems. It also possible that the reduction in the BRS gain in the present 

study reflects a shift in the overall gain of the reflex curve (Schwartz et al., 2013), but 

no information about the operation point, saturation and range of baroreflex can be 

provided with the methods used in the present investigation. Regardless, our present 

study is the first to demonstrate that the reduction in the BRS gain is dependent on 

autonomic function in the 5-min following HIIE and MIIE in adolescents. As the 

recovery period has been suggested as part of the stimuli leading to training 

adaptation (Luttrell and Halliwill, 2015), the observed drop in the autonomic BRS 

determinant may provide mechanistic insights into the reported associations between 

moderate and vigorous intensity physical activity to cardiac autonomic function in 

adolescents (Oliveira et al., 2017). Future studies are needed to investigate the 

interdependence of the acute and chronic adaptations of the BRS and its vascular and 

autonomic components.  

In our present investigation AC was increased 5-min post all conditions. Given that AC 

is calculated as delta diameter divided by PP, the observed increases in AC were 
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driven by decreases in PP, because delta diameter was kept similar to baseline at 5-

min post. Our data is the first to demonstrate that in the 5-min following HIIE and MIIE, 

AC is improved in adolescents. Although our measurement of PP is limited for AC 

assessment (Steinback et al., 2005), the present findings of a lowered SV reinforces 

the observed increased in AC at 5-min post-exercise. For example, in contrast to the 

observed data in the present study, a smaller SV would lead to smaller AC and AD 

(Myers et al., 2002). These results indicate that despite the decreased MAP and PP, 

the difference in vessel distension is similar, and highlights that the drop in BRS 

observed after exercise was mainly driven by a lowered autonomic response to the 

baroreflex stimuli, rather than mechanical changes in the vascular BRS determinant.  

In the present investigation, CCA was constricted 5-min post HIIE but not MIIE or 

CON. Our results extend previous adult findings (Studinger et al., 2003), by providing 

novel data showing that in adolescents the constriction of CCA is intensity-dependent 

and caused by decreases in both systolic and diastolic diameter. It has been 

previously stated that during high-intensity exercise the vasodilatory stimuli of shear 

stress (Atkinson et al., 2015) causes CCA to dilate (Studinger et al., 2003). After 

exercise cessation, the vasodilatory stimulus of shear stress diminishes, and the 

smooth muscle constricts stimulated by myogenic vessel activity (Studinger et al., 

2003). The current observed constriction of the CCA following HIIE may therefore be 

explained by an accentuated sympathetic activity during the exercise bout, translated 

in the observed higher HR during HIIE, and superior hemodynamic stimulus on the 

CCA smooth musculature. This constriction following HIIE appears to be characteristic 

of the CCA, because a previous adolescent study have shown a vasodilated brachial 

artery immediately following HIIE (Bond et al., 2015c). Additionally, in the present 

study TPR was lowered reflecting dilated vasculature at the muscular site.  
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8.5.2 60-min post 

This is the first study to demonstrate that at 60-min post HIIE, but not MIIE, MAP is 

decreased characterizing post-exercise hypotension in a sample of healthy 

adolescents. These results are in accordance with adult literature suggesting that the 

hypotensive effects of the exercise bout can last up to h following the exercise 

(Halliwill, 2001), as well as pediatric literature showing a strong hypotensive stimuli of 

HIIE after a HFM challenge (Bond et al., 2014). The contribution of TPR and Q̇ to the 

observed hypotension following HIIE are not clear as no significant differences were 

observed for these variables at 60-min post. Scrutiny of the data, however, indicates 

differences at the individual level, with some participants presenting a lower Q̇ 

mediated by a reduction in HR, while others presented a lower TPR. The observed 

intensity effects show that the control of BP via alterations in TPR is restored 60-min 

post MIIE due to the observed higher TPR values. Altogether, the present study 

provides original data showing a strong hypotensive stimulus of HIIE in healthy 

adolescents. 

In the present study, 60-min post HIIE and MIIE the LFgain returned to baseline. 

Despite no comparative paediatric studies our data are in accordance with adult 

literature (Studinger et al., 2003), and indicate a rapid recovery of the cardiovascular 

BRS gain in healthy adolescents. The mechanisms of a restored LFgain were similar 

between exercise-intensities as both vascular (measured as AC and AD), and neural 

(measured as LFgain/AC) components also recovered to baseline 60-min following 

HIIE and MIIE. Furthermore, vagal modulation measured with the HF index also 

returned to baseline, showing that input from baroreceptors was translated into cardiac 

vagal modulation 60-min post-exercise.  
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Although LFgain is restored to baseline following HIIE and MIIE, MAP was still lower 

than baseline after HIIE but not after MIIE. Because BRS after exercise has been 

suggested not to contribute to post-exercise hypotension, but rather acts to restore BP 

to baseline values (Halliwill et al., 1996b, Kim et al., 2011), the present results indicate 

important differences between exercise intensities 60-min post-exercise. For instance, 

the return of MAP to baseline after MIIE indicates that the ability of BRS to adjust BP 

is restored following this intensity. In fact, our present observations of a higher TPR 

after MIIE shows a restored sympathetic influence on the vessels via BRS adjustments 

in TPR (Kim et al., 2011, Ogoh et al., 2002). On the contrary, 60-min post HIIE, the 

ability of BRS to restore BP to the baseline value is still blunted, and TPR and Q̇ are 

not augmented. These data indicate that 60-min post HIIE, there may exist a 

decreased sympathetic influence on the vessels, possibly due to vasodilatory 

substances, such as nitric oxide activity (Bond et al., 2015c) and activation of 

histaminic receptors (Halliwill et al., 2013). Although the sympathetic branch of BRS 

was not measured in the present investigation, our results provide important 

mechanistic insights and highlight the potent role of exercise-intensity on the recovery 

of post-exercise hypotension in adolescents, which requires further study.  
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8.5.3 Practical implications 

Although the fall in BP in the present investigation in healthy adolescents seems 

unremarkable compared to adult literature, which normally reports decreases of 8 – 9 

mmHg depending on the pre-exercise BP (MacDonald, 2002), the observed five 

mmHg fall in the present study is similar to previous investigations involving nine year 

old children (Rauber et al., 2014). The practical importance of these findings is 

currently unknown and future investigations are needed. However, in the present 

study the fall in BP of normotensive adolescents may have a clinical importance if 

translated to hypertensive ones, as previously reported in adults (Kenney and Seals, 

1993). Similarly, the hypotensive effects of the exercise can lead to a lowered BP 

response to stressful situations (e.g. cold pressor test and HFM) in youth (Bond et al., 

2014, Rauber et al., 2014). Importantly, our study is the first study to characterise the 

mechanisms of post-exercise hypotension in youth, and the described vascular and 

autonomic adjustments may be linked to a better cardiovascular disease risk factor 

profile in this population (Roemmich et al., 2014). Finally, in youth aiming to avoid 

syncope following HIIE, an active recovery or a cool down period is encouraged to 

maintain an adequate pre-load and SV (Crisafulli et al., 2004). 

8.5.4 Limitations 

Several limitations should be considered when interpreting the present findings. 

Firstly, all hemodynamic measures were derived from finger plethysmography and 

have not been validated in the present population. Thus, the present estimates might 

be different than the real hemodynamic values. However, this limitation does not 

hamper our interpretation as the direction of changes following the experimental 

condition is our main outcome. Secondly, PP was not measured at the carotid site 

when measuring CCA distensibility (Steinback et al., 2005). However, our results are 
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comparable to an adolescent investigation measuring PP at the CCA site (Lenard et 

al., 2004). Thirdly, the autonomic determinant of BRS used in the present 

investigation, although reliable (Oliveira et al., 2018a), has not been validated against 

methods using vasoactive substances. Finally, the BRS vascular determinant was 

performed solely on CCA, and no information about aortic distensibility were obtained 

(Klassen et al., 2016). 

8.6 Conclusions 

The present study provides unique insight into the interplay between the vascular and 

autonomic systems in the control of BP following exercise in youth. BRS decreases 5-

min following HIIE and MIIE in adolescents, but is restored at 60-min post. The 

autonomic component is the main determinant of the observed fall in BRS. At 60-min 

post HIIE, MAP is lowered showing a strong stimulus from exercise and a blunted BRS 

ability to restore BP. Our findings highlight different mechanisms of BP control 

following different exercise intensities. Finally, exercise intensity appears an important 

determinant of carotid artery vasoconstriction following exercise.  
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Chapter 9: Effects of Exercise Intensity on 

Vascular and Autonomic Components 

of The Baroreflex Following Glucose 

Ingestion in Adolescents 

9.1 Abstract 

This Chapters aimed to investigate the effects of an OGTT on BRS in a sample of 

healthy adolescents, and how acute exercise bouts of different intensities alter the 

effects of the OGTT on BRS. Thirteen male adolescents (14.0 ± 0.5 years) completed 

three conditions on separate days in a counterbalanced order: 1) HIIE; 2) MIIE; and 

3) CON. At ~ 90-min following the conditions participants performed an OGTT. Supine 

HR and BP were monitored continuously at baseline, 60-min following the conditions, 

and 60-min following the OGTT. A cross-spectral method (LFgain) was used to 

determine BRS gain. Arterial compliance was assessed as the BRS vascular 

component. LFgain divided by AC (LFgain/AC) was used as the autonomic 

component. Although non-significant, LFgain moderately decreased post-OGTT when 

no exercise was performed (pre-OGTT = 24.4 ± 8.2ms∙mmHg-1; post-OGTT = 19.9 ± 

5.6 ms∙mmHg-1; ES = 0.64, P> 0.05). This was attributed to the decreases in 

LFgain/AC (pre-OGTT = 1.19 ± 0.5 ms∙μm-1; post-OGTT = 0.92 ± 0.24 ms∙μm-1; ES = 

0.69, P>0.05). Compared to CON (Δchange =-4.4 ± 8.7 ms∙mmHg-1), there were no 

differences for the pre- post-OGTT delta changes in LF/gain for HIIE (Δchange = -3.5 

± 8.2 ms∙mmHg-1) and MIIE (Δchange = 1.3 ± 9.9 ms∙mmHg-1)Similarly, compared to 

CON (Δchange =  -0.23±0.40ms∙μm-1) there were no differences for the pre- post-
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OGTT delta changes in LF/gain for HIIE (Δ = change -0.22±0.49ms∙μm-1) and MIIE (Δ 

= change 0.13±0.36ms∙μm-1).The results indicate that BRS decreases in adolescents 

following a glucose challenge with no apparent effects of exercise. 

9.2 Introduction 

Atherosclerosis has its origins during childhood with elevated BP contributing to 

plaque formation independently of other cardiovascular disease (CVD) risk factors in 

youth (Franks et al., 2010, McGill et al., 2001). A sentinel for hypertension 

development is decreased BRS. In young adults a lower BRS is present in 

normotensive children of hypertensive parents (Boutcher et al., 2011), and impaired 

BRS is associated with high BP in normotensive adolescents  (Honzikova and 

Zavodna, 2016, Fitzgibbon et al., 2012). These studies indicate BRS dysfunction may 

be associated with CVD burden in youth and is worthy of further research so as to 

inform preventative health strategies. Baroreflex sensitivity is composed of autonomic 

and vascular components which contribute towards the beat-to-beat detection and 

adjustment of BP fluctuations (Hunt et al., 2001a). Using ultrasound (Taylor et al., 

2014, Tzeng, 2012), the contribution of the autonomic and vascular determinants of 

BRS can be non-invasively estimated in a reliable manner (Oliveira et al., 2018a), and 

are ideally suited for studying BRS in paediatric groups.   

In non-diabetic children, glucose intolerance assessed during an OGTT predicts adult 

premature death (Franks et al., 2010). The metabolic effects of elevated blood [GLU] 

following an OGTT have implications for the arterial and autonomic systems, as 

evidenced by decreased autonomic modulation and increased vascular stiffness in 

diabetic adolescents (Shin et al., 2010), which may contribute to chronic BRS 

dysfunction in youth with diabetes (Honzikova and Zavodna, 2016). However, a 
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lowered BRS caused by rises in [GLU] is not only observed in diseased populations. 

For example, a decreased BRS has been reported in healthy adults during an OGTT, 

which was attributed to a diminished autonomic determinant (Holwerda et al., 2015). 

The mechanism by which glucose decreases BRS remains controversial however, as 

a rise in [GLU] leads to lowered vagal modulation (Holwerda et al., 2015, Cao and 

Pilowsky, 2014, Lefrandt et al., 2000) (i.e. reduced autonomic component), and 

increased CCA stiffness due to endothelial dysfunction (Zhu et al., 2007, Wilkinson et 

al., 2004) (i.e. reduced vascular component). Although growth and maturation are 

associated with an augmented BRS due to maturation of the autonomic component 

(Lenard et al., 2004), the influence of a glucose load on the BRS and its associated 

mechanisms is unknown in youth. As glucose intolerance is associated with poor 

vascular and autonomic functions in diabetic youth (Shin et al., 2010), it is plausible 

that elevated [GLU] may reduce BRS in healthy adolescents. A better understanding 

of the BRS physiology under different challenges, such as during an OGTT, can help 

inform strategies to target CVD risk reduction in paediatric groups.  

Physical activity is an important strategy to improve glucose metabolism (Henderson 

et al., 2012), and is also positively associated with autonomic and vascular functions 

in children and adolescents (Fernhall and Agiovlasitis, 2008, Oliveira et al., 2017). 

While in adults temporally decreasing PA levels does not exacerbate the deleterious 

effects of an OGTT on BRS (Holwerda et al., 2015), the possible effect of increasing 

PA via prior exercise on the subsequent BRS responses to an OGTT is currently 

unknown. In healthy adolescents, a single bout of high and moderate-intensity 

exercise has been shown to reduce the increase in blood [GLU] during an OGTT 

(Cockcroft et al., 2015, Cockcroft et al., 2017b), suggesting that acute exercise may 

alter the BRS responses to an OGTT by lowering blood [GLU]. Additionally, in the 
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hours following high but not moderate-intensity exercise, improvements in arterial 

function are observed in healthy adolescents (Bond et al., 2015c, Bond et al., 2015b), 

showing that exercise may preserve the vascular component of BRS. As the intensity 

of exercise has recently been proposed to be a determinant of CVD risk reduction in 

youth (Carson et al., 2014, Barker et al., 2018), elucidating whether exercise of 

different intensities alters the BRS response to an OGTT will further contribute to our 

understanding of CVD risk reduction in youth. 

The aims of the present study were to investigate in healthy adolescents: 1) the effect 

of an OGTT on BRS and its vascular and autonomic components; and 2) whether an 

acute bout of moderate and high-intensity exercise alters the effects of an OGTT on 

BRS and its associated mechanisms. It was hypothesised that 1) the OGTT would 

impair BRS via decreases in the autonomic and vascular determinants; 2) a prior bout 

of moderate and high-intensity exercise would lead to a significant lower [GLU] 

concentration from OGTT compared to a non-exercise control situation (CON); and 3) 

that both HIIE and MIIE would maintain BRS at baseline values following the OGTT 

due to preserved vascular and autonomic components. 

9.3 Methods 

9.3.1 Participants 

Thirteen healthy male adolescents (14.0 ± 0.5 years; body mass index = 18.6 ± 3.0 

m·kg-2; BF = 12.0 ± 4.7%; V̇O2 max = 50.9 ± 5.3 mL·kg-1·min-1) volunteered to take 

part in this investigation. The status of pubertal development, as measure using five 

stages of pubic hair development (Morris and Udry, 1980) was:  Tanner stage 2 n=3, 

3 n=1, 4 n=8, 5 n=1. Before participating in the study, participants and parents 

completed a health questionnaire and all participants were free of conditions, such as 
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diabetes, hypertension, asthma, or any disease altering autonomic and vascular 

functions. Assent and consent were obtained from participants and parents/guardians 

respectively, and all procedures were approved by the institutional ethics committee 

(approval number: 160217/B/04). 

9.3.2 Experimental design 

Participants completed four visits to the laboratory with a minimum of 72-h between 

each visit and no more than four weeks to finish all visits. The visits were all conducted 

in the morning following an overnight fast, as detailed below: 

Visit 1: Participants were familiarized to the BRS protocol and treadmill running. 

Participants characteristics were obtained as described in Section 3.4. At the end of 

Visit 1, participants received food diaries and accelerometers, which were used in the 

48 h preceding Visits 2 – 4. 

Visits 2 – 4: The outline of this visit is presented in the Figure 9.1. Following an 

overnight fast, participants were transported to the laboratory and completed the BRS 

protocol as described in Section 3.8.3 between 8 – 9 am.  

 

Figure 9.1: Overall scheme of visits 2-4. Black arrows: blood sampling. 

Following the baseline assessments, participants completed in a counterbalanced 

order the following experimental conditions on separated days: 1) HIIE; 2) MIIE; and 
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3) CON which are described in details in Section 3.7.2.For CON, participants pursued 

sedentary activities in a seated position, such as computer and board games. 

At 60minfollowing the experimental conditions (pre-OGTT), participants repeated the 

BRS protocol. Following this BRS measurement, an OGTT took place as described in 

Section 3.7.1. The OGTT has been shown to be reliable in a sample of healthy 

adolescents (i.e. observed test-retest coefficient of variation of 5 – 7% for glucose 

derived indices (Cockcroft et al., 2017a)). Participants repeated the BRS protocol 60 

min post OGTT (post-OGTT) as it has been shown that BRS is reduced at this time 

point following an OGTT in adults (Holwerda et al., 2015).   

