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Abstract
With recent advancements in deep convolutional neural networks, researchers in geographic in-
formation science gained access to powerful models to address challenging problems such as
extracting objects from satellite imagery. However, as the underlying techniques are essentially
borrowed from other research fields, e.g., computer vision or machine translation, they are often
not spatially explicit. In this paper, we demonstrate how utilizing the rich information embedded
in spatial contexts (SC) can substantially improve the classification of place types from images
of their facades and interiors. By experimenting with different types of spatial contexts, namely
spatial relatedness, spatial co-location, and spatial sequence pattern, we improve the accuracy
of state-of-the-art models such as ResNet – which are known to outperform humans on the Im-
ageNet dataset – by over 40%. Our study raises awareness for leveraging spatial contexts and
domain knowledge in general in advancing deep learning models, thereby also demonstrating that
theory-driven and data-driven approaches are mutually beneficial.

2012 ACM Subject Classification Computing methodologies → Computer vision tasks, Com-
puting methodologies → Neural networks, Theory of computation → Bayesian analysis
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1 Introduction

Recent advancements in computer vision models and algorithms have quickly permeated
many research domains including GIScience. In remote sensing, computer vision methods
facilitate researchers to utilize satellite images to detect geographic features and classify
land use [5, 26]. In urban planning, researchers collect Google Street View images and
apply computer vision algorithms to study urban change [22]. In cartography, pixel-wise
segmentation has been adopted to extract lane boundary from satellite imagery [32] and
deep convolutional neural network (CNN) has been utilized to recognize multi-digit house
numbers from Google Street View images [10]. These recent breakthroughs in computer
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vision are achieved, in equal parts, due to advances in deep neural networks as well as the
ever-increasing availability of extensive training datasets. For example, the classification
error in the latest image classification challenge using the ImageNet dataset is down to
about 0.023.1

However, such impressive results do not imply that these models have reached a level
in which no further improvement is necessary or meaningful. On the contrary, such deep
learning models which primarily depend on visual signals are susceptible to error. In fact,
studies have shown that deep (convolutional) neural networks suffer from a lack of robustness
to adversarial examples and a tendency towards biases [25]. Researchers have discovered that,
by incorporating adversarial perturbations of inputs that are indistinguishable by humans,
the most advanced deep learning models which have achieved high accuracy on test sets can
be easily fooled [6, 11, 28]. In addition, deep learning models are also vulnerable to biased
patterns learned from the available data and these biases usually resemble many unpleasant
human behaviors in our society. For instance, modern neural information processing systems
such as neural network language models and deep convolutional neural networks have been
criticized for amplifying racial and gender biases [3, 4, 25, 33]. Such biases, which can
be attributed to a discrepancy between the distribution of prototypical examples and the
distribution of more complex real world systems [16], have already caused some public debates.
To give a provocative example, almost three years after users revealed that Google erroneously
labeled photos of black people as “gorillas”, no robust solutions have been established besides
simply removing such labels for now.2

The above-mentioned drawbacks are being addressed by improvements to the available
training data as well as the used methods [23, 3]. In our work, we follow this line of thought to
help improve image classification. In our case, these images depict the facades or interiors of
different types of places, such as restaurants, hotels, and libraries. Classifying images by place
types is a hard problem in that more often than not the training image data is inadequate to
provide a full visual representation of different place types. Solely relying on visual signals,
as most deep convolutional neural networks do, falls short in modeling the feature space
as a result. To give an intuitive example, facades of restaurants may vary substantially
based on the type of restaurant, the target customers, and the surrounding. Their facade
may be partially occluded by trees or cars, may be photographed from different angles and
at different times of the day, and the image may contain parts of other buildings. Put
differently, the principle of spatial heterogeneity implies that there is considerable variation
between places of the same type.

To address this problem and improve classification accuracy, we propose to go beyond
visual stimuli by incorporating spatial contextual information to help offset the visual
representational inadequacy. Although data availability is less of an issue nowadays, the biased
pattern in the data poses a real challenge, especially as models such as deep convolutional
neural networks take a very long time to train. Instead of fine-tuning the parameters (weights)
by collecting and labeling more unbiased data, which are very resource-consuming, we take
advantage of external information, namely spatial context. There are many different ways
one can model such context; in this work, we focus on the types of nearby places. We explore
and compare the value of three different kinds of spatial context, namely spatial relatedness,
spatial co-location, and spatial sequence pattern.