9.3.3 Baroreflex sensitivity analysis 

Baroreflex sensitivity was obtained using the cross-spectral transfer function 

described in Section 3.8.3. 

9.3.4 Vascular and autonomic determinants 

Images were recorded as described in Section 3.8.4. The vascular components of 

BRS were determined using equations 3.10 and 3.11 according to published 

guidelines (Laurent et al., 2006).  

The autonomic and vascular determinants of BRS were determined according to a 

previous study (Lenard et al., 2004). Briefly, AC was considered as the vascular 

component of the BRS and expressed as μm∙mmHg-1. To calculate the autonomic 

determinant, LFgain was divided by the AC and expressed as LFgain/AC in ms∙μm-1. 
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9.3.5 Food and physical activity standardisation 

For standardisation proposes PA and dietary intake were completed as described in 

Section 3.8.1. 

9.3.6 Statistical analysis 

Data are presented as means and standard deviation. Physiological responses to 

exercise were investigated using paired t-tests. To test the first aim of this study, the 

effects of the OGTT on the physiological parameters, paired t tests were performed 

from CON group pre and post-OGTT. To test possible differences between outcomes 

at baseline, repeated measures ANOVA with three levels for condition was applied. 

As no differences were found for any variables at baseline, to test aim 2 of this study, 

delta changes pre- and post-OGTT were calculated for each condition (HIIE, MIIE and 

CON) and the differences between conditions were tested using one-way repeated 

measures ANOVA. Total area under the curve and iAUC analyses quantified the 

plasma [GLU] responses to the OGTT using the trapezium rule (GraphPad Prism 6.02, 

USA) and differences between conditions were tested using repeated measure 

ANOVA. Sphericity was tested using Mauchly’s test and when violated corrections 

were performed using Greenhouse-Geisser. Post-hoc comparisons were applied 

when adequate using the least square difference procedure. Analyses were performed 

using SPPS v.22, with the alpha level set at 0.05. Finally, the magnitude of mean 

differences were interpreted using effect size (ES): ≥0.2 small, ≥0.5 moderate, ≥0.8 

large  (Cohen, 1977).   
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9.4 Results 

One participant was excluded from the BRS assessment due to errors in the ECG 

signal, and two from the CCA analysis due to technical issues with the ultrasound. For 

clarity, the final sample size for each analysis is described in Figures 9.2 and 9.3 and 

in Tables 9.1. In the 48h before the experimental visits, there were no significant 

differences in the amount of MVPA (HIIE=117 ± 49, MIIE=117 ± 32, CON=111 ± 45 

min·day-1; P=0.91), energy intake (HIIE=1,987 ± 732, MIIE=1,912 ± 458, CON=2,079 

± 643 kcal·day-1; P=0.55) and relative macronutrient contribution (carbohydrates: HIIE 

=52 ± 7, MIIE=50 ± 5, CON=51 ± 8%; lipids: HIIE=32 ± 1, MIIE=32 ± 1, CON=33 ± 

1%; proteins: HIIE=16 ± 3, MIIE=17 ± 3, CON=16 ± 4%; all P>0.05) between the 

experimental conditions. 

HIIE elicited significantly greater peak V̇O2 [%of max] (2.2 ± 0.2 [89%] vs 1.6 ± 0.1 

[66%] L·min-1; P<0.001), and average HR [%of max] (154 ± 3 [78%] vs 128 ± 5 [64%] 

bpm; P<0.001) compared to MIIE. HIIE was significantly shorter in duration than MIIE 

(21.8 ± 0 vs 28.0 ± 1.8 min; P<0.001),  

9.4.1 Oral glucose tolerance test 

Oral glucose tolerance test responses are depicted in Figure 9.2. As expected, the 

OGTT resulted in increases in [GLU] over time (P<0.001) but no condition by time 

interaction (P=0.11) was observed. There was no condition main effect for the tAUC 

(P=0.12) and iAUC (P=0.15) analysis of the [GLU] response to the OGTT. However, 

a moderate reduction in iAUC (ES=0.51) and tAUC (ES=0.52) for [GLU] was observed 

for HIIE vs. MIIE, and HIIE vs. CON respectively. 
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Figure 9.2: Effects of the experimental condition on: A) [GLU] (n=13), B) total area 

under the curve (n=13) for the different conditions; and C) incremental area under the 

curve (n=13).  
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9.4.2 Baroreflex sensitivity 

LFgain (pre=24.4 ± 8.2, post-OGTT=19.9 ± 5.6; P=0.11; ES=-0.63), AC (pre=20.4 ± 

4.2, post-OGTT=22.6 ± 5.8; P=0.22; ES=0.55), and LFgain/AC (pre=1.19 ± 0.5, post-

OGTT=0.92 ± 0.2; P=0.07; ES=-0.63) were not significantly altered by the OGTT 

during CON, although moderate effects were observed for all comparisons. When the 

delta changes were compared between CON, HIIE and MIIE no effect of condition was 

present for LFgain (P=0.31), AC (P=0.63), and LFgain/AC (P=0.10) pre- and post-

OGTT (Figure 9.3).   

9.4.3 Common carotid artery 

Common carotid artery properties are presented in Table 9.1. DLD (P=0.004; ES=-

0.21) and ΔD (P=0.048; ES=0.30) were significantly altered by the OGTT during CON. 

No significant effects were observed for SLD pre and post-OGTT (P=0.30; ES=0.09). 

When the pre- post-OGTT delta changes were compared between CON, HIIE and 

MIIE, no effect of condition was observed for DLD (P=0.12), SLD (P=0.51), and ΔD 

(P=0.40). All effect sizes between conditions were considered small (all ES <0.5).  

9.4.4 Blood pressure and heart rate variability 

Blood pressure and HRV are presented in Table 9.1. SBP (P=0.11; ES=-0.63), DBP 

(P=0.22; ES=0.55), MAP (P=0.07; ES=-0.63), and LF (P=0.07; ES=-0.63) were not 

significantly altered by the OGTT but exhibited moderate effects. On the contrary, 

post-OGTT HF significantly increased moderately (P=0.010; ES=0.54). When the pre- 

post-OGTT delta changes were compared between CON, HIIE and MIIE, there was 

no effect of condition for the delta changes in SBP (P=0.85), DBP (P=0.28), MAP 

(P=0.36). Similarly, no effects of condition for the delta changes in LF (P=0.63) and 
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HF (P=0.10) pre- and post-OGTT. All effect sizes between conditions were considered 

small (all ES <0.5). 

 

Figure 9.3: Effects of the experimental condition on the delta changes pre- and post-

OGTT for A) LFgain (n=12); B) AC (n=11); and C) LFgain/AC (n=10).
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Table 9.1: Common carotid, blood pressure and heart rate variability outcomes. 

 HIIE MIIE CON 

 Pre-OGTT Post-OGTT Δ Pre-OGTT Post-OGTT Δ Pre-OGTT Post-OGTT Δ 

DLD (µm) n = 11 5425.5 ± 324.7 5465.5 ± 284.0 40.0 ± 162.4 5417.3 ± 309.2 5377.3 ± 387.5 -40.0 ± 148.5 5400.0 ± 364.4 5323.6 ± 370.5 -76.4 ± 67.0 

SLD (µm) n = 11 6305.5 ± 344.1 6335.5 ± 229.9 30.0 ± 207.4 6322.7 ± 304.3 6300.0 ± 341.6 -22.7 ± 118.1 6268.2 ± 387.6 6234.5 ± 355.0 -33.6 ± 103.0 

ΔD (µm) n = 11 880.0 ± 144.9 870.0 ± 131.8 -10 ± 106.4 905.5 ± 116.2 922.7 ± 139.2 17.3 ± 122.1 868.2 ± 143.2 910.9 ± 137.7 42.7 ± 62.8 

SBP (mmHg) n = 13 108 ± 10 110 ± 13 1.5 ± 9.8 113 ± 9 114 ± 15 0.3 ± 10.7 111 ± 11 110 ± 12 -0.6 ± 9.4 

DBP (mmHg) n = 13 61 ± 6 65 ± 9 3.9 ± 6.8 69 ± 7 67 ± 11 -1.4 ± 9.6 65 ± 6.7 66 ± 7 0.82 ± 6.4 

MAP (mmHg) n = 13 75 ± 6 78 ± 10 3.2 ± 7.0 82 ± 7 81 ± 11 -0.9 ± 8.7 78.9 ± 6.5 79 ± 7 0.14 ± 5.9 

HFln (ms2) n = 12 8.5 ± 0.9 8.3 ± 0.8 -0.23 ± 0.73 8.5 ± 1.0 8.4 ± 0.9 -0.06 ± 0.79 8.4 ± 0.7 8.8 ± 0.7* 0.39 ± 0.43 

LFln (ms2) n = 12 7.3 ± 1.2 7.0 ± 1.0 -0.29 ± 0.61 7.2 ± 0.8 7.3 ± 0.7 0.11 ± 0.60 7.5 ± 0.6 7.4 ± 0.6 -0.15 ± 0.60 

HIIE: high-intensity interval exercise. MIIE: moderate-intensity interval exercise. CON: control DLD: diastolic lumen diameter. SLD: 

systolic lumen diameter. SBP: systolic blood pressure. DBP: diastolic blood pressure. MAP: mean arterial pressure. HF: high-

frequency. LF: low-frequency. *P < 0.05 compared Pre-OGTT in the same condition. For P values and effect sizes refer to text. 
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9.5 Discussion 

To our knowledge this is the first study to examine the influence of hyperglycaemia, 

delivered using an OGTT, on BRS in health adolescents. The OGTT caused a 

moderate but non-significant decrease in BRS and its autonomic determinant. Another 

novel feature of the current study is that we examined the role of different exercise 

intensities performed ~ 90 min prior to the OGTT on the changes in BRS, [GLU], and 

hemodynamics. The main findings regarding exercise were: 1) HIIE but not MIIE 

moderately decreased the glucose responses to an OGTT; and 2) exercise performed 

90-min had no effect on BRS following the OGTT. 

9.5.1 Effects of glucose on baroreflex sensitivity 

This is the first study in a sample of healthy adolescents investigating the impact of an 

acute glucose load on the mechanistic control of blood pressure. To date most 

research investigating BRS during metabolic challenges have been performed in 

adults, or in populations with diabetes, obesity, or elevated blood pressure (Malin et 

al., 2016b, Straznicky et al., 2009, Holwerda et al., 2015). In the present study, the 

increase in blood [GLU] following the OGTT led to a moderate (i.e. ES = 0.64) yet non-

significant decrease in the LFgain in the CON condition. Although our findings failed 

to reject the null hypothesis, the magnitude of the observed changes are similar to the 

study by Holwerda et al. (2015) who reported a moderate and significant decrease 

(pre-OGTT = 20±9; post-OGTT = 14±6; ES = 0.78) in LFgain 60min following the 

ingestion of a glucose load in healthy adults. The decrease in BRS appears to be 

moderated by increases in [GLU], because BRS at 60min post a hyperinsulinemic 

euglycemic clamp did not decrease compared to baseline, suggesting that glucose is 

responsible for a decreased BRS when [GLU] peaks at around 7.5 mmol·L-1 (Holwerda 
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et al., 2015). We further extend Holwerda et al. (2015) findings by investigating the 

likely mechanisms by which [GLU] leads to decreases in BRS by estimating the 

autonomic and the vascular determinants of BRS. Our present observations 

demonstrated that although non-significant, a moderate effect was observed for the 

OGTT on the changes in the autonomic marker of BRS, measured as the LFgain/AC. 

These results are in accordance with adult data showing a lowered autonomic 

modulation caused by rises in blood [GLU] (Cao and Pilowsky, 2014, Cao et al., 2016), 

and may provide a mechanism linking cross-sectional findings of a lowered vagal 

modulation and impaired BRS in children with diabetes (Honzikova and Zavodna, 

2016). 

We also investigated the effects of [GLU] on the vascular determinant of BRS 

measured as CCA compliance (Lenard et al., 2004). A decrease in CCA compliance, 

therefore, would be an indicative of a decreased vascular determinant of the BRS 

(Oliveira et al., 2018a), and consequently a decrease in the overall BRS. As arterial 

compliance is partially dependent on endothelial function (Wilkinson et al., 2004), the 

lack of decreases in CCA compliance in the present study may be explained by 

previous literature showing no decrease in endothelial function in normal weight 

children during an OGTT (Dengel et al., 2007). Moreover, different to the present 

study, adult studies have shown increases in arterial stiffness, assessed as pulse 

wave velocity, following an OGTT (Baynard et al., 2009, Kobayashi et al., 2018). 

Differences in the arterial stiffness assessment method (i.e. CCA compliance and 

distensibility vs central and peripheral pulse wave velocity), or differences in arterial 

stiffness due to aging (Lenard et al., 2004), may explain discrepancies between the 

present study and the adult literature. Alternatively, it is possible that the lack of [GLU] 

effects on CCA compliance in the present study reflect the aerobic fitness of the 
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participants. For example, Kobayashi et al. (2015), provided data showing increases 

in central arterial stiffness of participants with lower (38.8 ± 1.9 mL·kg-1·min-1), but not 

with higher V̇O2max (50.2 ± 2.7 mL·kg-1·min-1) following a glucose challenge. The 

present sample had a V̇O2max of 50.9 ± 5.3 mL·kg-1·min-1, which may have conferred 

protection against an increase in arterial stiffness due to hyperglycaemia. 

Unfortunately, the homogenous nature of the present sample for V̇O2max distribution 

does not allow this hypothesis to be further investigated. Future studies are needed to 

test the effects of aerobic fitness on vascular stiffness during OGTT in youth. 

9.5.2 Effects of exercise intensity on glucose 

In the present investigation, a moderate yet non-significant effect was observed for 

the reduction in the iAUC and tAUC for [GLU] following HIIE compared to CON and 

MIIE, respectively (Figure 9.2). These results are different to recent investigations, 

where moderate to large effects were observed for the reduction in iAUC and tAUC 

for [GLU] following cycling HIIE and continuous moderate exercise in healthy 

adolescents (Cockcroft et al., 2015, Cockcroft et al., 2017b). Direct comparison 

between the studies is complex due to the different mode of exercise (i.e. interval 

running vs interval and continuous cycling), and participants maturity characteristics. 

Similarly, the time between the exercise and the OGTT challenge was different 

between the investigations, which may influence the findings. In the present 

investigation participants undertook ~ 90min of recovery between the end of the 

exercise and the ingestion of the glucose load, whereas in Cockcroft et al. (2015) 

participants ingested the glucose 10min following exercise. The longer recovery period 

in the present study (i.e. 90min) may favour glucose appearance in the blood due to 

restoration of blood flow to the splanchnic circulation, contrary to a shorter (i.e. 10min) 

recovery period, when blood flow is still directed to the muscle and skin and exogenous 
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glucose appearance is lower. Alternatively, because in the 60min following the 

exercise there is an increase in peripheral insulin sensitivity but not hepatic (Malin et 

al., 2016a), the 90min recovery in the present study may have facilitated endogenous 

glucose uptake by the muscle, and when the OGTT started the exogenous source was 

cleared slowly by the liver and muscle. Perhaps a longer follow-up after the exercise 

conditions (i.e. 24h), would provide experimental data on the clearance of blood [GLU], 

due to a slow phase of glycogen repletion(Price et al., 1999). Although insulin was not 

measured, it is likely that the exercise bouts increased insulin sensitivity, as recently 

reported in healthy adolescents (Cockcroft et al., 2015).       

9.5.3 Effects of exercise intensity on the determinants of the baroreflex sensitivity 

This is the first study to investigate the impact of different exercise intensities on BRS 

following the ingestion of a glucose load, which limits direct comparisons with previous 

studies. We reasoned that performing exercise before the ingestion of a glucose load 

would confer vascular protection by blunting possible increases in vascular stiffness 

following the OGTT, as recently reported in adults (Kobayashi et al., 2018). Our results 

do not support this hypothesis as no differences were observed between conditions 

(HIIE, MIIE and CON) for the delta changes in arterial compliance. Recently the OGTT 

has been shown to decrease femoral arterial compliance in adults only, when 

participants’ physical activity levels are decreased for five consecutive days (Credeur 

et al., 2018), suggesting a protective role of physical activity levels on arterial 

compliance. As such, although participants refrained from exercise in the 48h 

preceding data collection in our present study, that the amount of physical activity 

performed in the week protected against the decreases in vascular compliance 

following the OGTT. Future studies should test the effects of decreases or increases 

in physical activity on the autonomic and vascular determinants of BRS in adolescents. 
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We also reasoned that a decrease in [GLU] following HIIE and MIIE would maintain a 

BRS value similar to pre-OGTT ingestion. This hypothesis has foundations on the 

mechanistically link between rises in [GLU] and decreases in BRS recently described 

in adults (Holwerda et al., 2015). However, the moderate decrease in glucose tAUC 

and iAUC caused by HIIE did not translated in augmented or maintained BRS and its 

autonomic determinant as evidenced by the lack of differences between CON and 

HIIE on the delta changes of LFgain and LFgain/AC. It can be speculated that a higher 

decrease on [GLU] than the observed in our present study is necessary to keep BRS 

preserved from the [GLU] effects. No studies exist providing dose-response between 

GLU and autonomic function.  

As with all studies there are a few limitations that must be recognised. Firstly, although 

the present method to measure the autonomic determinant of BRS is reliable (Oliveira 

et al., 2018a), is has not been validated against drug blockade methods. However, our 

present results and the literature showing the effects of blood [GLU] on autonomic 

modulation, reinforces the validity of the present measures (Cao and Pilowsky, 2014, 

Cao et al., 2016). Secondly, PP was not measured at the carotid site when measuring 

CCA distensibility (Steinback et al., 2005). However, our results are comparable to an 

adolescent investigation measuring PP at the CCA site (Lenard et al., 2004). Finally, 

we did not measure insulin and more mechanistic information about the effects of 

insulin sensitivity is speculative in the present study.  

9.6 Conclusions 

In healthy adolescents, increases in blood [GLU] caused moderate decreases in BRS 

likely via decreases in the autonomic BRS determinant. HIIE and MIIE performed 

before the ingestion of the glucose load did not have an effect on the observed 
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decreases in BRS. This study provides unique information in adolescents of a lack of 

exercise influences on BRS responses to blood [GLU] and future studies are needed 

either to replicate or not these findings in healthy and diseased adolescents.  
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Chapter 10: Effects of High-intensity 

Interval Training on the Vascular and 

Autonomic Components of the 

Baroreflex at Rest and Post-Exercise in 

Adolescents 

10.1 Abstract 

This Chapter aimed to: 1) to investigate the effects of HIIE training and detraining on 

BRS and its vascular and autonomic components at rest; and 2) to investigate the 

effects of HIIE training on BRS recovery following an acute bout of HIIE. Nineteen 

volunteers were randomly allocated to: 1) four weeks HIIE training (HIIE-T) performed 

three times per week; or 2) a CON condition with no intervention for the same duration 

as HIIE training. PRE, POST and following two weeks of detraining (DET) resting 

supine heart rate and blood pressure were measured and a cross-spectral method 

(LFgain) was used to determine BRS gain. Arterial compliance was assessed as the 

BRS vascular component. LFgain divided by AC (LFgain/AC) was used as the 

autonomic determinant of BRS. In addition to the resting measures, LFgain, AC and 

LFgain/AC were measured at30- and 120-min following a HIIE exercise bout at PRE 

and POST. HIIE-T did not change resting LFgain (adjusted change in means CON=-

0.01 ms·mmHg-1, HIIE-T=1.4 ms·mmHg-1; P=0.66; ES=0.21), 

AC(CON=2.4µm·mmHg-1, HIIE-T=0.9µm·mmHg-1; P=0.44; ES=0.36)or LFgain/AC 

(CON=-0.02 ms·µm-1, HIIE-T=0.09 ms·µm-1; P=0.68; ES=0.19). Similarly, for both 
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CON and HIIE-T, LFgain decreased 30-min (all P<0.05) compared to baseline at PRE 

(CON: baseline = 23.2 ± 10.8 ms·mmHg-1, 30-min post = 12.6 ± 7.8 ms·mmHg-1; HIIE-

T: baseline = 21.9± 6.4 ms·mmHg-1, 30-min post = 13.4± 6.0ms·mmHg-1) and POST 

(CON: baseline = 23.0 ± 12.0 ms·mmHg-1, 30-min post = 13.3 ± 8.5 ms·mmHg-1; HIIE-

T: baseline = 23.5±5.6 ms·mmHg-1, 30-min post = 11.3± 3.8ms·mmHg-1). The 

decreases in LFgain for CON and HIIE-T were paralleled by decreases in LFgain/AC 

(all P<0.05) 30-min compared to baseline at PRE (CON: baseline = 1.12±0.50ms·µm-

1, 30-min post = 0.71± 0.50ms·µm-1; HIIE-T: baseline = 1.34±0.44ms·µm-1, 30-min 

post = 0.82± 0.48ms·µm-1) and POST (CON: baseline = 1.10±0.73ms·µm-1, 30-min 

post = 0.64± 0.53ms·µm-1; HIIE-T: baseline = 1.43±0.69ms·µm-1, 30-min post = 0.54± 

0.29ms·µm-1). HIIE-T does not change BRS and its autonomic and vascular 

determinant in a sample of healthy adolescents at rest and acutely following a HIIE 

bout. 

10.2 Introduction 

Elevated BP is positively associated with atherosclerotic progression in youth (McGill 

et al., 2001). A sentinel in the development of hypertension is impaired cardiac BRS. 

For example, decreased cardiac BRS at rest has been shown to be a predictor of 

hypertension over five years in a longitudinal investigation in adults (Ducher et al., 

2006), and BRS impairment is already observed in adolescents with elevated BP 

(Fitzgibbon et al., 2012, Honzikova and Fiser, 2009, Honzikova and Zavodna, 2016). 

Because cardiac BRS is ultimately measured as the gain between vascular 

compliance and autonomic adjustments in HR (Taylor et al., 2014, Hunt et al., 2001a, 

Tzeng, 2012), interventions that improve these systems in youth may act as a 

preventive strategy of hypertension. Exercise training is a suitable strategy to improve 
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BRS, with the intensity of exercise being important as increases in BRS obtained after 

HIIE training (Heydari et al., 2013) but not following moderate-intensity training 

(Loimaala et al., 2000, Goldberg et al., 2012) in healthy adults. In adolescents HIIE 

training can also increase BRS due to a reported association between VPA, resting 

autonomic function and AC(Oliveira et al., 2018b, van de Laar et al., 2010), suggesting 

that VPA delivered as HIIE has potential to increase BRS via its autonomic and 

vascular components.  

While there are no studies investigating HIIE training and BRS in healthy adolescents, 

a previous investigation in this population have demonstrated significant increases in 

cardiac autonomic function measured via HRV after two weeks of HIIE training (Bond 

et al., 2015a). As such, it can be hypothesised that resting cardiac BRS can also be 

improved reflecting increases in its autonomic determinant following HIIE training, 

although this remains unknown in youth. Another possible mechanism underlying 

increases in resting cardiac BRS is via increases in CCA compliance. For example, 

Monahan et al. (2001a) demonstrated that 12weeks of aerobic training increased 

resting cardiac BRS due to increased CCA compliance in old adults (56 years old). 

Whether these findings can be replicated in youth, a population with a more distensible 

CCA compared to old adults (Monahan, 2007, Lenard et al., 2004), is unclear.  

Similarly, whether possible adaptations to resting BRS and its autonomic and vascular 

determinants following an exercise intervention, such as HIIE, are maintained after 

training cessation is unknown. For example, in adults two weeks of detraining 

completely reversed improvements in resting HRV obtained after aerobic training 

(Gamelin et al., 2007). A similar pattern seems to exist in adolescents, where 

improvements in resting HRV at 24 h was almost reversed after just 72 h following 
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HIIE training cessation (Bond et al., 2015a). Similar to HRV, although not in a 

detraining study, five days of decreased physical activity has led to increased femoral 

artery stiffness in adults (Credeur et al., 2018). The possible impact of these results 

on BP control via BRS is still speculative, as one adult study did not show reductions 

in cardiac BRS following five days of decreased physical activity (Holwerda et al., 

2015). Collectively, these studies indicate that two weeks of detraining following HIIE 

training may reverse training-induced adaptations to resting cardiac BRS, but the 

mechanism are poorly understood.  

In addition to measurements of BRS under resting conditions, it has been previously 

reported that cardiac BRS gain is decreased 30min following moderate-intensity 

exercise (Hart et al., 2010) and the whole BRS curve is improved up to 145min flowing 

moderate-intensity exercise (Halliwill et al., 1996b) regardless of training status. A 

cross-sectional investigation has, however, shown that training status may alter BRS 

following exercise. For example, trained adults experienced a greater decrease in 

BRS 30min following HIIE compared to untrained pairs (Cote et al., 2015a). 

Interestingly, a higher post-exercise hypotension was also observed for the training 

adults, indicating a possible effect of training on post-exercise BRS resetting to a lower 

BP operating point (Smith et al., 2000), which ultimately exacerbates post-exercise 

hypotension. The cross-sectional nature of the investigation limits causality and 

whether the acute changes in BRS after exercise is responsive to training is currently 

unknown. 

The aims of this study were to investigate in a healthy sample of adolescents: 1) the 

effects of four weeks of HIIE training on resting BRS and its autonomic and vascular 

determinants; 2) to investigate the effects of two weeks of detraining on resting BRS 
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and its autonomic and vascular determinants; and 3) to investigate the effects of four 

weeks of HIIE training on the responses of BRS and its autonomic and vascular 

components following a single bout of HIIE. It was hypothesized that: 1) four weeks of 

HIIE training would increase the overall BRS via its autonomic and vascular 

components at rest; 2) two weeks of detraining would reverse the adaptations 

observed following HIIE training; and 3) following HIIE training, BRS would decrease 

acutely after exercise compared to pre HIIE training, allowing an accentuated post-

exercise hypotension in adolescents.  

10.3 Methods 

10.3.1 Participants 

Twenty-one male adolescents volunteered to take part in this study. Participants were 

recruited using a convenient sample from local secondary schools. Assemblies were 

conducted to explain the risk, benefits and the protocol of the study. At the end of each 

assembly, envelopes containing the study details were distributed. A total of 70 

envelopes were delivered to potential participants from which 21 were returned. All 21 

volunteers who returned the envelopes were enrolled in the study and randomly 

allocated to either a CON or a HIIE-T group.  

Health questionnaires were completed before participation, and all volunteers were 

free of conditions affecting the cardiac autonomic and vascular systems, such as 

asthma, congenital heart disease, and hypertension. All procedures were approved 

by the Sport and Health Sciences, University of Exeter Ethics Committee (Ref No: 

161207/B/02). Assent and informed consent were obtained from the adolescents and 

their parents/guardians, respectively.   
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10.3.2 Study design 

A schematic of the study is presented in Figure 10.1. Participants performed four visits 

to the laboratories consisting of: 

 

Figure 10.1: Overview of the experimental design. A) overview of the six weeks plan 

is presented. B) schematic of the protocols performed in visits 2 (PRE) and 3 (POST). 

 

Visit-1 (familiarisation): Participants were familiarised to the procedures of the study 

and participants’ characteristics were obtained as described in Section 3.4. To 

determine MAS for prescription participants performed a 20 m shuttle run test as 

described in Section 3.7.2. Heart rate (HR) was monitored (Polar Team2, Polar, 

Kempele, Finland), and maximum effort was considered when participants achieved 

a HR within 90% of age predicted maximum (i.e. 220 – age), displayed signs of 

subjective fatigue, and an unwillingness to continue the test despite strong verbal 

encouragement. At the end of Visit-1 participants received a package containing 
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adapted drawings of pubic hair development for self-assessment of maturity status 

(Morris and Udry, 1980). 

Visit-2 (PRE): This visit took place between 2 – 10 days following Visit-1. Following an 

overnight fast, participants were transported to the laboratory and completed the BRS 

protocol as described in Section 3.8.3. 

Following the baseline measures, participants performed a HIIE session in a sports 

hall consisting of eight bouts of 1-min at 90% of the MAS, interspersed by 75sof 

recovery (see training intervention details). During the HIIE session, heart rate (HR) 

was monitored (Polar Team2, Polar, Kempele, Finland). At 30min (30-min post) and 

120min (120-min post) following the exercise session, participants repeated the BRS 

protocol. These time points were selected because in trained adults BRS is decreased 

at 30-min compared to untrained pairs (Cote et al., 2015a), and post-exercise 

hypotension can last up to 120-min post-exercise (Halliwill et al., 2013).  

Visit-3 (POST): This visit took place four weeks following Visit-2. The procedures of 

Visit-3 were identical to Visit-2. To avoid possible effects of detraining, or the acute 

influences of the last training session, Visit-3 took place 48h following the last training 

session for the HIIE-T condition. Aiming to match the time elapsed between data 

collection for the HIIE-T condition, Visit-3 for CON was completed 48h following four 

weeks after completion of Visit-1.  

Visit-4 (detraining – DET): This visit took place two weeks following Visit-3. This visit 

was identical to Visits 2 and 3, except that participants did not complete an exercise 

bout. Therefore, only resting data were collected.  
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10.3.3 Group allocation 

Group allocation was conducted by two researchers and participants were not present. 

The allocation procedures were completed following Visit-1. Participants were 

randomly allocated to either CON or HIIE-T. For this, a simple randomisation was 

conducted by drawing 21 identical cards from a closed container. Each card contained 

either the letter C (10 cards) or T (11 cards). The cards were blindly assigned to each 

participants’ codes that were inside 21 shuffled opaque envelopes. The group 

assignment was revealed after randomisation took place and participants and parents 

contacted to arrange Visit-2. Due to the nature of the intervention, participants were 

not blind to the conditions. Researchers were however, blinded for data handling and 

statistics for which codes were used.  

10.3.4 Training intervention 

Participants allocated to the HIIE-T group performed three training sessions per week 

as described in Section 3.7.2 for four weeks providing a total of 12 HIIE sessions. For 

the CON group, no intervention was performed. All participants in the present 

investigation kept their usual exercise routine and HIIE-T was delivered as extra 

exercise sections. 

For all training sessions, HR was monitored (Polar team 2) and internal training load 

calculated using the Edwards training impulse (TRIMP) method (Borresen and 

Lambert, 2009). For this, the time spent in five different HR zones was multiplied by 1 

– 5, respectively. The zones were calculated as 1=50 – 60%; 2=60 – 70%; 3=70 – 

80%; 4=80 – 90%; and 5=90 – 100% of peak HR obtained during the shuttle run test. 

This was used as a descriptive measurement of the participants’ internal training load 

during the HIIE sessions.  
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10.3.5 Baroreflex sensitivity analysis 

Baroreflex sensitivity was obtained using the cross-spectral transfer function 

described in Section 3.8.3. In addition, BRS was also calculated using the sequence 

method described in Section 3.8.3. 

10.3.6 Vascular and autonomic determinants 

Common carotid images were recorded as described in Section 3.8.4. The vascular 

components of BRS were determined using equations 3.10 and 3.11 according to 

published guidelines (Laurent et al., 2006).  

The autonomic and vascular determinants of BRS were determined according to a 

previous study (Lenard et al., 2004). Briefly, AC was considered as the vascular 

component of the BRS and expressed as μm∙mmHg-1. To calculate the autonomic 

determinant, LFgain was divided by the AC and expressed as LFgain/AC in ms∙μm-1.  

10.3.7 Autonomic modulation 

Heart rate variability was obtained as described in Section 3.8.2 as the area under the 

low (LF = 0.04 – 0.15 Hz), and high frequency (HF = 0.15 –  0.50 Hz) bands in absolute 

(ms2), normalized (nu), and as the LF/HF ratio. 

10.3.8 Statistical analyses 

Data are presented as mean and standard deviation unless otherwise stated. Normal 

distribution was investigated using Shapiro Wilk’s test and log transformation 

performed when appropriated. To compare the effects of training on the resting 

(Baseline) measures, a series of univariate analysis was performed. For this, delta 

changes (POST-PRE) were calculated and inserted in the model as the dependent 

variable. Group (HIIE or CON) was inserted as fixed factor and the baseline measures 

(PRE) used as covariate to control for baseline differences between the groups. The 
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group effect was then obtained, and effect sizes calculated for the between groups 

comparisons after adjustments for the baseline values. Effect sizes were interpreted 

as <0.2 (trivial),  >0.2 (small), >0.5 (moderate) and >0.8 (large) (Cohen, 1977). To 

compare the effects of detraining, a similar approach was used only when a training 

effect was obtained. For this delta changes (DET-POST) were inserted as dependent 

variable, group as fixed factor, and the POST measures as covariate. 

To investigate the effects of HIIE training on the acute exercise responses, three-factor 

repeated measures ANOVA with two within- and one between-subject factors were 

performed. The between-subject factor (group) contained two levels (CON and HIIE 

training). One within-subject (moment) also contained two levels (PRE and POST 

training); and one within-subject (time) contained three levels (baseline, 30-min and 

120-min post the HIIE bout). The effects of time, moment, group*time, moment*time 

and group*moment*time interactions were tested. When a significant effect was 

present, post-hoc ANOVAs were performed followed by standard pairwise 

comparisons.  

Pearson’s correlation coefficients were used to investigate the association between 

accumulated internal training loads and possible adaptations to training. To test 

whether the acute responses to HIIE were associated with possible adaptations to 

training, delta differences of the measurements obtained at 30-min minus baseline 

were calculated and Person’s correlations performed with the delta POST-PRE 

training of the corresponding variables. SPSS was used for all analysis, and P<0.05 

was considered statistically significant.   
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10.4 Results 

From the initial 21 participants, two dropped out after Visit-2 for reasons unrelated to 

the study, i.e., one participant dropped out due to illness and the other for unknown 

reasons. The final sample size included in the analysis was 19. Participants’ 

characteristics are presented in Table 10.1. Training compliance was 100% for the 

HIIE sessions and no adverse effects were reported. The training load of each session 

over the four weeks is presented in Table 10.2.  

Table 10.1: Participants’ characteristics. 

 Pre Post Detraining 

 CON 
(n = 9) 

HIIE-T 
(n=10) 

CON 
(n=9) 

HIIE-T 
(n=10) 

CON 
(n=9) 

HIIE-T 
(n=10) 

Height (cm) 164.1 ± 9.8 159.3 ± 8.6 166.6 ± 10.4* 161.1 ± 8.7* 166.6 ± 10.3* 161.1 ± 8.7* 

Body Mass 

(kg) 
50.1 ± 8.8 44.4 ± 6.2 50.2 ± 8.7 45.0 ± 6.2 50.8 ± 8.8 45.2 ± 6.1 

Fat mass (%) 21.6 ± 7.5 18.0 ± 7.3 21.9 ± 9.1 18.4 ± 6.2 21.3 ± 7.9 17.6 ± 6.4 

BMI (kg·m-2) 18.6 ± 2.5 17.4 ± 0.8 18.2 ± 2.3* 17.2 ± 0.9* 18.4 ± 2.4 17.3 ± 0.8 

Tanner 

1 = 0 

2 = 1 

3 = 4 

4 = 4 

5 = 0 

1 = 1 

2 = 4 

3 = 1 

4 = 3 

5 = 0 

– – – – 

MAS (km·h-1) 11.8 ± 0.9 12.2 ± 0.5 – – – – 

BMI: body mass index. MAS: maximal aerobic speed. *P<0.05 compared to PRE.  