We combine these context models with state-of-the-art deep convolutional neural network
models using search re-ranking algorithms and Bayesian methods. The result shows that,

1 http://image-net.org/challenges/LSVRC/2017/results#loc
2 https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/

http://image-net.org/challenges/LSVRC/2017/results#loc
https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/
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by considering more complex spatial contexts, we can improve the classification accuracy
for different place types. In fact, our results demonstrate that a spatially explicit model
[9], i.e., taking nearby places into account when predicting the place type from an image,
improves the accuracy of leading image classification models by at least 40%. Aside from this
substantial increase in accuracy, we believe that our work also contributes to the broader
and ongoing discussion about the role of and need for theory, i.e., domain knowledge, in
machine learning. Finally, and as indicated in the title, our spatial context (SC ) models,
can be added to any of the popular CNN-based computer vision models such as AlexNet,
ResNet, and DenseNet – abbreviated to xNet here.

The remainder of this paper is organized as follows. Section 2 provides an overview of
existing work on spatial context and methods for incorporating spatial information into
image classification models. Section 3 presents the image classification tasks and provides
information about the convolutional neural network models used in our study. Section 4
explains in detail three different levels of spatial context and ways to combine them in image
classification models. Section 5 presents the results. Finally, Section 6 concludes the research
and points to future directions.

2 Related Work

There is a large body of work that utilizes spatial context to improve existing methods and
provide deeper insights into the rich semantics of contextual information more broadly. For
instance, spatial context has been recognized as a complementary source of information in
computational linguistics. By training word embeddings for different place types derived
from OpenStreetMap (OSM) and Google Places, Cocos and Callison-Burch [7] suggested that
spatial context provides useful information about semantic relatedness. In Points of Interest
(POI) recommendation, spatial context has been used to provide latent representations of POI,
to facilitate the prediction of future visitors [8], and to recommend similar places [34]. By
implementing an information theoretic and distance-lagged augmented spatial context, Yan
et al. [30] demonstrated that high-dimensional place type embeddings learned using spatial
contexts can reproduce human-level similarity judgments with high accuracy. The study
showed that such a spatially explicit Place2Vec model substantially outperforms Word2Vec-
based models that utilize a linguistic-style of context. Liu et al. [21] used spatial contexts to
measure traffic interactions in urban area. In object detection, Heitz and Koller [13] leveraged
spatial contexts in a probabilistic model to improve detection result. Likewise, by embracing
the idea that spatial context provides valuable extrinsic signals, our work analyzes different
kinds of spatial contexts and tests their ability to improve image classification of place types.

Existing work on image classification has realized the importance of including a geographic
component. One direction of research focused on enriching images with geospatial data.
Baatz et al. [1] took advantage of digital elevation models to help geo-localize images in
mountainous terrain. Lin et al. [20] made use of land cover survey data and learned the
complex translation relationship between ground level images and overhead imagery to extend
the reach of image geo-localization. Instead of estimating a precise geo-tag, Lee et al. [19]
trained deep convolutional neural networks to enrich a photo with geographic attributes such
as elevation and population density. Another direction of research (which is more similar to
our study) focused on utilizing geographic information to facilitate image classification. In
order to better understand scenes and improve object region recognition, Yu and Luo [31]
exploited information from seasons and location proximity of images using a probabilistic
graphical model. Berg et al. [2] combined one-vs-most image classifiers with spatiotemporal
class priors to address the problem of distinguishing images of highly similar bird species.

GISc ience 2018
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Tang et al. [29] encoded geographic features extracted from GPS information of images into
convolutional neural networks to improve classification results.

Our work differs from the existing work in that we explicitly exploit the distributional
semantics found in spatial context [30] to improve image classification. Following the linguistic
mantra that one shall know a word by the company it keeps, we argue that one can know
a place type by its neighborhood’s types. This raises the interesting question of how such
a neighborhood should be defined. We will demonstrate different ways in which spatial
contextual signals and visual signals can be combined. We will assess to what extent different
kinds of spatial context, namely spatial relatedness, spatial co-location, and spatial sequence
pattern, can provide such neighborhood information to benefit image classification.

3 Image Classification

In this section, we first describe the image classification task and the data we use. The task is
similar to scene classification but we are specifically interested in classifying different business
venues as opposed to natural environment. Then we explain four different deep convolutional
neural networks that solely leverages the visual signals of images. These convolutional neural
network models are later used as baselines for our experiment.

3.1 Classification Task
Our task is to classify images into one of the several candidate place types. Because we want
to utilize the spatial context in which the image was taken, we need to make sure each image
has a geographic identifier, e.g. geographic coordinates, so that we are able to determine its
neighboring place and their types. In order to classify place types of images, we consider
the scene categories provided by Zhou et al. [35] as they also provide pretrained models
(Places365-CNN) that we can directly use.3 Without losing generality, we select 15 place
types as our candidate class labels. The full list of class labels and their alignment with the
categories in Places365-CNN is shown in Table 1. For each candidate class, we selected 50
images taken in 8 states4 within the US by using Google Maps, Google Street View, and
Yelp. These images include both indoor and outdoor views of each place type. Please note
that classifying place types from facade and interior images is a hard problem and even the
most sophisticated models only distinguish a relatively small number of place types so far
which is nowhere near the approximately 420 types provided by sources such as Foursquare.
Places365, for instance, offers 365 classes but many of these are scenes or landscape features,
such as waves, and not POI type, such as cinemas, in the classical sense.

3.2 Convolutional Neural Network Models
To establish baselines for our study, we selected several state-of-the-art image classification
models, namely deep convolutional neural networks. Unlike traditional image classification
pipelines, CNNs extract features from images automatically based on the error messages that
are backpropagated through the network, thus fewer heuristics and less manual labor are
needed. Contrary to densely connected feedforward neural networks, CNN adopts parameter
sharing to extract common patterns which help capture translation invariance and creates
sparse connections which result in fewer parameters and being less prone to overfitting.

3 https://github.com/CSAILVision/places365/blob/master/categories_places365.txt
4 Arizona, Illinois, Nevada, North Carolina, Ohio, Pennsylvania, South Carolina, and Wisconsin

https://github.com/CSAILVision/places365/blob/master/categories_places365.txt
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Table 1 Class label alignment between Yelp and the Place365 model.

Class label Places365-CNN category
Amusement Parks amusement_park

Bakeries bakery
Bookstores bookstore
Churches church
Cinema movie_theater

Dance Clubs discotheque
Drugstores drugstore, pharmacy
Hospitals hospital, hospital_room
Hotels hotel, hotel_room
Jewelry jewelry_shop
Libraries library
Museums museum, natural_history_museum, science_museum

Restaurants fastfood_restaurant, restaurant, restaurant_kitchen, restaurant_patio
Shoe Stores shoe_shop

Stadiums & Arenas stadium

The architecture of CNNs has been revised numerous times and has become increasingly
sophisticated since its first appearance about 30 years ago. These improvements in architecture
have made CNN more powerful as can be seen in the ImageNet challenge. Some of the
notable architectures include: LeNet [18], AlexNet [17], VGG [24], Inception [27], ResNet
[12], and DenseNet [15]. We selected AlexNet, ResNet with 18 layers (ResNet18), ResNet
with 50 layers (ResNet50), and DenseNet with 161 layers (DenseNet161). AlexNet is among
the first deep neural networks that increased the classification accuracy on ImageNet by
a significant amount compared with traditional classification approaches. By using skip
connections to create residual blocks in the network, ResNet makes it easy to learn identity
functions that help with the vanishing and exploding gradient problems when the network
goes deeper. In DenseNet, a dense connectivity pattern is created by connecting every two
layers so that the error signal can be directly propagated to earlier layers, parameter and
computational efficiency can be increased, and low complexity features can be maintained
[15]. These models were trained on 1.8 million images from the Places365-CNN dataset. We
used the pretrained weights for these models.