10.4.1 Effects of high-intensity interval exercise training and detraining on resting 

measurements 

Changes in resting BRS and its autonomic and vascular determinants are presented 

in Figure 10.2. After adjustments for baseline, there were no effects of training for 

LFgain (adjusted change in means CON=-0.01, HIIE-T=1.4 ms·mmHg-1; P=0.66; 

ES=0.21), AC (CON=2.4, HIIE-T=0.9 µm·mmHg-1; P=0.44; ES=0.36), and LFgain/AC 

(CON=-0.02, HIIE-T=0.09 ms·µm-1; P=0.68; ES=0.19).   
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Table 10.2: Mean and standard deviation of the observed training load and heart rate 

profile during the 12 training sessions. 

Training 

session 

Internal 

training Load 

(AU) 

Average 

HR (bpm) 

Average 

HR (% of 

max) 

Peak HR  

(bpm) 

Peak HR  

(% of max) 

First 72.3 ± 8.6 157 ± 12  76.9 ± 4.6 197 ± 9  96.8 ± 2.2 

Second 75.2 ± 9.2 161 ± 11  79.1 ± 3.3 199 ± 11  97.9 ± 2.5 

Third 75.1 ± 8.5 162 ± 10  79.4 ± 3.5 198 ± 6  96.7 ± 2.7 

Fourth 75.5 ± 8.9 161 ± 10  79.2 ± 3.7 196 ± 8  96.2 ± 2.8 

Fifth 73.7 ± 7.7 159 ± 7  77.9 ± 3.2 196 ± 7  96.1 ± 2.4 

Sixth 70.3 ± 8.7 158 ± 9  77.6 ± 3.6 194 ± 7  95.1 ± 2.7 

Seventh 87.1 ± 7.8 161 ± 7  78.9 ± 3.0 196 ± 7  96.1 ± 2.2 

Eighth 81.4 ± 6.9 158 ± 8  77.5 ± 3.1 193 ± 8  94.9 ± 2.7 

Ninth 81.7 ± 9.8 155 ± 11  75.9 ± 3.8 193 ± 9  94.7 ± 3.1 

Tenth 101.3 ± 7.7 160 ± 8  78.0 ± 2.8 197 ± 9  95.9 ± 2.8 

Eleventh 99.6 ± 11.4 159 ± 10  77.0 ± 3.7 194 ± 7  94.5 ± 2.1 

Twelfth 98.8 ± 9.4 159 ± 8  78.0 ± 2.9 194 ± 7  95.3 ± 1.7 

 AU: arbitrary units. HR: heart rate. bpm: beats-per-minute.  
 

Changes in resting BRS measured as the sequence method and blood pressure are 

presented in Table 10.3. After adjustments for baseline there were no effects of 

training for Seq++ (adjusted change in means CON=-2.4, HIIE-T=-4.2 ms·mmHg-1; 

P=0.52; ES=0.30), Seq-- (CON=8.6, HIIE-T=6.2 ms·mmHg-1; P=0.43; ES=0.37). 

Similar results were observed for SPB (CON=-2.3, HIIE-T=-2.4 mmHg; P=0.97; 

ES=0.01), and DBP (CON=1.8, HIIE-T= -3.7 mmHg; P=0.20; ES=0.62). However, PP 

decreased for CON compared to HIIE pre and post training (adjusted change in means 

CON=-5.1, HIIE-T=2.2 mmHg; P=0.027; ES=1.12). At DET, the changes in PP 

compared to POST were similar between groups (adjusted change in means 

CON=0.58, HIIE-T=1.58 mmHg; P=0.84; ES=0.09).   
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Figure 10.2: Mean and standard deviation of baroreflex sensitivity and its autonomic 

and vascular determinants. 
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Table 10.3: Mean and standard deviation of blood pressure, baroreflex sensitivity and arterial properties at pre, post and detraining 

for both groups. 

 Pre Post Detraining 

 CON  
(n = 9) 

HIIE-T  
(n = 10) 

CON  
(n = 9) 

HIIE-T  
(n = 10) 

CON  
(n = 9) 

HIIE-T  
(n = 10) 

Seq++ (ms·mmHg-1) 35.4 ± 12.4 33.0 ± 7.2 32.2 ± 9.4 29.4 ± 3.9 32.3 ± 13.0 33.5 ± 8.2 

Seq-- (ms·mmHg-1) 21.5 ± 11.0 20.7 ± 8.0 27.0 ± 12.0 23.7 ± 10.7 17.6 ± 11.1 23.5 ± 11.3 

IMT (mm) 0.43 ± 0.03 0.43 ± 0.04 0.43 ± 0.02 0.44 ± 0.03 0.44 ± 0.03 0.44 ± 0.03 

ΔD (µm) 950.0 ± 120.1 871.0 ± 197.6 970.0 ± 154.6 938.0 ± 234.4 986.7 ± 118.5 907.0 ± 142.8 

AD (mmHg·10-3) 7.5 ± 1.6 6.2 ± 2.0 8.2 ± 2.4 6.6 ± 2.0 7.1 ± 1.2 6.9 ± 1.7 

IEM (mmHg:10-3) 713.4 ± 125.9 910.8 ± 263.7 692.8 ± 208.8 854.3 ± 261.8 747.5 ± 123.4 785.8 ± 176.4 

SBP (mmHg) 111.1 ± 6.3 111.8 ± 7.1 108.9 ± 11.0 109.3 ± 7.5 110.2 ± 12.3 110.2 ± 11.0 

DBP (mmHg) 64.9 ± 8.2 60.1 ± 7.3 65.9 ± 11.9 57.2 ± 7.1 60.7 ± 7.9 61.8 ± 8.1 

PP (mmHg) 46.2 ± 5.6 51.6 ± 8.7 43.1 ± 5.7** 52.1 ± 6.8 49.5 ± 7.2 48.4 ± 9.8 

CON: Control group. HIIE-T: Training group. HR: heart rate. HF: high frequency. SBP: systolic blood pressure. DBP: diastolic blood 

pressure. PP: pulse pressure. IMT: intra-media thickness. ΔD: changes in lumen diameter from diastole to systole. AD: arterial 

distensibility. IEM: incremental elastic modulus. **P<0.05 for the adjusted PRE-POST changes in mean for CON compared to HIIE-

T.  For P values and effect sizes refer to text. 
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Changes in CCA properties are presented in Table 10.3. After adjustments for 

baseline, there were no effects of training for cIMT (adjusted change in means CON=-

0.003, HIIE-T=0.005 mm; P=0.38; ES=0.41), ΔD (CON=18.4, HIIE-T=68.8 µm; 

P=0.32; ES=0.47), AD (CON=0.7, HIIE-T=0.3 mmHg·10-3; P=0.59; ES=0.25), and IEM 

(CON=-33.5, HIIE-T=-44.9 mmHg:10-3; P=0.88; ES=0.06). 

Resting cardiac autonomic modulation is presented in Table 10.4. After adjustments 

for baseline values, there were no effects of training for HR (adjusted change in means 

CON=1, HIIE-T=-4 bpm; P=0.10; ES=0.80), HF (CON=-0.01, HIIE=0.13 ms2; P=0.58; 

ES=0.26), and HF adjusted to HR (CON=0.001, HIIE-T=0.011 ms2·bpm-1; P=0.20; 

ES=0.61), total power (CON=0.41, HIIE-T=0.57 ms2; P=0.75; ES=0.14), LF 

(CON=0.44, HIIE-T=0.41 ms2; P=0.94; ES=0.04), LF nu (CON=7.7, HIIE-T=4.3 au; 

P=0.52; ES=0.30), HF nu (CON=-7.7, HIIE-T=-4.4 au; P=0.52; ES=0.30), and LF/HF 

ratio (CON=0.14, HIIE-T=0.09 au; P=0.61; ES=0.24).  

No significant associations were observed between accumulated training loads and 

changes in the outcomes (all r <0.5; P>0.05).   
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Table 10.4: Mean and standard deviation of autonomic modulation at pre, post and 

detraining for both groups. 

 Pre Post Detraining 

 CON  
(n=9) 

HIIE-T  
(n=10) 

CON  
(n=9) 

HIIE-T  
(n=10) 

CON  
(n=9) 

HIIE-T  
(n=10) 

HR (bpm)  63±6 60±8 62±8 57±5 60±7 59±7 

HF (ln) 8.7±0.9 8.6±0.8 8.7±0.9 8.7±0.8 8.7±0.8 8.7±0.8 

HF 

adjusted 

HR (au) 

0.14±0.03 0.14±0.02 0.14±0.03 0.16±0.02 0.15±0.03 0.15±0.02 

LF (ln) 7.3±0.5 7.0±0.7 7.7±1.03 7.4±0.7 7.8±0.6 7.4±0.8 

Total 

power (ln) 
16.0±1.3 15.6±1.4 16.4±1.9 16.2±1.2 16.5±1.3 16.1±1.4 

HF (nu) 79.6±7.2 81.6±10.7 72.7±9.7 76.5±11.8 70.3±9.6 76.2±11.3 

LF (nu) 20.3±7.3 18.1±10.7 27.2±9.8 23.4±11.9 29.6±9.7 23.5±11.4 

LF/HF (au) 0.26±0.10 0.25±0.19 0.40±0.19 0.34±0.24 0.44±0.18 0.34±0.23 

CON: Control group. HIIE-T: Training group. HR: heart rate. HF: high frequency. LF: 

low frequency.  

10.4.2 Effects of high-intensity interval exercise training on acute post-exercise 

responses 

The observed internal training load for the exercises bouts were 72.3 ± 8.6 and 77.2 

± 10.6 au at PRE, and 61.4 ± 8.9 and 73.0 ± 5.3 au at POST for HIIE-T and CON, 

respectively. After adjustments for baseline values, an effect of training was present 

on the changes in the internal training load between the groups (adjusted change in 

means CON=-3.3, HIIE-T=-12.0 au; P=0.042; ES=1.16). 

The effects of training on post-exercise measurements are presented in Figure 10.3. 

For LFgain and LFgain/AC, an effect of time was present (P<0.001; P<0.001 for 

LFgain and LFgain/AC, respectively). On the contrary, there was no group by time 

(P=0.96; P=0.36), group by moment (P=0.96; P=0.95), time by moment (P=0.74; 

P=0.15), or group by moment by time interactions (P=0.47; P=0.22). Follow-up 



 
 

265 
 

analysis revealed that at both PRE and POST, LFgain decreased 30-min post HIIE 

compared to baseline for both groups (P<0.001) and returned to baseline values 120-

min post-HIIE (P=0.07 compared to baseline). LFgain/AC mirrored the observed 

LFgain findings. At PRE and POST LFgain/AC decreased 30-min post HIIE compared 

to baseline for both groups (P<0.001) and returned to baseline values 120-min post-

HIIE (P=0.11). 

For AC, there was no effect of time (P = 0.61), group by time (P = 0.18), group by 

moment (P = 0.61), or group by moment by time (P = 0.91) interactions. On the 

contrary, a time by moment interaction was present (P = 0.041). Follow-up analysis 

revealed that at PRE, no differences were observed between baseline, 30-min and 

120-min post for both groups (P = 0.61). However, at POST a time effect was present 

with an elevated AC at 30-min post compared to baseline (P = 0.006), which returned 

to baseline at 120-min post (P = 0.29) for both groups.  

The effects of training on post-exercise autonomic modulation are presented in Table 

10.5. For HR and HF, an effect of time was present (P < 0.001; P < 0.001 for HR and 

HF, respectively). On the contrary, there was no group by time (P = 0.96; P = 0.19), 

group by moment (P = 0.96; P = 0.40), time by moment (P = 0.74; P = 0.22), or group 

by moment by time interactions (P = 0.47; P = 0.31). Follow-up analysis revealed that 

at PRE and POST, HR increased 30-min post HIIE compared to baseline for both 

groups (P < 0.001), and returned to baseline values 120-min post-HIIE (P = 0.07 

compared to baseline). HF (ln) mirrored the observed HR findings. At PRE and POST, 

HF decreased 30-min post HIIE compared to baseline (P < 0.001), and returned to 

baseline 120-min post (P = 0.11). For MAP there was no effect of time (P = 0.81), 
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group by time (P = 0.47), group by moment (P = 0.56), time by moment (P = 0.21), or 

group by moment by time interactions (P = 0.12). 

 

Figure 10.3: Mean and standard deviation of baroreflex sensitivity and its autonomic 

and vascular determinants at baseline, 30-min and 120-min following HIIE. *P<0.05 

compared to baseline for both groups.  
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Table 10.5: Mean and standard deviation of the baseline and post-exercise arterial properties, blood pressure and autonomic 

modulation pre- and post-training for both groups. 

  CON HIIE-T 

  Baseline 30-min post 120-min post Baseline 30-min post 120-min post 

 Post 970.0±154.6 932.2±183.6* 917.8±152.5* 938.0±234.4 846.0±181.8* 828.0±214.7* 

PP (mmHg) Pre 46.2±5.6 46.1±4.7 46.1±6.2 51.6±8.7 47.9±4.8 49.2±9.1 

 Post 43.1±5.7 39.9±7.0* 44.5±5.6 52.1±6.8 38.5±9.4* 47.7±7.9 

MAP (mmHg) Pre 78.8±7.3 80.1±3.9 79.5±6.7 75.6±6.0 76.1±4.0 76.4±5.0 

 Post 78.8±11.3 72.7±7.0 75.3±5.3 72.8±6.8 74.0±3.9 73.6±6.0 

HR (bpm) Pre 63±6 78±9a 71±9 60±8 75±10b 64±7 

 Post 62±8 74±9a 67±11 57±2 67±7b 61±4 

HF(ln) Pre 8.7±0.9 7.2±1.3a 8.2±1.4 8.6±0.8 7.8±1.4b 8.2±1.0 

 Post 8.7±0.9 7.5±1.4a 8.1±1.5 8.7±0.8 8.1±1.1b 8.5±1.0 

CON: Control group. HIIE-T: Training group. PP: pulse pressure. MAP: mean arterial pressure. HR: heart rate. HF: high frequency. 

*= effect of time course compared to baseline independent of group.  
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10.4.3 Associations between post-exercise responses and changes in baseline 

measurements after training 

The observed Δ change in LFgain 30-min post-exercise was positively associated to 

the Δ training changes in the LFgain (r=0.55; P=0.014). Similar results were observed 

for Seq++ (r=0.60; P=0.007) and Seq-- (r=0.65; P=0.003). No other significant 

associations between post-exercise responses and changes with training were 

observed.  

10.5 Discussion 

This is the first randomised controlled trial to investigate the effect of HIIE training on 

resting and following acute exercise BRS and its autonomic and vascular determinants 

in healthy adolescents. The main findings of the present study were: 1) there was no 

effect of HIIE training on resting cardiac BRS and its autonomic and vascular 

determinants in healthy adolescents; 2) because no effect of training was observed, 

detaining did not influence any of the outcomes; 3) BRS was decreased at 30-min 

following HIIE due to a lowered autonomic determinant, which was not influenced by 

HIIE training; and 4) significant negative associations were observed between 

baseline decreases in BRS 30-min following HIIE, and the delta changes in BRS after 

4-weeks of HIIE-T or CON. However, the lack of a training effect on BRS shows that 

the observed associations reflect lower variability in the BRS measurements for the 

adolescents with a sustained BRS function 30-min following HIIE.    
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10.5.1 Effects of training on baroreflex sensitivity and its autonomic and vascular 

determinants 

Our present findings showed that resting BRS does not change after four weeks of 

HIIE training in healthy adolescents. The present observations are in accordance with 

previous results in adults showing that following five months of aerobic training at 75% 

of maximum aerobic capacity no changes in BRS were observed (Loimaala et al., 

2000). However, one investigation including old adults (56 years old) have shown 

increases in BRS following 12 weeks of aerobic training at 65% of maximal aerobic 

capacity (Monahan et al., 2001a). Although the intensity (i.e. moderate vs high-

intensity) and duration (12-weeks vs 4-weeks) of the interventions were different, the 

discrepant results indicate that age may be an important characteristic to consider 

when BRS is the outcome. This possible age effect may be related to differences in 

arterial stiffness between old and young subjects as evidenced by a decrease in CCA 

distensibility from childhood to adulthood (Lenard et al., 2004, Lenard et al., 2000). In 

fact, the observed improvements in BRS in old adults are driven by increases in CCA 

distensibility (Monahan et al., 2001a, Monahan et al., 2001b), which suggests that 

increases in CCA distensibility may be necessary for overall BRS improvement. This 

has been shown in one study with adults where concomitant improvements existed in 

BRS and arterial distensibility following 12 weeks of HIIE training (Heydari et al., 2013). 

The lack of increases in CCA distensibility in the current study showed that exercise 

training does not alter this parameter at rest, and corroborates recent findings 

suggesting the existence of a ‘ceiling effect’ as healthy arteries may already present 

an optimal CCA distensibility (Montero et al., 2017).  