4 Spatial Contextual Information

In this section, we introduce three different kinds of spatial contexts and explore ways in
which we can combine them with the CNN models in order to improve image classification.
The first type of spatial context is spatial relatedness, which measures the extend to which
different place types relate with each other. The second type of spatial context is spatial
co-location, which considers what place types tend to co-occur in space and the frequency
they cluster with each other. The third type of spatial context is spatial sequence pattern
which considers both spatial relatedness and spatial co-location. In addition, spatial sequence
pattern considers the interaction between context place types and the inverse relationship
between distance and contextual influence. We use POIs provided by Yelp as dataset.5

5 https://www.yelp.com/dataset
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4.1 Spatial Relatedness

Since the output of CNN is the probability score for each class label, it is possible to interpret
our task as a ranking problem: given an image, rank the candidate class labels based upon
the visual signal and spatial context signal. For the visual signal, we can obtain the ranking
scores (probability scores) from the CNN architectures mentioned in Section 3. Since the
original CNN models has 365 labels, we renormalize the probability scores for each candidate
place type by the sum of the 15 candidate ranking scores so that they sum up to 1. This
renormalization procedure is also applied to the other two spatial context methods explained
in Section 4.2 and Section 4.3. We will refer to the renormalized scores as CNN scores in this
study. For the spatial context signal, the ranking scores are calculated using the place type
embeddings proposed in [30]. These embeddings capture the semantics of different place
types and can be used to measure their similarity and relatedness. In this regard, the task is
equivalent to a re-ranking problem, which adjusts the initial ranking provided by the visual
signal using auxiliary knowledge, namely the spatial context signal. Intuitively, the extent
to which the visual signals from the images match with different place types and the level
of relevance of the surrounding place types with respect to candidate place types jointly
determine the final result.

Inspired by search re-ranking algorithms in information retrieval, we use a Linear Bimodal
Fusion (LBF) method (here essentially a 2-component convex combination), which linearly
combines the ranking scores provided by the CNN model and the spatial relatedness scores,
as shown in Equation 1.

si = ωvsvi + ωrsri (1)

where si, svi , and sri are the LBF score, CNN score, and spatial relatedness score for place
type i respectively, ωv and ωr are the weights for the CNN component and spatial relatedness
component, and ωv+ωr = 1. The weights here are decided based on the relative performance
of individual components. Specifically, the weight is determined using Equation 2.

ωv = accv

accv + accr
(2)

where accv and accr are the accuracies for CNN and spatial relatedness measurements for
the image classification task. Intuitively, this means that we have higher confidence if the
component performs better on its own and want to reflect such confidence using the weight
in the LBF score.

In order to calculate the spatial relatedness scores, we use cosine similarity to measure
the extend to which each candidate class embedding is related with the spatial context
embedding of an image in a high dimensional geospatial semantic feature space. Following
the suggestions in [30], we use a concatenated vector of 350 dimensions (i.e., 70D vectors for
each of 5 distance bins) as the place type embeddings. The candidate class embeddings can
be retrieved directly. Then we search for the nearest n POIs based on the image location,
determine the place types of these n POIs, and calculate the average of these place type
embeddings as the final spatial context embeddings for images. The cosine similarity score
smi is calculated between the spatial context embedding of an image and the embedding
of each candidate place type class i. Because smi ranges from -1 to 1, we use min-max
normalization to scale the values to [0, 1]. Finally, we apply the same renormalization as for
the CNN score to turn the normalized score sm′

i into probability score, i.e. spatial relatedness
score sri .
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Combining these normalizations together with Equation 1 and Equation 2, we are able to
derive that 0 ≤ si ≤ 1 and

∑N
i=1 si = 1 where N = 15 in our case. This means that the LBF

score si can be considered a probability score.

4.2 Spatial Co-location
The spatial relatedness approach follows the assumption that relatedness implies likelihood
which is reasonable in cases where similar place types cluster together, such as restaurant,
bar, and hotel. However, in cases of high spatial heterogeneity, this assumption will fall short
of correctly capturing the true likelihood. An example would be places of dissimilar types
that co-occur, e.g., grocery stores and gas stations. Moreover, the LBF method can only
capture a linear relationship between the two signals.

Following Berg et al.[2], we also test a Bayesian approach in which we assume there is a
complex latent distribution of the data that facilitates our classification task. Intuitively,
the CNN score gives us the probability of each candidate class t given the image I, i.e.,
P (t|I), and the spatial context informs us of the probability of each candidate class given its
neighbors c1, c2, c3, ..., cn, denoted as C, around the image location, i.e., P (t|C). We would
like to obtain the posterior probability of each candidate class given both the image and
its spatial context, i.e., P (t|I, C). Using Bayes’ theorem, the posterior probability can be
written as:

P (t|I, C) = P (I, C|t)P (t)
P (I, C) (3)

For variables I, C, and t, we construct their dependencies using a simple probabilistic
graphical model, i.e., Bayesian network, which assumes that both the image I and the spatial
context C are dependent on the place type t, which intuitively makes sense in that different
place types will result in different images and different place types of their neighbors. We
know that given information about the image I we are able to update our beliefs, i.e., the
probability distributions, about the place type t. In addition, the changes in our beliefs about
the place type t can influence the probability distributions of the spatial context C. However,
if place type t is observed, the influence cannot flow between I and C, thus we are able to
derive the conditional independence of I and C given t. So Equation 3 can be rewritten as:

P (t|I, C) = P (I|t)P (C|t)P (t)
P (I, C)

= P (t|I)P (I)
P (t)

P (t|C)P (C)
P (t)

P (t)
P (I, C)

∝ P (t|I)
P (t) P (t|C) (4)

in which we have dropped all the factors that are not dependent on t as they can be considered
as normalizing constants for our probabilities. It follows that the posterior probability
P (t|I, C) can be computed using the CNN probability score P (t|I), the spatial context prior
P (t|C), and the candidate class prior P (t). Instead of estimating the distribution of spatial
context priors, we take advantage of the spatial co-location patterns and calculate the prior
probabilities using the Yelp POI data directly. As mentioned earlier, the spatial context
C is composed of multiple individual context neighbors c1, c2, c3, ..., cn; hence, we need to
calculate P (t|c1, c2, c3, ..., cn). In order to simplify our calculation, we impose a bag-of-words
assumption as well as a Naive Bayes assumption in the spatial co-location patterns. The
bag-of-words assumption simplifies the model by assuming that the position (or the order) in

GISc ience 2018
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which different context POIs occur does not play a role. The Naive Bayes assumption implies
that the only relationship is the pair-wise interaction between the candidate place type t
and an individual neighbor’s place type ci and there is no interaction between neighboring
places wrt. their types, i.e. (ci |= cj |t) for all ci, cj . Using spatial co-location, we are able to
calculate the conditional probability using place type co-location counts P (ci|t) = count(ci,t)

count(t)
where count(ci, t) is the frequency that neighbor type ci and candidate type t co-locate
within a certain distance limit and count(t) is the frequency of candidate type t in the study
area. Combining all these components, we can derive:

P (t|C) = P (t|c1, c2, ..., cn)

=
P (t)

∏n
i=1 P (ci|t)

P (c1, c2, c3, ..., cn)

= P (t)
P (c1, c2, c3, ..., cn)

∏n
i=1 count(ci, t)
count(t)n (5)

Using Equation 4 and Equation 5, we can derive the final formula for calculating P (t|I, C)
shown in Equation 6. For the sake of numerical stability, we calculate the log probability
logP (t|I, C) using the natural logarithm. Since the natural logarithm is a monotonically
increasing function, it will not affect the final ranking of the classification results.

logP (t|I, C) ∝ log
(
P (t|I)
P (t) P (t|C)

)
= log

(
P (t|I)

P (c1, c2, c3, ..., cn)

∏n
i=1 count(ci, t)
count(t)n

)
∝ logP (t|I) +

n∑
i=1

log(count(ci, t))− nlog(count(t)) (6)

where we also drop P (c1, c2, c3, ..., cn) as it does not depend on t, so it will not affect the
result ranking. The log posterior probability is then used to generate the final ranking of
candidate place types and produce the classification results.

4.3 Spatial Sequence Pattern
The spatial co-location approach follows the bag-of-words assumption that the position of
spatial context POIs does not matter and the Naive Bayes assumption that the context
neighbors are independent of each other. However, in many cases this assumption is too
strong. In fact, numerous methods, such as Kriging and multiple-point geostatistics, have
been devised to model geospatial proximity patterns and complex spatial interaction patterns.
However, incorporating these complex spatial patterns in a multidimensional space would
adversely affect the model complexity and make the distribution in Section 4.2 intractable.
In order to strike the right balance between the complexity of model and the integrity of
spatial context pattern, we propose to capture the spatial sequence pattern in our model by
collapsing the 2D geographic space into a 1D sequence.