If such a ceiling effect exists for the vascular determinant of BRS at rest, a possible 

influence of HIIE training towards an improved beat-by-beat control of BP in healthy 
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adolescents may occur via increases in the autonomic determinant of BRS. This is the 

first investigation to estimate the contribution of the autonomic and vascular 

components of cardiac BRS following a HIIE intervention. However, no significant 

improvements were observed in LFgain/AC. Although no investigation in adolescents 

exists to contrast our findings, our results are in accordance with a cross-sectional 

investigation involving old adults in which non-significant effects of training status exist 

on the autonomic determinant of BRS (Monahan et al., 2001b). Conversely, other 

cross-sectional data suggests that the autonomic determinant of BRS is higher in 

participants with a higher training status (Komine et al., 2009). Several caveats are 

worthy of mentioning when contrasting to the current study including: the cross-

sectional design of the cited studies, the study population (i.e. adults, old adults), and 

the methods used to measure the autonomic component of BRS (i.e. vasoactive 

drugs, Valsalva manoeuvre, and spontaneous indices).  

Corroborating with the lack of improvements on the autonomic determinant of BRS, in 

the present study no effects of HIIE intervention was noted on resting autonomic 

modulation measured via HRV. This is a surprising finding, as in a sample of similar 

healthy adolescents, two weeks of HIIE caused significant increases in HRV (Bond et 

al., 2015a). Although a lack of a control group impedes conclusions about the training 

effect, a possible explanation for the differences between our present findings and 

Bond et al. (2015a), may lie in the likely presence of saturation of vagal modulation in 

the present study. A saturation represents a HR point at which no more improvements 

in HRV can be observed (Kiviniemi et al., 2004). In our present investigation, a trend 

was observed for a decreased in resting HR with a large effect size between CON and 

HIIE-T (P=0.10; ES=0.80). We further normalised HF according to HR to decrease the 

saturation effects and a moderate effect size, although not significant, was then 
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observed between HIIE-T and CON (ES=0.61). It is recognised that 24 h HRV analysis 

is required to obtain a measurement of saturation (Kiviniemi et al., 2006); however the 

lack of improvements in HRV in the present investigation should be interpreted with 

caution. Finally, it is currently unknown whether increases in vagal modulation would 

reflect a better cardiac BRS.  

In the present investigation, HIIE-T did not alter BP at rest. The lack of change in BP 

is in accordance with a meta-analysis comparing the effects of training on resting BP 

in healthy children (Kelley et al., 2003). It has been demonstrated a positive 

association between BMI (r=0.61) and consequent BP reductions with exercise 

training (Kelley et al., 2003). This can partially explain our findings as all the 

participants were below the 85th percentile for BMI. Similarly, no changes were 

observed in the present investigation on resting arterial properties. Our results are in 

accordance with a meta-analysis in adults, in which four randomised controlled trials 

did not alter carotid IMT (Huang et al., 2016). On the contrary, aerobic exercise training 

has been shown to decrease carotid IMT in obese and overweight children, and 

baseline BMI and training in min per week were significant predictors of the exercise 

effects (Garcia-Hermoso et al., 2017). In addition, although differences such as 

duration (12 – 24 weeks) and exercise intensities (50 – 70% of maximum heart rate) 

exist between the studies included in the meta-analysis and the current investigation, 

a key factor in the discrepant results may have been the weight status. Therefore, it is 

likely that our short intervention (4 weeks of HIIE-T) was not enough to induce vessel 

remodelling at the CCA in a sample of healthy normal weight adolescents. Future 

studies are necessary to investigate the effects of longer interventions, different 

intensities, and children at elevated CVD risk, such as hypertensive and overweight. 
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10.5.2 Effects of high-intensity interval exercise intervention on the acute responses 

to exercise 

This is the first study to investigate the effects of HIIE-T on BRS and its autonomic and 

vascular components to a bout of acute HIIE. Our results show that HIIE training 

significantly changed the internal training load observed for a similar external stimulus. 

The decreased training load reflect a lowered sympathetic activation during the HIIE 

bouts following training, and a consequent lowered HR  response during the HIIE 

session (Buchheit, 2014). Although no measures of sympathetic activity, such as 

catecholamine spill over, were conducted in the present study, a lowered TRIMP may 

reflect a diminished sympathetic response to exercise in healthy adolescents as an 

adaptation of the autonomic system to training.  

However, despite a diminished sympathetic activity during the HIIE bout, similar post-

exercise responses in BRS and its autonomic and vascular determinants were 

observed following HIIE-T. Our results are in accordance with the adult literature that 

has shown a decreased BRS and its autonomic and vascular components up to 60-

min following the exercise bout (Studinger et al., 2003) and is comparable to baseline 

145-min following exercise (Halliwill et al., 1996b). Contrary to our hypothesis, the 

present findings demonstrated that training did not changes the magnitude of the 

observed decrease in BRS flowing HIIE. Similarly, no significant effects of training 

were observed for the post-exercise hypotension. This may reflect the baseline BP of 

the participants, which may preclude decreases in BP following the HIIE bout, as 

previously suggested for adults (MacDonald, 2002). Furthermore, it is likely that lack 

of BP changes following HIIE in the present study, blunted possible BRS adaptation 

to HIIE-T. For example, trained adults experienced a greater decrease in BRS 30-min 

following HIIE which was paralleled with a higher post-exercise hypotension (Cote et 
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al., 2015a) indicating BRS resetting to a lower BP operating point (Smith et al., 2000). 

These findings may reflect a physiological adaptation of the baroreflex to support a 

lowered BP following exercise in the trained participants. Our results may indicate that 

post-exercise hypotension is a necessary adjustment that drives training adaptation 

(Devereux et al., 2015), or post-exercise BRS does not change with exercise training 

in healthy adolescents. 

In the present study, BRS was decreased due to a lowered autonomic determinant at 

both PRE and POST-HIIE-T. Whether the decreases in autonomic determinant would 

serve as a mechanism to training adaptation as previously suggested (Buchheit et al., 

2008) was not confirmed in the present investigation. The acute decreases in 

LFgain/AC observed following the first HIIE session was not associated with the 

changes in resting LFgain/AC and autonomic modulation following training. These 

results  indicate that other exercise characteristics but not the recovery period (Luttrell 

and Halliwill, 2015), contributes to improvements in BRS with training; however, in the 

present study the lack of improvements with training and lack of other measurements 

during the training session do not allow this hypothesis to be investigated. Similarly, 

the HIIE intervention did not alter HRV responses acutely following exercise. These 

results are different compared to Buchheit et al. (2008), who found that 8 weeks of 

HIIE led to a significant faster parasympathetic reactivation in adolescents. The 

difference between the exercise intensity from which vagal reactivation was obtained 

in the present study (i.e. HIIE) compared to Buchheit et al. (2008) (i.e. running at 60% 

of MAS) may explain the differences. It is well stablished that HIIE causes a 

pronounced vagal withdrawal compared to lower exercise intensities (Stanley et al., 

2013), that can take up to 90-min to return to baseline values (Stanley et al., 2013). 

Therefore, it is likely that the HIIE stimulus in the present study caused a pronounced 
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vagal withdrawal for both HIIE-T and CON groups and if a submaximal bout was used 

a faster vagal reactivation would be noted for the HIIE-T group following training.  

Due to the possible ceiling effect which limits improvements on resting CCA 

distensibility (Montero et al., 2017), it can be hypothesised that a possible health-

related benefit of exercise on arterial stiffness is via increases in CCA distensibility 

acutely in the hours following the exercise (Kingwell et al., 1997). In the present 

investigation, however, no influence of HIIE-T was noted on CCA distensibility in the 

two hours following HIIE. A possible mechanism leading to an improved CCA 

distensibility acutely following exercise at the post HIIE intervention would be an 

increased smooth muscle relaxation caused by nitric oxide (Wilkinson et al., 2004), or 

an improved myogenic response to subtle changes in pulsatile pressure occurring with 

the weekly repetition of the HIIE bouts (Davis, 2012). The lack of improvements 

observed in the present investigation, however, suggest no trainability of the acute 

responses to HIIE. Whether CCA distensibility in the post-exercise period responds to 

training, and the mechanisms associated, are worth future investigation.  

10.5.3 Strengths and limitations 

One strength of the present investigation was the randomised controlled trial design. 

Similarly, compliance with the exercise training was excellent at 100% for the HIIE-T 

participants. We also performed a comprehensive analyses of the autonomic and 

vascular determinants of the BRS using reliable methods (Oliveira et al., 2018a). 

Another strength of the present investigation was the timing between the end of HIIE-

T and the post-training measurements. To avoid possible detraining or acute effects 

of the last bout on the autonomic and arterial systems, participants were tested 48-h 

after the last HIIE-T session. 
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A few limitations are worth noting. For example, the convenience sampling approach 

limits the findings to a specific sample of adolescents. Similarly, we could not control 

for the exercise activities undertaken by the participants outside the CON and HIIE-T 

interventions. It is likely that participants were involved in other exercise routines which 

increased the overall training load during the twelve weeks and a ceiling effect was 

present for the adaptations of the autonomic system, as previously described (Iwasaki 

et al., 2003). Another limitation is that for the measures of arterial compliance BP was 

not obtained at the CCA. Finally, the present study might be underpowered, however, 

according to a recent investigation a sample size of nine participants would be enough 

to detect a large effect on the LFgain/AC in healthy adolescents (Oliveira et al., 2018a).  

10.6 Conclusions 

A HIIE intervention of four weeks does not change resting BRS and its autonomic and 

vascular determinants in a sample of healthy adolescents. Additionally, with or without 

HIIE training, BRS decreases 30-min following exercise in adolescents, but is restored 

at 120-min post. At both PRE and POST training, the autonomic component is the 

main determinant of the observed fall in BRS. Our findings highlight that in healthy 

adolescents HIIE training does not change the mechanisms of beat-to-beat control of 

BP both at rest and following acute exercise.  
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Chapter 11: Implications and Future 

Directions 

To further contribute to the discussions presented within Chapters 4 – 10, this chapter 

aims to address how the collective work presented in the thesis contributes to the 

literature, and to discuss potential practical applications. Central themes discussed in 

Chapters 4 – 10 will be revisited and extended, and avenues for future research will 

be highlighted. This chapter also addresses the strengths and limitations of the work 

presented in the thesis before finishing with some concluding remarks.  

11.1 Contributions to the literature 

11.1.1 Risk factor gap 

Around 40% of CVD risk reduction accrued by PA has been hypothesised to occur via 

changes in the autonomic and vascular systems (Joyner and Green, 2009), and a 

novel feature of this thesis was to expand this concept to healthy adolescents. Chapter 

4 aimed to systematic review the literature to investigate associations between PA, 

CRF and cardiac autonomic function to contribute to the risk factor gap in youth. 

Chapter 4 evidenced that the literature was not clear regarding possible associations 

between resting HRV, PA and CRF in youth. This was because the high level of bias 

between the studies, the variety of methodological approaches to assess HRV, PA 

and CRF, participants age, and sample bias. Despite these limitations, MVPA showed 

a positive association with resting HRV in three of the studies with low bias, suggesting 

health benefits may be obtained via PA through the autonomic pathway in youth. To 

further investigate the role of PA on the risk factor gap in adolescents, Chapter 5 aimed 
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to investigate the associations between habitual PA, PA intensities, CRF, HRV and 

HRR in health adolescents. In addition, Chapter 5 also examined whether adding 

indices of autonomic function to a clustered CVD risk factor score based on traditional 

risk factors improved the strength of associations between CVD risk PA and CRF. A 

threefold increase in the magnitude of the negative association between MPA and 

VPA to the CVD risk was observed, suggesting that the association between PA and 

autonomic function expands beyond the associations between PA and clustered 

traditional CVD risk. These findings are in line with a short two-week HIIE training 

intervention where improvements in autonomic function were observed without 

improvements in traditional CVD risk factors (Bond et al., 2015a), contributing to the 

risk factor gap concept.   

The exact mechanism behind these adaptation in humans are yet unclear, but animal 

models showing improvements in HRV following aerobic training indicate adaptations 

in the central autonomic centres in the brainstem dependent on the NO pathways in 

the paraventricular nucleus (Mastelari et al., 2011). Extrapolation of these findings to 

humans is speculative, but central adaptations are likely consequences of exercise. 

Another likely mechanism is an increased cholinergic signalling at the sinoatrial node. 

This mechanism may explain the findings of Chapter 5, in which both resting HRV and 

HRR, as well as a faster parasympathetic reactivation were positively associated with 

MPA and VPA levels. Giving support to this hypothesis, adult literature found a 

dissociation between HRR and resting HRV, with the first reflecting the cholinergic 

signalling at the heart, and the later a central modulation of HR (Dewland et al., 2007). 

At first glance these results appear to corroborate the current PA guidelines. However, 

further scrutiny of the data reveal that the amount of MVPA performed by the 



 
 

278 
 

participants of Chapter 5 was 115 min∙day-1, which nearly doubles the minimum 

guideline of 60 min∙day-1. These findings are in accordance with Andersen et al. (2006) 

who also showed a decrease in cluster of traditional CVD risk factors for adolescents 

performing more than 90 min∙day-1 of MVPA. However, data presented in Chapter 5 

is cross-sectional which impedes causality and future investigations are needed to 

investigate participants with lower PA levels and to investigate cause-effect of PA on 

autonomic function beyond traditional CVD risk factors. Despite the limitations, the 

work within this thesis provides a foundation about the role of autonomic function to 

the risk factor gap. Future studies, employing either prospective of randomised 

controlled trial designs, should aim to address a possible dose-response to further 

contribute to the knowledge presented in this thesis.  

Previous research in adolescents aged 14 years old has demonstrated that 

improvements in autonomic function following HIIE training are not significantly 

associated with improvements in arterial function (Bond et al., 2015a), which may 

indicate that exercise alters these systems in an independent manner. A novelty of the 

present thesis was to investigate a possible interaction between the vascular and 

autonomic systems by assessing cardiac BRS and its autonomic and vascular 

determinants. In youth, using this approach it has been previously demonstrated that 

from childhood to adulthood BRS gain is maintained via an increase in the autonomic 

determinant, as the vascular determinant is progressively lowered as age increases 

(Lenard et al., 2004). The work in Chapter 7 aimed to determine the between- and 

within-day reliability of the autonomic and vascular determinants of baroreflex 

sensitivity in adolescents. This is a novelty of this thesis and adds to the literature by 

demonstrating that separating BRS into the autonomic and vascular components is a 

reliable approach in male adolescents. This is important for future research to identify 
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appropriate study sample sizes as previously suggested (Hopkins, 2000), and to 

facilitate interpretation of the magnitude of change in BRS due to exercise or disease 

in adolescents. 

Before the completion of this thesis, no studies had investigated how exercise changes 

the determinants of BRS in adolescents. For this purpose, Chapter 8 aimed to address 

how moderate and high-intensity interval running alters the post-exercise recovery of 

BP, BRS and its autonomic and vascular determinants; and Chapter 10 aimed to 

investigate the autonomic and vascular adaptations of BRS in response to four weeks 

of HIIE training and two weeks of detraining. In addition, Chapter 10 also investigated 

the acute changes in BRS following exercise and its autonomic and vascular 

determinants were also examined at before and after four weeks of HIIE training. The 

work completed in Chapter 8 and 10, in addition to the reliability data, contribute to 

this gap in knowledge about BRS function in youth by providing evidence that: 1) 

following HIIE (Chapters 8 and 10) and MIIE (Chapter 8) the BRS gain is decreased 

due to a lowered autonomic determinant which reflects on the control of arterial BP; 

and 2) four weeks of HIIE training does not change the autonomic and vascular 

determinant of BRS in a sample of healthy adolescents. Future studies are needed to 

investigate longer training durations in healthy adolescents and to investigate the 

effects of HIIE training in adolescents with elevated risk. Nevertheless, the findings of 

this thesis adds to an existing body of research that was previously limited to 

investigations in adults showing that the vascular determinant is important for BRS 

maintenance with ageing following an exercise intervention (Monahan et al., 2001a), 

that the BRS autonomic component is elevated in adults who engage in exercise 

(Komine et al., 2009), and that up to 30 min following moderate continuous exercise 
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both the autonomic and vascular determinants are lowered in adults (Willie et al., 

2011).  

11.1.2 Physical activity intensities 

Current PA guidelines to youth combine MPA and VPA into MVPA, with only an 

emerging discussion about the independent effects of VPA and MPA intensities. The 

guidelines only suggest that youth should perform VPA at least three times per week 

without considering duration (WHO, 2010), with a main focus on bone and muscular 

strength developments. However, contemporary research indicates that MPA and 

VPA should be considered separately in terms of modifying CVD risk (Fussenich et 

al., 2016, Carson et al., 2014, Barker et al., 2018). This rationale underpinned the work 

presented in Chapters 4 – 10, and the present findings in this thesis further contributes 

to the evidence base by presenting the separate associations for MPA and VPA with 

cardiac autonomic function. Chapter 4 showed that the associations between VPA and 

cardiac autonomic function were controversial, which a lack of significant association 

between VPA and resting autonomic function. The level of evidence for associations 

between VPA and cardiac autonomic function was weak due to high bias in the 

studies, the limited number of high quality investigations comparing VPA levels, 

different exposure (i.e. questionnaires and accelerometers) outcome assessment (i.e. 

different HRV indices), and different age groups. Considering the limitations presented 

in Chapter 4, Chapter 5 showed an important positive association between objectively 

measured VPA and cardiac autonomic function in youth. Specifically, CVD risk 

calculated without the inclusion of autonomic function and only with traditional CVD 

risk factors was not significantly associated with VPA (stβ = -0.340; r2 = 0.06). On the 

contrary, when autonomic function was added to the CVD risk score, a negative 

association between VPA and CVD risk score (stβ = -0.540; r2 = 0.18) was present 
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indicating that VPA is associated with autonomic function but not traditional CVD risk 

factors in Chapter 5. With these findings, and others (Barker et al., 2018, Fussenich 

et al., 2016, Carson et al., 2014), an initial argument can be raised for guidelines to 

focus on VPA separately to MPA. 