Specifically, we use the Long Short-Term Memory (LSTM) network model, a variant of
recurrent neural network (RNN), in our study. Recurrent neural networks are frequently
used models to capture the patterns in sequence or time series data. In theory, the naive
recurrent neural networks can capture long term dependencies in the sequence, however,
due to the vanishing and exploding gradient problem, they fail to do so in practice. LSTM
is explicitly designed to solve the problem by maintaining a cell state and controlling the
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Figure 1 Structure of the LSTM.

input and output flow using forget gate, input gate, and output gate [14]. We use LSTM
as a generative model in order to capture the latent distribution of place types using the
spatial sequence pattern. In the training stage, the input is a sequence of context place
types c1, c2, c3, ..., cn and the output is the place type t of the POI from which the context is
created. The input sequence is ordered in a way so that the previous one is further away
from the output than the next one in the collapsed 1D space. Image one would drive around
a neighborhood before reaching a destination. For each of the POIs encountered during the
route, one would update the beliefs about the neighborhood by considering the current POI
and all previously seen POIs. Upon arriving at the destination, one would have a reasonable
chance of guessing this final POI’s type. The structure of the LSTM model is shown in
Figure 1. We apply a dropout after the LSTM layer to avoid overfitting. After training
the LSTM model on Yelp’s POI dataset, we are able to obtain the spatial context prior
P (t|c1, c2, c3, ..., cn) based on the spatial sequence pattern around the image locations in our
test data. We specifically removed the image locations and their context in the training data.
Similar to the spatial co-location approach, we use Bayesian inference and log probability to
calculate the final result:

logP (t|I, C) ∝ log
(
P (t|I)
P (t) P (t|C)

)
= logP (t|I) + logP (t|c1, c2, c3, ..., cn)− logP (t) (7)

where the candidate class prior P (t) can be computed using the Yelp data. Since we use LSTM
as a generative model, in the prediction phase, sampling strategies, such as greedy search,
beam search, and random sampling, can be applied based on the distribution provided
by the output of the LSTM prediction. However, we only generate the next prediction
instead of a sequence, so we do not apply these sampling strategies. Instead, we make use of
the hyperparameter temperature τ to adjust the probability scores returned by the LSTM
model before combining them with the CNN model in a Bayesian manner. Including the
hyperparameter τ , the softmax function in the LSTM model can be written as:

P (ti|C) =
exp( logitiτ )∑N
j=1 exp(

logitj
τ )

(8)

where logiti is the logit output provided by LSTM before applying the softmax function and
N = 15 in our case. Intuitively, when the temperature τ is high, i.e., τ →∞, the probability
distribution will become diffuse and P (ti|C) will have almost the same value for different ti;
when τ is low, i.e., τ → 0+, the distribution becomes peaky and the largest logiti stands
out to have a probability close to 1. This idea is closely related to the exploration and
exploitation trade-off in many machine learning problems. The value of τ will affect the
probability scores P (ti|C) but not the ranking of these probabilities.

GISc ience 2018
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In this study, we propose two ways to model the 2D geographic space as a 1D sequence.
The first one is a distance-based ordering approach. For any given POI, we search for nearby
POIs within a certain distance from it, choose the closest n POIs, and rearrange them by
distance with descending order, thereby forming a 1D array. This distance-based method is
isotropic in that it does not differentiate between directions while creating the sequence. The
second method is a space filling curve-based approach. We utilize Morton order here which
is also used in geohashing to encode coordinates into an indexing string that can preserve
the locality of spatial locations. We use Morton order to encode the geographic locations of
every POI and order them in a sequence based upon their encodings, i.e., indexing sequence.
After obtaining the sequence, for each POI, we use the previous n POI in the sequence as
the context sequence. Other space filling curves could be used in future work.

Because each POI can have multiple place types associated with it, e.g., restaurant and
beer garden, the sequence of place types is usually not unique for the same sequence of POIs.
As our LSTM input is a sequence of place types, we compute the Cartesian product of all
POI type sets in the sequence of nearby places:

Tc1 × Tc2 × Tc3 × ...× Tcn = {(tc1 , tc2 , tc3 , ..., tcn)|∀i = 1, 2, 3, ..., n, tci ∈ Tci} (9)

where Tci
is the set of place types associated with POI ci in the context sequence. In

practice, however, we randomly sample a fixed number of place type sequences from each
of the Cartesian product for the POI context sequence as the potential combinations grow
exponentially with increasing context size.

5 Experiment and Result

In this section, we explain our experimental setup for the models described above, describe
the metrics used to compare the model performance for place type image classification, and
present the results and findings.