It can be speculated that one of the mechanisms underpinning the observed 

associations are the on and off kinetics of the autonomic activity to the vigorous bouts 

which triggered central (i.e. autonomic modulation measured as HRV) and local (i.e. 

cholinergic receptors at the heart level) adaptations. This mechanism is founded on 

the well described parasympathetic withdrawal during exercise, which is dependent 

on the exercise intensity (Pecanha et al., 2017). A pronounced parasympathetic 

withdrawal during exercise causes a delayed parasympathetic recovery and in the 

long term this pattern can improve central and peripheral mechanisms of autonomic 

function in youth.  

These are initial steps, as the current VPA evidence for youth is not strong compared 

to the evidence gathered from prospective observational and experimental studies in 

adults, which have permitted the guidelines to recommend that time spent performing 

VPA (i.e. 75 min·week-1) can be half of the time spent performing MPA (Bull, 2010). 

Furthermore, in this thesis only cross-sectional associations were investigated, and 

lack of cause-effect is still evident. Future studies are needed focusing on longitudinal 

associations between VPA and autonomic function, as previously observed for VPA 

and arterial compliance(van de Laar et al., 2010), as well as traditional CVD risk 

factors (Carson et al., 2014).  

The results in favour of VPA in the present thesis are promising due to the amount of 

this activity performed by the participants compared to MPA in Chapter 5 (12 vs 104 
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min·day-1 of VPA and MPA, respectively). Indeed, time spend in different intensities 

appears to be an important aspect in the literature, with an existent negative 

association between 7 – 25 min·day-1 of VPA, but not ~ 50 min·day-1 of MPA, linked 

with improvements in traditional CVD risk factors in youth (Fussenich et al., 2016, 

Barker et al., 2018). Similarly, promising results of improvements in arterial and 

autonomic function in apparently health youth have been obtained from studies using 

HIIE interventions as a form to deliver VPA (Costigan et al., 2015, Logan et al., 2014, 

Bond et al., 2015a, Buchheit et al., 2008), suggesting HIIE training is an attractive 

strategy for future research. However, caution should still be taken when making 

recommendations to improve cardiac autonomic function of youth based on the limited 

body of evidence. 

11.1.3 Cardiorespiratory fitness 

The systematic review (Chapter 4) and the observational work (Chapters 5) within this 

thesis failed to present any significant associations between CRF and cardiac 

autonomic function. The evidence presented in the systematic review in Chapter 4 

showed that diverse factors such as different methods of assessing CRF, quality of 

the studies included, and the confounders accounted for, clouded possible 

conclusions about the associations between CRF and autonomic function. With the 

limitations obtained in the systematic review in Chapter 4, Chapter 5 included CRF as 

an exposure and also failed to identify a significant association between CRF and 

cardiac autonomic function, after adjusting for key confounders. This is on the contrary 

to the inverse association obtained between CRF and traditional CVD risk in Chapter 

5 (stβ = −0.438), in accordance with an existent body of evidence showing significant 

associations between indirectly measured CRF and traditional CVD risk factors in 

youth (Barker et al., 2018, Ekelund et al., 2007). Interestingly, when CRF was 
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allometrically scaled in Chapter 5 the positive association between CRF and 

autonomic outcomes approached significance (stβ = 0.299; P = 0.06). This highlights 

that body size may be an important confounder of the associations likely due to the 

negative association between body fat content and HRV as previously demonstrated 

in youth (Eyre et al., 2014). Finally, Chapters 4 and 5 provide initial steps into the 

associations between CRF and autonomic function, and future studies are 

encouraged to investigate longitudinal associations, similar to data that is available for 

CRF and arterial compliance (Ferreira et al., 2003).  

11.1.4 Acute responses to exercise 

11.1.4.1 Arterial responses to exercise 

The acute physiological adjustments following exercise have been implicated in the 

health related befits of the last exercise bout (Bond et al., 2017a) and suggested to 

provide a foundation for future training adaptations (Romero et al., 2017, Luttrell and 

Halliwill, 2015, Devereux et al., 2015). This rationale drove the investigation of how 

exercise acutely alters the autonomic and vascular systems in youth. Following HIIE 

and MIIE in Chapter 8, AC and AD were elevated compared to baseline at five min but 

returned to baseline at 60 min. In Chapter 10, AC and AD were not altered by the 

exercise bout. It is likely that the observed drop in BP in Chapter 8, but not 10, explains 

the observed findings. The reasons why a divergent BP response were observed 

between chapters is unclear, but the literature suggest the presence of responders 

and non-responders for post-exercise hypotension (Costa et al., 2016), which may be 

a factor. To provide mechanistic data about these findings is beyond the scope of this 

thesis, however the pattern is consistent with an improved NO dependent dilation 

observed in adolescents in the brachial artery (Bond et al., 2015c), suggesting 

potential similar mechanisms. Another potential explanation is the presence of 
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vasodilatory substances, such as histamine (Halliwill et al., 2014). It is important to 

note that both NO and histamine production are dependent on shear stress (Ando and 

Kamiya, 1993), which may be a key component of short high intensity exercise bouts 

due to an elevated blood pressure during the exercise session (Studinger et al., 2003). 

Due to described decreases in arterial compliance with ageing (Lenard et al., 2004), 

a central theme within this thesis was that adult findings have limited application to 

youth. A recent investigation has demonstrated divergent AC and AD responses to 

exercise between children and adults, also suggesting that maturation alters AC and 

AD following exercise (Melo et al., 2016). As such, in Figure 11.1 participants from 

Chapter 8 were further divided into groups of less (n = 4; Tanner stages 1 – 3) and 

more mature (n = 8; Tanner stages 4 – 5). Although caution should be taken when 

interpreting these findings due to the small sample size, it can be observed that less 

mature adolescents increase CCA compliance and distensibility following exercise 

compared to the more mature participants. Although future research is warranted to 

confirm these findings, these results highlight different AC and AD responses following 

exercise between maturity groups. The mechanisms underpinning these findings are 

unclear and future investigations are needed to explore the effects of changes in sex 

hormones, vessel characteristics such as elasticity (Lenard et al., 2004), increases in 

stroke volume which is also associated with AC and AD (Myers et al., 2002), and the 

likely effect of decreases in PA and CRF levels (Reilly, 2016).  
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Figure 11.1: Possible effects of maturation on the dynamic responses to exercise. 

Participants are divided into less (n = 4) (squares) and more (n = 8) (circles) mature. 

Data are from Chapter 8. 

 

11.1.4.2 Baroreflex responses to exercise 

Combining the findings of Chapters 8 and 10, this thesis also expands adult findings, 

describing how exercise acutely changes BRS, to a paediatric population. For 

example, in accordance with the adult literature (Halliwill et al., 1996b, Niemela et al., 

2008), BRS of healthy adolescents was lowered up to 30 min following interval 

exercise performed at a moderate and high-intensity. This is a novel finding and the 

present thesis provides a foundation for future work investigating mechanisms of BP 

control following exercise in youth. This is important from a physiological perspective 

as to date it is not clear whether adult findings translate to this population who may 

have more elastic vessels and a less mature autonomic function (Lenard et al., 2004). 

Additionally, BRS adjustments following exercise is attributed to the maintenance of a 

lowered BP (Halliwill et al., 2013), and future work is needed to expand the current 

findings to adolescents with hypertension who should benefit more of improvements 

on beat-to-beat control of BP.  
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The underpinning physiological mechanisms of the observed drop in BRS following 

exercise are unclear. It is likely that BRS gain following exercise resets due to an 

operating point reflecting a lower BP, normally observed following exercise (Halliwill 

et al., 2013), which results in a decrease of the overall BRS gain (Hart et al., 2010). 

Contributing to this mechanism, Chapter 8 is the first investigation to show a 

concomitant fall in BP and BRS gain in healthy adolescents following exercise, and a 

maintained lower BP one hour following HIIE but not MIIE. These results highlight an 

intensity dependent effect on the control of BP following exercise, strengthening the 

case for HIIE. Future work is still needed to follow-up these initial findings, but a drop 

in BP following exercise may have clinical importance in youth as suggested for adults 

(Kenney and Seals, 1993).  

On the contrary to Chapter 8, in Chapter 10 BRS gain was decreased post-exercise 

without a concomitant fall in BP, suggesting a different mechanism orchestrating the 

drop in the gain of the BRS curve. A possible explanation is that to a same operation 

point (i.e. similar BP following exercise compared to baseline), BRS gain was lowered 

due to decreased central autonomic processing. Future studies using the neck suction 

technique would allow identification of the BRS gain over the whole baroreflex curve 

(Raven et al., 2006), and provide insight into the mechanisms by which exercise 

changes BRS acutely in youth.  

Another novelty of the present work was to divide BRS into a vascular and autonomic 

determinant and investigate the acute effect of moderate and high-intensity exercise. 

This approach was limited to studies involving adults before the completion of this 

thesis, with a reported decrease in BRS gain up to 30 min following the exercise bout 

driven by a lowered vascular and autonomic determinant (Willie et al., 2011). The 
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present thesis observed a drop in BRS which was mainly driven by a decreased 

autonomic component. This may reflect discrepancies in the vascular response 

between young and old, with the former presenting an increase vascular compliance 

response to exercise (Chapter 8) and the latter a decrease in vascular compliance 

(Willie et al., 2011, Studinger et al., 2003). A higher elastic component of the arterial 

wall in youth, as evidenced by an elevated incremental elastic module (Lenard et al., 

2004), is a candidate mechanism to explain the differences. Future studies are needed 

to investigate the effects of different vessel elasticity, caused by maturation or disease, 

on the BRS responses to exercise.  

11.1.5 Chronic exercise 

As suggested in section 11.1.2 HIIE training is an interesting strategy to deliver VPA 

and studies show promising results of this type of intervention to improve autonomic 

and vascular function in youth (Costigan et al., 2015, Logan et al., 2014, Bond et al., 

2015a, Buchheit et al., 2008). With this rationale, Chapter 10 aimed to investigate the 

autonomic and vascular adaptations of BRS in response to four weeks of HIIE training 

and two weeks of detraining. Although in Chapters 5 VPA levels were positively 

associated with resting HRV, Chapter 10 did not show increases in this outcome after 

four weeks of HIIE training. The differences between the cross-sectional designs of 

Chapters 4 and 5, and the randomised controlled trial of Chapter 10 may explain these 

discrepant findings. Specifically, a higher amount of MPA and VPA can be associated 

with a given HRV, however, training may not cause increases in HRV in a healthy 

sample of adolescents who present an elevated HRV at baseline. This was observed 

in Chapter 10 and may reflect the participants’ high baseline PA levels, influencing the 

ability of exercise to improve HRV. As such, improvements in HRV in youth may be 

dependent on the baseline values as previously shown by Nagai et al. (2004) who 
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divided participants into groups of low and high HRV (Ln of HF = 5.5 and 6.6 ms2, 

respectively). Following 12 months of training, only the participants in the low-HRV 

group significantly increased HF. In Chapter 10, HF at pre HIIE intervention was 8.6 

ms2 which was similar to Chapter 5 (Ln of HF = 8.0 ms2) where positive associations 

between HRV, MPA and VPA were observed. These values were also higher than the 

ones reported by Nagai et al. (2004). A possible explanation is the saturation 

phenomenon observed in participants with elevated parasympathetic modulation, 

which impedes further improvements in HRV (Kiviniemi et al., 2004). Future 

randomised trials are needed including a longer training intervention and lower HRV 

levels before the exercise intervention.   

The work within this thesis also showed a lack of improvement in BRS gain following 

the exercise intervention. Unfortunately, further mechanistic explanation cannot be 

provided, but is likely that a possible increase in aortic BRS was superior to 

improvements of the carotid BRS, as described in trained compared to untrained 

adults (Smith et al., 2000). Future investigations are encouraged to elucidate different 

mechanisms of aortic and carotid BRS in youth which can be assessed by measuring 

aortic distensibility using ultrasound images of the aorta (Klassen et al., 2016). Another 

possible explanation, is a change in the amplitude of the total BRS response curve, 

without changing the operating point (Smith et al., 2000). However, our present BRS 

data are limited to the assessment of the BRS operating point, and future studies are 

encouraged to investigate possible alteration on the BRS curve caused by exercise in 

healthy adolescents using the neck suction method.  

It can be also speculated that adaptations of BRS to exercise training are dependent 

on increases in the vascular component of BRS with consequent improvements in the 
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autonomic determinant. For example, following 12 weeks of aerobic training, 

increases in vascular compliance are necessary to lead to a better autonomic control 

of BP in adults aged 56 years old  (Monahan et al., 2001a). If a ceiling effect for the 

vascular component exist in healthy youth, as recently evidenced in adults (Montero 

et al., 2017), the ability of exercise to increase overall resting BRS may be limited in 

healthy youth. Less clear is the autonomic determinant, as the central mechanisms 

controlling autonomic function in humans are difficult to assess. It is possible that 

central nervous system adaptations were not present, or saturation of vagal 

modulation also exist in healthy adolescents (Kiviniemi et al., 2006, Kiviniemi et al., 

2004). To avoid a possible saturation effect, future studies are encouraged to 

investigate the autonomic and vascular determinants in children at a higher CVD risk, 

such as obese, diabetic or hypertensive youth, or youth with low levels of PA and CRF. 

Finally, this thesis was limited to the investigation of only one model of exercise and 

alternative models of interventions such as football, basketball, rugby, amongst others 

team sports are also encouraged due to the high-intensity characteristics of these 

exercises (Krustrup et al., 2014).  

11.1.6 Postprandial state 

Given that increases in [TAG] and [GLU] during the postprandial state in youth are 

associated with mortality in adulthood (Morrison et al., 2009, Franks et al., 2010), the 

work within thesis also addressed the postprandial state. Chapter 6 aimed to 

investigate the associations between PA intensities, CRF and postprandial TAG, HRV, 

and arterial stiffness. There were no significant associations between postprandial 

lipaemia and MPA, VPA and CRF. It is worth highlighting that participants were asked 

to refrain from any strenuous exercise 48 h before completing the HFM protocol, and 

the findings replicate adult cross-sectional investigations were lack of exercise ~ 60 h 
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before the ingestion of the HFM was the main determinant of postprandial lipaemia 

compared to training status (Tsetsonis et al., 1997, Peddie et al., 2012, Herd et al., 

2000). The present work in healthy adolescents further contributes to this topic and 

indicates that the effects of exercise on postprandial lipaemia is due to the last bout 

effect (Maraki and Sidossis, 2013). Future work is encouraged to investigate whether 

the lack of association between MPA, VPA and postprandial [TAG] in the present 

cross-sectional study is indeed due to the fact participants refrained from exercise in 

the 48 h before data collection took place.  

Although extensions of these new and original findings are warranted, the lack of 

significant associations between PA levels and postprandial lipaemia might indicate 

that PA does not improve mechanisms by which exercise decrease postprandial 

responses. Candidate mechanisms are increases in lipoprotein lipase activity (Seip 

and Semenkovich, 1998), when exercise is performed around 16 h before the 

ingestion of the HFM (Tolfrey et al., 2014), or  a greater hepatic fatty acid oxidation 

evidenced by a positive association (r = 0.61) between 3-hydroxybutyrate and TAG 

responses when exercise is performed around one hour before the HFM (Bond et al., 

2015b). Future investigations isolating the mechanisms by which PA and CRF may 

alter postprandial lipaemia will further contribute to the identification of exercise 

protocols or duration of weekly PA needed to modulate postprandial lipaemia through 

PA.  

In addition to the HFM in Chapter 6, Chapter 9 aimed to investigate whether the 

autonomic and vascular determinants of BRS are altered following an oral glucose 

challenge. This chapter also investigates whether exercise performed before the 

glucose challenge modifies the postprandial outcomes and is dependent on exercise 
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intensity. It was noted that in Chapter 6 HRV decreased following the ingestion of a 

HFM, whereas in Chapter 9 the ingestion of a glucose load led to an increase in HRV. 

The mechanisms by which a fat or glucose load may differentially alter the autonomic 

indices in healthy adolescents in unknown, however previous investigations have 

shown an increase in vascular function following the ingestion of GLU in children 

(Dengel et al., 2007). This is also somewhat dissonant of the observed drop in the 

BRS autonomic determinant following the ingestion of a glucose load in Chapter 9. It 

is likely that the rises in [GLU] led to increases in the sympathetic control of the 

vasomotor activity, reflected in an increase in the low-frequency component of BP 

variability (Floras, 2013). On the contrary, no concomitant effect of [GLU] was 

observed on the low-frequency of HRV (Chapter 9). As a consequence, the different 

effects of GLU on BP variability and HRV may explain the decrease of the overall BRS 

(Chapter 9), without modification of HRV.  

In addition to the associations between habitual PA and postprandial state, the acute 

effects of exercise on postprandial responses were addressed in this thesis. It was 

hypothesised that an increase in oxidative stress caused either by the glucose or lipid 

load would decrease arterial compliance, via reduced NO bioavailability (Lacroix et al., 

2012). However, in the present thesis vascular compliance and stiffness did not 

change in the postprandial state. Several aspects may underpin these findings. First, 

a decrease in NO bioavailability may not be associated with arterial stiffening (Horvath 

et al., 2012); second, glucose ingestion has been demonstrated to increase arterial 

function in healthy children (Dengel et al., 2007); and third, the local and regional 

arterial stiffness assessments in the present thesis may not suffer from postprandial 

effects, as different responses were reported in adults in the femoral but not peripheral 

arteries (Baynard et al., 2009). The lack of effects of the meals arterial function in the 
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present thesis therefore impede the hypothesis of the protective effects of exercise to 

be tested and future investigations are needed to investigate a possible dissociation 

between vascular function and stiffness following the ingestion of glucose or lipids and 

the role of exercise, PA and CRF. 

11.2 Practical applications 

11.2.1 Physical activity 

Lack of PA is considered one of the main health problems in the world (WHO, 2014), 

with over 80% of adolescents worldwide failing to achieve a minimum of 60 min·day-1 

of MVPA (Hallal et al., 2012). As such, it is important to highlight the amount of VPA 

performed by the adolescents in Chapter 5 in which positive associations were 

observed with rest and recovery autonomic function. Girls and boys who took part in 

Chapter 5 performed a total of ~ 6 and ~ 15 min·day-1 of VPA. This thesis also provided 

novel mechanisms by which a small dose of PA can alter overall health via its 

associations with cardiac autonomic function, as opposed to traditional CVD risk 

factors. Importantly, the identification of novel CVD risk factors is supported by the 

American Heart Association (Balagopal et al., 2011).Based on these findings, 

adolescents are encouraged to perform around 15 min·day-1 of VPA aiming to have 

high resting and recovery autonomic functions. It is also likely that girls benefit from a 

lower dose given that in Chapter 5 girls who performed 2 min·day-1 of VPA presented 

faster parasympathetic reactivation following exercise.  

Given that the postprandial state in youth is positively associated with CVD risk in 

adults (Morrison et al., 2009, Franks et al., 2010), strategies to modulate postprandial 

lipaemia and glycaemia may decrease CVD burden in this population. Chapter 6 failed 

to demonstrate a significant association between VPA and MPA with postprandial 
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[TAG]. This was attributed to the fact that participants avoided exercise for 48 h. Based 

on these findings, and other experimental studies showing a blunted postprandial 

[TAG] and [GLU] response when exercise is performed on the day before (Tolfrey et 

al., 2014, Cockcroft et al., 2017b) or on the same day (Bond et al., 2014, Bond et al., 

2015b, Cockcroft et al., 2015) (see also Chapter 9 where a moderate decrease in GLU 

was noted for HIIE), adolescents are encouraged to perform MPA and VPA on a daily 

basis, with it likely that VPA may promote a superior effect(Bond et al., 2015b).  

11.2.2 Exercise intervention 

The work within Chapter 10 has practical applications in a broad context of conducting 

an exercise intervention in a school setting. This is especially important as adolescents 

spend most of the day at school, and a recent review of systematic reviews concluded 

that school-based interventions are promising to increase PA and CRF in healthy 

youth (Kriemler et al., 2011). Furthermore, the work in Chapter 10 becomes especially 

interesting given the findings of a recent narrative review investigating the effects of 

HIIE interventions in a school setting (Bond et al., 2017a), highlighting the growth in 

number and quality of investigations in the last decade involving HIIE. The results of 

the review suggest that this type of intervention is promising for improvements in 

traditional and potentially novel CVD risk factors in youth (Bond et al., 2017a).  

As such, given the excellent compliance (100%) with the HIIE protocol adopted in a 

school setting in Chapter 10, together with the fact that adolescents have reported to 

prefer HIIE over MIIE, and also find HIIE more enjoyable (Malik et al., 2018, Malik et 

al., 2017), the current HIIE regimen may be used in schools as a training intervention 

aiming to target VPA (total duration of at least 23 min·day-1). This protocol is 
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particularly attractive as it has minimum cost and can be performed before school 

activities with minimal equipment (e.g., cones and whistles). 

Additionally, adolescents in a school setting typically face stressful situations such as 

mental arithmetic, public speaking and reaction time tasks. An exaggerated BP 

response to these situations is associated with CVD development in youth via changes 

in autonomic and vascular functions (Roemmich et al., 2014). Consequently, based 

on the findings from Chapter 8 in which a sustained decrease in BP lasting at least 

one hour was observed following 8 x 1 min of high-intensity running, HIIE at school is 

encouraged to this population, reinforcing another possible pathway that HIIE training 

at school can be used to target CVD risk reduction.  

11.3 Strengths and limitations 

One strength of this thesis is the variety of research designs, such as a systematic 

review, cross-sectional investigations, and experimental cross-over and randomised 

controlled trials, which were applied. Therefore, the presented work provides a 

significant and original contribution to the literature on changes in the autonomic and 

vascular systems through PA, CRF and exercise in adolescents. Additionally, a 

multitude of methodological approaches were used to investigate autonomic function, 

vascular stiffness and compliance, and the possible interplay between these systems 

at rest, in the postprandial state, and following acute and chronic exercise.  

However, as in all research investigations, the findings should be interpreted 

considering several limitations. This is especially accentuated when working with 

paediatric groups which limits physiological measurements to non-invasive 

approaches. This is also extended to recruitment challenges at schools which 

inevitably leads to the inclusion of a biased sample of healthy and active volunteers.  
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For example, the levels of habitual PA measured in the participants in Chapters 5 and 

6 are higher compared to the adolescent literature, as just one participant was not 

meeting the current PA guideline of at least 60 min·day-1 of MVPA. Similarly, only 13 

of the 72 participants who took part in Chapters 5 – 9 presented CRF below the ideal 

cardiovascular health threshold suggested by Ruiz et al. (2014). In addition, only 21 

(18%) of the 95 participants in Chapters 5 – 10 were classified as overweight/obese 

based on the BF%. As a consequence, data in the present thesis is mainly limited to 

active and fit participants with a healthy body weight status. This limitation is an 

important caveat, as CVD risk is increased in physically inactive, unfit, and 

overweight/obese adolescents.  

This recruitment bias might reflect the obtained BRS and HRV data. For example, 

participants presented resting BRS of 24.4 ± 5.6 ms·mmHg-1 (Chapters 7 – 9) and 

22.5 ± 8.3 ms·mmHg-1(Chapter 10) which are higher than the percentile 95th obtained 

from a sample of 229 adolescents boys and girls (Zavodna et al., 2006). Similarly, 

participants in Chapter 5 were above the 75th percentile and participants in Chapter 

10 were above 90th percentile for HRV indices taken from normative values published 

in a large (n = 1,152) sample of healthy adolescents (Farah et al., 2014). 

Additionally, it is possible that the cut-off points used in the present thesis to quantify 

PA intensities may have miss-classified MVPA in Chapters 5 and 6. The validation 

was performed in laboratory conditions using a different sample of adolescents 

(Phillips et al., 2013), which limits the between-individual application of cut-off points. 

Cut-off points, however, are the best approach to divide PA into intensities considering 

feasibility of daily PA assessment (Loprinzi and Cardinal, 2011). Likewise, 

accelerometer data were treated using 60 second epochs which might have 
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underestimated the PA levels, especially VPA (Sanders et al., 2014). However, this is 

unclear as the literature has not yet addressed the effect of epoch lengths obtained 

from GENEActiv accelerometers. Similarly, although the ramp test applied to measure 

CRF in Chapters 5 and 6 has been validated previously (Bongers et al., 2013), CRF 

in Chapters 5 and 6 was obtained using an indirect assessment, which may have led 

to different estimations of CRF. The choice of an indirect CRF approach was based 

on the feasibility of performing the study in a school-based laboratory. Indirect 

assessment of CRF is also common practice and most of the literature shows 

associations between indirectly obtained CRF and CVD risk in youth (including 

Chapter 5) across a range of approaches such as peak power, shuttle run, and 

submaximal protocols (Ekelund et al., 2007).  

Another limitation is that Chapters 7 – 10 included only adolescent boys, and it is not 

clear whether the findings extend to girls. Future studies involving girls are needed as 

when age matched to boys, girls are typically less active and less fit (i.e. findings in 

Chapter 4 and 5). Likewise, maturation has been shown to differently decrease arterial 

stiffness of girls, whereas in boys stiffening of the arteries are observed (Ahimastos et 

al., 2003). These observations suggest that responses to exercise training and PA 

may vary between sexes.  

Although the present thesis provides initial ideas on the effects of PA intensities, CRF 

and exercise training on autonomic function in adolescents, the clinical significance of 

autonomic function in this population is not clear. Longitudinal studies are still 

warranted to identify the optimal autonomic function associated with a lowered CVD 

risk. However, as evidenced in the adult literature, which demonstrates the clinical 

significance of cardiac autonomic measures and its association with overt CVD 
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(Thayer and Lane, 2007), the present findings suggest protective effects of PA 

intensities in youth.    

The postprandial lipaemia approach in Chapter 6 was completed using a two-hour 

protocol, with a single assessment of lipid concentration following the ingestion of the 

HFM. This inevitably led to an underrepresentation of the lipaemic response, which 

has been shown to be elevated up to four hours following the ingestion of a HFM in 

adolescents (Bond et al., 2014). This approach was used due to feasibility of 

performing the study in a school setting and presents ecological validity compared to 

laboratory approaches.  

In Chapters 7 – 10 CCA compliance was determined using pulse pressure derived 

from the Finometer. The validity of determining CCA with pressure measures obtained 

distant from the carotid has been questioned (Steinback et al., 2005). This is likely to 

have influenced the measurements obtained. Likewise, measurements of 

endothelial/arterial function were not performed limiting the current approach to 

compliance assessments. Additionally, the autonomic determinant of BRS obtained in 

the present thesis, although used previously in adolescents (Lenard et al., 2004), has 

not been validated. Furthermore, the spontaneous BRS assessment is limited to the 

investigation of the operating point of the BRS curve (Schwartz et al., 2013), and the 

factors associated with increases and decreases in the gain may differ between 

chapters.  

Finally, the HIIE intervention in the present thesis lasted only for four weeks and it is 

likely that a longer period of HIIE training would cause adaptations in the autonomic 

and vascular systems. However, to date a time-course of adaptation of the autonomic 
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and vascular system in youth has not been demonstrated and future studies are 

needed in this area. 

11.4 Conclusions 

The present thesis is the first to comprehensively investigate the role of PA intensities, 

CRF and exercise on cardiac autonomic and vascular stiffness in healthy adolescents. 

The work within this thesis shows that previous literature was unclear about the 

possible cross-sectional associations between PA intensities, CRF and resting cardiac 

autonomic function. The experimental chapters extend current knowledge showing a 

positive association for VPA and MPA on resting cardiovagal function, and a stronger 

influence of VPA on recovery of vagal activity following exercise. It was also 

demonstrated that the control of BP by the baroreceptors can be determined reliably 

in healthy adolescents. Furthermore, the intensity of the exercise stimuli is responsible 

for the acute observed differences in the interplay between the vascular and 

autonomic systems, assessed as BRS control of BP. Postprandial hyperglycaemia 

and hyperlipaemia had little influence on autonomic function, vascular stiffness, and 

the interplay between these systems via the BRS. Finally, HIIE training did not change 

BRS, arterial compliance and cardiac autonomic function at rest or at acute recovery 

following exercise.   
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Un i ted  K ingdom  
 
Telephone +44 (0)1392 722807 
Fax +44 (0)1392 724726 
Email sshs-school-office@exeter.ac.uk 
Web sshs.exeter.ac.uk 

Participant Information Sheet 
 

Study: The health benefits of 4 weeks of running training in adolescents 
Researcher: Ricardo Santos Oliveira 
Organisation: The University of Exeter 
Version: V1. 12.01.2017 
 
 
 

 
1. What is the purpose of the study?  
This study will investigate how running training at a high intensity affects your blood vessels 
(in the arm and neck), blood pressure, heartbeats, and the amount of fat and sugar in your 
blood after training for four weeks. 

2. What does this study involve? 
 
This study will be completed in the laboratories of the Children’s Health and Exercise Research 
Centre (University of Exeter), and in your school. You will be asked to complete four visits of 
tests at the university. Each day will last between 2 and 6 hours, and you will be picked up 
either from home or school in the morning and returned to home or school in the afternoon. 
In addition, you will be randomly drawn to take part in either a training group involving high-
intensity exercise or a non-training (control) group. Details of each visit and the exercise 
training are outlined below: 
 
Visit 1 (University of Exeter) 
You will be required to not eat anything after 8 pm in the night before the visit and not eat 
breakfast on the morning of the visit. We will take a small amount of blood from your 
fingertip. Then, your height and weight will be measured, followed by the measurement of 
your body fatness. For the body fatness assessment, you will be asked to wear light clothes 
and enter in a capsule machine that looks like a spaceship. You will then be asked to lie down 

Thank you for your interest. Please read this information carefully and discuss 

the study with your parents/guardians before deciding whether or not to sign the 

consent form.  
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for 10 minutes when your blood pressure will be monitored using a cuff around your finger, 
and after your neck and arm blood vessels will be scanned using ultrasound. A cuff will be 
inflated around your arm for 5 min during one of the scans. Afterwards, you will be asked to 
complete a shuttle run test. The test will start at a low speed, and then the speed will increase 
slowly until you reach exhaustion. During this test, you will wear a strap around your chest to 
measure your heart rate.  
 
Visit 2 (University of Exeter)  
You will be required to not eat anything after 8 pm as in the visit 1. On arrival at the 
laboratories, you will be asked to asked to lie down for 10 minutes when your blood pressure 
will be monitored using a cuff around your finger. Afterwards, your neck and arm blood 
vessels will be scanned using ultrasound. A cuff will be inflated around your arm for 5 min 
during one of the scans, as in visit 1. Then you will perform 8 high intensity runs of 1 minute 
with 75 s between the runs. After this, we will repeat the measurements of blood pressure, 
and the scans of the arteries in your neck and arm for two more times.  
 
Visit 3 (University of Exeter)  
This will be identical as visit 2, and will happen after four weeks of training.  
 
Visit 4 (University of Exeter)  
This will take place two weeks after the last training session and will be identical to visit 1, 
apart from you will not be asked to complete the running test to exhaustion.  
 
After completing visit 1, you will be randomly drawn to join either a training or non-training 
(control) group.  
 
If you are in the training group, you will complete running training for four weeks divided into 
3 training sessions per week. The training will be performed and supervised at the school and 
will last 30 – 40 min:  

 Weeks 1 and 2: One set of eight runs of 1 minute, with 75 seconds of rest between 
the runs 

 Week 3: One set of ten runs of 1 minute, with 75 seconds of rest between the runs 

 Week 4: One set of twelve runs of 1 minute, with 75 seconds of rest between the 
runs 

 
If you are in the control group, you will be asked to complete the visits at the university. You 
will be completing your normal daily routines, but will be asked not to engage in exercise 
training programs for the duration of the study.  

 
3. What else do I have to do? 
 
You will need to bring suitable kit for exercise during the university visits (shorts, t-shirt and 
trainers). You will also be asked to wear a watch for several days during the study. You will 
also be asked to fill a food diary detailing the amount and type of food you eat for two days. 
Both food diary and watch devices will be delivered to you at your school and/or send by post 
to your home address. Participants in the training group will be asked to bring exercise kit for 
all training sessions which will take place at school. Finally, we will show you five pictures of 
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physical maturation and you will be asked to choose the one that best represents your current 
physical development. You will self-assess your physical development in privacy. It is a routine 
measure in studies involving children and adolescents. We would also encourage you to ask 
as many questions as you please. We hope that your participation in the project inspires you 
to think about your health and the potential of higher education.   
 
4. What are the possible risks for me if I decide to take part? 
 
All the procedures used in the study are regularly used in research with adolescents. The 
minimal risks include tiredness after the shuttle run test and you may feel light muscle pain 
in the two days following. You may experience a feeling of ‘pins and needles’ in your left hand 
during the cuff inflation which will disappear after cuff deflation. The blood sampling may 
cause a feeling of a slight pin prick. The completion of a health assessment form by you, 
together with your parents, prior to the study, will ensure your safety to participate.  
 
5. What will be my gains from taking part in this study?  
 
This study will look at how four weeks of high-intensity running training affects the health of 
your heart and blood vessels. Whilst this may not immediately benefit you, we hope that you 
will enjoy your participation in the project and the chance to be part of a scientific study. At 
the Children’s Health and Exercise Research Centre, we pride ourselves on ensuring that each 
volunteer has an enjoyable and informative experience throughout every research project. 
We hope that we can inspire you to take an interest in your health and in the science of 
exercise, and that this project will be both interesting and fun. You will also receive certificates 
for participation in a scientific project that you can use in your CV, as well as feedback with 
your health status. 
 
6. What will happen to the results of the study? 

 
Your data will be stored in coded form to protect anonymity and will be completely 
confidential. This research will form part of a PhD thesis, and this study will also be submitted 
to relevant scientific journals for publication. Your information and data will not be 
identifiable in either of these instances. You will be sent a summary of the research findings 
once all data have been collected and analysed, as well as your individual data with a full 
explanation of what it represents should you so wish. 
 
7. What should I do if I would like to take part? 

 
Please note that your participation must be decided together with your parents. If you would 
like to take part in the study you and your parents must give your permission by completing 
the following forms which are included in this information pack.  
 

 The contact information form 

 The parental consent form 

 The participant assent form  

 The health screen questionnaire 
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You should then return these forms to the school reception. We will then make contact with 
the teachers and the school to arrange the schedule for tests. 
 