5.1 Implementation Details

For all three types of spatial context, we use 10 as the maximum number of context POIs
and a distance limit of 1000m for the context POI search. For the spatial sequence pattern
approach, we use a fixed sample size of 50 to sample from the Cartesian product of all POI
type sets in the sequence. 6 We use a one-layer LSTM with 64 hidden units. We train our
LSTM model using the recommended Root Mean Square Propagation (RMSProp) optimizer
with a learning rate of 0.005. A dropout ratio of 0.2 is applied in the LSTM and we run
100 epochs. The same settings are used for all LSTM trainings in our experiment. The
total number of POI in the dataset is 115,532, yielding more than 5 million unique training
sequences.

For evaluation, we use three different metrics, namely Mean Reciprocal Rank (MRR),
Accuracy@1, and Accuracy@5. Another common metric for image classification would also
be Mean Average Precision (MAP), but since there is only one true label per type in our
task, we use MMR instead.

6 The median for types per place in Yelp is 3.
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Figure 2 From left to right, MRR result using distance-based sequence, random sequence, and
Morton code-based sequence with varying temperatures

5.2 Results

We run the 750 test images we collected, i.e., 50 images per each of 15 types, on the four CNN
baseline models (AlexNet, ResNet18, ResNet50, and DenseNet161) as well as the combined
models using our three different types of spatial context.7 In addition to the two methods
for converting geographic space into 1D sequences in the spatial sequence pattern approach,
we also test one model using random sequences with the same context count and distance
limits. We did so to study whether results obtained using the LSTM would benefit from
distance-based spatial contexts. A higher result for the spatial sequence based LSTM over
the random LSTM would indicate that the network indeed picked up on the distance signal.

The hyperparameter τ can be adjusted; a value of 0.5 has been proposed as a good choice
before. In order to test this and find the optimal temperature value, we run the combined
model using spatial sequence patterns with three types of sequencing approaches, namely
random sequence, distance-based sequence, and Morton order-based sequence.

We test temperature values ranging from 0.01 to 2 with a step of 0.01. We combine
the spatial sequence pattern models with all CNN models. The MRR result with respect
to temperature are shown in Figure 2. Although there are a slight variations, the MRR
curves all reach their peaks around a τ value of 0.5. This confirms the suggestion from the
literature. Figure 3 shows selected example predictions. The results for MRR, Accuracy@1,
and Accuracy@5 using the baseline models as well as our proposed, spatially explicit models
are shown in Table 2, Table 3, and Table 4.8

As we can see, by incorporating spatial context in the image classification model, we are
able to improve the classification result in general. However, integrating spatial relatedness
using the LBF method does not seem to affect the result. This essentially confirms our
aforementioned assumption that relatedness does not always imply likelihood. The benefit of
incorporating spatial relatedness in cases of spatial homogeneity are likely to be offset by
cases of hight spatial heterogeneity in which spatial relatedness may have an negative effect
as dissimilar places co-occur.

7 Transfer learning could be applied to fine tune the CNN models first, but we only have limited images
and our hypothesis is that spatial context can be used as a powerful complement or alternative to the
visual component for image classification.

8 The baseline models are not comparable with a random classifier which would yield an expected accuracy
of 1/15 in this case, because the baseline CNN models have 365 unique labels and we choose 15 labels
in our experiment.
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Figure 3 From left to right, images of a restaurant, a hotel, and a museum from Yelp, Google
Street View, and Google Maps respectively. The first image is incorrectly classified as library using
all 4 CNN models and it is correctly classified as restaurant using the spatial sequence pattern
(distance) models. The second image is classified as hospital and library by the original CNN models
and is classified as hotel by the spatial sequence pattern (distance) models. For the third image the
correct label museum is in the third position in the label rankings of all 4 CNN models while, using
the spatial sequence pattern (distance) models, ResNet18 and ResNet50 can correctly label it and in
the label rankings of AlexNet and DenseNet161 museum is in the second position.