Taking part is entirely voluntary and it is up to you to decide whether or not you will be 
involved. If you want to take part you are still free to withdraw at any time, without giving a 
reason. If you have any questions regarding the nature or purpose of this study, please feel 
free to contact Ricardo Oliveira (primary investigator).   

Primary investigators: 
Ricardo Santos Oliveira 
rso201@exeter.ac.uk 
01392 724889 
Sascha Kranen  
shk205@exeter.ac.uk 
01392 724889 
 

Project coordinators: 
Dr Alan Barker 

A.R.Barker@exeter.ac.uk 
01392 722766 

Professor Craig Williams 
c.a.williams@exeter.ac.uk 

01392-724890 
 

mailto:rso201@exeter.ac.uk
mailto:Shk205@exeter.ac.uk
mailto:A.R.Barker@exeter.ac.uk
mailto:c.a.williams@exeter.ac.uk
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Web sshs.exeter.ac.uk 

Parent/Guardian Consent Form 

 

Study: The health benefits of 4 weeks of running training in adolescents 
Researcher: Ricardo Santos Oliveira 
Organisation: The University of Exeter 
Version: 1. 12.01.2017 

 

 
I have read the information sheet, version V1. 12.01.2017, regarding this project and 
understand the rationale for the study and what my child will be asked to do.  I have had the 
chance to ask questions about the study, and I have received satisfactory answers to any 
questions I have asked.   
 
 
Please put your initials in the small boxes to indicate you understand that: 
         

 

 My child will complete four days of tests at the University of Exeter and he can withdraw 
whenever he wants. 
 

 My child will have his height, weight, and body fat measured.  
 

 My child will assess their own pubertal status using scientific drawings of secondary sexual 
characteristics. The purpose of this has been made clear to me.  
 

 My child will be asked to complete a shuttle run test until exhaustion. 
 

 My child will perform a bout of high-intensity running on two occasions. 
 

 My child will be randomly assigned to a training group or a control group. 
 

 If my child is allocated to the training group, he will complete 3 running training sessions at 
a high-intensity per week (~ 30 – 40 min each) for 4 weeks. 
 

 My child’s arteries in the left upper arm and the neck will be scanned via ultrasound. 
 

 A cuff will be placed around my child’s arm and will be inflated for five minutes. He  
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might feel a sensation of ‘pins and needles’ in his/her hand. 
 

 A small amount of blood will be taken from my child’s fingertip on the testing days. He 
might feel a slight pinprick in his/her finger during this procedure.  
 

 My child will be asked to wear an accelerometer (a watch-like device to measure his 
physical activity levels) for several days during the study period. 
 

 My child will be asked to not eat after 8 pm the night before and to not have breakfast on 
the testing day to that I will be informed. 48 hours before the test day my child will be ask to 
complete a food diary.  
 
 

 I am free to request further information at any stage.   
 

 
 
I know that:  
 

 My child’s participation in the project is entirely voluntary and he is free to withdraw from 
the project at any time without giving reason. 
 

 The results will be stored confidentially on a computer for sole use by the Children’s Health 
and Exercise Research Centre, University of Exeter. 
 

 The results of the project may be published but my child’s anonymity will be preserved. 
 
 
 
 
Name………………………………………………………… 
 
Signed  ………………………………………………………….  (Parent/Guardian)    
 
Date…………………………………………………………. 
 
On behalf of my child ………………………………………………………………… 
 
 
 
Name………………………………………………………… 
 
Signed  ………………………………………………………….  (Researcher)    
 
Date…………………………………………………………. 
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Web sshs.exeter.ac.uk 

Participant Assent Form (to be completed by the child) 

 
Study: The health benefits of 4 weeks of running training in adolescents 
Researcher: Ricardo Santos Oliveira 
Organisation: The University of Exeter 
Version: 1. 12.01.2017 
 
I agree to take part in the study as described in the information sheet version V1. 12.01.2017. 
The study has been clearly explained to me and I have had the opportunity to ask any 
questions I may have about my involvement in the study.  
 
 
Please write your initials in the small boxes to indicate you understand that: 
 
 

 I will complete four days of tests at the University of Exeter and I can withdraw from them 
whenever I want to.  

 

 I will have my height, weight, and body fat measured. 
 

 I will assess my pubertal status using scientific drawings of physical development. The 
purpose of this has been made clear to me.  
 

 I will be asked to complete a shuttle run test until exhaustion. 
 

 I will perform a high-intensity running session on two visits at the University. 
 

 I will be randomly drawn to a training group or a control group. 
 

 In case I will take part in the training group, I will complete 3 running training sessions at a 
high-intensity per week (~ 30 – 40 min each) for 4 weeks. 

 

 My arteries in the left upper arm and the neck will be scanned using an ultrasound. 
 

 A cuff will be placed around my arm that will be inflated for five minutes. I might feel a  
sensation of ‘pins and needles’ in my hand. 
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 A small amount of blood will be taken from my fingertip on the testing days. I might feel a 
slight pinprick in my finger during this procedure. 
 

 I will be asked not to eat after 8 pm the night before and not to have breakfast on the 
testing day to that I will be informed. I will also be asked to complete a food diary 2 days 
before the visits to the university  
 

 I will be asked to wear an accelerometer, a watch-like device that will measure my physical 
activity levels, for several days during the study period.  
 
 

 I am free to ask any questions at any time.  
 
 
 
I know that: 
 

 I can withdraw from the study at any point with no questions asked.  
 

 
 
 
Name   ……………………………………………………………………….   
 
Signed  ……………………………………………………………………….   (Participant) 
 
Date  ………………………………………………………………………. 
 
 
 
 

Name   ……………………………………………………………………….   
 
Signed  ……………………………………………………………………….   (Researcher) 
 
Date  ………………………………………………………………………. 
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HEALTH SCREEN FOR CHILD V̇OLUNTEERS (PARENTAL FORM) 

 

Name of child:    ………………………………….. 

Height: …………………………………… (please provide in cm or feet)  

Weight: …………………………………..  (please provide in kg or stone) 

 

It is important that volunteers participating in research studies are currently in good health 

and have had no significant medical problems in the past. This is: 

 

i) To ensure their own continuing well-being 

ii) To avoid the possibility of individual health issues confounding study 

outcomes 

 

Your answers to the questions in this questionnaire, on behalf of your child, are strictly 

confidential. 

 

Please complete this brief questionnaire to confirm your child’s fitness to participate: 

 

1. At present, does your child have any health problem for which they are: 

(a) On medication, prescribed or otherwise …………. YES □ NO □ 

(b) Attending a general practitioner ………………….         YES □ NO □ 

(c) On a hospital waiting list …………………………         YES □ NO □ 

 

 

2. In the past two years, has your child had any illness that required them to: 

(a) Consult your family GP…………………………..         YES □ NO □ 

(b) Attend a hospital outpatient department …………         YES □ NO □ 

(c) Be admitted to hospital…………………………...         YES □ NO □ 

 

 

3. Has your child ever had any of the following: 

(a) Convulsions/epilepsy …………………………….         YES □ NO □ 

(b) Asthma …………………………………………...         YES □ NO □ 

(c) Eczema …………………………………………...        YES □ NO □ 

(d) Diabetes …………………………………………..        YES □ NO □ 

(e) A blood disorder ………………………………….        YES □ NO □ 

(f) Head injury ……………………………………….        YES □ NO □ 
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(g) Digestive problems ……………………………….         YES □ NO □ 

(h) Heart problems ……………………………………        YES □ NO □ 

(i) Lung problems ……………………………………         YES □ NO □ 

(j) Problems with bones or joints …………………….        YES □ NO □ 

(k) Disturbance of balance/coordination ……………..         YES □ NO □ 

(l) Numbness in hands or feet ……………………….          YES □ NO □ 

(m) Disturbance of vision ……………………………..         YES □ NO □ 

(n) Ear/hearing problems ……………………………..         YES □ NO □ 

(o) Thyroid problems …………………………………         YES □ NO □ 

(p) Kidney or liver problems …………………………          YES □ NO □ 

(q) Allergy to nuts ……………………………………          YES □ NO □ 

(r) Eating disorder ……………………………………          YES □ NO □ 

 

 

4. Do you know of any other reason why your child should not engage in physical 

activity? 

 YES □  NO □ 

 

 

If YES to any question, please describe briefly (for example, to confirm the problem 

was/is short-lived, insignificant or well controlled). 

 

A member of our research team may contact you if we have any further questions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thank you for your cooperation  

Primary investigators: 
Ricardo Santos Oliveira 
rso201@exeter.ac.uk 
01392 724889 
Sascha Kranen  
shk205@exeter.ac.uk 
01392 724889 
 

Project coordinators: 
Dr Alan Barker 

A.R.Barker@exeter.ac.uk 
01392 722766 

Professor Craig Williams 
c.a.williams@exeter.ac.uk 

01392-724890 
 

mailto:rso201@exeter.ac.uk
mailto:Shk205@exeter.ac.uk
mailto:A.R.Barker@exeter.ac.uk
mailto:c.a.williams@exeter.ac.uk
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Study: The health benefits of 4 weeks of running training in adolescents 
Researcher: Ricardo Santos Oliveira 
Organisation: The University of Exeter 
Version: 1. 12.01.2017 
 
 

 Contact details 
 
 
 
 

Child’s name: _______________________________________________________ 
 

Parent’s/guardian’s name: ________________________________________ 
 

Address: __________________________________________ 
 
             __________________________________________ 
 
Postcode: ___________________________________________________________ 
 

 
Home telephone: _________________________________________________ 
 
Mobile telephone: ________________________________________________ 
 

Email address: ___________________________________________________ 

 
Best time to contact you: __________________________________________ 
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Appendix 3 – Search strategy 

1 heart rate.ti,ab. 
2 (resting or variability or recovery).ti,ab.  
3 1 adj2 2  
4 spectral analysis.ti,ab.  
5 (high or low) adj frequency.ti,ab.  
6 time-domain.ti,ab.  
7 frequency-domain.ti,ab.  
8 autonomic modulation.ti,ab.  
9 autonomic nervous system.ti,ab.   
10 cardiac autonomic function.ti,ab.  
11 cardiovagal modulation.ti,ab. 
12 vagal adj (activity or tonus or modulation).ti,ab. 
13 baroreflex.ti,ab. 
14 (sympathetic or parasympathetic).ti,ab. 
15 *autonomic nervous system/ or *parasympathetic nervous system/ or *vagus nerve/ 
or *sympathetic nervous system/ or exp vasomotor system/ 
16 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15  
17 arterial adj (stiffness or compliance).ti,ab.  
18 pulse adj2 velocity.ti,ab.  
19 flow adj2 dilation.ti,ab.  
20 endothelial adj (function or health).ti,ab. 
21 endothelium.ti,ab. 
22 vascular adj (function or health or stiffness).ti,ab.  
23 vasodilation.ti,ab. 
24 intima media thickness.ti,ab.  
25 atherosclerosis.ti,ab.  
26 carotid.ti,ab.  
27 risk factor*.ti,ab.  
28 (cluster or cardiovascular or metabolic).ti,ab.  
29 27 adj2 28 
30 pressure adj (blood or arterial).ti,ab.  
31 hypercholesterolemia.ti,ab.  
32 cholesterol.ti,ab.  
33 (HDL or LDL).ti,ab. 
34 (high or low) adj2 lipoprotein.ti,ab.  
35lipidemia.ti,ab. 
36 blood lipids.ti,ab.  
37 body composition.ti,ab.  
38 (body adj2 index).ti,ab.  
39 overweight.ti,ab.  
40 percent* body fat.ti,ab.  
41 fitness.ti,ab.  
42 acceleromet*.ti,ab.  
43 peak oxygen consumption.ti,ab.  
44 maximal oxygen uptake.ti,ab. 
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45 aerob* adj (performance or capacity or power).ti,ab. 
46 physical* adj (activ* or inactiv*).ti,ab.  
47 sedentar*.ti,ab.  
48 sedentary adj (time or behavio?r).ti,ab.  
49 (unfit or low fitness).ti,ab. 
50 (metabolic adj (syndrome or health)).ti,ab.  
 
51 exp physical endurance/ or *physical fitness/  
52 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 29 or 30 or 31 or 32 or 
33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 
or 48 or 49 or 50 or 51 
53 infan*.ti,ab. 
54 child*.ti,ab.  
55 schoolchild*.ti,ab.  
56 pupil*.ti,ab. 
57 adolescen*.ti,ab. 
58 (prepubescent or post-pubescent or pubescent).ti,ab. 
59 puberty.ti,ab. 
60 (pubertal or post-pubertal or pre-pubertal).ti,ab. 
61 teen*.ti,ab. 
62 kid*1.ti,ab. 
63 (girl*1 or boy*1).ti,ab.  
64 exp child/ 
65 exp adolescent/ 
66 (young or youth).ti,ab. 
67 p?ediatrics.ti,ab.  
68 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 
67 
69 16 and 52 and 68 
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 Appendix 4 – Modified Newcastle-

Ottawa Scale 

 
Adapted version of a modified Newcastle-Ottawa Scale for a single use in a specific context  

 

Modified Newcastle-Ottawa Scale  

 

Legend  

 

0= Definitely No (high risk of bias)  

1= Mostly No  

2= Mostly Yes  

3= Definitely Yes (low risk of bias)  

 

Domain of evaluation: Methods for selecting study participants (i.e. Selection Bias)  

 

Is the source population (cases, controls, cohorts) appropriate and representative of the 

population of interest? 

 

 0    1    2    3  

(high risk of bias)               (low risk of bias)  

 

Example of low risk of bias: A consecutive sample or random selection from a population 

that is representative of the condition under study.  

 

Example of moderate risk of bias: A consecutive sample or random selection from a 

population that is not highly representative of the outcome of interest.   

 

Example of high risk of bias: The source population cannot be defined or enumerated (i.e.  

volunteering or self-recruitment).  

 

 

Domain of evaluation: Methods to control for confounding (i.e. Performance Bias)  
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Is the sample size sufficient and is there sufficient power to detect a meaningful 

difference in the outcome of interest?  

 

 0    1    2    3  

(high risk of bias)               (low risk of bias)  

 

Example of low risk of bias: Sample size was adequate and there was sufficient power to 

detect a difference in the outcome.   

 

Example of high risk of bias: Sample size was small and there was not enough power to test 

the outcome of interest.   

 

 

 

Did the study adjust for any variables or confounders that may influence the outcome? 

 0    1    2    3  

(high risk of bias)               (low risk of bias)  

 

Example of low risk of bias: The study identified and adjusted for all possible confounders 

that may influence the estimates of association between exposure and outcome.  

 

Examples of moderate risk bias: The study identified and reported possible variables that may 

influence the outcome but did not statistically explore their influence.  

 

Example of high risk of bias: The study either did not report any variables of influence or 

acknowledge any variables of influence when it was clear they were present.  

 

 

Domain of evaluation: Statistical methods (i.e. Detection Bias)  

 

Did the study use appropriate statistical analysis methods relative to the outcome of 

interest? 

 0    1    2    3  

(high risk of bias)               (low risk of bias)  

 

Example of low risk of bias: The study reported use of appropriate statistical analysis as 

required.  

 

Examples of moderate risk bias: The study used either correct statistical methods but did not 

report them well, or used the incorrect methods but reported them in detail.  

 

Example of high risk of bias: The study did not use appropriate statistical analysis as 

required.  
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Is there little missing data and did the study handle it accordingly? 

 0    1    2    3  

(high risk of bias)               (low risk of bias)  

 

Example of low risk of bias: The study acknowledged missing data to be less than 10% and 

specified the method of handling it.  

 

Examples of moderate risk bias: The study either had greater than 15% of missing data but 

they specified the method used to handle it.  

 

Example of high risk of bias: The study had greater than 15% of missing data and did not 

handle it at all.  

 

 

Domain of evaluation: Methods of measuring outcome variables (i.e. Information bias)  

 

Is the methodology of the outcome measurement explicitly stated and is it appropriate? 

 0    1    2    3  

(high risk of bias)               (low risk of bias)  

 

Example of low risk of bias: The study provides a detailed description of the outcome 

measure(s) which are appropriate for the outcome of interest.  

 

Examples of moderate risk bias: The study provides a somewhat complete description of 

outcome measurements that are justified.  

 

Example of high risk of bias: The study provides limited information on the methods of 

measuring the outcome and the measure is not appropriate considering the outcome.   

 

Is there an objective assessment of the outcome of interest? 

 

Example of low risk of bias: The study used objective methods to discern the outcome status 

of participants (i.e. laboratory measurements, medical records)  

 

Examples of moderate risk bias: The study relied on subjective data as the primary method to 

discern the outcome status of participants (i.e. self-report)  

 

Example of high risk of bias: The study had limited reporting about assessment of outcomes.  

 

 

Domain of evaluation: Subject Follow-up  
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Was the follow-up sufficiently long enough for the outcome to occur? 

 0    1    2    3  

(high risk of bias)               (low risk of bias)  

 

 

Was there minimal loss to follow-up and are subjects lost to follow-up unlikely to 

introduce bias? 

 

 0    1    2    3  

(high risk of bias)               (low risk of bias)  

 

Example of low risk of bias: Follow-up was completed for all, or nearly all subjects, and 

reasons for losses to follow-up were well documented.   

 

Example of moderate risk of bias:  Losses to follow-up are not excessive, and reasons for 

losses to follow-up are well documented and mostly unrelated to the outcome.  

 

Example of high risk of bias: Significant loss to follow-up, reasons for losses to followup not 

reported, suspect that reasons for dropouts are related to the outcome.  

 