Table 2 MRR result using baseline models and proposed combination models using different
types of spatial context and sequences

MRR AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.27 0.28 0.31 0.31

Relatedness 0.27 0.28 0.31 0.32
Co-location 0.30 0.31 0.31 0.32

Sequence Pattern (Random) 0.38 0.40 0.42 0.42
Sequence Pattern (Distance) 0.41 0.42 0.44 0.44

Sequence Pattern (Morton order) 0.39 0.42 0.43 0.43

The Accuracy@1 measurement is improved by incorporating spatial co-location component
in the models. This confirms our previous reasoning that considering the external signal,
namely spatial contexts, and assuming a complex latent distribution of the data in a Bayesian
manner improve image classification. However, for MRR the improvement is marginal and
for Accuracy@5 there even is a decrease after incorporating the spatial co-location component
because this type of spatial context falls short of taking into account the intricate interactions
of different context neighbors. This shortcoming is not clear when only looking at the first
few results in the ranking returned by the combined models, but it becomes clearer in later
results in the ranking output, thus resulting in a decrease for Accuracy@5 and only a slight
increase in the MRR measurement.

The Bayesian combination model using spatial sequence patterns shows better overall
results compared with the baseline models, the spatial relatedness model, and the spatial
co-location model. This is because the spatial sequence patterns capture spatial interactions
between the neighboring POIs that are neglected by the other models. From the result we
can see that using a distance-based sequence is better than using a random sequence. To
prevent confusion and to understand why the random model still performs relatively well, it
is important to remember that this model utilizes spatial context. However, it does not utilize
the distance signal within this context but merely the presence of neighboring POI. The
results show that a richer spatially explicit context, one that comes with a notion of distance
decay, indeed improves classification results. Interestingly, the sequence using Morton order,
which is widely used in geohashing techniques, does not further improve the result compared
to the distance-based sequence. There may be multiple reasons for this. First, we may have
reached a ceiling of possible improvements by incorporating spatial contexts. Second, our
Morton order implementation takes the 10 places that precede the target place in the index.
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Table 3 Accuracy@1 result using baseline models and proposed combination models using
different types of spatial context and sequences

Accuracy@1 AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.07 0.07 0.09 0.09

Relatedness 0.07 0.07 0.09 0.09
Co-location 0.15 0.17 0.17 0.17

Sequence Pattern (Random) 0.18 0.18 0.19 0.20
Sequence Pattern (Distance) 0.20 0.20 0.22 0.22

Sequence Pattern (Morton order) 0.19 0.20 0.22 0.22

Table 4 Accuracy@5 result using baseline models and proposed combination models using
different types of spatial context and sequences

Accuracy@5 AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.50 0.56 0.59 0.60

Relatedness 0.52 0.56 0.58 0.59
Co-location 0.42 0.44 0.45 0.44

Sequence Pattern (Random) 0.65 0.69 0.73 0.73
Sequence Pattern (Distance) 0.67 0.70 0.73 0.75

Sequence Pattern (Morton order) 0.65 0.70 0.72 0.71

This may result in directional effects. Finally, all space filling curves essentially introduce
different ways to preserve local neighborhoods; utilizing another technique such as Hilbert
curves may yield different results. Given that the Morton order-based sequence in many
cases yield results of equal quality to the distance-based sequences, further work is needed to
test the aforementioned ideas.

Summing up, the results demonstrate that incorporating a (distance-based) spatial context
improves the MRR of state-of-the-art image classification systems by over 40%. The results
for Accuracy@1 are more than doubled which is of particular importance for humans as
this measure only considers the first ranked result.

6 Conclusion and Future Work

In this work, we demonstrated that utilizing spatial contexts for classifying places based on
images of their facades and interiors leads to substantial improvements, e.g., increasing MRR
by over 40% and doubling Accuracy@1, compared to applying state-of-the-art computer
vision models such as ResNet50 and DenseNet161 alone. These advances are especially
significant as the classification of places based on their images remains a hard problem. One
could argue that our proposal requires additional information, namely about the types of
nearby places. However, such data are readily available for POI, and only a few nearby places
are needed. Secondly, and as a task for future work, one could also modify our methods
to work in a drive-by-typing mode in which previously seen places are classified, and these
classification results together with their associated classification uncertainty are used to
improve estimation of the currently seen place, thereby relaxing the need for POI datasets. In
the future, we would like to apply transfer learning and experiment with other ways to encode
spatial contexts, e.g., by testing different space-filling curves. We plan to develop models to
directly capture 2D spatial patterns rather than using a 1D sequence as a proxy and test
whether spatial contexts also aid in recognizing objects beyond places and their facades.
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